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Abstract. This paper explores the superior performance of quaternion
multi-layer perceptron (QMLP) neural networks over real-valued multi-
layer perceptron (MLP) neural networks, a phenomenon that has been
empirically observed but not thoroughly investigated. The study uti-
lizes loss surface visualization and projection techniques to examine
quaternion-based optimization loss surfaces for the first time. The pri-
mary contribution of this research is the statistical evidence that QMLP
models yield smoother loss surfaces than real-valued neural networks,
which are measured and compared using a robust quantitative measure
of loss surface “goodness” based on estimates of surface curvature. Ex-
tensive computational testing validates the effectiveness of these surface
curvature estimates. The paper presents a comprehensive comparison
of the average surface curvature of a tuned QMLP model and a tuned
real-valued MLP model on both a regression task and a classification
task. The results provide strong support for the improved optimization
performance observed in QMLPs across various problem domains.

Keywords. Quaternion neural networks, Dimensionality reduction, Sur-
face curvature, Gradient descent optimization.

1. Introduction

Over the last several decades, advances in data collection, storage, and com-
putational power have enabled a wide range of artificial intelligence and ma-
chine learning (AI/ML) applications in engineering and the sciences [11].
Deep learning methods in particular have grown increasingly popular due to
their success across a broad range of problem sets. The use of modern neural
networks such as GPT-4 [27] and other large language models (LLMs) has
grown exponentially in recent years and has enabled advances in domains as
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diverse as natural language processing, computer vision, time series analysis
and forecasting, and robotic control.

Training such models involves iteratively solving an optimization prob-
lem in a very high-dimensional search space. While theory and intuition
would suggest that minimizing a non-convex function in a high-dimensional
space should yield poor results, in practice neural networks have achieved
state-of-the-art results in many application domains (see [1] for a recent sur-
vey of state-of-the-art results). In addition, many recent works have demon-
strated that neural networks constructed in higher dimensional algebras such
as Clifford algebras and geometric algebras can reduce the dimensionality
of large neural networks while simultaneously improving the optimization,
training, and generalization performance of these neural networks as shown
in [6,10,24].

Quaternion neural networks (QNNs) constitute the most popular Clif-
ford algebra-based neural network implementation due to the ubiquity of
quaternions in many engineering applications [8]. QNNs are neural network
structures wherein the weights, biases, and inputs are all represented by
quaternion numbers as opposed to real-valued numbers. QNNs have demon-
strated consistent improved network accuracy and generalization performance
in a variety of neural network applications versus their real-valued equivalents
[36].

The QNN literature provides a wealth of empirical evidence demon-
strating the superior performance of QNNs over real-valued neural networks
[28]. However, the reasons behind this improved performance have remained
largely unexplored. This work leverages loss surface visualization and pro-
jection techniques from the real-valued neural network literature to present
the first ever exploration of quaternion-based optimization loss surfaces. The
main contribution is the statistical evidence that tuned Quaternion Multi-
Layer Perceptron (QMLP) models admit smoother loss surfaces then real-
valued Multi-Layer Perceptron (MLP) neural networks. Towards this end
the research develops a robust quantitative measure of loss surface “good-
ness” using estimates of surface curvature. This research conducts extensive
computational testing to demonstrate the efficacy of the surface curvature es-
timates. Finally, this work presents robust statistical comparisons of the mean
surface curvature of a tuned QNN model vs. a tuned real-valued neural net-
work model on a regression task and a classification task. These experiments
demonstrate that the QNN models admit a loss surface that is statistically
significantly smoother than their real-valued counterparts, providing strong
support for the improved optimization performance that QNNs have shown
across myriad problem domains.

The rest of this article is organized as follows: Section 2 provides a brief
overview of quaternion algebra, QNNs, neural network loss surface character-
ization, and surface curvature. Section 3 outlines the two test datasets used
in this study, as well as details on each neural network architecture and the
hyperparameter tuning process. Additionally, this section outlines the loss
surface projection process, surface curvature estimates, and statistical tests
employed throughout the study. Finally, Section 4 provides key results and
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relevant discussion, while Section 5 provides conclusions and suggestions for
future research.

2. Background and Related Work

This section provides a brief overview of quaternion algebra and the con-
struction of QNNs. Several relevant works from the loss surface visualization
literature are presented as well as a brief introduction to surface curvature
and differential geometry.

2.1. Quaternion Algebra

The quaternion numbers (denoted by H) are a four-dimensional extension of
the complex numbers. Each quaternion q̄ consists of a real part and three
imaginary parts, so that the quaternions form an isomorphism with R

4 with
basis elements 1, ī, j̄, and k̄:

q̄ = r + xī + yj̄ + zk̄. (2.1)

In the discussion that follows and throughout the rest of this paper, we repre-
sent all quaternions with bar notation, while scalars in R are represented with
lowercase, unbolded letters. We represent the single real and three imaginary
components of a quaternion with the variables r, x, y, and z, respectively.

