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J.M Rees Teaching Geometry to Artists 
Jack Rees discusses his experience teaching geometry to artists. The aim is to 
introduce scientific ideas to arts students through the visualizations that are 
such an important part of discourse in science. Described are the intellectual 
context, define selected concepts using geometry and introduce elementary 
mathematical formulae—all relying on graphic visualizations to make 
fundamental ideas clear. The goal is to provide a means by which visually 
sophisticated persons may think with geometry about culture 

But it should always be insisted mathematical subject is not to be considered exhausted until it has become 
intuitively evident... 

Felix Klein [1893:243]  

1 Introduction  

It is my privilege to teach geometry to artists. Until recently, I have offered one elective per 
semester to undergraduates through the liberal arts department of a small art institute. The courses 
count as science distribution requirements for a bachelor of fine arts degree. Students are drawn 
from schools of painting, sculpture, ceramics, textiles, illustration, and new media. My best 
students are bright, which is to say open to being influenced; tenacious, which is to say requiring 
clear explanations; and tough-minded, which is to say they will not be patronized. Five students 
like this in a class of twenty is a joy. I had such a class the last semester I taught. 

The courses I teach are all designed to introduce scientific ideas to arts students through the 
visualizations that are such an important part of discourse in science. I describe the intellectual 
context, define selected concepts using geometry (classically, a liberal art) and introduce elementary 
mathematical formulae--all relying on graphic visualizations to make fundamental ideas clear. My 
goal is to provide a means by which visually sophisticated persons may think with geometry about 
culture. On good days I am a storyteller in the history of ideas. 

The following paper is part report, part methodological speculation on a class offered during the 
fall semester of 2003. The title of the course, Advanced geometry from an elementary standpoint: 
Topology, is a play on words, a variation on the title of a famous work by Felix Klein.1 The title 
announces both my indebtedness to Klein and the content of the class. 

Topology is the geometry of continuity, the last in a series of geometries whose definitions of 
equivalence become progressively more difficult to describe to students with little formal 
mathematical education. Topology, conventionally rendered as “rubber sheet geometry”, is the 
geometry of stretching, squeezing, or extruding but not of cutting, folding or tearing as long as 
neighboring points remain neighboring points [Huggett and Jordan 2001]. This course is designed 
specifically for graphically sophisticated students in the arts2 and is intended, in the main, to 
introduce geometry as a discipline of great visual and intellectual beauty. (It helps that we can visit 
the rare book room of The Linda Hall Library of Science and handle a dozen antique books 
renowned for their scientific and artistic significance; see http://www.lhl.lib.mo.us.) In class, 
graphic visualizations and geometrical demonstrations (mostly) take the place of a postulational, 
or, if you will, axiomatic, presentation. In the end it is hoped that students will unite intellectual 
inquiry and artistic endeavor according to their own interests. 
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This essay offers samples of class content highlighting the visual approach in sections 2 and 3. 
Section 4 details my assumptions about teaching geometry, by which I mean “things being tested 
in the classroom,” and a course outline. Section 5 records some observations based on my 
experience teaching over the last seven years. Section 6 returns in detail to the content of the 
topology class. 

2 Felix Klein’s geometry schema 

The nineteenth century in mathematics was named by historian Carl Boyer the “heroic age in 
geometry” [Boyer 1968: 572-595]. Among the giants of that age stand Felix Klein (1849-1925), 
who is often praised for his magisterial grasp of the whole of mathematics. This is faint praise 
among mathematicians. Here is how Constance Reid, author of Hilbert, paraphrasing Richard 
Courant (who organized Klein’s final papers) puts it: 

And yet Klein’s life had not been without its inner tragedy. The power of synthesis had been 
granted to him to an extraordinary degree. The other great mathematical power of analysis had 
been to a certain extent withheld. His ability to bring together the most distant, abstract parts 
of mathematics had been remarkable, but the sense for the formulation of an individual 
problem and the absorption in it had been lacking. ... Certainty he had perceived ‘that his most 
splendid scientific creations were fundamentally gigantic sketches, the completion of which he 
had to leave to other hands’ [Reid 1970: 178-179].3 

What makes for a great mathematician may not be exclusive of what makes for a great teacher 
and Klein was, by all accounts, a great teacher. He wielded considerable influence over one of the 
great mathematical schools of the late nineteenth and early twentieth centuries, the University at 
Göttingen. He established a research center there that was, for a time, a focus of the mathematical 
universe, attracting David Hilbert from Königsberg. During his tenure the student body included 
Hermann Weyl, Richard Courant, and Max Born. The first woman D.Phil., Grace Chisholm 
Young, graduated in mathematics from a German university, graduated under his auspices. 

