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Preface

This volume contains all papers presented at SSPR 2004 and SPR 2004, hosted
by the Instituto de Telecomunicações/Instituto Superior Técnico, Lisbon,
Portugal, August 18–20, 2004.

This was the fourth time that the two workshops were held back-to-back.
The SSPR was the tenth International Workshop on Structural and Syntac-
tic Pattern Recognition, and the SPR was the fifth International Workshop on
Statistical Techniques in Pattern Recognition. These workshops have tradition-
ally been held in conjunction with ICPR (International Conference on Pattern
Recognition), and are the major events for technical committees TC2 and TC1,
respectively, of the International Association for Pattern Recognition (IAPR).

The workshops were closely coordinated, being held in parallel, with plenary
talks and a common session on hybrid systems. This was an attempt to resolve
the dilemma of how to deal with the need for narrow-focus specialized workshops
yet accommodate the presentation of new theories and techniques that blur the
distinction between the statistical and the structural approaches.

A total of 219 papers were received from many countries, with the submis-
sion and reviewing processes being carried out separately for each workshop. A
total of 59 papers were accepted for oral presentation and 64 for posters. In ad-
dition, four invited speakers presented informative talks and overviews of their
research. They were: Alberto Sanfeliu, from the Technical University of Catalo-
nia, Spain; Marco Gori, from the University of Siena, Italy; Nello Cristianini,
from the University of California, USA; and Erkki Oja, from Helsinki University
of Technology, Finland, winner of the 2004 Pierre Devijver Award.

SSPR 2004 and SPR 2004 were sponsored by the IAPR, the Instituto Supe-
rior Técnico, Technical University of Lisbon and the Fundação Luso-Americana
para o Desenvolvimento (FLAD).

We would like to express our sincere gratitude to all the members of the
program committees for performing the hard work of reviewing the many sub-
missions which led to a selection of high-quality papers. We would like to thank
everyone who made this meeting possible: the authors for submitting papers,
the invited speakers for accepting our invitation, the organizing committee, and
the sponsors for their support.

We also appreciate the help of the editorial staff at Springer-Verlag and, in
particular, Anna Kramer and Alfred Hofmann, for supporting this publication in
the LNCS series; and the help of Piotr Juszczak during the final editing process.

August 2004 Ana Fred
Terry Caelli

Robert P.W. Duin
Aurélio Campilho
Dick de Ridder
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Cornélia J.P. Passarinho, Fátima N.S. Medeiros, Jilseph Lopes Silva,
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Marina Skurichina, Pavel Pacĺık, Robert P.W. Duin, Diana de Veld,
Henricus J.C.M. Sterenborg, Max J.H. Witjes,
and Jan L.N. Roodenburg

Kernel Relative Principal Component Analysis for Pattern Recognition . . 1105
Yoshikazu Washizawa, Kenji Hikida, Toshihisa Tanaka,
and Yuhikiko Yamashita

Dynamic Character Model Generation for Document Keyword Spotting . . 1114
Beom-Joon Cho and Bong-Kee Sin

Texture Classification by Combining Wavelet and Contourlet Features . . . 1126
Shutao Li and John Shawe-Taylor

Hybrid Methods

Distance Measures between Attributed Graphs
and Second-Order Random Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1135

Francesc Serratosa and Alberto Sanfeliu

On Not Making Dissimilarities Euclidean . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1145
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Abstract. We present a tutorial survey on some recent approaches to
unsupervised machine learning in the context of statistical pattern recog-
nition. In statistical PR, there are two classical categories for unsuper-
vised learning methods and models: first, variations of Principal Compo-
nent Analysis and Factor Analysis, and second, learning vector coding
or clustering methods. These are the starting-point in this article. The
more recent trend in unsupervised learning is to consider this problem in
the framework of probabilistic generative models. If it is possible to build
and estimate a model that explains the data in terms of some latent vari-
ables, key insights may be obtained into the true nature and structure
of the data. This approach is also reviewed, with examples such as linear
and nonlinear independent component analysis and topological maps.

1 Introduction: Supervised and Unsupervised Learning
from Data

In statistical pattern recognition, machine learning from a training set is an
essential technique. If the classes of the training vectors are known, supervised
methods are used to build the classifiers. If class information does not exist, one
has to resort to unsupervised methods. Also in the preliminary stage of feature
extraction unsupervised methods are mostly used [13, 30].

The optimality of supervised classifiers is given by the theoretical limit of the
Bayes decision rule. For unsupervised methods, no such clear optimality crite-
rion exists. Usually, the result of unsupervised learning is a new explanation or
representation of the observation data, which will then lead to improved future
decisions. In statistical pattern recognition, the representation may be a cluster-
ing of the data, a discrete map, or a continuous lower-dimensional manifold in
the vector space of observations, which explains their structure and may reveal
their underlying causes [13].

Unsupervised learning seems to be the basic mechanism for sensory adapta-
tion in the animal brain, e.g. in the visual pathway [4]. In pattern recognition,
it is a highly powerful and promising approach to some practical problems like
� This work was supported by the Academy of Finland as part of its Center of Excel-
lence project “New Information Processing Principles”.

A. Fred et al. (Eds.): SSPR&SPR 2004, LNCS 3138, pp. 1–15, 2004.
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data mining and knowledge discovery from very large databases, or new modes of
human-computer interactions in which the software adapts to the requirements
and habits of the human user by observing her behaviour. For an excellent col-
lection of recent articles on unsupervised learning, see [23].

The current trend in unsupervised learning is to consider this problem in
the framework of probabilistic generative models. The concept of a generative
model is very general and potentially powerful. In fact, as discussed by Roweis
and Ghahramani [48], a large number of central techniques like FA, PCA, mix-
tures of Gaussians, vector quantization, and also dynamical models like Kalman
filters or Hidden Markov Models, can be presented in a unified framework of
unsupervised learning under a single basic generative model. If it is possible to
build and estimate a model that explains the data in terms of some latent vari-
ables, key insights may be obtained into the true nature and structure of the
data. Operations like prediction and compression become easier and rigorously
justifiable. In this paper, we take a brief look at such models, which reveal the
structure of the data by projections on linear or nonlinear structures, spanned
by components or clusters hidden in the data.

The first class of unsupervised learning methods we consider in Section 2
is motivated by standard statistical methods like PCA or FA, which give a re-
duced subset of linear combinations of the original input variables. Also nonlin-
ear variants have been suggested, such as autoassociative neural networks, kernel
PCA, principal curves and surfaces, and mixtures of local PCA’s. A more recent
model in this category is that of independent components, which would maxi-
mally reduce the redundancy between the latent variables even in the case that
gaussianity does not hold. This leads to the techniques of Independent Com-
ponent Analysis (ICA) and Blind Source Separation (BSS) [27]. In the latter
technique, a set of parallel time signals such as speech waveforms, electromag-
netic measurements from the brain, or financial time series, are assumed to be
linear combinations of underlying independent latent variables. The variables,
called independent components, are found by efficient ICA learning rules. ICA
is a linear technique, but nonlinear variants have been proposed recently, and
some approaches along Nonlinear ICA or Nonlinear FA are also pointed out in
Section 2.

The second class of methods is close to clustering or visualization by project-
ing the data on a nonlinear low-dimensional grid. A typical application is data
mining or profiling from massive databases. It is of interest to find out what kind
of typical clusters there are among the data records, and what is the relation
between the clusters. A competitive learning algorithm gives an efficient solu-
tion to this problem. Section 3 briefly reviews a well-known competitive learning
system, the Self-Organizing Map (SOM) [36], and a related generative latent
variable model GTM [7].

2 Finding Independent Components

2.1 Principal Component Analysis
Principal component analysis (PCA) and the closely related Karhunen-Loève
Transform, or the Hotelling Transform, as well as Factor Analysis (FA), are clas-
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sical techniques in statistical data analysis, feature extraction, and data compres-
sion [14, 40, 61]. Given a set of multivariate measurement vectors x(1), . . .x(T ),
the purpose is to find a smaller set of variables with less redundancy, that would
give as good a representation as possible. The redundancy is measured through
second-order statistics only and is removed by decorrelation. This means rotat-
ing the data into a new coordinate system given by the eigenvectors of the data
covariance matrix.

It is not always feasible to solve the eigenvectors by standard numerical
methods. In an on-line data compression application like image or speech coding,
the data samples x(t) arrive at high speed, and it may not be possible to estimate
the covariance matrix and solve the eigenvector-eigenvalue problem once and for
all.

An alternative is to derive gradient ascent algorithms or other on-line meth-
ods for PCA. The algorithms will then converge to the solution of the problem,
that is, to the eigenvectors. The advantage of this approach is that such algo-
rithms work on-line, using each input vector x(t) once as it becomes available
and making an incremental change to the eigenvector estimates, without com-
puting the covariance matrix at all. This approach is the basis of the PCA neural
network learning rules introduced by the author [39, 42]. Other related on-line
algorithms have been introduced in [16, 49, 14, 60]. Some of them, like the APEX
algorithm by Diamantaras and Kung [14], are based on a feedback neural net-
work. Also minor components defined by the eigenvectors corresponding to the
smallest eigenvalues can be computed by similar algorithms [42].

Another possibility for PCA computation in neural networks is the Multi-
Layer Perceptron network, which learns using the back-propagation algorithm
(see [20]) in unsupervised autoassociative mode. In autoassociative mode, the
same vectors x are used both as inputs and as desired outputs in back-propaga-
tion learning. This network with nonlinear hidden layer was suggested for data
compression by [11], and it was shown to be closely connected to the theoretical
PCA by [8]. It is not equivalent to PCA, however, as shown by [31], unless the
hidden layer is linear. A much more powerful network is obtained if more hidden
layers are added. For instance, a 5 - layer autoassociative MLP is able to compute
in principle any smooth nonlinear mapping between the inputs and the central
hidden layer, and another mapping between the central hidden layer and the
outputs. This is due to the two extra nonlinear hidden layers; see e.g. [41]. This
network is one way to compute a nonlinear PCA expansion.

Other prominent approaches to extend PCA to nonlinearities are the ker-
nel PCA [52] and the method of Principal Curves [19]. PCA can be “kernel-
ized” because it is a second-order statistical technique. Yet another approach to
construct nonlinear PCA manifolds is to combine the two major unsupervised
learning paradigms - PCA and vector coding (VQ) - using mixtures of local
linear models, for example PCA’s, in which the data cloud is first clustered or
parcelled using VQ, and then a separate linear model is fitted to each of the clus-
ters around the code vector. This notion has been formalized by several authors
[22, 47, 48, 55, 62]. It is closely related to the conventional technique of semipara-
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metric density estimation, the Mixture of Gaussians (MoG) model widely used in
clustering and data modelling. However, instead of using full covariance matrices
for the component gaussians, the local linear models constrain the covariances
in a natural and easily adjustable way.

Another linear projection technique is Factor Analysis (FA) [18], in which a
generative latent variable model is assumed for x:

x = Ay + n. (1)

With certain assumptions on the additive noise, FA and PCA produce the same
solution. PCA, too, can be derived from a generative model in the technique
called Probabilistic PCA [55] or Principal Factor Analysis [18].

2.2 Independent Component Analysis

In Independent Component Analysis (ICA) [1, 5, 9, 10, 25, 27, 32, 34, 43] the same
model (1) is assumed, but now the assumption on yi is much stronger: we require
that they are statistically independent and nongaussian. Interestingly, then the
ambiguity in Factor Analysis disappears and the solution, if we can find one, is
(almost) unique.

In the simplest form of ICA, the additive noise n is not included and the
standard notation for the independent components or sources is si; thus the
ICA model for observation vectors x is

x = As. (2)

It is assumed that both x and s are zero mean. The observations xi are now linear
combinations or mixtures of the sources sj . The matrix A is called in ICA the
mixing matrix. The model looks deceptively simple but is not, because both A
and s are unknown and must be estimated from a sample of the observations x.

We may further assume that the dimensions of x and s are the same. If
originally dimx < dim s, or there are more sources than observed variables,
then the problem becomes quite difficult - see [27]. If, on the other hand, m =
dimx > dim s = n, then model (2) implies that there is redundancy in x which
is revealed and can be removed by performing PCA on x. This is done as follows.

We can write the m × m covariance matrix of x as

Cx = AE{ssT }AT = AAT . (3)

We have used the knowledge that matrix E{ssT} is diagonal, due to the fact
that the elements of s are zero mean and independent; if we further absorb their
variances to matrix A and assume that E{s2i } = 1, then it holds E{ssT} = I.
Now, matrix A is an m × n matrix and so matrix Cx = AAT is an m × m
matrix with rank n. It will have only n nonzero eigenvalues. Let us denote the
diagonal n × n matrix of the nonzero eigenvalues of Cx by D, the orthonormal
eigenvectors of Cx by e1, ..., em, and the orthogonal matrix that has the n first
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Fig. 1. Mixed signals

ones as columns by E. Thus E is m × n. Make now a linear transformation for
the m - dimensional observation vectors x:

x′ = D−1/2ETx. (4)

For the covariance matrix of the transformed n - dimensional vector x′ it holds:

E{x′x′T } = D−1/2ETCxED−1/2 = D−1/2ETEDD−1/2 = I. (5)

This transformation is called whitening. Let us assume in the following that
whitening has always been performed in the model, and denote simply by x the
whitened observation vector whose dimension is the same as that of the source
vector s.

Whitening has another desirable side-effect, which can be seen by noting
from eq. (3) that now AAT = I. But this means that matrix A is an orthogonal
matrix, for which A−1 = AT . So, if we knew matrix A, we could directly solve
the unknown source vector s from the model by

s = ATx.

It is an interesting finding that very few assumptions suffice for solving the
mixing matrix and, hence, the sources. All we need is the assumption that the
sources si are statistically independent and nongaussian. Consider the following
simple example: we have two signals, shown in Fig. 1, that are linear combi-
nations or mixtures of two underlying independent nongaussian source signals.
This example is related to model (2) in such a way that the elements x1, x2 of
the random vector x in (2) are the amplitudes of the two signals in Fig. 1. The
signals provide a sample x(1), . . .x(T ) from this two-dimensional random vector.
The joint histogram of the sample vectors is plotted in Fig. 2; each point in the
scatter plot corresponds to one time point in Fig. 1. The vector x is now white
in the sense that x1 and x2 are zero mean, uncorrelated, and have unit variance.
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Fig. 2. Histogram of the two amplitudes of the mixed signals x• , x•

This may not be apparent from the histogram but can be verified by estimating
the covariance matrix of all the points.

The example suggests a method that in fact is highly useful and forms the
basis of some practical ICA algorithms. Consider a line passing through the
origin at the center of the data cloud in Fig. 2. Denote a unit vector defining
the direction of the line by w. Then the projection of a data point x on the
line is given by y = wTx. This can be considered as a random variable whose
density is approximated by the histogram of the projections of all the data
points in the cloud on this line. No matter what is the orientation of the line, it
always holds that y has zero mean and unit variance. The unit variance is due
to E{y2} = E{(wTx)2} = wTE{xxT }w = wTw = 1 where we have used the
facts that x is white and w has unit norm.

However, it is easy to see from Fig. 2 that the density of y will certainly
vary as the orientation of the line varies, meaning that all the moments of y
cannot stay constant. In fact, any other moment than the first and second ones
is not constant. What is most important is that any such moment, say, E{y3}
or E{y4} or in fact E{G(y)}, with G(y) a nonlinear and non-quadratic function,
will attain a number of maxima and minima when the orientation of the line
goes full circle, and some of these extrema coincide with orientations in which
the 2-dimensional density factorizes into the product of its marginal densities -
meaning independence.

In Fig. 3, the coordinate system has been rotated so that the fourth moment
E{y4} is maximal in the vertical direction and minimal in the horizontal direc-
tion. We have found two new variables y1 = wT

1 x and y2 = wT
2 x, with w1,w2

orthonormal, that satisfy

p(y1, y2) = p(y1)p(y2)

with p(.) the appropriate probability densities. The variables are thus indepen-
dent and it holds

y =Wx
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Fig. 3. Histogram of the two amplitudes of the separated signals y• , y•
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Fig. 4. Separated signals

whereW = (w1w2)T . We have solved the inverse of the model (2) and obviously
found the mixing matrix: A =WT .

Fig. 4 shows y1, y2 again arranged in their correct time order. It is seen that
they form two signals, one a random nongaussian noise and the other one a
deterministic sinusoid. These were in fact the original signals that were used to
make the artificial mixtures in Fig. 1. In the context of separating time series or
signals, the ICA technique is an example of blind signal separation.

The above illustrative example can be formalized to an efficient mathematical
algorithm. What we need is a numerical method to maximize, say, the fourth
moment E{y4} in terms of a unit norm weight vector w. A possibility is gradient
ascent: the gradient of E{y4} with respect to w is 4E{y3x} = 4E{(wTx)3x}.
However, gradient methods are notoriously slow. A better idea is a fast algorithm
with higher-order convergence speed. Such a method is provided by the FAstICA
algorithm. For finding one independent component (one weight vector w), the
algorithm is as follows:
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1. Choose the initial value randomly for the weight vector w.
2. Repeat Steps 3,4 until the algorithm has converged:
3. Normalize w to unit norm.
4. Update w by

w ← E{(wTx)3x} − 3w (6)

This algorithm was introduced in [25] and further extended and analyzed in
[26]; for a detailed review, see [27]. The FastICA algorithm is available in public-
domain software [15] from the author’s web pages. The algorithm can be run
either in a deflation mode, in which the orthogonal weight vectors (columns of
the mixing matrix A) can be found one at a time, or in a parallel mode, in
which all the independent components and the whole matrix A are solved in
one iteration.

An analysis of the local maxima and minima of a general cost function
E{G(y)} = E{G(wTx)} over the unit sphere ‖w‖ = 1 was made by the au-
thor in [45]. The result is

Theorem. Under the linear mixing model x = As, with whitened x (hence:
orthogonal A), the local maxima (resp. minima) of E{G(wTx)} under the con-
straint ‖w‖ = 1 include those columns ai of the mixing matrix A such that the
corresponding sources si satisfy

E{sig(si)− g′(si)} > 0 (resp. < 0) (7)

where g(.) is the derivative of G(.).

The Theorem essentially says that all the columns of the mixing matrix
will be among the local minima or maxima of E{G(wTx)}, but there may be
also other extrema. The condition (7) states that some columns (and the corre-
sponding sources) are found by minimizing, others by maximizing. For the case
G(y) = y4, (7) becomes

E{s4i − 3} > 0

(note that the sources have unit variances). The term on the left hand side is the
kurtosis of si. Thus, the positively kurtotic sources are found at the local maxima
of E{(wTx)4} and vice versa. For other cost functions G(y), the condition (7)
always splits the sources in two groups, too.

In [27], the above method of fourth order moment maximization is shown
to be an example of a powerful criterion of finding maximally nongaussian or-
thogonal directions through the multidimensional density p(x). Cost functions
like maximum likelihood or minimal mutual information are shown to be inti-
mately related to this basic criterion. Other algorithms to solving the basic linear
ICA model have been reported e.g. by [1, 5, 9, 10, 32], as reviewed in [27]. Espe-
cially, if the sources are actually signals with time structure, not just samples of
random variables, then blind separation can be achieved using either temporal
correlations [6] or nonstationarity [46].



Finding Clusters and Components by Unsupervised Learning 9

2.3 Nonlinear Factor and Independent Component Analysis

The model (2) is extremely simple and can be extended in several directions.
If the additive noise cannot be assumed to be zero, we have the noisy ICA
model, also termed independent factor analysis [2]. This is due to the fact that
it is otherwise similar to the factor analysis model (1), with the difference that
the factors yi are not uncorrelated (thus independent) gaussians, but rather
independent nongaussians. Some solution methods are reviewed in [27].

Another extension is nonlinear ICA and FA. Instead of the linear models
(2),(1), consider

x = f(y,M) + n (8)

with f a nonlinearity parameterized by an array of parameters M. Vector y
gives a number of latent variables and n is again gaussian noise. If we assume
that the prior p(y) for y is gaussian with unit (or diagonal) covariance, making
the elements yi independent, the model (14) may be called nonlinear factor
analysis. A further extension would be p(y) that is nongaussian but factorizable
so that the yi are independent; then the model becomes nonlinear independent
component analysis.

Several authors have attacked this problem. The baseline is that the problem
is ill-defined. Under very general assumptions, a random vector can be trans-
formed nonlinearly into another random vector that has independent elements
[28], but there is no guarantee that the independent elements are the original
sources. Therefore, the solution can only be sought with restrictions that some-
how regularize the problem. Typical such restrictions are post-nonlinear mixtures
and some special cases that can be reduced to linear mixtures with simple map-
pings. For general nonlinearities, there are a variety of methods, some of them
rather ad hoc; for a review, see [33].

Recently, Valpola [56] used an approximation for the nonlinear function
f(y,M) in the model, that was based on a Multilayer Perceptron (MLP) network
with one hidden layer. It is well-known [24, 17] that this function can approx-
imate uniformly any continuous functions on compact input domains and it is
therefore suitable for this task. Then the model becomes

x = Bφ(Ay + a) + b+ n (9)

where A,a are the weight matrix and offset vector of the hidden layer, φ is
the sigmoidal nonlinearity, typically a tanh or sinh−1 function, and B,b are
the weight matrix and offset vector of the linear output layer. It is understood
that φ is applied to its argument vector element by element. In practice, there
is a training sample x(1), ...,x(T ), and we wish to solve from the model the
corresponding source or factor vectors y(1), ...,y(T ).

The problem now is that, contrary to the usual supervised learning situa-
tions, the inputs to the MLP are not known and therefore back-propagation
type of learning rules cannot be used for finding the unknown parameters. The
idea in [56] is to use a purely Bayesian approach called ensemble learning. The
cost function is the Kullback - Leibler divergence between the true posterior
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probability for the parameters, given the observations, and an approximation of
that density. Denote the set of all the unknown parameters by Θ = {Y,M}.
There the vector Y contains all the unknown source vectors y(1), ...,y(T ), while
M contains the weights of the MLP network that define the unknown nonlinear
function f , and also the parameters of the gaussian noise n. In addition, because
this is a Bayesian model, it includes hyperparameters defining the distributions
of the weights. Denote the sample of observations by X = x(1), ...,x(T ).

We can write for the posterior density of the parameters

p(Θ|X) = p(Y,M|X) = p(X|Y,M)p(Y|M)p(M)
p(X)

. (10)

The first term p(X|Y,M) is obtained from the data model (9); it is simply a
product of gaussians with meansBφ(Ay(t)+a)+b. Likewise, the terms p(Y|M)
and p(M) are obtained as products of gaussians, when we assume mutually
independent gaussian priors for all the parameters. The term p(X) does not
contain any unknown parameters and can be omitted.

This density is now approximated by another density q(Θ) - the ensemble -
that has a simple form [56]: it is a gaussian with diagonal covariance. Then the
KL divergence

CKL =
∫

dΘq(Θ) log
q(Θ)

p(Θ|X) (11)

also obtains a relatively simple form, splitting into the expectations of many
simple terms. It can be minimized by a suitable numerical method.

In [56], several applications with real data are shown. The model is also
extended to a dynamical model, similar to an extended Kalman filter but with
unknown parameters, and very promising results are obtained in case studies
[57, 29].

3 The Self-organizing Map

3.1 The Basic SOM

One of the best-known learning systemss in the unsupervised category is the
Self-Organizing Map (SOM) introduced by Kohonen [36]. It belongs to the class
of vector coding algorithms. In vector coding, the problem is to place a fixed
number of vectors, called codewords, into the input space which is usually a
high-dimensional vector space. The dimension of the data vectors is determined
by the problem and can be very large. In the WEBSOM system [37] for organiz-
ing collections of text documents, the dimensionality of the data in the largest
applications is about n = 50, 000 and the size of the training sample is about
T = 7, 000, 000.

A well-known method for vector coding is the Linde-Buzo-Gray (LBG) algo-
rithm, which is very similar to the k - means clustering algorithm [13]. Assume
a set of nodes which are numbered by index i = 1, . . . , k, and assume that each
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node i has a weight vector wi that has the same dimension as the input vec-
tors x that we wish to cluster. In k - means clustering, the goal is to place the
weight vectors (codewords) into the input space in such a way that the average
squared distance from each x to its closest codeword is minimized. In the Self -
Organizing Map (SOM), there is an extra feature compared to mere clustering:
nodes are spatially arranged to a 1-, 2- or multidimensional lattice, such that
each node has a set of neighbors. The goal of SOM learning is not only to find
the most representative code vectors for the input training set in the sense of
minimum distance, but at the same time to form a topological mapping from the
input space to the grid of nodes. This idea originally stems from the modelling
of the topographic maps on the sensory cortical areas of the brain. A related
early work in neural modelling is [38].

For any data point x in the input space, one or several of the codewords are
closest to it. Assume that wi is the closest among all codewords:

‖x−wi‖ = min‖x−wj‖, j = 1, ..., k (12)

The unit i having the weight vector wi is then called the best-matching unit
(BMU) for vector x. The well-known Kohonen algorithm for self-organization of
the code vectors is as follows [36]:

1. Choose initial values for the weight vectors wi.
2. Repeat Steps 3,4 until the algorithm has converged:
3. Draw a sample vector x from the training set and find the best matching
unit i = i(x) according to Eq. (12).

4. Adjust the weight vectors of all units by

wj ← wj + γ ∗ hr ∗ (x−wj) (13)

where γ is a gain factor and hr is a function of the distance r = ‖i − j‖ of
units i and j measured along the lattice.

There are several choices for the initial values and for the neighborhood function
hr; these, as well as the convergence and the mathematical properties of this
algorithm have been considered by several authors, e.g. [36, 47, 44, 58]. For SOM
learning, topology preservation, and its relation to a cost function, see [59, 12,
21]. A more efficient learning rule for the SOM is the batch algorithm, covered
e.g. in [36]. The 2-dimensional map is also a powerful tool for data visualization:
e.g., a color code can be used in which each unit has its own characteristic color.
For a public domain software implementation of the SOM, with various graphical
tools for map presentations as well as with preprocessing methods, see [54]. A
database of well over four thousand applications of SOM is given by [53].

3.2 The Generative Topographic Map

There is a probabilistic generative model that is close to the SOM, the Generative
Topographic Map (GTM) [7], in which the vectors x are expressed in terms of



12 Erkki Oja

a number of latent variables, which are defined on a similar lattice or grid as
the nodes in the SOM. Assume a grid with dimension l (usually, this would be
equal to 2, at most 3), and assume there are k nodes yi, i = 1, . . . , k on the
grid. Assume a random latent variable y, whose values are concentrated at these
nodes. Let us make a nonlinear mapping from the l-dimensional random variable
y to the original n -dimensional vectors x:

x = f(y,M) + n (14)

whereM is an array of parameters of the nonlinear function f , and n is additive
noise. The form of the function f is assumed to be determined except for the
unknown parameters. The model (14) is the generative latent variable model
of the GTM method. It means that the data x are basically concentrated on
an l-dimensional nonlinear manifold in the data space, except for the additive
noise. The k vectors wi = f(yi,M) that are the images of the node points yi
are analogous to the weight vectors or codewords of the SOM. If f is smooth,
a topographic ordering for the codewords is automatically guaranteed, because
such an ordering is valid for the points yi. The GTM also has the advantage
that it postulates a smooth manifold that naturally interpolates between the
code vectors wi.

If we assume that the noise has a radially symmetrical gaussian density, then
the density of x, given y, becomes a mixture of gaussians, having a separate
gaussian density around each of the code vectors wi = f(yi,M). From this,
the likelihood function for the parameters M, β follows immediately. The EM
algorithm can now be used to numerically solve the parameters by maximum
likelihood, due to the mixture of gaussians form of the density - for details, see
[7]. The reference also discusses the similarities and differences between GTM
and SOM.

4 Conclusions

The two main paradigms of unsupervised machine learning in statistical pat-
tern recognition have been reviewed: the extensions to the Principal Component
Analysis technique, and the clustering, vector coding, and topological mapping
technique. The first class of methods form a continuous linear or nonlinear trans-
formation of the original input vectors to feature vectors of lower dimensionality,
and are especially useful in feature extraction. The reduced representation given
by the feature vectors would typically be input to a classifier.

The second class of methods are able to map highly nonlinear input data man-
ifolds onto low dimensional lattices, preserving optimally the mutual topological
relations of input vectors. Thus these methods, notably the Self-Organizing Map
(SOM), are suitable for data clustering and visualization. The applications range
from industrial quality control to financial data mining. Also generative latent
variable versions for these basic models and their combinations were reviewed.

This paper was a review of the essential principles and theory underlying
unsupervised learning, with some central references cited. It is not possible here
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to give even a rudimentary list of applications of these techniques. There are
available good text-books that cover some of the major approaches [23, 36, 14,
27].
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Abstract. Kernel Methods are a class of algorithms for pattern analysis
with a number of convenient features. They can deal in a uniform way
with a multitude of data types and can be used to detect many types
of relations in data. Importantly for applications, they have a modular
structure, in that any kernel function can be used with any kernel-based
algorithm. This means that customized solutions can be easily developed
from a standard library of kernels and algorithms. This paper demon-
strates a case study in which many algorithms and kernels are mixed
and matched, for a cross-language text analysis task. All the software is
available online.

1 Introduction

Kernel Methods (KMs) offer a very general framework for performing pattern
analysis on many types of data. In this paper we focus on text data, where text is
chosen as an example of non-numeric data, and we demonstrate the versatility of
this approach by performing cluster analysis, classification, correlation analysis
and visualization on this data. What is more important, we do this by using
different representations of our data defined by different kernel functions, as
will be explained below. Overall, the purpose of this work is to make clear how
different components can be combined together, to easily produce a wide variety
of data analysis algorithms.

The main idea of kernel methods is to embed the dataset S ⊆ X into a (pos-
sibly high dimensional) vector space �N , and then to use linear pattern analysis
algorithms to detect relations in the embedded data. Linear algorithms are ex-
tremely efficient and well-understood, both from a statistical and computational
perspective. The embedding map is denoted here by φ : X → �N , and it is
understood that X can be any set.

An important point is that the embedding does not need to be performed
explicitly: we do not actually need the coordinates of all the image vectors of
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the data in the embedding space �N , we can perform a number of algorithms
just knowing their relative positions in it. To be more accurate, if we know all
the pairwise inner products 〈φ(x), φ(z)〉 between image vectors for all pairs of
datapoints x, z ∈ X , we can perform most linear pattern discovery methods
known from multivariate statistics and machine learning without ever needing
the coordinates of such data points.

This point is important because it turns out that it is often easy to compute
the inner product in the embedding space, even when the dimensionality N is
high and so the coordinate vectors would be very large. It is often possible to
find a (cheaply computable) function that returns the inner product between
the images of any two data points in the feature space, and we call it a kernel.
Formally, if we have data x, z ∈ S ⊆ X and a map φ : X → �N , we call kernel
a function such that

K(x, z) = 〈φ(x), φ(z)〉

for every x, z ∈ �N . As mentioned above, x and z can be elements of any set, and
in this case study they will be text documents. On the other hand, their image
φ(x) is a vector in �N . The matrix Kij = K(xi, xj) is called the kernel matrix.
Armed with this tool, we can look for linear relations in very high dimensional
spaces at a very low computational cost. If the map φ is non-linear, then this
will provide us with an efficient way to discover non-linear relations in the data,
by using well understood linear algorithms in a different space. What is even
more powerful, is that if X is not a vector space itself, the use of kernels enables
us to operate on generic entities with essentially algebraic tools.

The kernel matrix contains sufficient information to run many classic and
new linear algorithms in the embedding space, including Support Vector Ma-
chines (SVM), Fisher’s Linear Discriminant (FDA), Partial Least Squares (PLS),
Ridge Regression (RR), Principal Components Analysis (PCA), K-means and
Spectral Clustering (SC), Canonical Correlation Analysis (CCA), Novelty De-
tection (ND) and many others. We refer the reader to [11, 9, 13, 3, 10, 1, 12] for
more information on these methods, to [2] for a tutorial on kernel methods based
on eigenvalue problems (PCA, CCA, PLS, FDA and SC), and to [16, 15] for two
nice examples of the use of kernel methods in real life problems. Owing to the
level maturity already achieved in these algorithmic domains, recently the focus
of kernel methods research is shifting towards the design of kernels defined on
general data types (such as strings, text, nodes of a graph, trees, graphs,. . . ).
Major issues in kernel design are its expressive power and its efficiency of eval-
uation [5, 7, 14, 8, 6].

Since by now a wide variety of kernel functions has been developed, each
equivalent to a specific embedding function, the set of kernel methods has cul-
minated into a complete toolbox to deal with real life machine learning and
exploratory data analysis problems. Here we demonstrate this idea by using a
variety of algorithms in combination with different text and string kernels on
the articles of the Swiss constitution, which is available in 4 languages: En-
glish, French, German and Italian. What is interesting for this demonstration:
the constitution is divided into several groups of articles, each group under a
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Fig. 1. A sketch of the modularity inherent in kernel-based algorithms: the data is
transformed into a kernel matrix, by using a kernel function; then the pattern analysis
algorithm uses this information to find the suitable relations, which are all written in
the form of a linear combination of kernel functions.

different so-called ‘Title’ (in the English translation). All data can be found on-
line at www.admin.ch/ch/e/rs/c101.html. A few articles were omitted in this
case study (some because they do not have an exact equivalent in the different
languages, 2 others because they are considerably different in length than the
bulk of the articles), leaving a total 195 articles per language. The texts are pro-
cessed by removing punctuation and stop words followed by stemming (where
stop word removal and stemming are performed in a language specific way).

Ultimately, the aim of this simple case study is to exhibit how the inherent
modularity of kernel methods makes them perfectly suited for fast and efficient
deployment in a wide variety of tasks.

The entire matlab demo and the data used in this case-study, including scripts
to remove punctuation and stop words and a stemming tool, are freely avail-
able online at www.kernel-methods.net, together with more free software. The
pseudo-code and the detailed description of each algorithm and kernel used in
this demo are described in the new book [12].

2 Pattern Algorithms

We briefly list here the algorithms that we will demonstrate. Given their large
number and the space constraints of this article, it is impossible to even outline
the theory behind them, so we refer the interested readers to the book [12]. All
of these algorithms can work in any kernel-induced feature space, and all are
amenable to statistical analysis based on Statistical Learning Theory. What we
want to emphasize here is how all can be used as modules of a system, where
any algorithm can be combined with any kernel, enabling practitioners to rapidly
develop and test a large quantity of general purpose algorithms, and customize
them by selecting the appropriate algorithms and kernels. Importantly, all algo-
rithms (with the exception of k-means clustering) reduce to optimizing a convex
function or to solving an eigenvalue problem.
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Classification. One of the most classic tasks in pattern recognition is that of
classification (or discrimination in the statistics literature, and categorization in
text analysis). The goal is to find a function of the data that can be used to
correctly assign a data item (e.g. a document) to one of a finite set of categories.
A classic statistical method is Fisher’s Linear Discriminant Analysis (FDA),
and a classic method from machine learning is the Support Vector Machine
algorithm (SVM) [3]. Both algorithms aim at finding a separating hyperplane in
the embedding space, and differ in the properties of such hyperplane. In the first
case (FDA) the hyperplane is chosen to maximize the proportion of the between
class variance over the within class variance orthogonal to this hyperplane; in
the second case (SVM) the hyperplane is chosen to maximize the margin.

Clustering. A second classic application in pattern recognition is the task of
partitioning the samples in coherent groups. A common method for clustering
vectorial data is K-means clustering. However K-means can be applied in a kernel
induced feature space as well, making it applicable to virtually any kind of data
using the kernel trick. As an alternative to K-means, we will demonstrate a more
recently developed clustering technique known as spectral clustering (SC). This
method is based on a cheap processing of the kernel matrix, followed by a simple
eigenvalue problem.

Factor Analysis. When data is high dimensional (such as e.g. in text and
bioinformatics applications), often the interesting information contained by the
data can be explained by a number of underlying factors much smaller than this
dimensionality. Depending on what is assumed to be interesting in a particular
problem, different linear methods have been developed in multivariate statistics
to extract these factors. The best known of these is principal component analysis
(PCA), that finds a low dimensional projection of the data capturing as much
of its variance as possible. Another method called canonical correlation analysis
(CCA) can be used when we have two or more instantiations of the data that are
all assumed to contain the relevant factors. CCA then proceeds by identifying
those directions along which the data shows a large correlation between the
different spaces. Both PCA and CCA can naturally be combined with kernels
making it possible to identify hidden non-linear factors as well, or even factors
explaining non-vectorial data such as text, trees, graphs,. . . For a survey on these
methods based on eigenvalue problems, see [2].

3 Kernel Functions

All algorithms listed in the previous section are originally developed to be ap-
plied to vectorial data. However, for many other types of data it is possible to
explicitly or implicitly construct a feature space capturing relevant information
from this data. Unfortunately even when it can be expressed explicitly, often
this feature space is so high dimensional that the algorithms can not be used in
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their original form for computational reasons. However, as pointed out above,
many of these algorithms can be reformulated into a kernel version. These kernel
versions directly operate on the kernel matrix instead of on the feature vectors.
For many data types, methods have been devised to efficiently evaluate these
kernels, avoiding the explicit construction of the feature vectors. In this way,
the introduction of kernels defined for a much wider variety of data structures
significantly extended the application domain of these algorithms.

In this section we briefly discuss the various kernels we will demonstrate in
this case study. All kernels used here are text kernels, and we always normalized
them. For a detailed description we refer the reader to [12].

Bag of Words Kernel. A text document can be represented by the words
occurring in it, without considering the order in which the words appear. Of
course this is a less complete representation than the texts themselves, but for
many practical problems this is sufficient. Consider the complete dictionary of
words occurring in all texts. Then each text document x could be represented by
a bag of words feature vector φ(x). The entries in this vector are indexed by the
words in the vocabulary, and equal to the number of times the corresponding
word occurs in the given text. Then, the bag of words kernel between two texts is
defined as the inner product of their bag of words vectors:K(x, z) = 〈φ(x), φ(z)〉.
Of course the feature vectors are usually sparse (since texts are usually much
smaller than the dictionary size), and some care has to be taken to efficiently
implement the bag of words kernel.

Figure (2) contains an image of the bag of words kernel on all articles (of
all languages)1. One can distinguish a block structure, corresponding to the 4
languages. In these blocks, one can see some substructure in the articles, roughly
corresponding to the Titles, Chapters, Sections. . . the articles are arranged in.
This substructure reappears in all languages to some extent.

K-mer Kernel. Another – more generally applicable – class of kernels is the
class of k-mer kernels [8]. For each document a feature vector is constructed
indexed by all possible length-k strings (k-mer) of the given alphabet; the value
of these entries is equal to the number of times this substring occurs in the given
text. The kernel between two texts is then computed in the usual way, as the
inner product of their corresponding feature vectors. Note that this kernel is
therefore applicable to string data, also where no words can be distinguished,
such as in DNA sequences. On the other hand, its power is generally less than
a bag of words kernel wherever this can be used, such as on natural language.
K-mer kernels capture the order k − 1 Markov properties of the texts, which are
specific to natural languages. Therefore, even for small k they are quite powerful
already in distinguishing different languages.

• To avoid a completely black picture except for a bright diagonal, before visualizing
the diagonal is subtracted from the kernel. This is necessary because text kernels
generally have a very heavy diagonal.
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Fig. 2. A visualization of the full bag of words kernel matrix after normalization.Note
that it is obvious from the figure that we have 4 distinct groups of texts, corresponding
to the 4 different languages.

Note that the length of the feature vector is exponential in k, therefore a
naive implementation would be prohibitively expensive for larger k. However
efficient algorithms have been devised allowing the computation of this kernel
for large scale problems [8].

Figures (3,4) contain the full 2-mer and 4-mer kernels. Figure (3) contains
the part of the 4-mer kernel that corresponds to the English and French texts.
Figure (5) above left, shows the same but now on the same articles artificially
made noisy. Clearly the structure fades away.

Restricted Gappy K-mer Kernel. For noisy data, the k-mer kernel may
be a bit too conservative in the sense that, even though two documents may
be similar, still they don’t share many k-mers. In that case, one may consider
using a restricted gappy k-mer kernel. Consider feature vectors with entries cor-
responding to all possible k-mers again. Now, every entry is made equal to the
number of k-mers up to (k+g)-mers in the text, that contain a (not necessarily
contiguous) subsequence of length k equal to the k-mer of this specific entry.
Here g is a parameter indicating the maximum number of gaps allowed. For
details we refer the reader to [8], where an efficient way to evaluate such kernels
is described. Figure (5) left below contains the restricted gappy 4-mer kernel on
the same noisy texts.

Wildcard K-mer Kernels. This kernel adopts a different approach to deal
with noisy texts. Now we use a feature space where each dimension corresponds
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Fig. 3. The 2-mer kernel matrix after normalization. Again the cluster structure can be
seen, however it is less clear than from the bag of words kernel. This is not surprising: a
2-mer kernel only takes into account 1st order Markov properties in the texts, making
them probably less suitable for natural language applications. Note that the third group
of texts –corresponding to the German language–, sticks out however, indicating that
the 1st order Markov properties of German are significantly different from those of the
other languages considered.
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Fig. 4. The 4-mer kernel matrix after normalization. One can see that the distinction
between the different languages is more clear now than for the 2-mer kernel.
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Fig. 5. Above left, the part of the normalized 4-mer kernel matrix corresponding to
the English and French texts only is shown. Above right, the normalized 4-mer kernel
matrix on the noisy English and French texts is depicted. One can see that the pattern
has faded away a bit. The normalized restricted gappy 4-mer kernel matrix on the noisy
English and French texts is shown below on the left. This kernel explicitly tries to take
the noise influence into account. It is not immediately obvious from the figure, however
experiments will show an improvement in performance of algorithms using this kernel
over using the simple 4-mer kernel. The normalized wildcard 4-mer kernel matrix on
the noisy English and French texts is shown below on the right. This kernel provides
an alternative way to deal with noisy data. Also with this kernel algorithms will be
shown to perform better than with the simple 4-mer kernel on the noisy data.

to a k-mer of the alphabet augmented with a wildcard. The number of wildcards
in these k-mers is restricted by a parameter m. Then every feature is equal to
the number of matches to this k-mer found in the text. Again, [8] describes
an efficient way to evaluate such kernels. Figure (5) right below contains the
wildcard 4-mer kernel on the same noisy texts.

4 A Case Study: Swiss Constitution Corpus

Thus far we have given an exposition of a wide variety of linear algorithms in
machine learning that can be kernelized, and of different kernels applicable to
text data. In what follows, we will show how each of these kernels can be used in
the different algorithms. This inherent modularity in kernel methods is of major
importance. Since for most types of data relevant kernels that can be evalu-
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Table 1. Classification error rates on the noise free data, averaged over 100 random-
izations with balanced 80/20 splits. The 2-mer kernel is used.

English vs French English vs German English vs Italian

SVM 0.82± 0.05 0.03 ± 0.03 0.43 ± 0.04
FDA 5.0± 0.2 0± 0 1.2± 0.1

ated efficiently have been proposed in literature, the application domain is vast.
Furthermore, this modularity has obvious advantages in software engineering.

4.1 Classification

Technical Notes. For FDA, we always took 1 for the regularization param-
eter. For the SVM we used the new-SVM formulation, and the regularization
parameter ν was always chosen equal to 0.1.

Note that the ambition here is not to optimally tune the parameters: the main
goal is to show how the modularity of kernel methods allows to apply a large
library of algorithms to non-vectorial data; not to benchmark these algorithms.

Classifying Articles in Their Respective Language Classes

Noise Free. The first task we consider is the classification of texts into their
respective language classes. The kernel we use here is the 2-mer kernel. We
considered 3 binary classification problems, discriminating English texts from the
texts in other languages (averaged over 100 random balanced splits in training
(80%) and test sets (20%)). Error rates are in table 1.

English and French are hardest to distinguish based on the 2-mer kernel,
which is probably due to many loan words present in English, recently adopted
from French. Also, English and Italian are not perfectly distinguished (probably
due to the same fact, and due to the fact that many English words have a Roman
origin). German sticks out most clearly, which is to be expected. SVM’s seem to
have a better performance on this dataset.

Noisy, English versus French. Now let us consider the classification problem
‘English vs French’ in some greater detail. What happens if we add noise to
the texts? We study this by artificially modifying the text by randomly deleting
or altering 1/4th of the letters. Table 2 contains the average classification error
rates for different kernels, along with the standard deviation on the estimated
average, over 100 randomizations.

Note that the 4-mer kernel performs better that the 2-mer kernel. We can
further improve the performance by using the restricted gappy and the wildcard
4-mer kernels.

Somewhat surprisingly FDA on the noisy data performed significantly worse
with the restricted gappy as compared to the standard 4-mer kernel. However,
clearly the method of choice here is SVM, which improves when using the re-
stricted gappy or wildcard kernels.
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Table 2. Classification error rates for different kernels on the noisy data, averaged over
100 randomizations with balanced 80/20 splits.

2-mer 4-mer gappy 4-mer wildcard 4-mer

SVM, No noise 0.82± 0.05 0.42± 0.03 - -
SVM With noise 2.89± 0.09 1.53± 0.07 1.28± 0.06 1.29± 0.06
FDA, No noise 5.0± 0.2 1.4± 0.1 - -
FDA With noise 18.0± 0.5 8.4± 0.3 8.7± 0.3 10.9 ± 0.3

Table 3. Adjusted Rand index performances for spectral clustering and K-means clus-
tering of the documents. The ideal clustering is clustering per language.

bow 2-mer 4-mer

Spectral clustering 0.966 ± 0 0.437 ± 0 0.337 ± 0
K-means 0.38 ± 0.04 0.17 ± 0.03 0.26 ± 0.04

4.2 Clustering

Having shown that kernel methods allow to do classification in various ways, we
will now show also clustering can be performed on data such as text in this case
study. We will consider two methods: K-means clustering and spectral clustering.

Clustering the Articles in Their Language Clusters

Spectral Clustering. We cluster the articles of all languages, and check how
well they are clustered into their respective language clusters. To assess the
performance we use the adjusted Rand index [4], which is 1 for perfect clustering
and has an expected value of 0 for random clustering. The final step consists of
K-means on the eigenvectors, the clustering corresponding to the minimal K-
means cost is taken over 10 starting values, chosen as described in [10].

K-means. Similarly, we perform kernel K-means on the documents. After 100
random initializations of K-means, the one with the best K-means cost is taken,
and its adjusted Rand index is computed.

The results are summarized in table 3. The numbers in the table are averages
over 10 runs along with the standard deviations on these averages. Note that
spectral clustering (virtually) always returns the same optimal value (very small
standard deviation), i.e. it is quite independent of the starting values in the
K-means iterations, whereas K-means does not.

Somewhat surprisingly the 2-mer kernel performs better than the 4-mer ker-
nel with the spectral clustering. As expected the best performance is achieved
with the bow-kernel. The spectral method outperforms K-means in all cases.

Clustering the Articles into Coherent Groups

The articles in the constitution are organized into groups, called ‘Titles’. Can
we use clustering to automatically categorize the articles into their Titles?
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Table 4. Adjusted Rand indices for spectral clustering of the English articles into the
chapters they appear in.

bow 2-mer 4-mer

English Spectral clustering 0.326 ± 0 0.231 ± 0 0.328 ± 0.001
K-means 0.24 ± 0.02 0.24± 0.02 0.27 ± 0.02

French Spectral clustering 0.372 ± 0 0.206 ± 0 0.340 ± 0
K-means 0.23 ± 0.03 0.17± 0.01 0.30 ± 0.02

German Spectral clustering 0.559 ± 0 0.136 ± 0 0.241 ± 0
K-means 0.13 ± 0.02 0.12± 0.01 0.19 ± 0.02

Italian Spectral clustering 0.508 ± 0.001 0.214 ± 0 0.308 ± 0
K-means 0.26 ± 0.02 0.0.19 ± 0.01 0.31 ± 0.03

Spectral Clustering and K-means. See table 4 for the adjusted Rand scores
achieved on this clustering problem for the different languages, kernels and meth-
ods. The performances are much less than for clustering articles into their lan-
guage classes. This is of course to be expected: now the number of samples is
smaller, and the distinction between languages is an objective criterion, while
the distinction between Titles in the constitution is man-made and thus sub-
jective in nature. Still, the performance is well above what a random clustering
would do.

4.3 Factor Analysis

As a last type of applications discussed in this paper, we consider two methods
for doing factor analysis: principal component analysis and canonical correlation
analysis. Again, even though these techniques are originally developed to analyze
vectorial data, the kernel trick allows us to apply them in a kernel induced feature
space on a wide variety of data types. We demonstrate the methods here on the
text data of our case study.

PCA. PCA is an algorithm to project the data in a lower dimensional space
such that as much of the variance as possible is captured. The first two principal
components are shown in figure 6. It can be seen that in this case indeed the
directions of large variance seem to visualize some interesting cluster structure
in the data.

CCA. With CCA one is able to capture information that is in common between
several information sources. In this case, we have the same information in dif-
ferent languages. Since we are in fact interested in the semantic meaning of the
articles, and not in the particularities of the languages, using CCA can be a good
idea. Indeed, the division of the constitution articles into groups (the ‘Titles’ as
they are called in the constitution) has something to do with their semantic
context, and not with their particularities due to the language in which they are
written.
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Fig. 6. First two principal components
of the bag of words kernels for the
English articles, as obtained by doing
PCA. Articles from different chapters
are represented by a different symbol.
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Fig. 7. First two canonical components
of the bag of words kernels for the En-
glish articles, as obtained by doing CCA
with the other languages. Articles from
different chapters are represented by a
different symbol.

We can use it here as a visualization tool: find two semantically interesting
directions in the high dimensional feature space of the articles, and plot the
components of the articles along these directions in the 2D plane2. The result
can be seen in figure (7).

Apart from dimensionality reduction, CCA can also be used for cross-langu-
age text retrieval. For more information we refer the reader to the relevant
literature [16].

Comparison of PCA with CCA. If we compare figure (6), where only one lan-
guage is used, with figure (7), where the other languages are used to supervise
the dimensionality reduction to some extent, we can see that the cluster struc-
ture is slightly more apparent when using CCA. We can assess this by computing
the between class variance divided by the total variance (BCV/TV) in the sub-
spaces found by PCA and CCA respectively. The larger this number, the better
the class separation. The results for subspaces from 1 dimension up to 10 dimen-
sions are shown in figure 8. Clearly CCA performs better than PCA, indicating
that the different languages effectively supervise each other when selecting rele-
vant dimensions in CCA.

5 Conclusion

We have demonstrated with a case study some of the most appealing features
of kernel methods for pattern analysis: their modular design, the possibility of

• Note that training the regularization parameter is an issue here, and done by permu-
tation analysis (the difference between the sum of the maximal correlations between
the actual problem and a permuted version is maximized).
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Fig. 8. Between class variance divided by total variance (BCV/TV) for PCA (full line)
and CCA (dotted line) as a function of the dimension of the subspace (equivalently:
the number of factors selected).

naturally using them for exploratory data analysis and rapid deployment, and
their capability of operating seamlessly on non-numeric data. The theoretical
details which are absent in this paper can be found in [12], and all the software
and data are available at www.kernel-methods.net.

Acknowledgments

The authors thank John Shawe-Taylor for useful discussions and Manju Pai for
contributing to part of the software development. TDB is a Research Assistant
with the Fund for Scientific Research – Flanders (F.W.O.–Vlaanderen).

References

1. F. R. Bach and M. I. Jordan. Kernel independent component analysis. Journal of
Machine Learning Research, 3:1–48, 2002.

2. T. De Bie, N. Cristianini, and R. Rosipal. Eigenproblems in pattern recognition.
In E. Bayro-Corrochano, editor, Handbook of Computational Geometry for Pattern
Recognition. Springer-Verlag, 2004.

3. N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines.
Cambridge University Press, Cambridge, U.K., 2000.

4. L. Hubert and P. Arabie. Comparing partitions. Journal of Classification, page
193–218, 1985.

5. T. Jaakkola, M. Diekhans, and D. Haussler. Using the fisher kernel method to
detect remote protein homologies. In Proceedings of the Seventh International
Conference on Intelligent Systems for Molecular Biology, 1999.

6. H. Kashima, K. Tsuda, and A. Inokuchi. Kernel methods in computational biology.
In B. Schoelkopf, K. Tsuda, and J.P. Vert, editors, Handbook of Computational
Geometry for Pattern Recognition. Springer-Verlag, 2004.



Kernel Methods for Exploratory Pattern Analysis 29

7. R. I. Kondor and J. Lafferty. Diffusion kernels on graphs and other discrete struc-
tures. In Proceedings of the ICML, 2002.

8. C. Leslie and R. Kuang. Fast kernels for inexact string matching. In Conference
on Learning Theory and Kernel Workshop (COLT 2003), 2003.
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Abstract. In this paper we present some of the common issues that appear 
when we try to recognize objects in indoor scenes of a building, and we de-
scribe some strategies for recognizing them by using graph techniques. These 
scene images are captured by the colour cameras of a mobile robot, which in the 
learning phase, learn the objects by taken a set of 2D images of the projective 
object views. Then afterwards, the robot must identify the objects once its 
moves through the area that has been used to learn the objects. We describe two 
strategies to use graph techniques for object and scene recognition, some algo-
rithms and preliminary results.   

1   Introduction 

Computer vision in autonomous mobile robotics is a very well known topic that is 
being treated by many research groups [7]. However, the use of perception techniques 
to automatically learn and recognize the environment and the objects located on it is 
probably not so well known, although there are also a number of research work on the 
area of robot vision [2,5,13,14,15,19]. We will describe in this paper some of the 
research that we are doing in the area robot vision for mobile robots and more specifi-
cally, the one related to the graph techniques. One part of our research has been con-
centrated in the development of techniques to capture and process the information that 
surrounds a robot, taking into account that this information can be captured by diverse 
perception sensors (colour video cameras, stereo vision, laser telemeter, ultrasonic 
sensors, etc.) and the sensors related to robot movement (odometers). 

We have focused our research in the development of “robust” techniques that must 
be as much as possible, “invariant” to illumination, colour, surface reflectance, sensor 
uncertainty, dead reckoning and dynamic environments. However, this wish is not 
always possible. We also orient our research to develop techniques to learn the per-
ceptive world, in order to create a data base that can be used later on, by robots. 

In this paper we present some results of the use of graph techniques [16] for the 
process of identification of objects and scenes in indoor environments for mobile 
robots. 

In the first section we describe some of the common issues in images acquired by a 
robot in indoor building environments, in the second section we show two strategies 
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used for identifying objects, in the third section we summarize two graph methods 
based on the segmentation-recognition strategy and in the fourth section we present 
several ideas to use detection-recognition methods based on graph techniques. Fi-
nally, we present some results. 

2   Common Issues in Robotic Scene Images of Indoor Buildings 
  and Their Implication in Object Recognition 

In order to recognize objects in a scene, we first have to capture them and create a 
data base. If the objects are isolated and environment conditions do not change, there 
are not object appearance variations between the learning and the identification phase. 
However, when a robot moves around an environment, the appearance of the objects 
may change between the both phases due to diverse issues. Let us describe some 
common issues that there exist in indoor building scene images and their implication 
in the process of learning and recognition.  

Fig. 1. Some issues on image scenes of indoor buildings 

Some of the issues that produce discrepancies are the following ones (Fig. 1 and 2): 
 

- Perspective projection due to the camera model. 
- Partial occlusion due to camera point of view or due to the intersection of an obsta-

cle between the object and the camera. 
- Colour modification due to the surface orientation, surface reflectance, multiple 

illumination sources or sensibility of camera sensor. 
- Surface reflectance 
- Surface texture 
- Shadows produced by other objects or by the own concavities of the object. 
- Confusing background. 

 

Some of these issues have a direct impact in the scene as far as the object recogni-
tion process is concerned. Specifically we can enumerate the following ones: 

Shadows 

Surface 
reflectance

Change of 
colour  
due to surface
orientation and
illumination 

Change of 
illumination 

Perspective projection 
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- The separation of the object from the background: If the features that differentiate 
the object from the background are sensible to the aforementioned problems, then 
the extraction of the object is not easy. For example, if a segmentation process is 
used, then the segmentation features must be invariant to colour, surface reflec-
tance, etc. If there are shadows or the background of the object is confusing then 
the separation is even worse. 

- The detection of the object surface features: The object surface colour, surface 
reflectance and surface texture are usually not invariant, although in some cases, 
these problems can be partially overcome. 

- The extraction of geometric object features: Due that the scene is captured by 
means of a camera, then the perspective projection must be taken into account. 
This issue produce sensitive variations on the extraction of geometric features 
(area, centre of geometry of a surface, angles between contour lines, etc.).  

- The image view of a 2D projection of a 3D object: A 3D object has usually multi-
ple 2D views which depend on the orientation of the object with respect to the 
camera. The number of views usually depends on the number of potential object 
rotations and the number of concavities of the object. 

- The partial occlusion of an object: This issue produce an important reduction of 
the visibility of the object which has a direct impact on the identification of the ob-
ject. 