Quaternions form a generalization of the complex numbers, wherein the
three imaginary components ī, j̄, and k̄ follow the same construct as i in C:

ī(2) = j̄(2) = k̄(2) = −1. (2.2)

However, the three imaginary basis components must also satisfy the follow-
ing rules:

j̄k̄ = −k̄j̄ = ī, (2.3)
k̄ī = −īk̄ = j̄, (2.4)
īj̄ = −j̄ ī = k̄. (2.5)

These rules demonstrate that quaternion multiplication ⊗, known as
the Hamilton Product, is non-commutative. The Hamilton Product is easily
derived using the basis multiplication rules in Eqs. (2.3)–(2.5) and the dis-
tributive property. In reduced form, the Hamilton Product of two quaternions
q̄1 and q̄2 is defined as:

q̄1 ⊗ q̄2 :=(r1r2 − x1x2 − y1y2 − z1z2)

+(r1x2 + x1r2 + y1z2 − z1y2)̄i

+(r1y2 − x1z2 + y1r2 + z1x2)j̄

+(r1z2 + x1y2 − y1x2 + z1r2)k̄.

(2.6)

In addition, the element-wise (Hadamard) product, is defined as:

q̄1 � q̄2 := r1 · r2 + (x1 · x2)̄i + (y1 · y2)j̄ + (z1 · z2)k̄. (2.7)
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Similarly, quaternion addition is defined using the element-wise addition op-
eration. For two quaternions q̄1, q̄2 ∈ H, the sum q̄1 + q̄2 is defined as:

q̄1 + q̄2 := (r1 + r2) + (x1 + x2)̄i

+ (y1 + y2)j̄ + (z1 + z2)k̄.
(2.8)

The notion of a quaternion conjugate is analogous to that of a complex
conjugate in C. The conjugate of a quaternion q̄ = r+xī+yj̄ +zk̄ is given by
q̄∗ = r−xī−yj̄−zk̄. The norm of a quaternion is equivalent to the Euclidean
norm in R and is given by

||q̄|| :=
√

q̄q̄∗ =
√

r2 + x2 + y2 + z2. (2.9)

With this quaternion norm, one can also define a notion of distance d(q̄, p̄)
between two quaternions q̄ and p̄ as

d(q̄, p̄) := ||q̄ − p̄||. (2.10)

The quaternion norm is also used to define the multiplicative inverse of any
quaternion:

q̄(−1) =
q̄∗

||q̄||(2) . (2.11)

It is easy to verify that q̄(−1)q̄ = q̄q̄(−1) = 1. In the special case where q̄ is a
unit quaternion (i.e., ||q̄|| = 1), then q̄(−1) = q̄∗.

2.2. Quaternion Neural Networks

The mathematical machinery described in Sect. 2.1 provides all of the nec-
essary components to build a basic quaternion neural network wherein the
inputs, weights, and biases of the network are all composed of quaternions
as opposed to real numbers. The basic Quaternion Multilayer Perceptron
(QMLP) was first presented in [3]. The authors proposed a basic quaternion
neural network model that generally mirrors the standard MLP with two
major caveats.

First, the authors employed “split” or component-wise activation func-
tions σ̄(·) wherein a real-valued activation function σ(·) is applied to each
component of a quaternion individually, i.e.,

σ̄(·) = σ(·) + σ(·)̄i + σ(·)j̄ + σ(·)k̄. (2.12)

Second, [3] proposed a “pseudo-gradient” backpropagation method,
wherein the gradient of a split activation function is computed in a similar
component-wise fashion, i.e.,

˙̄σ(·) = σ̇(·) + σ̇(·)̄i + σ̇(·)j̄ + σ̇(·)k̄. (2.13)

Nitta [26] independently and concurrently proposed a QMLP model
using the same split activation and pseudo-gradient construct as [3], with
slight differences in the backpropagation derivation. The split quaternion
activation functions employed by [3,26] were motivated by early work in
complex multilayer perceptrons by [7], who found split activation functions
to be necessary in the complex domain C to circumvent Liouville’s Theorem
[25], which states that any bounded entire function in the complex plane
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is constant. Arena et al. [2] proved a universal approximation theorem for
complex-valued neural networks using split activation functions in C, hence
bypassing the issues posed by Liouville’s Theorem for complex MLPs. Arena
et al. [5] subsequently presented a succinct proof of a universal approximation
theorem for QMLPs similar to the proof for the complex-valued case [2] and
results for real-valued neural networks [13,18]. For a more detailed history
and exposition of various quaternion neural network formulations, including
[9]’s Clifford Multilayer Perceptron (CMLP), see [8].

2.3. Loss Surface Visualizations

Researchers have extensively studied the optimization dynamics of real-valued
neural networks. Neural networks are trained in a supervised fashion by min-
imizing a parameterized loss function of the form:

L(θ) =
1
m

m∑

i=1

L(xi, yi;θ), (2.14)

where m represents the number of training samples in the dataset, θ repre-
sents the weights of the neural network, and L(xi, yi; θ) measures the error
between the network’s predicted value of the input xi versus the known tar-
get value yi. Several works have addressed neural network optimization from
a theoretical perspective [12,14], requiring various assumptions on the na-
ture or structure of the networks under study. An alternative method for
evaluating the optimization dynamics of neural networks which does not re-
quire any assumptions on the structure or nature of the networks is to utilize
low-dimensional projection techniques and surface visualizations of the pa-
rameterized loss function.