It is perhaps telling that Klein regarded as his most notable achievement the unification of 
geometry in what is widely known as his Erlangen Programm of 1872 [Klein 1893].4 Based on the 
concept of a mapping, Klein showed how the geometries of his age (metrical, projective, line) 
could be joined into a single geometry using the theory of groups. 

A group is a set of elements filtered through an operation. To be a group the elements and their 
mapping must be closed, associative, contain an identity element and have an inverse. For instance, 
the integers are a group with respect to addition. The integers are closed since an integer plus an 
integer is always another integer; associative because (a+b)+c = a+(b+c); they have an identity 
element—zero; and the inverse of an integer is its negative. Therefore; the integers are said to be 
mapped onto themselves. Pregnant with promise, the theory of groups unified geometry, unified 
discrete and continuous mathematics and forecast new approaches in algebra and number theory. 

Following Klein’s lead, filtered through Lord and Wilson [1968] I take the logical progression 
of geometric groups to be: congruent, similar, affine, projective, inversive, differential, and 
topological.5 This is a logical arrangement because the operations at the core of each group are 
progressive. In other words congruence is a special case of similarity, is a special case of affinity. etc. 
Each geometry is simpler than the one that comes before. Simpler means that “within the 
hierarchy of possible geometries, affine structure is more primitive than Euclidean structure 
because it is based on a smaller set of underlying assumptions, and is therefore invariant over a 
larger set of possible transformations” [Todd 2001: 195]. What is specifically true for affine in the 
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context of Euclidean geometry is generally true of topology in which there are the fewest 
restrictions on what constitutes a legal mapping. 

Fig. 1 proposes emblems for each geometric group. The emblems, besides being simple place 
holders, store information about the nature of each geometry. Far less arbitrary than icons, the 
emblems must be associated with some conceptual content to be effective. A fragment of the 
content for each group is presented in the accompanying Glossary of the geometries. (Please make 
every effort to synthesize the graphic descriptions and the textual descriptions in what follows. The 
intelligence of the material and the efficacy of the method depends on it.) 

 
Euclidean congruence 

Congruence is the geometry of Euclid whose 
fundamental theorem is named after Pythagoras. 
Taking the Pythagorean theorem as an axiom, 
modern geometers prove the invariance of distance 
and angle for all rigid motions [Kreamer 1982: 
414]. The group of rigid motions include identity, 
translation, rotation and reflection.6 

 
Euclidean similarity 

Similarity is the geometry of Euclid concerned with 
scale, or more accurately: similarity as a 
transformation that relaxes distance and preserves 
angle [Forder 1962]. Distance, no longer absolute, 
is expressed as a ratio of lengths designated “k.” 
Angles remain invariant. Congruence is a special 
case of similarity where k=1. 

 
Affine 

Affine is the geometry of Galileo [Yagolom 1979] 
and, in architectural studios, is known as 
axonometric projection. This is where figures are 
stretched (and/or compressed) along parallel lines 
(area may or may not be preserved). Angle, as a 
property of equivalent figures, is relaxed. The 
proportions of angles between figure and 
transformed figure are expressed by a ratio 
designated “k.” Similarity is a special case of affine 
geometry where k=1. 



 

NEXUS NETWORK JOURNAL – VOL. 7 NO. 1, 2005 89 

 
Projective 

Informally, projective geometry is perspective; a 
geometry which unifies a figure and its shadows 
[Ivins 1964]. Strictly speaking, however; all 
perspectivities are projective but not all 
projectivities are perspectival. In other words 
projective geometry includes anamorphosis and 
most map projections, not just lines converging in 
an optic field. Affine geometry is a special case of 
projective geometry, where the vanishing point7 is 
located at infinity. 