 

 

Fig. 2. Typical reflectance problems of a colour (red) planar surface: (a) a sequence of a red 
planar surface; (b) RGB map of the colour distribution of the sequence of the planar surface 

In order to overcome some of these problems, for example, we can apply invariant 
techniques (colour constancy methods [9,24], projective invariants, etc.) or to fuse 
information of diverse sensors (colour-disparity for segmentation [1], colour-
disparity-edges-motion-SSD for visual servoing [13], textons-contours-regions fors 
segmentation, etc.). However, these techniques are usually not enough for object 
recognition due to the stochastic variability of the perceptive features and to the last 
two commented issues: the orientation of the object and the partial occlusion. For 
these reasons, graph matching can be a good candidate for object learning and recog-
nition. Moreover, if we consider attributed graphs, then the stochastic variability can 
be included in the nodes and arcs. If additional, it is used a distance measure to com-
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pare a graph view against object graph views of a data base, then we can also cope 
with the variability of the graph topology.  

However, the use of graph techniques for object recognition has at least a big 
drawback than still have not been overcome: the time complexity of the matching 
process. This issue is under study.        

3   Strategies for Object Recognition  

There are two strategies for recognition of objects in scenes: segmentation-
recognition and detection-recognition. The first one is a general approach, where it is 
not essential to have a priori knowledge, to extract the objects for the recognition 
process. It can be applied to any type of scene and the objects to identify can be par-
tially occluded. This technique has some drawbacks in indoor images, for example, 
they are time consuming and very dependent on the segmentation process. The second 
one, detection-recognition, requires having a good knowledge of the objects to detect 
and moreover, the objects can not be partially occluded. The advantages are that the 
time complexity can be reduced and that the algorithms can be adjusted to diminish 
the feature extraction dependency. We will present both strategies from the point of 
view of the application of graph techniques.  

- Segmentation-Recognition: Often called bottom-up strategy, it is a good approach 
for applying graph techniques for object recognition. In this case, the whole image 
can be seen as a graph and the goal is to find a sub-graph in the image graph that 
match one of the graphs of the object data base. We have been working in this area 
and we have developed several techniques. We will describe one technique based on 
random graphs for matching a 2D view of a scene object against a data base of 3D 
objects. We also will explain another one, which use oriented matroids to index 2D 
views of image objects.   

- Detection-Recognition: This strategy is something similar to a top-down strategy but 
with some special features. In this case, the objective is to detect potential zones 
where there can be objects or zones of interest and then, apply a method to find the 
object in that zone. If the objects to identify have distinguish features then these fea-
tures can be used to detect the object. This strategy has been applied successfully in 
object detection using non graph techniques, for example in human face detection 
[25]. We can also think about other techniques that are in between these two strate-
gies, which do not require a pure segmentation process neither to have too much 
knowledge of the objects for recognition. 

4   Segmentation-Recognition Graph Techniques   
  for Object Recognition 

We have previously described some common problems that we can find in a scene 
image of an indoor building, and the consequences that they produce to the objects 
that we have learned and we want to identify later on. Since these issues can produce 
big variations between the image captured in the learning phase and the image cap-
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tured in the identification phase, then we need robust methods to cope with these 
variations.  

The methodology is to segment an image, extract the graph features and then apply 
a graph method to identify an object against a data base of reference objects. The 
main issue of this methodology is to segment well the image, which is often not the 
case. Since there is not a good segmentation, the graph matching technique must 
overcome the potential variability of the extracted graph with respect to the “ideal” 
graph. Usually graph or sub-graph isomorphism techniques are not the most appropri-
ate ways to identify an object due to aforementioned problems, besides a potential 
partial occlusion of the object to identify. It is usually required to apply distance 
measure methods which allow coping with the variability between the object graph 
and the reference one. There have been developed several well known graph tech-
niques than can be applied to object recognition, for example [6,11,12,22,26,27, 
28,29], although we only will summarize two techniques that our group have devel-
oped based on this strategy. 

4.1   Matching Views of 2D Projections of 3D Objects   
  by Using Oriented Matroids 

The idea is to represent 2D views of a 3D object, by means of topological properties 
of the regions of the segmented image and then, to create a table with each one of the 
topological representations. Then the identification process is based on matching the 
input representation of one scene view, to the table of the topological representations 
of the 2D object views. In this case the graph representation of a segmented image is 
reduced to a list of ordered chains of symbols (denominated co-circuits), where each 
co-circuit is the spatial combination of regions based on two reference regions. 

A topological representation is created by using the oriented matroid theory by 
means of encoding incidence relations and relative position of the elements of the 
segmented image, and by giving local and global topological information about their 
spatial distribution. The result is a set of co-circuits [3] of sign combinations that 
relates segmented regions with respect to the convex hull of two selected regions of 
the scene. The details of this process are explained in [22]. The set of co-circuits ob-
tained is projective invariant, which is an important feature for the representation of 
the model objects.  Fig. 3 shows the segmentation and process indexing of one object 
and Table 1 shows the resulting indexes of the object. 

 

 

Fig. 3. Segmentation and process indexing of two objects 

The result of the indexing process looks as follows: 
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Table 1. Index result of the process indexing of the images of Fig. 3. The first column is the 
baseline area from where the segmented regions are related. 0 means the region is inside the 
baseline area; - the region is one the left side; + the region is on the right side; and * means the 
region does not exist in the segmented image 

 W R Y G1 G2 B1 B2 N Object 

WR 0 0 * 0 0 0 - + m1 

WY 0 * 0 0 * 0 0 - m2 

WG1 0 * * 0 * * * * m1 

WG1 0 * 0 0 * 0 0 0 m2 

WG2 0 0 * 0 0 + 0 0 m1 

WB1 0 0 * 0 0 0 0 0 m1 

WB1 0 0 * + + + 0 + m2 

WB2 0 0 * + + + 0 + m1 

WN 0 0 * - - - - 0 m1 

WN 0 * + + * 0 0 0 m2 

RG1 * 0 * 0 * * * * m1 

… … … … … … … … …  
B2N + 0 * - - - 0 0 m1 

B2N - * + + * + 0 0 m2 

 
The matching process is done by comparing the set of co-circuits of the 2D projec-

tion view of the scene, to the set of co-circuits of the data base. The time complexity 
of the matching process is polynomial with respect to the number of segmented zones 
of the scene image. The reason of the reduction of the time complexity is due to two 
reasons: the elimination of labelling process; the comparison against a set of co-
circuits which number is polynomial with respect to the number of segmented zones 
in the worst case. 

4.2   Matching Views of 2D Projections of 3D Objects by Random Graphs 

The idea is to represent 2D views of a 3D object by means of random graphs and then 
to obtain the model as the synthesis from the graphs that represent the 2D views of a 
3D object. Once the model has been learned, the recognition process is based on ap-
plying a distance measure among the input graph (the graph that encodes the 2D view 
of a scene object) and the object models. The input graph is assigned to the model 
graph with the minimum distance measure value. Fig. 4 shows the process of learning 
(synthesis of the object graph views) and recognition. 

Object views are often represented by graphs, and one robust representation is 
based on attributed graphs (AG). However, in order to synthesize AG we need a more 
general model representation, which is called Random Graph (RG). The generaliza-
tion of these graphs is denominated General Random Graphs (GRG) which has theo-
retically, great representation power, but they need a lot of space to keep up with the 
associated data. We have defined several simplifications to the GRG to reduce the 
space and also to diminish the time matching complexity. Wong and You [27] pro-
posed the First-Order Random Graphs (FORGS) with strong simplifications of the 
GRG, specifically they introduce three assumptions about the probabilistic independ-
ence between vertices and arcs which restrict too much the applicability of these 
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graphs to object recognition. Later, our group introduced a new class of graphs called 
Function-Described Graphs (FDG) [20] to overcome some of the problems of the 
FORG. The FDG also considers some independence assumptions, but some useful 2º 
order functions are included to constrain the generalisation of the structure. Specifi-
cally a FDG includes the antagonism, occurrence and existence relations which apply 
to pairs of vertices and arcs. Finally, we have expanded this representation, [17,18] by 
means of Second-Order Random Graphs (SORG), which keep more structural and 
semantic information than FORGs and FDGs. These last types of representation have 
led to the development of synthesis techniques for model object generation (by means 
of 2D projections of a 3D object) and graph matching techniques for graph identifica-
tion. 
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Fig. 4. Learning and classification processes in the classifiers that use only one structural repre-
sentation per model 

The time complexity of this method is in the worst case, exponential with respect 
to the number of nodes of the graph. This time complexity can be reduced pruning the 
number of combinations by using some ad-hoc information of the objects and the 
images to be applied. 

5   Detection-Recognition Graph Techniques for Object Recognition 

As we have commented, there are other ways to recognize objects in scenes, where 
graph techniques can be used. The strategy is to detect zones of potential objects and 
then apply classification techniques to recognize an object in that zone. The graph 
techniques can be used in the detection of the zones, in the classification process or at 
the same time, in the detection-classification. In this last case, the technique can be 
used, for example, as an indexing method. We will describe in this section only detec-
tion techniques, since once a zone has been detected, the methods described in the 
previous section can be used. 

 
Three general detection approaches can be applied:  

- Global Search Detection: The idea is to generate a global graph of the full image 
and then look for a specific sub-graph that has the potential to be a zone object. A 



The Use of Graph Techniques for Identifying Objects and Scenes      37 

typical technique to represent the complete image is the Voronoi diagram representa-
tion [10]. If not attributes are used, then we can apply general sub-graph matching 
techniques. When we have attributes, for example the colour or the area of the re-
gions, then we can prune the potential matches using the node and arc attributes. 
More sophisticated techniques can also be applied, for example to grow zones using a 
potential field, where the function can be related to the fan in and fan out of the graph 
or the node and arc attributes.   

- Raster Search Detection: The idea is to pass a window through the full image which 
has a basic graph structure and attributes of the zone to be located. When the match 
distance between the reference graph and the graph that are extract under the window 
limits, is higher than a threshold, then the zone is identified. One potential method to 
apply is a PCA approach for fast retrieval of structural patterns in attributed graphs 
[26]. In this case, in order to detect the nodes we can use a pre-segmentation process 
which outcome is a planar graph, for example using one step of the technique [25] or 
the technique [8] which nodes are spanning trees. Since we look for potential graph 
zones instead a full matching process, this algorithm can do the process in polynomial 
time.  

- Probabilistic Search Detection: The idea is to probabilistically take some initial 
starting points where to grow a graph. This methodology has been applied success-
fully in diverse fields, for example in segmentation, path planning or salience detec-
tion. From the starting point of the image, we can grow the graph without restrictions, 
that is, looking for the neighbour nodes by using general rules, or to grow the graph 
imposing a graph reference model. In the last case the idea is similar to the raster 
search detection methodology, but in a probabilistic way. 

6   Some Results 

We show in this article two examples of identifying objects and images by means of 
graph techniques. The first one is applied to learn and recognize 3D objects by means 
of their 2D projection views and the second one, it is the learning and recognition of 
image scenes by means of oriented matroids. In the first example, the images come 
from a standard data base, and in the second, the images have been acquired by the 
colour camera of the robot. In both examples we used the segmentation-recognition 
strategy, where the segmentation was based on the colour of the image pixels using 
the method described in [8]. Moreover, in Fig. 8, we present the set of images that we 
are using and the segmentation results.  

For the first example we used a set of objects extracted from the database COIL-
100 from Columbia University. We did the study with 100 isolated objects, where 
each one is represented by 72 views (one view each 5 degrees). The test set was com-
posed by 36 views per object (taken at the angles 0, 10, 20 and so on), whereas the 
reference set was composed by the 36 remaining views (taken at the angles 5, 15, 25 
and so on). 

The learning and recognition process was as follows: (1) perform colour segmenta-
tion of each individual object view image; (2) create an adjacency graph for each one 
of the segmented regions of each object view; and (3) transform the adjacency graph 
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in an attributed graph (AG) using the hue feature as the attribute for each node graph. 
The learning process was based on 36 views of each object and for each object, we 
synthesise four random graphs, the first of one grouping the views from 0º to 90º, the 
second one grouping from 95º to 180º and so on. We used four different techniques 
for the representation of random graphs: AG (Attributed Graph), FORG (First Order 
Random Graph), FDG (Function Described Graph) and SORG (Second Order Ran-
dom Graph). The learning techniques (synthesis of graphs) are described in [18]. For 
the recognition process we used the distance measures explained in [18,20]. 

Fig. 4 shows 20 objects at angle 100º and their segmented images with the adja-
cency graphs. FORGs, FDGs and SORGs were synthesised automatically using the 
AGs in the reference set that represent the same object. The method of incremental 
synthesis, in which the FDGs are updated while new AGs are sequentially presented, 
was applied. We made 6 different experiments in which the number of random 
graphs, FORGs, FDGs and SORGs, that represents each 3D-object varied. The best 
result appears when the SORG and FDG representations were used, although the best 
is the SORG representation. Fig. 5 shows the ratio of recognition success of the 100 
objects using different object representation and distance measures. This figure also 
shows the result of describing individually each object view by means of an AG and 
then comparing each input AG against the rest of the prototype AG. 

For the second example, we used two set of examples: (1) 10 different reference 
images of an indoor building, and from each one, three images were taking at differ-
ent position and orientation by the colour camera of a mobile robot; and (2) a se-
quence of several hundred of images acquired by the robot. Figure 6.b shows an im-
age taken from three different views, their segmented images and the learning 
process. Fig. 8 shows two images of the image sequence. 

 

 

Fig. 5. Some objects at angle 100 and the segmented images with the AGs 

The learning and recognition process was the following one: (1) perform colour 
segmentation of each image scene; (2) extract the co-circuits of each image; and (3) 
construct a data base joining the co-circuits. We applied a distance measure between 
co-circuits to identify the image. See [21] for details. For the images of Fig.7, 74% of 
the images where well recognized and for a sequence of images of Fig.8, 100% of the 
images were well classified. 
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Fig. 6. Ratio of recognition correctness of the objects using SORG, FDG, FORG and AG-AG 

 

Fig. 7. (a) ANNA mobile robot; (b) learning process using three different views 

 

Fig. 8. Some images taken from the mobile robot called Marco 
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Fig. 9. Segmentation results of indoor buildings 

7   Conclusions 

In this paper we present some common issues that we find in robotics when a robot 
must use computer vision techniques for identifying objects and scenes in indoor 
buildings. We also explain several strategies used to locate and identify objects and 
some graph techniques applied in the identification process. We are at present testing 
these techniques in several sequences of indoor building images in order to see the 
robustness of them. 
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Abstract. In this paper, we present a new neural network model, called
graph neural network model, which is a generalization of two existing
approaches, viz., the graph focused approach, and the node focused ap-
proach. The graph focused approach considers the mapping from a graph
structure to a real vector, in which the mapping is independent of the
particular node involved; while the node focused approach considers the
mapping from a graph structure to a real vector, in which the mapping
depends on the properties of the node involved. It is shown that the
graph neural network model maintains some of the characteristics of the
graph focused models and the node focused models respectively. A su-
pervised learning algorithm is derived to estimate the parameters of the
graph neural network model. Some experimental results are shown to
validate the proposed learning algorithm, and demonstrate the general-
ization capability of the proposed model.

1 Introduction

In several applications, the data can be naturally represented by graph struc-
tures. The simplest kind of graph structures is a sequence, but, in many appli-
cation domains, the information is organized in more complex graph structures
such as trees, acyclic graphs, or cyclic graphs. In machine learning, the struc-
tured data is often associated with the goal of either supervised or unsupervised
learning from examples, a function h which maps a graph G and one of its nodes
n to a vector of reals1: h(G,n) ∈ Rm.

In general, applications to a graphical domain can be divided into two classes:
called graph focused and node focused applications, respectively.

In graph focused applications, h is independent of the node n and imple-
ments a classifier or a regressor on a graph structured dataset. For example, an
image can be represented by a Region Adjacency Graph (RAG) where the nodes
• Note that in classification problems, the mapping is to a set of integers Im, while
in regression problems, the mapping is to a set of reals Rm. Here for simplicity of
exposition, we will denote only the regression case.
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denote homogeneous regions of the image and the arcs represent their adjacency
relationship (see Fig. 1(a)). In this case, h(G) may be used to classify the image
into different classes, e.g., castles, cars, people, and so on.

In node focused applications, h depends on n, so that the classification (or
the regression) relates to each node. Object localization is an example of this
class of applications. It consists of finding whether an image contains a given
object or not, and, if so, detect its position. This problem can be solved by
a function h which classifies the nodes of the RAG according to whether the
corresponding region belongs to the object or not. For example, in Fig. 1(a), the
output of h might be 1 for the black nodes, which correspond to the castle, and
0 otherwise. Another example comes from web page classification. The web can
be represented by a graph where nodes stand for pages and edges represent the
hyperlinks (see Fig. 1(b)). The web connectivity can be exploited, along with
page contents, for several purposes, e.g. classifying the pages into a set of topics.

www.ing.unisi.it www.ing.unisi.it/people

www.ing.unisi.it/~franco

www.ing.unisi.it/~marco

www.uow.edu.au/~markus

www.uow.edu.au/~act

(a) (b)

Fig. 1. Some applications where the information is represented by graphs: (a) an image;
and (b) a subset of the web.

Most applications cope with graph structured data using a preprocessing
phase which maps the graph structured information to a simpler representation,
e.g. vectors of reals. However, important information, e.g., the topological de-
pendency of information on node n may be lost during the preprocessing stage
and the final result may depend, in an unpredictable manner, on the details of
the preprocessing algorithm. More recently, there are various approaches [3, 1]
attempting to preserve the graph structured nature of the data, for as long as
required, before processing the data. In other words, these approaches attempt
to avoid the preprocessing step of “squashing” the graph structured data into a
vector of reals first, and then deal with the preprocessed data using a list based
data processing technique, rather than paying special attention to the underlying
graph structured nature of the data. In these recent approaches, the idea is to
encode the underlying graph structured data using the topological relationship
among the nodes of the graph. In other words, these recent approaches attempt
to incorporate the graph structured information in the data processing step. In
the graph focused approaches [3, 11, 5] this is done using recursive neural net-
works and in the node focused approaches [1, 8, 12], this is done commonly by
using random walk techniques.
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In this paper, we present a new neural network model which is suitable for
both graph and node focused applications. This new model unifies these two
existing models into a common framework. We will call this new neural network
model a graph neural network (GNN). It will be shown that GNN is an extension
of both recursive neural networks and random walk models and that it retains
their characteristics.

The model extends recursive neural networks since it can process a more gen-
eral class of graphs including cyclic, directed and undirected graphs, and to deal
with node focused applications without any preprocessing steps. The approach
extends random walk theory by the introduction of a learning algorithm and by
enlarging the class of processes that can be modeled.

The structure of this paper is as follows: The notation used in this paper
as well as preliminary materials are described in Section 2. Then, the concept
of a graph neural network model, together with a learning algorithm for the
parameter estimation of the model are presented in Section 3. Furthermore,
some experimental results are presented in Section 4, and some conclusions are
drawn in Section 5.

2 Notation and Preliminaries

In the following, ‖ · ‖1 denotes norm 1, i.e. for a vector V = [v1, .., vk], ‖V ‖1 =∑k
i=1 |vi|, for a matrix M = {mi,j}, ‖M‖1 = maxj

∑
i |mi,j |. A graph G is a

pair (N , E), where N = {n1, . . . , nr} is a set of nodes and E = {e1, . . . , ep} a set
of edges. The set of children and parents of n are denoted by ch[n] and pa[n],
respectively. The set ne[n] stands for the nodes connected to n by an arc: for
directed graphs, we have ne[n] = pa[n]∪ch[n], and for undirected graphs, ne[n] =
pa[n] = ch[n] holds. Similarly, the set of arcs entering and emerging from node
n are represented by to[n] and from[n], respectively, while co[n] represents their
union. Nodes and edges may have labels, which we assume to be represented by
real vectors. The labels attached to node n and edge (n1, n2) will be represented
by Ln ∈ RlN and L(n1,n2) ∈ RlE respectively. Given a set of integers S and a
set of vectors yi, i ∈ S , yS denotes the vector obtained by stacking together
the yi. Thus, for example, Lch[n] stands for the vector containing the labels of
all the children of n.

Remark 1. Labels usually include features of objects related to nodes and fea-
tures of the relationships between the objects. For example, in the case of a
RAG (Fig. 1(a)), node labels may represent properties of the regions (e.g., area,
perimeter, average color intensity), and edge labels the relative position of the
regions (e.g., distance between baricenters and the angle between the momen-
tums). Similarly, in the example shown in Fig. 1(b), node and edge labels can
include a representation of the text contained in the documents and in the anchor
texts, respectively.

No assumption is made on the nature of the arcs, directed and undirected
edges are both permitted. However, when different kinds of edges coexist in the
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same dataset, it is necessary to distinguish among them. Such a goal can be easily
reached by attaching a proper label to each edge. Thus, in this case, different
kinds of arcs turn out to be just arcs with different labels.

The purpose of the proposed method is to learn by examples a function
h : G × N → Rm, where G is any set of graphs and N is the set of their nodes.
Thus, a learning data set is a set of three tuples L = {(Gi, ni, ti)|Gi = (Ni, Ei) ∈
G, ni ∈ N , ti ∈ Rm, 1 ≤ i ≤ m}. A three tuple (Gi, ni, ti) denotes the fact that
the desired target for node ni (of graph Gi) is ti.

Remark 2. The learning data set may contain any number of graphs. In the
limit it is possible both from a theoretical and a practical point of view that
the whole dataset comprises of a single graph. The dataset consists of nodes
with their associated data and the learning problem is well defined provided
that there are reasonable numbers of nodes both in the learning data set and
in the testing data set respectively. The problem of classifying web pages is a
straightforward example of the limiting case. The web is represented by one single
graph, the learning data set consists of some pages whose desired classification is
known, whereas the classification of other pages on the web should be obtained
by generalization.

Finally, our approach is based on fixed point theory and contraction mappings
[7]. Here, we use the following simple fixed point theorem.

Theorem 1. If g : IRd → IRd is differentiable and there exists 0 ≤ e < 1 such
that

∥∥∥ ∂g
∂x (x)

∥∥∥
1
≤ e where ∂g

∂x is the Jacobian matrix of g, then g is a contraction
function. Thus, the following system

x = g(x)

has one and only one solution x∗. Moreover, the sequence

x(t) = g(x(t − 1))

converges exponentially to x∗ for any x(0).

3 A New Neural Network Model

The intuitive idea underlining the proposed approach is that graph nodes rep-
resent objects or concepts and edges represent their relationships. Thus, we can
attach to each node n a vector xn ∈ Rs, called state, which collects a represen-
tation of the object denoted by n 2. In order to define xn, we observe that the
related nodes are connected by edges. Thus, xn is naturally specified using the
information contained in the neighborhood of n, which includes the label of n,
the labels of the edges which are connected to n, and the states and the labels
of the nodes on the neighborhood of n, respectively (see Figure 2).
• More precisely, xn should collect all the information which is relevant for deciding
the output h(G,n) in correspondence of n.
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Fig. 2. The state x• depends on the neighborhood information.

More precisely, let Fw be a parametric function that expresses the dependence
of a node on its neighborhood. The states xn are defined as the solution of the
following system of equations

xn = Fw(xn, Ln,xne[n], Lco[n], Lne[n]), 1 ≤ n ≤ r (1)

where Ln, Lco[n], xne[n], Lne[n] are the label of n, the labels of its edges, the
states and the labels of the nodes in the neighborhood of n respectively.

Remark 3. Definition (1) is customized for undirected graphs. When dealing
with directed graphs, Lco[n] should be replaced by Lfrom[n], Lto[n] and similarly,
xne[n], Lne[n] by xch[n], xpa[n], and Lch[n] Lpa[n], respectively. In the following
sections, in order to keep the notations simple, we maintain this customization.
However, unless explicitly stated, all the results hold also for directed graphs
and mixed undirected and directed graphs.

Remark 4. Equation (1) should be considered only an example of the possible de-
pendences of a node on its neighborhood. More generally, xn could be computed
from a subset of the parameters in (1) or, on the other hand, the neighborhood
could include nodes which are k edges far from n.

For each node n, an output vector on ∈ Rm is also defined which depends on
the state xn and label Ln. The dependence is described by a parametric function
Ow

on = Ow(xn, Ln), 1 ≤ n ≤ r. (2)

Notice that, in order to ensure that xn is correctly defined, system (1) must
have a unique solution. In general, the number and the existence of solutions
depend on Fw. Here, we assume that Fw is appropriately designed so that
the solution is unique. More precisely, let X and L respectively be the vectors
constructed by stacking all the states and all the labels. Then, Equations (1)
can be written as:

X = Φw,L(X) (3)
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where Φw,L consists of r instances of Fw, and w is the set of parameters.
The key choice adopted in the proposed approach consists of designing Fw such
that it will be a contraction mapping and Φw,L will satisfy the hypothesis of

Theorem 1, i.e. there exists 0 ≤ e < 1 such that ‖
∂Φw,L

∂X (X)‖ ≤ e for any
w,L,X.

In fact, function Fw and Ow will be implemented by particular models of
static neural networks. Thus, Equations (1) and (2) specify a new theoretical
model suitable for node focused applications. In fact, (1) and (2) define a method
to attach an output on to each node of a graph, i.e. a parametric function
fw(G,n) = on which operates on graphs.

The corresponding learning problem consists of adapting the parameters w
of Ow and Fw so that fw approximates the data in the learning data set. In
practice, the learning problem may be implemented by the minimization of a
quadratic error function

ew =
r∑

i=1

(ti − fw(Gi, ni))2 . (4)

Finally, since the number of inputs of Fw is not fixed, but depends on the
number of neighbors of each node, the implementation of Fw may be difficult,
particularly when the degree of node connectivity undergoes large changes. For
this reason, it may be useful to replace Equations (1) with

xn =
∑

�∈ne[n]
Hw(xn, Ln, L(n,�), L�) (5)

The intuitive idea underlining eq. (5) consists of computing the state xn by the
summing a set of “contributions”. Each contribution is generated considering
only one node in the neighborhood of n. Definition eq. (5) is less general than
(1), but the implementation of Hw is easier since Hw has a fixed number of
parameters.

In order to implement the model formally defined by Equations (1) and (2),
the following items must be provided:

– A method to solve (1);
– A learning algorithm to adapt Fw and Ow by examples from the training
data set3;

– An implementation of Fw andOw for which Φw,L is a contraction mapping.

These aspects will be considered in turn in the following subsections.

3.1 Computing the States

Theorem 1 does not only provide a sufficient condition for the existence of the
solution of equation (1), but it also suggest how to compute its fixed point. In
fact, for any initial set of states the following dynamical system
• In other words, the parameters w are estimated from the training data set.
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xn(t) = Fw(xn(t − 1), Ln, xne[n](t − 1), Lco[n], Lne[n]), (6)

where x(t) denotes the t-th iterate of x, converges exponentially fast to the
solution of system (1).

Notice that system (6) can be interpreted as the representation of a network
consists of units which compute Fw and Ow. Such a network will be called an
encoding network, following a similar terminology used for the recursive neural
network model [3]. In order to build the encoding network, each node of the graph
can be replaced by a unit computing the function Fw (see Figure 3). Each unit
stores the current state xn(t) of the corresponding node n, and, when activated,
it calculates the state xn(t + 1) using the labels and the states stored in its
neighborhood. The simultaneous and repeated activation of the units produces
the behavior described by system (6). In the encoding network, the output for
node n is produced by another unit which implements Ow.
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Fig. 3. A graph and its corresponding encoding network.

When Fw and Ow are implemented by static neural networks, the encoding
network is a large recurrent neural network where the connections between the
neurons can be divided into internal and external connections respectively. The
internal connectivity is determined by the neural network architecture used to
implement the unit. The neural architecture which have been suggested for real-
izing this type of problems in the literature for solving a graph focused problem
include multilayer perceptrons [3, 11], cascade correlation, and self organizing
maps [5, 6]. For node focused problems, e.g., in web page classifications, as far
as we are aware, there is only one application of such a concept using a linear
model [12]. The external connectivity mimics the graph connections. Moreover,
the weights of such a recurrent neural network are shared, since the same pa-
rameters w are common to all the units.

3.2 A Learning Algorithm

Without loss of generality let us assume that the learning data set contains
one single graph. This is a general case, as when we have many graphs, it is
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possible to transform this into a single graph by grouping them into one single
non–connected graph. The learning algorithm we propose consists of two phases:

(a) the states x(t) are repeatedly updated, using Eq. (6) until they reach a stable
point at time T ;

(b) the gradient ∂ew(T )
∂w is computed and the weights w are updated according

to a gradient descent strategy.

These two phases are repeated until a given stopping criterion is reached
A similar approach, based on a stabilizing and a learning phase, was already
proposed for training a random walk process in [2]. Thus, while phase (a) moves
the system to the stable point, phase (b) adapts the weights to change the
outputs towards the desired target. It is worth noting that the gradient ∂ew(T )

∂w
depends only on the error at time T , when the system is supposed to be stable.
In fact, the output of our model depends on function Ow and on the stable
point which is determined by Fw. In order to obtain the desired outputs, it is
necessary to change the fixed point along with Ow. The proposed algorithm can
be interpreted as a gradient descend whose goal consists of moving the fixed
point to a new position where the function Ow can produce the desired output
more readily. For this reason, only the error at time T is to be considered.

The Gradient Computation. The gradient could be computed using a back-
propagation through time algorithm [4]. In this case, the encoding network is
unfolded from time T back to an initial time t0. The unfolding produces a layered
network (see Figure 4). Each layer corresponds to a time instance and contains
a copy of all the units Fw of the encoding network. The units of two consecutive
layers are connected following the encoding network connectivity (i.e. the graph
connectivity). The last layer corresponding to time T includes also the unit Ow

and allows to compute the output of the network. Backpropagation through time
consists of carrying out a common backpropagation on the unfolded network in
order to compute the gradient of the error at time T with respect to all the
instances of Fw and Ow. Then,

∂ew(T )
∂w is obtained summing the gradients of all

instances.
However, backpropagation through time requires to store the states of every

instance of the units. When the graphs and T −t0 are large, the memory required
may be considerable4. On the other hand, in our case, a more efficient approach
is possible. Since the system has reached a stable point, we can assume that
x(t) = x(t0) for any t ≥ t0. Thus, the states of units remain constant for each
instant, and backpropagation through time can be carried out storing only x(t0).
More details on gradient computation are available in [9].

• Internet applications, where the graph may represent a portion of the web, are a
straightforward example of cases when the amount of required storage may have a
very important role.
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Fig. 4. A graph and its encoding network to illustrate the backpropagation through
time concept.

The Learning Algorithm. The learning algorithm is summarized in Table 1.
It consists of a main procedure and two functions called Forward and Backward
respectively. The function Forward takes in input the current set of parameters
w and the current state X and iterates the system equations. The iteration is
stopped when ‖X(t+1)−X(t)‖ is less than a given threshold εf . The function
Backward computes the gradient using a time window [T, t0] such that ‖ ∂ew(T )

∂X(t0)
−

∂ew(T )

∂X(t0−1)
‖ ≤ εb.

Table 1. The learning algorithm.

/* Main procedure */
Learn(Fw,Ow,L)
initialize w, X;
X:=Forward(X,w);
repeat

∂ew
∂w :=Backward(X,w);

w:=w − λ · ∂ew∂w ;
X:=Forward(X,w);

until the stopping criterion
is achieved;

return w;
end

/* Move to a stable point */
Forward(X,w)
X(0):=X, t = 0;
repeat

Compute X(t+ 1) ;
from X(t);

t:=t+ 1;
until ‖X(t+1)−X(t)‖ ≤ εf ;
return X(t+ 1);

end

/* Compute the gradient */
Backward(X,w)
Assume X(t) = X for each t;
Find a window [T, t0] s.t.

‖ ∂ew(T )
∂X(t0)

− ∂ew(T )
∂X(t0−1)

‖ ≤ εb;

Compute
∂ew(T )
∂w by

backpropagation through time
on the window [T, t0];

end

The main procedure calls the functions Forward and Backward and updates
the weights until the output reaches a desired accuracy or some other stopping
criterion is achieved. In Table 1, the weights are updated according to a simple
gradient descent strategy with a fixed learning rate λ. However, other strate-
gies are also possible, e.g. based on an adaptive learning rate, as long as the
adaptive learning rate decreases faster than a constant rate. Moreover, while the
initialization of parameters w depends on the particular implementation of Fw

and Ow, in theory, X in the main procedure can be initialized to any value. In
practice, it is simplest to set this to be X = 0.
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Finally, the values εf and εb are design parameters. It can be proved that if
Φw,L is a contraction mapping, then ‖X(t+1)−X(t)‖ and ‖ ∂ew(T )

∂X(t0)
− ∂ew(T )

∂X(t0−1)
‖

converge exponentially to 0, when t and t − t0 increase, respectively. Thus, it
is possible to set εf and εb to very small values without effecting heavily the
performance of the algorithm.

3.3 Comparing Our Approach with Recursive Neural Networks
and Random Walks

Recursive neural networks are a special case of the model described in (6), where

– the input graph is directed and acyclic;
– the inputs of Fw are limited to Ln and xch[n](t − 1);
– the graph should contain a node s called supersource from which all the
other nodes can be reached;

– the recursive network is the output os computed the supersource.

Note that the above constraints on the processed graphs and on the inputs
of Fw exclude any sort of cyclic dependence of a state on itself. Thus, in the
recursive model, the encoding networks are feedforward networks.

This assumption simplifies the computation of the node states. In fact, the
states can be computed following a predefined direction, i.e. from the leaf nodes
to the supersource node of the graph. First, the states of the leaf nodes are
calculated, then the states of their parents are computed and so on up to the
supersource node. For the supersource node, the recursive neural network com-
putes also an output, which is returned as the result of the graph computation.

Moreover, the above assumptions allow to train recursive neural networks
by applying a common backpropagation procedure on the encoding network [3,
11]. This solution is not viable for GNNs, since the presence of cyclic dependen-
cies among the states transforms the encoding network into a dynamic system.
For this reason, it has been necessary to assume that the function Φw,L is a
contraction map and to propose a new learning algorithm. However, it must be
pointed out that the learning algorithm adopted for GNNs is an extension of the
one used for recursive neural networks and that the two algorithms behave in
the same way on acylic graphs.

On the other hand, in a random walk model, Fw is a linear function. In a
simple case, the states xn associated with nodes are real values and satisfy

xn(t+ 1) =
∑

i∈pa[n]
wn,ixi(t) (7)

where wn,i ∈ R and wn,i ≥ 0 hold for each n, i. The wn,i are normalized so
that

∑
i∈ch[n]wi,n = 1. In fact, Eq. (7) can represent a random walker who is

traveling on the graph. The value wn,i represents the probability that the walker,
when he/she is on node n, decides to go to node i. The state xn stands for the
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probability that the walker is on node n in the steady state. When all the xn
are stacked into a vector X, Eq. (7) becomes

X(t+ 1) =WX(t) (8)

where W = {wn,i} and wn,i is as defined in Eq. (7) if i ∈ pa[n] and wn,i = 0
otherwise. It is easily verified that ‖W ‖1 = 1. Markov chain theory suggests
that if there exists t such that all the elements of the matrix W t are non–null,
then Eq. (7) is a contraction mapping [10].

Thus random walks on graphs are an instance of our model, since they im-
plement a linear version of it. The set of processed graphs include cyclic graphs,
but these graphs are usually unlabeled. Moreover, random walk theory does not
provide a learning algorithm. In our development described in this paper, we
have proposed a learning algorithm which allows the estimation of the set of
parameters from training samples. Thus, our model extends the work on ran-
dom walk models by providing the possibility of learning the parameters from
training samples.

3.4 Implementing Fw and Ow

The implementation of Ow does not need to fulfill any particular constraints.
In our experiments, Ow will be simply implemented by a feedforward neural
network (a multilayer perceptron). On the other hand, Fw plays a crucial role
in the proposed model, since its implementation determines the number and the
existence of the solution of Equation (1).

The key choice adopted in our approach consists of designing Fw such that
Φw,L is a contraction mapping. Let δn,i,u,j denote the element of the Jacobian
∂Φw,L(X)

∂X
of Φw,L whose row corresponds to j–th component of node u and

whose column corresponds to i–th component of node n. By Theorem 1, Φw,L

is a contraction mapping provided that it is differentiable and∣∣∣∣∣∣
∑
n,i

δn,i,u,j

∣∣∣∣∣∣ ≤ e (9)

holds for some real number 0 ≤ e < 1. Inequality (9) can be used to design the
Fw in (1) or the Hw in (5) such that Φw,L is a contraction mapping.

In this paper, two implementations of Φ,L are suggested:

(a) Hw is realized by a linear system whose parameters are determined by a
neural network; the model is such that Eq. (9) holds for any set of parameters
w.

(b) Fw is realized by a common feedforward neural network: the cost function
adopted in the learning procedure includes a penalty term that keeps the
parameters w in the region where Eq. (9) is fulfilled.
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Implementation of Hw by a Linear Function. In the first implementation,
Hw is a linear function

xn = En +
∑

r∈ne[n]
W n,rxr

similar to that used in random walks. But, the state attached to the nodes
are vector of reals instead of simple reals and the parameters are not statically
defined, but they are computed by two feedforward neural networks NE and
NW . The neural network decides the parameters En ∈ Rs andW n,r ∈ Rs×s on
the basis of the labels attached to nodes n, r and the arc (r, n). More formally,
let fE : RlN → Rnr and fW : RlE → Rn2r2 be the functions implemented by
NE and NW , respectively. Then, we can define

En = fE(Ln)

W n,r = Resizes×s

(
e

s|ne[r]|fW (L(n,r))
)

where Resizes×s(·) denotes the operator that rearranges the components of a
s2 × 1 vector into a s × s matrix and |ne[r]| represents the cardinality of ne[r].

In this case, inequality (9) holds provided that the output of fW is in the
range [−1, 1], which can be achieved by using a sigmoidal activation function in
the output layer of NW . In fact, δn,i,u,j = (W n,u)i,j and, as a consequence,∣∣∣∣∣∣

∑
n,i

δn,i,u,j

∣∣∣∣∣∣ ≤
∑
n,i

|W n,u|i,j ≤
∑

n∈ne[u],i

e

s|ne[u]| = 1 .

Implementation of Fw by a Neural Network. Let us suppose that Fw is
realized by a layered feedforward neural network with logistic sigmoid activation
functions. In this case, (9) holds only for some values of the parameters w.
In fact, δr,j,n,i is small for small values of the network parameters, but it may
become large for large values, e.g. when the hidden–to–output weights are large.
In order to ensure (9) is fulfilled, a penalty term can be added to the error
function which becomes

ew =
m∑
k=1

(tk − fw(Gk, nk))2 + β
∑
n,i

L

⎛⎝∑
r,j

δr,j,n,i

⎞⎠
where β is a predefined parameter balancing the importance of the error on
patterns and the penalty term, and L(y) is (y − e)2 if |y| > e and 0, otherwise.
Note that the same reasoning can be applied also to the case when Hw instead
of Fw is implemented by a layered neural network.

4 Experimental Results

In the paper, we present some preliminary results obtained using the linear
implementation of Hw. More experiments, including some obtained by directly
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implementing Hw with a neural network, are in [9]. The linear implementation
of GNN has been verified on the subgraph recognition problem and the web page
ranking problem.

The subgraph recognition problem consists of identifying the presence of a
subgraph in a larger graph. In our experiments, we used random graphs. The
graphs have integer labels in the range [0, 10] and these labels have been added
a normal distribute noise having mean of 0 and a variance 0.25. Different di-
mensions for the graphs and the subgraphs have been evaluated in different
experiments.

Tables 2 shows the results of the experiments. Each column is related to a
different set of experiments. The notation s − g in the header of the column
defines the number of nodes s of the subgraph to be identified and the total
number of nodes g in the graphs that contain the subgraph. For any pair s − g
the experiment has been carried out 5 times with different subgraphs. In each
experiment the dataset contained 450 graphs, equally distributed between the
training dataset, the testing dataset, and a validation set.

The results are interesting. In fact, it must be pointed out that that the
classic subgraph recognition algorithms cannot evaluate situations when there
are corruptions in the graph labels. On the other hand, as may be observed in our
results, our proposed method can handle such situation quite easily. Moreover,
to verify the capability of the method in learning the graph connectivity, the
results have been compared with those achieved by a common three layered
(one hidden) neural network (FNN) which takes in as its input only the label of
a node n. It is observed that GNNs clearly outperforms this latter approach.

Table 2. The results of the subgraph recognition problem.

3− 6 5− 6 3− 10 5− 10 7 − 10 3− 14 5− 14 7− 14 Average

GNNon testsetwith noise 91.62 93.05 86.41 78.70 86.94 86.71 78.56 79.81 85.22
FNNon testsetwith noise 71.67 87.22 69.39 58.17 74.16 72.86 67.34 55.93 69.59
GNNon trainsetwith noise 92.28 93.85 86.96 79.64 87.97 86.87 80.56 80.99 86.14
FNNon traintsetwith noise 70.85 87.08 69.83 57.71 74.23 73.09 67.43 55.85 69.51
GNNon testset no noise 94.22 93.03 89.95 84.88 90.24 89.75 83.49 80.11 88.21
GNNon trainset no noise 94.77 93.58 91.06 85.81 90.86 90.41 83.97 80.17 88.83
FNNon trainset no noise 73.48 88.23 69.96 66.45 78.74 71.68 65.49 58.89 71.62

In a second experiment, the goal was to simulate a web page ranking al-
gorithm. For this experiment a random graph containing 1000 nodes has been
generated. To each node, a label [a, b] has been attached where a, b are binary
values. The label represents whether the page belongs to two given topics. If the
page belongs to both topics, then, [a, b] = [1, 1]; if it belongs to only one topic,
then [a, b] = [1, 0], or [a, b] = [0, 1] and if it does not belong to either topics then
[a, b] = [0, 0]. The GNN was trained in order to produce the following output oi

oi =
{
2 ∗ PRi if a = 0, b = 1 or a = 1, b = 0
PRi otherwise

where PRi stands for the Google’s PageRank [1] of page n. Thus this experiment
simulates the situation when a user wishes to see pages which belong to one topic
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and not the other and have their page ranks raised to twice that of the PageRank
as given by method described in [1]. Such wishes are encountered often in the
construction of web portals.

The two function Fw and fE were implemented by three layer neural net-
works (one hidden layer) with linear output function. For the output function
Ow, two implementations have been evaluated: a three layer neural network and
a two layer neural network. Figure 5 (a) and (b) show the output of the two
layer network and the output of the three layer network, respectively. The plots
display the desired rank (the continuous line) w.r.t. the rank computed by GNN
(the dots). The pages, sorted by the desired rank, are displayed on horizon-
tal axes, the ranks on the vertical ones. The plots show that the three layered
network achieves better results and approximate well the desired function.
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Fig. 5. The output of the model using a two layer network (a) and a three layer network
(b) to implement Ow.

5 Conclusions

In this paper, we have presented a unified approach to considering both a graph
focused approach and a node focused approach to graph structured data. We
have discussed the properties of the new neural model (GNN) and we have
further provided a learning algorithm which can estimate the parameters. The
preliminary experimental results confirms the viability of the approach.

Future research directions include a wide experimentation of GNNs, both to
validate them on real life applications and to test different implementations of
the functions Fw and Ow. At the same time, a number of theoretical questions
are still open, including an analysis of the approximation capability of GNNs and
more general sufficient conditions to guarantee the existence and the uniqueness
of the solution of Eq. (1).
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Abstract. This paper explores how to extend the spectral analysis of
graphs to the case where the nodes and edges are attributed. To do
this we introduce a complex Hermitian variant of the Laplacian matrix.
Our spectral representation is based on the eigendecomposition of the
resulting Hermitian property matrix. The eigenvalues of the matrix are
real while the eigenvectors are complex. We show how to use symmet-
ric polynomials to construct permutation invariants from the elements
of the resulting complex spectral matrix. We construct pattern vectors
from the resulting invariants, and use them to embed the graphs in a low
dimensional pattern space using a number of well-known techniques in-
cluding principal components analysis, linear discriminant analysis and
multidimensional scaling.

1 Introduction

Spectral graph theory is concerned with understanding how the structural prop-
erties of graphs can be characterised using the eigenvectors of the adjacency
matrix or the closely related Laplacian matrix (the degree matrix minus the ad-
jacency matrix). There is a good introductory text on the subject by Biggs [5],
and comprehensive reviews of recent progress in the field can be found in the
research monograph of Chung [1], and the survey paper of Mohar [4], Although
spectral methods have been extensively used to address the segmentation, or
grouping [8] and correspondence matching [2] problems, there has been less work
on using spectral characteristics to perform pattern analysis on sets of graphs
and trees. Recently, however, there has been some work aimed at filling this gap
in the literature. First, it has been shown how eigenvalues can be used to index
shock trees [7]. Second, adjacency matrix eigenvectors can be used to construct
simple structural attributes for graphs [3].

However, exsiting spectral methods are confined to the case of graphs with
weighted nodes and edges, and do not easily extend to the case of attributed
graphs. To overcome this problem in this paper, we explore the use of a richer
property matrix representation which can be used with attributed graphs. Con-
ventional spectral methods make use of the eigenvalues of the Laplacian matrix
(i.e. the degree matrix minus the weight matrix). This allows only very limited
information concerning the properties of the graph to be encoded. Our prop-
erty matrix, on the other hand, allows more information concerning graphs to
be encoded by allowing complex entries, rather than the purely real entries in

A. Fred et al. (Eds.): SSPR&SPR 2004, LNCS 3138, pp. 57–65, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



58 Richard C. Wilson and Edwin R. Hancock

the conventional Laplacian. To compute this matrix we multiply the off-diagonal
elements of the Laplacian (i.e. the negative edge weights) by a complex num-
ber that encodes the edge attributes. The node attributes are encoded in the
diagonal elements.

The property matrix is Hermitian, and hence it has real eigenvalues and
complex eigenvectors. To characterise the properties of the graphs, we construct
permutation invariants by applying symmetric polynomials to the real and imag-
inary components of the complex eigenvectors. The invariants are used as the
components of pattern vectors for the shock graphs. Sets of shock graphs can be
visualised and clustered by applying simple pattern analysis techniques to the
pattern vectors. Here we investigate the use of principal components analysis,
linear discriminant analysis and multidimensional scaling. We demonstrate the
utility of the new method in the clustering of line-patterns and shock graphs.

2 Representation

Consider the undirected graph G = (V , E ,W) with node-set V = {v1, v2, . . . , vn},
edge-set E = {e1, e2, . . . , em} ⊂ V × V and weight function W : E :→ [0, 1]. The
adjacency matrix A for the graph G is the n×n symmetric matrix with elements

Aab =
{
1 if (va, vb) ∈ E
0 otherwise

In other words, the matrix represents the edge structure of the graph. Clearly if
the graph is undirected, the matrixA is symmetric. The corresponding weighted
adjacency matrix is defined to be

Aab =
{W(va, vb) if (va, vb) ∈ E
0 otherwise

The Laplacian of the graph is given by L = D−A. whereDa,b =
∑n

b=1Aab is the
diagonal node degree matrix whose elements are the number of edges which exit
the node. The Laplacian is more suitable for spectral analysis than the adjacency
matrix since it is positive semi-definite.

Here we would like to extend the Laplacian to weighted and attributed
graphs. The attributes or weights may be unary (i.e. assigned to the nodes) or
binary (i.e. assigned to the edges) in nature. To accommodate such structures,
we need to augment the representation to accommodate measurement vectors
on the nodes and edges. We doe this be encoding the weights and attributes
using complex numbers.

A Hermitian matrixH is a square matrix with complex elements that remains
unchanged under the operations of transposition and complex conjugation of the
elements (denoted by the dagger operator †), i.e. H† = H. Hermitian matrices
can be viewed as the counterpart of the symmetric matrix for complex numbers.
Each off-diagonal element is a complex number which has two components, and
can therefore represent a 2-dimensional measurement vector. The on-diagonal
elements are necessarily real quantities, so the node measurements are limited
to a single quantity.
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There are some constraints on how the measurements must be represented in
order to produce a positive semi-definite Hermitian matrix. Let {x1, x2, . . . , xn}
be a set of unary measurements for the node-set V . Further, let {y1,2, y1,3,
. . . , yn,n} be the set of binary measurements associated with the edges of the
graph. Each edge then has a pair of measurements (Wa,b, ya,b) associated with it.
There are a number of ways in which the complex number Ha,b could represent
this information, for example with the real part asW and the imaginary part as
y. However, the off-diagonal elements of H are chosen to be Ha,b = −Wa,be

iyab .
In other words, the connection weights are encoded by the magnitude of the
complex number Ha,b and the binary measurement by its phase. By using this
encoding, the magnitude of the numbers is the same as in the original symmetric
matrix.

The measurements must satisfy the conditions −π ≤ ya,b < π and ya,b =
−yb,a to produce a Hermitian matrix. To ensure a positive definite matrix, we
require Haa > −

∑
b�=a |Hab|. This condition is satisfied if Haa = xa+

∑
b�=a Wa,b

where xa ≥ 0. When defined in this way the matrix is the weighted Laplacian
for the graph.

For a Hermitian matrix there is an orthogonal complete basis set of eigenvec-
tors and eigenvalues obeying the eigenvalue equationHe = λe. In the Hermitian
case, the eigenvalues λ are real and the components of the eigenvectors e are
complex. There is a potential ambiguity in the eigenvectors, in that any multiple
of an eigenvector is also a solution, i.e. Hαe = λαe. In the real case, we choose α
such that e is of unit length. In the complex case, α itself may be complex, and
needs to determined by two constraints. We set the vector length to |ei| = 1 and
in addition we impose arg

∑n
i=1 ei = 0, which specifies both real and imaginary

parts.
When the eigenvectors are constructed in this way the spectral matrix is

found by performing the eigenvector expansion H =
∑n

i=1 λieie
†
i , where λi and

ei are the n eigenvectors and eigenvalues of the Hermitian matrix H. We con-
struct the complex spectral matrix for the graph G using the eigenvectors as
columns, i.e. Φ =

(√
λ1e1,

√
λ2e2, . . .

√
λnen

)
. The matrix Φ is a complete rep-

resentation of the graph in the sense that we can use it to reconstruct the original
Hermitian property matrix using the relation H = ΦΦ†.

3 Node Permutations and Invariants

The topology of a graph is invariant under permutations of the node labels.
However, the adjacency matrix, and hence the Laplacian matrix, is modified by
the node order since the rows and columns are indexed by the node order. If we
relabel the nodes, the Laplacian matrix undergoes a permutation of both rows
and columns, and the corresponding spectral matrix undergoes a permutation of
columns only. In previous work, we showed how the spectral matrix can be char-
acterised in a permutation invariant way using sets of symmetric polynomials.
If the vector φi = (φ1,i, φ2,i, ..., φi,n)T represents a column of Φ, i.e. a spectral
mode, then the elementary symmetric polynomials for the mode are given by
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S1(φi) =
n∑

j=1

φj,i

S2(φi) =
n∑

j=1

n∑
k=i+1

φj,iφk,i

...
Sr(φi) =

∑
j1<j2<...<jr

φj1,iφj2,i . . . φjr ,i

...

Sn(φi) =
n∏

j=1

φj,i

Since the components of the eigenvectors are complex numbers, and therefore
each φi is complex. the symmetric polynomials must be evaluated with complex
arithmetic and also evaluate to complex numbers. Each Sr therefore has both real
and complex components. The real and complex components of the symmetric
polynomials are interleaved stacked to form a feature vector Bk for the graph.

In order to accommodate graph of different sizes, we need to be able to
compare representations of different sizes. This is achieved by expanding the
representation. Consider two graphs of size m and n, m < n. If we add n − m
nodes with no connections to the first graph, we obtain two graphs of the same
size. The edit cost in terms of edge insertions and deletions between these two
graphs is identical to the original pair. The effect on the spectral representa-
tion is merely to add trailing zeros to each eigenvector and also additional zero
eigenmodes. As a consequence, the first m elementary symmetric polynomials
are unchanged, and the subsequent n − m are zero. The new representation in
the symmetric polynomials S can therefore be easily calculated.

4 Graph Embedding Methods

We explore three different methods for embedding the graph feature vectors in a
pattern space, namely principal components analysis (PCA), multidimensional
scaling (MDS) and linear discriminant analysis (LDA). In this paper we are
concerned with the set of graphs G1,G2, ..,Gk, ...,GN . The kth graph is denoted
by Gk = (Vk, Ek) and the associated vector of symmetric polynomials is denoted
by Bk.

4.1 Principal Components Analysis

Principal component analysis commences by constructing the matrix S = [B1
|B2| . . . |Bk| . . . |BN ]. with the graph feature vectors as columns. Next, we com-
pute the covariance matrix for the elements of the feature vectors by taking the
matrix product C = SST .. We extract the principal components directions by
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performing the eigendecomposition C =
∑N

i=1 liuiuTi on the covariance matrix
C, where the li are the eigenvalues and the ui are the eigenvectors. We use
the first s leading eigenvectors ( 2 or 3 in practice for visualisation purposes)
to represent the graphs extracted from the images. The co-ordinate system of
the eigenspace is spanned by the s orthogonal vectors U = (u1,u2, ..,us). The
individual graphs are represented by the long vectors Bk, k = 1, 2, . . . , N can
be projected onto this eigenspace using the formula xk = UTBk.. Hence each
graph Gk is represented by an s-component vector xk in the eigenspace.

4.2 Multidimensional Scaling

Multidimensional scaling(MDS) is a procedure which allows data specified in
terms of a matrix of pairwise distances to be embedded in a Euclidean space.
Here we intend to use the method to embed the graphs extracted from different
viewpoints in a low dimensional space. To commence we require pairwise dis-
tances between graphs. We do this by computing the L2 norms between the spec-
tral pattern vectors for the graphs, weighted by the variance of each feature. For
the graphs indexed i1 and i2, the distance is di1,i2 = (Bi1−Bi2)TΣ−1D (Bi1−Bi2)
where ΣD is a diagonal matrix with the feature variances on the diagonal. The
pairwise similarities di1,i2 are used as the elements of an N × N dissimilarity
matrix S.

In this paper, we use the classical multidimensional scaling method to embed
the graphs in a Euclidean space using the matrix of pairwise dissimilarities S.
The first step of MDS is to calculate a matrix T whose element with row r and
column c is given by Trc = − 1

2 [d
2
rc − d̂2r. − d̂2.c + d̂2..], where d̂r. = 1

N

∑N
c=1 drc

is the average dissimilarity value over the rth row, d̂.c is the similarly defined
average value over the cth column and d̂.. = 1

N2

∑N
r=1

∑N
c=1 dr,c is the average

similarity value over all rows and columns of the similarity matrix T.
We subject the matrix T to an eigenvector analysis to obtain a matrix of

embedding co-ordinates X. If the rank of T is k, k ≤ N , then we will have
k non-zero eigenvalues. We arrange these k non-zero eigenvalues in descending
order, i.e. l1 ≥ l2 ≥ . . . ≥ lk > 0. The corresponding ordered eigenvectors
are denoted by ui where li is the ith eigenvalue. The embedding co-ordinate
system for the graphs obtained from different views is X = [f1, f2, . . . , fs], where
fi =

√
liui are the scaled eigenvectors. For the graph indexed i, the embedded

vector of co-ordinates is xi = (Xi,1, Xi,2, ..., Xi,s)T ..

4.3 Linear Discriminant Analysis

Linear discriminant analysis is closely connected to PCA. We commence by
constructing separate data matrices S1, S2, . . . for each class. These may be used
to compute the corresponding class covariance matrices Ci = SiS

T
i . The average

class covariance matrix C = 1
n

∑n
i=1 Ci is the found. This matrix is used as a

sphering transform by computing the eigendecomposition C = UΛUT and using
the transform S′ = Λ−

1
2UTS. Standard PCA is then applied to the resulting
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data matrix S′. The purpose of this technique is to find a linear projection
which describes the class differences rather than the overall variance of the data.
Since we have a limited number of data samples, we use only the first twenty
dimensions of the sphering transform.

5 Line Patterns

This first experimental example involves a database of the letters A-Z with
rotations in 5 degree increments and hence 72 examples per character. Here we
have used the method of Huet and Hancock [6] to compute pairwise attributes
from the relative angles and lengths of the line-segments defining the characters.
In the left-hand panel of Figure 1 shows the 11 closest retreivals of the letter
“V” based on the Euclidean distance of the spectral feature vectors. The middlt
panel of Figure 1 shows the result of performing MDS on the matrix of distances
for the “A”s, “E”s and “Z”s in the database. The characters form well defined
clusters.

To take this study on synthetic data one step further, we have performed
a classification experiment. We have generated 100 graphs of 25 nodes each.
For each graph the edge-structure is randomly generated. Associated with each
edge is a weight randomly and uniformly drawn from the interval [0, 1]. We have
investigated the effect of adding random noise to the edge-weights. The weight
noise is drawn from a Gaussian distribution of zero mean and known standard
deviation.

We have investigated the effect of this noise on three different vector repre-
sentations of the attributed graphs. The first of these is a vector with the first
four polynomial features as components. The second is a vector whose compo-
nents are the bin-contents of the normalised edge-weight histogram. Here the
edge weights are allocated to 8 uniformly spaced bins. The final vector has the
leading 4 eigenvalues of the Laplacian matrix as components.