In [17], the authors provide one of the first attempts to visualize and
characterize the loss functions of neural networks as a function of the net-
work’s trainable parameters. The authors perform linear interpolations of
the loss function of several neural networks by interpolating between the ini-
tial weights and the final weights of each trained neural network. Plots of
these linear interpolations provide insights into how neural networks evolve
throughout the training process and provide insight into the local minima of
the cost function of each network.

Subsequently, [32] utilized two-layer rectified linear unit (ReLU) net-
works and simple deep ReLU networks to provide several results regarding
the geometry of neural network loss functions. The authors demonstrate that
under mild conditions, random network initializations will result in a starting
point for the network that has a continuous monotonically decreasing path
to a global minimum. Additionally, under mild conditions, two-layer ReLU
networks will initialize to a basin with good local minima. Keskar et al. [20] in-
vestigates the effects of batch size on the optimization process using the same
visualization techniques presented in [17] to demonstrate the differences in
minima found using large vs. small batch sizes. In [34], the authors investigate
the role that batch normalization plays in improving neural network train-
ing performance. The authors show empirically and analytically that batch
normalization increases the smoothness of both the loss function and the loss
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function gradients of neural networks. The authors show this empirically by
measuring values of the loss function along the direction of the gradient for
both batch norm and non-batch norm networks. Im et al. [19] investigates
the impacts of different optimizers on the optimization process. The authors
use three-dimensional subspace projections to provide deeper insights into
the nature of the loss surfaces of various networks than are available using
[17]’s two-dimensional weight interpolation plots. Im et al. [19] demonstrates
that different optimizers appear to converge to different local minima during
training.

While Im et al. [19]’s results demonstrate the differences in local minima
found using different optimizers, the results in [33] indicate that these distinct
local minima may in fact lie on a large, relatively flat, connected basin of an
over-parameterized neural network’s loss surface. Whereas many researchers
attempt to visualize neural network loss surfaces using techniques similar
to [17,22] presents a different method for visualizing loss surfaces in two
and three dimensions using a “filter normalization” technique. The authors
demonstrate that [17]’s linear interpolation visualization technique can hide
many of the non-convexities of a loss surface, thereby resulting in potentially
misleading results. The authors demonstrate that their filter normalization
visualization method results in more accurate portrayals of the true convexity
of a loss surface for convolutional neural networks (CNNs), and the authors
verify this by analyzing the eigenvalues of the Hessian of the loss function.

Finally, [15] introduces the notion of the “Goldilocks zone” in the loss
surface of neural networks. The authors demonstrate through extensive ex-
periments that there exists a region of high convexity/high positive curvature
in the loss landscape that results in fast convergence of both fully-connected
and convolutional neural networks. The size and location of this zone is depen-
dent on the trace and the norm of the Hessian of the loss function. Addition-
ally, the authors show empirically that many common weight initialization
schemes result in a network initialized in the Goldilocks zone.

Advances in loss surface characterization and visualization techniques
have greatly contributed to the conventional wisdom for training deep neural
networks. For example, the relatively low non-convexity of high-dimensional
neural network loss surfaces indicated in [17] may explain why over-param-
eterized neural networks exhibit better (albeit slower) training performance.
Additionally, [22] highlights the need for skip connections in very deep neural
networks and helps to explain why very deep networks experience unstable
training performance beyond the vanishing/exploding gradients hypothesis.
Keskar et al. [20] and Santurkar et al. [34] reinforce the importance of utilizing
batch normalization and of using small mini-batch sizes when training with
SGD. Finally, [15] sheds light on why nearly all of the commonly employed
initialization methods result in better training performance. While these re-
sults represent a small subset of the loss surface characterization literature,
each work listed highlights the relative importance of the topic in terms of a
scientific understanding of the dynamics of neural network training and gen-
eralization performance. To date, no attempt has been made to characterize
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Figure 1. Surface with normal planes in direction of prin-
cipal curvatures from [16]

or visualize the loss surfaces of QNNs. Since loss surface visualization tech-
niques do not require any assumptions regarding the structure of the network
under study, they provide an ideal method for examining some of the QNN
optimization dynamics to better understand the improved performance that
QNNs provide.

2.4. Surface Curvature

The curvature of a surface measures how much a surface bends by different
amounts in various directions around a given point. Surface curvature is often
expressed in terms of the two principal curvatures at a point, denoted k1 and
k2, which are simply the minimum and maximum curvatures measured at
a point. Formally, the principal curvatures of a surface at a point p are the
minimum and maximum normal curvatures of the surface, which are found
by measuring the smooth curve formed by intersecting a normal plane and
the surface under study. A depiction of this process is shown in Fig. 1, and
[21] provides an in-depth overview of surface curvature.

To date, applications of surface curvature in the deep learning literature
have remained limited. Li et al. [22] utilize principal curvatures to validate
their visualization technique, demonstrating that their constructed 2D sur-
face plots are accurately depicting the convexity of the high-dimensional loss
surface. In addition, [15] uses the notion of positive curvature at a point to
indicate the convexity of the measured loss surface at a given point. However,
both works measure curvature using the eigenvalues of the Hessian matrix
of the loss function evaluated at a point. The explicit claim in both works
is that the eigenvalues of the Hessian matrix correspond exactly to the mea-
sures of curvature at a given point. This statement is true at all critical points
of a function f (i.e., all points where ∇f = 0), but is not true in general,
potentially resulting in misleading results.