 
Inversive 

Inversive geometry is the first non-Euclidean 
geometry in the sense that it violates Euclid’s 
assumption that parallel lines never meet.8 
Inversive geometry shows the way the interior of a 
circle is symmetrical to its exterior [Ogilvy 1969]. 
In such a transformation “line” no longer means “a 
straight line” because lines through the center of 
the circle of inversion map to circles. A mapping of 
every point inside to every point outside a given 
circle relaxes collinearity (straightness) and 
preserves angular relations. 

 
Differential 

Differential geometry studies surfaces according to 
their divergence from a tangent plane located at a 
given point of the surface. These surfaces are said 
to be curved either positively or negatively 
depending on if the surface is some variety of cup 
(positive) or some variety of saddle (negative). 
Surfaces of zero curvature are (flat) planes. 
Curvature is quantifiable as an intrinsic relation 
between geodesics (lines of shortest distance) on 
small patches of a surface [Lanczos 1965]. Such 
ideas lead to logically consistent anti-Euclidean9 
geometries. 

 
Topological 

Topology is the geometry of continuity—perfect 
elasticity—which preserves only connectedness in a 
transformation and its inverse [Huggett and Jordan 
2001]. Topology studies the most general 
properties of a figure where there are the greatest 
number of parameters and the fewest number of 
invariants.10 

Fig. 1. Klein’s geometry schema in emblems and a glossary of the geometries 

3 The array: organized logically  

The array is a “graphic essay.” No less a definition of geometries than the discourse above, the 
array presents different cuts at related information, linked through emblems. (Please take a 
moment to regard the array, fig. 2.) 
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Emblem CHARACTERIZING 

TRANSFORMATION 
TRANSFORMATION OF THE 

SQUARE [IN FIELD] 

 
Euclidean congruence 

 
Rigid motions preserve length 

 
Squares remain squares in a 

different orientation 

 
Euclidean similarity 

 
Shape preserved through scaling

 
Squares remain squares of a 

different size 

 
Affine 

 
Parallel lines are preserved 

 
Squares remain parallelograms 

 
Projective 

  
Figure and shadows preserved 

 
Squares remain quadrilaterals 

 
Inversive 

 
Orthagonality is preserved 

 
Circles remain perpendicular 
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Differential 

 
Orthagonality is preserved 

 
Squares vary continuously in size 

and shape 

 
Topological 

 
Continuity is preserved 

 
Notion of a square is irrelevant 

Fig. 2. The Array organized logically 

The array demonstrates how the emblems are used to structure the presentation of information 
and how class content is delivered in a memorable order. The column labelled “characterizing 
transformation” is intended—working hand in glove with the emblems—to elucidate the nature of 
transformation in each geometry. For instance, similarity is described using the idea of scale, a 
concept with which students are (already) well acquainted. I use the emblem to show that 
similarity contains congruence as a special case (note the rotation and scaling of the dashed square 
relative to the dotted square). I use the “scaling” graphic from an historic source (Scheiner’s 
Pantographice (Rome, 1631) which the students get to inspect first hand at The Linda Hall 
Library) to demonstrate what property remains invariant (shape or more accurately angle) and 
what property is relaxed (length). 

 
From: Christoph Scheiner, Pantographice, Rome, 1631. 
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The column “transformation of the square” is an attempt to engage the students’ considerable 
patterning skills. A square chessboard is presented as a gauge figure and “deformed” in a way that is 
consistent with the rules of transformation for each geometry. These patterns are intended to be 
evocative, rather than rigorously mathematical, a shameless appeal to students’ design sensibilities. 

The important idea regarding the array is that Klein’s logical progression of geometries can be 
elaborated in any of a number of ways, depending on what needs to be presented in order to clarify 
and extend geometrical and scientific concepts. Other columns of information that are included in 
extended versions of the array are: fundamental theorems, analytical expressions, associated 
geometers, representative transformations and/or optical analogs. This is to name only a few of the 
possible themes that may be included in a class. 