We have computed the distances between the feature vectors for the uncor-
rupted and noise corrupted graphs. To compute a classification error rate, we
have recorded the fraction of times that the uncorrupted graphs do not have the
smallest distance to the corresponding noise corrupted graph. The right-hand
panel of Figure 1 shows the error-rate as a function of the edge-weight noise
standard deviation. The main feature to note from this plot are that the low-
est error rate is returned by the polynomial features and the highest error rate
results from the use of the edge-weight histogram.

6 Shock Graphs

The second example of the use of the complex property matrix representation
is furnished by shock trees, which are an abstraction of the skeleton structure
of 2D or 3D shape silhouettes. The skeleton is the locus of the centre of the
bitangent circle to the object boundary, and is hence related to the medial axis
transform (which seeks points which are equidistant from pairs of points on the
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Fig. 1. Retreival results (left), MDS (middle) and classification error rate (right) for
character data.

shape boundary). In practice searching for the skeleton corresponds to finding
ridges in the distance transform of the object boundary. The medial axis has
a natural tree structure which makes it suitable for the tree representation of
shapes.

The edges of the tree represent the existence of a connecting skeletal branch
between pairs of junctions. The nodes of the tree are characterised using the
radius r(a) of the smallest bitangent circle from the junction to the boundary.
Hence, for the node a, xa = r(a). The edges are characterised by two measure-
ments. For the edge (a, b) the first of these, ya,b is the angle between the nodes
a and b, i.e. ya,b = θ(a, b). Since most skeleton branches are relatively straight,
this is an approximation to the angle of the corresponding skeletal branch. Fur-
thermore, since −π ≤ θ(a, b) < π and θ(a, b) = −θ(b, a), the measurement is
already suitable for use in the Hermitian Laplacian matrix.

In order to compute edge weights, we note that the importance of a section
of the skeleton may be determined by the rate of change of boundary length
with skeleton length [9], which we denote by dl/ds. This quantity is related to
the rate of change of the bitangent circle radius along the skeleton, i.e. dr/ds,

by the formula dl
ds =

√
1−

(
dr
ds

)2
. The edge weight Wa,b is given by the average

value of dl/ds along the relevant skeletal branch.
Our experiments are performed using a database of 42 binary shapes. Each

binary shape is extracted from a 2D view of a 3D object. There are 3 classes
in the database, and for each object there are a number of views acquired from
different viewing directions and a number of different examples of the class . We
extract the skeleton from each binary shape and attribute the resulting tree in
the manner outlined in Section 4.

We commence by showing some results for the three shapes shown in Figure
1. The objects studied are a hand, some puppies and some cars. The dog and
car shapes consist of a number of different objects and different views of each
object. The hand category contains different hand configurations. We apply the
three embedding strategies outlined in Section 5 to the vectors of permutation
invariants. We commence in the left-hand panel of Figure 2 by showing the result
of applying MDS procedure to the three shape categories. The ‘hand’ shapes form
a compact cluster in the MDS space. There are other local clusters consisting
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of three or four members of the remaining two classes. This reflects the fact
that while the hand shapes have very similar shock graphs, the remaining two
categories have rather variable shock graphs because of the different objects.

The middle panel of Figure 2 shows the result of using PCA. Here the distri-
butions of shapes are much less compact. While a distinct cluster of hand shapes
still occurs, they are generally more dispersed over the feature space. There are
some distinct clusters of the car shape, but the distributions overlap more in the
PCA projection when compared to the MDS space.

  
 

Fig. 2. MDS (left), PCA (centre) and LDA (right) applied to the shock graphs.

In the LDA projection, we introduce information about the class designations
of the shape trees. The right-hand panel of Figure 2 shows the result of the LDA
procedure on the dataset. The result is a much better class separation than the
PCA or MDS methods.

Based on the analysis of the different embedding methods, it appears that
LDA gives the best results. One of the motivations for the work presented here
was the potential ambiguities that are encountered when using the spectral fea-
tures of trees. To demonstrate the effect of using attributed trees rather than
simply weighting the edges, we have compared the LDA projections using both
types of data. Figure 3 illustrates the result of this comparison. The right-hand
plot shows the result obtained using the symmetric polynomials from the eigen-
vectors of the Laplacian matrix L = D − W , associated with the edge weight
matrix. The left-hand plot shows the result of using the using the Hermitian
property matrix. The Hermitian property matrix for the attributed trees clearly
produces a better class separation than the Laplacian matrix for the weighted
trees.

7 Conclusions

In this paper we have described a complex property matrix that can be used
to encode the structure of attributed graphs. We have shown how to construct
permutation invariants from the complex components of the eigenvectors of the
Hermitian property matrix. The invariants are used as the components of a real-
valued pattern vector, which can be embedded in a pattern space, suitable for
clustering the graphs. There are clearly a number of ways in which the work
presented in this paper can be developed. For instance, since the representation
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Fig. 3. A comparison of attributed trees with weighted trees. Left: trees with edge
weights based on boundary lengths. Right: Attributed trees with additional edge angle
information.

based on the symmetric polynomials is complete, they may provide the means
by which a generative model of variations in graph structure can be developed.
This model could be learned in the space spanned by the permutation invariants,
and the mean graph and its modes of variation reconstructed by inverting the
system of equations associated with the symmetric polynomials.
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Abstract. In structural pattern recognition it is often required to match
an unknown sample against a database of candidate patterns in order
to find the most similar prototype. If the patterns are represented using
graphs, the sample’s graph is matched against a database of model graphs
and the pattern recognition problem is turned into a graph matching
problem. Graph matching is a powerful yet computationally expensive
procedure. If the unknown sample is matched against a whole database of
prototypes, the size of the database is introduced as an additional factor
into the overall complexity of the matching process. To reduce the influ-
ence of that factor an approach based on machine learning techniques is
proposed in this paper. The graphs are represented using feature vectors.
Based on these vectors a decision tree is built to index the database. The
decision tree allows at runtime to eliminate a number of graphs from the
database as possible matching candidates. Experimental results are re-
ported demonstrating the efficiency of the proposed filtering procedure.
The work presented in this paper extends previous studies from the case
of graph-isomorphism to the problem of subgraph-isomorphism.

1 Introduction

Graphs play an important role in structural pattern recognition. Besides com-
paring two given patterns, it is often required to match an input pattern against
a database of known patterns or sub-patterns. If graphs are used to represent
structural data, the task of matching patterns is turned into a problem of graph
matching. Graph matching is used in a variety of applications, for example doc-
ument processing [1], image analysis [2, 3], biometric identification [4] and video
analysis [5]. Despite being a computationally expensive approach, graph match-
ing is attractive for pattern recognition problems since graphs are a universal
representation formalism. If databases of model graphs are used, an additional
factor proportional to the size of the database is introduced in the overall com-
plexity of the matching process. A variety of mechanisms have been proposed
to reduce the complexity of graph matching when large databases are involved
[6–10]. In this paper we propose an approach based on machine learning tech-
niques.

The presented approach proposes to characterize graphs by features which
can efficiently be extracted (e.g. the number of nodes or edges in a graph or
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Fig. 1. Illustration of the filtering procedure in the database matching process.

the number of nodes or edges with a certain label). These features are used
to perform a filtering on the database. A filtering procedure is a method which
performs a quick and inexpensive reduction of the initial graph database size with
respect to a given input graph. The aim of database filtering is to reduce the
number of graph candidates in the database that need to undergo an expensive,
full fledged graph matching process. A graphical illustration is shown in Figure 1.

The presented work extends previous studies on graph matching performance
and graph database filtering (see [11, 12]). In contrast with the work reported in
[11], which was restricted to the case of graph isomorphism, the present paper
deals with the problem of subgraph-isomorphism. Database filtering in conjunc-
tion with subgraph-isomorphism search was also studied in [13]. However, the
decision trees used in [13] were identical to the decision trees used in [11, 12]
for graph-isomorphism, and the case of subgraph-isomorphism was dealt with
by means of an extended decision tree traversal procedure. By contrast, a gen-
eralized decision tree induction procedure is proposed in the present paper. In
the next section, we briefly introduce terminology and graph features used in
this study. Then, we show how the concept of graph representation by means of
vectors can be combined with the decision tree filtering approach. Experimental
results will be presented in Section 4, and conclusions drawn in Section 5.

2 Terminology and Graph Features

In this work, structural data or patterns are represented as graphs. A graph is
defined as a four-tuple g = (V,E, α, β), where V denotes a finite set of nodes,
E ⊆ V × V is a finite set of edges, α : V → LV is a node labelling function,
and β : E → LE is an edge labelling function. LV and LE are finite or infinite
sets of node and edge labels, respectively. In this work only directed graphs are
considered. However, the same ideas can be applied to undirected graphs as
well. A subgraph gs = (Vs, Es, αs, βs) of a graph g is a subset of its nodes and
edges, such that Vs ⊆ V , Es = E ∩ (Vs × Vs), αs(v) = α(v) and βs(e) = β(e).
Two graphs g and g′ are isomorphic to each other if there exists a bijective
mapping u from the nodes of g to the nodes of g′, such that the structure of
the edges as well as all node and edge labels are preserved under u. Similarly,
an isomorphism between a graph g and a subgraph g′s of a graph g′ is called a
subgraph-isomorphism from g to g′.
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In this study, feature vectors are used to represent graphs. Since the vec-
tors are used for the purpose of database filtering, the features must meet the
following two requirements. First, their extraction from a sample graph must
be fast (compared to performing a graph matching) and second, they should
possess a high degree of saliency (they should be able to differentiate between
as many graphs as possible). Fast extraction of the features from sample graphs
directly influences the filtering performance whereas high saliency ensures a pre-
cise candidate retrieval (which means that fewer graphs will be subject to the
full-fledged graph matching procedure after filtering). In this work, the following
features are used:

1. the total number of vertices in the graph
2. the total number of vertices with a given label in the graph
3. the total number of incoming (outgoing) edges per vertex label in the graph
4. the total number of vertices with a given number of incoming (outgoing)
edges in the graph

5. the total number of vertices with a given label and a given number of in-
coming (outgoing) edges in the graph

Previous studies have shown that the selection of these features is very effective
for database filtering. In [11] it can be seen that when searching for graph-
isomorphism candidates, these features are completely sufficient to distinguish
between all graphs in the database. Hence in this study, the same features have
been used.

In case of graph-isomorphism [11], a necessary condition for two graphs g and
g′ being isomorphic is that they have identical feature values. Hence, given the
feature vector f = (f1, . . . , fm) extracted from g and f ′ = (f ′1, . . . , f

′
m) extracted

from g′, g and g′ can immediately be ruled out to be isomorphic if a feature j
is discovered such that fj �= f ′j . However, for subgraph-isomorphism, which is
considered in this paper, the relation is not that simple. Looking at the list of
features presented above, we can see that there are two basic types of features:

– features not containing edge information (features 1 and 2)
– features containing edge information (features 3 to 5)

Extending the feature vector comparison from graph-isomorphism to sub-
graph-isomorphism is straightforward for features not containing edge informa-
tion. In order for a graph g′ possibly being isomorphic to a subgraph of a graph
g, the value of such a feature f ′j must be smaller than, or equal to, the fea-
ture value fj in g. Therefore, the relation f ′j = fj for graph-isomorphism needs
to be replaced by f ′j ≤ fj for subgraph-isomorphism. (Note that this is only
a necessary, but not a sufficient condition for g′ being a subgraph of g.) The
difficulty for features 3 to 5 (features containing edge information) is that in
subgraph-isomorphism, nodes of lower vertex degrees in the subgraph may be
mapped onto nodes with a higher degree in the supergraph. (This is contrary
to graph-isomorphism, where nodes can only be mapped onto nodes of equal
degree.) A simple example would be a star-graph as the (original) graph and
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the same graph with its center node removed as the subgraph. In the original
graph, all nodes except the center node are of degree 1 (the center node is of
degree n − 1, where n is the number of nodes in the graph). In the subgraph,
since the center node has been removed, the surrounding nodes are now of de-
gree 0. Hence, it can happen that a subgraph has a larger number of nodes with
a certain degree than its supergraph. In order to overcome this problem, the
features used in our approach must be able to associate the nodes of degree 0
in the subgraph with the nodes of degree 1 in the original graph. In order to
properly compare these feature values, one must not only consider the value for
the current node’s degree but also include the values for the nodes of a lower
degree. This can be done by summing the feature vector’s values according to
node degree order. Applying this technique allows us to use the same features for
both graph-isomorphism and subgraph-isomorphism (but the way the features
are handled by the subgraph isomorphism filtering procedure is different from
filtering in case of graph isomorphism).

3 Decision Trees

In this section, we will show how the concept of feature-vector comparison for
graph-/subgraph-isomorphism can be used in combination with decision trees.
The general idea is that in a preprocessing step a decision tree is built to clas-
sify graphs according to their feature vectors. Depending on the given matching
task, two types of decision trees can be induced. In order to filter the database
for graph-isomorphism candidates, a graph-isomorphism tree is used and anal-
ogously for subgraph-isomorphism filtering, a subgraph-isomorphism tree is in-
duced. The tree induction algorithm ensures that out of the entire feature set
only the most salient features are used for filtering. At runtime, all features
needed are extracted from the sample graph and then, the decision tree is tra-
versed to retrieve suitable graph candidates from the database. This approach
minimizes the number of features to be tested in order to eliminate the maximum
number of non-candidates from the database. The decision tree procedure itself
is analogous to standard decision tree methods (see [14], for example) with the
difference that, whereas ordinary decision tree methods try to generalize from a
training set of objects, the approach presented here tries to ‘overfit’ the data in
the sense that all leaf nodes in the tree include just a single graph. In general,
the smaller the number of graphs in a leaf node is, the smaller is the number of
full-fledged graph matchings that need to be computed.

In this section a brief explanation will be given on how to induce decision
trees useful for subgraph-isomorphism filtering. For the purpose of completeness
we also describe how to induce trees for graph-isomorphism. Then, we will focus
on the problem of using the trees to create two filter types, one for graph-
isomorphism and one for subgraph-isomorphism.

3.1 Graph-Isomorphism Decision Tree Induction
As mentioned in Section 2, a necessary condition for two graphs g and g′ being
isomorphic is that they have identical feature vectors. The decision tree induction
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algorithm, which is derived from [14], classifies the graphs in the database based
on their feature values. As an initializing step, the tree’s root node is constructed
and it is assigned the entire graph set of the database. Then, each available fea-
ture is tested and its suitability is evaluated according to a given split criterion
(see [14]). Amongst all features, the best one is chosen and the current root’s
graph set is split into subsets according to the best feature. For each feature
value, a son node is created and the node is assigned the subset of graphs that
correspond to that feature value. The induction procedure is recursively contin-
ued with the son nodes until one of the following termination conditions holds:
a) the graph set in a node contains only one graph; b) no features are left to
divide a subset; c) the features left cannot distinguish the remaining graphs in
the set. Cases b) and c) correspond to the situation where, later in the decision
traversal phase, multiple graphs are returned by the filtering procedure, while
case a) reflects the ‘ideal’ situation where only one candidate graph remains to
undergo the full-fledged graph matching procedure.

3.2 Subgraph-Isomorphism Decision Tree Induction

Before extending the approach presented above to the problem of filtering for
subgraph-isomorphism candidates, one must first define the search task to be
considered. There are two possible search scenarios:

– supergraph-search: the input sample is considered to be isomorphic to sub-
graphs of the graphs in the database.

– subgraph-search: the database contains graphs possibly isomorphic to a sub-
graph of the input sample.

In the following explanations, we will focus on the second scenario where the
input sample is a supergraph and the database graphs are subgraphs (subgraph-
search). Note that the adaption of this traversal to the task of supergraph-search
is straightforward.

The decision tree structure as presented in the graph-isomorphism case needs
two major adaptations before it can be used for subgraph-filtering purposes.
The first adaption concerns the assignment of graph-subsets to son nodes. In
the isomorphism case, the father node’s graph set is split into disjoint subsets
according to the best feature’s values. For subgraph-isomorphism trees however,
these subsets are not disjoint anymore. Consider the case where a feature occurs
n times in the input sample. In that case, all graphs in the database where the
same feature occurs n′ < n times are possible subgraph-isomorphism candidates
and need to be assigned to the son-node representing feature value n. As an
additional consequence, the son-node with the maximal feature value at any
level in the tree is assigned the entire graph set of its father (hence the depth of
the decision tree is only limited by the number of features evaluated). Depending
on the graph type, the number of possible features is in general quite large. In
case a son node containing its father’s graph set is unlikely to be reached during
traversal, it should be induced after other nodes that are more likely to be
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Fig. 2. Example of a decision tree split.

reached. Hence, while constructing the tree, the nodes ready for expansion must
be ordered so that these candidates are not (or very late in the process) expanded.
An intuitively plausible ordering is given by the probability with which a node
is likely to be reached during tree traversal. This probability is given by the
number of candidates only appearing in the node under consideration compared
to the number of candidates in the father node.

The second adaption is caused by the fact that feature values not occurring
in the graph database may occur in the input sample and must therefore be
considered during tree construction. This can be done by introducing additional
edges from the father to the appropriate son node (the node representing the next
smaller feature value) for each non-occurring value of the considered feature.

Figure 2 illustrates the described modifications, namely overlapping graph
sets in the son nodes as well as feature values not occurring in database graphs.
In the father node, there are two graphs with two and four nodes with label ‘A’,
respectively. Hence, the decision tree consists of two son nodes (and their cor-
responding edges), one for each feature value fA = 2 and fA = 4. Furthermore,
since a sample graph may contain 3 nodes with label ‘A’, an additional edge
with label fA = 3 must be introduced, also pointing to the node for graphs with
fA = 2. Naturally, all samples where fA > 4 must be directed to the node where
fA = 4 (branch to the very right) and all samples where fA < 2 are not possible
supergraphs to the graphs in the database (therefore no branch is provided in
the tree for this case). Consider the case where, at runtime, the decision tree is
traversed for a sample graph with fA = 5. While traversing the tree, the leaf
with fA > 4 is reached. Hence, the input sample is a possible supergraph to both
graphs in the illustration which makes sense since the sample consists of at least
5 nodes with label ‘A’.

3.3 Decision Tree Traversal

Decision trees induced as described above can be used to retrieve possible graph-
isomorphism or subgraph-isomorphism candidates of a given sample graph in the
following way. First, the same features that were extracted from the database
graphs and used to induce the decision tree are extracted from the input graph.
Then, the traversal algorithm follows the tree branch whose feature values are
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equal to the values extracted from the sample graph. There are only two possible
outcomes of the decision tree traversal procedure. The first outcome is that
a leaf node is reached. In this case, the graphs associated with the leaf node
are possible matches to the input graph. Each of these graphs must then be
tested against the input graph for (sub-)graph-isomorphism using a conventional
algorithm as described in [15–17], for example. The second outcome is that no
leaf node is reached in which cases there are no graphs in the database that can be
(sub-)graph-isomorphic to the input graph.

4 Experimental Results

To demonstrate the efficiency of the approach, we tested it on several different
types of graphs described below (see [18]).

– Random Graphs: The random graph database consists of connected graphs
with different node and edge label alphabet size.

– Bounded Valence Graphs (regular, irregular): This databases consists of
graphs with a fixed valence per node (regular bounded valence graphs) or a
fixed valence over the entire graph (irregular bounded valence graphs).

– Meshes / Hyper-Cuboids (regular, irregular): The database consists of
(Hyper-) Cuboids of varying dimension n = 2 (meshes), n = 3 (cuboids),
n = 4, 5 (hypercuboids).

For each graph type and parameter setting a database of 1,000 graphs was
created. During creation of the database, it was made sure that each graph was
isomorphic only to itself.

The primary objective of the proposed filtering method is to reduce the num-
ber of candidates which have to undergo a full-fledged isomorphism or subgraph-
isomorphism matching. Hence, the quality of the approach can be expressed by
measuring the number of graphs that are assigned to the leaf nodes in the de-
cision tree. (We will also refer to this number as the cluster size of the decision
tree.) The cluster size determines the number of full-fledged matchings that need
to be executed. The other important measure is the average number of nodes
visited during traversal. This value directly affects traversal and therefore filter
time.

Decision trees suitable for graph-isomorphism retrieval can be fully induced
with no problems. Decision trees suitable for subgraph-isomorphism on the other
hand can grow, due to their special structure, quite large and therefore need to
be limited in size. To control the subgraph-isomorphism decision tree growth,
the trees were limited in size to the same number of nodes as the corresponding
graph-isomorphism trees (from hundreds up to several thousand nodes).

In order to measure the average cluster size, graphs were randomly picked
from the database and were then used as an input sample. Before extracting the
features, the sample graph’s size was increased and the additional nodes were
assigned labels not occurring in the database graphs (this was to ensure that
no additional subgraph-isomorphisms were introduced). Then the feature vector
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Fig. 3. Cluster size for random and mesh graphs.
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Fig. 4. Average number of visited nodes for random and mesh graphs.

was extracted and the decision tree traversed. In order to get an average value
for the cluster size, the procedure was repeated 1,000 times for each database.

Figure 3 shows the cluster size for random and mesh graphs, respectively. The
results for bounded valence graphs are similar to the values obtained for random
graphs and therefore not depicted. In [11] it has been shown that for graph-
isomorphism, the cluster size can be reduced down to only one graph remaining
after filtering. For subgraph-isomorphism, naturally, the reduction factor is not
that high. However, as is shown in Figure 3 the approach on average reduces
the database size to about 300 graphs for random graphs. This means that the
initial database size is reduced by about 70%. Due to the much more regular
structure of mesh graphs, the filtering effect is not quite that high. However, still
approximately 500 graphs can be eliminated from the database which is equal
to a reduction factor of 50%.

The second parameter influencing the filter’s performance is the average num-
ber of nodes visited during tree traversal. Figure 4 shows that for both graph
types, random as well as mesh graphs, less than 4 nodes are visited during
traversal (again the results obtained for bounded valence graphs are similar to
the results of random graphs.) It can be concluded from Figure 4 that the size
of the database can be very effectively reduced through a small number of tests.
The computation time of these tests is in fact negligible.

5 Conclusions

In this paper an approach to graph database filtering using machine learning
techniques has been presented. The method is based on a decision tree data struc-
ture. It reduces the number of candidate graphs in a database to be tested for
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graph- and subgraph-isomorphism. Depending on the considered graph match-
ing task (graph isomorphism or subgraph isomorphism), special types of decision
trees are built that classify the graphs using given features. At runtime, possible
matching candidates are retrieved from the database by traversing the decision
tree. This paper presented two decision tree induction methods. One method is
able to induce trees suitable for graph-isomorphism candidate retrieval, while the
other is designed to induce trees suitable for subgraph-isomorphism candidate
retrieval.

Considering the complexity of the proposed method we notice that the
method is divided into two stages: a) tree induction and b) tree traversal. Tree in-
duction is considered to be an off-line step, hence its complexity is not of primary
interest. Tree traversal, however, is the main objective concerning complexity. It
is only dependent upon the number of visited nodes during tree traversal. The
overall complexity of filtering-based graph matching is determined by the deci-
sion tree traversal complexity, the number of final matchings to be performed
(this number is identical to the cluster size associated with the leaf nodes in
the decision tree) and the complexity of computing the final matchings, which
is depending upon graph type and graph matching algorithm. In this paper, a
number of experiments investigating cluster size and number of visited nodes
have been conducted. The results indicate that the cluster size can be signifi-
cantly reduced by few tests, resulting in a small number of nodes to be visited
as well as a small number of final matchings to be performed.

The main contribution of the present paper is an extension of the method pro-
posed in [11] from graph-isomorphism to the problem of subgraph-isomorphism
by generalization of the decision tree’s structure. Future work is planned extend-
ing the approach to error tolerant, edit distance based graph matching methods
and determining its efficiency on real world data.
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Abstract. In this paper we propose a simple way of significantly im-
proving the performance of the Softassign graph-matching algorithm of
Gold and Rangarajan. Exploiting recent theoretical results in spectral
graph theory we use diffusion kernels to transform a matching problem
between unweighted graphs into a matching between weighted ones in
which the weights rely on the entropies of the probability distributions
associated to the vertices after kernel computation. In our experiments,
we report that weighting the original quadratic cost function results in a
notable improvement of the matching performance, even in medium and
high noise conditions.

1 Introduction

Energy-minimization approaches to graph matching [4][5][8] rely on transform-
ing the discrete search space into a continuous one and then exploiting opti-
mization techniques to find a, typically approximate, solution. One of the first
algorithms, Softassign, the well-known graduated assignment method introduced
by Gold and Rangarajan [4], optimizes a quadratic cost function through a low-
order computational complexity process which updates the assignment variables
encoding the matching proposals. However, it has been reported that the perfor-
mance of the algorithm decays significantly at mid and high levels of structural
corruption, and also that such a decay can be attenuated by optimizing an al-
ternative non-quadratic energy function [5]. In this paper we report comparable
results by weighting the quadratic cost function properly. This is due to the fact
that we transform the original matching problem between two non-attributed
graphs into a matching problem between attributed ones and then these at-
tributes are used to weight the original cost function. The practical effect of this
weighting is that it yields a good characterization of the local structure, which
in turn helps to choose the proper attractor in a context of high ambiguity.

We address the key point of extracting good attributes for the nodes of the
non-attributed graphs by exploiting recent theoretical results in spectral graph
theory [1]: the definition of diffusion kernels on graphs [6] and their general-
ization to other families of kernels [13]. These latter works have transferred to
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the discrete domain of graphs the concept of a kernel, originally defined in the
vector domain (see [3] for a survey on kernels for structures like strings, trees
and graphs). Kernels, are key concepts in the context of statistical learning the-
ory[2][12][7] which capture the structure of a domain by defining a similarity
measure between two input elements in the domain. Such a similarity measure
relies on the inner product of the results of mapping both inputs to a, usually
higher dimensional, Hilbert space. Due to the so-called kernel trick such a map-
ping is implicitly defined once the kernel is specified, and the benefit of such a
transformation consists on transforming non-linear relations between the inputs
in the original domain into linear relations after the mapping. For instance, in
the context of support-vector machines (in general we can talk about kernel ma-
chines), the task of classifying two non-linearly separable inputs is accomplished
by using a suitable kernel to map them to another space in which these inputs
are linearly separable (it works in the well-known two-spirals example).

When applied to graphs, kernels provide a similarity measure between the
vertices of the same graph. In the case of diffusion kernels, such a similarity can
be seen as the sum of probabilities of all paths connecting such vertices, and it
is computed from the matrix exponentiation of the Laplacian of the adjacency
matrix (section 2). As the Laplacian encodes information about the local struc-
ture of the graph, the global structure emerges in the kernel. However, we do
not use directly the probabilities of connecting paths because they may change
very easily when the graph is edited or corrupted, and, consequently, they are
not useful for finding corresponding vertices. What we do is to is to compute
a characteristic measure of the distribution of probabilities associated to paths
emanating from a given vertex, the entropy of such a distribution, and use it as
attribute for that vertex. The entropy of the probabilities associated to connect-
ing paths is more stable and allows us to find correct matches (section 3). In
section 4 we present the kernelized version of the quadratic cost function and its
implications in the Softassign process. Our results are showed in section 5 and
in 6 we present our conclusions and future work.

2 Diffusion Kernels on Graphs

Given a undirected and unweighted graph G = (V,E) with vertex-set V of size
m, and edge-set E = {(i, j)|(i, j) ∈ V ×V, i �= j}, its respective adjacency matrix
is defined as usual:

Aij =
{
1 if (i, j) ∈ E
0 otherwise

and the diagonal degree matrix is defined by

Dij =
{∑n

j=1 Aij if i = j

0 otherwise .

Then, the Laplacian of G is defined as L = D − A, that is,
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Lij =

⎧⎨⎩ −1 if (i, j) ∈ E
Dii if i = j
0 otherwise .

Following [6] the associated diffusion kernel K is the result of the matrix
exponentation

K = e−βL = lim
n→∞

(
1− βL

n

)n

, (1)

and after solving the latter limit we obtain

e−βL = Im + L+
1
2!

L2 +
1
3!

L3 + . . . , (2)

where Im is the m × m identity matrix. Moreover, e−βL is the solution of the
heat equation [1]

d

dβ
Kβ = −LKβ. (3)

As L is symmetric, the solution K = e−βL, the Gram matrix, satisfies the
positive semi-definiteness condition for kernels. Although in this paper we will
focus on diffusion kernels, this framework is generalized in [13] where a family
of graph kernels is proposed in the context of regularization.

3 Diffusion Kernels and Node Entropy

On behalf of the so-called kernel trick the m × m matrix K defines a real-
valued function between pairs of vertices, and Kij can be interpreted as the
inner product of the mappings of both vertices to a Hilbert space [12]. This
means that such a inner product encodes the similarity between pairs of vertices
in a possibly high-dimensional space. But, from the point of view of discrete
structures what is interesting of such similarity is that as L encodes the local
structure of V in G, the global structure emerges in K.

More precisely, and due to the fact thatK is the solution of the heat equation,
the diffusion kernel K is the version for discrete spaces of the Gaussian kernel
for IRm with variance σ2 = 2β, that is, the value of Kij decays exponentially
with the distance between i and j. But, how to apply this idea to a graph?
From the point of view of random fields, the diffusion kernel K relies on the
covariance matrix of a stochastic process in which each vertex has attached a
random variable of zero mean an variance σ2 and each variable sends a small
fraction of its value to its neighbors. In this regard,Kij can be interpreted as the
amount of substance accumulated at vertex j after a given amount of time after
injecting the substance at i and let it diffuse through the edges of the graph.
The more distant are i and j the less amount we have.

In terms of random walks, Kij can be regarded as the sum of probabilities
that a lazy random walk takes each path from i to j [6]. A lazy random walk over
the undirected graph G and with parameter β is a stochastic process which will
take each of the edges emanating from i with a fixed probability β and will remain
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in i with probability 1− βDii, being β ≤ 1/(maxiDii). From this point of view,
the final value of Kij depends on the edge distribution and branching process
between i and j. If j is an isolated node, then Kij = 0 ∀i �= j and Kjj = 1.
Moreover, as each row i of K satisfies that 0 ≤ Kij ≤ 1 ∀j and

∑m
j=1Kij = 1,

then we can consider each row as a probability distribution associated to vertex
i. This allows us to build a proper attribute for each vertex in terms of the shape
of the corresponding distribution. In our initial experiments we have found that
as edit operations or noise addition on the graph will give a different kernel in
terms of the number of nodes and edges, and obviously in terms of the diffusion
process, building attributes in the properties of the distributions yields more
stability that building such attributes in individual values of Kij . This is why
we retain as attribute for node i the entropy of the distribution

HK
i = −

m∑
j=1

Kij logKij . (4)

As we will see in the following sections, although this attribute does not provide
a good discrimination between vertices it is very helpful in the continuation
process in which Softassign relies. In fact, the kernel approach is closely related
to the use of distance matrices in matching and tests for isomorphism [11], and,
more recently, to the use of powers of the adjacency matrix [14].

In order to clarify the concept of kernel and node entropy, in Fig. 1 we show
two graphs in which the smaller one X is a subgraph of the other, Y . We show
the kernels of both of them and the distribution of the vertex 1 of Y .

4 Kernelizing Softassign

Given two graphs GX = (VX , EX), with nodes a ∈ VX and edges (a, b) ∈ EX ,
and GY = (VY , EY ), with nodes i ∈ VY and edges (i, j) ∈ EY , their adjacency
matrices X and Y are defined by

Xab =
{
1 if (a, b) ∈ EX

0 otherwise and Yij =
{
1 if (i, j) ∈ EY

0 otherwise .

A feasible solution to the graph matching problem between GX and GY is en-
coded by a matrix M of size m × n, being m = |VX | and n = |VY |, with binary
variables

Mai =
{
1 if a ∈ VX matches i ∈ VY
0 otherwise

satisfying the constraints defined respectively over the rows and columns of M

m+1∑
i=1

Mai = 1, ∀a and
n+1∑
a=1

Mai = 1, ∀i , (5)

where equality comes from introducing slack variables for registering outliers.
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(a)

(b)

KY =

⎡⎢⎢⎢⎢⎢⎢⎣

.5237 .3082 .1200 .0259 .0074 .0074 .0074

.3082 .3356 .2140 .0645 .0259 .0259 .0259

.1200 .2140 .2800 .1369 .0830 .0830 .0830

.0259 .0645 .1369 .1906 .1940 .1940 .1940

.0074 .0259 .0830 .1940 .4752 .1073 .1073

.0074 .0259 .0830 .1940 .1073 .4752 .1073

.0074 .0259 .0830 .1940 .1073 .1073 .4752

⎤⎥⎥⎥⎥⎥⎥⎦
(c)

KX =

[
.5256 .3167 .1577
.3167 .3665 .3167
.1577 .3167 .5256

]

(d)

Fig. 1. Illustrating graph kernels and entropy. Example graphs X and Y where nodes
are labelled with their entropies (a). Kernel values and distribution for vertex 1 of
graph Y , and kernel values for all vertices in graph X (b). Kernel KY (c) and kernel
KX (d).

Following the Gold and Rangarajan formulation we are interested in finding
the feasible solution M that minimizes the following cost function,

F (M) = −1
2

m∑
a=1

n∑
i=1

m∑
b=1

n∑
j=1

MaiMbjCaibj , (6)

where typically Caibj = XabYij , that is, when a ∈ VX matches i ∈ VY , it is
desirable that nodes b adjacent to a (with Xab �= 0) and nodes j adjacent to
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i (with Yij �= 0) also match, that is Mai = Mbj = 1. This is the well known
rectangle rule (in maximization terms we want to obtain as more rectangles as
possible). Furthermore, considering the entropies defined in the previous section
a simple way of kernelizing the latter energy function is to redefine Caibj as

CK
aibj = XabYij exp−[(HKX

a − HKY
i )2 + (HKX

b − HKY
j )2] , (7)

where the entropies HKX and HKY are associated to the kernels

KX = e−
β
mLX and KY = e−

β
nLY ,

that is, we normalize the decays by the number of nodes in each graph in order
to make both diffusion processes, and consequently both kernels, comparable.
This normalization is useful in big graphs, where it contributes to avoid the
tendency of the diffusion process towards uniform distributions, but makes no
sense in small graphs. But, normalization apart, the latter definition of CK

aibj

ensures that CK
aibj ≤ Caibj , and the equality is only verified when nodes a and i

have similar entropies, and the same for nodes b and j. In practice, this weights
the rectangles in such a way that rectangles with compatible entropies in their
opposite vertices are preferred, and otherwise they are underweighted.

Paying now attention to the deterministic annealing process implemented by
Softassign, the assignment variables are updated by

Mai = exp
[
− 1

T

∂F

∂Mai

]
= exp

[
1
2T

m∑
i=a

MbjC
K
aibj

]
,

where T is the temperature control parameter. Then, these assignments feed a
Sinkhorn process [10], which iteratively normalizes rows and columns. After this
process we obtain a doubly stochastic matrix, decrease T and a new iteration
begins. The final doubly stochastic matrix is transformed into a permutation
matrix by a proper clean-up process.

To see intuitively the difference between the classical Softassign and the ker-
nelized one, in Fig. 2 we show the evolution of both algorithms for the two
example graphs showed in Fig. 1. The classical Softassign prefers clearly the as-
signment (b, 4) which is consistent with the cardinality heuristic(notable vertices
in X prefer notable vertices in Y . However, a and c can be assigned either with
3, 5, 6 or 7 (ambiguity). On the other hand, in the kernelized case, the assign-
ment (b, 2) is clearly preferred and a and c may be assigned either to 1 or 3. The
cardinality heuristic is inhibited in favor of a structural compatibility heuristic.

5 Experiments

We have performed several matching experiments with graphs of 50 nodes, and
considering two levels of edge density: 25% and 50%. These levels of edge density
are relatively high because we want to study the performance of the kernelized
Softassign which it is assumed to have more problems in this context, because
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β = 0.5

Softassign Kernelized softassign

β = 2.8364

β = 7.2625

β = 9.6988

Fig. 2. Evolution of the algorithm for a simple matching problem. Matching matrices
for many values of β for the classical Softassign and the kernelized version.

the difussion processes tend to generate uniform distributions. In all cases we use
the classical initialization of Softassign. Each point corresponds to the averaged
result for 100 graphs randomly generated. We have considered different noise
levels: from 0% (isomorphism) to 50%. We have registered both the fraction
of complete graphs successfully matched and the fraction of nodes successfully
matched. In all cases the kernelized version outperforms significantly the classical
one. Moreover, the kernelized version is also better than an attributed one with

Caibj = XabYij exp

⎡⎣−
∣∣∣∑m

b=1Xab −
∑n

j=1 Yij

∣∣∣
min(m,n)

⎤⎦ ,

that is, a Softassign version relying on node cardinality.
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(a) (b)

(c) (d)

Fig. 3. Matching results. Graphs (a) and nodes (b) successfully matched with an edge
density of 25%. Graphs (c) and nodes (d) successfully matched with an edge density
of 50% (b).

6 Conclusions and Future Work

In this paper we have introduced a simple way of improving the performance
of the Softassign graph-matching algorithm through the kernelization of the
classical quadratic cost function. Our experimental results indicate that such an
improvement is significant even in medium and high noise levels. Current and fu-
ture work in this context includes the kernelization of other energy minimization
and state-space algorithms, the formalization of the edit distance in terms of ker-
nels, and the comparison with other approaches relying on node-neighborhood
attributes.

Acknowledgements

This work was partially supported by grant TIC2002− 02792 funded by Minis-
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Structural Perceptrons for Attributed Graphs
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Abstract. We propose a structural perceptron for supervised and un-
supervised learning on data represented in terms of attributed graphs.
We integrate structural perceptrons into a multi-layer perceptron and
competitive learning network to provide examples of supervised and un-
supervised neural learning machines which are suited to process graphs.
In first experiments the proposed algorithms were successfully applied to
function regression, classification, and clustering.

1 Introduction

It is common practice to represent data in terms of vectors of an Euclidean
space, because the Euclidean space provides powerful analytical techniques for
data analysis usually not available in other representations. Such a represen-
tation, however, is too limited for many relevant application areas including
domains such as computer vision, bioinformatics, chemistry, or text mining. A
more versatile and expressive tool for representing structured data are, for ex-
ample, attributed graphs.

Despite its applicability and importance, learning on graphs is still widely
unexplored. Current research focus on (1) the problem of embedding graphs
into vector spaces to access the whole plethora of analytical tools (e.g. [10]); (2)
algorithms on pairwise proximity data [6]; (3) kernel methods for structures [2];
and (4) adaptive processing of graphs (e.g. [1, 11, 12]). In the structural pattern
recognition literature, adaptive processing of graphs is mainly concerned with
devising clustering algorithms (e.g. [1, 4, 9]). In the neural networks community,
connectionist models have been proposed for supervised learning on the rather
restrictive class of directed (ordered) acyclic graphs [12].

In this contribution, we suggest a structural perceptron for adaptive process-
ing of graphs within a supervised and unsupervised setting. To facilitate adaptive
processing, we associate a structural perceptron with an attributed weight graph
and replace the concept of an inner product of vectors by the Schur-Hadamard
(SH) inner product of graphs. Despite its name, the SH inner product is not an
inner product, but shares some useful properties of an inner product to extend
supervised and unsupervised neural learning machines for attributed graphs. Fi-
nally, (un)supervised training of networks composed of structural units is then
based on minimizing a suitable error function as a function of adjustable weights.

The rest of this paper is organized as follows: Section 2 introduces the SH
inner product. Section 3 describes structural neural learning machines. In Section
4 we present first experiments. Finally, Section 5 concludes.

A. Fred et al. (Eds.): SSPR&SPR 2004, LNCS 3138, pp. 85–94, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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2 The Schur-Hadamard Inner Product

This section provides basic notions and introduces the SH inner product.

Terminology. Let S be a set. By S [2] we denote the set of all ordered tuples
(i, j) ∈ S2 with i �= j. The set of all n × m-matrices A = (aij) with entries aij
from a set S is denoted by Mn×m(S).

Let A be an inner product space over R, for example A = Rm. An attributed
graph is a tuple X = (V, μ) consisting of a finite set V �= ∅ and a function
μ : V 2 → A. The elements of V are the vertices of the graph X and the pairs
(i, j) ∈ V [2] with μ(i, j) �= 0 are its edges. The function μ is the attribute function
of X . By GA we denote the set of attributed graphs with attributes from A. The
vertex set of a graph X is referred to as V (X), its edge set as E(X), and its
attribute function as μX . Let X be an attributed graph of order |X | = |V (X)| =
n. The (attributed) adjacency matrix of X is a matrix A(X) = (xij) ∈ Mn×n(A)
with entries xij = μX(i, j).

A permutation acting on X is a bijection π : V (X)→ V (X) from V (X) onto
itself. The image graph of a permutation π acting on X is denoted by Xπ. The
set SX of all permutations acting on X is called the symmetric group of X . Note
that in general A(X) �= A(Xπ).

The Schur-Hadamard Inner Product. First we define the inner product of
attributed matrices. Let A,B ∈ Mn×n(A) be matrices with A = (aij) and B =
(bij). Addition of matrices and scalar multiplication are defined componentwise.
The inner product 〈 , 〉 defined on A induces an inner product on Mn×n(A) by

〈
A,B

〉
=

n∑
i=1

n∑
j=i

〈aij , bij〉 .

To define a formal addition, scalar multiplication, and the SH inner product
of graphs we use the following technical convention: Let X,Y ∈ GA. Suppose
that n = max{|X |, |Y |} and m = min{|X |, |Y |}. We implicitly assume that
both graphs are of the same order n by inserting n − m isolated nodes into the
smaller of both graphs, each labeled with 0. Then X + Y = A(X) + A(Y ) and
λX = λA(X) for all λ ∈ R. The SH inner product is of the form

σ : GA × GA → R,
(
X,Y

)
�→ max

π∈SX

〈
A(Xπ), A(Y )

〉
.

A permutation π ∈ SX with σ
(
X,Y

)
=

〈
A(Xπ), A(Y )

〉
is called embedding from

X into Y . By I(X,Y ) we denote the set of all embeddings from X into Y .
In [7] it is shown that the SH inner product is symmetric and positive, but not

bilinear. Hence, it is not an inner product. But the Cauchy-Schwarz inequality
holds giving rise to an Euclidean metric δ(.) induced by the SH inner product

δ : GA × GA → R,
(
X,Y

)
�→

√
σ(X,X)− 2σ(X,Y ) + σ(Y, Y ) .
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We conclude this section with two important remarks: (1) Determining the SH
inner product is NP complete, since it generalizes the maximum common sub-
graph problem. (2) There is no restriction on the order of the graphs. Aligning
two graphs to the same size is a pure technical trick and is not required in a
practical implementation when computing the SH inner product.

3 Structural Perceptrons

This section first introduces structural perceptrons for attributed graphs. Next
we provide an example of a supervised and of an unsupervised neural learning
machine. Finally, we discuss some limitations of this approach.

The Model. Let X,W ∈ GA be attributed graphs with adjacency matrix
A(X) = (xij) and A(W ) = (wij). A structural perceptron is of the form:

a = σ(X,W ) + b

y = g(a)

where X denotes a data graph, W is the weight matrix of the perceptron, b is
the bias, σ(X,W ) the SH inner product of X and W , a is the activation, g(.) is
the non-linear activation function, and y is the output.

Supervised Learning with Multi-layer Perceptrons. Assume that we
are given a training sample Z = (X ,Y) consisting of a set of data graphs
X = {X1, . . . , XM} ⊆ GA together with corresponding output values Y =
{ŷ1, . . . , ŷM} ⊆ Rm. The problem is to estimate an unknown relation

f : GA → R
m

given the sample Z and a setH of functions h : GA → Rm. Here we are concerned
with functions h ∈ H implemented by MLPs for attributed graphs. The functions
of H are of the form h(X,W) = hL(yL-1,WL) with

y1 = h1(X,Wl) (1)
yl = hl(yl-1,Wl) (2)

for all layers l ∈ {1, . . . , L} where X is a data graph, yl is a vector representing
the output of the function hl, and Wl is the set of adjustable weights (including
biases) of hl. The learning task considered here is based on minimizing a suitable
error function with respect to the weights and biases by gradient descent using
the back-propagation algorithm.

We commence with supervised learning of a single structural perceptron using
the error-back-propagation algorithm. Since L = m = 1, we may drop dispens-
able indices. For any data graph X ∈ X let E = E(y) be a differentiable error
function of the network output variables. The derivative of E with respect to
some weight wk

ij ∈ W is of the form

∂E

∂wk
ij

=
∂E

∂a

∂a

∂wk
ij

= δ
∂a

∂wk
ij

where wk
ij is the kth component of the vector wij ∈ A and
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δ =
∂E

∂a
= g′(a)

∂E

∂y
(3)

is often referred to as the error. Since g and E are known we substitute appro-
priate expressions for g′(a) and ∂E/∂y to evaluate (3). To evaluate ∂a/∂wk

ij we
choose an embedding π ∈ I(X,W ) and set

∂a

∂wk
ij

=
∂

∂wk
ij

{
σ(X,W ) + b

}
=

∂

∂wk
ij

{〈
A(Xπ), A(W )

〉
+ b

}
= π

(
xkij

)
where π(xkij) = xkrs with r = iπ and s = jπ. Putting all together we obtain

∂E

∂wk
ij

= δ · π
(
xkij

)
.

Since the bias b is not involved in the computation of the SH inner product, the
derivative ∂E/∂b = δ is of the same form as in the case of vectorial perceptrons.

Given a gradient of ∇E(W) we adjust the weights wk
ij according to the rule

wk
ij ← wk

ij + ηδ · π
(
xkij

)
where δ is the error, π ∈ I(X,W ) is the embedding chosen to evaluate the
derivatives ∂E/∂wk

ij, and π(xkij) is the permuted input.
Once we know how a structural perceptron operates, it is straightforward to

assemble several structural units with conventional processing units to a struc-
tural MLP. For sake of presentation, we restrict to the simple case that structural
perceptrons may occur only in the first hidden layer.

A structural single-layer network implementing a function y = h(X,W) with
y ∈ R

m is composed of m structural output units, each associated with an
attributed weight graph. A structural multi-layer network with L ≥ 2 layers is
composed of a structural single-layer network implementing the function y1 =
h(X,W1) and a conventional vectorial network with L−1 layers representing
the function y = hL(yL-1,WL) such that (2) holds for all l ∈ {2, . . . , L}. Since
y1 = h1(X,W1) is a real valued vector, it is straightforward to link the modules
h1(X,W1) and h2(y1,W2) implementing the first and second layer, resp., of the
structural MLP. The forward and backward passes, and the error correcting rule
for layers l ≥ 2 follow the same procedure as for vectorial MLPs.

Structural Competitive Learning. Simple competitive learning (CL) is well
suited to cluster or categorize unlabeled data points where the competitive net-
work discovers statistically salient features by itself from the correlations of
the data points. Competitive learning is closely related to Vector Quantization,
Adaptive Resonance Theory, or Self-Organizing Maps. Here, we are primarily
concerned with CL as an elementary building block of unsupervised neural learn-
ing machines from a conceptual rather than practical point of view.

Clustering M attributed graphs X = {X1, . . . , XM} ⊆ GA amounts to parti-
tion the feature space GA such that the average distortion of data graphs to their
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cluster centers Y = {Y1, . . . , YK} ⊆ GA is minimized. The average distortion to
be minimized is of the form

E(M,Y,X ) = 1
N

K∑
j=1

N∑
i=1

mijδ(Xi, Yj) (4)

where δ(.) measures the structural distortion induced by the representation Yi∗
of data graph Xi. Here we assume that the structural distortion δ(.) is the
Euclidean distance induced by the SH inner product. Then competitive learning
proceeds as follows to minimize E in online mode1:

1. Initialize Y = {Y• , . . . YK}.
2. Repeat

(a) Randomly select a data graph X ∈ X .
(b) Find Yi∗ with i∗ = argmini δ(X,Yi) and π ∈ I(X,Yi∗).
(c) Adjust Yi∗ by using the update formula Yi∗ ← ηXπ + (1− η)Yi∗ .
(d) Decrease learning rate η.

3. until no noticeable changes in Y are observed.
4. Output cluster centers Y = {Y• , . . . YK}.

The essential parts of the algorithm are step (2b) and (2c). Step (2b) selects the
model Yi∗ closest to the current data graph X with respect to the Euclidean
distance. In step (2c) the competitive learning rule adjusts model Yi∗ to move it
closer to the current data graph X . This makes the winner more likely to win
on X in the future. Indeed, it has been shown in [7], that any graph isomorphic
to ηXπ+(1−η)Y is a weighted mean of X and Y in the sense of Jiang et al. [8].

Discussion. Besides the well known limitations neural learning machines in the
domain of feature vectors, additional problems arise when dealing with graphs.
Elusiveness of adaptive processing: The gradients ∇E of both error functions
as a function of adjustable parameters are not well defined, because they both
depend on the the particular choice of an embedding. Consequently, there may
be several directions of steepest descent. Hence adjusting the parameters may
move the algorithm in a wrong direction. Since there is no canonical embedding
the algorithm may have a tendency to zigzag its way through the weight space
without gaining substantial improvements. Moreover, the non-uniqueness of ∇E
makes a theoretical analysis of convergence properties difficult.
Computational inefficiency: As opposed to learning on vectorial data, neural
learning machines in the domain of attributed graphs are computationally inef-
ficient. The exponential computational effort results from the NP completeness
of determining the SH inner product. Solving a large number of NP-complete
problems to train a neural network may hinder its practical use. Thus we may
resort to approximate solutions of the SH inner product. Approximate solutions,
however, increase the number of potential directions to mislead the algorithm.
In the case of MLPs, using approximate solutions of the SH inner product might

• Minimizing (4) in batch mode corresponds exactly to the K-means algorithm [7].
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Fig. 1. The evolving MSE of the function regression problem. Shown are the training
(solid line), validation (dotted line), and test error (dashed line).

have a similar effect as training with noise. The approximations will smear out
data graphs and reduce over-fitting.
Optimal MLP architecture: Due to missing analytical tools, the most natural
choice of classifiers in the area of structural pattern recognition are K-nearest
neighbor (KNN) classifiers. The performance of KNN classifiers is heavily depen-
dent on the choice of K and the similarity measure. Structural MLPs sweep this
problem under a big rug of determining the optimal number of structural and
vectorial hidden units and the order of weights graphs in the first hidden layer.

4 Experiments

This section serves to illustrate that adaptive processing of structures using
structural perceptrons can be successfully applied to simple function regression,
classification, and clustering tasks on attributed graphs. In all of our experiments
we used an approach proposed by [7] to approximate the SH inner product.

Function Regression
In our first experiment we tested a structural MLP on a function regression prob-
lem. The data set was generated by sampling the function

f :W20
R

→ [0, 1], X �→
∑
(i,j)∈E(X) |μX(i, j)|
|X |

(
|X | − 1

)
where W20

R
denotes the set of all random weighted graphs X of order |X | ≤ 20

having weights drawn from a N(0, 1) normal distribution. The function f(X) ∈
[0, 1] measures the weighted edge density of a graph X .

To compile the data set, we generated 1250 graphs from a uniform distribu-
tion over the set W20

R
. The data set was divided into a training, validation, and

test set composed of 500, 250, and 500 weighted graphs, respectively.
We used a two-layer perceptron consisting of 10 structural units with tanh-

activation function and one linear output unit. Each weight graph in the first
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Fig. 2. Images of handwritten characters ′X ′ and ′Y ′. The first column shows the
model images. Column 2-6 are samples of corrupted images with increasing noise level
σ = 2, 4, 6, 8, 10. For sake of presentation no rotation is shown.

hidden layer was of order 3. We set the initial learning rate η and the momentum
term α to 0.1. We trained the network using the standard mean sum-of-squares
error (MSE) function.

Figure 1 plots the training, validation and test error against the number
of passes through the training set. All three error rates have converged by
maintaining a small oscillation around Etrain = 0.0066, Evalid = 0.008, and
Etest = 0.0077. Since η → 0, the oscillations are due to the randomness of the
approximate solution of the SH inner product. From the plot we see that random-
ness of approximations is similar to training with noise and therefore prevents
over-fitting of the training data.

Classification: Synthetic Characters
In this experiment we investigated the capabilities of a single structural percep-
tron (SP) to deal with both types of errors occuring in graph based representa-
tions, structural variations and noisy attributes.

We used synthetic data to emulate rotation, translation, and scaling invariant
handwriting recognition of characters as it typically occurs in pen technology of
small hand-held devices. We have drawn two handwritten characters models ′X ′

and ′Y ′. The contours of each image were expressed as a set of points in the 2D
plane. For each model we generated corrupted data characters as follows: First
we randomly rotated the model image. Then to each point we added N(0, σ)
noise with standard deviation σ = 2, 4, 6, 8, 10. Each point had 10% probability
to be deleted. Figure 2 shows the models and a sample of corrupted data images.
Each point set was transformed to a fully connected attributed graph. Vertices
represent the points and edges an abstract line between the corresponding points.
The attributes are from A = [0, 1]3 ⊆ R

3 and contain normalized distance values
including their statistical spread and location parameters. Table 1 summarizes
the structural variation of the data set revealing a strong variation, in particular
at a high noise level.

We trained a SP with logistic sigmoid activation function. The weight graph
W was of order |W | = 20. The learning rate was initially set to 0.1 and the
momentum term to 0.2. The network was optimized using the cross-entropy
error function.
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Table 1. Structural variations of the character data set. Shown are the mean, variance,
and the maximal difference Δ = max−min of vertices for each noise level σ. For each
entry x/y the numbers x and y refer to character ′X ′ and ′Y ′, respectively.

2.0 4.0 6.0 8.0 10.0

mean 16.8/20.5 21.7/25.9 27.2/32.9 31.6/38.2 36.0/43.3
var 0.98/1.07 3.70/4.10 4.84/6.35 6.75/7.41 7.43/9.40
Δ 6.0/6.0 11.0/12.0 12.0/16.0 17.0/14.0 15.0/19.0

Table 2. Classification results: (a) synthetic characters and (b) arm postures. To (a):
Shown are the percentage test error rates of the SP and SV classifiers for varying noise
level σ. To (b): Shown are the number of misclassified samples by NN• and NN• for each
class and the total percentage error rate E. The numbers in parenthesis indicate the
number of images of the corresponding class.

(a)

σ 2 4 6 8 10

SP 0 0 1 2 2
SV• 0 0 6 8 29
SV• 0 0 4 6 23
SV• 0 0 5 4 29
SV• 0 0 5 4 20

(b)

P• P• P• P• P• E
(37) (48) 48) (48) (48) [%]

NN• 3 15 44 40 0 44.5
NN• 3 0 0 1 0 1.7

We compared the SP classifier with four support vector (SV) classifiers for
proximity data: (SV1) the pairwise proximities classifier proposed by [5], (SV2)
the same classifier with RBF kernel, (SV3) support vector learning using the SH
inner product as a non-positive semi-definite ’kernel’, and (SV4) support vector
learning with RBF kernel on the Euclidean distance induced by the SH inner
product. To provide a fair comparison we used the same setup as in [3]. We
sampled 50 training examples of each character and performed 10-fold cross
validation to estimate the generalization error.

The results are given in Table 2(a). The proposed SP algorithm performed
more robust to noise and structural variation than the SV classifiers. As expected,
the performance of all classifiers decreased with increasing noise level though the
recognition rate, in particular for the SP classifier, is very good even for highly
corrupted characters.

Clustering: Sensing People
In our last experiment we applied the CL algorithm to learn the class structure
of arm postures as shown in Figure 3. Five different classes of 229 postures are
considered: (P0) Unknown, (P1) NoArms, (P2) RightArm, (P3) LeftArm,
and (P4) BothArms, each referring to the lifted arms of a person. Each image
was obtained by automatically localizing a person in video data from a camera.
The localized person was enclosed in a bounding box. Position of body parts,
like head and hands of the person are identified by skin color. We transformed
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(a) P• (b) P• (c) P• (d) P• (e) P•

Fig. 3. Sample images of arm postures.

each image to a fully connected attributed graph. The vertices represent the left
or right corner of the box, or a body part. We used the 1-c coding scheme with
c = 3 to transform the discrete attributes into a numerical vector a ∈ {0, 1}3.
Edge attributes are the distance between the corresponding components in the
image.

We randomly selected five perturbed patterns of each class to initialize the
models2. After 450 iterations the average distortion E has almost converged.
Small oscillations of E are due to the approximative nature of the proposed
algorithm and the non-uniqueness of the weighted mean. Table 2 shows the
percentage error rate of the nearest neighbor classifiers using the models after
initialization (NN0) and after clustering (NN1). The results indicate that structural
CL is able to find the class structure of the data set.

5 Conclusion

In this paper we considered the problem of constructing supervised and unsuper-
vised neural learning machines when data is given in terms of attributed graphs.
We proposed a structural perceptron for adaptive processing of graphs. The key
concepts to facilitate learning on graphs are adjustable attributed graphs and
the SH inner product of graphs mimicking inner products of vector spaces. In
first experiments we applied structural perceptrons to solve supervised and un-
supervised learning problems. The main problems, however, with structural per-
ceptrons are the elusiveness of adaptive processing and the high computational
complexity. Hence, for practical application the problem of analytical and com-
putational intractability inherent in the SH inner product will be of increasing
importance. Possible directions of future work include application of structural
perceptrons to other supervised and unsupervised neural learning architectures,
experimental validation on practical problems, investigations on tricks of the
trade to accelerate convergence, and theoretical analysis on statistical learning
theory, representational capabilities and convergence properties.