This work directly estimates the curvature of the loss function at each
point on a projected loss surface using surface variation. Surface variation
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provides a technique for estimating the curvature of an interpolated surface
directly from a point cloud of data [29–31]. This method does not require any
assumptions regarding the closeness of the Hessian eigenvalues to the princi-
pal curvatures at a point. Furthermore, this method can be computed directly
for any projected loss surface, circumventing the need for a full quaternion
Hessian matrix in the case of QNN loss surface curvature. As a measure of
the amount of surface “bending” at each point on a surface, the principal
curvature values provide an excellent metric for comparing the goodness of
loss surfaces from an optimization perspective.

3. Experimental Methodology

This section outlines the methodology employed in the two supervised ma-
chine learning experiments employed in this research. Supervised machine
learning is a subfield of machine learning wherein a model learns to predict
outcomes based on a set of labeled input data. Supervised machine learning
tasks can be divided into two categories: regression and classification. In re-
gression tasks, the model predicts a continuous outcome, similar to ordinary
least squares regression problems. Classification tasks require the model to
predict discrete, categorical outcomes similar to categorical regression tech-
niques such as logistic regression. This research employs a simple regression
task and a simple binary classification task to compare the loss surfaces of a
tuned real-valued neural network versus a tuned QNN. This section outlines
the two datasets employed in the study as well as the loss surface projec-
tion technique, surface curvature estimate methodology, and hyperparame-
ter tuning process utilized in this research. All computer experiments were
performed on a desktop workstation with 256 GB of RAM and an AMD
Epyc 7402p 24-core processor running Ubuntu 22.04.1 LTS. All coding was
performed in Julia v1.9.0.

3.1. Binary Classification of Breast Cancer Samples

The Wisconsin breast cancer dataset is a binary classification dataset con-
structed from 569 samples of breast tissue [40]. Each sample contains 30
real-valued features describing various characteristics of the sample. The fea-
tures are constructed via digitized images of a Fine Needle Aspirate (FNA) of
breast tissue. The labels for each sample are either “M” for malignant or “B”
for benign. The purpose of the dataset is to explore various classification tech-
niques for categorizing a breast tissue sample as either malignant or benign
based on the various input features. The dataset does not contain any miss-
ing values, although the two classes are unbalanced, containing 357 benign
samples and 212 malignant samples. The full dataset is split 70%/15%/15%
between training, validation, and test data. Prior to network training, each
feature of the training dataset is standardized using Z-score normalization.
Each feature of the test dataset is standardized using the mean and standard
deviation values for each feature calculated from the training data.
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Figure 2. Static Lorenz attractor

Figure 3. Impact of starting position
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3.2. Chaotic Time Series Prediction

The Lorenz Attractor is a deterministic system of differential equations that
was first presented by Edward Lorenz [23]. The attractor is a chaotic system,
meaning that while it is deterministic, the system never cycles and never
reaches a steady state. Additionally, the system is very sensitive to initial
conditions. When represented as a set of 3-dimensional coordinates, the at-
tractor produces a graph often referred to as the Lorenz butterfly. A static
representation of this is shown in Fig. 2, while Fig. 3 shows the system’s sen-
sitivity to initial conditions.

The Lorenz Attractor is governed by the following system of differential
equations:

dx

dt
= σ(y − x), (3.1)

dy

dt
= ρx − y − xz, (3.2)

dz

dt
= xy − βz, (3.3)

where σ, ρ, and β are constants. In this experiment, σ = 10, ρ = 28, and
β = 8

3 . Quaternions are naturally well-suited to predicting chaotic time series
data since the problem involves a multidimensional input as well as a multidi-
mensional output. Quaternion neural networks have proven quite successful
at chaotic time series prediction based on small training datasets [4,5,37].

The data for the chaotic time series prediction experiment consists of
500 distinct time series generated using a fixed-timestep fourth-order Runge–
Kutta Ordinary Differential Equation (ODE) solver with dt = 0.01. The data
is split 70%/30% between training and test data. The starting point for each
time series is randomly generated using a uniform U[−10.0, 10.0] distribution
for the x- and y-coordinates and a uniform U[0.0, 10.0] distribution for the
z-coordinates. The input to each neural network is a series of 10 timesteps,
and the label or target values are the subsequent 1000 timesteps, measuring
the ability of each network to learn the underlying dynamics of the chaotic
system and make long range series predictions based on a short input.

3.3. Network Training and Hyperparameter Tuning

This research explores the loss surface of simple quaternion multilayer per-
ceptrons (i.e. fully connected neural networks) compared to those of similarly-
structured real-valued networks. The networks in both the regression and the
classification tasks employed two hidden layers. In order to provide a robust
comparison between network performance for each architecture, the QNNs
and real-valued networks were tuned using the Hyperopt.jl hyperparamter
tuning package. The tuning process iterated through 100 different random
hyperparameter combinations for each architecture, searching over the pa-
rameter ranges shown in Table 1 for the QNN. The hyperopt search space for
the real-valued network was identical except for the “Neurons” parameter,
which represents the number of neurons in each hidden layer, which ranged
from 40 to 200 neurons for the real-valued NN. This increased range accounts
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Table 1. QNN hyperparameter search space

Factor Type Level 1 Level 2 Level 3

Activation func. Categorical Leakyrelu Swish Sigmoid
Optimizer Categorical SGD Adam
Neurons Numeric 10 50
Epochs Numeric 100 250
Learning rate Numeric 1 × 10−5 0.001

for the fact that quaternions contain four real-valued components in each
quaternion, and hence can encapsulate more information in a single number.
This constitutes the sole difference between the hyperparameter search space
for the QNNs versus the real-valued networks and reflects the reduction in
dimensionality that quaternions provide in a neural network structure.