4 Course outline for “Advanced Geometry from an Elementary Standpoint: Topology” 

Up to this point the presentation of class material has been motivated by descriptive exposition 
of the individual geometries. It is in the outline that one can evaluate just how the course opens 
out. (Please take a moment to peruse the outline directly below.) Note that Klein’s schema still 
structures the presentation and that the “related ideas” (RI) subhead allows the introduction of 
topics that may be only tangentially linked to a particular geometry but, that are critical to the 
exposition of geometrical ideas. In this way the logical progression of geometries may become the 
backbone for a variety of science related subjects. The key is in how one relates ideas that are not 
geometry (strictly speaking) to the progression of geometric transformations. In this class “related 
ideas” are useful as advance preparation for information to come. For instance, introducing 
Gödel’s incompleteness theorem in the context of a discussion about real numbers, is preliminary 
to defining groups and illustrating closure. This may seem to be in the wrong order except that 
“this proposition is true but unprovable” and the analogy of Gödel’s infinite regress to the infinite 
regress of real numbers provides the students a paradox with which they are comfortable. Clearly, 
they do not have the tools to understand the theorem on a technical level (which they appreciate) 
and it makes them hungry for some of the technical detail. 

Sometimes related ideas can be about the rules behind the rules. Under congruent geometry, I 
develop symmetry as a related idea. One way to define symmetry is through a demonstration of 
proper (identity, translation and rotation) and improper (reflection11) rigid motions. This 
approach is always effective because students can visualize the processes that lead to a 
superimposition of figures and thereby strengthen their geometric intuition. This Euclidean notion 
of symmetry (I), however, is not very robust. Therefore, it is important to present symmetry (II) 
more abstractly, as one of the three conditions that has to be met in order for there to be an 
equivalence relation between sets. Equivalence relations require sets to be reflexive (a set D must be 
equal to itself, D=D), symmetric (if transformation t maps E' to E" then t' maps E" to E') and 
transitive (if A is congruent to B and B is congruent to C then C must be congruent to A). Linking 
the superimposition of figures (symmetry I) to the idea that the mapping must be reversible 
(symmetry II) is one instance of the way concepts are “grounded” in geometry. It is an example of 
what makes geometry so beautiful—the evolution of ideas towards their simplest, oftentimes most 
abstract expression. 

Finally, related ideas allow themes to be developed over the course of a semester. The theme 
developed in the topology class was infinity. The infinity of points on a line; the twin infinities of 
the very small and the very large; the role of infinity in the development of projective geometry; 
infinity as a point in the complex number plane; the infinity of a figure that is bounded but not 
closed, etc. Related ideas add density to the course. More importantly the model of 1) a taxonomy 
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of geometries providing the structure and 2) a stew of related ideas providing the variety, is 
adaptable to a cluster of science courses. For instance a class with a kinematic emphasis would 
present physical concepts as related ideas. As a bonus, students who elect two different classes may 
begin to appreciate geometry as the “language of physics” and (possibly) begin to compare that to 
the role geometry plays in art. 

Course outline 

I. Preliminaries (note: RI = Related Idea) 
0. Definition of topology as the geometry of continuity 
1. The real numbers (RI: Gödel’s incompleteness theorem) 
2. Definition of Geometry (RI: Definition of transformation) 

II. Klein’s Schema (see figs. 1 and 2) 
3. Congruence (RI: Symmetry) 
4. Similarity (RI: The concept of a group) 
5. Affine Geometry (RI: Conic sections) 
6. Projective Geometry (RI: Interlude devoted to William Ivins, Art & Geometry) 
7. Inversive Geometry (RI: The complex number plane) 
8. Differential Geometry (RI: Intrinsic geometry) 
9. Topology as Homomorphism (RI: Euler Formula, Orientability and Metric Spaces; 

Cut Points, Components, Compliments, and Closure) 

5 Assumptions  

a. Audience. I believe there is a substantial audience of artists curious about science, non-
scientists interested in science and proto-scientists whose interest is yet to bloom, to continue 
developing this program. The subject is intrinsically interesting if only we can capture those who 
are not disposed towards analytical methods. I assume further, we need to develop science and 
geometry courses that teach differently those who are to be trained and those who are to be 
fascinated. Presented correctly, the material itself will do the enticing. 

b. Mnemonic. I assume that a mnemonic association of images and concepts in a structured 
hierarchy fosters assimilation of: 

1. strange, often counter-intuitive ideas;  
2. the ideological, historical and disciplinary context of the information;  
3. their unexpected, myriad relations.  