References

1. H. Bunke, P. Foggia, C. Guidobaldi, and M. Vento. Graph clustering using
the weighted minimum common supergraph. In E. Hancock and M. Vento, edi-
tors, Graph Based Representations in Pattern Recognition. 4th IAPR International
Workshop, GbRPR 2003, LNCS 2726, pages 235–246. Springer-Verlag, 2003.

• The initialization scheme is due to the fact that simple CL performs poor even for
feature vectors, if the initial models are not chosen carefully.



94 Brijnesh J. Jain and Fritz Wysotzki
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Abstract. This paper studies on a new eignespace method which em-
ploys autoassociative networks for object recognition. Five layered au-
toassociative network is available to obtain a manifold on the minimum
square error hypersurface which approximates a distribution of learning
sample. Recognition experiments were performed to show that the man-
ifold of rotating object is obtained by learning and the objects, such as
a mouse and a stapler, are correctly recognized by the autoassociative
networks. It is also shown that the accuracy of approximating closed
manifold and the accuracy of recognition are improved by emploing mul-
tiple autoassociative networks each of which is trained by a partition of
the learning sample.The property and the advantage of the five layered
autoassociative network are demonstrated by a comparative study with
the nearest neighbor method and the eigenspace method.

1 Introduction

The object recognition techniques play essential roles in widely raging applica-
tions from inspection and classification of industrial parts to vision system for
autonomous mobile robot.

One of the typical object recognition techniques is the nearest neighbor
method which compares an input image with multiple template images of each
object captured a priori for variety of positions and illuminating condition. A
drawback of the nearest neighbor method is that the required computation
time and storage increases with the number of template images which increases
rapidly depending on the degree of freedom of the variations.

To solve the problem Murase et al.[1] proposed a parametric eigenspace
method which compresses an input image onto the eigenspace. The method
parametrically represents a sequence of continuously varying images as a man-
ifold in the eigenspace spanned by a small number of pricipal components of
the variation to reduce the computation time and storage. However, since the
eigenspace is derived by the K-L transformation, which is linear, the dimension-
ality of the eignespace tends to be higher than the intrinsic dimensionality of the
variation. While the parametric representation is suitable for variations related
to explicit parameters such as rotation, it is impossible to represent nonpara-
metric or hidden parametric variations.

A. Fred et al. (Eds.): SSPR&SPR 2004, LNCS 3138, pp. 95–103, 2004.
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This paper studies on a new eignespace method which employs autoassocia-
tive networks for object recognition. The autoassociative network is an artificial
neural network having the same number of neurons in input and output lay-
ers, and the less in the middle (hidden) layers. The network is trained using
the input vector itself as the desired output by the back propagation method [2].
This training leads to organize a dimension reduction network between the input
layer and the middle layer, and a restoration network between the middle layer
and the output layer (Fig.1). The autoassociative neural network was applied to
image compression and dimension reduction [3–5]. The five layered autoassocia-
tive network performs dimension reduction by nonlinear mapping and the input
pattern is mapped onto a manifold on minimum square error hypersurface which
approximates the distribution of the learning sample. The square error between
the input and the output of the network stands for squared distance between the
input and the manifold, by which the minimum distance classification is easily
performed for the input object [6].

Dimension reduction Restoraction

Fig. 1. Autoassociative neural network

Recognition experiments were performed to show that the manifold of rotat-
ing object is obtained by learning and the objects, such as a mouse and a stapler,
are correctly recognized by the autoassociative networks. It is also shown that
the accuracy of approximating closed manifold and the accuracy of recognition
are improved by emploing multiple autoassociative networks each of which is
trained by a partition of the learning sample. The property and the advantage
of the five layered autoassociative network are demonstrated by a comparative
study with the nearest neighbor method and the eigenspace method.

Section 2 outlines the learning and the classification by means of the autoas-
sociative network, and Sect.3 describes the learning of the manifold yielded by a
rotating object. Section 4 describes the experiments and the results of the object
recognition, and Sect.5 summarizes and concludes this work.

2 Autoassociative Neural Networks

The proposed method organizes a set of networks each of which are trained
independently for each class using the feature vector of the class. As a result,
the squared error between an input and the output is generally minimized by the
network of the class to which the input pattern belongs. This property enables
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us to classify an unknown input pattern: The unknown pattern is fed to all
networks, and is classified to the class with minimum squared error.

In contrast with the pattern recognition using the mutual associative net-
works, each autoassociative network is organized independently for each class,
and the training load of the networks can be distributed to handle large scale
pattern recognition problems. The first and the second layers of the five layered
networks perform nonlinear encoding operation, and the fourth and the fifth
layers the nonlinear decoding operation. The five layered networks studied in
this paper have the same number of neurons in their second and fourth layers,
and thus symmetric encoding and decoding networks.

Figure 2 shows an example of learning process of the five layered autoassocia-
tive networks for nonlinearly distributed two dimensional patterns. The axes of
graphs represent the feature value (x1,y1). The number of neurons in the input
layer (first layer) to the output layer (fifth layer) is 2, 2, 1, 2, 2 respectively. The
input signal is samples of two dimensional feature vector from each class, and
the same signal is given as the teaching signal (desired output), and the learning
process is repeated independently for each class. Two curved line segments in
this figure represent the trace of the output which are obtained by sweeping the
output of hidden layers from 0 to 1. Squares on the line segments represent the
projections of the samples. These line segments converge to the medial axes of
the distributions, which play the same role as the principal axes of the principal
component analysis.

Figure 3 shows how to classify an input pattern by the converged autoas-
sociative networks. An input pattern (x1, x2) is given to the network of each
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Fig. 2. Learning process of five layered autoassociative neural networks
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class. The output (y1, y2) and (z1, z2) are the coordinates of Y , and Z on the
projection line respectively, and the squared distance are given by ‖Y − X‖2,
and ‖Z − X‖2 respectively. The input pattern X is classified to the class with
the minimum distance, i.e. the class which minimizes the square error of the
input and the output of the network, e.g. the left lower class in this figure. The
output u and v from the hidden layers take the value from 0 to 1.
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Fig. 3. Discrimination of unknown pattern by three layered autoassociative neural
networks

Figure 4 shows example of dimension reduction and classification by five
layered autoassociative networks for nonlinearly distributed patterns. This figure
shows that the samples are projected to curved hypersurfaces (curved lines in
two dimensional case) by five layered networks. An input pattern is classified to
the class with the minimum squared error, i.e. the class with the nearest curves.
While the nonlinearly distributed pattern can not be completely separated by
the three layered networks, all samples can be separated by the five layered
networks which can perform nonlinear projections (Fig. 4).

3 Learning of the Eigenspace
by the Autoassociative Network

This section describes how the five layered autoassociative network learns the
image sequence of an object continuously changing its appearence.

The learning sample of each object consists of 36 gray scale images of size
400× 400 which are captured at every 10 degree of rotation on vertical axis. We
used a computer controlled turn table to acquire the learning sample. Figure
5 shows the example of the learning sample. The input of the autoassociaive
network is 100 dimensional feature vector composed of the average brightness
in 10× 10 blocks of the image. The feature vector is input to the autoassociaive
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Fig. 5. Example of learning sample of a rotating object

network as an input signal and a desired output. The number of neurons of 5
layered network is 100,4,1,4,100 respectively. The network of this organization
approximates the distribution of the learning sample in the feature space by four
pieces of one dimensional curves.

Figures 5 and 6 show an example of rotating object and the distribution of
the feature vectors. Figure 6 shows the distribution projected and visualized in
the three demensional eigenspace obtained by the principal component analy-
sis of the 100 dimensional feature distribution. The x, y, and z axis respectivly
stands for the principal components with largest three variances (eignvalues) of
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the distribution. The feature vector of the rotating object draws a trajectory in
the feature space. In order to impove the accuracy and the efficiency of approx-
imating the closed manifold, the learning sample is divided into several groups
and fed to separate networks.

Figure 7 shows the relationship between the number of learning and sum of
the squeared error. The curve A, B and C in the figure shows the squared error
when the learning sample is divided into 1, 2 and 4 groupes, respectively. This
figure shows that the more the number of groupes is the less the squared error
is.

Figure 8 shows the distribution of the learning sample and the approximating
curves obtained by the autoassociative networks. Figure 8(a), (b) and (c) is the
result for the case where the learning sample is devided into 1, 2 and 4 groupes,
respectively. Each figure shows the three dimensional eignspace represented in
the same way as in Fig.6 and its projection to x–y, y–z and z–x planes for visual
clarity’s sake. The dotted line in the figure is the manifold on which the learn-
ing sample is distributed, and the solid line is the approximating curves of the
manifold which is learned by the autoassociative networks. Each approximating
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(a)Number of partition:1

(b)Number of partition:2

(c)Number of partition:4

Fig. 8. The approximating curves obtained by the autoassociative networks

(a)Mouse (b)Stapler (c)Camera (d)Mobilephone

Fig. 9. Four classes of objects used in the recognition experiment

curve is the output of the network when the output of the middle hidden unit
is swept from 0 to 1 as described in Sect.2. This figure shows that the more the
number of groupes the more accurately the distribution is approximated.

4 Object Recognition by the Autoassociative Networks

To demonstrate the feasibility of the object recognition by the autoassociative
networks, recognition experiment of four classes of objects shown in Fig.9 was
performed.

Each sample for learning and test consists of 36 gray scale images per class,
and were acquired in the same way as described in Sect.3. The learning sample
and the test sample is different in the rotating angle by 5 degrees.

Recognition experiments were performed under the following five conditions:

1. Five layered autoassociative network (single segment)
2. Five layered autoassociative network (two segments)
3. Five layered autoassociative network (four segments)
4. Nearest neighbor method
5. Nearest neighbor method in eigenspace



102 Takamasa Yokoi et al.

Table 1. The recognition rate of each method

Method Recognition rate(%)

Five layered autoassociative network (single segment) 97.92
Five layered autoassociative network (two segments) 98.69
Five layered autoassociative network (four segment) 100.00

Nearest neighbor method 100.00
Nearest neighbor method in eigenspace 100.00

Table 2. The result of recognition experiment with smaller learning samples

Number of learning samples
Method 36 12 4

Five layered autoassociative networks(four segments) 100.00% 100.00% 100.00%
Nearest neighbor method 100.00% 100.00% 93.06%

Nearest neghbor method in eigenspace 100.00% 99.31% 94.44%

Where “single segment” is a synonym of division into one group, and so on.
Table 1 shows the recognition rate of each method.

mmThe five layered autoassociative networks with more segments achieved
higher recognition rate. This result is justified by the fact that the closed man-
ifold is more accurately approximated when separate networks are trained by
divided learning samples. The nearest neghbor methods achieved 100% recogni-
tion rate both in original feature sapce and eigenspace.

Table 2 shows the result of recognition experiment when smaller learning
samples were used.

The autoassociative networks keep high recognition rates for smaller sample
case while the nearest neghbou methods deteriorate the performance.

5 Concluding Remarks

This paper studied on a new eignespace method which employs autoassociative
networks for object recognition. The results of recognition experiments for four
classes of objects demonstrated that:

1. the five layered autoassociative networks achieve higher recognition rate
when separate networks are trained by divided learning samples because
the closed manifold is more accurately approximated, and

2. they outperform the nearest neighbor methods in original space and the
eigenspace with smaller learning samples.

Remaining future research topics are shown as follows,

1. Learning and recognition of object images which change with higher degree
of freedom,

2. recognition of more classes of objects, and
3. pose estimation of the object
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Abstract. Online graphics recognition has become the key problem for pen-
based user interface on small screen devices, such as PDA and Tablet PC. In 
this paper, a novel constraint-based approach to online graphics recognition is 
proposed. The key idea of our approach is that when the user is drawing a 
graphic object, the system can extract the constraints between primitives and 
basic shapes from the object and use these constraints to retrieve similar graphic 
objects from the database at run time. The user can then choose the standard ob-
ject from the ranked list of results to replace his sketches before he finishes 
drawing all strokes of the object. For this purpose, we summarize three types of 
primitives and several types of basic shapes as the basic components of a 
graphic object. We also define a set of constraints between primitives and basic 
shapes to represent their structural relations. The algorithms for online con-
straint extraction and graphics recognition are also presented. Experimental re-
sults show that our approach is efficient for online graphics recognition and ef-
fective for improving the user’s productivity.  

1   Introduction 

Recently pen-based devices such as PDA and Tablet PC have become more and more 
common to the general public. In these devices, graphics is an important and useful 
means for users to store information, express thought, and sketch designs. Many sys-
tems were developed to facilitate users to draw graphics, such as Microsoft Visio, 
SmartDraw, and AutoCAD. In these systems, the user is asked to draw graphics by 
selecting the particular type of graphic object from lots of toolbar buttons or menu 
items. This task is very time-consuming and inconvenient, especially when the num-
ber of predefined graphic objects in the system is very large. The most convenient and 
natural way for human beings to draw graphics should be using a pen to draw 
sketches, just like drawing on a real sheet of paper. However, the sketches drawn in 
this way are not standard and clear in appearance, not compact in representation and 
storage, and not easy for machines to understand and process. It is necessary to rec-
ognize and convert the sketches to the regular and standard graphic objects that the 
user intends to draw. Moreover, it is even better if we can do recognition while the 
user is sketching since the recognized parts can provide immediate and useful feed-
back to the user so that he can realize errors or inappropriateness earlier and therefore 
draw the graphics more perfectly.  In many cases, recognizing graphic objects early 
can also significantly save the user’s input strokes and time. Hence, online graphics 
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recognition has become the key problem for pen-based user interface on these small 
screen devices. Moreover, online graphics recognition can be also viewed as a query 
and retrieval problem. The user’s input strokes can be viewed as a query and the sys-
tem retrieves the similar graphic objects from a number of predefined standard 
graphic objects. Although the aims of retrieval and recognition are different, the un-
derlying technology is common in that a matching procedure is needed to compare the 
input pattern with each known pattern. Therefore, the techniques for retrieving online 
graphics are also within the scope of online graphics recognition. In the following, we 
will not distinguish retrieval from recognition. The readers should bear in mind the 
common points and differences between them. 

Compared with offline graphics recognition, online graphics recognition has some 
special characteristics. First, the input graphic object for online graphics recognition is 
usually incomplete, since our goal is to recognize the user’s sketches before he fin-
ishes the whole graphic object, which can provide an immediate and useful feedback 
to the user. This characteristic implies online graphics recognition has to recognize 
the user intended object based on partial information in many cases. Second, the 
strokes in the same graphic object can be drawn in different orders by different users. 
Hence, the incomplete user’s input of the same graphic object can be very different 
for online graphics recognition. That means it is not easy to apply the traditional 
matching methods for offline graphics recognition to online graphics recognition, 
since there can be many different kinds of incomplete graphic objects for the same 
complete one and it is difficult to match all of them to the complete one. Third, online 
graphics recognition needs more efficiency than offline graphics recognition. The 
system has to provide the immediate feedback to the user at run time; otherwise, it 
will be tedious and time-consuming instead of saving the user’s input strokes and 
time. Hence, the efficiency of online graphics recognition is very important for a good 
user interface. 

Many research works have been done on such online graphics recognition. Ze-
leznik et al. [1] have invented an interface to input 3D sketchy shapes by recognizing 
the predefined patterns of some 2D graphic objects. Jorge’s group [2][3] have imple-
mented an online graphics recognition tool that can recognize several classes of sim-
ple shapes based on global area calculation, which can hardly distinguish ambiguous 
shapes such as pentagon and hexagon and therefore cannot achieve high recognition 
precision generally. SILK [4] is an informal sketching tool that combines many of the 
benefits of paper-based sketching with the merits of current electronic tools. JavaS-
ketchIt [5] is another system for this purpose, which can generate a Java interface 
from hand-drawn geometric shapes. SKETCHIT [6] is a system that can transform a 
single sketch of a mechanical device into multiple families of new designs. LADDER 
[7] is a language to describe how sketched diagrams in a domain are drawn, dis-
played, and edited, and used for online graphics recognition. The recognition ap-
proach is still not adequate for a real software tool that can be used for inputting most 
classes of diagrams. Hence, in order to provide the capability to input more complex 
diagrams, it is necessary to extend the online graphics recognition approach to handle 
more complex and composite shapes, as done in SmartSketchpad [8], which can effi-
ciently and effectively input composite graphic objects by sketching only a few con-
stituent strokes. 
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2   Our Approach and Contribution 

In this paper, we propose a novel constraint-based approach to online graphics recog-
nition. The key idea of our approach is that when the user is drawing a graphic object, 
the system can extract the constraints between primitives and basic shapes from the 
object and use these constraints to retrieve or recognize similar standard graphic ob-
jects from the database at run time. The user can then choose the standard object from 
the ranked list of results to replace his sketches before he finishes drawing all strokes 
of the object.  

Our contribution includes, 1) we summarized three types of primitives and several 
types of basic shapes; 2) we defined a set of constraints between primitives and basic 
shapes to represent their structural relations; 3) we developed an algorithm for online 
constraint extraction from the user’s input graphic object, which is incomplete in 
many cases; 4) we developed another algorithm for online graphics recognition based 
on the constraints of the user’s input graphic object; 5) we proposed an algorithm for 
calculating the similarity between the user’s input graphic object and the candidate 
graphic objects for displaying the recognized results in a ranked list.  

 

 

Fig. 1. The flowchart of our approach 

Figure 1 is the flowchart of our approach. The user begins his sketches by drawing 
some basic strokes (or primitives). The system starts to extract the constraints be-
tween these primitives and uses the extracted constraints to recognize the similar 
standard graphic objects in the database. By using our proposed similarity calculation 
algorithm the system can then calculate the similarity between the user’s input 
graphic objects and the candidate graphic objects, and display the recognized results 
in a ranked list. If the user’s intended graphic object is displayed in the list, he can just 
choose this standard object to replace that incomplete sketches he has just drawn. The 
system applies these procedures, such as constraint extraction, graphics recognition, 
and similarity calculation, at the same time as the user is drawing the sketches. Hence 



A Novel Constraint-Based Approach to Online Graphics Recognition      107 

it can facilitate the user to draw graphics by significantly saving the user’s input 
strokes and time. 

In the following of this paper, we first propose our constraint-based approach to 
describe the user’s input graphic object in Section 3. Then, algorithms for constraint 
extraction and graphics recognition are discussed in Section 4 and 5, respectively. 
Finally, experimental results and concluding remarks are presented. 

3   Constraint-Based Representation of Graphic Objects 

As we discussed above, our approach focuses on the relative spatial relations between 
primitives and basic shapes. Hence, we use constraints to represent the user’s input 
graphic object in our approach. Constraint, or geometric constraint, is not a new con-
cept, which has been widely used in CAD systems (e.g., [9]). However, in many CAD 
systems (e.g., [9][10][11]), the constraints are defined, extracted, and specified by 
professional and experienced users. In our approach, we defined a set of constraints to 
describe the spatial relations between primitives and basic shapes. The system can 
extract constraints while the user is drawing the sketches and uses these constraints to 
recognize similar standard graphic objects in the database at run time. Thus, our defi-
nition of constraints should be broad enough to support a wide range of graphic ob-
jects, while remaining narrow enough to be comprehensible. 

First of all, we define three types of primitives: Line, Circle, and Arc. As shown in 
Figure 2, P1 and P2 are two endpoints of a Line. We can assume P1 is the start-point 
and P2 is the end-point such that we can define the direction of a Line is from P1 to P2. 
For a Circle primitive, it also has two attributes, C (center-point) and R (radius). In 
the definition of an Arc, we use P1 and P2 to represent the start-point and end-point of 
an Arc since the user usually pays more attention to the start-point and end-point than 
the center-point. That means the user does not care about the curving of an Arc but 
the position of an Arc. However, the direc-
tion of the bow of an Arc is very important 
for the user to distinguish different graphic 
objects. Hence, if we define a positive direc-
tion from P1 to P2, like X-axis, then we can 
define the Direction of the bow of an Arc. 

Then we define the constraints between 
the above primitives. We analyzed more 
than 300 types of graphic objects to summarize the constraints. Since we only use 
three parameters (i.e., P1, P2, and Direction) to define an Arc primitive, we can image 
an Arc as a Line plus a Direction. Hence, we can just analyze the constraints between 
Line primitives and apply these constraints to Arc primitives by simply adding a Di-
rection parameter. Therefore, we first define four constraints between Line primitives 
and Arc Primitives, including Connection, Intersection, Parallelism, and Perpendicu-
larity. For a Circle primitive, we regard it as a basic shape, which is discussed in the 
following section, and define the constraints between basic shapes and primitives to 
describe their spatial relations. Here, for easily understanding, we only use Line 
primitives to describe the four constraints between Line and Arc primitives. For the 
cases including Arc primitives, only one additional parameter, Direction, is required. 

 

 

   
Line Circle Arc 

Fig. 2. Primitives 
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(1) Connection 
Connection is a constraint to describe that two primitives share the same end-point, 
just like they are connected at one end. Figure 3 illustrates this constraint. 
 

 

Fig. 3. Connection 

From the above figure, we can see that there are only four cases between two 
primitives that are connected with each other, since one Line or one Arc has two end-
points. We use a parameter type to represent this information and use another parame-
ter angle to store the angle between the two primitives. 

|)||/(|)cos( 2121 LLLLangle •== α  
In this definition, the parameter angle itself is not sufficient to fully specify the 

spatial relationship of two intersected lines since the angle has a direction. Thus, we 
use another parameter direction to describe this information. Consider L1(x1,y1,0) and 
L2(x2,y2,0), which are 2D vectors in 3D space, and their cross product 
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L is perpendicular to the plane formed by L1 and L2, and its direction complies with 
the Right Hand Rule. Thus we can determine the direction by the sign of Lz. In addi-
tion, we use the parameter length to describe the relative length of L2 to L1 (length = 
|L2|/|L1|). 

(2) Intersection 
Intersection is a constraint to describe that two primitives 
are intersected with each other, which means they share the 
common point on the primitives. 

In Figure 4, two Line primitives are intersected with 
each other at iPoint. We define four parameters to describe 
this constraint. The first two parameters describe the rela-
tive position of iPoint on two Line primitives as follows. 
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We use other two parameters, angle and length, to describe the angle between two 
primitives and relative length of them just like Connection constraint. 

(3) Parallelism 
Similar to Intersection, we also use four parameters to 
describe Parallelism geometric constraint. The first 
one is distance = D(L1,L2)/|L1|, in which D(L1,L2) de-
notes the real distance between line L1 and L2. The 
second one, direction, is used to describe whether L2 is 
on the left or right to L1 and the computing method is                  

 
 

Fig. 5. Parallelism 

 

Fig. 4. Intersection 
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similar to the definition in Connection constraint. Moreover, we use two other pa-
rameters to specify their relative position and length. In Figure 5, L1 and L2 are parallel 
to each other; sp and ep are the projections of the endpoints of L2 on L1. We set: 

2111

21

..

.sp
point-start

PLPL

PL

−
−=

2111

21

..

.ep
point-end

PLPL

PL

−
−=  

(4) Perpendicularity 
For the Perpendicularity relationship in which two primi-
tives are connected or intersected, we can use Connection 
or Intersection to represent it, respectively. Here, we only 
define the Perpendicularity between two primitives when 
they are not connected or intersected: 

 

• Length ||/|| 12 LL=  

• Per-point is the perpendicular point of 2L  on 1L  

• Start-point ||/|.,point-per| 212 LPL=  

• End-point ||/|.,point-per| 222 LPL=  
 

When we calculate start-point and end-point, we set a sign to the value of them. 
We set it positive if the point is on the left-hand side of L1 and negative on the right-
hand side. The computing method is similar to computing direction in Connection 
constraint. In Figure 6, the values of start-point and end-point are both positive. 

Some primitives can constitute a very common 
and basic shape, which is often used by users in 
many complex graphic objects. Especially, the user 
usually divides the whole sketch into some basic 
shapes when drawing a complex sketch. Therefore, 
we also summarized some basic shapes to represent 
the user’s input graphic object at a higher level, as 
illustrated in Figure 7. 

For these basic shapes, we also define a set of 
constraints to describe the structural relations be-
tween them. For instance, to the closed shapes, such 
as Rectangle and Circle, we defined the Inner/Outer constraint to describe whether 
other primitives or basic shapes are inside or outside them, because, in many cases, 
the user pays more attention to the Inner/Outer relations between shapes than the 
precise position or orientation of these shapes. For other non-closed shapes, we also 
defined other constraints (e.g., relative position and orientation) to describe the struc-
tural relations between these basic shapes and other primitives. 

4   Online Constraint Extraction 

In this section, we discuss our developed algorithm for online constraint extraction, 
which means that our approach extracts the constraints between the primitives and 
basic shapes while the user is drawing sketches. This algorithm is developed based on 

 

Fig. 6. Perpendicularity 

 

Fig. 7. Some basic shapes 
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our previous work for offline graphics recognition [12]. We divide the procedure of 
recognizing user’s drawing sketches into three stages.  

 

1. The user begins his sketches with simple primitives, which do not constitute any 
basic shapes. However, the simple primitives do contain useful information about 
the user’s intention, e.g., they can be a part of a standard graphic object. Hence, our 
algorithm extracts the constraints between the primitives as the representation of 
user’s input at this stage and uses these constraints to retrieve the standard graphic 
objects that contain the similar part.  

2. When the user continues to draw sketches, there are enough primitives to constitute 
a basic shape. At this stage, our approach uses the constraints between the primi-
tives to recognize them as a basic shape and provides a useful and immediate feed-
back to the user. The user can accept the feedback or adjust his sketches at this 
stage. Once the user accepts his current sketches as a basic shape, his sketches are 
replaced by the standard basic shape and he can go on with his sketches. The sys-
tem will then extract the constraints between the newly drawn primitives until a 
new basic shape is recognized. 

3. As the user goes on with his sketches, the constraints between the basic shapes 
should also be extracted since they contain much useful information for recogni-
tion. Hence, at the third stage, the system extracts the constraints between basic 
shapes and constructs a hierarchical constraint-based structure for recognition. 

 

For the detail of the online constraint extraction algorithm, see the Case-based 
Knowledge Acquisition Algorithm (CKAA) [12]. 

5   Online Graphics Recognition 

The constraints extracted by the above algorithm are stored in a syntactical tree. We 
use this tree to retrieve or recognize the similar standard graphic objects. We search 
all the predefined graphic objects in the database for those that contain the similar 
constraints, i.e., contain the similar graphic object to user’s input. However, we can-
not use the matching method for recognition since the user’s input is usually incom-
plete. Therefore, we propose a new scheme, which is like a reasoning method, for 
recognizing graphic objects based on the constraints. When we test one standard 
graphic object for whether it contains the similar graphic object to the user’s input or 
not, we first hypothesize that one stroke of the standard graphic object is in the user’s 
input. Using the constraints extracted from the user’s input, we can calculate the 
specification of another primitive or basic shape based on the hypothesis stroke. Then 
we search the standard graphic object to see whether it contains this stroke. If the 
stroke is found, we continue tracing other constraints until all strokes are found in the 
standard graphic object, which means, this standard graphic object contains the simi-
lar graphic object to the user’s input. Otherwise, we select another stroke to repeat 
this hypothesizing/testing procedure. The algorithm presented below deals with ideal 
situations. In practice, the tolerance should be considered and the matching measure 
should be defined, which are discussed in our previous work [12]. The detail of the 
online graphics recognition algorithm is shown in Algorithm 1. 
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When the result is output, the similarity between the user’s input graphic object 
and the standard graphic object is calculated from two aspects. The first is the similar-
ity between primitives, which is calculated according to the difference of length, an-
gle and position between the two primitives. The second is the similarity of con-
straints, which is calculated by the percentage of exact matched primitives in the 
standard graphic object. According to the similarity of the standard graphic objects, 
we select top 10 objects in the database and return them in a ranked list to the user. 

 
Algorithm 1: Online Graphics Recognition 
Input:          SC:  the set of constraints from the user’s input graphic object 

      DB: the database consists of standard graphic objects 
      TL:   the tolerances, e.g., length and number tolerance 

Variables:   CT:   the temporary constructed tree for reasoning procedure 
      SM:   the set of marks to indicate primitives that have been tested 

Output:      RR:   the recognition result, which type the graphic object is 
1. Select a standard graphic object SG from DB. If all standard graphic objects have 

been searched, then stop (failure) 
2. Set CT empty and initialize SM 
3. Select the next primitive P from SG, which has not been marked in SM. Add it into 

CT as the root, and mark it in SM to indicate this primitive has been tested. If all 
primitives have been marked in SM, goto step 1. 

4. Select the next constraint C from SC. If all constraints have been traced then stop 
(success) and output the current SG as RR  

5. Calculate the new primitive or basic shape P’ using P and C 
6. Search for a P’’ in SG, which is similar to P’ using the tolerances in TL.  
7. If P’’ is found then set it as a child of P in CT and mark in SM to indicate P’’ has 

been used and goto Step 4 
8. If P’’ is not found and the number of missing primitives exceeds the tolerance then 

goto Step 2. Otherwise, goto Step 4 

6   Experimental Results 

We have implemented a prototype system and done several experiments based on a 
database consisting of 345 standard graphic objects, some of which are illustrated in 
Figure 8. The user is asked to draw graphic objects and the system provides               
immediate recognition results, from which the user can select his intended standard 
graphic object. The average recogni-
tion accuracy is 90.5% since the user’s 
input can be very different. We also 
record the number of strokes that have 
been saved for drawing an object. In 
our experiments, the number of one 
standard object’s strokes ranges from 
1 to 14 and the average is 10.32. The 
average number of saved strokes is 
2.78, nearly 27%. We also evaluate 
the response time of our approach. 
The average response time to user’s 

 

Fig. 8. Some standard graphic objects 
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input is within 100ms, which is efficient enough to give real-time response for a data-
base consisting of several hundreds of graphic objects. From the experimental results, 
we can see that our approach is effective for online graphics recognition and saving 
the user’s input strokes and time. 

7   Conclusion and Future Work 

In this paper, we proposed a novel constraint-based approach to online graphics rec-
ognition, with which the system can extract the constraints between primitives and 
basic shapes from the user’s input and use these constraints to recognize similar stan-
dard graphic objects. Several constraints are defined and two algorithms are devel-
oped. Experimental results show that our approach is efficient for online graphics 
recognition and effective for saving the user’s input strokes and time. However, some 
aspects of our approach can be improved. More types of primitives, basic shapes, and 
constraints can be added into our approach in the future to support more complex and 
various graphic objects. Two algorithms for online constraint extraction and graphics 
recognition can be also revised to improve the recognition accuracy and save the 
user’s input stroke and time. We also plan to provide more graphic objects from vari-
ous domains to do experiments to test our system. 
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Abstract. The goal of the shape extraction method presented in this paper was 
to obtain a concise, robust, and invariant description of planar object shapes for 
object detection and identification purposes. The solution of this problem was 
chosen in the form of a piecewise-linear skeleton representation of local shapes 
in a limited number of salient object locations. A visual attention operator, 
which can measure the saliency level of image fragments, selects a set of most 
salient object locations for concise shape description. The proposed operator, 
called image relevance function, is a multi-scale non-linear matched filter, 
which takes local maxima at centers of locations of the objects of interest. This 
attention operator allows a simple extraction of vertices for the skeletal shape 
description by local maxima analysis.  

1   Introduction 

In a variety of image analysis tasks related to fast object detection and identification 
(verification), the main concern is adequate and concise representation of the object 
shape [1, 2]. The approach based on shape skeletons is, in the context of this applica-
tion, efficient since it can represent in a very concise manner the topology of an object 
with several connected parts and shape details [3-6]. Such a description permits a 
complete morphological reconstruction of the planar shape provided local scale val-
ues (i.e., diameter values) are available in each skeleton point. 

The classical skeletonization algorithms such as those based on an iterative (mor-
phological) thinning and distance transformation provide the skeletal shape descrip-
tion but they are not robust to various shape distortions and noise [3, 4]. These meth-
ods are usually limited to process only binary images. Some multi-scale algorithmic 
generalizations to gray-scale images and three-dimensional (volume) images are also 
proposed [5-7].  Their performance strongly depends on the knowledge of some addi-
tional parameters, which are sensitive to distortions and irregularities. Complete 
skeletal shape is usually redundant to describe shape in the majority of object detec-
tion applications [1, 2]. Consequently, such a representation creates difficulties when 
comparing skeletal shapes, especially in the case of present noise and shape distor-
tions. 

More recently, several methods were developed to describe skeletal shapes in a 
piecewise-linear manner by skeleton vertices and their interconnections in the form of 
straight-line segments [8-10]. This is a concise representation of skeletal shapes with-
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out using classical skeletonization algorithms. For example, a statistical method of 
principal curves was used to extract directly the skeletal description of point sets              
[8, 9]. The algorithms for drawing principal curves using piecewise-linear approxima-
tion are, in their initial form, limited to simple curves or manifolds, where, for exam-
ple, no intersections are allowed. Another kind of piecewise-linear skeletonization 
algorithms are based on unsupervised neural network methods, such as those based on 
self-organizing maps [10]. The shape skeleton can be obtained from a data-driven 
minimal spanning tree topology of a self-organizing map. The method is quite robust 
against sparse shapes and distortions but limited to process binary images and it dete-
riorates significantly if the segmented object contains components of various local 
sizes.  

In this paper, we suggest a novel approach to skeletal shape description of gray-
scale images based on the determination of salient object locations (i.e., interest 
points) and skeletal shape description relatively to the extracted locations. The whole 
object shape is described in terms of such local skeletal shapes and their relative posi-
tions and connectivity patterns.  At the same time, this approach is an adaptation of 
the skeletal shape description for the case of object detection (localization) and identi-
fication in gray-scale images, without using an explicit image binarization. The de-
velopment of the shape extraction method has the following objectives.  

 
• Concise skeletal shape description by feature extraction in a selected number of 

salient object locations only.   
• A simple distance (e.g., Euclidean distance) between shape feature vectors can 

compare two different shapes without computationally costly shape alignments.  
• The shape features have to be invariant to geometrical transformations such as 

translation, scaling, and rotation. 
• The method can process gray-scale images and have to be robust against noise and 

some local occlusions provided they do not occlude salient locations. 
 
Salient object locations can be determined by the attention focusing approach, 

which was initially proposed to perform time-efficient search for objects of interest 
[11-13]. The underlying idea consists in focusing attention on the most salient image 
fragments or objects of interest, which are stable to intensity changes and shape geo-
metrical transformations and can capture well the overall object shape. This is a bio-
logically inspired approach that models basic elements of the visual perception and 
fast visual search in humans and animals. Given salient fragments, a complex object 
shape can be represented in terms of local shapes of these fragments and their relative 
positions on the image plane.  

The determination of salient locations and shape feature extraction are both im-
plemented by one visual attention operator called image relevance function (IRF) 
[14]. This operator is a multi-scale non-linear matched filter, which measures the 
saliency level of image locations and takes local maxima at the centers of locations of 
the objects of interest. The feature vector in each salient location includes local planar 
shape features and geometry features (i.e., parameters of affine transformations) such 
as relative position, local scale (size), and local orientation.   
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2   Morphological Modeling of Skeletal Shape Features  

The proposed IRF method provides a description skeletal object shape in the form a 
set of most salient object locations each of them being described as a shape feature 
vector. The salient locations can be connected to each other provided connectivity 
conditions between two locations are fulfilled. The connected salient locations de-
scribe the whole (global) shape of a connected object. An image may contain many 
such connected objects each of them described by the local skeletal shape at salient 
locations. Moreover, each salient location can contain intensity (color) and texture 
features related to that location for object identification purposes using both local 
shape features and local intensity (texture) features.  

In the IRF framework, planar shape features are separated and are independent 
from intensity features. Such a separation has a certain advantage over the integrated 
shape features extraction (e.g., features based on differentiation with Gaussian 
smoothing [11, 15]) because of the achieved invariance to transformation of transla-
tion, scaling and rotation and some intensity changes and lighting conditions. Addi-
tionally, a few intensity and texture features can be used for object intensity descrip-
tion to represent intensity variations as a texture, especially in the case of large scales 
(sizes of object regions).  

For the purpose of multi-scale image analysis, a formal definition of a scale sys-
tem is used [14]: a structuring element at scale n of a uniform scales system is formed 
by the morphological dilation (denoted by ⊕) by S0, 01 SSS nn ⊕= − , n=1, 2,...,M-1, 
where M is the total number of scales and the structuring element S0 defines the 
minimal scale and object resolution. The structuring elements have the same shape 
such as the disk shape (see examples in Fig. 1). The above is a morphological defini-
tion of scales, which is different from the notion of scales in the scale-space filtering 
[11]. 
 

 

Fig. 1. Examples of local skeletal shape features. 

We have proposed a piecewise-linear local skeletal description of planar shapes re-
lated to salient object locations. This skeletal shape representation is an economical 
approach to shape description. An object local shape is related to a particular salient 
location vl

0 and the local scale value at that location, S(vl

0) (see Fig. 1).  Given K verti-
ces and K scale values associated with each vertex, the local planar shape (as a sup-
port region U) of an object of interest located at vl

0 is formed by the dilation opera-
tions of skeleton straight-line segments {Gl,k} with size-variable structuring elements, 
{S(Gl,k)}: 
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where ⊕ denotes the morphological dilation, )( m
lvS  is a structuring element with 

variable size (e.g., diameter rm) as a function of point vl

m∈Gl,k., and K is the maximal 
topological order of the skeleton vertices. The value of diameter rm is a linear combi-
nation of the scale sizes r0 and rk at terminal vertices vl

0 and vl

k of segment Gl,k. Equa-
tion (2.1) represents a method of scale-interpolated dilation in the piecewise-linear 
modeling of skeletal shapes and 
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where d(.,.) is the Euclidean distance between two skeleton vertices on the image 
plane.   

The whole planar shape of a multi-scale object of interest is formed by pair-wise 
concatenations of the local shapes at L vertices {vl

0, l=1,...,L } if the connectivity be-
tween the corresponding vertices can be established.  For each l, the local skeleton 
vertices {vl

k, k=1,...,K} can be considered as shape details at that vertex, i.e., respec-
tive salient location.  

This model of planar local shape is associated with an intensity model of image 
fragment of size 2rl centered at vl

0.  The intensity modeling involves two dominant 
intensity levels with an additive noise model, which can also represent a textured 
intensity, in order to descrobe image intensity locally and concisely [14].  

3   Determination of Salient Locations   
  Using Image Relevance Function 

Each salient object location is associated with its own salient fragment centered at a 
particular local maximum of the IRF. The IRF is defined generically as an image 
operator, which takes local maximal values at centers of salient image fragments and 
can be used to describe objects of interest in the salient locations. At certain condi-
tions, the IRF maximums are positioned on object medial axes or at the centers of its 
parts, which are relevant to shape description (see Fig. 2). In order to address the 
aforementioned problems of skeletal shape extraction for object detection it is sug-
gested to apply an improved version of a model-based IRF described in the context of 
object detection [14]. Localization of salient image fragments is based on a fast com-
putation of the multi-scale IRF and determination of its local maxima. The positions 
of local maximum values of the multi-scale IRF coincide with location points of the 
salient image objects in a region of interest A: 
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where g(i,j) is the input gray-scale image, Φ[g(i,j),Sk] is a non-linear matched filter at 
kth scale, and (if,jf)l are two coordinates of lth maximum. The region Γl⊂A corresponds 
to the masking region, which excludes determined maximum points from further 
analysis.  
 

 

Fig. 2. Illustration of the relevance function computation for the single-scale case. 

Four saliency conditions are considered in the design of Φ(g(i,j),Sk): 1) significant 
local contrast; 2) local homogeneity of object intensity; 3) specific object intensity 
range; 4) specific range of object sizes and shape of the scales {Sk}. The first condi-
tion is described by the absolute value for the local object-to-background contrast.  
The local homogeneity condition means that the intensity variance is relatively small 
in the object region. The intensity range means specific values for the object intensity 
in order to distinguish it from the background or other objects. Since the measures for 
contrast, homogeneity and intensity range involve object disk regions and background 
ring regions of a particular range, the IRF will take implicitly into account shape and 
scale constraints (condition) of the objects. Taken these conditions, the IRF can be 
computed in point (i,j), at scale Sk as follows: 
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where c(i,j,Sk) is an estimate for the local contrast, d(i,j,Sk) is an estimate for intensity 
deviation in the object region, e(i,j,Sk) is the object intensity shift, α and β are con-
straint coefficients which control the contributions of the two constraints to the over-
all value of IRF. An estimate of the optimal value of α and β in the sense of the 
maximum likelihood decision can be computed assuming some distributions (e.g., 
Gaussian functions with different parameters) for the three variables in Eq.(3.2) under 
the condition of object presence in point (i,j). The constraint coefficients are inversely 
proportional to the variances of two constraints in the case of Gaussian distributions: 

22 / dc σσα =  and 22 / ec σσβ = .  For example, the contrast estimate c(i,j,Sk) is the 
intensity difference,  
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where Qk =Sk+1/Sk, is the background estimation region at scale k, i.e., a ring around the 
disk Sk.  f1(i,j,Sk) and  f0(i,j,Qk)  are the mean values of g(i,j) in regions Sk and Qk, re-
spectively (see Fig. 2). The mean square deviation was used for the estimation of 
d(i,j,Sk) in Eq.(3.2).  The object intensity shift is measured as a deviation of the mean 
intensity value f1(i,j,Sk) from an object intensity of reference.  

 

 

Fig. 3. Examples of local shape features (piecewise-linear skeletons) extracted at salient image 
locations.   

4   Extraction of Skeletal Shape Features 

A so-called saliency hypothesis is tested first in each local maximum point before the 
shape feature extraction. It consists of comparisons of local contrast and local homo-
geneity with saliency thresholds [14]. 

The extraction of skeletal shape features uses mostly intermediate results of IRF 
computation, (Eq. 3.2), and is computationally insignificant as compared to the IRF 
calculation. The invariance  parameters for the considered geometrical 
transformations (translation, scaling, and rotation) are computed with respect to the 
current local maximum of the IRF. The first parameter is the absolute position of the 
lth salient location, vl

0, consisting of two coordinates (if,jf)l. The next two parameters, 
local scale and local orientation, which are related to point (if,jf)l,  are estimated using 
intermediate results of the IRF calculation (see Fig. 2). The local scale is determined 
by the contrast maximization,  

 

{ }),,(),,(maxarg),( 22
kffkff

k
ff SjidSjicji ⋅−= αρ     (4.1) 

 
where the variables and the constant coefficient α  have the same meanings as in 
Eq.(3.1) and Eq.(3.2). Object orientation can be estimated in a simple way since the 
next maximum point (if,jf)l+1 in the current region of attention with respect to the focus 
of attention (if,jf)l provides the orientation vector (see Fig. 2).  

The proposed IRF approach provides at the same time a simple method to deter-
mine vertices for the piecewise-linear skeletal representation of object local shapes in 
salient locations. This can be done by analysing consecutive K maximums of IRF next 
to a given salient location vl

0. Such a procedure determines K local skeleton vertices 
{vl

k , k=1,…,K}, which all are connected to vertex vl

0 according to the morphological 
model in Eq. (2.1). Given a neighborhood region B(vl

0) around vertex vl

0, the algo-
rithm for the local shape feature extraction is as follows if starting from k=1.  
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Step 1. Determine location vl

k of the kth local maximum of IRF in the masked 
neighborhood region B(vl

0), non-including previous (k-1) IRF maxima. 

Step 2. Test the saliency hypothesis with respect to kth local maximum point. If the 
testing outcome is positive then go to Step 3, otherwise go to Step 4. 

Step 3. Determine relative scale and relative orientation associated with vl

k. Attach 
these values to the shape vector at positions 2k and (2k+1). If k<K then increment 
k=k+1, and mask the neighborhood of vertex vl

k and go to Step 1, otherwise go to 
Step 4. 

Step 4. Attach two coordinates of the vertex vl

0, its local scale and orientation at the 
first four positions of the local shape vector.  If k<K then the remaining 2⋅(K-k) shape 
features are set to zero.  

The accuracy of shape features determined by this algorithm depends on the corre-
spondence of processed images to the underlying model. Examples of detected salient 
image fragments in real images with superimposed skeleton fragments are shown in 
Fig. 3. For the purpose of object verification, intensity and texture features can also be 
attached to the shape feature vector. They may include object mean intensity, color 
intensity components, local contrast, and local object variance. The texture features 
can be used as well in order to describe concisely intensity fluctuations for large 
scales (object sizes) depending on the application.  

Determined salient locations, {vl

0 , l=1,...,L}, with extracted shape features can be 
connected to each other if the connectivity between them can be established. This will 
provide a complete and two-level skeletal shape description of the objects of interest. 
We were looking for the connectivity in the form of a spanning tree (forest) con-
structed in an optimal way. The connectivity algorithm is based on the Markov ran-
dom chain models of vertex connectivity and finding optimal connectivity pattern 
between all the salient location vertices {vl

0,l=1,...,L} by the maximization of joint 
probability Pc(v1

0,…,vL

0) of vertex connectivity: 
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where Pc(vq

0∧vs

0/vs

0∧vt

0) is the probability that skeleton vertices vq

0 and vs

0 are connected 
with each other provided the precedent vertex vt

0  in the spanning tree is connected 
to vs

0. 
The probabilistic connectivity framework was chosen because it provides an opti-

mal solution in the case of gray-scale images, when object shape is sparse with noise 
presence and possible local occlusions. At certain model assumptions (or particular 
likelihood functions) this problem can be reduced to the problem of finding minimum 
spanning tree for a set of extracted vertices, {vl

0, l=1,...,L}. The likelihood function, 
Pc(vq

0∧vs

0, aq,s, dq,s /vs

0∧vt

0), which is involved in the probability model in Eq. (4.2), uses 
intensity values {aq,s} and distances {dq,s} between the vertices as the connectivity 
variables. The complete description of this algorithm is out of scope of this paper and 
some details for global skeletal shape extraction can be found in Ref. [10, 16].  
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Table 1. Measured accuracy of shape feature extraction (error given in pixel resolution) 
versus contrast-to-noise ratio.  

Contrast-to-noise 
ratio 

 
2 

 
4 

 
8 

 
16 

 
32 

Localization error 1.4 1.1 0.7 0 0 
Scale error 3.2 2.9 0.9 0.1 0 

Orientation error 2.4 1.2 0.3 0.4 0 
 

 

Fig. 4. Illustrative example of IRF calculation (b) and local shape extraction (c) using six most 
salient IRF maximum points as applied to initial synthetic image in (a). 

5   Experimental Results 

The first kind of experiments was the performance testing of the IRF approach to 
shape feature extraction based on synthetic images with known values of the shape 
features. The position (two coordinates), scale, and orientation values of the salient 
locations determined by the proposed IRF have been measured and compared with the 
reference values to determine the accuracy. Image noise has been imitated in synthetic 
images in order to calculate the accuracy as a function of ratio of the object-to-
background contrast and noise magnitude (standard deviation). An example of used 
synthetic image objects with known shape features and added noise is shown in Fig. 
4. The results of accuracy testing are given in Table 1. The error in feature values was 
measured in pixel resolution relatively to the correct feature values. In particular, the 
scale error was measured in pixels as the deviation of the scale diameter. The orienta-
tion error was measured in term of the displacement of the second most salient maxi-
mum of IRF with respect to its correct position. Analysis of these data shows good 
accuracy and robustness of the proposed approach to feature extraction.  

The objective of the second kind of experiments was the visual evaluation of the 
IRF performance in extracting skeletal shape in application to biometrical and medi-
cal imaging.  One example of using IRF approach to detect fingers and determine 
their shape for the purpose of a biometrical identification from a hand image is shown 
in Fig. 5. This is an example of vertex extraction by IRF local maxima and establish-
ing piecewise-linear connectivity between the extracted vertices. A detail analysis of 
finger geometry and texture of the finger skin have to be performed in each salient 
location. The skeletal shape was extracted directly from the grey-scale image in Fig. 
5a without the image binarization.  

The proposed IRF method was also compared with the skeletonization method us-
ing self-organizing maps by applying both methods to the same test image [10]. An 
example of obtained results by the two methods is shown in Fig. 6. The method of 
piecewise-linear skeletonization using self-organizing maps performed worse even 
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when applied to the binary version of the input image and gave visible imprecision 
such as jaggedness of lines. 

6   Conclusions 

A method for the extraction of skeletal shape features using a visual attention operator 
was developed. It is based on the determination of salient object locations by local 

 

Fig. 5. Results of skeletal shape extraction of fingers obtained directly from the gray-scale 
image of a hand: (a) – initial image; (b) – IRF calculation; (c) – skeletal shape of fingers. Ex-
amples of local shapes at salient locations are shown below. 

 

Fig. 6. An illustration to skeletal shape extraction in digital angiography: input image, (a); 
image of IRF, (b); skeletal shape of main blood vessels in the selected region of interest, (c); 
most salient object fragment, (d); result of skeletonization using method of self-organizing 
maps [10], (e). 
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maxima analysis of the introduced multi-scale IRF. The same IRF approach was ap-
plied to extract a piecewise-linear skeletal shape at determined salient locations. The 
proposed concise description of local shapes has the following advantages in the con-
text of object detection and shape verification. The shape comparison does not require 
computationally complex alignments because two different shapes can be compared 
by a simple distance measure (e.g., Euclidean distance). The IRF approach provides a 
robust shape extraction directly from gray-scale images, in the presence of noise and 
under some local distortions. The obtained shape features can easily become invariant 
with respect to translation, scaling, and rotation by a normalization relatively to geo-
metrical parameters for a current location.  

Acknowledgments 

We are grateful to VRQ (Valorisation Recherche Québec) and Canadian Heritage for 
their financial support to CoRIMedia (Consortium de Recherche en Image et Multi-
media). 

References 

1. M. D. Wheeler and K. Ikeuchi, “Sensor modeling, probabilistic hypothesis generation, and 
robust localization for object recognition”, IEEE Trans. Pattern Analysis and Machine In-
telligence, Vol. 17, No. 3, pp. 252-265, 1995. 

2. V. Conception and H. Wechsler, “Detection and localization of objects in time-varying im-
agery using attention, representation and memory pyramids”, Pattern Recognition, Vol. 29, 
No. 9, pp. 1543-1557, 1996. 

3. N. Blum and R.N. Nagel, “Shape description using weighted symmetric axis features”, Pat-
tern Recognition, Vol. 10, pp. 167-180, 1978. 

4. Y. S. Chen, and Y.T. Yu, “Thinning approaches for noisy digital patterns”. Pattern Recog-
nition, Lol. 29, No. 11, pp. 1847-1862, 1996. 

5. G. Borgefors, “Distance transformation in digital images”, Vision, Graphics, and Image 
Processing, Vol. 34, pp. 344-371, 1986. 

6. G. Borgefors, G. Ramella, G. Sanniti di Baja, and S. Svenson, “On the multi-scale 
representation of 2D and 3D shapes”, Graphical Models and Image Processing, Vol. 61, 
pp. 44-62, 1999. 

7. C. Archelli and G. Ramella, “Sketching a grey-tone pattern from its distance transform,” 
Pattern Recognition, Vol. 29, No. 12, pp. 2033-2045, 1996.  

8. T. Hastie, and W. Stuetzle, “Principal curves”, Journal of the American Statistical Associa-
tion, Vol. 84 (406), pp. 502-516, 1989. 

9. B. Kegl, et al., “Learning and design of principal curves”, IEEE Trans. Pattern Analysis 
and Machine Intelligence, Vol. 22, No. 3, pp. 281-297, 2000. 

10. R. Singh, V. Cherkassky, and N. Papanikopoulos, “Self-organizing maps for the skeletoni-
zation of sparse shapes”, IEEE Trans. on Neural Networks, Vol. 11, No. 1, pp. 241-248, 
2000. 

11. T. Lindeberg, “Detecting salient blob-like image structures and their scale with a scale-
space primal sketch: a method for focus of attention”, Int. Journal of Computer Vision, Vol. 
11, pp. 283-318, 1993.  



124      Roman M. Palenichka, Rokia Missaoui, and Marek B. Zaremba 

12. L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual attention for rapid scene 
analysis”, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 20, No. 11, pp. 
1254-1259, 1998.  

13. H. D. Tagare, K. Toyama, and J.G. Wang,  “A maximum-likelihood strategy for directing 
attention during visual search”, IEEE Trans. Pattern Analysis and Machine Intelligence, 
Vol. 23, No. 5, pp. 490-500, 2001.  

14. R. M. Palenichka, “A visual attention operator based on morphological models of images 
and maximum likelihood decision”, Proc. Int. Workshop SSPR 2002, LNCS 2396, pp. 310-
319, 2002. 

15. J. J. Koenderink and A. J. van Doorm, “Representation of local geometry in the visual sys-
tem”, Biological cybernetics, Vol. 55, pp. 367-375, 1987. 

16. M. B. Zaremba and R. M. Palenichka, “Probabilistic morphological modeling of hydro-
graphic networks from satellite imagery using self-organizing maps,” Control & Cybernet-
ics, Vol. 31, No. 2, pp. 343-370, 2002. 



Computing the Cyclic Edit Distance for Pattern
Classification by Ranking Edit Paths�
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Abstract. The cyclic edit distance between two strings A and B of
lengthsm and n is the minimum edit distance between A and every cyclic
shift of B. This can be applied, for instance, in classification tasks where
strings represent the contour of objects. Bunke and Bühler proposed an
algorithm that approximates the cyclic edit distance in time O(mn). In
this paper we show how to apply a technique for ranking the K shortest
paths to an edit graph underlying the Bunke and Bühler algorithm to
obtain the exact solution. This technique, combined with pruning rules,
leads to an efficient and exact procedure for nearest-neighbour classifica-
tion based on cyclic edit distances. Experimental results show that the
proposed method can be used to classify handwritten digits using the
exact cyclic edit distance with only a small increase in computing time
with respect to the original Bunke and Bühler algorithm.

Keywords: Cyclic strings, cyclic edit distance, string matching, Bunke
and Bühler algorithm, handwritten text recognition, OCR, K shortest
paths.

1 Introduction

Measuring dissimilarities between strings is a fundamental problem in pattern
recognition [1]. The most widely used measure of dissimilarity between two
strings is the edit distance (ED), also known as the weighted Levensthein distance,
which is defined as the weight of the best sequence of edit operations (insertions,
substitutions and deletions of symbols) needed to transform one string into the
other [2].

There are many applications where the objects are better modelled by cyclic
strings, which are strings whose last symbol is considered to be followed by the
first symbol. For instance, contours of objects can be appropriately represented
by cyclic chain-codes [3, 4] (see Fig. 1). The dissimilarity between cyclic strings
can be measured by means of the cyclic edit distance (CED), which is defined
as the weight of the best sequence of edit operations needed to transform any
cyclic shift of one string into any cyclic shift of the other. A trivial way to obtain
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Symbols

a

cd

e

hf

b

g

A = aaaahggeffhaheeeeedbbbabceeefecb

Fig. 1. Example digits from the NIST Special Database 19 and a string representing
the contour of a digit with an 8-directional chain-code.

the cyclic edit distance in O(mn2) time consists in computing the edit distance
between one string and all the possible cyclic shifts of the other. Maes [5] pro-
posed a divide and conquer algorithm that reduces the time cost to O(mn logn).
Marzal, Barrachina, and Peris [6, 7] reformulated this method as a branch and
bound algorithm and proposed bounding functions that produce a significant
speeding up of Maes’ algorithm while maintaining its worst-case complexity.

In applications where the running-time of the algorithm is a major concern
(for instance, in classification systems in which the CED between every string
to be classified and a large number of labelled samples is computed), alternative
approximate methods that run faster than the exact methods can be used. A
well-known approximate method to compute the CED is the Bunke and Bühler
algorithm (BBA), which runs in O(mn) time [3]. Mollineda, Vidal, and Casacu-
berta have proposed other approximate solutions based on the BBA that require
a training stage [8, 9].

In this paper, we present a new exact method to compute the CED. Our
proposal is based on the BBA, combined with an efficient technique for find-
ing the K shortest paths in graphs [10], which is adapted to this problem. In
classification tasks, this method can be combined with pruning rules to abort
the computation of distances with values above the best distance found so far.
In this way, according to experimental results reported in this paper, the value
of K needed to find the exact solution is quite low in practice and the total
running time is only slightly greater than the time needed by the BBA to find
an approximate solution.

2 Notation and Problem Formulation

Let Σ be a set of symbols and let Σ� be the set of all finite strings over Σ. Let
a, b denote symbols in Σ and let λ denote the empty string. Throughout this
paper, we consider that A = a1a2 . . . am and B = b1b2 . . . bn are strings in Σ� of
length m and n, respectively.

Edit Distance. An edit sequence is a sequence E = e1e2 . . . ep in which ei, for
1 ≤ i ≤ p, is one of four possible edit operations: (i) deletion of a symbol a,
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denoted a → λ; (ii) insertion of a symbol b, denoted λ → b; (iii) substitution of
a symbol a by a symbol b, denoted a → b; and (iv) matching (substitution of
a symbol a by itself), denoted a → a. Let γ(E) =

∑p
i=1 γ(ei) be the weight of

the edit sequence E, with γ(ei) being the weight of the edit operation ei. The
edit distance ED(A,B) is defined as the minimum value of γ(E) for any edit
sequence E that transforms A into B.