3.4. Loss Surface Projections

This research utilizes a loss surface projection process inspired by [22] with
two key differences. First, this work employs a simple Gram-Schmidt orthog-
onalization process to ensure that the projection vectors are orthogonal. Sec-
ond, since this work deals solely with fully-connected neural network models,
the loss surface projections do not require any of the filter normalization tech-
niques presented in [22] designed to account for convolutional neural network
layers.

As indicated in Eq. (2.14), the loss function of a neural network is pa-
rameterized by the weights of a network, denoted by the weight vector θ. In
order to project this high dimensional function to a low-dimensional repre-
sentation for plotting and visualization, two direction vectors δ and γ are
randomly selected with |θ| = |δ| = |γ|. These direction vectors are then
orthogonalized using a simple Gram-Schmidt orthogonalization routine. Fi-
nally, a fine meshgrid of points is constructed along the ranges −1 < α < 1
and −1 < β < 1 and the loss is measured along the projected dimensions
at each point in the meshgrid. That is, using the parameterized form of a
general loss function shown in Eq. (2.14),

f(α, β) = L(θ + αδ + βγ). (3.4)

2D surface plots of the resulting function values provide insight into the
nature of the tuned minimizer represented by the weight vector θ. Since each
plot is centered at θ, the surface plots provide an indication of how the loss
of a network changes in the region surrounding the local minimizer in the
weight space.

3.5. Surface Curvature Estimates and Statistical Comparisons

While low-dimensional projected loss surfaces provide insightful graphics
with which to asses the visual differences between loss surface convexity and
smoothness, they are limited in their overall utility. The projection method
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Algorithm 1 Estimating surface curvature with surface variation

1: Initialize max distance dmax = 0.015
2: Initialize n = 30
3: Require P = {(α, β, f(α, β)) | − 1 < α, β,< 1} for f(α, β) from

Equation 2.14
4: for each p ∈ P do
5: Select neighborhood N of n nearest points: N = {p1,p2, . . . ,pn}.
6: for i ∈ {1, 2, . . . , n} do
7: Compute distance di = ||p − pi||2.
8: end for
9: Compute mean distance μ.

10: for i ∈ {1, 2, . . . , n} do
11: if di < dmax: then
12: ξi = 1
13: else
14: ξi = exp(− d2

i

μ2 )
15: end if
16: end for
17: Compute centroid of N: p̄ = 1

n

∑n
i=1 pi.

18: Compute weighted covariance matrix C: C =
∑n

i=1 ξi · (pi − p̄) · (pi −
p̄)T .

19: Find λ0 < λ1 < λ2, eigenvalues of C.
20: Record σn(p) = λ0

λ0+λ1+λ2
.

21: end for
22: Return σn(p) for each p.

in Sect. 3.4 provides a crucial benefit over other existing approaches: the re-
sulting point cloud of loss data in R

3 provides a basis for estimating the
magnitude of the surface curvature of the projected loss directly from the
data using surface variation.

Surface variation at a point p in R
3 with a neighborhood of size n

is defined in terms of the eigenvalues of the covariance matrix of the local
neighborhood around p:

σn(p) =
λ0

λ0 + λ1 + λ2
, (3.5)

where λ0 < λ1 < λ2 are the eigenvalues of the covariance matrix for the point
p. [29] notes that surface variation is not an intrinsic property of point sam-
pled surfaces but depends on the size of the neighborhood n chosen around
each point. Further, this research assumes that the point sampled surface
characterized by the loss surface projection in Sect. 3.4 provides a good rep-
resentation of the true underlying projected surface. To improve the stability
of the surface curvature estimates, this work employs the outlier weighting
scheme presented in [30], which demonstrates that weighting all outlier points
in the neighborhood around the point p results in better curvature estimates
versus a naive approach when computing the covariance matrix around p.
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The full surface curvature estimation algorithm is shown in Algorithm 1.
This research employs a fixed neighborhood n = 30 around each point for
each curvature estimate. In addition, this work uses a dmax = 0.015 to de-
termine the outliers in the neighborhood around each point.

This technique provides several benefits over other curvature estimation
techniques from the loss surface characterization literature. First, this method
does not require the Hessian of the loss function, so the computational cost
for employing Algorithm 1 is tied solely to the fineness of the meshgrid, i.e.
the number of points in the point cloud. Using the Hessian to characterize
surface curvature is problematic for both performance and accuracy reasons,
as noted in Sect. 2.3. Furthermore, since the surface variation is calculated
directly from the projected surface values in R

3, this method can be used
to estimate the loss surface curvature values for real-valued neural networks,
QNNs, and any higher dimensional Clifford algebra- or geometric algebra-
based neural networks such as those surveyed in [6]. This is vital for assessing
the structural advantages that high-dimensional algebraic networks provide
over real-valued networks.