The approach is spatially organized, graphically demonstrated, as technically accurate as the 
audience allows, conceptually sophisticated and flexible. 

c. Methodological. I assume the presentation of content may be adjusted to fit the audience 
without “dumbing down” the material. The method triangulates among graphical, technical and 
synthetic information. 

1. Graphical information leads the presentation and treats geometry as a species of visual art. 
There is a great deal of evidence concerning a basic human competence that might be 
described as using images to think with (rather than merely about). That this capability is 
disrespected in the academy is scandalous. As Barbara Maria Stafford has written:  

In the widespread postmodern denigration of the aesthetic, what is forgotten is that from 
Leibniz to Schiller, the term connoted the integration of mental activity with feeling. 
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Aisthesis, as perception or sensation, has in post-Cartesian and especially post-Kantian 
thought become separated from cognition. Rediscovering its pragmatic capacity to bridge 
experience and rationality, emotion and logic, seems all the more important in the era of 
virtual reality and seemingly nonmediated media. The awareness that images can sustain the 
continuity of thinking, not merely serve as fictionalizing counterfeits or pseudo-intellectual 
goods, brings both an ethical and aesthetic dimension to the computer age [Stafford 
1996:52].12  

2. The technical detail may be as elaborate or as elemental as outside factors allow and I think it 
is important to present as much geometrical detail as possible. During the course of the 
semester I was able to rigorously define continuity, equivalence, closure, group, and 
homeomorphism based on less thorough definitions of transformation, symmetry, infinity, 
cross ratio, curvature, function and I suspect what held the students’ interest was the 
unfolding story. It is a narrative13 in which many of the details were only glimpsed yet; are we 
as teachers measured by the questions we inspire as well as the facts we impart?  

3. Synthetic in the technical geometrical definition means deduction: building a system 
proposition by proposition from general principles. Klein’s system is synthetic in this way, 
(even though others filled in the details). In this sense Klein’s work exists squarely in the grand 
tradition of Euclid. I mean synthetic in a slightly different sense, as “combining ideas so as to 
form a whole that is greater than the sum of its parts.”14 Klein’s schema is also synthetic in this 
sense. Big ideas in science and mathematics are synthetic in that one gets to do more with 
less.15  

To be sure, the approach to teaching geometry herein described is synthetic for students in so 
far as they can appreciate the connective tissue unifying geometry, but it may be more than that. 
On good days I see flashes of insight that joins geometry and physics and, every now and again, a 
glimmer that promises an implementation of geometric techniques and scientific ideas in their 
own work. By this measure there remains more to be done in adapting advanced mathematical 
ideas for artists, and I derive inspiration from the students, who often turn out to be excellent 
teachers. 

d. Voice. I think the voice in which geometry is presented is important. I favor the voice of 
revelation trading on geometry as an hermetic tradition, with one important caveat. The beauty in 
economy that proofs display, the elegant foundations and of the chain of logic, is mystery enough. 
There is no need to trade in some variety of Rosicrucian mysticism because the details of modern 
scientific geometry are as demanding, as hidden from untutored consideration and as full of 
wonder as any esoteric teaching. 

6 Observations  

I have three observations concerning my teaching experience so far. 

1. Some minor yet significant percentage of art students want to know about matters 
geometrical. Of the thirteen classes I have taught only one was not over-subscribed. Partially 
this is because I teach trendy subjects like chaos theory and partly, I think, it is because there is 
a pent-up demand for science-related courses. Mathematicians sneer at the idea that 
mathematics could be a spectator sport but I think that too much is at stake to allow the 
professionals to have the last word.  