Cyclic Edit Distance. Let σ(A) = a2a3 . . . ama1 denote a cyclic shift of A, and
let σj(A) = aj+1aj+2 . . . ama1 . . . aj denote the composition of j cyclic shifts. In
many applications (for instance, in classification tasks where strings represent
contours of objects) it makes sense to consider that the strings A and σj(A),
for any j ∈ IN, are equivalent. The equivalence class [A] = {σj(A) : j ∈ IN}
is called a cyclic string. The cyclic edit distance CED([A], [B]) is a measure
of dissimilarity between the classes that the strings A and B represent, and is
defined as CED([A], [B]) = mini,j∈IN ED(σi(A), σj(B)), which is the same as
CED([A], [B]) = min1≤j≤n ED(A, σj(B)) [5].

In this paper, we are interested in computing CED([A], [B]) for any given pair
of strings A and B. In the next section we review how a refinement of the Bunke
and Bühler algorithm, which approximates the value of CED([A], [B]) in time
O(mn), can be seen as an algorithm for finding a shortest s-t path in a graph.
Then in Sect. 4 we will see how an algorithm for finding the K shortest s-t paths
can be adapted to compute the exact value of CED([A], [B]).

3 Approximating the Cyclic Edit Distance
with the Bunke and Bühler Algorithm

The computation of the edit distance ED(A,B) using the Wagner and Fischer
algorithm [2] can be formulated in terms of finding the shortest path between
a pair of nodes in a graph GB

A (the so-called edit graph). The nodes of GB
A are

all the pairs (i, j) for 0 ≤ i ≤ m and 0 ≤ j ≤ n. There are (at most) three
incoming edges for each node (i, j) (see Fig. 2a): (i) coming from (i − 1, j), if
i > 0, with weight γ(ai → λ); (ii) from (i, j−1), if j > 0, with weight γ(λ → bj);
and (iii) from (i− 1, j − 1), if i > 0 and j > 0, with weight γ(ai → bj). The edit
distance ED(A,B) is the weight of the shortest path between nodes s = (0, 0)
and t = (m,n). The edit graph is acyclic and has O(mn) edges; therefore, the
shortest s-t path can be found in O(mn) time by following any topological order
of nodes [11].

In order to compute the cyclic edit distance CED([A], [B]), we can consider
the edit graph GBB

A associated to ED(A,BB), the edit distance between A
and B concatenated with itself. In this graph, the shortest path from the node
s = (0, j) to the node t = (m,n + j), for every j = 1, 2, . . . , n, represents the
best edit sequence that transforms A into σj(B), whose weight is ED(A, σj(B)).
The minimum of these n weights is CED([A], [B]). This value can be computed
in time O(mn2) by just running a shortest s-t path algorithm for each of these
n s-t pairs.
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An approximate value (a lower bound) of CED([A], [B]) can be found more
efficiently, in time O(mn), by finding, in the edit graph GBB

A , the shortest path
starting at any node in S = {(0, j) : 1 ≤ j ≤ n} and finishing at any node in
T = {(m,n+j) : 1 ≤ j ≤ n}. This is equivalent to finding the shortest path from
s to t in the graph obtained fromGBB

A by removing the nodes {(i, 0) : 0 ≤ i ≤ m}
and the edges departing from them, and adding edges of weight 0 from an extra
node s to every node in S and from every node in T to an extra node t. Let
ḠBB
A denote the resulting graph (see Fig. 2b). Again, this is a shortest s-t path

problem in an acyclic graph with O(mn) edges and can be solved in O(mn) time.
More precisely, it takes twice the time required to compute ED(A,B). We call
this method the Bunke and Bühler Algorithm (BBA) since a similar proposal
to estimate a lower bound of CED([A], [B]) was originally made by Bunke and
Bühler in [3]. The suboptimality of this method is due to the fact that the
optimal path that it finds could start going from s to (0, j) and finish going from
(m, j′) to t, with j′ �= n + j, while the path corresponding to CED([A], [B])
should verify j′ = n + j. In the next section, we will see how an algorithm to
enumerate the K shortest s-t paths in a weighted graph, the so-called Recursive
Enumeration Algorithm (REA) [10], can be adapted to find the path with the
minimum weight verifying j′ = n + j. The weight of such a path is the exact
value of CED([A], [B]).

4 Computing the Cyclic Edit Distance by Ranking Paths
in the Bunke and Bühler Edit Graph

Let V be the set of nodes and let E be the set of edges in ḠBB
A . Given a path

π and a node v, let π · v denote the path formed by π followed by v. For any
path π in ḠBB

A that starts going from s to (0, j) and ends at (i, j′), as well as
for any path π in ḠBB

A that starts going from s to (0, j) and ends by going from
(m, j′) to t, let us define L(π) = j′ − j (see Fig. 2b). In order to compute the
exact value of CED([A], [B]), we are interested in finding the path π from s to
t with the minimum weight among those verifying L(π) = n. This can be done
by enumerating, by ascending weight value, the paths from s to t until the first
path verifying L(π) = n is found, as follows [10]:

A.1 Compute π1(v), the shortest path from s to v, for all v ∈ V and set k ← 1.
A.2 While L(πk(t)) �= n do:

A.2.1 Set k ← k + 1 and compute πk(t) by calling NextPath(t, k).

For k > 1, and once π1(v), π2(v),. . . , πk−1(v) are available, NextPath(v, k)
computes πk(v) as follows:

B.1 If k = 2, then initialise a set of candidates to the next shortest path from s
to v, C[v]← {π1(u) · v : (u, v) ∈ E and π1(v) �= π1(u) · v}.
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B.2 If v = s, then πk(v) does not exist; else
B.2.a Let u and k′ be the node and index such that πk−1(v) = πk′ (u) · v. If

πk′+1(u) has not already been computed, then compute it by calling
NextPath(u, k′ + 1).

B.2.b If πk′+1(u) exists, then insert πk′+1(u) · v in C[v].
B.2.c If C[v] = ∅, then πk(v) does not exist.
B.2.d If C[v] �= ∅, then extract the path π with minimum weight from C[v]

and let πk(v)← π.

Proof of correctness of this method to compute the K shortest s-t paths in
a weighted graph can be found in [10]. In this particular application to compute
the CED, the algorithm runs in O(mn+K(m+n)) time: each of the K shortest
paths is computed by recursively visiting, at most, the nodes of the previous
shortest s-t path [10], and each s-t path in ḠBB

A has O(m + n) nodes.
The algorithm can be speeded up in this application by taking into account

that we are not interested in the K shortest paths, but only in the first s-t path
π that satisfies the restriction L(π) = n. Therefore, the partial paths that do not
lead to a new s-t path with a different value of L can be discarded. This can be
done by simply replacing Step B.2.d by:

B.2.d If C[v] �= ∅, then extract the path π with minimum weight from C[v]. If
L(π) �= L(πj(v)), for all j = 1, 2, . . . , k − 1, then let πk(v)← π; else
B.2.d.1 Let u and k′ be the node and index such that π = πk′(u) · v.

If πk′+1(u) has not already been computed, then compute it by
calling NextPath(u, k′ + 1).

B.2.d.2 Goto B.2.b

With this modification, πk(v) is the path from s to v with minimum weight
such that L(πk(v)) is different from L(πj(v)) for all j ∈ {1, 2, . . . , k − 1}.

5 Pruning the Search Space in Classification Tasks

The method described in Sect. 4 can be further speeded up in nearest-neighbour
classification, where we have N labelled samples, B1, B2, . . . , BN , and we
want to compute min1≤i≤N CED([A], [Bi]) in order to classify A. Let us as-
sume that we have already computed dj−1 = min1≤i<j CED([A], [Bi]) and that
we are going to compute dj = min{dj−1,CED([A], [Bj ])}. The computation of
CED([A], [Bj ]) can be aborted as soon as we know that its value cannot be lower
than dj−1, according to these rules:

1. The computation can be avoided ifm > n and (m−n)min
a∈Σ

γ(a → λ) ≥ dj−1,

or n > m and (n − m)min
b∈Σ

γ(λ → b) ≥ dj−1. This rule is based on the fact

that at least |m− n| insertions or deletions must be performed to transform
one string into the other.

2. Taking into account that the edit weights are non-negative, the execution of
Step A.1 can be aborted, for any i ∈ {1, 2, . . . ,m}, if the weight of π1((i, j))
is greater than or equal to dj−1 for all j ∈ {1, 2, . . . , 2n}.
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Fig. 3. (a) Percentage of cases for which K shortest s-t paths with different value of L
have to be computed, for K > 1. (b) Total CPU time invested in those cases.

3. The ranking of s-t paths by Step A.2 can be stopped as soon as we reach a
value of k such that the weight of πk(t) is greater than or equal to dj−1.

None of these rules modify the worst-case computational complexity of the algo-
rithm and, in practice, they entail a significant reduction in running time. They
can also be extended to deal with the N nearest-neighbours classification rule.

6 Experimental Results

In order to assess the behaviour of the algorithm in practice, we performed
experiments on a handwritten digits recognition task. A test set containing 500
digit images (5 instances of each digit by 10 writers) randomly selected from
the hsf 4 set in the NIST Special Database 19 [12], was used (see Fig. 1). Each
test digit was compared to 5 000 labelled instances from the sets hsf {0,1,2,3} (5
instances of each digit by 25 writers from each set) in order to perform a nearest-
neighbour classification. All the images were clipped, scaled into a 32×32 pixels
matrix and binarised, and their outer contours were represented by 4-directional
chain-codes. The average length of the resulting cyclic strings is 125. The edit
distances were then computed assuming unit weight for insertions, deletions and
substitutions of symbols, and zero weight for matchings.

The classification error rate is 8.6% using the (non-cyclic) edit distance, 3.8%
using the approximate cyclic edit distance obtained with the BBA, and 3.2%
using the exact cyclic edit distance. This confirms previous results showing that
the classification using the exact cyclic edit distance performs better than the
approximate method [9].

In principle, 2 500 000 cyclic edit distances had to be computed in order to
classify the 500 test digits. The method proposed in this paper only required the
computation of the K shortest s-t paths with different value of L, for K greater
than 1, in 0.15% of the cases. Figure 3a shows a histogram with the percentage
of cases for each value of K. It can be seen that computing the exact CED never
required the computation of more than 60 shortest paths (the average value of
K, when K > 1 shortest paths had to be computed, was 6.53).



132 Vı́ctor M. Jiménez et al.

Fig. 4. Edit graph ḠBB
A , colouring the region where the REA searches for alternative

paths, for 3 cases in which the shortest path is not the exact solution. A darker colour
represents a higher number of computed paths.

The total time required to classify the 500 test digits was 763.89 seconds on
a 2.4GHz Pentium 4 running under Linux 2.4 (the algorithms were implemented
in C). The execution of the BBA accounts for 754.09 seconds. Only 9.80 seconds
(1.28% of the total running time) were devoted to computing alternative paths
with the REA. Figure 3b shows, for the cases in which K > 1 shortest s-t paths
have been computed, the total running time and the running time of the BBA. It
can be observed that, for the largest values of K, the execution time of the REA
is significantly greater than the time due to the BBA but, thanks to the pruning
rules given in Sect. 5, such values are required in a very small percentage of cases,
and they hardly affect the total running time of the classification procedure.

In practice, the efficiency of the REA not only depends on the number of
computed paths, but also on the number of internal nodes in which alternative
paths must be computed. Figure 4 shows these nodes for three different cases
and illustrates that only a small region of the graph needs to be visited when
looking for alternative paths.

7 Conclusions

The algorithm proposed by Bunke and Bühler [3] computes very efficiently an
approximate value of the cyclic edit distance between two cyclic strings. In this
paper, we have shown how a K shortest paths algorithm [10] can be adapted
to this problem and applied to an edit graph underlying the Bunke and Bühler
algorithm in order to find the first shortest path satisfying a particular restric-
tion. The weight of this path is the exact cyclic edit distance. In classification
tasks, this method can be combined with pruning rules to abort the computa-
tion of distances with values above the best distance found so far. Experimental
results with a handwritten digit classification system show that the proposed
method can serve to reduce the error rate and only entails a very small increase
in computing time with respect to the approximate method.
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Abstract. An important function of perceptual grouping is the restora-
tion of contours. Edge maps produced by low level edge detectors are in-
variably noisy and inconsistent. It it the aim of perceptual grouping to re-
fine these edge segments by imposing consistency based on considerations
about real object outlines. In this paper we describe a method for group-
ing edge segments into perceptually salient contours using splines. The
two important ingredients of our method are firstly the use of probability
distributions for possible orientation structure in the image, and secondly
the use of Kellman-Shipley relatability to find perceptually meaningful
structure. The spline parameters are adjusted to optimise their proba-
bilities in terms of image structure and bending. Consistent structure is
then identified using both perceptual criteria and similarity to contour
structure in the image.

1 Introduction

An important function of perceptual grouping is the restoration of contours.
Edge maps produced by low level edge detectors are invariably noisy and in-
consistent. It it the aim of perceptual grouping to refine these edge contours
by imposing consistency based on considerations about real object outlines. To
overcome local distortions in machine vision, numerous authors (e.g. Sha’ashua
and Ullman[1]; Sarkar and Boyer[2]; Elder and Zucker[3]; Guy and Medioni[4])
have therefore proposed incorporating contextual relations among local features
by combining responses of neighbouring feature detectors into a globalised and
consequently more robust processing.

Sha’ashua and Ullman[1] defined a measure of perceptual saliency of a curve,
based on geometric properties. The saliency measure increases monotonically
with the length of the evaluated curve and decreases with its total squared
curvature. Additionally, the degree of fragmentation, expressed in terms of the
number of gaps and total gap length, is penalised. A relaxation procedure is then
performed to maximise the saliency measure.

Guy and Medioni[4] devised an algorithm for contour grouping, based on
the Gestalt principles of co-curvilinearity and proximity. A convolution is per-
formed on the edge map using a special mask called extension field, a vector
field encoding the likelihood and orientation of possible continuations from an
edge segment at its centre to all other points in the image. The direction of the
extension field at a point (x, y) equals the tangent angle of the most likely curve

A. Fred et al. (Eds.): SSPR&SPR 2004, LNCS 3138, pp. 134–142, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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connecting (x, y) with the edge segment at the centre of the extension field. The
magnitude of the vector field in (x, y) is the likelihood of the existence of the
connecting curve.

Elder and Zucker[3] address the problem of computing closed bounding con-
tours. A multi-scale edge detection algorithm yields information about edge po-
sition and tangent orientation from which a sparsely connected tangent graph is
constructed. Each node is assigned with the tangent information and, according
to a Bayesian model of tangent linking, each arc is labelled with the likelihood
that the corresponding tangent pair forms a contiguous component of the same
contour. Each node is connected to only a small number of neighbours (usually
six), according to the most likely pairings. The goal of closure grouping is then
to find the maximum likelihood cycles for every tangent in the graph. Thus the
grouping task is reduced to a shortest path problem.

Such perceptual organisation is very much in the spirit of Shipley and Kell-
man’s psychophysically motivated theory of visual interpolation [5]. Although
their criterion of edge relatability provides a useful test for co-curvilinearity, the
geometrical configurations of detected edge segments are in practice often not
as precise as required, due to noise. Instead, edge segments would often be er-
roneously dismissed as “unrelatable” , particularly on straight contours. Thus,
orientation estimates will often have to be revised, in order to yield “relatable”
and more accurate tangent configurations. The revision will be based on mutual
consistency, as well as on the quality of agreement between the resultant curve
segment and the Gabor transform of the given image.

2 Distributions of Orientations and Spline Interpolation

We commence with a description of the orientation structure of the image in
terms of a mixture of von-Mises distributions[6, 7].

p(θ) =
∑
i

Pi

2πI0(κi)
exp [κi cos(θ − θi)] (1)

This mixture model of von-Mises distributions represents multiple local orienta-
tions θ and their certainties through the widths κi. Typically there will be one
or two orientation components, i.e. i = {0, 1}. We therefore encode both mutiple
directions and uncertainty about each of those directions.

Within this framework, mutual consistency of contours can be expressed in
terms of a spline likelihood, comprising the joint density of the orientation pdfs
and an additional bending constraint. We have information about the positions
and possible tangent directions of edge structure in the image, and therefore we
use splines of the quadratic Hermite-type. Their parameters are fully determined
by the positions and tangent orientations of the end points. As a consequence of
the probabilistic model of orientation, tangent angles are governed by probability
densities, and the uncertainty of tangent orientations is transformed into the
system’s uncertainty regarding the connecting spline. An important feature of
the perceptual grouping framework presented in this paper is that the degree
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of uncertainty in the orientation determines the “inertia” of a local tangent
estimate, i.e., how easily an initial orientation measurement (given by a mode
in the corresponding pdf) can be modified during consistency optimisation. In
this role of certainty lies a conceptual difference to other grouping schemes.
Usually, the coarseness of the initial local orientation measurements is expressed
in terms of the likelihood of potential continuations at the grouping level, for
example, characterised by a “support function” in relaxation labelling [8, 9] or
by orientation “votes” propagated through an “extension field” [4]. The initial
certainty of the local measurement, however, is not modelled.

3 Quadratic Splines

After low-level processing[6, 7] the positions of the control points, the corre-
sponding distributions of tangent orientations are known, and points with mul-
tiple orientations are identified as such. Therefore, piecewise quadratic spline
interpolation provides a very straightforward means of connecting such control
points.

In the grouping framework presented, the constraint of C2 and C1 continu-
ity at the control points will not be imposed. Instead, left and right limits of
tangent orientation are introduced, whereby smooth and polygonal curves can
be represented equally well [10]. As a result, the algorithm is capable of repre-
senting tangent discontinuities suggested by feature associations, in addition to
the locally detected points with multiple orientations.
Let t ∈ [0, 1] be the spline parameter, and let s(t) denote a position on the spline,
i.e., s(t) = [x(t), y(t)]T . Then the quadratic spline is defined as:

s(t) = at2 + bt+ c , with a,b, c ∈ R2 . (2)

Here a,b and c are the vector-valued spline coefficients. These quantities are
not geometrically meaningful in this form, so we write the spline in terms of the
positions of the endpoints r1, r2 and the tangent directions at the endpoints;
θ1, θ2.

s(t) = (−t2 + 1) r1 + t2 r2 + (−t2 + t) · 2d sin(φ − θ2)
sin(θ1 − θ2)

(
cos θ1
sin θ1

)
(3)

Here d and φ are the length and angle of the vector connecting the endpoints,
r2− r1. It is important to note that the final term becomes singular for θ1 = θ2.
Since the splines do not contain inflexions, equality of θ1 and θ2 is only possible
if θ1 = θ2 = φ. The spline therefore approaches the straight line s(t) = r1 +
t(r2 − r1).

4 Optimisation of Spline Parameters

The essential point of our method is that the local orientation is represented by
a probability distribution, and therefore the spline parameters θ1 and θ2 are not
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fixed quantities, and may be varied in order to obtain more consistent splines.
The final splines may be relatable even if the initial configuration (θ̄1, θ̄2) is not.

By virtue of (3), each pair (p(θ1), p(θ2)) of two locally extracted orientation
densities implies a density p(s| θ1, θ2) in the the spline, thus describing a “bundle”
of possible quadratic splines passing through the fixed end points. There is no
need to actually compute p(s| θ1, θ2). Instead, the optimisation is performed
with respect to the tangent angles θ1 and θ2, and the corresponding optimal s
is calculated afterwards.

In order to enforce smoothness of contours, it is necessary to impose a shape
constraint on the connecting spline bundle that penalises a high degree of bend-
ing. The new tangent angles are then found by means of a maximum likelihood
estimation procedure, which results in a trade-off between closeness to initial
local measurements and smoothness constraint. The final decision about the
relatability of a pair of key points is made after this optimisation.

4.1 The Spline Likelihood Function

In general terms, the total likelihood of a pair of tangent angles (θ1, θ2) is
given by the product of the joint density of that pair, obtained from (1), and a
probability density that depends on the degree of bending of the corresponding
spline:

L(θ1, θ2) = ppop(θ1, θ2) pbend(θ1, θ2) . (4)

The quantity that describes the bending of the spline is the magnitude of the sec-
ond derivative with respect to the parameter t, denoted by s̈(t). For a quadratic
spline s̈ is a constant determined by the boundary conditions. The “bending
probability”, which acts as a penalty term in the likelihood function (4), can be
defined as a Gaussian distribution in the scale invariant quantity s̈/d:

pbend(θ1, θ2) = p(s̈(θ1, θ2)) =
1√
2πσb

exp
(

s̈ 2(θ1, θ2)
2d2σ2b

)
(5)

The variance σ2b determines how strongly bending is penalised and is to be
optimised together with θ1 and θ2. In order to find s̈(θ1, θ2), equation (3) is
differentiated twice with respect to t, yielding the square of its magnitude as:

s̈2(θ1, θ2) = 4d2 − 16d2 sin(φ−θ2) cos(φ−θ1)sin(θ1−θ2) + 16d2 sin
2(φ−θ2)

sin2(θ1−θ2)

The density relating to the image orientation may be expressed as the product
of the densities for each endpoint, since the local orientations are treated as
independent random variables:

ppop(θ1, θ2| i, j) = p(θ1| i) p(θ2| j)

=
1

4π2I 0(κi) I0(κj)
eκi cos(θ1−θ̄i)+κj cos(θ2−θ̄j) (6)

In most cases both points are on an edge, and consequently i = 1 and j = 1.
Only in corner points or junctions several possible associations (i, j) have to be
considered. Inserting (5) and (6) in (4) the spline log-likelihood becomes:
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lnL(θ1, θ2; i, j) = − ln[4π2I0(κi) I0(κj)] + κi cos(θ1 − θ̄i) + κj cos(θ2 − θ̄j)

− 1
2 ln[2π]− lnσb −

s̈ 2(θ1, θ2)
2d2σ2b

(7)

The log-likelyhoodmay then be solved using a standard optimisation method.
For the results presented in this paper, we used a simple gradient ascent ap-
proach.

It is important to note that in the log-likelihood function (7) the concentra-
tion parameters κi and κj of the pdfs act as weights of angular modifications
during the optimisation process. If a concentration parameter is large, any devia-
tion from the initial orientation θ̄ will result in a sharp decrease of the likelihood
function unless the overall curvature is substantially reduced simultaneously. In
other words, the concentration parameters (and thus the certainties, which are
monotonic functions thereof) determine the “inertia” of orientation estimates,
i.e., their “flexibility to compromise for the sake of mutual consistency”. Herein
lies the essential difference to other grouping methods, where measurement of
certainty is not an integral part of local feature extraction.

4.2 Detection of Control Points

To implement such a spline scheme, we must begin by locating the necessary
control points. These control points are located at points of significant edge re-
sponse in the image. Given a set of key points, the task is then to decide which
points can be connected by splines. Here the idea is to eliminate only very un-
likely configurations, leaving more plausible arrangements to be decided on after
the splines have been reconfigured. For each key point, only a limited number
of its nearest neighbours are considered for grouping, reflecting the Gestalt law
of proximity. A weak relatability criterion is then applied to remove connections
which are inconsistent. After optimisation of the spline parameters, the resulting
splines are checked to establish whether they correspond to real edge structure
in the image. Those that have no support are discarded. Furthermore, Shipley-
Kellman relatability is checked with regard to the splines neighbours. Those that
are inconsistent are discarded.

5 Experiments

Figure 1 shows an image of part of the sculpture of Paolina Borghese by Antonio
Canova (1757-1822) and the different steps of contour extraction, from Gabor
responses to the tangent elements extracted at key points and the result of spline
interpolation between them. Some parts of the hair region contain very narrow
features which are more suitable for processing with a line detector. The method
has difficulties in correctly relating segments which are parallel and very close
to each other.

The same image has been used by Iverson and Zucker (1995) to demonstrate
the performance of their “logical/linear operators”. Referring to earlier work by
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(a) original (b) contour tangent map (c) spline contours

Fig. 1. Stages of contour extraction using a photograph of the sculpture “Paolina”
(512× 512 pixels, from the archive of the Vision group of Pietro Perona at Caltech).

(a) (b)

Fig. 2. The effect of tangent optimisation. In (a) the “relatability” criterion of Shipley
and Kellman (1991) is applied directly to the tangent orientations given by the modes
of the corresponding mixture densities. Figure (b) shows the same process after tangent
optimisation.

Koendrink and co-workers (1982), the authors point out the perceptual signifi-
cance of bifurcations and line terminations in regions, such as the folds around
the neck, which provide vital information about three-dimensional structure.
They also demonstrate that the Canny detector [13], like any other essentially
linear edge operator, is not capable of correctly representing bifurcations and
tends to smooth out tangent discontinuities in corner points and T-junctions.
Since feature extraction with probabilistic population coding explicitly repre-
sents points with multiple orientations and orientation discontinuities, the spline
interpolation algorithm can accurately capture most of the essential discontinu-
ities and bifurcations (Fig. 1 (f)).

Figure 2 illustrates the effect of the tangent optimisation algorithm on the
spline contour representation. When applied directly to the tangent orientations
given by the modes of the corresponding (mixture) densities, the “relatability”
criterion of Shipley and Kellman (1991) rejects a number of tangent configura-
tions, and consequently a lot of contour segments are not detected. Also, many
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(a) original (b) contour tan-
gent map

(c) spline con-
tours

Fig. 3. Original image with the tangent map and spline contours.

(a) σN = 2.5% (b) (c) σN = 5% (d)

(e) σN = 7.5% (f) (g) σN = 10% (h)

Fig. 4. An image with different amounts of additive Gaussian noise.

splines tend to differ from the actual contours, since inexact tangent angles tend
to create curved rather than straight splines. Through optimisation, a significant
number of tangent angles can be adjusted, in order to yield “relatable” config-
urations, many of which prove to be consistent with the intensity gradient in
the image. As a result, a more complete and accurate contour representation is
obtained.

In another experiment, the performance of the algorithm in the presence of
additive Gaussian has been investigated. Figure 3 shows the original image with
the extracted spline contours. Figure 4 shows the result of feature detection and
subsequent perceptual grouping for moderate noise. For a moderate noise level
(σN < 5%, SNR < 26 dB) there are only few false positives in the spline represen-
tation, since most erroneous key points form only isolated splines that can easily
be identified and removed. Above a noise value of about 10% (SNR = 20 dB),
the density of false positive key points reaches a level where spurious splines be-
gin to form erroneous contour segments of considerable length which could only
be eliminated by perceptual organisation of higher order. At this stage curvature
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Fig. 5. The number of key points detected in Figure 4 (a) as a function of the noise
level (standard deviation in % of maximum contrast) before (dashed curve), and after
perceptual organisation (solid curve).

consistency would be a vital constraint, since the noise-induced contour segments
exhibit frequent, sudden changes in the sign of curvature, which rarely occur in
natural object boundaries and folds. The erroneously discarded key points (false
negatives) are small in number but, of course, much more obvious, since they
lead to gaps in the contour representation.

The number of detected features as a function of the noise level is an indicator
for the efficiency of the feature detection in the presence of noise, since the num-
ber of additional key points compared to the case without noise approximately
equals the number of false positives. Figure 5 shows a plot of this relation for
the image in Figure 4 (a). Though more and more spurious key points appear
with increasing noise level, most of them do not fulfill the relatability criterion,
and even after angular optimisation a potential spline connection often lacks
consistency with the filter responses. Thus many false positives can be identified
and rejected.
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Abstract. This paper describes a graph-spectral method for path es-
timation. Our aim is to find a maximum probability path through a
lattice of pixel sites. We characterise the path recovery problem using
a site transition matrix. A graph-spectral analysis of the transition ma-
trix reveals how the maximum probability path can be located using an
eigenvector of the associated normalised affinity matrix. We demonstrate
the utility of the resulting method on the problem of recovering surface
height from a field of surface normals.

1 Introduction

The recovery of maximum probability paths through a pixel lattice is one that
arises throughout computer vision. This problem involves computing transition
probabilities or costs associated with sites, and then searching for the maxi-
mum probability or minimum cost path. Of course, the underlying optimisation
problem has exponential complexity, and hence exhaustive search is not a valid
option. It is for this reason that optimisation methods such as dynamic program-
ming [1], simulated annealing [2] and bayesian techniques [3] have been used to
provide practical solutions to the problem. However, in this paper we aim to
take a different approach and adopt a graph-spectral approach to the problem.

The idea underpinning graph-spectral methods is to abstract the problem
in hand using a weighted graph. Here the nodes represent these basic image
entities, and the weighted edges represent affinity relations between the enti-
ties. By computing the eigenvalues and eigenvectors of the weight matrix, it
is possible to find groups or clusters of tokens. The graph-spectral method is
in fact one of energy minimisation since the eigenvectors can be shown to be
minimisers of a quadratic form. In fact, graph-spectral methods have recently
proved highly effective in image processing and computer vision. Perhaps the
best known method is that of Shi and Malik [4] which has shown how to lo-
cate image regions by recursively bisecting a weighted graph that represents the
affinity of pairs of pixels. The method is based on the normalised cut. This is
a measure of the relative weight of the edges connecting the two parts of the
partition (the cut) to the weight assigned to the edges within the two parts of
the bisection (the association). A relaxed solution to the bisection problem is
found by locating the eigenvector associated with the second smallest eigenvalue
of the Laplacian matrix (the degree matrix minus the affinity weight matrix).

A. Fred et al. (Eds.): SSPR&SPR 2004, LNCS 3138, pp. 143–152, 2004.
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Although it is convenient to work with the Laplacian, since it is positive and
semi-definite, grouping and segmentation can also be performed using an edge-
weight or affinity matrix. For instance, both Sarkar and Boyer [5] and Perona
and Freeman [6] have developed matrix factorisation methods for line-segment
grouping that use eigenvectors of an affinity matrix rather than the associated
Laplacian. The Sarkar and Boyer [5] method can be understood as maximising
the association (i.e. the total edge weight) of the clusters.

The methods described above all share the feature of using the eigenvectors
of a Laplacian or an affinity matrix to define groups or clusters or objects.
However, graph-spectral methods can also be used for path analysis tasks on
graphs. For instance, it is well known that the path length distribution can be
computed from the spectrum of eigenvalues of the adjacency matrix [7]. Ideas
from spectral-graph theory have also been used to analyse the behaviour of
random walks on graphs [8–10]. The observation underpinning this work is that
random walks on a weighted graph can be represented as Markov chains in which
the transition probabilities are computed from the normalised edge weights. The
problem investigated is to compute the transition probability between pairs of
pixel sites after a large number of time steps have elapsed. This study has lead
to a number of interesting findings. Of direct relevance to this paper is the
fact that the steady state random walk on the graph is characterised by the
leading eigenvector of the normalised edge-weight matrix. In addition, there are
important relationships between the eigenvectors of the edge-weight matrix and
other quantities related to random walks. These include the access time for a
node (i.e. the expected number of time steps that must have elapsed before the
node is visited) and the mixing rate (i.e. the rate at which the random walk
converges to its steady state). The relationship between the leading eigenvector
of the edge weight matrix and the steady state random walk has been exploited
in a number areas including routeing theory and information retrieval [11, 12].

The advantage of graph-spectral methods is that they can be used to find
approximate or relaxed solutions without the need for parallel iterative updates
at the pixel site level. The method also obviates the need for complex search
algorithms. However, although they have been applied to region segmentation
and grouping problems, graph-spectral methods have not been applied to curve
detection problems of the sort that arise in the determination of the optimal
integration path.

2 Graph Spectral Analysis

To cast the curve estimation problem in a graph-spectral setting we adopt an
abstraction where the sites to be traversed are represented by a node-set V , the
connectivity relations by an edge-set E and the edges have a weight functionW :
E → [0, 1]. Here we aim to use the weight matrixW to define a Markov chain and
to use the steady state random walk associated to this chain to find a path across
the graph G = (V,E). The elements of the weight matrix are computed using the
energy or cost associated with the transitions between sites on the pixel lattice.
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Suppose that Ei,j is the energy associated with the transitions between the sites
with node-labels i and j, then the weight associated with the transition isWi,j =
exp[−βEi,j ]. Unfortunately, when computed in this way, the weight matrix W
cannot be used directly as the transition probability matrix for the Markov
chain since its rows do not sum to unity. To normalise the rows of the matrix
we compute the degree of each node deg(i) =

∑|V |
j=1W (i, j). With the diagonal

degree matrix D = diag(deg(1), deg(2), ...., deg(|V |)) at hand, the transition
probability matrix is given by P = D−1W . The elements of the transition matrix
are hence given by Pi,j = 1

deg(i)Wi,j . It is interesting to note that the transition
matrix P is a row stochastic matrix. Moreover, it is related to the normalised
symmetric positive definite matrix Ŵ = D−

1
2 WD−

1
2 = D

1
2PD−

1
2 ,and as a

result, we can write P = D−
1
2 ŴD

1
2 . It is worth noting in passing that the

matrix Ŵ is related to the normalised Laplacian L = D−
1
2 (D − W )D−

1
2 =

I − D−
1
2WD−

1
2 = I − Ŵ .

Our aim is to use the steady state random walk on the graphG as an estimate
of the maximum probability path across the graph G. The walk commences at
the pixel j1 and proceeds via the sequence of pixel sites Γ = {j1, j2, j3, ...}. If
the random walk can be represented by a Markov chain with transition matrix
P , then the probability of visiting the pixel sites in the sequence above is

PΓ = P (j1)
∏
l∈Γ

Pjl+1,jl =
∏
l∈Γ

Wjl+1,jl

deg(l)

Substituting for the path energy, we have that

PΓ =
exp

[
−β

∑
l∈Γ El

]
∏

l∈Γ deg(l)
=

1
ZΓ

exp[−EΓ ]

where EΓ = β
∑

l∈Γ El and ZΓ =
∏

l∈Γ deg(l). Hence, the integration path is a
Markov chain with energy function EΓ and partition function ZΓ . Further, let
Qt(i) be the probability of visiting the pixel site indexed i after t-steps of the
random walk and let Qt = (Qt(1), Qt(2), ...)T be the vector whose components
are the probabilities of visiting the sites at time t. After t time steps we have that
Qt = P tQ0. If Ŵ t is the result of multiplying the symmetric positive definite
matrix Ŵ by itself t times, then P t = D−

1
2 Ŵ tD

1
2 . To develop a spectral method

for locating the steady state random walk, we turn to the spectral decomposition
of the normalised affinity matrix Ŵ = D−

1
2WD−

1
2 =

∑N
i=1 λiφiφ

T
i where the

λi are the eigenvalues of Ŵ and the φi are the corresponding eigenvectors.
By constructing the matrix Φ = (φ1|φ2|....|φN ) with the eigenvectors of Ŵ
as columns and the matrix Λ = diag(λ1, λ2, ...., λN ) with the eigenvalues as
diagonal elements, we can write the spectral decomposition in the more compact
form Ŵ = ΦΛΦT . Since, the eigenvectors of Ŵ are orthonormal, i.e. ΦΦT = I,
we have that Ŵ t = ΦΛtΦT . Substituting the spectral expansion of the matrix
Ŵ into the expression for the state-vector of the random walk at time step t, we
find
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Qt = D−
1
2ΦΛtΦTD

1
2 Q0 =

{ |V |∑
i=1

λtiD
− 1

2φiφ
T
i D

1
2

}
Qo

The leading eigenvalue of Ŵ is unity, i.e. λ∗ = 1. Furthermore, from spectral-
graph theory [9], we know that, provided that the graph G is not a bipartite
graph, then the smallest eigenvalue λ|V | is greater than −1. As a result, when
the Markov chain approaches its steady state, i.e. t → ∞, then all but the
first term in the above series become negligible. Hence, the steady state random
walk is given by Qs = limt→∞Qt = D

1
2φ∗φT

∗D
− 1

2Q0, where φ∗ is the leading
eigenvector of the normalised affinity matrix Ŵ . This establishes that the leading
eigenvector of the normalised affinity matrix Ŵ determines the steady state of
the random walk. It is also important to note that the equilibrium equation for
the Markov process is Qs = PQs, where Qs is the vector of steady-state site
visitation probabilities. Hence, since the leading eigenvalue of P is unity, then
it follows that Qs is the leading eigenvector of P . For a more complete proof of
this result see the book by Varga [13] or the review of Lovasz [8].

We aim to visit the pixel sites on the lattice in the order of their steady-state
state probabilities. Suppose that the initial state vector for the sites is uniform,
i.e. Q0 = ( 1|V | , . . . ,

1
|V | )

T . As a result the steady-state probability of visiting the
pixel site i is

Qs(i) =
1
|V |

|V |∑
j=1

√
deg(j)
deg(i)

φ∗(i)φ∗(j) =
1
|V |

φ∗(i)√
deg(i)

|V |∑
j=1

√
deg(j)φ∗(j)

Since the summation appearing above is the same for all pixel sites, the proba-
bility rank order is determined by the quantity φ̂∗(i) =

φ∗(i)√
deg(i)

.

3 Curvature Dependant Weights

The application vehicle used in this paper is the identification of an integration
path that can be used to reconstruct a surface from a field of surface normals.
The surface integration problem arises in shape-from-shading and shape-from-
texture. Our aim is to reconstruct the height function for the surface S from a
planar field of surface normals, under the assumption that the image of the sur-
face is formed under orthographic projection. To realise this goal, we require an
integration path. This path must traverse or connect the sites of the pixel lattice.
By traversing the path, the relative surface height function can be reconstructed.
This is done using the trapezium rule to increment the height using the distance
travelled on the path and the known slant and tilt angles of the surface normals
at different locations on the image plane. In the work reported here the path
is one that optimises a graph-spectral criterion that penalises high curvature.
To this end, we require a means of gauging the affinity of pixels based on an
image plane approximation to the surface curvature. The path must minimise
the change in surface normal direction or sectional curvature across the field of
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surface normals. Suppose thatN i is the surface normal at the point indexed i on
the pixel lattice. We note that if the path between the locations i and j can be ap-
proximated by a circle of radius R on the surface, then the approximate sectional
curvature is |κ̂i,j | = 1

Ri,j
. If the line connecting the pixel sites on the image plane

is of length si,j , then the change in direction of the radius vector of the circle is
θi,j = arccosN i ·N j , and as a result cos θi,j =N i ·N j . If the angle θi,j is small,

then we can make the Maclaurin approximation cos θi,j � 1 − θ2i,j
2 = N i ·N j .

Moreover, the small angle approximation to the radius of curvature of the circle
is Ri,j =

si,j
θi,j

and hence

κ̂2i,j =
2(1−N i ·N j)

s2i,j
(1)

To compute the elements of the transition probability matrix we associate to
the pair of pixels a cost or energy that is equal to the square of the product of
the distance between the sites and sectional curvature of the connecting path.
Hence, the transition weight matrix has elements

Wi,j = exp
[
−βκ̂2i,j l

2
i,j

]
= exp

[
−2β(1−N i ·N j)

]
(2)

With this definition of the weight matrix, we can also view the recovery of
the graph-spectral integration path as one of energy minimisation. The leading
eigenvector of the matrix Ŵ satisfies the condition φ∗ = argmaxΦφT Ŵφ =
argmaxΦ φTD−

1
2 WD−

1
2 φ We can make the relationship to the raw field of sur-

face normals more explicit by introducing the matrix F = (N 1|N 2|...|N |V |)
with the surface normals as columns. When the constant β is small, then mak-
ing use of the Maclaurin expansion of the exponential weighting function we can
write W = eeT − β(eeT − FTF ) where e = (1, 1, ...., 1) is an all-ones vector of
length |V |. Using this approximation it is a straightforward matter to show that
the path is the one that satisfies the condition

φ∗ = argmax
Φ

φTFTFφ = argmin
Φ

|V |∑
i=1

|V |∑
j=1

N i ·N jφ(i)φ(j)

Hence, the integration path will minimise the change in surface normal direction.
Our aim is to use the sequence of pixel sites given by the rank-order of the

eigenvector coefficients to define a serial ordering for the sites on the pixel lattice.
If we visit the sites of the pixel lattice in the order defined by the magnitudes of
the coefficients of the leading eigenvector of the normalised affinity matrix, then
the path is the steady state of the Markov chain. In this paper, we aim to exploit
this property to locate a connected path on the sites of the pixel lattice, and to
use this path for surface integration and height recovery. Unfortunately, the path
followed by the steady state random walk is not edge-connected. Hence, we need a
means of placing the pixel sites in an order in which neighbourhood connectivity
constraints are preserved using the elements of the leading eigenvector φ∗.
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To do this we commence from the pixel site associated with the largest com-
ponent of φ∗, i.e. the largest site probability. We then sort the elements of the
scaled leading eigenvector such that they are both in the decreasing magnitude
order of the coefficients of the eigenvector, and satisfy edge connectivity con-
straints on the graph. The procedure is a recursive one that proceeds as follows.
At each iteration, we maintain a list of pixel sites visited. At iteration k let the list
of pixel sites be denoted by Lk. Initially, L0 = j0 where j0 = argmaxj φ∗(j), i.e.
j0 is the component of φ∗ with the largest magnitude. Next, we search through
the set of first neighboursNj0 = {k|(j0, k) ∈ E} of jo to find the pixel site associ-
ated with the largest remaining component of φ∗. The second element in the list
is j1 = argmaxl∈Nj0 φ∗(l). The pixel site index j1 is appended to the list of pixel
sites visited and the result is L1. In the kth (general) step of the algorithm we
are at the pixel site indexed jk and the list of pixel sites visited by the path so far
is Lk. We search through those first-neighbours of jk that have not already been
traversed by the path. The set of pixel sites is Ck = {l|l ∈ Njk ∧ l /∈ Lk}. The
next site to be appended to the path list is therefore jk+1 = argmaxl∈Ck φ∗(l).
This process is repeated until no further moves can be made. This occurs when
Ck = ∅ and we denote the index of the termination of the path by T . The se-
rial ordering of the pixel sites that results from this edge-based sorting is the
integration path Γ = LT .

Our surface height recovery algorithm proceeds along the sequence of pixel-
sites defined by the order of the coefficients As we move from pixel-site to
pixel-site defined by this path we increment the surface-height function. The
trigonometry of the height incrementation process is as follows. At step n of
the algorithm we make a transition from the pixel with path-index jn−1 to
the pixel with path-index jn. The distance between the pixel-centres associ-
ated with this transition is dn. This distance together with the surface normals
N jn = [Njn(x), Njn(y), Njn(z)]T and N jn−1 = [Njn−1(x), Njn−1(y), Njn−1(z)]T

at the two pixel-sites may be used to compute the change in surface height
associated with the transition. The height increment is given by

hn =
dn
2

{
Njn(x)
Njn(y)

+
Njn−1(x)
Njn−1(y)

}
(3)

If the height-function is initialised by setting zj0 = 0, then the centre-height for
the pixel with path-index jn is zjn+1 = zjn + hn.

4 Experiments

We commence with some experiments on synthetic data. The aim here is to
determine the accuracy of the surface reconstruction method. To this end, we
have generated synthetic surfaces. From the surfaces, we have computed the field
of surface normal directions. We have then applied the graph-spectral method
to the field of surface normals to recover an estimate of the surface height.

In Figure 1, we show the results obtained for a series of different surfaces. In
the top row we show the original synthetic surface. The second row shows the
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Fig. 1. Top row: Artificially generated data; Second row: Reconstructed surface; Bot-
tom row: Error plot.

surface reconstructed from the field of surface normals. The bottom row shows
the absolute error between the ground-truth and reconstructed surface height.
From left-to-right, the surfaces studied are a dome, a sharp ridge, a torus and
a volcano. In all four cases the surface reconstructions are qualitatively good.
For the dome the height errors are greater at the edges of the surface where
the slope is largest. In the case of the ridge, there are errors at the crest. For
the volcano, there are some problems with the recovery of the correct depth of
the “caldera”, i.e. the depression in the centre. For the reconstructed surfaces,
the mean-squared errors are 5.6% for the dome, 10.8% for the ridge, 7.8% for
the torus and 4.7% for the volcano. Hence, the method seems to have greater
difficulty for surfaces containing sharp creases.

We have repeated these experiments under conditions of controlled noise. To
do this we have added random measurement errors to the surface height. The
measurement errors have been sampled from a Gaussian distribution with zero
mean and variance σ = 1. In Figure 2, we show the result of reconstructing the
surfaces shown in Figure 1 when noise has been added. In the left-hand column
of the figure we show the field of surface normals for the noise-free surface. In
the second column, we show the field of surface normals for the noise-corrupted
surface. In the third column, we show the reconstructed height-function obtained
from the noisy surface normals. The fourth, i.e. rightmost, column shows the
difference between the height of the surface reconstructed from the noisy surface
normals and the ground-truth height function. In the case of all four surfaces,
the gross structure is maintained. However, the recovered height is clearly noisy.
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Fig. 2. Left-hand column: Needle-map without added noise; Second Column: Needle-
map with Gaussian noise added; Third column: Reconstructed surface; Fourth column:
Error plot.

The height difference plots are relatively unstructured. These are important
observations. They mean that our graph-spectral method simply transfers errors
in surface normal direction into errors in height, without producing structural
noise artefacts.

We have also applied our surface recovery method to needle-maps extracted
from real-world data using the shape-from-shading algorithm of Worthington
and Hancock [14]. In the columns of Figure 3 we show, from left-to-right, the
raw image, two views of the reconstructed surface and the integration path.
In each case the integration path seems to follow the height contours on the
surface, and both the overall geometry and the surface detail of the objects is
well reproduced.

5 Conclusions

In this paper, we have demonstrated how steady state random walks can be
used for path estimation on pixel lattices. We have illustrated the utility of the
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Fig. 3. Results on real-world imagery.

method for purposes of surface integration from fields of surface normals. Our
future plans are to develop a more sophisticated model. In this paper, we have
sought the path that is the steady state random walk of a Markov chain on
a graph. This is a type of diffusion process. A more principled approach may
be to pose the recovery of the integration path as the solution of a stochastic
differential equation. It may also be interesting to investigate whether the idea
of recovering a path using graph-spectral a methods can be applied to other 2D
curve enhancement problems.
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Abstract. Model-based image recognition requires a general model of the ob-
ject that should be detected. In many applications such models are not known a 
priori, but have to be learnt from examples. In this paper we describe our pro-
cedure for the acquisition and learning of general contour models. We devel-
oped a modified Procrustes algorithm for alignment and similarity calculation 
of shapes. Based on the calculated pair-wise similarity we learn groups of 
shapes. For each group we calculated prototypes. The set of prototypes will be 
used as models for the detection of object instances in new images.  

1   Introduction 

One of the most commonly encountered problems in image analysis is the recognition 
of objects in an image. This can be done by a model-based object recognition method. 
Such a method works as follows: A shape model is applied to the image and matched 
according to the pixel points of the image. If the considered pixels have an appearance 
that is similar to the model points, then the result of the matching process will be a 
score equal to one for identity and less then one for similarity. The basis for such a 
method is a good model of the object to be recognized and a good similarity measure. 
We will consider in this paper the generation of the models from exemplars.  

The model can be generated synthetically or from the original image. We are con-
sidering the process where the model or a set of models should be learnt from a set of 
instances elicited from a set of real images. Generally we are attempting to solve the 
following problems: Create a set of m shape instances from real images, each is repre-
sented by a set of arbitrary boundary points. Align these shapes and calculate the pair-
wise similarity, partition them into a set of clusters and, for each shape cluster, com-
pute a prototype. The set of prototypes will be used as models for the detection of 
object instances in new images. 

In Section 2 of this paper we give the basic notion and we briefly describe the ma-
terial used for this study. The acquisition of shape instances is described in Section 3. 
The alignment of shapes and the computation of the pair-wise similarity is described 
in Section 4. Clustering and prototype calculation is presented in Section 5 and Sec-
tion 6. Finally we give results in Section 7. The methods described in this paper are 
implemented in a program named CACM Version 1.0 that assists the user in the ac-
quisition of 2-D shapes and learns groups of shape models and their prototypes. An 
outlook to our research is given in Section 8.  
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2   Basic Notions and Material Used for this Study 

Model-based object recognition can be done based on the object model or based on 
the contour model. We are considering the contour of an object S but not the appear-
ance of the object inside the contour. Therefore we want to elicit from the real image 
the shape ( ){ }cicic yxS ,= cni ...1=  represented by a set of cn  boundary points 

( )cc yx , .  
The material we used for our study are fungal strains that are naturally 3-D objects, 

but which are acquired in a 2-D image. These objects have a great variance in the 
appearance of the shape of the object because of their nature and the imaging con-
straints.  Six fungal strains representing species with different spore types were used 
for the study (Table 1). A database of images from the spores of these species was 
produced.  

Table 1. Images of Six Different Fungi Strains 

   

Alternaria Alternata  Aspergillus Niger Rhizopus Stolonifer 

   

Scopularioupsis 
Brevicaulis 

Ulocladium Botrytis Wallenia Sebi 

3   Acquisition of Shape Cases 

We obtain the set of boundary pixels by implementing into our program a function 
that allows the user to mark the contour SC of an object S by moving the mouse cursor 
of the computer or by moving an electronic pen over a digitizer tablet (Figure 1). 
Notice that the sampled points are not required to be landmark co-ordinates [1] or 
curvature extrema. The user starts labelling an object S at an arbitrary pixel sstart of its 
contour. After having traced the complete object the labelling ends at a pixel sj in the 
8-neighbourhood of sstart. To obtain the complete set SC of all boundary pixels we need 
to ensure that the contour is closed, which means sj is a direct neighbour of sstart. 
Therefore we insert missing boundary pixels using the Bresenham [2] procedure. 

As a result of the labelling process we obtain set SC with an amount of nC ordered, 
connected points that describe the boundary of object S with the highest possible 
accuracy as far as is possible with this kind of labelling procedure. 

Having labelled the contour SC of the object S its boundary pixels are still defined 
by their absolute position in the 2-D matrix of the original image. In order to describe 
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and compare the shapes of objects it is useful to specify a common co-ordinate system 
that is invariant for translation. Therefore we transform the set SC of boundary points 
to the origin x = 0 and y = 0 .  

A following approximation of the contour might reduce this set of pixels to a suffi-
ciently large set of pixels that will speed up the succeeding computation time of the 
alignment and clustering process. The numbers of pixels in this set will be influenced 
by the chosen order of the polygon and the allowed approximation error. Our ap-
proach to the polygonal approximation is based on the area/length ratio according to 
Wall and Daniellson [3]. 
 

 

Fig. 1. Labeled and Approximated Shape with Co-ordinates 

4   Shape Alignment and Similarity Calculation 

4.1   Theory of Procrustes Alignment 

The aim of the alignment process is to compare the shapes of two objects in order to 
define a measure of similarity between them. Consider two shape instances P and O 
defined by the point-sets Ci niRp ...,,2,1², =∈  and Kj njRo ...,,2,1², =∈ respec-

tively. The basic task of aligning two shapes consists of transforming one of them 
(say P) so that it fits in some optimal way the other one (say O). Generally the shape 

instance  })yx({P P
i

P
i ,=  with cni ...1= is said to be aligned to the shape in-

stance })yx({O O
j

O
j ,= with knj ...1=  if a distance function d(P, O) between the 

two shapes cannot be decreased by applying to P a transformation . The differences 
between various alignment approaches is the group of allowed transformations (simi-
larity, rigid, affinity) on one side and the definition of the distance function on the 
other side. 

In our application we use for the Procrustes distance [4] [5], a least-squares type 
distance function. The alignment of shapes is limited to similarity transformation in 
order to eliminate differences in rotation and scale of the two shapes P and O.  



156      Petra Perner and Silke Jähnichen 

After computing a similarity transformation between P and O the Procrustes dis-
tance is defined by 

∑
=

−
−

−
=
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i O
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1

²
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)(
)(
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whereθ  is the rotation matrix, μP and μO are the centroids of the object P and O re-

spectively and σP and σO are the sums of squared distances of each point-set from the 
centroids. 

In its basic form, the Procrustes alignment centers and scales each set of points so 
that the sum of squared distances of all points in each point-set is unity. Then it is 
possible to compute a similarity transformation based on these centered pre-shapes. 
Finally the Procrustes average shape and Procrustes residuals can be evaluated. 

4.2   Our Approach to Shape Alignment 

As described in Section 3 we are considering a set of shape instances where differ-
ences in translation were already eliminated. To compare the shapes of two instances 
we still have to eliminate differences in rotation and scale. As a measure of similarity 
we use the Procrustes distance between all points of P and their correspondences in O.  

As can be seen from equation (1) the Procrustes distance requires the knowledge of 
point correspondences between the shapes P and O. Therefore we are confronted with 
the following problems:  
 

1. In our application we use an approximation of the manually labelled set of contour 
points instead of a predefined number of landmark coordinates. Therefore we can-
not guarantee that all shape instances are defined by an identical number of contour 
points. We can only assume to have nearly the same amount of contour points re-
gardless of which size or shape an object has. 

2. The point correspondences between the two shapes of the instance P and O are 
completely unknown. 

3. As a result of the above-mentioned facts we do not have information about point 
outliers either. 

 

The Softassign Procrustes Matching algorithm [7] solves the point correspondence 
problem using deterministic annealing. This algorithm works robust with respect to 
outlier identification and noise, but is it also a computationally-expensive procedure. 
Belongie et al. [8] found correspondences between points on the basis of the shape 
context descriptor. 

We are solving the problem of unknown point correspondences by applying an it-
erative robust point matching algorithm. The outline of our approach to shape align-
ment is as follows:  

For every pair of points (pi, oj) ∈  P x O we calculate the similarity transformation 

ij that aligns these two points { pi, oj }. The transformation� ij is applied to all points 
in P to obtain the transformed shape instance P’, which is defined by the point-
set Ci niRp ...,,2,1²,' =∈ . For every point p’i we define the nearest neighbour 
NN(p’i) in O as a point correspondence of p’i. Note that we do not enforce one-to-one 
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point correspondences. One point in O can have more than one point correspondence 
or even not a single point correspondence in P. The sums of squared distances dij(P, 
O) between every point correspondence were added. In addition to that we define the 

quantity ),(*
1

OPd
k ij  as the mean alignment error ),( POijε : 

),(*
1

),( OPd
k

OP ijij =ε   (2) 

with 

∑
=

−+−=
k

i
ij ypiNNypixpiNNxpiOPd

1

)²).'('.()²).'('.(),(  (3) 

If the distance dji(P, O) is smaller then all earlier calculated distances, dmin(P, O) is set 
to dji(P, O), ),(min POε  is set to ),( POijε   and� min is set to� ij.  

After having cyclically aligned every possible pair of points (pj, oi) ∈  P x O, we 
may estimate the similarity between the shape instances P and O based on the value 
of dmin (P, O).  

To ensure that the final measure of similarity ranges from 0 to 1, we normalize the 
measure  ),(min POε  to a predefined maximum distance T: 

T

OP ),(min
min

εε =′  (4) 

If 0),(min =POε  then the shape instance P is identical with the shape instance O. 

With an increasing value of ),(min POε  the shape instance P is less similar to the 

shape instance O. If ( ) TOP >,minε  then the term 
( )
T

OP,minε
 is automatically set to 

value one. 
It is obvious that the constant T has a direct influence to the value of the resulting 

score. The parameter T can be defined by the user in the settings dialog of our pro-
gram CACM. For our calculations we set T to 35% of the centroid size of O. Our 
investigations showed that this value leads to good results. Figure 2 shows pair-wise 
aligned shapes and the calculated values of the dissimilarity measure. It can be seen 
that in case of identity the shapes are superposed. If the similarity score is less than 
one, we can see a deviation of the two shapes. 

5   Clustering 

The alignment of every possible pair of objects in our database leads us to N*N pair-
wise similarity measures between the N shape instances. These distances can be col-
lected in an N x N matrix where each row and each column corresponds to an instance 
of our data set.  
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0=′ijε  [identical] 0271.0=′ijε  

 [nearly identical] 

199.0=′ijε  

 [similar] 

5.0=′ijε  

 [neutral] 

Fig. 2. Aligned Shape Instances of Strain Ulocladium Botrytis with Distances 

 

Fig. 3. Dendrogram of Shapes of  the Object Ulocladium Botrytis and the calculated Prototypes 

We want to point out that we do not obtain a symmetric square matrix where the 
distance d(A, B) between an individual A and an individual B is identical to the dis-
tance d(B, A) between individual B and individual A. This is obviously a lack of preci-
sion, but until we do not enforce a strict one-to-one mapping between corresponding 
points we can only assume that d(A, B) � d(B, A). 

Based on this similarity matrix we can divide our set of shape instances into groups 
or clusters. The clustering is done using the single linkage method [6]. The result of 
the hierarchical cluster analysis can be graphically represented by a dendogram. The 
dendogram for the shapes of the fungi strain ulocladium botrytis is shown in Figure 3. 
The dendogram shows the relative distances between all individuals. The merging of 
individuals into clusters is done with increasing distances (from left to right) until all 
individuals are combined in only one cluster. The exemplary cut-point (vertical red-
dotted line) at a distance 0.15 results in two different clusters. The first cluster which 
consists only of the object with 1_ub  is represented by prototype P2_1. The second 

cluster consists of the other seven objects { }8_ub,,3_ub,2_ub �  and is represented 

by prototype 2_2P .  
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6   Prototype Calculation 

Each cluster consists of a subset of j shapes S1, S2…Sj. For each cluster we can now 
compute a prototype μ  that will be the representative of the cluster. This prototype 
can be calculated by computing the mean over all shapes in a cluster. As result we 
will get an artificial prototype, a prototype that does not exist in reality. Therefore we 
decided to calculate the median of all shapes in a cluster. 