Finally, since loss surface projections depend on the selected orthogonal
direction vectors delta and gamma each projection should be considered a
sample of the actual loss surface. Performing repeated loss surface projec-
tions and curvature estimates allows for statistical comparison tests to assess
statistical differences in the mean value of the curvature estimates across
each surface. This research performs 30 replications of the loss surface pro-
jection process, estimating the associated curvature for each projected plot.
The means of the curvature estimates are then compared between the QNN
and the real-valued neural network for each experiment using a paired t-test,
also known as the one-sample t-test. The paired t-test assumes the following:

• The observations being tested are all independent.
• The observations are approximately normally distributed.
• There are no outliers among the observations.

To ensure the independence of each observation, the random number streams
used to generate the random projection vectors are carefully controlled. The
normality assumption is checked using standard quantile-quantile (QQ) plots,
and the outliers are assessed using standard box plots. The resulting statis-
tical comparisons provide robust conclusions on the “smoothness” of QNN
loss surfaces versus standard real-valued neural network loss surfaces between
fully tuned models for each architecture.

4. Results and Discussion

The tuned QNN models for the breast cancer classification experiment and
the time series prediction experiment outperformed the tuned real-valued
models, consistent with many of the results highlighted in [28]. This section
details the training characteristics of each model and provides measures of
merit for the performance of each model. Furthermore, assessments of final
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Table 2. Classification hyperparameter tuning results

Model
QNN NN

Hyperparameter Value Value

Activation function Sigmoid Sigmoid
Optimizer SGD SGD
Neurons 19 16
Epochs 460 500
Learning rate 0.0050 0.00062

model accuracy for each model are provided, as well as loss surface projec-
tions, curvature plots, and statistical comparisons of the resulting curvature
estimates.

4.1. Breast Cancer Classification Results

The tuned hyperparameters for each classification model are shown in Ta-
ble 2. The tuning process produced similar results for each model, but the
QNN contained significantly fewer neurons per hidden layer and training
epochs compared to the real-valued model. Figure 4 depicts the training and
validation set loss for both models, capturing the improvement in validation
set loss of the QNN model.

When evaluated on the test data, the QNN achieved higher classifica-
tion accuracy and lower binary cross entropy loss compared to the standard
real-valued neural network model. Figure 5 displays the Receiver Operating
Characteristic (ROC) curve for both models. The QNN achieved an area un-
der the ROC curve (AUROC) score of 0.975 while the NN model had an
AUROC score of 0.969.

The loss surfaces of the QNN classification model and the real-valued
neural network classification model illuminate the differences in model perfor-
mance between the two classifiers. The projected QNN loss surface shown in
Fig. 6 exhibits a lower maximum loss compared to the real-valued model, and
it appears substantially smoother than the projected neural network surface
shown in Fig. 7. The subsequent nine projected surfaces for the QNN model
are shown in Fig. 10, portraying the projected minimizer from various angles.
In each instance, the QNN classifier demonstrates smooth gradual changes
in the projected space from the minimizer centered at (0, 0).

The subsequent nine projected surfaces for the real-valued neural net-
work classifier are shown in Fig. 11. In general, these surface projections ex-
hibit steeper, rougher surfaces than their QNN counterparts around the real-
valued minimizer centered at (0, 0). The curvature plots shown in Figs. 8 and
9 quantify the smoothness present in each loss surface. The scale on Fig. 8
clearly demonstrates that in most cases, the projected QNN loss surfaces
admits levels of curvature that are well below the curvature values shown
for the projected neural network surfaces in Fig. 9. A careful evaluation of
the curvature plots versus the loss surface projection plots indicate that the
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Figure 4. Breast cancer classifier QNN and NN training curves

Figure 5. Receiver operating characteristic (ROC) curve
for both classification models
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Figure 6. QNN classification 2D loss surface plot

regions of high curvature correspond exactly to the sharp bends or changes
in each loss surface plot.

While the projected loss surfaces shown in Figs. 6 and 7 indicate that
optimization of the QNN loss surface in the quaternion domain occurs over a
smoother surface than the loss surface induced by the real-valued NN in R, the
surfaces also provide crucial insight into the generalization performance of the
QNN versus the real-valued model. Each surface plot is constructed using the
test set (or holdout) data from the classification experiment, hence providing
an indication of how well each model generalizes to unseen data at the local
minima and in a region around the local minima in the parameter space. The
slower, smoother, and more consistent changes around the QNN minimizer
showcased in Fig. 6 correlate with the improved generalization performance
and higher AUROC and accuracy scores that the QNN model achieves on
the holdout data from the experiment.

The QNN and real-valued network surface projections and curvature
estimate experiments were repeated 30 times to facilitate robust statistical
comparisons between the “smoothness” of the quaternion loss surfaces versus
the real-valued loss surfaces. The mean curvature value across each projected
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Figure 7. NN classification 2D loss surface plot

surface was calculated in order to construct paired differences for each run.
The QQ plot of the paired differences is shown in Fig. 12 indicating the ap-
proximate normality of the data. Additionally, a box plot of the differences
is shown in Fig. 13 demonstrating that there are no outliers in the paired
difference data.

