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Algebra Universalis

A 2-element antichain that is not contained in any finite
retract

Micha�l Kukie�la and Bernd S. W. Schröder

Abstract. We give an example of an ordered set P which contains a 2-element
antichain that is not contained in any finite retract of P .

1. Introduction

The question in [2, p. 259, Remark 8] asks if every finite subset of an

(infinite) ordered set is actually contained in a finite retract. The question

was motivated by the product problem for the fixed point property, but, as a

possible structural property, it is interesting in its own right.

Moreover, by [1, Theorem 2], every isometric spanning fence is a retract,

which means that in a chain-complete ordered set, every 2-antichain (that is, 2-

element antichain) consisting of minimal or maximal elements is contained in a

finite retract. The construction can be generalized to show that in an arbitrary

ordered set, every 2-antichain in which one of the two elements is maximal or

minimal is contained in a finite retract: Let {m,a} be an antichain and without

loss of generality let m be minimal. Let m = f0 < f1 > f2 < · · · fn = a be

a shortest possible fence from m to a. Mapping the elements whose distance

to m is j < n to fj and mapping the elements whose distance to m is ≥ n to

fn = a is a retraction.

Given the generality and simplicity of the above construction, it is all the

more surprising that there is an ordered set of height 2 with a 2-antichain that

is not contained in any finite retract.

2. The construction

Lemma 1. Let P be an ordered set, let {a, b} ⊆ P be a 2-antichain, and let

F = {a = f0 < f1 > · · · fn = b} be a shortest possible fence from f0 to fn. If

there is no other fence from a to b that is of length n or if any other fence F ′

from a to b that is of length n and has the property that a = f ′

0 < f ′

1, then any

retract of P that contains {a, b} must contain F .
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Proof. Let r : P → P be a retraction such that r(a) = a and r(b) = b. Now,

a = f0 < f1 > · · · fn = b

implies

a = r(a) = r(f0) ≤ r(f1) ≥ · · · r(fn) = r(b) = b.

Because the distance from a to b is n, the r(fj) must form a fence of length n

from a to b. In particular, we have

a = r(a) = r(f0) < r(f1) > · · · r(fn) = r(b) = b.

By the conditions on P , the image of F under r must be F itself. �

To construct the ordered set P for our example, let a and b be two points.

Let

U := {a = u0 < u1 > u2 < u3 > · · · > u90 = b}

and

L := {a = l0 > l1 < l2 > l3 < · · · < l90 = b}

be two fences that are disjoint, except for the endpoints. Let

G := {u32 = g0 < g1 > g2 < · · · > g10 = l33},

H := {u34 = h0 < h1 > h2 < · · · > h10 = l35},

I := {u36 = i0 < i1 > i2 < · · · > i10 = l37},

J := {u38 = j0 < j1 > j2 < · · · > j10 = l39},

K := {u40 = k0 < k1 > k2 < · · · > k10 = l41},

be pairwise disjoint fences that only intersect U at their starting points and

that only intersect L at their endpoints. (The numbers 10 and 90 are in no

way optimal. They were chosen to make it obvious that the construction works

as desired.) Let Q0 := {g4, h4, i4, j4, k4}. For n ≥ 1, let Qn be the set of two

element subsets of Qn−1, considered as an antichain. Let

P := U ∪ L ∪ G ∪ H ∪ I ∪ J ∪ K ∪
∞⋃

n=1
Qn.

The order on P is the union of the orders on U , L, G, H, I, J , and K together

with the element relation ≤ := ∈ on Q2k ∪ Q2k+1 and the reverse element

relation ≤ := 	 on Q2k+1 ∪ Q2k+2. The resulting ordered set has height 2.

Now let r : P → P be a retraction such that {a, b} ⊆ r[P ]. Then, by

Lemma 1, U ⊆ r[P ] and L ⊆ r[P ]. Similarly, because G, H, I, J , and K are

the shortest fences between their endpoints, we must have G ⊆ r[P ], H ⊆ r[P ],

I ⊆ r[P ], J ⊆ r[P ], and K ⊆ r[P ]. Thus, in particular, r is the identity on Q0.

Once more by Lemma 1, we must have that r is the identity on Q1, because

for every {x, y} ∈ Q1, the fence x ∈ {x, y} 	 y is the shortest fence from x

to y.

We now prove inductively that r is the identity on
⋃

∞

n=2 Qn. Let x ∈ Qm,

assume that r is the identity on
⋃m−1

j=0 Qj , and, without loss of generality,

assume that m is even. Then x = {g, h} for two distinct elements g, h ∈ Qm−1
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and x < g, h. By definition of Qm−1, as the set of two-element subsets of

Qm−2, there is at most one v ∈ Qm−2 such that v < g and v < h. If there

is no such v ∈ Qm−2, then r(x) = x, because g and h are fixed by r and x is

their only common lower cover. In case there is such a v ∈ Qm−2, suppose for

a contradiction that r(x) = v. Let s, t, u, v, and w be 5 distinct elements of

Qm−2. We may assume that g = {u, v} and h = {v, w}. Let g∗ := {u, w} ∈

Qm−1, h∗ := {s, t} ∈ Qm−1, and x∗ := {g∗, h∗} ∈ Qm. Then, because x∗ is

the only common lower cover of g∗ and h∗, which are both fixed by r, we have

r(x∗) = x∗. Now, x, x∗ < {x, x∗} ∈ Qm+1, so r(x), r(x∗) < r({x, x∗}). But

there is no element greater than both v = r(x) and x∗ = r(x∗), a contradiction.

Thus, r(x) �= v. Because x and v are the only common lower covers of the

elements g and h, which are fixed by r, we must thus have r(x) = x in this

case, too. This proves that r is the identity on Qm. Hence, r is the identity

on
⋃

∞

n=0 Qn, and thus it is the identity on P . So in fact, the only retract of P

that contains {a, b} is P itself.

If an example without infinite fences is desired, the union
⋃

∞

n=1 Qn could

be replaced with a disjoint union of sets Zn :=
⋃n

j=1 Qj attached in the same

fashion to Q0. In this set, once more {a, b} is not contained in any finite

retract, but there are retracts other than P that contain {a, b}: First of all,

because the induction above also used an element of Qm+1, a retraction that

fixes the elements of a union,
⋃n−1

j=1 Qj in Zn, could still not fix some elements

of Qn. Second, a retraction could map a set Zn to a set Zn+j . But because

no retraction can map a set Zn+j to a set Zn, any retraction that fixes a and

b must, for infinitely many n, fix the first n − 1 stages of the set Zn, which

means that the retract must be infinite.

3. Concluding remarks

As we have noted, our set P has height 2. By [1, Theorem 2], every an-

tichain consisting of 2 elements in a poset of height 1 is contained in a finite

retract. This is no longer true for 3-element antichains. To see this, modify

our construction by replacing L with

U ′ = {a = u′

0 < u′

1 > u′

2 < · · · > u′

90 < u′

91 > u′

92 = b},

and put g10 = u′

32, h10 = u′

34, i10 = u′

36, j10 = u′

38, k10 = u′

40. It is easy to see

that the antichain {a, b, u′

45} is not contained in any finite retract.

The original motivation for the question in [2] came from fixed point theory.

Neither the set P nor any of its modifications considered in this note do have

the fixed point property. Therefore, the question remains open whether every

finite subset of a poset with the fixed point property is contained in a finite

retract of this poset. Also, an answer for posets that do not contain infinite

antichains could be interesting.
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