As the median shape of that cluster we choose the shape instance which has the 
minimum distance to all other shape instances 

[ ] ( )∑
=

==
j

i
iSSdS

1
minmin ,infargμ̂  (5) 

The main advantage of this solution is that the model represents a natural shape 
that is included in the cluster. An example of using a natural shape instance as the 
prototype of a cluster is shown in Figure 4a. In contrast to this the arithmetic mean as  
prototype is shown in Figure 4b. Visually we would favor the median shape as proto-
type for the cluster since it appears to be more smooth. 

 

  
(a) using a natural shape instance as proto-
type 

(b) using the arithmetic mean as prototype 

Fig. 4. Median of Shapes in a Cluster and Arithmetic Mean of the Shape 

7   Results 

We have applied our method to six different airborne fungi spores (see Table 1). We 
have labelled a total of 60 objects for each of the 6 fungal strains. In the following 
registration process we have aligned every single object with all objects of the same 
strain to calculate the measure of similarity between them. As a result we have ob-
tained six squared similarity matrices, one for each analyzed fungal strain. These 
matrices were the input for the following cluster analysis. The outcome of this process 
was a dendrogram for each of the six different fungi strains. Table 2 presents the 
number of models for each class at two different cut-points.  

For both cut-points we calculated the corresponding set of clusters in each strain 
class. The prototypes of these clusters were used as models for the later recognition 
process which is not part of this work. Figure 5 shows as an exemple the database of 
models for the class Rhizopus Stolonifer at cut-point (1). We can see that a large 
number of models is required for good detection of the object Rhizopus Stolonifer. 
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Table 2. Number of Models for two different Cut Points 

Classes 
max. 
Distance 

Cut- 
Point (1) 

Number  
of Models 

Cut- 
Point (2) 

Number  
of Models 

Alternaria Alternata 0.5264 0.035 23 0.031 34 

Aspergillus Niger 0.2936 0.098 3 0.094 5 

Rhizopus Stolonifer 0.4275 0.058 16 0.055 22 

Scopulariopsis Brevicaulis 0.4911 0.095 8 0.083 10 

Ulocladium Botrytis 0.5332 0.043 24 0.040 30 

Wallenia Sebi 0.5202 0.050 7 0.046 10 

 

 

Fig. 5. Database of Models for Strain Rhizopus Stolonifer representing the 16 resulting Clusters 

8   Conclusions 

The recognition of objects in images can be done based on a model-based recognition 
procedure. That requires to have a model from the objects which should be recog-
nized.  Natural objects have a great variation in shape that does not make it  easy to 
specify a model by hand. Therefore it is necessary to have a computerized procedure 
that helps to acquire the model from the real objects. We have proposed a method for 
the acquisition of contour instances and the learning of general shape models. We use 
the Procustes similarity measure for aligning and determining the similarity between 
different shapes. Based on the calculated similarity measure we create clusters of 
similar shapes by using the single linkage method. The mean shape or the median of 
the cluster is calculated and taken as a prototype of the cluster. The methods are im-
plemented in the program CACM Version 1.0 which runs on a window PC.  
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Abstract. We present a probabilistic graphical model for point set
matching. By using a result about the redundancy of the pairwise dis-
tances in a point set, we represent the binary relations over a simple
triangulated graph that retains the same informational content as the
complete graph. The maximal clique size of this resultant graph is inde-
pendent of the point set sizes, what enables us to perform exact inference
in polynomial time with a Junction Tree algorithm. The resulting tech-
nique is optimal in the Maximum a Posteriori sense. Experiments show
that the algorithm significantly outperforms standard probabilistic re-
laxation labeling.

1 Introduction

The Point Matching Problem is a fundamental one in structural Pattern Recog-
nition, having many applications ranging from stereo matching techniques [4] to
the analysis of electrophoresis images [3].

Many algorithms are available in the literature, both for exact and inexact
matching. For exact matching, optimal polynomial time algorithms exist, most
of them based on ingenious combinations of sorting and searching, inclusive for
multidimensional point matching [11]. For inexact matching, there is a variety of
proposed techniques, which are generally significantly different from exact tech-
niques, since the need for a similarity measure usually requires that the problem
be posed as an optimization one instead of (or in addition to) deterministic
search [2].

This paper presents a principled approach for point set matching which is
both applicable to exact and inexact problems. Moreover, it is assured to be op-
timal in the Maximum a Posteriori sense and has polynomial time dependency
on the point set sizes. This is possible due to the proposed Markov Random
Field (MRF) formulation, which poses point set matching as an exact infer-
ence problem that can be effectively solved by Junction Tree methods [7]. The
polynomial time performance is obtained from a key observation which exploits
concepts of the rigidity of straight line graph embeddings [12, 13]. We also show
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via a series of experiments that the proposed technique, when applied to inex-
act problems, presents extremely robust performance under augmentation of the
point set sizes. In addition, experiments indicate that the proposed approach is
significantly more robust than standard probabilistic relaxation labeling both
under varying point set sizes and varying noise levels.

2 The Problem

We consider the problem in Rd, d ≥ 2, of finding the subset of an S-sized point
set (the codomain pattern) that best matches another point set (the domain
pattern) having T points, where T ≤ S. There may or may not exist distortions
due to noise, but if there are, we assume no prior knowledge of the type of noise.
We restrict the matching to be invariant up to isometries. In this work, the scale
of both point sets is assumed to be the same. The only constraint enforced in the
mapping is that it must be a total function: every point in the domain pattern
must map to one point in the codomain pattern (but the opposite may not hold).

3 Theoretical Foundation

This section presents the fundamental result that enabled us to formulate the
point set matching problem as one of optimal inference in a MRF, while keeping
the overall complexity of the algorithm polynomial.

3.1 Global Rigidity: Basic Definitions

We start by presenting some basic definitions of the global rigidity of graphs
[12]. A configuration is a finite set of n labeled points, p = (p1, · · · , pn), such
that each pi ∈ Rd. A framework in Rd consists of a straight line embedding of a
graph G with n vertices with configuration p = (p1, · · · , pn), and is denoted by
G(p). In this representation the lengths of the edges correspond to the Euclidean
distances between the corresponding vertices. A configuration in general position
(or general configuration) in Rd is such that no (d+1) points lie in the same (d-
1)-dimensional hyperplane. In R2, this means that no 3 points are collinear.

Two frameworksG(p) and G(q) are said to be equivalent, denoted by G(p) ≡
G(q), if when {i, j} is an edge of G, then ||pi − pj || = ||qi − qj ||, where ||.|| is
the Euclidean norm. It is said that a configuration p = (p1, · · · , pn) is congruent
to q = (q1, · · · , qn), and are denoted by p ≡ q, if, for all {i, j} ∈ {1, · · · , n},
||pi− pj|| = ||qi− qj||. This is equivalent to saying that congruent configurations
are those related by an isometry, or a transformation that preserves distances.
A framework G(p) is called globally rigid in Rd if G(p) ≡ G(q) implies p ≡ q.
In other words, a framework is globally rigid when the specification of the edge
lengths uniquely specifies the remaining pairwise distances between vertices that
are not joined by an edge. In the following we present a key fact about the
global rigidity of a special kind of framework, which turns out to allow for the
development of an effective technique for point matching.
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3.2 Global Rigidity of k-Trees

In order to present the basic result that allows us to develop a model for optimal
point matching, we start by reviewing some basic definitions from graph theory
[14]. In what follows a complete graph with n vertices is denoted as Kn. We
recall that a framework is a straight line embedding of a graph.

Definition 1 (k-clique). A k-clique of a graph is a complete subgraph with k
vertices.

Definition 2 (k-tree, base k-clique). A k-tree is a graph that arises from
Kk by zero or more iterations of adding a new vertex adjacent to each vertex
of a k-clique in an older graph and nonadjacent to the remaining vertices. The
k-cliques adjacent to the new vertices are called base k-cliques.

Figure 1 shows the process of creating a k-tree, where k = 3. We start with a
K3 graph. Then we add new vertices by connecting them to 3 vertices of any
existing base 3-clique. Note that all intermediate graphs generated in this way
are themselves legitimate 3-trees.

5

2 2

3

5

4 4 64

13

2

1

2

3
1

Base 3−cliques

1
3

Fig. 1. The process of constructing 3-trees

From these definitions and those of the global rigidity of frameworks, it is possible
to prove the following result:

Proposition 1. Any k-tree framework having each of its base k-cliques in gen-
eral position in Rk−1 is globally rigid in Rk−1.

This follows from the fact that n + 1 hyper-spheres in Rn which do not lie
in a (n − 1)-dimensional vector subspace intersect in at most one point. The
proof is omitted for space reasons, but can be obtained by induction using the
known fact that the intersection of two spheres is a sphere in a lower dimensional
subspace.

The direct implication of the result is that the k-tree framework has exactly
the same informational content than a fully connected framework (since the
absent edges have uniquely determined lengths).

In the next section we show how, by taking advantage of this result, we can
formulate a MRF model that has precisely the structure of a k-tree, and where
exact probabilistic inference is feasible in polynomial time.
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4 The Probabilistic Graphical Model

A direct consequence of the definition of a k-tree is that the size of its maximal
clique is at most k + 1, being precisely k + 1 if the number of vertices is greater
than k and being k if the number of vertices equals k.

This observation is what impelled us to propose a probabilistic formulation
based on Graphical Models [6], which involves algorithms for optimal inference
in probabilistic networks with exponential complexity on the size of the maximal
clique of the underlying graph. Since the size of the maximal clique is fixed in
k + 1, the dependency on the number of points is only polynomial, as will be
shown. As a result, we obtain a polynomial time procedure for optimal matching.
The description of the model and the optimization procedure follow.

4.1 The Model

Here we present a probabilistic graphical model for point set matching. The
cardinalities of the domain and codomain pattern sets are denoted, respectively,
by T and S. Each point in the domain is associated with a vertex of a graph
Gt, and each point in the codomain is associated with a vertex of a graph Gs.
The relative distance between a pair {i, j} of points in a pattern is seen as an
edge attribute of the edge that connects vertices i and j in the respective graph.
In this formulation, point pattern matching turns out to be an attributed graph
matching problem.

The model formulation consists, initially, in defining each of the T vertices
in Gt as a random variable (r.v.) that can assume S possible values (discrete
states), corresponding to the vertices in Gs. Note that in this formulation the
solution to the problem (the best match) corresponds to finding the most likely
(the best) realization of the set of r.v.’s. The core of a Markov clique condition
lies in the compatibilities between joint matches of two r.v.’s xi and xj in Gt to
values θk and θl in Gs and is defined by

ψij;kl = p(xi = θk|xj = θl)

or, in matrix form, for each pair {i, j} in Gt, we define the potential

ψij = ψ(xi, xj) ≡ p(xi|xj) =
1
Z

⎛⎜⎝S(yijt , y11s ) . . . S(yijt , y1Ss )
...

. . .
...

S(yijt , yS1s ) . . . S(yijt , ySSs )

⎞⎟⎠ (1)

where ybca denotes the edge attribute between vertices b and c in graph Ga. Z
is a normalization constant that equals the sum of all elements in the matrix,
in order to keep ψij compatible with a probability distribution. S is a similarity
function that measures the compatibility of the two arguments. Several options
are available for S [1], and the specific function S to be used is not a central
issue of this work. Here we choose a similarity function based on the Hyperbolic
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Tangent, for which there is evidence of better performance over a Gaussian
function [1]:

S(yijt , yklt ) = 1− tanh
[
|yijt − ykls |

σ

]
. (2)

As a result we can now define a Markov Random Field (MRF) graphical model
over the domain graph Gt where nodes in the model correspond to the vertices
in Gt whose states are defined by discrete random variables given by the set of
vertices in Gs. The local cliques are defined by the connections between the r.v.’s
of the k-tree topology and their conditional dependencies (Markov condition) are
defined via Eq.(1).

Since we have shown that considering only this subset of edges is equivalent to
considering all the edges, this MRF actually represents a complete model of the
probabilistic interactions in the graph. Figure 2 shows an example of a particular
3-tree MRF. The result of section 3 implies that this model is equivalent to a
complete model for matching tasks in R2, where our experiments will take place.
Each connection represents the interaction between the corresponding random
variables, which is given by the associated “potential” ψij .

X X X

XXX

1 2 3

4 5 TXT−1

Fig. 2. A possible k-tree model for k = 3 (3-tree). Other 3-trees are possible, as long
as their base 3-cliques correspond to non-collinear points

Now we need an optimization procedure to infer the most likely realization of the
set of random variables, which is precisely the solution to the point set matching
problem.

4.2 Optimization

Inference in MRFs typically capitalizes on the Gibbs’ distribution to employ
simulated annealing to derive the assignment [10]. However, with the above
results we can use the Junction Tree (JT) framework, which provides a set of
deterministic algorithms for exact inference in arbitrary graphical models [7, 6].
A JT of a graph is another graph where the nodes correspond to the maximal
cliques of the former graph such that the Junction Tree property is satisfied.
This property states that all the nodes in the path between any two nodes in
the JT must contain the intersection of these two nodes. It is known that the
condition for the existence of a JT is that the graph must be chordal [6]. A
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X 4X3X1 X2 X 5X3X1 X2

X3X1 X2

X TX3X1 X2

X3X1 X2

XXX1 X2 T−13

Fig. 3. The Junction Tree obtained from the model in Figure 2

k-tree is a chordal graph, and this allows us to use the JT framework to perform
optimization over the model.

Figure 3 shows a JT obtained from the model in Figure 2. The nodes of the
JT are denoted by circles in which are listed the nodes of the original graph that
correspond to the respective maximal cliques. The rectangles are the so-called
separators, that contain the intersection of the nodes to which they are linked.
Both the nodes and the separators are endowed with “clique potentials”, and the
optimization process consists in updating these potentials, as explained below.
In this paper we applied the HUGIN algorithm [6], an instance of the JT frame-
work, to accomplish exact inference in the 3-tree model shown in Figure 2. The
complexity of JT using HUGIN in our k-tree model is O(Sd+2T ), where d (d > 1,
d = k − 1) is the dimension of the Euclidean space. As a result, the complexity
on S and T is polynomial. For the model and experiments presented here (in
R2), we have O(S4T ). The HUGIN algorithm essentially works in two steps:
initialization and message-passing. During the initialization, the clique potential
of each separator (Φ) is set to unity and the clique potential of each node (Ψ)
is introduced. These clique potentials are assembled as an element-by-element
product of the pairwise potentials (see Eq. 1) in the respective clique. For ex-
ample, for the 3-tree model, Ψ(xi, xj , xk, xl) = ψ(xi, xj).ψ(xi, xk).ψ(xi, xl).

The second step is the message-passing scheme, which involves a transfer of
information between two nodes V and W [7]. This operation is defined by the
following equations:

Φ∗S = max
V \S

ΨV Ψ∗W =
Φ∗S
ΦS

ΨW

where we used standard notation for the current and updated (∗) versions of the
separator potentials (Φ) and the clique potentials (Ψ). The first equation is a
maximization over all sub-configurations in ΨV that do not involve the singleton
nodes which are common to ΦS and ΨV . The second is simply a normalization
step necessary to keep ΨW consistent with the updated version of ΦS (division
and multiplication are performed element-by-element). The above potential up-
date rules must respect the following protocol: a node V can only send a message
to a node W when it has already received messages from all its other neighbors.
If this protocol is respected and the equations are applied until all clique nodes
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Fig. 4. (a) Performances of JT and PRL when the size of the codomain pattern (S) is
increased; T = 10, std (noise jitter) = 2 pixels. (b) Performances of JT and PRL when
the position jitter (std) in the codomain pattern is increased; T = 10, S = 30

have been updated, the algorithm assures that the resulting potential in each
node and separator of the JT is equal to the (global) maximum a posteriori prob-
ability distribution of the set of enclosed singleton nodes [7]. In our particular
case, we need the maximum probability for each singleton, what can be obtained
by maximizing out the remaining 3 singletons in each of the nodes. The indexes
for which the final potentials are maximum are considered the vertices in Gs to
which the corresponding vertices in Gt must be assigned.

5 Experiments and Results

We have carried out two experiments. In both of them, we compare our technique
(denoted simply as JT) with probabilistic relaxation labeling (PRL) [8]. We
have implemented the standard algorithm for PRL presented in [9], for the same
reasons than those explained in [5]. PRL does not guarantee global optimal
assignments like, under the right conditions and enough iterations, simulated
annealing does [10]. However, it is representative of the class of methods that
locally update evidence, in parallel, for assignment in terms of the compatibilities
between the label of each node and those within its neighborhood. The algorithm
runs in O(S3T 2).

In both experiments, we generated codomain patterns in images of size
256x256 with S points at random (but not coincident) positions. Then, we ex-
tracted randomly a subset of T of these points to build the domain pattern.

In the first experiment, we assume that there is a small amount of noise
(position jitter) in the codomain pattern, and vary the size of the codomain
pattern (in the absence of noise - when the domain pattern is exactly related
via an isometry to a subset of the codomain pattern - our method always gives
perfect results). A set of 8 increasingly complex matching tasks were carried
out, where patterns of size (T ,S) = {(10, 15), (10, 20), (10, 25), (10, 30), (10, 35),
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(10, 40), (10, 45), (10, 50)} were matched using both JT and PRL. For each of
these matching tasks, the fraction of correct assignment was calculated based on
1000 trials. The obtained performances are shown in Figure 4(a).

In the second experiment, the sizes of both graphs are kept constant, but
the degree of noise in the codomain pattern is increased. We used T = 10
and S = 30, and the noise consisted in adding independent random numbers
drawn from a normal distribution with zero mean and varying standard devi-
ation (denoted as std in the figures) to both the x and y coordinates of each
point from the codomain pattern. The standard deviation was progressively set
to {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} pixels. The final performance is presented in Figure
4(b). Each point in this Figure also represents the result over 1000 trials. The
only parameter in the model is σ (see Eq. 2), and it was estimated so that the
minimal possible value for S(yijt , ykls ) was 10

−12. This is done to prevent under-
flow and also to guarantee that the similarity function S will effectively behave
monotonically with the observed value of |yijt − ykls |.

6 Discussion

Figure 4(a) shows that, for a fixed amount of noise, the augmentation of the
codomain pattern size damages severely the performance of PRL, whereas that
of JT remains significantly robust. This is a very important result, since scal-
ability is an important factor in real applications such as stereo matching and
image registration. The sensitivity of PRL to matching problems involving many
elements has already been reported [5].

In Figure 4(b), we observe that, for fixed sizes of the domain and codomain
patterns, the increasing of additive noise still keeps JT preferable for all the
experimented values of noise. It is reasonable to expect that both techniques
will perform similarly for extremely severe perturbations, when the performance
cannot exceed significantly that of pure choice.

7 Conclusion

This work has presented a novel technique for both exact and inexact point pat-
tern matching in Rk−1 (k ≥ 3), which runs in polynomial time and is optimal
in the Maximum a Posteriori sense. By representing a point pattern with the
correspondent relative pairwise distances between them, we showed that a sub-
set of these distances is sufficient for uniquely determining the remaining ones.
From this result, a special class of graph emerges, a k-tree, which has the same
representational power as the full graph, but has a maximal clique limited to
size k+1. By exploiting the Markovian properties of this simple graph structure
which has a fixed maximal clique size, we developed a probabilistic graphical
model where optimal inference is realizable in polynomial time. The proposed
technique presents perfect results in the absence of noise, and is much more ro-
bust than standard probabilistic relaxation labeling to varying point set sizes
when under noise. The technique is also robust under augmentation of additive
noise, where it clearly outperforms standard probabilistic relaxation labeling.
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Abstract. We present a novel algorithm for estimating the rigid-body
transformation of a sequence of coordinates, aiming at the application to
protein structures. Basically the sequence is modeled as a hidden Markov
model where each state outputs an ellipsoidal Gaussian. Since maximum
likelihood estimation requires to solve a complicated optimization prob-
lem, we introduce a variational estimation technique, which performs
singular value decomposition in each step. Our probabilistic algorithm
allows to superimpose a number of sequences which are rotated and
translated in arbitrary ways.

1 Introduction

In the most simple form, the protein structure is represented as a sequence of
3-dimensional vectors, each of which indicates the position of Cα atom of an
amino acid [6]. A large amount of structure data are readily available e.g. in
the Protein Data Bank. However, it is not easy to compare protein structures
because they are translated and rotated in arbitrary ways. A set of proteins have
to be superposed correctly to measure meaningful similarities among them. Here
one has to estimate the rigid-body transformation (i.e. rotation and translation)
of each protein correctly1. Superposition of protein structures has been a central
issue in computational biology, and many methods have been proposed (e.g. [3,
11, 1]). However, most works employ ad hoc or physically-motivated approaches,
and probabilistic models (e.g. HMMs) are rather out of focus. One of the reasons
would be that the probabilistic models for estimating 3-dimensional rigid-body
transformation get so complicated that direct maximization of likelihood e.g. by
gradient descent is almost hopeless (we will show details later). However, there

• Notice that estimating rigid-body transformation is more difficult than estimating
affine transformation [9], because we have to constrain the rotation matrix to be
orthogonal. Affine transformation allows rescaling, which is obviously inappropriate
for protein structures.

A. Fred et al. (Eds.): SSPR&SPR 2004, LNCS 3138, pp. 171–179, 2004.
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Spherical Gaussian Ellipsoidal Gaussian

Fig. 1. Comparison of the shape models based on spherical (left) and ellipsoidal (right)
Gaussians. When rotated, the covariance matrix of each Gaussian stays the same in
the spherical case, but it changes nonlinearly in the ellipsoidal case. This fact makes
it difficult to estimate the rotation and transformation by means of the ellipsoidal
Gaussians. However, the ellipsoidal Gaussians are much better to describe string-like
shapes (e.g. proteins). We will adopt a hierachical model, which combines the best of
both worlds.

are crucial advantages of employing probabilistic models. For example, one can
attach confidence levels on the estimated rotation and translation. Also one can
embed the probabilistic model as one node of a Bayesian network for higher-level
inference.

In this paper, we model protein structures by an HMM where each state
outputs a 3-dimensional vector subject to an ellipsoidal Gaussian2. The mean
vectors and covariance matrices of Gaussians have parameters corresponding to
rotation and translation. The rigid-body transformation is basically estimated by
maximum likelihood with respect to these parameters. The main difficulty is that
the covariance matrices are highly nonlinear functions of the rotation parameter
(Fig. 1, right). In order to alleviate the computational problem, we replace the
ellipsoidal Gaussian with the hierarchical model, that is, a spherical Gaussian
distribution whose mean is subject to an ellipsoidal Gaussian. Here we have a
new set of hidden variables, that is, the means of spherical Gaussians. Fixing
these hidden variables, the tranformation parameters are easily obtained [2], be-
cause the covariance matrix of a spherical Gaussian does not change by rotation
and translation (Fig. 1, left). Now the estimation of transformation parameters
amounts to maximize the expected log-likelihood with respect to the hidden
variables, which is tractably solved by a variational technique [5].

The organization of this paper is as follows. In section 2 we describe an HMM
shape model for representing a sequence of vectors. In section 3, we provide an
efficient algorithm for estimating rigid-body transformation. Section 4 explains
how to learn the HMM from a set of sequences. We will show several experiments
in section 5 before concluding in section 6.

• Typically superposition is helped by side information such as amino acid sequences
(i.e. Leu-Thr-Ser-Ile-· · · ). However, this paper considers more challenging setting
that only a sequence of 3-dimensional vectors is available.
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2 Shape Models

First of all, let us formulate the shape model without rotation/translation pa-
rameters. Let us define the sequence of d-dimensional vector sequence as X =
[x(1), · · · ,x(L)] ∈ Rd×L, where L denotes the length of sequence. In the case
of protein structure, L is the number of residues. We use the continuous density
hidden Markov model(HMM) as the shape model. The HMM has the follow-
ing latent variables: S = [s(1), · · · , s(L)] where s(r) ∈ {1, · · · ,M} indicates
the state at residue r. We use a d-dimensional Gaussian as the output distri-
bution: p(x(r)|s(r) = j) ∼ N (m0

j ,Cj) where N () denotes a Gaussian density
function and m0

j , Cj are the mean vector and the covariance matrix of state
j, respectively. The density function of an observed sequence X is given by
f(X|Θ) ≡

∑
S p(S|Θ)

∏L
r=1 p(x(r)|s(r), Θ) where

∑
S denotes summing over all

possible S. For simplicity, let us describe all the parameters by Θ which consists
of the parameters of Gaussian, m0

j ,Cj , as well as the state transition probabili-
ties, aij , and the initial state probabilities πi.

The density function of the rotated and translated model is described as

p(X|Θ,U, c) = f(UX+ c11×L|Θ) (1)

where U ∈ Rd×d is a rotation matrix, c ∈ Rd×1 is an offset vector and 11×L
is the 1 × L matrix with all elements equal to one. The rotation matrix U
has to satisfy U�U = I for orthonormality and det(U) = 1 for preserving
orientation. Assuming that Θ is known, our task is to estimate U and c by
maximum likelihood:

{Û, ĉ} = argmaxU,c log p(X|Θ,U, c). (2)

Let us analyze the difficulty of solving this problem. Consider an easier problem
when S is known, i.e. maximize

log p(X|S, Θ,U, c) = −1
2

L∑
r=1

(Ux(r) + c−m0
s(r))

�C−1s(r)(Ux(r) + c−m0
s(r))

+const. (3)

subject to U�U = I and det(U) = 1. Basically, this problem has a quadratic
objective function and a set of quadratic constraints, thus it is significantly more
complicated than the quadratic programming (i.e. quadratic objective function
and linear constraints) [7]. Efficient algorithms such as interior point methods
are not straightforwardly applicable for this problem, so typically one has to use
general purpose nonlinear optimizers (e.g. gradient descent, Newton methods),
which are not so efficient and prone to local minima. Here we do not insist on
finding a good approximation algorithm of solving Eq. (2), but rather decompose
the covariance of the shape model:

Cj = V0j + σ2I. (4)
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Then, using the property that the convolution of two Gaussians is also a Gaus-
sian, we have the following hierarchical model:

p(x(r)|μ(r), Θ) ∼ N (μ(r), σ2I), p(μ(r)|s(r), Θ) ∼ N (m0
s(r),V

0
s(r)) (5)

where μ(r) is a new hidden variable. Now the density function is rewritten as

p(X|Θ,U, c) =
∑
S

p(S|Θ)
L∏

r=1

∫
p(μ(r)|s(r), Θ)p(Ux(r) + c|μ(r), Θ)dμ(r), (6)

where Θ is redefined by Θ ≡ {m0
j ,V

0
j , a1j, · · · , aMj , πj}Mj=1 ∪ σ2. Fixing hidden

variables S and μ(r), the optimization problem can be solved analytically using
the singular value decomposition (SVD) [2]. As we see in the next section, this
property allows us to maximize the negative free energy functional, which is the
lower bound of the log-likelihood.

3 Variational Estimation

We will discuss how to maximize the likelihood in Eq. (6) approximately by the
variational EM algorithm [5]. For any distribution q(S, {μ(r)}Lr=1), the following
inequality holds:

log p(X|Θ,U, c) ≥
〈
log p(X,S, {μ(r)}Lr=1|Θ,U, c)

〉
q(S,{μ(r)}Lr=1)

+ H
(
q(S, {μ(r)}Lr=1)

)
. (7)

where H(·) denotes the entropy function which is defined by: H(p(x)) =
−

∫
x
dxp(x) log p(x). We maximize the lowerbound by setting up a parametric

model on q and optimize q and U, c, alternately. Typically, q is assumed to be
factorized as

q(S, {μ(r)}Lr=1) = q(S)
L∏

r=1

q(μ(r)). (8)

Denote by F(U, c, q|Θ,X) the right hand side of Eq. (7) where the parametric
model is plugged in. In terms of statistical physics, F is often called the negative
free energy functional. Then the variational EM algorithm [5] is represented as
follows:

q(S) := argmaxq(S) F(U, c, q|Θ,X), (9)

q(μ(r)) := argmaxq(μ(r)) F(U, c, q|Θ,X), ∀r (10)

{U, c} := argmaxU,cF(U, c, q|Θ,X) (11)

The first two belong to the E-step while the last one belongs to the M-step.
Let us solve the first one in Eq. (9). Using the variational method and keep-
ing the other parameters fixed, the current optimal posteriors q(S) are given
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by: q(S) ∝
(∏T

r=1 bs(r)(r)
)

πs(1)

(∏L−1
r=1 as(r)s(r+1)

)
, where we define bs(r)(r) ∝

N (mj(r)|m0
j ,V

0j) exp
(
−0.5 tr

(
(V0j )

−1Vj(r)
))

. In the other two steps, the
function q(S) is not fully needed, but only the following statistics are referred:
γi(r) ≡ q(s(r) = i) =

∑
S δi,s(r)q(S) where δ·,· denotes Kronecker’s delta. The

statistics γi(r) can be computed efficiently by applying the forward-backward
algorithm [8] as follows. Computing the variables, αi(r) and βi(r), as

αi(r) =

{
πibi(1) if r = 1,
bi(r)

∑
j αj(r − 1)aji if r > 1,

βi(r) =

{
1 if r = L,∑

j βj(r + 1)aijbj(r + 1) if r < L,

we have γi(r) ∝ αi(r)βi(r). We can also obtain a by-product of this procedure:
ξij(r) =

∑
S δi,s(r)δj,s(r+1)q(S) ∝ αi(r)aijbj(r+1)βj(r+1). The statistics ξij(t)

are utilized in the next section.
Also, the second one in Eq. (10) is solved analytically as

q(μ(r)) ∼ N (m(r),V(r)) (12)

where

V(r) =

⎛⎝σ−2I+
∑
j

γj(r)(V0j )
−1

⎞⎠−1 ,

m(r) = V(r)

⎛⎝σ−2x(r) +
∑
j

(V0j )
−1mj

⎞⎠ . (13)

Finally we will show how to solve the M-step in Eq. (11). Removing the terms
which do not depend on U and c from F , we have the following:

F0(U, c|Θ,X) = − 1
2σ2

L∑
r=1

‖m(r)− (Ux(r) + c)‖2 . (14)

Thus maximization of F0 is a least squares problem, which is known to be solved
by SVD [2]. Let us define a matrix Σ = 1

L

∑L
r=1(m(r)−μb)(x(r)−μa)�. where

μa = 1
L

∑L
r=1 x(r), μb = 1

L

∑L
r=1m(r). Then decompose Σ = VDW� by SVD,

where V andW are the matrices of left and right singular vectors and D is the
diagonal matrix of singular values. The optimal values of U and c are obtained
as

U := VPW�, c := μb −Uμa, (15)

where

P =

{
I if det(V) det(W) = 1,
diag(1, · · · , 1,−1) if det(V) det(W) = −1.
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As seen in Eq. (14), each M-step finds U and c which yields the least square
error between the transformations of X and m(r). So the location of m(r) is
extremely important in this procedure. The latent variablem(r) can be regarded
as the intermediates between the transformation x′(r)(≡ Ux(r) + c) and the
corresponding inner Gaussian N (m0

s(r),V
0
s(r)). The crucial variable determining

m(r) is σ2. From the nature that Gaussians merely generate points outside of
the circle with the variance, m(r) is likely to be in the circle with radius σ
and centre x′(r) so as to explain x′(r) produced by N (μ(r), σ2I). Therefore,
the larger σ2 is, the closer m(r) is to the centre of the Gaussian and the more
quickly the optimal solution is found. From these observations, we employ an
annealing approach: we start with the large σ2 and reduce the values step by
step. In all simulations provided later, we used the following value of σ2 in the
t-th iteration: σ2(t) := (49 exp(−t/20) + 1)σ20 where σ20 is the minimum of all
the eigen-values in M covariance matrices. V0j are fixed at V

0
j = Cj − σ20I. This

annealing is scheduled so that Eq. (4) holds in the ∞-th iteration.

4 Learning Shape Models

Here we describe a method for learning the shape model parameters Θ from a
number of sequences. We again use the variational EM algorithm in order to
estimate the shape model parameters, Θ, and the rotation and offset parame-
ters, Un, cn, of each sequence simultaneously. Given a training set of sequences,
{Xn}Nn=1, the objective function for learning is the following log-likelihood func-
tion:

L(Θ, {Un, cn}Nn=1|{Xn}Nn=1) ≡
N∑

n=1

log p(Xn|Θ,Un, cn) (16)

where Un, cn are the rotation matrix and offset vector for n-th sequence Xn,
respectively. The log-likelihood function in Eq. (16) leads the following negative
free energy functional:

Fshape({Un, cn}Nn=1, q|Θ, {Xn}Nn=1) =
N∑
n=1

F(Un, cn, q|Θ,Xn) (17)

by the similar variational approximation to Eq. (8), that is, q(Sn, {μn(r)}Lr=1) =
q(Sn)

∏L
r=1 q(μn(r)). We then obtain the variational EM algorithm as follows:

q(Sn) := argmaxq(Sn) F(Un, cn, q|Θ,Xn), ∀n (18)

q(μn(r)) := argmaxq(μn(r)) F(Un, cn, q|Θ,Xn), ∀n,∀r (19)

{Un, cn} := argmaxUn,cn F(Un, cn, q|Θ,Xn), ∀n (20)

Θ := argmaxΘ Fshape({Un, cn}Nn=1, q|Θ, {Xn}Nn=1) (21)

The E-step includes Eq. (18) and Eq. (19), whereas the M-step includes Eqs. (20),
(21).
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In the first problem in Eq. (18), we need not to solve q(Sn) completely. Here
the statistics q(sn(r) = i) and q(sn(r) = i, sn(r+1) = j) are required for solving
Eq. (21), which are commonly described as γi,n(r) and ξi,j,n(r), respectively, in
HMM literature (e.g. [8]). Again they can be computed by the forward-backward
algorithm [8]. The second problem in Eq. (19) can be solved by the similar update
equations as Eq. (12). In this case, we have to replace μ(r), m(r), V(r), x(r),
γj(r) with μn(r), mn(r), Vn(r), xn(r), γj,n(r), respectively. The third problem
in Eq. (20) can be solved in the same way as Eq. (15). In the fourth problem in
Eq. (21), the optimal solution of σ2 is described as

σ2 :=

∑
n,r ‖Unxn(r) + cn −mn(r)‖2 + trVn(r)

d
∑

n Ln
. (22)

The other variables are obtained by vanishing the derivative of Eq. (21) subject
to the constraints that

∑
j aij = 1 and

∑
i πi = 1. The solutions are described

as follows:

m0
j :=

∑
n,r γj,n(r)mn(r)∑

n,r γj,n(r)
, V0j :=

∑
n,r γj,n(r)Vn,r,j∑

n,r γj,n(r)
, (23)

aij :=
∑N

n=1

∑Ln−1
r=1 ξi.j,n(r)∑N

n=1

∑Ln−1
r=1 γi,n(r)

, πi :=
∑N

n=1

∑Ln
r=1 γi,n(r)∑N

n=1 Ln

, (24)

where Vn,r,j ≡ Vn(r) +
(
mn(r)−m0

j

) (
mn(r) −m0

j

)�
.

5 Experiments

We first tested the algorithm on on-line handwritten digits ‘2’ and ‘6’, where eight
2-dimensional vector sequences are superposed for each digit (Figure 2). In all
simulations in this paper, we set the number of statesM = 7. The variational EM
algorithm found the almost optimal rotations and translations and the common
shape in the data set, as shown in Figure 2. Next we will show the superposition
of protein sequences. We used eight 3-dimensional structures from the globin
family: 4HHB:A, 4HHB:B, 5MBN:-, 1ECD:-, 2LHB:-, 2LH3:-, 2HBG:-, which
have also been used in [1, 14]. Although we did not use any additional information
such as amino acid sequences or the position of other atoms than Cα, almost
perfect superposition was achieved (Figure 3).

One crucial advantage of probabilistic modeling is that it can be used as a
building block of a larger probabilistic model. For illustrating this advantage,
we actually implemented the mixture of HMMs [12] and applied it to semi-
supervised learning (i.e. learning from labeled and unlabeled data) [10]. We
used 46 protein structures of three classes (16 Globins, 17 Ig-likes, and 13 TIM-
barrels). For each class, six structures are randomly chosen as training data,
where two of them are given class labels and the other four stays unlabeled.
The remaining samples are used as test data. The confusion matrices averaged
over 10 trials are shown in Table 1. When unlabeled samples are involved, the
classification accuracy improved significantly.
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Fig. 2. Superpositions of on-line handwritten digits. Using eight on-line handwritten
‘2’s (top left), we estimate the rotation and the offset parameters as well as common
shape parameters by the variational EM algorithm described in section 3, and obtained
the resultant superposition (top right). The result of superposition and common shape
of eight ‘6’s are also shown in the bottom row. In both cases, almost optimal superpo-
sitions are achieved.

Fig. 3. Superposition of globins. We apply the variational EM algorithm described
in section 3 to seven globin structures (left) and achieve almost perfect superposi-
tion (right) in spite of using only coordinates of Cα atoms.

6 Conclusion

In this paper, we presented a novel algorithm which estimates the rigid-body
transformations from arbitrarily rotated and translated vector sequences. As
partly suggested in the previous section, a large number of extensions can be de-
veloped from this algorithm due to its probabilistic nature, for example, cluster-
ing, detecting outliers, introducing prior knowledge, interpolating missing values,
and so on.

One of the most attractive extensions is to combine discriminative methods
such as support vector machines. The discriminative methods are often reported
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Table 1. Confusion matrices from the semi-supervising experiment. The mixture of
HMMs is trained by 2 labeled and 4 unlabeled sequences. Significant improvement is
observed when unlabeled samples are incorporated.

No unlabeled sequences 4 unlabeled sequences
Globin Ig-like TIM-barrel Globin Ig-like TIM-barrel

Globin 80.0% 1.0% 19.0% 95.0% 1.0% 4.0%
Ig-like 0.0% 64.5% 35.5% 0.0% 82.7% 17.3%

TIM-barrel 0.0% 1.3% 98.8% 0.0% 0.0% 100.0%

to be superior in classification to generative models [4]. Motivated by the fact,
several methods which design kernel functions for use in discriminative methods
have been proposed (e.g. Fisher kernel [4], marginalized kernel [13] etc. ). We
might achieve the further improvement by adopting such methods.
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Abstract. Graph edit distance is a powerful error-tolerant similarity
measure for graphs. For pattern recognition problems involving large
graphs, however, the high computational complexity makes it sometimes
impossible to apply edit distance algorithms. In the present paper we
propose an efficient algorithm for edit distance computation of planar
graphs. Given graphs embedded in the plane, we iteratively match small
subgraphs by locally optimizing structural correspondences. Eventually
we obtain a valid edit path and hence an upper bound of the edit distance.
To demonstrate the efficiency of our approach, we apply the proposed
algorithm to the problem of fingerprint classification.

1 Introduction

In recent years graphs have been recognized as a powerful concept to represent
structural patterns. Similarity measures for graphs that are based on an exact
structural correspondence such as graph isomorphism and maximum common
subgraph are often elegant and quite efficient [1–3]. For real applications, how-
ever, it is often difficult to find a graph representation that deals sufficiently well
with structural variations between graphs from the same class. Graph matching
procedures that allow for such structural variations, so-called error-tolerant al-
gorithms, have been introduced with the development of the graph edit distance
[4, 5]. The edit distance of graphs is computed by determining the least costly
way to edit one graph into another, given an underlying set of edit operations on
graphs and their costs. Due to the enormous computational complexity of the
matching problem for general graphs, a number of authors have studied special
classes of graphs, such as trees, bounded-valence graphs, and graphs with unique
node labels [6–8].

In the present paper we focus on the problem of efficiently matching large
attributed planar graphs in the context of the edit distance framework. Planar
graphs are interesting in many applications involving images, because common
graph representations extracted from an image are planar. A well-known example
is region adjacency graphs [9].

In Section 2 of this paper the graph edit distance terminology is introduced
and in Section 3 the proposed approximate distance algorithm for planar graphs

A. Fred et al. (Eds.): SSPR&SPR 2004, LNCS 3138, pp. 180–189, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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is described. Next, in Section 4, we demonstrate how planar graph matching can
be applied to the fingerprint classification problem and present experimental
results. Finally, conclusions are provided in Section 5.

2 Graph Edit Distance

Graph edit distance is an error-tolerant similarity measure for graphs [4, 5].
Structural variations between graphs are modeled with a set of edit operations
such as node insertion, node deletion, node substitution, edge insertion, edge
deletion, and edge substitution. The key concept is to describe structural differ-
ences with the sequence of edit operations that best explain the variations. For
this purpose it is common to assign costs to edit operations such that they reflect
the strength of the corresponding distortion. The edit distance d(G,G′) of two
graphs G and G′ is then defined as the cost of the least expensive edit path that
transforms G into G′. Theoretically, every node of G could be matched to every
node of G′, as edit operations are defined such that they are able to correct any
structural error, and a straight-forward pruning criterion (such as the one for
graph isomorphism) does not exist. Hence, it is easy to observe that the com-
putational complexity of the graph edit distance algorithm is exponential in the
number of nodes involved. Nonetheless, for small graphs it has proven a powerful
graph similarity measure [9, 10]. But for large graphs it becomes computationally
infeasible due to its high running time and memory complexity.

3 Approximate Planar Graph Edit Distance

In order to overcome the difficulties arising from the high computational com-
plexity, we propose an approximate, but efficient algorithm for the computation
of the edit distance for attributed planar graphs. In the following we assume that
our data graphs are provided with a planar embedding, that is, a drawing of the
graph in the plane such that none of its edges intersect. An example is shown
in Fig. 1. In contrast to exact graph edit distance computation, which defines
the distance in terms of the least expensive of all edit paths, we restrict the
number of possible edit operations and determine the least expensive member of
a smaller set of candidate edit paths. This set of candidate paths is obtained in
the course of a process that embeds the graphs under consideration in the plane.
If the candidate generation process produces an edit path that is close the the
optimal path, the planar edit distance will approximate the graph edit distance
well.

For the description of the generation process of the candidate paths we need
the following definition. The neighborhood of a node u in a graph is defined as the
subgraph consisting of node u, all nodes connected to u, and all edges between
these nodes. More formally, if we denote a graph by G = (V,E, α, β), where V
is the set of nodes, E the set of directed edges, α : V → LV the node labeling
function, and β : E → LE the edge labeling function, the neighborhood N(u) of
u in G is defined as the induced subgraph N(u) = (Vu, Eu, αu, βu) of G, where
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a) b)

Fig. 1. Illustration of a) a planar graph and b) the same graph embedded in the plane

Vu = {u} ∪ {v ∈ V |(v, u) ∈ E or (u, v) ∈ E}
Eu = E ∩ (Vu × Vu)
αu = α|VU
βu = β|EU .

An illustration of a neighborhood is shown in Fig. 2. Note that the embedding
of the planar graph is preserved in the neighborhood, that is, there is an order
defined on the nodes connected to u.

u u

a) b)

Fig. 2. a) Planar graph and b) graph with marked neighborhood of u

In order to initialize the generation of a candidate path in the process of
matching graphs G and G′, a seed substitution u → u′ has to be chosen, where u
is a node fromG and u′ a node fromG′. Next an optimal matching from subgraph
N(u) to subgraph N ′(u′) (where symbol N refers to graph G and symbol N ′ to
graph G′) based on the underlying set of edit operations is to be determined. All
new substitutions that occur in this matching are marked for further processing.
In consecutive steps the neighborhoods belonging to unprocessed substitutions
are processed in the same manner, where substitutions that were previously
obtained are preserved in subsequent neighborhood matchings. The matching
begins with the seed neighborhood and is iteratively expanded across the two
graphs. The result of this procedure is a valid edit path from the first to the
second graph. The algorithm is outlined in Table 1.
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Table 1. Planar edit distance algorithm

Input: Two planar graphs G = (V,E, α, β) and G′ = (V ′, E′, α′, β′) to be matched.
Output: A matching between G and G′ and the corresponding edit distance, d(G,G′)

0. Determine seed substitution u• → u′•
1. Add seed substitution u• → u′• to the FIFO queue Q
2. Fetch next substitution u→ u′ from Q
3. Match neighborhood N(u) to neighborhood N ′(u′)
4. Add new substitutions occurring in step 3 to Q
5. If Q is not empty, go to step 2
6. Delete all unprocessed nodes and edges in both G and G′

Let us consider step 3 of the algorithm, the neighborhood matching, more
closely. A neighborhood consists of a center node, a set of adjacent nodes, and
edges between these nodes. The set of adjacent nodes can be considered an or-
dered sequence of nodes due to the planar embedding of the neighborhood. In
order to obtain such a node sequence, we randomly start at an adjacent node and
traverse all nodes in a clockwise manner. Instead of regarding a neighborhood
as a graph to be matched, we can represent a neighborhood as an ordered node
sequence and match two neighborhoods simply by finding an optimal node align-
ment. With this restriction we assume that the optimal neighborhood matching
preserves the ordering of the nodes adjacent to the center node. The node align-
ment can be performed with a cyclic string matching algorithm [11–15], where
the sequence of nodes is regarded as a string and the string edit operation costs
are derived from the corresponding graph edit operation costs. If we consider
graphs with a bounded valence of v, this procedure takes O(v2). The algorithm
terminates after O(n) loops, where n denotes the number of nodes in the graphs.
The computational complexity of string matching can further be reduced by pre-
serving previously matched nodes. If we consider a string substitution u → u′,
we require that its operation costs amount to zero if u → u′ has occurred pre-
viously, to infinity if a substitution u → v′ or v → u′ with u �= v and u′ �= v′

has occurred previously, and to graph edit operation costs c(u → u′) otherwise.
This means that the present edit path must never be violated by newly added
edit operations.

The optimality of the neighborhood matching is determined with respect to
the original graph edit operations. New edit operations matching previously ob-
tained operations are added to the edit path in every neighborhood matching.
When the algorithm terminates, the generation process yields a valid edit path.
The approximate distance value is therefore an upper bound of the true graph
edit distance. Since the resulting edit path strongly depends on the seed sub-
stitution, we suggest to use several planar distance computations with different
seed substitutions and choose the one that returns the minimum matching costs.
Promising seed substitution candidates can for instance be found close to the
barycenter of the planar embedding in both graphs or may be determined with
a local graph matching. If knowledge of the underlying application is available,
it may also be utilized to find seed substitution candidates.
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4 Application to Fingerprint Classification

Fingerprint recognition tasks can coarsly be divided into verification (one-to-one
matching), identification (one-to-many matching), and classification. Fingerprint
classification refers to the process of assigning fingerprints to classes with similar
characteristics. A large number of fingerprint classification approaches have been
reported in the literature, including rule-based [16, 17], syntactic [18], statistical
[19], and neural-network-based [20] algorithms. Structural pattern recognition
seems to be particularly well suited to the classification problem, as fingerprint
analysis naturally involves the comparison of ridge and valley structures. For
instance, Maio and Maltoni [9] segment the orientation field of ridge lines into
homogeneous regions and convert these into a region adjacency graph. The clas-
sification is then performed with an edit distance algorithm. Due to the nature
of the segmentation process, the resulting graphs are guaranteed to contain at
most ten nodes. Marcialis et al. [21] describe how to improve classification results
by fusing this structural algorithm with a statistical classification algorithm. In
the present paper, we propose to use larger graphs for the description of the
orientation field. Instead of segmenting the orientation field, we combine orien-
tation vectors in a window of constant size and represent them as a single node.
In the following, the graph extraction and classification procedure is described
in detail. Experimental results are reported in Section 5.

In our fingerprint experiments we use a subset of 450 fingerprints from the
NIST-4 database [22]. This database consists of 2000 pairs of grayscale finger-
print images that are classified into one of the classes arch, tented arch, left loop,
right loop, and whorl. An example of a whorl image is depicted in Fig. 3a. The
image background is segmented from the foreground by computing the grayscale
variance in a window around each pixel. The pixels that exhibit a variance lower
than a threshold are considered background. For each pixel we then estimate
the discrete gradient of the grayscale surface by applying a Sobel operator in the
vertical and horizontal direction. After a smoothing process we obtain a ridge
orientation field as illustrated in Fig. 3b. Then we represent each pixel in a win-
dow as a graph node without attributes. From every node an edge is generated
in those two, out of eight, possible directions that best match the vector orthog-
onal to the average window gradient. A single discrete attribute γ ∈ {1, 2, . . . , 8}
is attached to every edge representing the orientation of the edge. The size of
the resulting graph depends on the size of the pixel window. In Fig. 3c such a
graph is illustrated. The 450 fingerprint graphs from the NIST-4 subset contain
an average of 174 nodes and 193 edges per graph at a resolution of 32×32 pixels
per window.

We use a simple edit cost function that assigns constant costs pn to node
insertions and deletions, and constant costs pe to edge insertions and deletions.
As nodes are unlabeled, there is no cost for node substitutions, and edge sub-
stitution costs are set proportional to the distance of the two involved angles,
d(γ, γ′) = min{(γ−γ′) mod 8, (γ′−γ) mod 8}, for γ, γ′ ∈ {1, 2, . . . , 8}. The ratio
of the edge insertion and deletion penalty pe and the edge substitution cost ps,
i.e. 2pe/ps, determines when an edge deletion followed by an edge insertion is
less expensive than an edge substitution.



An Error-Tolerant Approximate Matching Algorithm 185

a) b) c)

Fig. 3. a) NIST-4 whorl image f0011, b) averaged ridge orientation field, and c) ori-
entation graph

Table 2. Running time of exact graph edit distance algorithm (GED, 1 run) and planar
edit distance approximation (PED, 50 runs) — empty entries indicate failure due to
lack of memory

Nodes GED PED

5 <1s <1s
7 <1s <1s
9 9s 1s
12 - 1s
20 - 1s
30 - 2s
42 - 5s
169 - 15s

The fingerprint classification is performed by evaluating distances of un-
known input graphs to labeled prototype graphs. We adopt a nearest-neighbor
paradigm and classify graphs according to a maximum similarity, or minimum
edit distance, criterion with respect to the prototype graphs. Note that, with
this classification procedure, we rather intend to demonstrate the applicability
of the approximate planar edit distance algorithm than provide a thoroughly
optimized fingerprint classification system.

5 Experimental Results

To evaluate the running time of the approximate algorithm for planar edit dis-
tance computation, we perform the standard graph edit distance computation
and the planar edit distance computation for the same pair of graphs. The stan-
dard graph edit distance is a deterministic algorithm that yields the exact dis-
tance value, whereas the planar edit distance approximation requires several
runs to be carried out. The results of several distance computations for pairs
of fingerprint graphs are shown in Table 2. For small graphs with less than 10
nodes and edges, the exact graph edit distance computation is computationally
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Fig. 4. Exact graph edit distance (lower curve) and approximated planar edit distance
(upper curve) for 10 graphs and subgraphs with 10 nodes

feasible. For larger graphs, however, the edit distance search tree exceeds the
memory capacity of our testing machine (1024MB). The planar edit distance,
on the other hand, provides a result for every tested graph pair, taking only a
few seconds for all 50 runs.

Due to memory contraints, the exact edit distance cannot be computed for
large graphs. It is therefore difficult to directly evaluate the accuracy of the
approximation algorithm. If we delete some nodes from a given graph, however,
we obtain a pair of graphs for which a minimum cost edit path is known, so that
we can easily compute the exact edit distance between these graphs. The planar
edit distance approximation for these graphs is computed in the usual manner
without utilizing any knowledge of the special form of the sample graphs. In our
first experiment, we delete all but the 10 nodes located closest to the barycenter
of the planar embedding from a fingerprint graph and match the resulting graph
with the original one. In the second experiment, we use the same procedure to
construct subgraphs with 100 nodes. The resulting (known) exact edit distance
and the (computed) approximate distance of the first 10 pairs of graphs from
NIST-4 are illustrated in Fig. 4. As expected the approximation yields an upper
bound of the exact distance. Interestingly enough, the approximation seems to
closely follow the exact distance up to an additive constant. If we compute
the empiric correlation coefficient of the approximated and the exact distance
of the first 100 graphs from NIST-4, we obtain a coefficient of r = 0.99 for
the subgraphs with 10 nodes and r = 0.85 for the subgraphs with 100 nodes.
This result indicates that the approximated and the exact distance are strongly
correlated in a linear way. In Fig. 5, the correlation can clearly be observed. A
regression analysis of the exact distance x and the approximation y according to
the linear model y = αx + β yields a slope of α = 0.99 and an offset of β = 93
for subgraphs with 10 nodes, and a slope of α = 1.10 and an offset of β = 803
for subgraphs with 100 nodes. A slope of approximately α = 1 is equivalent to
the reduced linear regression model y = x+ β. We conclude that the difference
of the approximation and the exact distance (as illustrated in Fig. 4) is almost
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Fig. 5. Exact graph edit distance and approximated planar edit distance for subgraphs
with 10 nodes (left) and subgraphs with 100 nodes (right)

Table 3. Fingerprint classification recognition rates per class

Class Recognition rate

Arch 62.5%
Tented arch 72.5%
Left loop 77.5%
Right loop 85%
Whorl 90%

constant and that the approximation therefore reflects the structural similarity
of the underlying graphs well.

In our third experiment we test the applicability of the proposed planar edit
distance to the problem of fingerprint classification. The experiment proceeds as
follows. For each of the five classes arch, tented arch, left loop, right loop, and
whorl we randomly select 40 input graphs to be classified and another 50 graphs
representing the respective fingerprint category. This results in a test set of size
200 and a training, or prototype, set of size 250 graphs. By computing the ap-
proximate planar edit distance, we obtain a similarity value between each input
graph and each prototype and classify the input graph with a nearest-neighbor
classifier. The recognition rates we achieve with this procedure are shown in
Table 3. Evaluating some misclassified samples, we note that the recognition er-
rors mainly occur on pairs of fingerprints from different classes that have a high
subjective similarity.

6 Conclusions

In the present paper we propose an efficient approximate edit distance algorithm
for planar graphs. The graph matching is performed by iteratively extending
pairs of matching subgraphs of two given graphs. Our algorithm generates a
single edit path between two graphs by locally optimizing the structure cor-
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respondence. The optimization is accomplished with an efficient cyclic string
matching algorithm.

We evaluate the planar edit distance on fingerprint graphs extracted from
grayscale fingerprint images from the NIST-4 database. The edit distance ap-
proximation is very fast compared to a standard edit distance computation. The
approximated distance values seem to be sufficiently accurate for the measure-
ment of the structural similarity of graphs. Particularly for larger graphs with
more than 100 nodes and edges, the planar edit distance offers a good tradeoff
between running time and accuracy. In the future we intend to study the influ-
ence of the set of prototypical structures on the classification performance and
evaluate the fingerprint classification system on larger data sets.
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Abstract. In this paper we compare the performance of several popu-
lar clustering algorithms, including k-means, fuzzy c-means, hierarchical
agglomerative, and graph partitioning. The novelty of this work is that
the objects to be clustered are represented by graphs rather than the
usual case of numeric feature vectors. We apply these techniques to web
documents, which are represented by graphs instead of vectors, in or-
der to perform web document clustering. Web documents are structured
information sources and thus appropriate for modeling by graphs. We
will examine the performance of each clustering algorithm when the web
documents are represented as both graphs and vectors. This will allow
us to investigate the applicability of each algorithm to the problem of
web document clustering.

1 Introduction

The topic of clustering has long been studied in the pattern recognition commu-
nity. The goal of clustering is to create groups of data items in an unsupervised
fashion such that items in the same cluster are similar to each other yet dissimi-
lar to items in other clusters. Many algorithms are presented in the literature [1],
such as k-means [2], hierarchical agglomerative clustering [3], fuzzy c-means [4],
and graph partitioning [5]. A more recent method is the global k-means method,
which attempts to find a “good” initialization state for the k-means algorithm [6].

Common to many clustering algorithms is that they are expected to work
on data (usually numeric) which is represented by vectors (i.e. sets of attribute
values). However, using such vector representations may lead to the loss of the
inherent structural information in the original data. Consider, for example, the
case of web document clustering. With the increasingly large amount of Internet-
based content, it is difficult and costly to categorize and cluster every document
manually. In order to deal with this problem, automated clustering of web doc-
uments, which allows them be more easily browsed, organized, and cataloged
with minimal human intervention, is an important research area [7][8]. Under
the vector space model of document representation [3], which is often applied to
web documents, each term which may appear on a document is represented by
a vector component (or dimension). The values associated with each dimension
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indicate either the frequency of the term or its relative importance according
to some weighting scheme. A problem with representing web documents in this
manner is that certain information, such as the order of term appearance, term
proximity, term location within the document, and any web specific information,
is lost under the vector model. Graphs are a more robust data structure, capable
of capturing and maintaining this additional information.

Until recently, there have been no mathematical frameworks available for
dealing with graphs in the same fashion that we can deal with vectors. Cluster-
ing algorithms require the computation of similarity (or distance) between two
objects. This is easily accomplished with vectors in a Euclidean feature space,
but until recently it has not been possible with graphs [9][10][11]. Further, a rep-
resentative of a cluster (such as a centroid) is sometimes required for clustering;
again, we have not had such tools available for graphs until lately [12].