The results of the paired t-test are shown in Table 3. The null hypothesis
of the test is that there is no difference between the mean curvature estimates
between the two models which would indicate that the QNN and real-valued
neural network model result in loss surface curvature values from the same
population. The alternative hypothesis is that there are significant differ-
ences between the mean curvature estimates produced by the two models.
At an α = 0.1, the paired t-test indicates that there are statistically signifi-
cant differences between the QNN mean curvature values and the real-valued
network mean curvature values, with a p-value of 0.0874.

These test results indicate that the tuned QNN classification models
used in this experiment admit a loss surface that is statistically significantly
smoother than the tuned real-valued NN models. This lends credence to the
claim that quaternion optimization occurs over a smoother loss surface. The
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Figure 8. QNN classification curvature plot

smoothly varying surfaces also provides strong evidence to support the claim
that quaternion optimization models provide better generalization perfor-
mance versus equivalent real-valued models.

4.2. Time Series Prediction Results

Table 4 contains the final tuned hyperparameters for the QNN prediction
model and the real-valued network prediction model. As with the classifica-
tion experiment, the tuned hyperparameters for the prediction models shared
many similarities, yet the QNN contained less than one fourth of the hidden
neurons compared to the real-valued model. The training curves for the two
models are shown separately in Figs. 14 and 15 due to the large differences in
scale of the loss values between the two models. Finally, the test set accuracy
scores for both models using a variety of metrics are shown in Table 5.

Figure 14 indicates that after the first training epoch, the QNN was
able to achieve near-zero Mean Square Error loss on the 1000 step prediction
task, effectively learning the complete underlying dynamics of the Lorenz
attractor system. On the other hand, the real-valued model’s test and training
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Figure 9. NN classification curvature plot

Table 3. Mean curvature paired t-test results for the clas-
sifier networks

Architecture Mean SD t-statistic p-value

NN 1.946 × 10−5 1.47 × 10−5 1.769 0.0874
QNN 1.382 × 10−5 8.05 × 10−6

loss remained well above zero throughout the entire training process while
overfitting slightly to the training data. These results are further illuminated
by the test set error metrics shown in Table 5. The error values in Table 5
represent the average loss value across each time series in the test data (i.e.
the mean of the mean error per time series). Across each metric, the QNN
outperforms the real-valued model by a vast margin.

The projected loss surface plots for each model are shown in Figs. 18
and 19, respectively. Note that each figure displays the projected loss in terms
of the root mean square error (RMSE), as the raw mean square error (MSE)
values for the real-valued network grew rapidly in every direction away from
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Figure 10. QNN classifier projected surface plots

Table 4. Prediction hyperparameter tuning results

Model
QNN NN

Hyperparameter Value Value

Activation function Sigmoid Swish
Optimizer SGD SGD
Neurons 32 148
Epochs 210 230
Learning rate 0.00273 0.00253

the minimizer centered at the origin. Even when viewed in terms of RMSE,
the differences in scale between the QNN loss values and the real-valued
network loss values are striking. The ability of the QNN to effectively replicate
the underlying dynamics of the Lorenz system of differential equations enables
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Figure 11. NN classifier projected surface plots

Table 5. Error metrics for the prediction models

Model MSE RMSE MAE MAPE

QNN predictor 1.63 × 10−13 3.80 × 10−7 1.25 × 10−7 5.23 × 10−8

NN predictor 33.757 5.456 3.763 1.400

the QNN to accurately predict the time series output based on a relatively
short input of 10 timesteps.

The real-valued network does not appear to exhibit the same behavior
and struggles to capture any of the relationships in the underlying system
of equations. Plots of predicted time series values from the test set for each
network are shown in Figs. 16 and 17. The QNN model produces a predicted
time series that is indistinguishable from the true series. The real-valued
model produces a predicted time series that generally follows the shape of
the true series but contains a high degree of noise in each prediction.
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Figure 12. QQ plot of paired differences

Figure 13. Boxplot of paired differences

The estimated surface curvature plots for both prediction models are
shown in Figs. 20 and 21, respectively. Figure 20 captures the estimated cur-
vature of the QNN model. Similar to the classification models, the estimated
curvature values produce sharp spikes of curvature in areas that correspond
to regions on the loss surface plots with sharp changes in the surface. In this
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Figure 14. QNN training and test loss

Figure 15. NN training and test loss
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Figure 16. QNN predicted time series

Figure 17. NN predicted time series
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Figure 18. QNN prediction 2D loss surface plot

instance, the only region of high curvature is the very narrow area surround-
ing the origin.

The estimated curvature for the real-valued model is shown in Fig. 21.
In contrast with the quaternion model, the real-valued curvature estimates
contain a high degree of noise across the entire surface. The spikes in the
curvature at each corner of the plot correspond to the rapid increase in loss
values near the edges of the loss surface plot in Fig. 19. However, the large
increase in curvature near the origin and the noise in the curvature estimates
across the rest of the plot are masked by the sheer scale of the loss values. At
the plot resolution, visual assessments of the “smoothness” of the loss surface
prove to be misleading, demonstrating the need for quantitative measures of
smoothness such as the curvature estimates which successfully reveal the true
noise present across the loss surface.