2. The flexibility of the schema is most promising. I adapt it to a variety of geometry related 
courses. In C is for Chaos I draw on the schema to develop ideas of scaling, fields, symmetry 
and continuity in order to explain dynamical systems, sensitive dependence, irreversibility, 
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confinement, and periodicity. The Klein schema is tailor made for the course Space from 
Aristotle to Einstein. In that class I concentrate on the geometries from projective on in order 
to explain, at the end, how objects follow straight lines in curved space. A topics in “Western 
Thought” class, Art, Science and Rhetoric, dwells on the geometries from Euclid to Alberti, 
concluding with a detailed exposition of perspective: locating painting in a scientific tradition 
and statics in an artistic tradition. I have also taught Paraline Drawing, a studio class filtered 
through Euclidean and Galilean geometry disguised as the tools and techniques of drafting.  

3. Finally, I think it important to acknowledge that not everything fits the schema. In another 
course, Color from Aristotle to Newton, the Klein schema is irrelevant. I harbor hopes that 
differential geometry might provide some techniques germane to the perception of color and 
that a class on color in psychology and physics could be founded on a geometrical exposition, 
but enough speculation. As evidence of the actual class content for Advanced Geometry the I 
present the final from that class, with and without answers. I think there is no better way to 
convey a sense of the course content than to see for what information the students were held 
accountable. Just for fun, take the test yourself!  

To download a .pdf file of the final exam from Advanced Geometry with and without answers, go 
to http://www.nexusjournal.com/Rees.html  

Notes 

1. The tile Elementary Mathematics from an Advanced Standpoint: Geometry, was originally published as 
volume 2 of Elementarmathematik: vom hoeheren Standpunkte aus (Lepizig, 1909; 3rd ed. Berlin, 
1924); translated into English in 1931 (from the 3rd edition), it has been reprinted by Dover 
Publications (2004).  

2. The design for this course is a product of the process I went through (in fits and starts) to grasp simple 
mechanical concepts. Graced with a facility for geometry, I was often frustrated in my attempts to 
understand analytical physical expositions. Unwilling to give up the appreciation of statics for obvious 
reasons (I am an architect) I found the giants of physics often presented their insights in geometrical 
forms relatively easy to understand (F=ma is due to Euler not Newton). My experience suggests that if 
there is a reason (and a rational) to teach physics geometrically it may also be possible to teach geometry 
graphically. I am not proposing a reform of technical education for scientists or mathematicians, just a 
different emphasis, one that may play to the strengths of non-specialists more effectively.  

3. The clear-eyed, no holds barred, appraisal of the work of mathematicians by other mathematicians has 
always delighted me. It stands very much in contradistinction to the relativistic discussion of art 
common in American schools and is often harsh even by architectural school standards of critique.  

4. See the MacTutor History of Mathematics archive of the University of St. Andrews, Scotland, for an 
excellent biography of Klein and his intellectual accomplishments and mathematical context: 
(http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Klein.html).  

5. This stratification of Klein’s schema is by no means unproblematic. Many mathematicians omit 
congruence and similarity as discrete geometries, subsuming the whole of Euclidean geometry in affine. I 
do not favor this approach because it is important to ease students into the details of mappings using 
transformations with which they already have experience. Since I take pains to show how similarity is a 
special case of affinity, no harm is done.  
Other mathematicians exclude differential geometry from the schema altogether. I have never been sure 
exactly why, but presumably because it is a quantitative operation in a field of qualitative 
transformations. I profoundly disagree with this exclusion on pedagogical grounds. Klein specifically 
included metrical geometry in his schematization and because so much physics is founded upon 
differential geometry, we (teachers) desperately need ways to introduce a visualization students can use to 
help make sense of change over time, at an instant. The qualitative insights of Gauss (using the Abstract 
as a primary source) provide just such an opportunity.  
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6. This is well trod territory in science museum displays and I have never seen the whole schema played out 
with anything near the graphical sophistication accorded the rigid motions. I expected to find this kind 
of a detailed presentation, since most historians call attention to the central role of Klein’s schema in 
teaching mathematics, yet I found such a schema only in [Lord and Wilson 1986] whose simple 
diagrams became touchstones. As my grasp of the geometries developed I took to revising the diagrams, 
often formalizing a sketch from my notes or re-drawing graphics from particularly helpful sources. The 
discipline required to construct an hyperbola or draw, with construction lines, a pair of inverse points, is 
an important part of the method here espoused. I often give drawing problems as homework and revise 
lectures according to students’ progress measured by their drawings.  