Given these new graph-theoretic foundations, a version of the k-means al-
gorithm which can cluster data that is represented by graphs rather than by
vectors has been proposed [13]. The experimental results, which compared clus-
tering performance with the traditional vector-based k-means, showed that the
performance when representing documents by graphs usually exceeds that of the
corresponding vector-based approach.

In this paper we will compare the clustering performance of several differ-
ent classical clustering algorithms when using data represented by graphs. As
mentioned above, it has been shown that the graph representation scheme un-
der the k-means algorithm compares favorably with the vector approach [13] in
terms of clustering performance. We have already investigated the effects of var-
ious graph distance measures [14] and graph representations [15] on clustering
performance. However, the impact of changing the underlying clustering algo-
rithms when clustering data represented by graphs has not been examined. Given
graph-theoretic distance and centroid definitions, we can adapt many different
clustering algorithms to work with graph-based data in addition to k-means.

Clustering data which is represented by graphs is a novel approach, and it
is important for the reader to realize the difference between this method and
the well known graph partitioning clustering procedure [5]. In our approach, the
data items themselves (web documents for the application presented here) are
represented by graphs which are then used in a classical clustering algorithm;
by contrast, in graph partitioning clustering, each data item is represented by
a single node in a graph representing the clustering problem, with edge weights
indicating similarity between nodes (data items). Clustering with graph rep-
resentations is also discussed in [16], where structural similarity is determined
by the subgraph relation and graphs are restricted to having numerical-valued
attributes. Our approach uses the size of the maximum common subgraph to
calculate real-valued distances between pairs of graphs and does not place any
restriction on the attributes or labels associated with the nodes and edges of
graphs.

The remainder of the paper is organized as follows. In Sect. 2 we will briefly
explain how clustering algorithms can utilize data that is represented by graphs.
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We will also present one of our novel graph representations for web documents.
The experimental results comparing each clustering algorithm will be given in
Sect. 3. Sect. 4 contains our concluding remarks.

2 Clustering Algorithms for Graph Representations

In order to deal with data represented by graphs instead of the traditional case of
vectors when using a clustering algorithm, we need two mathematical definitions:
distance between graphs and a representative of a set of graphs. A distance
measure for graphs, based on the maximum common subgraph (the largest graph
shared in common by two graphs) has been proposed [9]:

dist(G1, G2) = 1−
|mcs(G1, G2)|
max(|G1|, |G2|)

(1)

where G1 and G2 are graphs,mcs(G1, G2) is their maximum common subgraph,
max(. . .) is the standard numerical maximum operation, and | . . . | denotes the
size of the graph. The size of a graph is taken in the current work to be the
number of nodes and edges contained in the graph. In the general case the
computation of the maximum common subgraph is NP-Complete [17], but for
our graph representation of web documents (described below) the computation
of the maximum common subgraph can be accomplished in polynomial time due
to the existence of unique node labels [18].

In order to create a representative of a set of graphs, we can use the median
of set of graphs [12]:

g = arg min
∀s∈S

(
1
n

n∑
i=1

dist(s, gi)
)

(2)

In basic terms, the median is the graph g in the set of graphs S (where S =
{g1, g2, . . . , gn}) which has the minimum average distance to all other graphs in
the set.

By using Eqs. 1 and 2 instead of vector distance calculations or centroid
calculations, respectively, we can arrive at a version of a classical clustering
algorithm which can utilize data represented by graphs. In order to represent
web documents using graphs and maintain the information that is usually lost
in a vector model representation, we use the following method. First, each term
(word) appearing in the web document, except for stop words such as “the”,
“of”, and “and” which convey little information, becomes a node in the graph
representing that document. This is accomplished by labeling each node with the
term it represents. Note that we create only a single node for each word even if a
word appears more than once in the text. Thus each node in the graph represents
a unique word and is labeled with a unique term not used to label any other
node. Second, if word a immediately precedes word b somewhere in a “section” s
of the web document, then there is a directed edge from the node corresponding
to a to the node corresponding to b with an edge label s. We take into account
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YAHOO NEWS

SERVICE

MORE

REPORTS REUTERS

TI L

TX

TX

TX

Fig. 1. Example of a graph representation of a document.

certain punctuation (such as a period) and do not create an edge when these are
present between two words. Sections we have defined are: title, which contains
the text related to the web document’s title and any provided keywords; link,
which is text appearing in clickable hyperlinks on the web document; and text,
which comprises any of the readable text in the web document (this includes
link text but not title and keyword text). Next, we remove the most infrequently
occurring words for each document by deleting their corresponding nodes, leaving
at most m nodes per graph (m being a user provided parameter). This is similar
to the dimensionality reduction process for vector representations but with our
method the term set can be different for each document. Finally, we perform a
simple stemming method and conflate terms to the most frequently occurring
form by re-labeling nodes and updating edges as needed. An example of this
type of graph representation is given in Fig. 1. The ovals indicate nodes and
their corresponding term labels. The edges are labeled according to title (TI),
link (L), or text (TX). The document represented by the example has the title
“YAHOO NEWS”, a link whose text reads “MORE NEWS”, and text containing
“REUTERS NEWS SERVICE REPORTS”. Note also there is no restriction on
the form of the graph and that cycles are allowed.While this appears superficially
similar to the bigram, trigram, or N-gram methods [19], those are statistically-
oriented approaches based on word occurrence probability models. Our method
does not require or use the computation of term probabilities.

3 Experimental Results

In order to evaluate the performance of our proposed method of using graphs
with the various clustering algorithms, we performed several experiments on
two different collections of web documents, called the F-series and the J-series1.
Each collection contains web documents in HTML format. The F-series origi-
nally contained 98 documents assigned to one or more of 17 sub-categories of
four major category areas. Since there are multiple sub-category classifications
from the same category area for many of these documents, we have reduced
the categories to just the four major categories in order to simplify the problem.
• The data sets are available under these names at: ftp://ftp.cs.umn.edu/dept/users/
boley/PDDPdata/
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Fig. 2. Experimental results for the F-series data set.

There were five documents that had conflicting multiple classifications (i.e., they
were classified to belong to two or more of the four major categories) which we
removed, leaving 93 total documents. The J-series contains 185 documents and
ten categories. We have not modified this data set. Clustering performance is
calculated by the Rand Index [20], which is defined as the number of agreements
(i.e. pairs of items which both appear together in a ground truth cluster and a
cluster created by the clustering algorithm; or pairs of items which appear in
different clusters in both ground truth and the created clusters) divided by the
number agreements and disagreements (i.e. those cases that are not agreements).
Thus the Rand Index is a measure of how closely the clustering created by some
clustering algorithm matches ground truth (i.e. it is a measure of clustering ac-
curacy). A value of 1.0 indicates a clustering that exactly matches ground truth.

The clustering performance results for the F-series and the J-series for the
various graph-based clustering algorithms are given in Figs. 2 and 3, respectively.
The charts show the performance of each algorithm as a group of four columns.
From left to right the algorithms compared are: k-means, global k-means, fuzzy
c-means, hierarchical agglomerative clustering (single link), hierarchical agglom-
erative clustering (complete link), and graph partitioning. For our experiments
we varied the maximum number of nodes allowed per graph, which is the pa-
rameter m described in the previous section. Within each group of columns, the
white (leftmost) bar indicates using 30 nodes per graph maximum. The grey
bars correspond to using 50 nodes per graph maximum, while the black bars are
the results when using 70 nodes per graph maximum. The rightmost (striped)
bars represent the performance of the traditional vector-based approach using a
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Fig. 3. Experimental results for the J-series data set.

distance measure based on Jaccard similarity [3], which was the best perform-
ing in our experiments. Nondeterministic clustering algorithms that use random
initializations (k-means and fuzzy c-means) are represented by the average of
ten experiments. The results indicate that the single link hierarchical clustering
algorithm and the graph partitioning algorithm both performed poorly for all
graph sizes and both data sets. Their similar performance is not surprising, as
both methods take a similar approach of examining pairs of minimum distance
objects; the hierarchical agglomerative algorithm can be seen as a bottom-up pro-
cedure while the graph partitioning method is its top-down counterpart. Both of
these algorithms can lead to a “chaining effect” where most objects are placed
in one large cluster with the other clusters containing only one or a few objects
each. Complete link hierarchical agglomerative clustering does not suffer from
this phenomenon, and thus its performance is considerably improved over the
case of single link. Global k-means was the best performing algorithm overall; it
only performed worse than other methods for the F-series data set when using 50
nodes per graph. The graph sizes we selected did not have a consistent influence
across algorithms or data sets.

In comparing the performance of the graph-based methods to the traditional
vector-based clustering, we see that in most cases clustering with data repre-
sented by graphs outperformed the clustering produced with a vector represen-
tation for the same clustering algorithm. Only for the single link hierarchical ag-
glomerative clustering and graph partitioning algorithms did the vector approach
perform better than all the graph-based experiments in the group; however, the
margin of improvement was slight and clustering performance was still poor for
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all approaches for these two algorithms. The graph clustering approach strongly
outperformed the vector model for the complete link hierarchical agglomerative
clustering algorithm for both data sets.

4 Conclusions

In this paper we compared the performance of several popular clustering algo-
rithms when using data represented by graphs rather than other conventional
representation models, such as vectors. The novelty of this work is utilizing
classical clustering algorithms, such as k-means or hierarchical agglomerative
clustering, for clustering graph-based data. We compared six algorithms in all:
k-means, global k-means, fuzzy c-means, hierarchical agglomerative clustering
(single link and complete link), and graph partitioning. We used the Rand Index
to measure how well the produced clusters matched ground truth when clus-
tering two web document data sets. The results showed our graph approach
outperformed the traditional vector representation methods for most clustering
algorithms, strongly for the case of the complete link hierarchical agglomerative
clustering algorithm.
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Abstract. In this paper, we investigate the use of heat kernels as a
means of embedding graphs in a pattern space. We commence by per-
forming the spectral decomposition on the graph Laplacian. The heat
kernel of the graph is found by exponentiating the resulting eigensystem
over time. By equating the spectral heat kernel and its Gaussian form
we are able to approximate the geodesic distance between nodes on a
manifold. We use the resulting pattern of distances to embed the trees
in a Euclidean space using multidimensional scaling. The arrangement
of points in this space can be used to construct pattern vectors suitable
for clustering the graphs. Here we compute a weighted proximity matrix,
and from the proximity matrix a Laplacian matrix is computed. We use
the eigenvalues of the Laplacian matrix to characterise the distribution
of points representing the embedded nodes. Experiments on sets of shock
graphs reveal the utility of the method on real-world data.

1 Introduction

One of the problems that arises in the manipulation of large amounts of graph
data is that of clustering. Broadly speaking, there are two approaches to the
problem. The first of these is to maintain a class prototype, and to cluster by
iteratively merging graphs together. The second approach, which avoids the need
to maintain a class prototype, is to apply pairwise clustering methods to the edit
distance between graphs. Unfortunately, both of these methods involve comput-
ing correspondences between nodes, and since this is potentially an NP-hard
problem, the computational overheads can be large. An alternative, which does
not involve computing explicit correspondences is to embed the nodes of indi-
vidual graphs in a low dimensional space and to characterise the graph using
the distribution of points corresponding to nodes. Central clustering techniques
can then be applied to vectors representing the features of the point-distribution
associated with the graphs.

In the mathematics literature, there is a considerable body of work aimed at
understanding how graphs can be embedded in manifolds [10]. Broadly speaking
there are three ways in which the problem has been addressed. First, the graph
can be interpolated by a surface whose genus is determined by the number of
nodes, edges and faces of the graph. Second, the graph can be interpolated by a
hyperbolic surface which has the same pattern of geodesic (internode) distances
as the graph [1] [6]. Third, a manifold can be constructed whose triangulation
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is the simplicial complex of the graph [12, 2]. A review of methods for efficiently
computing distance via embedding is presented in the recent paper of Hjaltason
and Samet [4].

In the pattern analysis community, there has recently been renewed inter-
est in the use of embedding methods motivated by graph theory. One of the
best known of these is ISOMAP [7]. Here a neighborhood ball is used to con-
vert data-points into a graph, and Dijkstra’s algorithm is used to compute the
shortest(geodesic) distances between nodes. The matrix of geodesic distances is
used as input to MDS. The resulting algorithm has been demonstrated to locate
well-formed manifolds for a number of complex data-sets. Related algorithms
include locally linear embedding which is a variant of PCA that restricts the
complexity of the input data using a nearest neighbor graph, and the Laplacian
eigenmap that constructs an adjacency weight matrix for the data-points and
projects the data onto the principal eigenvectors of the associated Laplacian ma-
trix (the degree matrix minus the weight matrix) [3]. Collectively, these methods
are sometimes referred to as manifold learning theory.

One of the most interesting recent developments in this area has been to
establish a link between graph-spectra and the geometry of the underlying man-
ifold [5, 8, 9, 11]. Here considerable insight can be achieved through the analysis
of the heat kernel of the graph [5, 9]. According to the heat-equation the time
derivative of the kernel is determined by the graph Laplacian. The solution to
the heat equation is obtained by exponentiating the Laplacian eigensystem over
time. The heat kernel encapsulates the way in which information flows through
the edges of the graph over time, and is closely related to the path length distri-
bution on the graph. The graph can be viewed as residing on a manifold whose
pattern of geodesic distances is characterised by the heat kernel. For short times
the heat kernel is determined by the local connectivity or topology of the graph
as captured by the Laplacian, while for long-times the solution gauges the global
geometry of the manifold on which the graph resides.

The aim in this paper is to investigate whether the heat kernel can be used
for the purposes of embedding graphs, and in particular trees, on a low di-
mensional manifold. When the manifold on which the graph resides is locally
Euclidean, then the heat kernel may be approximated by a Gaussian function
of the geodesic distance between nodes. By equating the spectral and Gaussian
forms of the kernel, we can make estimates of the geodesic distances. These dis-
tances may then be used to embed the graph in a low-dimensional space. Here we
follow the ISOMAP algorithm and use multdimensional scaling to locate a low-
distortion embedding of the geodesic distances. Once embedded in this space,
we can attempt to extract features that characterise the point-distribution of
the embbeded nodes and to use them for the purposes of clustering. To do this
we construct a weighted Laplacian matrix for the nodes of the embedded graph
by exponentiating the negative squared-distance between nodes. The spectrum
of eigenvalues of the Laplacian can be used for the purposes of tree clustering
and visualisation.
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2 Heat Kernels and Riemannian Manifolds

In this section, we develop a method for approximating the geodesic distance
between nodes by exploiting the properties of the heat kernel. To commence,
suppose that the graph under study is denoted by G = (V,E) where V is the
set of nodes and E ⊆ V ×V is the set of edges. Since we wish to adopt a graph-
spectral approach we introduce the adjacency matrix A for the graph where

A(u, v) =
{
1 if (u, v) ∈ E
0 otherwise

(1)

We also construct the diagonal degree matric D, whose elements are given by
D(u, u) =

∑
v∈V A(u, v). From the degree matrix and the adjacency matrix we

construct the Laplacian matrix L = D − A, i.e. the degree matrix minus the
adjacency matrix. The normalised Laplacian is given by L̂ = D−

1
2LD−

1
2 . The

spectral decomposition of the normalised Laplacian matrix is

L̂ = ΦΛΦT =
|V |∑
i=1

λiφiφ
T
i (2)

where Λ = diag(λ1, λ2, ..., λ|V |) is the diagonal matrix with the ordered eigenval-
ues as elements and Φ = (φ1|φ2|....|φ|V |) is the matrix with the ordered eigenvec-
tors as columns. Since L̂ is symmetric and positive semi-definite, the eigenvalues
of the normalised Laplacian fall in the interval [0, 2], i.e. they are all positive.
The eigenvector assoicated with the smallest non-zero eigenvector is referred to
as the Fiedler-vector. We are interested in the heat equation associated with the
Laplacian, i.e.

∂ht
∂t

= −L̂ht (3)

where ht is the heat kernel and t is time. The solution is found by exponentiating
the Laplacian eigenspectrum, i.e.

ht =
|V |∑
i=1

exp[−λit]φiφTi = Φ exp[−tΛ]ΦT (4)

The heat kernel is a |V | × |V | matrix, and for the nodes u and v of the graph G
the resulting component is

ht(u, v) =
|V |∑
i=1

exp[−λit]φi(u)φi(v) (5)

When t tends to zero, then ht � I − L̂t, i.e. the kernel depends on the local
connectivity structure or topology of the graph. If, on the other hand, t is large,
then ht � exp[−tλm]φmφTm, where λm is the smallest non-zero eigenvalue and
φm is the assoicated eigevector, i.e. the Fiedler vector. Hence, the large time
behaviour is governed by the global structure of the graph.
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It is interesting to note that the heat kernel is also related to the path length
distribution on the graph. If Pk(u, v) is the number of paths of length k between
nodes u and v then

ht(u, v) = exp[−t]
|V |2∑
k=1

Pk(u, v)
tk

k!
(6)

The path-length distribution is itself related to the eigenspectrum of the Lapla-
cian. By equating the derivatives of the spectral and path-length forms of the
heat kernel it is straightforward to show that

Pk(u, v) =
|V |∑
i=1

(1 − λi)kφi(u)φi(v) (7)

When the graph is embedded on a manifold in Riemannian space then the
pattern of geodesic distances between nodes on the manifold is the same as the
path length distribution. However, when the manifold is locally Euclidean, then
the heat kernel is approximated by the Gaussian

ht(u, v) = [4πt]−
n
2 exp[− 1

4t2
d(u, v)2] (8)

where d(u, v) is the distance between the nodes u and v on the Euclidean mani-
fold and n is the dimensionality of the space. The aim here is to find an approx-
imation to the geodesic distance between nodes in the embbeding, by equating
the spectral and Gaussian forms for the kernel. The result is

d(u, v) = 2

√√√√−t ln
{
(4πt)

n
2

|V |∑
i=1

exp[−λit]φi(u)φi(v)
}

(9)

We can consider the behaviour of this function for large and small values of t.
When t is small, making use of the fact that ht = I − L̂t, we have

d(u, v) = 2

√
−t

{
n

2
ln[4πt] + ln[1− L̂(u, v)t]

}
(10)

Hence, the small t behaviour determined by the local topology of the graph.
Moreover, since the second term under the-square-root vanishes, the behaviour
near t = 0 is independant of the structure of the graph. On the other hand, when
t is large we can write

d(u, v) = 2

√
−t

{
n

2
ln[4πt]− λmt+ lnφm(u)φm(v)

}
(11)

For very large t we have that d(u, v) � t
√

λm, and hence the effect of local
edge-structure is completely smoothed away.

Although the parameter t potentially provides a route to a graph scale-space,
here we set 4πt = 1 to simplify the analysis.
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3 Multidimensional Scaling

Our aim is to embed the pattern of geodesic distances in a low dimensional
space in a manner which minimises the distortion. For this reason we turn to
multidimensional scaling(MDS), which is a procedure which allows data specified
in terms of a matrix of pairwise distances to be embedded in a Euclidean space.
The pairwise geodesic distances between nodes d(u, v) are used as the elements
of an |V | × |V | dissimilarity matrix S, whose elements are defined as follows

S(u, v) =
{

d(u, v) if u �= v
0 if u = v

(12)

In this paper, we use the classical multidimensional scaling method. The
first step of MDS is to calculate a matrix T whose element with row r and
column c is given by T (r, c) = − 1

2 [d(r, c)
2 − d̂(r, .)2 − d̂(., c)2 + d̂(., .)2], where

d̂(r, .) = 1
|V |

∑|V |
c=1 d(r, c) is the average dissimilarity value over the rth row,

d̂.c is the dissimilarly defined average value over the cth column and d̂(., .) =
1
|V |2

∑|V |
r=1

∑|V |
c=1 d(r, c) is the average dissimilarity value over all rows and

columns of the dissimilarity matrix T .
We subject the matrix T to an eigenvector analysis to obtain a matrix of

embedding co-ordinates X . If the rank of T is k, k ≤ |V |, then we will have
k non-zero eigenvalues. We arrange these k non-zero eigenvalues in descending
order, i.e. l1 ≥ l2 ≥ . . . ≥ lk > 0. The corresponding ordered eigenvectors
are denoted by ui where li is the ith eigenvalue. The embedding co-ordinate
system for the graphs obtained from different views is X = [f1,f2, . . . ,fs],
where f i =

√
liui are the scaled eigenvectors. For the tree-nodes indexed i, the

embedded vector of co-ordinates is xi = (Xi,1, Xi,2, ..., Xi,s)T .

4 Characterising the Embedded Point Distribution

Once the nodes of a graph have been embedded, we can attempt to characterise
the structure of the graph by summarising the distribution of points associated
with the nodes. Although there are many alternatives that can be used for this
purpose, including statistical moments, here we opt to use a graph-spectral char-
acterisation of the points. To this end, we commence by computing a weighted
proximity matrix W with elements

Wi1,i2 =
{
exp[

−‖xi1−xi2‖22
2σ2 ] if ‖xi1 − xi2‖2 < r

0 otherwise
(13)

where σ is a scale constant and r is the radius of a neigbourhood hypersphere
in the embedding space. Unfortunately, the matrix W may have negative eigen-
values. Hence, we turn our attention instead to the Laplacian matrix, since it is
positive semi-definite and therefore has positive or zero eigenvalues. The Lapla-
cian matrix is LE = W − Δ where Δ is diagonal degree matrix with elements
Δ(i, i) =

∑
j∈V W (i, j). The spectral decomposition of the Laplacian matrix is
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LE =
∑n

i=1 λieiei
T , where λki is the ith eigenvalue and ei is the corresponding

eigenvector of the Laplacian matrix L̂. Our spectral characterisation of the graph
is based on the vector of N leading Laplacian eigenvalues B = (λ1, ...., λN )T .
We can perform pattern analysis on sets of graphs by applying clustering or
dimensionality reduction techniques to the the vectors of Laplacian eigenvalues.

Our aim is explore the structure of a set of graphs with pattern vectors Bk,
k = 1,M . There are a number of ways in which the spectral pattern vectors
can be analysed. Here, for the sake of simplicity, we use principal components
analysis. We commence by constructing the matrixV = [B1|B2| . . . |Bk| . . . |BM ]
with the graph feature vectors as columns. Next, we compute the covariance
matrix for the elements of the feature vectors by taking the matrix product
C = VVT . We extract the principal components directions by performing the
eigendecomposition C =

∑M
i=1 liuiuTi on the covariance matrix C, where the li

are the eigenvalues and the ui are the eigenvectors. We use the first s leading
eigenvectors ( 2 or 3 in practice for visualisation purposes) to represent the
graphs extracted from the images. The co-ordinate system of the eigenspace is
spanned by the s orthogonal vectors U = (u1,u2, ..,us). The individual graphs
represented by the long vectors Bk, k = 1, 2, . . . ,M can be projected onto this
eigenspace using the formula xk = UTBk. Hence each graph Gk is represented
by an s-component vector xk in the eigenspace.

5 Experiments

In this section we experiment with the application of our clustering algorithm
to shock graphs. We tested our algorithm on a database of 150 silhouettes of 10
kinds of objects. A representative view of each object is shown in Figure 1.

Fig. 1. Sample views of the 10 objects

In our experiments, we will compare the results obtained by using our algo-
rithm with those obtained by using direct spectral analysis of trees. The direct
spectral analysis of trees commences by first constructing the Laplacian matrix
L̂ for the tree. Then we use the leading Laplacian eigenvalues λi of the matrix
L̂ to construct the spectral feature vector B = (λ1, ...., λN )T . After the spectral
feature vectors have been extracted from the trees, we apply PCA (principal
component analysis).
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Fig. 2. Direct spectral analysis (left) and heat-kernel analysis (right)

Our first experiment compares our algorithm with the direct spectral analysis
of the trees from the entire database of 150 shock trees. In Figure 2 the left-hand
panel shows the result of the direct spectral analysis of the shock trees, while
the right-hand panel is the result of applying our heat kernel analysis. There
is a legend in the top left-hand corner of each plot that explains the shape
correspondence of each of the symbols. There are a number of points that can
be drawn from these plots. First, in the case of the direct spectral analysis the
data distribute themselves along a trajectory in the embedding space. This may
be attributable to the problem of co-spectrality of the trees. However, after the
heat kernel analysis is performed, the trees distribute themselves over the 2D
space. Moreover, in the case of the direct spectral analysis the different shapes
are interspersed along the trajectory. It is hence not possible to allocate the
shapes to reliably assign shapes to classes on the basis of their position in the
plots. The possible exception is that the horses and leafs are separated at the
bottom right hand corner of the plot. In the case of the heat kernel analysis, the
trees could be better separated. Although there is considerable overlap near the
center of the plot, it appears that there is scope for separating the screwdrivers,
pliers and leafs.

In our second experiment, we have repeated the procedure above for a smaller
database which contains only three representative shapes. The three shapes used
for test are the hands, the leafs and the men. For each shape there are 15 different
views corresponding to different viewing directions. The left-hand panel of Figure
3 shows the results of direct spectral analysis, while the right-hand panel shows
the result of heat kernel analysis. In the case of the direct spectral analysis, the
shapes are poorly separated. In the case of the heat kernel analysis, there is good
separation.

To further investigate this three-class data, in Figure 4 the two panels show
the distances dT (k1, k2) = (Bk1 − Bk2)T (Bk1 − Bk2) between the vectors of
eigenvalues for the trees indexed k1and k2. The left-hand panel is for the direct
spectral analysis of the trees and the right-hand panel is for the spectral vectors
extracted by performing the heat-kernel embedding. Here the classes emerge as
clear blocks in the distance matrix for the heat-kernel embedding, while for the
direct spectral analysis the block structure is more confused.
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Fig. 3. Direct spectral analysis (left) and heat-kernel analysis (right)
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Fig. 4. Distance matrices for direct spectral analysis (left) and heat kernel analysis
(right)

6 Conclusion and Future Work

In this paper we have explored how the use of heat kernels can lead to a measure
of geodesic distance that can be used for the purposes of embedding graphs in low
dimensional Euclidean spaces. The distance measure is found by equating the
spectral and Gaussian forms of the heat kernel. We show how MDS can be used
to embed the the distances, and how a spectral characterisation of the embedded
graphs can be used for graph-clustering. We experiment with the method on sets
of shock trees. Here the characterisation which results from the geodesic analysis
is better than that obtained from the raw spectral features of the graphs. There
are clearly a numbert of ways in which the work reported in this paper can be
extended. For instance, it would be interesting to study the controlled effects of
varying the time parameter, and to see if this leads to a natural definition of
“scale-space” for the graphs.
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Abstract. It is a fact that current methodologies for automatic translation cannot
be expected to produce high quality translations. An alternative approach is to use
them as an aid to manual translation. We focus on a possible way to help human
translators: to interactively provide completions for the parts of the sentences
already translated. We explain how finite state transducers can be used for this
task and show experiments in which the keystrokes needed to translate printer
manuals were reduced to nearly 25% of the original.

1 Introduction

It is becoming increasingly clear that current automatic translation methodologies can-
not be expected to produce high quality translation in the near future. An alternative
way to take advantage of the technologies developed is to use them in order to help
human translators. One such approach, proposed by [1], can be explained as follows:
the translator begins to type the translation and the system guesses the best completion
for the text typed so far. The user can then accept the suggestion of the computer or part
of it. This should reduce the amount of work of the translator.

This approach has two important aspects: the models need to provide adequate com-
pletions and they have to do so efficiently. To fulfill these two requirements, we have
decided to use Stochastic Finite State Transducers (SFST) since they have proved in
the past to be able to provide adequate translations [2–4] and, as we show in this paper,
efficient parsing algorithms can be easily adapted in order to provide completions.

The rest of the paper is structured as follows. The following section presents the
general setting for machine translation and finite state models. In section 3, the search
procedure for an interactive translation is presented. Experimental results are presented
in section 4. Finally, some conclusions and future work are explained in section 5.

2 Machine Translation with Finite-State Transducers

Given a source sentence s, the goal of MT is to find a target sentence t̂ that maximizes:

t̂ = argmax
t

Pr(t | s) = argmax
t

Pr(t, s) ≈ argmax
t

PrT (t, s) (1)

A. Fred et al. (Eds.): SSPR&SPR 2004, LNCS 3138, pp. 207–215, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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The joint distributionPr(t, s) can be modeled by Stochastic Finite State Transducers
(SFST) T [5]. They have been successfully applied into many translation tasks [2–4].
Furthermore, there exist efficient parsing algorithms like Viterbi[6] for the best parse
and REA [7] for the n-best parses.

One possible way of inferring SFSTs from training data is the Grammatical Infer-
ence and Alignments for Transducer Inference1 (GIATI) technique [8]. Given a finite
sample of string pairs, it works in three steps:

1. Building training strings. Each training pair is transformed into a single string from
an extended alphabet to obtain a new sample of strings. The “extended alphabet”
contains words or substrings from source and target sentences coming from training
pairs.

2. Inferring a (stochastic) regular grammar. Typically, a smoothed n-gram is inferred
from the sample of strings obtained in the previous step.

3. Transforming the inferred regular grammar into a transducer. The symbols associ-
ated to the grammar rules are transformed into source/target symbols by applying
an adequate transformation, thereby transforming the grammar inferred in the pre-
vious step into a transducer.

The transformation of a parallel corpus into a corpus of single sentences is per-
formed with the help of statistical alignments: each word is joined with the word in the
target sentence it is aligned to, creating an “extended word”. This joining is done taking
care not to invert the order of the output words. The third step is trivial with this arrange-
ment. In our experiments, the alignments are obtained using the GIZA software [9, 10],
which implements IBM statistical models [11, 12].

3 Interactive Search

In the previous section the training process undergone to generate a SFST T from a
parallel corpus was described. The aim of interactive search is to find a suffix of tar-
get sentence t̂s that maximizes the a posteriori probability given a SFST T , a source
sentence s and a prefix of the target sentence tp produced by a human translator:

t̂s = argmax
ts

Pr(ts | s, tp) ≈ argmax
ts

PrT (tpts, s) (2)

This equation is similar to the one for general translation but in this case, the op-
timization is performed over the set of target suffixes rather than the set of complete
target sentences.

The solution to this problem has been devised in two phases. The first phase copes
with the extraction of a word graph W from a SFST T given a source sentence s. In a
second phase, the search of the best translation (or translations) is performed over the
word graph W .

1 The previous name of this technique was MGTI - Morphic-Generator Transducer Inference.
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3.1 Word Graph Derivation

A word graph is a compact representation of all the possible translations that a SFST
T can produce from a given source sentence s together with the probabilities of those
translations. In fact, the word graph could be seen as a kind of weighted finite state
automaton in which the probabilities are not normalized.

The construction of the word graph is reminiscent of the intersection of two au-
tomata: a SFST and a linear DFA (deterministic finite state automaton) representing the
input sentence. We will explain it through a simple example. Assume that we have to
translate the sentence “haga clic en siguiente .” (click next) using the SFST of Figure 1.
The first step is to build the DFA of Figure 2. It is easy to see that the DFA has as
many states as words in the source sentence plus one and the ith word of the sentence
connects states i − 1 and i.

0

1
"haga" / "click" (0.13)

4"haga" / "check" (0.12)

2
"haga" / "click" (0.28)

3
"haga" / "choose" (0.17)

5

"presione" / "(null)" (0.08)

6

"haga" / "select" (0.12)

11

"seleccione" / "select" (0.1)

7
"clic" / "the" (0.49)

15"doble" / "the" (0.51)

9"clic" / "(null)" (1)

8

"clic" / "(null)" (0.32)

16

"doble" / "(null)" (0.68)

"clic" / "(null)" (1)

"clic" / "(null)" (1)

10
"clic" / "(null)" (1)

12

"siguiente" / "next" (0.23)

"aceptar" / "ok" (0.02)

"abrir" / "open" (0.15)

"guardar" / "save" (0.1)

"enviar" / "send" (0.5)

"en" / "(null)" (1)

"clic" / "(null)" (1)

"en" / "(null)" (1)

"en" / "(null)" (1)"clic" / "(null)" (1)

"en" / "(null)" (1)

13
f=1

"." / "." (1)

Fig. 1. A transducer inferred from a parallel corpus

a b
"haga"

c
"click"

d
"en"

e
"siguiente"

f
"."

Fig. 2. A DFA representing the sentence: “haga clic en siguiente.”

From these two automata, we can easily build the word graph. For the moment,
assume that the output of the arcs of the SFST have at most one word. The states of
the word graph will be pairs composed of a state of the DFA and a state of the SFST.
The initial state of the word graph will be the pair composed of the initial states of
those automata. The probability of a pair being final will be the final probability of
the corresponding state in the SFST. Now, assume that p and r are states of the DFA,
p′ and r′ are states of the SFST and that there is an arc from p to r with input w in the
DFA and another arc in the SFST from p′ to r′ with input w and output y. Then, the
word graph will have an arc from q ≡ (p, p′) to q′ ≡ (r, r′) with input y (remember that
the word graph represents sentences of the output language, i.e. possible translations).
This arc will have the same probability as the arc (p′, w, y, r′) in the SFST that we
will denote as P (q, y, q′). The final-state probability of each state q will be denoted as
PF (q). The result of this process in our example can be seen in Figure 3.

There are a couple of minor issues to deal with in this construction. On one hand, the
output symbol for a given arc could be empty string (which are represented by “(null)”
in the Figures) or could contain more than one word. Since the word graph generated
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[0, a]

[1, b]"click" (0.13)

[4, b]
"check" (0.12)

[2, b]

"click" (0.28)

[3, b]
"choose" (0.17)

[6, b]

"select" (0.12)

[7, c]

"the" (0.49)

[9, c]
"(null)" (1)

[8, c]"(null)" (0.32)

"(null)" (1)

[10, c]"(null)" (1)

[11, d]

"(null)" (1)

"(null)" (1)

"(null)" (1)

"(null)" (1)

[12, e]
"next" (0.23) [13, f]

f=1
"." (1)

Fig. 3. Word graph resulting from the SFST in Figure 1 and the DFA in Figure 2. Isolated states
are not shown

is not deterministic, the inclusion of empty outputs coming from the SFST is integrated
easily. In the case of arcs with more than one word, auxiliary states were created in
order to assign only one word for each arc. On the other hand, it is possible to have
words in the input sentence that do not belong to the input vocabulary in the SFST.
This problem is solved with the introduction of a special “unknown word” in the input
vocabulary of the SFST.

3.2 Search of n-Best Translations Given a Prefix of the Target Sentence

Once the word graph is constructed, it can be used for finding the best completions
for the part of the translation typed by the human translator. Not that the word graph
depends only on the input sentence, so it is used repeatedly for finding the completions
of all the different prefixes provided by the translator.

Ideally, the task would be to find the target suffix ts that maximizes the probability
a posteriori given a prefix tp of the target sentence and the input sentence. In practice,
however, it may happen that tp is not present in the word graph W . The solution is to
use not tp but a prefix t′p that minimizes the edition distance with tp and is compatible
with W . Therefore, the score of a target translation t ≡ tp · ts is characterized by two
functions, the edition cost between the target prefix tp and the optimal prefix t′p found
in the word graph W and the a posteriori probability of ts (Pr(ts | t′p)). However, the
list of n-best translations has been prioritized first by minimum edition cost and then by
a posteriori probability to value more significantly those translations that were closer
to the user preferences.

Let qp be the state(s) in W that is (are) reached from the initial state using t′p and
let P(W , tp, qp) be the set of possible paths (q0, t1, q1), . . . , (qm−1, tm, qm) in W from
q0 = qp that produce the translation suffix ts = t1, . . . , tm of length m . Pr(ts | t′p) is
calculated as:

Pr(ts | t′p) =
∑

Pm∈P(W,ts,qp)

∏
1≤i≤m

P (qi−1, ti, qi)PF (qm) (3)
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The search for the ts that maximize Pr(ts | t′p) has been demonstrated to be an
NP-hard problem, so the Viterbi approach [6] will be adopted to make feasible the cal-
culation of Pr(ts | t′p), that is:

P̂ r(ts | t′p) = max
Pm∈P(W,ts,qp)

∏
1≤i≤m

P (qi−1, ti, qi)PF (qm) (4)

This simplification is imperative because of the real-time constraints under which our
prototype is required to run. However, a better approximation to Pr(ts | t′p) will be
presented in next section.

The algorithm proposed to solve this search problem is an adapted version of the
Recursive Enumeration Algorithm (REA) described in [7] that integrates the minimum
edition cost algorithm in the search procedure. This algorithm consist on two parts:

– Forward search that calculates the 1-best path from the initial state q0 to every state
in the word graph W . Paths in the word graph are weighted not only based on their
a posteriori probability, but also on their edition cost respect to the target sentence
prefix.

To this purpose, ficticious edges have been inserted into the word graph to represent
edition operations like insertion, substitution and deletion. These edition operations
have been included in the word graph in the following way:

• Insertion: An insertion edge has been inserted as a loop for each state in the
word graph.

• Deletion: A deletion edge is added for each arc in the word graph having the
same source and target state than its sibling arc.

• Substitution: Each arc in the word graph is treated as a substitution edge
whose edition cost is proportional to the levenshtein distance between the sym-
bol associated with this arc and the word prefix employed to traverse this arc
during the search.

For example, in Figure 3 if the user would type “press” as an initial prefix, we
would have two different classes of translation sentences. Those ones that applying
an insertion operation would start from the initial stage at state [0, a], and those
ones that applying a deletion or substitution operation would depart from states in
the second stage.

– Backward search that enumerates candidates for the k-best path along the (k − 1)-
best path. This recursive algorithm defines the next best path that arrives at a given
state q as the next best path that reaches q′ plus the arc leaving from q′ to q, being
(q′, b, q) ∈ E. If this next best path arriving at state q′ has not been calculated yet,
then the next best path procedure is called recursively until a 1-best path is found
or no best paths are found.

To reduce the computational cost of the search, the beam-search technique has been
implemented. During the word graph construction, two beam coefficients were em-
ployed to penalize those edges leading to backoff states over those ones arriving at
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normal states. Finally, a third beam coefficient controls how far in terms of number
of edition operations a hypothesis could be from the best hypothesis in a given stage
during the parsing procedure.

3.3 An Improved Approximation to the Translation Probability

A better approximation to the true translation probability of equation (3) can be obtained
on the base of the Viterbi n-best path approach. This approximation is achieved by
summing up the probability of those paths with the same translation ts in the set of
n-best paths PN (W , ts, qp):

PrN (ts | t′p) =
∑

Pm∈PN (W,ts,qp)

∏
1≤i≤m

P (qi−1, ti, qi)PF (qm) (5)

Indeed, the Viterbi approximation could be considered to be a particular case of the
n-best approximation, that is, when the number of paths is 1. As the reader may expect,
this approximation improves as the size of PN (W , ts, qp) increases. However it should
be noted that PrN (ts | t′p) follows a log-wise growth, since most of the probability
associated with the translation ts is accumulated in the first n-best paths.

4 Experimental Results

4.1 Corpus Features

We performed experiments using the so-called Xerox corpus [13]. This corpus consists
in a collection of technical Xerox manuals written in English, Spanish, French and
German. The English versions are the original and the rest are translation of them. The
sizes (in thousands of words) of the subsets used can be seen in Table 1.

Table 1. Features of the Xerox Corpus: training, vocabulary and test sizes are measured in thou-
sands of words

EN / ES EN / DE EN / FR

TRAINING 600/700 600/500 600/700

VOCABULARY 26 / 30 25 / 27 25 / 37

TEST 8 / 9 9 / 10 11 / 10

PERPLEXITY (3-gram) 107/60 93/169 193/135

4.2 Translation Quality Evaluation

We have used three different measures in order to assess the techniques presented:

1. Translation Word Error Rate (TWER). It is defined as the minimum number of
word substitution, deletion and insertion operations to convert the target sentence
provided by the transducer into the reference translation. Also known as edit dis-
tance.
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2. Character Error Rate (CER). Edit distance in terms of characters between the target
sentence provided by the transducer and the reference translation.

3. Key-Stroke Ratio (KSR). Number of key-strokes that are necessary to achieve the
reference translation plus the acceptance key-stroke divided by the number of run-
ning characters.

These experiments were performed with GIATI transducers based on trigrams. The
results are shown in Table 2. On the leftmost column appears the language pair em-
ployed for each experiment, English (En), Spanish (Es), French (Fr) and German (De).
The main two central columns compare the results obtained with 1-best translation to
5-best translations. In the latter case, the target sentence out of the five suggested trans-
lations that minimizes most the correspondent error measure was selected.

Table 2. Results for the Xerox Corpus comparing 1-best to 5-best translations

GIATI 3-gram (1-best) GIATI 3-gram (5-best)
XRCE 2 KSR CER TWER KSR CER TWER

En-Es 29.1 30.3 43.1 26.2 25.0 37.8
Es-En 33.5 35.5 51.4 29.7 28.1 45.2
En-Fr 58.5 54.3 73.8 53.7 48.5 69.6
Fr-En 58.4 55.3 71.9 54.0 49.5 67.7
En-De 66.2 62.8 81.3 60.1 56.7 77.2
De-En 59.0 61.5 78.5 53.9 55.1 73.3

The best results were obtained between English and Spanish language pairs, in
which the human translator would only need to type 25% of the total reference sen-
tences. In theory, this could result in a factor of 4 increase in the productivity of human
translators.

Furthermore, in all cases there is a clear and significant improvement in error mea-
sures when we move from 1 to 5-best translations. This gain in translation quality di-
minishes in a log-wise fashion as we increase the number of best translations. Pair of
languages as English and French present somewhat higher error rates, as is also the
case between English and German, reflecting the complexity of the task faced in these
experiments.

4.3 A Comparative Evaluation: Viterbi vs. n-Best Approximation

An approximation to the true translation probability based on the n-best path was intro-
duced in section 3.3. Some experiments were performed to assess the evolution of the
translation quality as the calculation of the translation a posteriori probability improves.
To this purpose a simplified version of the Xerox corpus was employed to reduce the
impact of noise due to preprocess and postprocess phases.

The most important conclusion that could be extracted from these results is the
adequacy of the simpler and direct Viterbi approach as an approximation to the actual
a posteriori probability of a target sentence. As it can be observed from Table 3, the
evolution of TWER rates across an increasing number of n-best translations does not
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Table 3. TWER comparative table across different number of n-best paths based on a simplified
version of XRCE2

TWER Viterbi 5-best 10-best 20-best 50-best 100-best 200-best 500-best 1000-best
En-Es 31.7 31.9 32.1 32.0 32.2 32.3 32.3 32.4 32.4
Es-En 35.9 35.3 35.4 35.5 35.6 35.7 35.7 35.7 35.7
En-Fr 60.7 60.7 61.0 61.0 60.8 60.7 60.7 60.8 60.8
Fr-En 56.1 57.0 57.0 57.1 57.0 57.2 57.1 57.2 57.3
En-De 69.7 69.8 69.7 69.8 69.8 69.7 69.7 69.8 69.9
De-En 63.1 63.2 63.3 63.5 63.5 63.4 63.6 63.6 63.6

show a consistent positive growth of the translation quality. It is even negative for large
n in most cases. A possible reason for these results is that for large n translations with
lower quality are more frequent among the set of n-best translations, so summing up the
probability of equal translations favors those ones that even being less probable have
more repetitions.

5 Conclusions and Future Work

Finite-state transducers can be used for computer assisted translation. These models can
be learned from parallel corpus, but the number of states/transitions can be too high.
The concept of interactive search has been introduced in this paper along with some
efficient techniques (word graph derivation and n-best) that solve the parsing problem
given a prefix of the target sentence undeolve the parsing problem given a prefix of the
target sentence under real-time constraints.olve the parsing problem given a prefix of
the target sentence under real-time constraints.

The promising results achieved in the first experiments provide a new field in
machine translation still to be explored, in which the human expertise is combined
with automatic translation techniques to increase productivity without sacrificing high-
quality translation.

Moreover, an alternative approach to Viterbi approximation based on the n-best idea
was explained and the results obtained with it confirm the appropriateness of the Viterbi
approach in real applications.

Finally, the introduction of morpho-syntactic information and/or bilingual cate-
gories in finite-state transducers are topics that leave an open door to future research.
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Abstract. Statistical techniques for machine translation have experi-
enced an increasing interest by the natural language research commu-
nity in the last years. Both statistical language modeling and statistical
machine translation are now well-established disciplines with solid basis
and outstanding results. On the other hand, finite-state transducers have
revealed as an efficient and flexible formalism for the representation of
a wide range of the kind of information that arises in natural language
processing.
This paper presents a powerful general framework for combining statisti-
cal techniques with grammatical inference and finite-state traducers. The
GIATI methodology proposed here provides a schema for building infer-
ence algorithms that are able to generate finite-state transducers from
parallel corpora of text making use of information supplied by robust
statistical techniques such as n-grams and alignments. Here, the general
method is presented together with two concrete inference algorithms and
some experiments that show the validity of the GIATI framework for
real-world translation tasks.

1 Introduction

As it is well known, the fields of statistical and syntactic pattern recognition
have found one of their most outstanding applications in natural language pro-
cessing. Language modeling, machine translation or document retrieval are some
examples of interesting tasks that have been successfully approached with pat-
tern recognition techniques and are the object of intensive research. In language
modeling, for instance, the statistical technique of smoothed n-grams has be-
come the most widely used solution for problems such as speech recognition,
clearly beating other approaches coming from a knowledge-based framework.

Machine translation has been traditionally approached by knowledge-based
methods. However, in the last years, encouraging results obtained using statis-
tical methods have raised the claim and the subsequent discussion about the
possibility of machine translation to be successfully performed by learning the
models from examples, specially in restricted domains of language. Among the
pioneer work in statistical machine translation, the techniques commonly known
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as the “IBM algorithms” [3] were the first to describe the concept of statistical
alignments, which will center our attention in the following sections, and have
produced a wide range of derived ideas that rely to some extent on that seminal
work.

The high heterogeneity of the available techniques in these fields is one of the
reasons for the increasing interest in formalisms that can establish a common
framework for them. Finite-state automata (and the closely related finite-state
transducers) are one of such formalisms. They are founded on solid mathematical
basis (see, for example, [2]), have many developments in grammatical inference
[9], and provide a flexible and efficient tool for representing different kinds of
information generated in natural language processing. They have been used in
speech recognition [1], morphology, phonotactics, dictionary compression [7], and
machine translation [9], among others.

The present work presents a general methodology for representing informa-
tion coming from different sources (in particular, from statistical alignments)
using finite-state transducers, called GIATI (for grammatical inference and align-
ments for transducer inference). This general setting constitutes a sort of tem-
plate that acts as a melting pot for the creation of algorithms that are able
to generate machine translation models (finite-state transducers) starting from
bilingual corpora of text. This methodology has been already presented in other
forums [4] with an emphasis on the theoretical and algebraic aspects. This pa-
per offers a more concise presentation of GIATI and it focuses on new practical
algorithms and experimental results on a real machine translation task about
instruction manuals of hardware equipment.

2 The GIATI Methodology

2.1 Preliminaries

A weighted finite-state automata (WFSA) is a tuple A = (Γ,Q, i, f, P ), where Γ
is an alphabet of symbols,Q is a finite set of states, i : Q → R and f : Q → R give
a weight to the possibility of each state to be an initial or final state, respectively,
and P : Q×{Γ ∪λ}×Q → R defines a set of transitions between pairs of states
in such a way that each transition is assigned a weight and it is labeled with a
symbol from Γ or with the empty string, λ. A semi-ring can be defined on the set
of weights so that under some particular conditions (such as the weight values
ranging from 0 to 1) the automaton defines a probability distribution over the
free monoid Γ � and is called a stochastic finite-state automata. This has been
studied in detail in [7].

A weighted finite-state transducer (WFST) is defined similarly to weighted
finite-state automata, with the difference that transitions between states are
labeled with pairs of symbols that belong to a Cartesian product of two different
(input and output) alphabets, Σ × Δ.

A WFSA is essentially a device that can assign a weight to all the strings
of symbols that label a path that goes from some input state to some output
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state. The total weight is usually computed by an accumulated addition or mul-
tiplication of the corresponding weights of the transitions that are found in the
path. Analogously, a WFST is able to assign weights to pairs of strings following
a similar procedure. This opens the door for the possibility of using WFST for
translation. If we have an input string and want to find a translation of it, we
can perform a search for the set of string pairs within the transducer such that
the input string coincides with the one we want. The standard procedure is to
choose the pair with the highest (or lowest) weight and yield the output part
as the translation result. This search is not obvious and has been studied in
different works (see, for example, [5]).

When an automaton or a transducer are unweighted they behave as accepting
machines that accept the strings or string pairs, respectively, that label a path
going from some input state to some output state. The set of strings accepted by
an automaton A is called the language accepted by that automaton, L(A). The
set of string pairs accepted by a transducer T is called the translation accepted
by that transducer, T (A).

Given two finite alphabets, Γ and Γ ′, a morphism h : Γ � → Γ ′� is a function
that satisfies the following conditions: a) h(x̄, x̄′) = h(x̄) · h(x̄′) ∀x̄, x̄′ ∈ Γ �, and
b) h(λ) = λ, where λ is the empty string. An alphabetic morphism h is a mor-
phism that verifies: h(a) ∈ Γ ′, ∀a ∈ Γ . The definition of GIATI in the following
subsection makes use of morphisms as a way to denote rewriting transformations
between the different set of symbols involved.

2.2 GIATI

The goal of GIATI is to define a general inference method for obtaining a finite-
state transducer from a corpus of parallel text1. The aim is to produce a trans-
ducer that is able to generalize the training data and can find the correct transla-
tion of new input sentences that have not been seen during the training process.

The process defined by GIATI is illustrated in Figure 1. Given a parallel
corpus consisting in a finite sample A of string pairs (s̄, t̄) ∈ Σ� × Δ� :

1. Each training pair (s̄, t̄) from A is transformed into a string z from an ex-
tended alphabet Γ yielding a sample S of strings, S ⊂ Γ �.

2. A (stochastic) finite-state transducer A is inferred from S.
3. The symbols (from Γ ) of edges in A are transformed back into pairs of strings
of source/target symbols (from Σ� × Δ�).

The first transformation is modeled by some labeling function L : Σ�×Δ� →
Γ �, while the last transformation is defined by an “inverse labeling function”
Λ(·), such that Λ(L(A)) = A. Typically, Λ(·) consists of a couple of morphisms,
hΣ , hΔ, such that for any string z ∈ Γ �, Λ(z) = (hΣ(z), hΔ(z)). This guarantees
some conditions on the transformations which are helpful to demonstrate some
interesting algebraic properties (see [4]).
• A corpus of parallel text, also called a parallel corpus or a bicorpus, is a collection
of pairs of word strings, usually sentences in the linguistic sense, that belong to two
different languages and are the translation from one another.
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A ⊂ Σ� ×Δ�

Sample of training pairs

• • • • ••• • − L• ·•
� S ⊂ Γ �

Sample of training strings

GI

�

algorithm

T : A ⊂ T (T )
A finite-state transducer

•• • • • • • •• • • ••• • − Λ• ·•� A: S ⊂ L(A)
A finite-state automaton

Fig. 1. Basic scheme for the inference of finite-state transducers. A is a finite sample of
training pairs. S is a finite sample of strings. A is an automaton inferred from S such
that S is a subset of the language L(G). T is a finite-state transducer whose translation
T (T ) includes the training sample A.

The interest of GIATI comes from the fact that it establishes a general tem-
plate the instances of which are different inference algorithms. So, for example,
the first transformation, L, can aim at grouping pairs of segments of words into
bigger, meaningful units that can be considered as the new tokens for the sam-
ple of training strings S. In the practical applications that we are presenting in
Section 4 for machine translation this is done in different manners but taking
profit of the information given by statistical alignments of words (see the next
section). The grammatical inference algorithm that is needed in the second step
can be any algorithm able to infer a WFSA from a corpus of text. For example,
different variants of smoothed n-grams can be used for this [6].

A Toy Example: Inferring a Canonical Transducer. In this example, the algo-
rithm produced by GIATI infers an unweighted finite-state transducer that will
only accept the source sentences of the training set and will produce the target
sentences as the corresponding translation.

– Transformation of string pairs into strings: Given a training pair (s̄, t̄), each
symbol of s̄ is labeled as itself, except for the last one, x, which is labeled as
xs̄, i.e., a new symbol composed by the symbol itself and the target sentence
as subindex:
Γ = {a, b, a {00}, a {101}, a {011}, a {0}}
S = {(abba {00}), (aaabbaa {101}), (bbaaa {011}), (bba {0})}

– Inference of a finite-state automaton: We will use a prefix tree-acceptor. The
automaton produced by this method is shown in Fig. 2.

– Inverse transformation:

a b a00 a101 a011 a0
hΣ a b a a a a
hΔ λ λ 00 101 011 0

The resulting canonical finite-state transducer is shown in Fig. 3.
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16
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15a_{011}

12a 14a_{101}

Fig. 2. A prefix–tree acceptor for the training sample of Example 1.
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16
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9b/λ

10a/λ
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15a/011

12a/λ 14a/101

Fig. 3. The resulting finite-state transducer for Example 1.

3 Statistical Alignments

Our aim when building a combined corpus is to condense meaningful informa-
tion about the relations that lay between the input and output words. This is
a problem that has been thoroughly studied in statistical machine translation
and has well-established techniques for dealing with it. The concept of statis-
tical alignment [3] formalizes this problem. An alignment is a correspondence
between words from an input text to words from an output text. Whether this is
a one-to-one, a one-to-many or a many-to-many correspondence depends on the
particular definition that we are using. The interesting thing is the availibily of
algorithms for learning such correspondences from bilingual corpora. Constrain-
ing the definition of alignment simplifies the learning but subtracts expressive
power to the model. The available algorithms try to find a compromise between
complexity and expressiveness.

Formally, an alignment between a pair of sentences (s̄, t̄) is a mapping i → j =
aj that assigns a word sj in position j to a word ti in position i = aj . Alignments
are used as a hidden variable in statistical machine translation models such as
IBM models [3] or hidden Markov models [10].

4 Two Translation Algorithms

In order to explain the following algorithms clearly we will denote a pair from the
parallel corpus by (s̄, t̄) and we will be using a very small example of alignment
taken from a real English-to-Spanish corpus: We will consider that the English
phrase the configuration program is aligned with the Spanish phrase el programa
de configuración with the alignment {1→ 1, 2→ 4, 3→ 2}.
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Algorithm #1: Using a Language of Segment Pairs.

– Transformation of string pairs into strings: the composed string is a sequence
of |s̄| pairs, (ui, v̄i), where ui = si and v̄1v̄2 . . . v̄|s̄| = t̄. Each of these pairs
is considered to be a single symbol. We refer the reader to [4] for a complete
description of this algorithm and other minor details. Applying this algo-
rithm to the alignment of our example would produce the following corpus
containing one string:

S = {(the, el) (configuration, λ), (program, programa de configu-
ración)}

– Inference of a finite-state automaton: a smoothed n-gram model can be in-
ferred from the corpus of strings obtained in the previous step. Such a model
can be expressed in terms of a WFSA [6].

– Inverse transformation: the transitions in the inferred automaton are labeled
with compound symbols which are pairs of strings. A transducer can be
obtained directly by considering these symbols as the pair of strings that
label a transducer transition.

Algorithm #2: Using a Corpus of Bilingual Phrases.

– Transformation of string pairs into strings: this transformation obtains a
set of bilingual phrases from each alignment, where many reasonable (and
overlapping) possibilities are included. The compound corpus of strings only
contains strings of length one and the symbols are pairs of strings as in
the previous algorithm. Let us illustrate this with our small example. The
alignment above will produce a corpus of phrases such as the following one,
containing 7 strings of length 1:

S = {(the, el), (configuration, configuración), (configuration, config-
uración de), (program, programa), (program, de programa), (con-
figuration program, programa de configuración), (the configuration
program, el programa de configuración)}

This transformation function is inspired in recent work done in phrase-based
statistical machine translation. We refer the reader to [10, 8] for details on
different methods for extracting bilingual phrases from alignments.

– Inference of a finite-state automaton: we use a smoothed unigram on S with
a normalization on the probability of appearance of the input part in each
bilingual phrase in S.

– Inverse transformation: the same as in algorithm #1.

5 Experimental Results

We have performed some experiments in a real-word machine translation task
so as to test the feasibility of the algorithms explained in the previous section.
This corpus consists of a collection of technical manuals of hardware equipment
by the Xerox company and have been processed by the team of the TransType2
project [11]. We are using the English-to-Spanish version of the corpus. The
characteristics of this corpus are shown in Figure 4.
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Training set English Spanish

Number of sentences 56,773 56,773
Running words 679,678 768,564
Size of the vocabulary 7,976 11,094

Test set English Spanish

Number of sentences 1,125 1,125
Running words 10,106 8,370
Size of the vocabulary 1,132 1,215

Fig. 4. Size values of the TT2 training and test corpora.

We have used the measure known as word error rate (WER), calculated
as the percentage of insertions, deletions and substitutions of words that are
necessary to obtain the reference output sentence from the translation calculated
by the algorithm. Our results are a WER of 34.0% for the algorithm #1 using 4-
grams smoothed by back-off, and 30.8% for the algorithm #2 limiting the length
of phrases to 6 words. These experiments are still in a rudimentary stage but
the results are not in very different range of error that those obtained by other
more sofisticated methods. For example, phrase-based statistical translation with
monotone search [8] obtained for this task a WER of 24.87% using much longer
phrases and lexical weighting.