The QQ plot and boxplot of the paired mean differences between the
QNN curvature and real-valued network curvature values are shown in Figs. 22
and 23. The QQ plot does not show any cause for concern regarding the nor-
mality of the paired differences, while the boxplot indicates that there are no
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Figure 19. NN prediction 2D loss surface plot

Table 6. Mean curvature paired t-test results for the pre-
diction networks

Architecture Mean SD t-statistic p-value

NN 0.0503 0.00167 164.129 < 1 × 10−43

QNN 0.000112 6.62 × 10−7

outliers among the difference data. The results of the paired t-test are sum-
marized in Table 6. The t-test indicates that, with very high confidence, there
are statistically significant differences in the curvature, and hence smooth-
ness, of the quaternion loss surfaces versus the real-valued loss surfaces for
the time series prediction models.

5. Conclusions and Future Work

The classification and prediction experiments in this study provide strong
evidence to suggest that QNNs perform optimization over a smoother loss
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Figure 20. QNN prediction curvature plot

surface than standard real-valued neural networks. These results indicate
that QNNs provide benefits both in terms of the structure that they provide
to certain problems, such as color image processing tasks and any tasks in-
volving rotations in R

3, as well as the overall process of optimization itself.
The quaternion loss surfaces characterized in this research provide potential
insight into why QNNs have demonstrated consistent gains across a variety
of accuracy and performance metrics in myriad problem domains, including
in circumstances where QNNs provide no discernible structural benefit over
standard real-valued neural networks.

In addition to these insights, the main contribution of this research is
the introduction and evaluation of surface curvature estimates as a metric
for characterizing the loss surfaces of any optimization problem. In contrast
with prior methods, the surface curvature estimation algorithm presented
in this work does not require any second order derivative information and
instead relies solely on the projected loss surface point cloud data in R

3. This
provides a comparison metric that is valid for QNNs, geometric algebra-based
networks, Clifford algebra networks, and any other optimization technique
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Figure 21. NN prediction curvature plot

that admits a high-dimensional loss function. This technique allows for robust
comparisons of the effects that different architecture choices, hyperparameter
settings, or optimization methods have on the resulting “smoothness” of a
loss surface.

5.1. Limitations and Future Work

The experiments presented here are necessarily limited in scope. This research
was restricted to an examination of loss surfaces of fully tuned and trained
models. The QNN outperformed the real-valued model by such a significant
margin in the regression experiment that the resulting loss and surface plots
may be biased to favor the QNN model. The evaluation of loss surfaces of
various models throughout the entirety of the training process remains an
open question and is necessary for understanding not only the final perfor-
mance of quaternion-based models, but also the progression of quaternion loss
landscapes over the duration of the training process. In addition, all models
assessed in this work utilized a fixed architecture with two hidden layers.
Based on [22], the authors expect that deeper network architectures will lead
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Figure 22. QQ plot of paired differences

Figure 23. Boxplot of paired differences

to loss surfaces with greater degrees of surface curvature, and a formal exper-
imental design sampling across a range of architectural choices (e.g., number
of layers, number of neurons per layer) is logical follow-on research.

While regression and binary classification represent the two primary
tasks of classical machine learning techniques, multi-class classification is a
staple of modern machine learning research that has yet to be explored using
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the loss surface characterization and curvature estimation techniques pre-
sented here. In addition, this research did not consider any of the many spe-
cialized neural network architectures such as convolutional neural networks,
recurrent neural networks, or transformer networks that have exploded in
popularity in recent years. Quaternion versions of each of these architectures
have been introduced in the literature and a full exploration of the opti-
mization characteristics of these networks will be vital in understanding the
benefits of such quaternion-based networks.

There is a growing interest in QNNs and other hypercomplex neural
network architectures. However, there are two significant implementation as-
pects that are currently hindering progress in these key research areas; first, a
lack of automatic differentiation tools for any hypercomplex algebras signifi-
cantly slows the prototyping and experimentation of different neural network
architectures. Second, a lack of optimized Basic Linear Algebra Subprogram
(BLAS) routines for matrix multiplication in hypercomplex algebras signifi-
cantly hampers any attempt to scale hypercomplex neural networks to large
datasets. While researchers have attempted to address both of these issues
(see [35,38,39]), progress remains limited in both areas. As research into
hypercomplex neural networks expands, a robust automatic differentiation
method and cross-platform BLAS routines will be vital in enabling the growth
of the field.

Finally, the surface curvature estimation techniques presented here have
broad applicability to a wide array of machine learning problems. While the
primary use case presented in this research was towards evaluating the cur-
vature of quaternion neural network loss surfaces where access to the full
Hessian is limited, these techniques are by no means restricted to quaternion
or hypercomplex algebraic networks. Indeed, these techniques are applicable
to any high-dimensional optimization problem. Future applications of surface
curvature estimates should explore the full impact that the hyperparameters
of the curvature estimation algorithm have on the resulting curvature esti-
mates, as well as the true nature of the relationship of the Hessian of the loss
function to the curvature of the resulting surface.

Data and code files for this research are available upon request.
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