7. Vanishing point in this context refers to the point where converging lines intersect. Converging lines in 
perspective constructions are parallel. When the vanishing point is moved infinitely far away, lines that 
appear to converge in a finite field are said to intersect at infinity but they no longer converge and are 
therefore said to be parallel. As a consequence affine geometry is established as a special case of projective 
geometry. The necessity for this unexpected reformation of Euclidean geometry—any two lines, in a 
plane, always intersect (at an imaginary point if necessary)—has to do with the reformulation of 
geometric foundations by David Hilbert and with the introduction of homogeneous coordinates. 
However I often refer to it as a strategy to preserve the duality of lines and points.  

8. I think it important to distinguish between strong and weak forms of non-Euclidean geometry. Inversive 
is weakly non-Euclidean because it shares every fundamental geometric characteristic but that of the fifth 
postulate. Strong non-Euclidean geometries violate the principle of rigid motion. (cf. [Hartshorne 
1997]).  

9. Gauss called non-Euclidean geometry anti-Euclidean [Gauss 1965], a usage I favor because curved 
spaces violate the spirit of Kant’s a priori regarding Descartes’s coordination of Euclid, by which I mean 
the automatic assumption of embeddedness.  

10. I think it impossible to overestimate the importance of the tendency to ever greater generalization often 
evident in geometry. To express this idea as a gross generalization: in the humanities intellectual progress 
is often evident as the differentiation of ever narrower domains. Art history is divided into Ancient, 
Renaissance and Modern. Renaissance Art history is divided into Proto-, High-, Baroque and Mannerist. 
High-Renaissance is distinguished according to its Venetian and Florentine varients—and so it goes, 
ever narrower, ever more specialized. It seems that in mathematics there are (at least) more instances of 
major intellectual breakthroughs that unite discrete practices than in any other discipline. Klein’s 
Erlangen Programm is such a breakthrough. Another example is the way projective geometry provides a 
unified treatment of circles, ellipses, parabolae and hyperoblae as conic sections. Another example, 
drawn from geometrical physics, is the way Newtonian relativity (itself a generalization of Galilean 
relativity) is a special case of a more general rule—Special relativity. “Synthetic,” as I use the word later 
in the essay, is akin to this process.  

11. Reflection is an improper rigid motion because it requires the figure to move outside of its plane. I make 
much of this distinction early on so that when discussing attitude transformations (in differential 
geometry) as translations and rotations only, it is clear that reflections are excluded because they change 
the handedness of the coordinate system.  

12. By the way, I think the “Institute” (art education) has made the inverse error, ignoring “mental activity” 
and fixating the “feeling” component of aesthetics. It is my conviction that architectural education 
presents a “third way,” combining intellection and emotion, aesthetic and scientific education in an 
effective synthesis.  

13. I am careful in class to draw a distinction between “a” story and “the” story. There is no question that I 
am only telling one of many possible stories.  

14. Herbert Simon refers to what I am calling synthetic as a “pragmatic” response to complexity:  
...by a complex system, I mean one made up of a large number of parts that interact 
in a nonsimple way. In such systems, the whole is more than the sum of the parts, 
not in an ultimate, metaphysical sense, but in the important pragmatic sense that, 
given the properties of the parts and the laws of their interaction, it is not a trivial 
matter to infer the properties of the whole. In the face of complexity, an in-principle 
reductionist may be at the same time a pragmatic holist [Simon 1962:468].  
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15. For example, before Klein developed the concept of a group, Euclidean and non-Euclidean geometry 
were treated as fundamentally different geometries. After he developed the group concept they can be 
treated as parts of a greater whole, the geometry of invariants. A large part of his stated motivation for 
the Erlangen Programm was, in fact, this unification of geometry.  
But it has seemed the more justifiable to publish connective observations of this kind because geometry, 
which is after all one in substance, has been broken up in the course of its recent rapid development into 
a series of almost distinct theories, which are advancing in comparative independence of each other 
[Klein 1893:216].  
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