6 Conclusions and Further Work

The GIATI methodology for inferring finite-state transducers from parallel cor-
pora has been presented here. GIATI is a general way of defining transducer
inference algorithms making use of automata induction and other kinds of useful
information such as statistical alignments. Two inference algorithms described
within the GIATI framework have been presented here and some encouraging
experimental results have been reported.

Further work on GIATI points towards searching other algorithms that make
a clever use of statistical alignments in combination with n-grams or other finite-
state automata inference methods. GIATI and finite-state models seem to be
specially well suited for highly sequential translation tasks. Reordering words
is usually a problem. We want to explore the possibilities for incorporating
non-monotonous information (recursive alignments, statistical non-monotonous
search) through some extension of GIATI.
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A Coupled Relaxation Method
for Finding Perceptual Structures
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Abstract. In this paper we describe a method for determining the ex-
istence and parameters of a geometric structure in an image by using a
relational representation of its structure. The relational model is matched
to image structure in order to find possible instances of the model in the
image. Matches between the relational model and image primitives are
then used to determine probability distributions for the parameters of
a geometric transformation. This transform maps a geometric model of
the structure onto an instance in the image. This distribution may then
be used to infer a probability map for pixel-based information such as
edge responses. When combined with the original edge responses, an en-
hanced image is produce with more salient edge structure. Iteration of
the procedure results in a consistent set of models and edge structure.
The method is demonstrated on rectangles undergoing affine transforms.

1 Introduction

The Generalized Hough Transform is a method of recovering the parameters of
a model from information such as edge positions in the image array. Although it
is very effective in recovering model parameters, it has a number of drawbacks.
The computational cost and storage requirements of the method rise rapidly as
the number of model parameters increases, making it unsuitable for complex
models. Since it’s inception[5], many variants have been suggested to allevi-
ate these problems. The randomised Hough transform(RHT)[2, 3] uses pairs of
points to compute single entries in the parameter map. The probabilistic Hough
transform[4] makes use of the fact that not all edge pixels must be processed
to obtain an accurate model. Edge points are therefore sampled from the image
array at random. Kalviainen and Hirvonen[1] exploit the connective structure of
line points to improve the speed and accuracy of the method.

These methods may be viewed as encompassing a spectrum between the use
of raw edge points and segmental entities such as connected line points. Although
the use of more salient entities such as line segments increases the efficiency of
the method, it renders it vulnerable to errors in the segmentation phase. It is our
observation that image segmentation can be improved by utilising global models
of possible structure, and these are exactly the kind of models produced by the
parametric methods described above. Grimson[6, 7] and Grimson and Lozano-
Pérez[8, 9] have looked at the problem of interpreting segmental output, which

A. Fred et al. (Eds.): SSPR&SPR 2004, LNCS 3138, pp. 224–232, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



A Coupled Relaxation Method for Finding Perceptual Structures 225

may include noise and occulsion errors, by using global models of structure.
They employ the interpretation tree[8] and a search algorithm to find matches
between segmental structure and the model. This match is used to infer global
tranformations of the 2D models.

Relational structure is a common and powerful way of representing the struc-
ture of objects in scenes. Methods of matching such structures to image segments
have recently been developed which are tolerant to uncertainty and error[14, 10,
11, 15, 13, 12]. The key element of this approach is a relational graph which de-
scribes the structure of an object by the relationship between sub-parts. This
graph represents a model of the object. The image may then be segmented and
their inter-relationships found in order to form a image graph. The task of object
location is then one of finding a sub-graph isomorphism between the model and
image graphs. Despite these advances, the power of such representations is often
limited by the quality of the segmental output. It is the aim of this paper to
couple the processes of model location and segmentation, with the aim of find-
ing reliable pairs of mutually consistent arrangments of segmental structure and
model parameters. Initially, the method is similar to that of Grimson in that it
interprets segmentation in terms of a global structural model, which in our case
is a relational model based on perceptual groupings of segments. However, once
a putative relational model has been found, the correspondences are used to find
possible transforms which map a geometric model onto the image. In fact, the
accuracy of the segmentation is used to determine a probability distribution for
the tranformation. This in turn allows us to establish a probability map for the
location of edge structure in the image which can be used to enhance the original
edge responses. Iteration of the method leads to the enhancement of salient edge
structure while the remainder is discarded.

2 Relational Model

We begin with a description of the image, consisting of a set of segmental entities
V = {v0, v1, ..., vn} representing, for example segments such as straight lines.
These segments may be obtained by an edge detector followed by a standard
edge polygonisation method. Each segment has a measurement vector associ-
ated with it which is derived from its properties in the image; thus for each
segment vi there is a measurement vector xi. In the case of line segments this
vector consists of the start and end points of the segment. Our task then is to
determine any arrangements of these segments which are consistent with a re-
lational model of the object of interest. A relational graph G = {V,E} consists
of a set of nodes V = {v0, v1, ..., vn}, representing segments, and set of edges
E = {e0, e1, . . .}. Each edge ei = {(va, vb), ωi} represents a perceptual relation
between two segments, where ωi is a label denoting the type of the relation.
Such a graph can describe the mutual consistency constraints between segments
in a compact way. These edges may either represent geometric relations such as
Voronoi neighbours or perceptual structure such as colinearity or parallelism.
Two such graphs G0, G1 are completely consistent when there exists a map-
ping between the node sets M : V0 → V1 which is one-to-one and is such that
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the mapped edges have the same labels. In a scene there are many objects and
resulting segments. The task of locating structure consistent with a particular
object model becomes one of mapping the relational graph for the object onto a
sub-graph of the scene segments. Depending upon the complexity of the object
model, missing and spurious segments may also become an issue, and inexact
sub-graph mapping may be required. There are many algorithms available in the
literature to achieve this end[14, 10, 11, 15, 13, 12].In this paper we have used the
method described in Wilson and Hancock [15].

2.1 Affine Rectangle Model

In the experiments conducted in section 5, we use an affine rectangle model. The
relational part of this model is shown in figure 1.

Fig. 1. Model of an affine rectangle

The nodes of this graph are straight line segments which represent the edges
of the rectangle. We do not employ a fully perspective model of the rectangle
because such a model is too unconstrained, since any four lines will make such
a rectangle. Instead, we confine our attention to the set of rectangles whose
projections are nearly affine, i.e. whose opposite sides are nearly parallel. Our
first graph relation is therefore the ‘parallel’ relation between line segments. The
other property of a consistent rectangle is that the interior of the rectangle is
one colour. The second relation in the graph connects edges which have similar
colours on the interal side of the edge they represent. In other words, they
represent the constraint that the interior of the rectangle must be the same
colour. We also exclude very narrow parallelograms with small corner angles.

3 Geometric Model

Once a mapping between an object model and a sub-graph in the scene has been
located, the co-incident segments provide information about the geometry of the
object. In particular, they may be used to infer a transform between the object
model and it’s realisation in the scene. In the case of our affine rectangle model,
the affine mapping between the canonical model of a unit square and image is
found by associating each one of the sides with a line segment identified by a
match to the relational model. We can then use this transform to infer where the
edges should be in the image, and enhance the edge responses at these locations.
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However, there are some problems with using a precise geometric model for
projection in this way. There are likely to be errors in the positions of the image
segments and, due to discrete nature of the image, edge structure may not lie
precisely on the line specified by the transformed geometric model. In order to
successfully locate the edge structure, we need to take account of the uncertainty
in the position of line segments and therefore in the affine mapping. The analysis
of the appropriate probability distributions is very complex, even under simple
models such as the affine transformation. Instead, we adopt an approach based
on finding the first order variations of segment parameters and then adopt a
normal distribution of transform parameters. We commence by looking at the
errors in line segments extracted from the image.

3.1 Errors in Segments

For each segment in the image, we can calculate not only the segment mea-
surement parameters, but also the parameter variances using a least-squares ap-
proach. For example in the case of a segment containing the points {(xi, yi), i =
0 . . . n} and a straight line segment model, the variances are given by, for a
mainly horizontal line,

var(m) =
∑
(yi − mxi − c)2

n
∑

x2i − (∑ xi)2/n

var(c) =
∑
(yi − mxi − c)2

n − (
∑

xi)2/
∑

x2i

cov(m, c) = −
∑
(yi − mxi − c)2 ·

∑
xi

n2
∑

x2i − (
∑

xi)2
(1)

The variance in the centre-points of the segments is var(yc) =
∑
(yi − mxi −

c)2/n. If the line is mainly vertical, the roles of the x and y points must be
reversed.

3.2 Affine Rectangle Model

The geometric model of the rectangle consists of the four corner points and four
lines joining the corner points (figure 2).

The segments are straight lines, and therefore the errors in the segment
parameters are those given in equation 1. However, because of the affine trans-
formation, we require the four corner points to define the transform. We are
therefore interested in the errors in the crossing points of the line segments
which make up the rectangle. These are given by equation 2 where corner n is
formed by the intersection of lines a and b.

var(xn) = vn = x2n

[
var(ca) + var(cb)

(ca − cb)2
+
var(ma) + var(mb)

(ma − mb)2

]
var(yn) = wn = y2n

[c2bvar(ma) + c2avar(mb) +m2
avar(cb) +m2

bvar(ca)
(macb − camb)2

+
var(ma) + var(mb)

(ma − mb)2
]

(2)
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Fig. 2. The geometric model of the rectangle

By using a normal distribution and the variance provided by (2), the probabil-
ity of a transformG which maps the square onto the endpoints (x0, y0) . . . (x3, y3)
is given by

P (G|M∗,L) = 1
2π

√∏
i viwi

exp
[
−

∑
i

(xi − xi)2/2vi + (yi − yi)
2/2wi

]
(3)

Here M∗ represents the match found between image and relational model, and
L represents the edge pixels involved in the lines which make up the model.

4 Enhancing Contours

Our final aim is to iteratively re-compute the edge probability maps, image
segments and relational mappings to find a consistent description of the model
and scene. To achieve this aim, we exploit a relaxation method[16] which makes
successive approximations to the MAP estimate of the features and labels.

We begin by expanding over the set of possible transformations G and fac-
torising the probability model:

P (F,M∗,L) =
∑
G

P (F,M∗,L) = P (F )
∑
G

P (G|M∗,L, F )P (M∗,L|F )

Here F is the field of edge responses. The tranform probability may be con-
sidered to be conditionally independent of the feature space given a particular
match and set of line segments, i.e. P (G|M∗,L, F ) = P (G|M∗,L). The quantity
P (M∗,L|F ) is precisely that which we optimise to find the best match between
relational model and image. Our iterative relaxation algorithm is then specified
by

P (n+1)(F ) = P (n)(F )P (M∗,L|F )
∑
G

P (G|M∗,L) (4)

5 Results

In the first set of experiments, we apply the technique to a synthetic image of
a quadrilateral. The image is shown in figure 3. As it stands, this is a trivial
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Fig. 3. Left: Quadrilateral image, Right: Result of edge detection

problem since the initial edge configuration is very good. The results of edge
detection are also shown in figure 3. In order to provide a challenging task, we
have added various levels of Gaussian noise to the image in figure 3. The new
images have signal to noise ratios of 2, 1, 0.5 and 0.25 respectively. The final
image therefore has noise with standard deviation four times the size of the edge
step. Figure 4 shows the results of applying our method; the image in the left
hand column is the original image; the central column is the edge detection result,
and the image in the right hand column represents the final edge configuration
after application of the algorithm. The method is able to accurately reconstruct
the correct edge configuration even under very high levels of noise.

Figure 5 shows these results quantitatively. Here we have used a pixel based
measure of accuracy based on average minimum distance. If P = {p0, p1, . . . , pm}
is the set of pixels in a perfect edge configuration, and Q = {q0, q1, . . . , qn}
is the set of pixels in the test image, the forward error ef is given by ef =
1
m

∑m
i=0minj d(pi, qj), where d(.) is the Euclidean distance. This error measures

both misplaced and missing structure in the test image. The backwards error is
given by eb = 1

n

∑n
i=0minj d(qi, pj) and measures misplaced and extra spurious

structure. By combining these measures in e = (ef + eb)/2, we obtain a measure
which reflects misplaced, spurious and missing edge structure. When e = 0, the
configurations are identical. The signal level is 16. In this simple case, our model
can accurately reconstruct the edge configuration even in the presence of extreme
noise because of the global model of structure.

In the second set of experiments, we add a set of background non-quadrila-
teral distractors. These distractors both disrupt the initial edge configuration
and test the algorithms ability to discard irrelevant structure. The initial image
is shown in figure 6. Again we add Gaussian noise to the image and attempt to
reconstruct the original rectangle. The results are shown in figure 6(right).In this
case, although the original configurations are worse, the final result is superior
because the background contrast is increased by the distractors.

In the third set of experiments, we apply the quadrilateral model to an scene
from an office desk. There are a number of prominent quadrilaterals present in
the image, and a considerable amount of clutter, including some non-rectangular
objects and background texture. Figure 7 shows the original image and the
resulting edge strengths and edge segmentation.
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Fig. 4. Left column: original image; Central column: original edge detection results;
Right column: final edge configuration

The final image is the result from the tenth and final iteration. Both the
background and non-rectangular objects have been eliminated. However, some
spurious linear structures remain, resulting from the participation of some edges
in multiple quadrilaterals.

This experiment reveals some important points about the method and the
quadrilateral model. Firstly, gaps in the edges can only be closed where some
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Fig. 5. Performance of method on simple rectangle image
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Fig. 6. Left: original distractors image; Right: Performance of method at different noise
levels

Fig. 7. The original image (left), the initial edge field (centre) and the final edge field
(right)

evidence exists in the responses of the edge detector. For example, where the
pen crosses the notepad, no evidence for the notepad edge exists. Secondly,
the quadrilateral model is limited in the sense that the four edges may appear
anywhere in the image, and so if one edge is missing, it becomes impossible
to reconstruct the model. We intend to address these issues in future work by
constructing a more sophisticated model of feature probability and employing
more sophisticated perceptual groups.
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Abstract. Automatic classification of shots extracted by news video plays an 
important role in the context of news video segmentation. In spite of the efforts 
of the researchers involved in this field, a definite solution for the shot classifi-
cation problem does not yet exist. Moreover, the authors of each novel algo-
rithm usually provide results supporting the claim that their method performs 
well on a set of news videos, without facing the problem of making a wide 
comparison with other algorithms in terms of key performance indexes. 
In this paper, we present an experimental comparison of three shot classifica-
tion algorithms. We considered only techniques that do not require the explicit 
definition of a model of the specific news video. In such a way the obtained 
performance should be quite independent of the news program’s style. For test-
ing the selected algorithms, we built up a database significantly wider than 
those typically used in the field. 

1   Introduction 

In order to allow a faster and more appealing use of news video databases, indexing 
and retrieval are essential issues to be addressed. A first step towards an effective 
indexing is the segmentation of a news video. It implies, at a first stage, the partition 
of the video into sequences of frames, called shots, obtained by detecting transitions 
that are typically associated to camera changes. Once the shots have been individu-
ated, they can be classified on the basis of their content. Two different classes are 
typically considered, anchor shot and news report shot classes. Then, a news video 
can be segmented into stories; each story is obtained by linking a given anchor shot 
together with all successive news report shots, until another anchor shot occurs. 

In this paper, we address the shot classification problem. In the literature, most of 
the approaches that exploit the video source information use a model matching strat-
egy [1]. For each shot, a distinctive frame, called key-frame, is extracted. Then, it is 
matched against a set of predefined models of an anchor shot frame in order to clas-
sify it. This approach is strongly dependent on the model of the specific video pro-
gram. This is a severe limitation, since it is difficult to construct all the possible mod-
els for the different news videos and the style of a particular news program can 
change over the time. 
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Other authors use a face detection approach to identify anchor shots [2]. However, 
face detection in video is generally too time-consuming for practical application. A 
different approach based on the frame statistics is presented in [3], where the authors 
use a Hidden Markov model (HMM) to classify frames. The features used are the 
difference image between frames, the average frame color and also the audio signal. 
In this case the HMM parameters are evaluated during a training phase. 

Finally, some authors [4,5,6] propose methods that are substantially unsupervised 
and do not require the explicit definition of an anchor shot model. In particular, in [4] 
a graph-theoretical cluster analysis method is employed. As pointed out by the au-
thors, this approach fails when identical or very similar news-report shots appear in 
different stories of the same news program. In [5] shot classification is firstly per-
formed on the basis of a statistical approach and then refined by considering motion 
features. Here the authors assume that in an anchor shot both the camera and the an-
chor are almost motionless. In our opinion, however, this hypothesis is not completely 
acceptable. In [6] a template-based method is proposed. The template is found in an 
unsupervised way and it does not depend on a particular threshold. However, the 
authors assume that different anchor shot models share the same background. This is 
not true for most news stations: because of different camera angles, different models 
can have different backgrounds. 

From the previous analysis it appears evident that a definite solution for the shot 
classification problem does not yet exist, since it is always possible to find a case in 
which the assumptions of a given technique fail. Moreover, the authors of each algo-
rithm usually provide results supporting the claim that their method performs well on 
a set of news videos, without facing the problem of making an extensive comparison 
with other algorithms in terms of key performance indices. 

Starting from these considerations, in this paper we present an experimental com-
parison of three shot classification algorithms among those presented so far in the 
literature. We have chosen to consider only techniques that do not require the explicit 
definition of a specific model of the anchorperson shot. In such a way the obtained 
performance should be quite independent of the specific style of the news program. 

In order to test the selected algorithms in a significant way, we built-up a database 
that is twice the biggest database reported until now in the scientific literature [4]. 
Namely, we used a news video database consisting of about 10 hours with 464 anchor 
shots and 5705 news report shots. 

The organization of the paper is as follows: in section 2 the three selected shot 
classification algorithms are presented. In section 3 the database used is reported 
together with the tests carried out in order to assess the performance of the selected 
algorithms. Finally, in section 4, some conclusions are drawn. 

2   The Selected Algorithms 

Among all the techniques described in the introduction, we choose to consider for 
comparison only those that neither use a model-based approach nor require a specific 
training phase. This choice is justified by the consideration that the variety of existing 
news programs in the world is so high to make it practically infeasible building a 
good general model. Even when limiting the attention to a single broadcaster, as it 
could be reasonable in a real application, the news model can repeatedly change over 
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the time. In this case, a model-based approach could provide good results only for a 
small period of time, while requiring a continuous re-modeling to guarantee accept-
able performance for a longer period. For the same reason, methods requiring a spe-
cific training phase are not very suitable for the application at hand, given that it 
would be necessary re-training the system for each change in the news style. 

In particular, on the basis of the best results available in the literature, we consid-
ered the shot classification algorithms proposed by Bertini et al. in [5], Gao and Tang 
in [4] and Hanjalic et al. in [6]. Hereinafter, for the sake of simplicity, we will refer to 
these algorithms with the terms BER, GAO and HAN, according to the first three 
letters of the first author. 

In the following we will briefly recall the rationale inspiring these algorithms. 

2.1   BER Algorithm  

The shot classification is here performed on the basis of a statistical approach and of 
the motion features of the anchor shots, without requiring any model [5]. The statisti-
cal approach is based on the consideration that anchor shots are repeated at variable 
length throughout the video. The obtained classification is successively refined by 
considering also motion features: according to the authors, it is reasonable to assume 
that in an anchor shot both the camera and the anchorperson are almost motionless. 
More in details, the first step of the process is based on the computation, for each 
video shot Sk, of the so-called shot lifetime L(Sk). It measures the shortest temporal 
interval that includes all the occurrences of shots with similar visual content within 
the video and is used to perform a first shot classification. In this case, for each video 
shot the first frame is chosen as key-frame. Having defined a suitable similarity 
measure between two frames, the similarity between two shots is evaluated as the 
similarity between their key-frames. By indicating with ti the value of a time variable 
corresponding to the occurrence of the key-frame of the shot Si, we can build, for each 
shot Sk, the set Tk . It contains all the values ti relative to the shots Si whose similarity 

with the shot Sk is lower than a suitable threshold τS; in other words, it contains the 
time occurrences of all the shots similar to Sk. The shot lifetime L(Sk) can be then 
defined as the difference between the last and the first value of ti 

Since anchor shots occur repeatedly through the video, the shot classification is 
performed by attributing to the anchor shot class all the shots Sk having the value of 

L(Sk) greater than a suitably chosen threshold τl. The value of τl can be determined 
according to the statistics of the specific video database. In [5] it is fixed to 4.5 s. 

This classification is then refined by computing an index QS that measures the 
quantity of motion for each candidate anchorperson shot. This index QS is calculated 
as the sum of all the frame-to-frame difference between the key-frame and all the 
subsequent frames in the shot. So, only those shots whose QS value does not exceed a 

threshold τQ are definitely classified as anchor shots. 

Note that for this method three thresholds need to be evaluated: S, l, and Q. 
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2.2   GAO Algorithm 

In this case [4], video shots are classified by using an algorithm based on 
graph-theoretical cluster (GTC) analysis. More in details, the authors propose an an-
chor shot detection scheme composed of four steps: short shot filtering, key-frame 
extraction, GTC analysis and post-processing. 

In general, an anchorperson shot should last for more than 2 s, since this shot 
should involve at least one sentence pronounced by the reporter. Therefore, if a shot 
lasts less than 2 s it is considered as a news-report shot. Otherwise, it is further ana-
lyzed through later steps. The second step is the key-frame extraction: the authors pro-
pose that the middle frame is taken as the key-frame. These key-frames are the input to 
the GTC analysis module. It considers them as vertices in a feature space and then 
constructs the minimum spanning tree (MST) on these vertices. To do that, a distance 
between key-frames, based on the color histograms, is defined. It is used for weight-
ing each edge connecting two vertices. Successively, by removing from the MST all 
the edges with weights greater than a threshold γ, a forest containing a certain number 
of subtrees (clusters) is obtained. In this way, the GTC method automatically groups 
similar vertices (i.e., key-frames) into clusters.  

The key-frames composing a cluster are classified as potential anchorperson 
frames if the size of the cluster is greater or equal to 2. Starting from this set of poten-
tial anchorperson frames, the last step of the proposed detection scheme operates a further 
filtering. In fact, in some situations, the key-frames in a cluster may have similar color 
histograms but different content. To detect this situation, a spatial difference metric (SDM) 
between two key-frames is proposed. If a cluster has an average SDM higher than a 
threshold λ, the whole cluster is removed from the anchorperson frame list. 

It is worth noticing that, in this case, two thresholds, γ for the GTC algorithm and λ 
for the post-processing step, need to be specified in advance. 

2.3   HAN Algorithm 

In [6] a template-based method is proposed. It is based on the assumption that an 
anchor person shot is the only shot that has multiple match of most of its visual con-
tent along the whole video, and consists of two steps: a unsupervised procedure for 
finding the template shots and its use to detect all the anchor person shots in the video 
sequence by applying an adaptive thresholding. 

The authors assume that the first anchor shot in a news video appears within the 
first N shots (in the paper N is fixed to 5). A dissimilarity measure is defined between 
two shot, as it will be specified later. Each shot Sk with k ∈ [1,N] is then matched with 
all the other shots, obtaining a set of dissimilarity values for each Sk. For each Sk the P 
best matches (i.e., the lowest values) out of its set of dissimilarities are averaged to 
compute the overall matching value of the shot Sk. The shot with the lowest overall 
matching value is assumed to be an anchor shot and is used as template. 

The dissimilarity measure between two shots is defined as follows: each shot is 
represented by means of two frames, one close to the beginning of the shot and the 
other close to the end of the shot. These frames are merged into the so-called shot 
image. Each shot image is divided into blocks of M1×M2 pixels and a distance in the 
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L*u*v color space between two blocks belonging to different shot images is defined. 
The dissimilarity measure between two shot images Si and Sj, is then defined as the 
minimum value among all the average distances obtainable by considering each pos-
sible matching of blocks bk belonging to Si and blocks bh belonging to Sj. In the paper, 
for minimizing the computational effort of the exact evaluation of this measure, only 
the C blocks more similar each other are considered. 

Once the anchor shot template has been found, all the remaining shots are checked 
for individuating the other anchor shots. In particular, all the shots whose similarity 
with the template shot is lower than an adaptive threshold M are detected as anchor 
shots. Such threshold is proportional to a suitably chosen parameter w. 

It is worth noticing that the values of the parameters M1, M2, P, C and w need to 
be fixed for this algorithm. In [6], for two video sequences with key-frames of size 
165x144 and 180x144 respectively, M1 and M2 were both fixed to 8, while P was set 
to 3, w to 3.0 and C was considered as the 70% of the total number of blocks. 

3   Experimental Results 

Some efforts have been spent in the recent past by other researchers in building video 
databases for benchmarking purposes; in particular in [7] a database was built in order 
to characterize the performance of shot change detection algorithm. This database, 
however, is not adequate for our aims, since it is made up not only of news videos but 
also of sport events and sitcom videos, and the duration of news videos is only 20 
minutes. 

So, we decided to build-up a new database. The acquisition was performed by 
means of the digital satellite decoder emme esse 6000pvr. It has an internal hard disk 
that allowed us to record in the DVB MPEG-2 format. Then, the videos were trans-
ferred on a PC, so preserving the broadcasting quality. We encoded the videos in the 
MPEG-1 format using the TMPGEnc encoder (ver. 2.01). The parameters used to 
encode the videos were selected taking into account the storage requisites, without 
decreasing the performance of the algorithms with respect to those obtainable with the 
original full-quality videos. In particular, we selected four videos from our database 
for analyzing the dependence of the algorithms’ performance on both the frame size 
and the bit-rate. Two frame sizes have been considered: 704x576 and 352x288. We 
verified that the information loss due to the 352x288 frame size does not allow the 
algorithms to perform the same as on the full-quality videos. On the other hand, if the 
video is coded with at least 1500 kbit/s and the frame size is 704x576, all the algo-
rithms perform as well as on the original videos. In order to keep a tolerance margin, 
we decided to encode the videos with approximately 2000 kbit/s. 

To reproduce as much as possible the variability of the phenomenon under study, 
different news video editions of a single broadcaster should be considered, as well as 
news videos of different broadcasters. However, while in the first case the different 
editions are usually less than ten, in the latter the number of different models is sig-
nificantly large. As a consequence, we preferred to test our system on a database 
composed by all the different news videos captured from a single broadcaster, rather 
than perform tests with only few samples belonging to a large number of different 
broadcasters. Even if some archiving companies work with large quantities of videos 
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from different sources, this approach fits the most realistic use case for the proposed 
system. A typical broadcaster, in fact, should be interested to employ such a system 
for analyzing all the editions of its news videos. 

The database used in this paper is composed by more than thirty news videos from 
the main Italian public TV-network (namely, RAI 1). As it can be easily noted from 
Table 1 its size is large; this is more evident if it is compared with the databases used 
in the papers of BER, GAO and HAN. 

Table 1. Composition of the databases used in this paper and in [4], [5] and [6]. 

Paper Total length 
(hh:mm:ss) 

Number 
of videos 

Number of 
Broadcasters 

Number of  
Anchor/News-report shots 

This 09:24:19 34 1 464 / 5705 
[4] 05:05:17 14 2 253 / 3654 
[5] 02:41:00 12 6   66 /   665 
[6] 00:37:00   2 -   22 /    -- 

 
As a first step for the assessment of the performance of the three anchor shot clas-

sification algorithms, we calculated their Precision-Recall curves [7]. Each point of 
these curves represents the performance in terms of Precision and Recall obtained by 
the algorithm using a specified set of thresholds. Each considered technique is charac-
terized by several thresholds; hence, for each technique a family of Precision-Recall 
curves can be drawn. Each curve is obtained by varying the value of a threshold, hold-
ing fixed the remaining ones. In particular, in Figures 1-3 the operating curves for 
GAO, BER and HAN, respectively, are shown. 

The operating curves for GAO were obtained by varying both the thresholds λ (in 
the range 1500-3500 with step 500) and γ (in the range 20000-45000 with step 5000). 
Differently, the curves for BER were obtained by varying the value of τS in the range 

25000-50000 with step 5000 and τQ in the range 25-150 with step 25, while holding 

fixed τl = 4.5. This threshold, in fact, does not significantly influence the overall algo-
rithm performance. Finally, there is a single operating curve for HAN. It is obtained 
by varying the value of w (in the range 1.5-4.0 with step 0.1), while holding fixed the 
other parameters. We used the same values suggested by the authors for N, P and C, 
while M1 and M2 were both fixed to 32, so as to have the same number of blocks per 
shot image of the original paper. In this case it is founded that variations in the values 
of P and C do not implies variations on the operating curve for HAO. 

So, a first result is that for BER and HAN only a subset of the parameters are really 
significant. In fact, it is possible to allow some parameters to vary within wide ranges 
of values without significant changes in the obtainable performance. However, the 
families of curves shown in Figs. 1-3 are not suitable for a comparison of the three 
algorithms. Depending on the chosen operating point, it is possible to detect a differ-
ent curve which allows maximizing the performance. This also implies that a unique 
set of values that maximizes the performance of each algorithm does not exist, except 
that for the HAN algorithm. Hence, the comparison of the three algorithms has been 
carried out on the basis of the envelope of the Precision-Recall curves. For each algo-
rithm the points of the envelope were obtained by considering for each value of the 
Precision the values of the parameters that maximized the Recall. 
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Fig. 1. Operating curves for GAO. Each curve is obtained by varying the value of λ while 
holding fixed the value of γ. The dashed arrow indicates the direction of increasing values of λ. 
The six curves accounts for six different values of the threshold γ. 

 

Fig. 2. Operating curves for BER. Each curve is obtained by varying the value of τS while 

fixing the other parameters’ values. The dashed arrow indicates the direction of increasing 
values of τS. The eight curves are relative to eight different values of the threshold τQ. 

 

Fig. 3. Operating curve for HAN. It is obtained by varying the value of w while holding fixed 
the other parameters’ values. The dashed arrow indicates the direction of increasing values 
of w.  
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In Figure 4 the envelopes of the operating curves of the three algorithms are re-
ported. Curves in Figure 4 clearly show that HAN performs much worse than BER 
and GAO for all the operating conditions. Differently, the behaviour exhibited by 
both the other two algorithms is characterized by a high and stable value of the Recall 
(above 0.80) for almost all the values of the Precision. Furthermore, it is interesting to 
note that the GAO algorithm is preferable if we are looking for high Recall values 
(i.e., higher than 0.90). On the contrary, if it is mandatory to have very high Precision 
values (i.e., almost no false alarms), the BER algorithm must be chosen. 

 

 

Fig. 4. Envelopes of the operating curves for the three considered algorithms. 

In order to provide a more global comparison among the three different algorithms 
and for comparing the results obtained on our database with those achieved by the 
algorithms in their original papers, a unique figure of merit, as the parameter F de-
fined in [8], can be used. It combines Precision and Recall as in the following: 

F = (2 * Precision * Recall) / (Precision + Recall). 
For choosing the operating conditions of BER and GAO algorithms to be used on 

the whole database, a preliminary tuning phase was required. In particular, we chose 
the optimal values of the thresholds by means of an empirical optimization, i.e., by 
maximizing F over a predefined set of videos. In this set we included the same videos 
already used for setting up the MPEG-1 coding parameters for the whole database. 
These videos were not included in the successive tests. 

Table 2 reports the global performance of each algorithm; a first result is the dis-
crepancy between the performance reported in Table 2 and the results presented in the 
original papers (reported for the sake of comparison in parenthesis). All the algo-
rithms perform worse on our database: this is particularly true for the HAN algorithm. 
Moreover, GAO algorithm performs better in terms of Precision, while in [4] its be-
havior was the opposite one. Analogously, BER algorithm exhibits on our database a 
Recall value higher than the Precision one, differently from the behavior described in 
[5]. Since the anchor shots/news-report shots ratio of our database is quite similar to 
those of the databases used in the original papers (excluding HAN, where the ratio is 
not specified), such discordances are mainly due to the different size of the database 
used for the testing the algorithms in this paper. This confirms the importance of test-
ing algorithms on a large and significant database. Finally, the results reported in 
Table 2 point out that, even if BER algorithm outperforms the remaining two in terms 
of Precision and F, GAO exhibits the best value of the Recall. 
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Table 2. The performance of the three considered algorithm in terms of Precision, Recall and 
F. For the sake of comparison, the results obtained in the original papers are reported in paren-
thesis. 

 Recall Precision F 
GAO 0.929 (0.973) 0.842 (0.976) 0.881 (0.974) 
BER 0.816 (0.970) 0.987 (0.955) 0.892 (0.962) 
HAN 0.623 (1.000) 0.692 (0.917) 0.655 (0.957) 

4   Conclusions 

In this paper an experimental comparison of three unsupervised algorithms for anchor 
shot classification was presented. The comparison has been carried out on a news 
video database consisting of about 10 hours with 464 anchor shots and 5705 news 
report shots. As it could be expected, it does not exist an algorithm that is definitively 
better than the others. While HAN algorithm performs always the worst, BER algo-
rithm typically outperforms the remaining two in terms of Precision, while GAO 
exhibits in general higher values of Recall. However, the choice of the most suitable 
algorithm at hand strongly depends on the selected operating conditions. 

Future steps of this activity will involve the comparison of other anchor shot detec-
tion algorithms. We are also planning to investigate in more details how the similarity 
measure between key-frames influences the algorithms’ performance. To this aim, 
other similarity measures will be also considered. 
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Abstract. This paper proposes using the semivariogram function, to
help characterize lung nodules as malignant or benign in computerized
tomography images.
The tests described in this paper were carried out using a sample of
36 nodules, 29 benign and 7 malignant. Fisher’s Linear Discriminant
Analysis (FLDA), Multilayer Perceptron (MLP) and Support Vector
Machine (SVM) were performed to evaluate the ability of these features
to predict the classification for each nodule. A leave-one-out procedure
was performed to provide a less biased estimate of the classifiers
performance. All analyzed classifers have value area under ROC curve
above 0.9, which means that the results have excellent accuracy. The
preliminary results of this approach are very promising in characterizing
nodules using semivariogram function.

1 Introduction

Lung cancer is known as one of the cancers with shortest survival after
diagnosis [1]. Therefore, the sooner it is detected the larger the patient’s chance
of cure. On the other hand, the more information physicians have available, the
more precise the diagnosis will be.

Lung nodules have a structure of very complex tissue. There can be nodules
with tissue alterations almost imperceptible to the human eye and other
presenting very noticeable alterations. Tissue variation and, sometimes, the
not apparent development of the nodule’s shape, make diagnosis very difficult.
Pattern variations in a nodule’s texture (distribution of attenuation coefficients)
provide indications about its malignancy or benignity. Nodule calcifications in
the shape of a popcorn, laminate concentric, diffuse or central will probably be
benign. However, if the nodule does not have calcifications and presents necrosis
areas, it is likely to be malignant [1]. The top row in Figure 1 shows the texture
for two benign (a and b) and two malignant (c and d) nodules.

A. Fred et al. (Eds.): SSPR&SPR 2004, LNCS 3138, pp. 242–250, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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Fig. 1. Examples of benign lung nodules and malignant lung nodules.

This work intends to investigate the semivariogram function (a geostatistical
function), applied to CT images of three-dimensional nodules and to determine
whether they are effective in the diagnosis of lung nodules. The nodule’s
malignancy or benignity is determined by applying Fisher’s Linear Discriminant
Analysis, Multilayer Perceptron and Support Vector Machine. The validation of
the classifiers is done by means of the leave-one-out technique. The analysis and
evaluation of tests are done using the area under the ROC curve.

2 Methods

2.1 Image Acquisition

The images were acquired with a Helical GE Pro Speed tomography under the
following conditions: tube voltage 120 kVp, tube current 100 mA, image size
512×512 pixels, voxel size 0.67× 0.67× 1.0 mm. The images were quantized in
12 bits and stored in the DICOM format [2].

2.2 3D Extraction of Lung Nodules

In most cases, lung nodules are easy to be visually detected by physicians, since
their shape and location are different from other lung structures. However, the
nodule’s voxel density is similar to that of other structures, such as blood vessels,
which makes automatic computer detection difficult. This happens especially
when a nodule is adjacent to the pleura. For these reasons, we have used the 3D
region-growing algorithm with voxel aggregation [3], which provides physicians
greater interactivity and control over the segmentation and determination of
required parameters (thresholds, initial and final slice, and seed).

Two other resources help and provide greater control in the segmentation
procedure: the barrier and the eraser. The barrier is a cylinder placed around
the nodule by the user with the purpose of restricting the region of interest
and stopping the segmentation by voxel aggregation from invading other lung
structures. The eraser is a resource of the system that allows physicians to
erase undesired structures, either before or after segmentation, in order to avoid
and correct segmentation errors [4]. The bottom row in Figure 1 shows the
3D reconstruction of the nodules in the top row and exemplifies the nodule
segmentation.
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2.3 Semivariogram Function

Semivariance is a measure of the degree of spatial dependence between samples.
The magnitude of the semivariance between points depends on the distance
between the points. A smaller distance yields a smaller semivariance and a
larger distance results in a larger semivariance. The plot of the semivariances
as a function of distance from a point is referred to as a semivariogram.
The semivariogram function summarizes the strength of associations between
responses as a function of distance, and possibly direction [5].

A semivariogram has three main features: its sill, range, and nugget
(Figure 2). The sill is the ordinate value at which the semivariogram levels off,
that is, its asymptotic value; the range is the distance at which this leveling off
occurs, that is, the spatial extent of the structure in the data; and the nugget is
the semivariance at a distance 0.0, that is, the intercept. A nonzero nugget can
imply either intrinsic variability in the data (the component typically ascribed
to “sampling error”), or it might indicate that the sampling was conducted at
an inappropriate spatial scale, that is, there is considerable variability at scales
smaller than the smallest between-point distance.

Fig. 2. Semivariogram and its main features: range, sill, and nugget.

The semivariogram is defined by

γ(h) =
1

2N(h)

N(h)∑
i=1

(xi − yi)2 (1)

where h is the lag (vector) distance between the head value (target voxel), yi,
and the tail value (source voxel), xi, and N(h) is the number of pairs at lag h.

When computing directional experimental semivariograms in 3D, two angles
are used to define the direction vector: azimuth and dip. To define the rotation of
a vector, we assume the unrotated vector starts in the +y direction. The azimuth
angle is the first angle of rotation and it represents a clockwise rotation in the
horizontal plane starting from the +y axis. The dip angle is the second angle of
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rotation and it represents a downward rotation of the vector from the horizontal
plane. Other parameters used for semivariogram calculations as lag space, lag
tolerance, direction, angular tolerance, maximum bandwidth are exemplified in
the Figure 3.

Fig. 3. Parameters used for semivariogram calculations.

2.4 Classification Algorithms

A wide variety of approaches has been taken towards the classification task.
Three main historical strands of research can be identified [6]: statistical, neural
network and machine learning. This section give an overview of Fisher’s Linear
Discriminant Analysis, Multilayer Perceptron and Support Vector Machine
based on paradigms cited above.

Fisher’s Linear Discriminant Analysis - FLDA: Linear discrimination,
as the name suggests, looks for linear combinations of the input variables that
can provide an adequate separation for the given classes. Rather than look for a
particular parametric form of distribution, LDA uses an empirical approach to
define linear decision planes in the attribute space i.e. it models a surface. The
discriminant functions used by LDA are built up as a linear combination of the
variables that seek to somehow maximize the differences between the classes [7]:

y = β1x1 + β2x2 + · · ·+ βnxn = β
′
x (2)

The problem then reduces to finding a suitable vector β. There are several
popular variations of this idea, one of the most successful being the Fisher Linear
Discriminant Rule. Fisher’s Rule is considered a “sensible” classification, in the
sense that it is intuitively appealing. It makes use of the fact that distributions
that have a greater variance between their classes than within each class should
be easier to separate. Therefore, it searches for a linear function in the attribute
space that maximizes the ratio of the between-group sum-of-squares (B) to the
within-group sum-of-squares (W ). This can be achieved by maximizing the ratio
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β′Bβ

β′Wβ
(3)

and it turns out that the vector that maximizes this ratio, β, is the eigenvector
corresponding to the largest eigenvalue of W−1B i.e. the linear discriminant
function y is equivalent to the first canonical variate. Hence the discriminant
rule can be written as:

x ∈ i if
∣∣βTx − βTui

∣∣ <
∣∣βTx − βTuj

∣∣ , for all j �= i (4)

whereW =
∑

niSi and B =
∑

ni(xi − x)(xi − x)
′
, and ni is class i sample size,

Si is class i covariance matrix, xi is the class i mean sample value and x is the
population mean.

Multilayer Perceptron: The Multilayer Perceptron - MLP, a feed-forward
back-propagation network, is the most frequently use neural network technique
in pattern recognition [8], [9]. Briefly, MLPs are supervised learning classifiers
that consist of an input layer, an output layer, and one or more hidden layers
that extract useful information during learning and assign modifiable weighting
coefficients to components of the input layers. In the first (forward) pass, weights
assigned to the input units and the nodes in the hidden layers and between the
nodes in the hidden layer and the output, determine the output. The output
is compared with the target output. An error signal is back propagated and
the connection weights are adjusted correspondingly. During training, MLPs
construct a multidimensional space, defined by the activation of the hidden
nodes, so that the two classes (benign and malignant nodules) are as separable
as possible. The separating surface adapts to the data.

Support Vector Machine: The Support Vector Machine (SVM) introduced
by V. Vapnik in 1995 is a method to estimate the function classifying the data
into two classes [10], [11]. The basic idea of SVM is to construct a hyperplane as
the decision surface in such a way that the margin of separation between positive
and negative examples is maximized. The SVM term come from the fact that
the points in the training set which are closest to the decision surface are called
support vectors. SVM achieves this by the structural risk minimization principle
that is based on the fact that the error rate of a learning machine on the test
data is bounded by the sum of the training-error rate and a term that depends
on the Vapnik-Chervonenkis (VC) dimension.

The process starts with a training set of points xi ∈ �n,i = 1, 2, · · · , l where
each point xi belongs to one of two classes identified by the label yi ∈ {−1, 1}.
The goal of maximum margin classification is to separate the two classes by
a hyperplane such that the distance to the support vectors is maximized. The
construction can be thinked as follow: each point x in the input space is mapped
to a point z = Φ(x) of a higher dimensional space, called the feature space, where
the data are linearly separated by a hyperplane. The nature of data determines
how the method proceeds. There is data that are linearly separable, nonlinearly
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separable and with impossible separation. This last case be still tracted by the
SVM. The key property in this construction is that we can write our decision
function using a kernel function K(x, y) which is given by the function Φ(x)
that map the input space into the feature space. Such decision surface has the
equation:

f(x) =
l∑

i=1

αiyiK(x, xi) + b (5)

where K(x, xi) = Φ(x).Φ(xi), and the coefficients αi and the b are the solutions
of a convex quadratic programming problem [10], namely

min
w,b,ξ

1
2w

T · w + C
l∑

i=1

ξi

subject to yi
[
wT · φ (xi) + b

]
≥ 1− ξi

ξi ≥ 0.

(6)

where C > 0 is a parameter to be chosen by the user, which corresponds to
the strength of the penality errors and the ξi’s are slack variables that penalize
training errors.

Classification of a new data point x is performed by computing the sign of the
right side of Equation 5. An important family of kernel functions is the Radial
Basis Function, more commonly used for pattern recognition problems, which
has been used in this paper, and is defined by:

K(x, y) = e−γ‖x−y‖
2

(7)

where γ > 0 is a parameter that also is defined by the user.

2.5 Validation and Evaluation of the Classification Methods

In order to validate the classificatory power of the discriminant function,
the leave-one-out technique [12] was employed. Through this technique, the
candidate nodules from 35 cases in our database were used to train the classifier;
the trained classifier was then applied to the candidate nodules in the remaining
case. This technique was repeated until all 36 cases in our database had been
the “remaining” case.

In order to evaluate the ability of the classifier to differentiate benign
from malignant nodules, the area (AUC) under the ROC (Receiver Operation
Characteristic) [13] curve was used. In other words, the ROC curve describes
the ability of the classifiers to correctly differentiate the set of lung nodule
candidates into two classes, based on the true-positive fraction (sensitivity) and
false-positive fraction (1-specificity).

Sensitivity is defined by TP/(TP+FN), specificity is defined by TN/(TN+
FP ), and accuracy is defined by (TP + TN)/(TP + TN + FP + FN), where
TN is true-negative, FN is false-negative, FP is false-positive, and TP is true-
positive.
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3 Results

The tests described in this paper were carried out using a sample of 36 nodules, 29
benign and 7 malignant. It is important to note that the nodules were diagnosed
by physicians and that the diagnosis was confirmed by means of surgery or
based on their evolution. Such process takes about two years, which explains the
reduced size of our sample.

There were no specific criteria to select the nodules. The sample included
nodules with varied sizes and shapes, with homogeneous and heterogeneous
characteristics, and in initial and advanced stages of development.

SPSS (Statistical Package for the Social Sciences) [14], LIBSVM [15] and
NeuralPower [16] were used to training and classification of lung nodules to
FLDA, MLP and SVM, respectively. ROCKIT [17] software was used to compute
and compare the area under the ROC curve.

Stepwise discriminant analysis [7] was used to select the best variables to
differentiate between groups. These measures were used in the FLDA, MLP and
SVM classifiers.

In this study, analytical models for the semivariogram were not used; instead,
empirical semivariograms were employed. The measures (variables) extracted,
considered as texture signatures, were obtained by computing the semivariogram
function for a set of directions: dip (Z) 0◦,−45◦, and −90◦; for each dip the
azimuth (X and Y) is 0◦, 45◦, 90◦, and 135◦. The adopted lag separation distance
(h) was 1, tolerance angle of ±22.5◦, and tolerance lag of ±0.45. The maximum
number of lags depends on the dimensions of each image (volume). We have
selected the first three and the last lags (h) in a specific direction for each
function. These lags were selected because we were interested in verifying slight
variations in small distance, but without rejecting the information of larger
distances. This way, we had 48 measures (3 dips × 4 azimuths × 4 lags) for
semivariogram function. The GSLIB [18] software was used to perform these
calculations.

We use the following parameters in the MLP classifier: one hidden layer with
four units, hiperbolic tangent as the activation function, the value of 0.15 for
the learning ratio, the value of 0.75 for the momentum. These parameters were
determined through empirical tests.

In the classification via SVM a proposed procedure by the authors of
LIBSVM [15] was used to obtain the best constants C and γ with a process
of 36-fold cross-validation. In our case, C = 2048.0 and γ = 0.03125.

Figure 4 shows the application of experimental semivariograms to the
volumes represented by Figures 1(a), (b), (c) and (d). We verify that benign
nodules have an higher sill than malignant nodules, and that the initial slope
is much more accentuated. The graph analysis shows the presence of greater
dispersion in benign nodules than in malignant nodules. Table 1 shows the results
of semivariogram function and studied classifiers. Based on the area of the ROC
curve, we have observed that all classifiers have value AUC above 0.9, which
means results with excellent accuracy [19]. There is not statistically significant
difference among ROC curves of the classifiers.
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Fig. 4. Semivariogram applied to the example in Figure 1.

Table 1. Analysis of FLDA, MLP and SVM classifiers.

Classifiers Specificity Sensitivity Accuracy AUC
% % %

FLDA 86.7 100.0 88.9 0.926 ± 0.071
MLP 93.1 100.0 94.4 0.970 ± 0.046
SVM 100.0 85.7 97.2 0.995 ± 0.019

4 Conclusion

This paper has presented the semivariogram function with the purpose of
characterizing lung nodules as malignant or benign. The measures extracted
from semivariogram function were analyzed and had excellent discriminatory
power, using FLDA, MLP and SVM to classify and the ROC curve to evaluate
the obtained results. Based on these results, we have observed that the number
of nodules studied in our dataset is too small to allow us to reach definitive
conclusions, but preliminary results from this work are very encouraging,
demonstrating the potential for multiple variables used in a pattern classification
approach to discriminate benign from malignant lung nodules. Nevertheless,
there is the need to perform tests with a larger database and more complex
cases in order to obtain a more precise behavior pattern.

Despite the good results obtained only by analyzing the texture, further
information can be obtained by analyzing the geometry. As a future work, we
propose a combination of texture and geometry measures for a more precise and
reliable diagnosis.
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Abstract. This paper deals with the problem of estimating a transmit-
ted string X∗ by processing the corresponding string Y , which is a noisy
version of X∗. We assume that Y contains substitution, insertion and
deletion errors, and that X∗ is an element of a finite (but possibly, large)
dictionary, H . The best estimate X • of X∗, is defined as that element of
H which minimizes the Generalized Levenshtein Distance D(X,Y ) be-
tween X and Y , for all X ∈ H . All existing techniques for computing X •

requires a separate evaluation of the edit distances between Y and every
X ∈ H . In this paper, we show how we can evaluate D(X, Y ) for every
X ∈ H simultaneously, without resorting to any parallel computations.
This is achieved by resorting to the use of an additional data structure
called the Linked List of Prefixes (LLP), which is built “on top of” the
trie representation of the dictionary. The computational advantage (for
a dictionary made from the set of 1023 most common words augmented
by computer-related words) gained is at least 50% and 80% measured
in terms of the time and the number of operations required respectively.
The accuracy forfeited is negligible.

1 Introduction

We consider the traditional problem involved in the syntactic Pattern Recogni-
tion (PR) of strings, namely that of recognizing garbled words (sequences). Let
Y be a misspelled (noisy) string obtained from an unknown word X∗, which is
an element of a finite (but possibly, large) dictionary H , where Y is assumed
to contain Substitution, Insertion and Deletion (SID) errors. Various algorithms
have been proposed to obtain an appropriate estimate X+ of X∗, by processing
the information contained in Y .

Damarreau [3], [13], [19] was probably the first researcher to observe that
most of the errors found in strings were either a single substitution, insertion,
deletion or a reversal (transposition) error. Thus the question of computing the
dissimilarities between strings was reduced to that of comparing them using
these edit transformations. In much of the existing literature, the transposition
operation has been modelled as a sequence of a single insertion and deletion.

A. Fred et al. (Eds.): SSPR&SPR 2004, LNCS 3138, pp. 251–259, 2004.
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The first breakthrough in comparing strings using the three (the SID) edit
transformations was the concept of the Levenshtein metric introduced in coding
theory [11], and its computation. The Levenshtein distance, D(X,Y ), between
two strings, X and Y , is defined as the minimum number of edit operations
required to transform one string to another. Many researchers, among whom are
Wagner and Fisher [23], generalized it by using edit distances which are symbol
dependent, and can be perceived as a metric [3], [19], [20]. The latter distance
goes by many names, but we shall call it the Generalized Levenshtein Distance
(GLD). The GLD has also been studied for parameterized [4],[17] inter-symbol
distances. Wagner and Fisher [23] and others [19] also proposed an efficient algo-
rithm for computing this distance by utilizing the concepts of dynamic program-
ming. This algorithm is optimal for the infinite alphabet case. Various amazingly
similar versions of the algorithm are available in the literature, a review of which
can be found in [3], [19], [20]. Masek and Paterson [12] improved the algorithm
for the finite alphabet case, and Ukkonen [21] designed solutions for cases in-
volving other inter-substring edit operations. Related to these algorithms are the
ones used to compute the Longest Common Subsequences (LCS) of two strings
[3], [8], [19], [20]. String correction using GLD-related criteria has been done
for noisy strings [3], [18], [19], [20], substrings [19], [20], and subsequences [13],
and also for strings in which the dictionaries are treated as grammars [19], [20],
[22]. Besides these, various probabilistic methods have also been studied in the
literature [2], [18]. Indeed, more recently, probabilistic models which attain the
information theoretic bound have also been proposed [15], [16].

All the algorithms proposed earlier for estimating X+, requires the separate
evaluation of the edit distance between Y and every element ofX ∈ H . However,
they do not generally utilize the information it has obtained in the process of
evaluating any one D(Xi, Y ), to compute any other D(Xj , Y ). Suppose Xi and
Xj have the same prefix X(P ) = a1a2...ap. Then, previous algorithms would
compute the distance D(a1a2...ap, Y ) for both of Xi and Xj , and would thus
unnecessarily repeat the same comparisons and minimizations for the substring
a1a2...ap and all its prefixes. Thus, the previous algorithms usually, have many
redundant computations.

The first pioneering attempt to avoid the repetitive computations for a finite
dictionary, was the one which took advantage of this prefix information, as pro-
posed by Kashyap et al. [10]. The authors of [10] proposed a set-based algorithm
which we refer to as Algorithm Prefix-Set-Based, to compute X+ ∈ H , which
minimizes D(X,Y ) for a given Y . In contrast to the previous algorithms, in
Algorithm Prefix-Set-Based, D(X,Y ) was not individually evaluated for every
X ∈ H . Rather, it calculatedD(X,Y ) for allX ∈ H simultaneously, and this was
done by treating the dictionary as one integral unit and by using “dictionary-
based” dynamic programming principles, as explained presently. It thus took
maximum advantage of the information contained in the prefixes of the words of
the dictionary. However, the algorithm in [10] was computationally expensive,
as we shall see presently, because it required set-based operations in its entire
execution.
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In this paper, we shall show how we can get a feasible implementation for
the concepts introduced in [10]. This is achieved by the introduction of a new
data structure called the Linked Lists of Prefixes (LLP), which can be con-
structed when the dictionary is represented using a trie. The LLP is an en-
hanced, but modified, representation of the trie, which can be used to facilitate
the “dictionary-based” dynamic programming calculations. The LLP-based algo-
rithm for the syntactic PR of strings has been rigorously tested. The dictionaries
are subsets of a file consisting of the 1023 most common words augmented by
words used in the computer literature. The algorithm was tested by recognizing
noisy strings generated using the model discussed in [15]. Numerous experiments
were done using these noisy strings to compare the accuracy, the time and the
number of computations required by the LLP-based enhanced method, and the
sequential current-day algorithms. The results demonstrate that by forfeiting a
negligible PR accuracy, we can often reduce the time and the number of opera-
tions by about 50% and 80% respectively.

In terms of notation, A is a finite alphabet, H is a finite (but possibly
large) dictionary, and μ is the null string, distinct from λ, the null symbol.
The left derivative of order one of any string Z = z1z2 . . . zk is the string
Zp = z1z2 . . . zk−1. Zg, the left derivative of order two of Z, is the left derivative
of order one of Zp, and so on. Also, in the interest of brevity, the pertinent results
are merely cited here. Their details can be found in [14].

2 Individual and Dictionary-Based Computations

In string-processing applications, the distance metrics employed traditionally
quantify D(X,Y ), the minimum cost of transforming one string , X , into the
other. Y . This distance is intricately related to the costs associated, typically
with the individual edit operations, the SID operations. As mentioned earlier,
these inter-symbol distances can be of a 0/1 sort, parametric [4], [17] or en-
tirely symbol dependent [10], [19], in which case, they are usually assigned in
terms of the confusion probabilities. In all of these cases, the primary dynamic
programming rule used in computing the inter-string distance D(X,Y ) is:

D(x1 . . . xN , y1 . . . yM ) = min [ {D(x1 . . . xN−1, y1 . . . yM−1) + d(xN , yM )},
{D(x1 . . . xN , y1 . . . yM−1) + d(λ, yM )},
{D(x1 . . . xN−1, y1 . . . yM ) + d(xN , λ)}]. (1)

Recognition using distance criteria is obtained by essentially evaluating the
string in the dictionary which is “closest” to the noisy one as per the metric
under consideration.

Rather than compute the individual string edit distance separately, Kashyap
et.al. in [10], developed a recursive procedure to compute D(X,Y ) for all the
relevant prefixes in the entire dictionary. This involved only a fixed finite num-
ber of the prefixes of X and the left derivative of Y . They introduced a new
distance measure, D1(X,Y ), (an intermediate computational tool called a pseu-
dodistance because it assumes that the last symbol of X was not inserted during



254 B. John Oommen and Ghada Badr

editing) between X and Y . The measure D1(X,Y ) has the desirable properties
that it can be computed “recursively” and that the final distance D(X,Y ) can
be obtained from it using only a single additional symbol comparison. The rela-
tionship between D1(X,Y ) and D(X,Y ) is formalized below (see [10] and [14]
for the details):

D(X,Y ) = min[D1(X,Y ), {D1(Xp, Y ) + d(xN , λ)}].
Similarly, the recursive properties of the pseudodistances between an arbi-

trary string X ∈ A∗ and Y (K) can be summarized as follows (see [10] and [14]).
If X = X1bc (where |X | ≥ 2) with |X1| ≥ 0, since c is not inserted:

D1(X1bc, Y
(K+1)) = min [ {D1(X1bc, Y

(K)) + d(λ, yK+1)},
{D1(X1b, Y

(K)) + d(c, yK+1)},
{D1(X1, Y

(K)) + d(b, λ) + d(c, Y (K+1))}]. (2)

Observe that in the above expressions the number of terms included to obtain
the distance between X1bc and Y (K) is merely three, and is superior to the
expression valid for finite-state representations for Regular Languages [22]. The
reasons for this are explained in detail in [10] and [14].

3 Procedure and Data Structure for Obtaining X+

In [10], Kashyap et al. showed that the pseudodistances D1(X,Y (K)) can be
recursively computed using the dynamic programming principle given by Equa-
tion (2). For this purpose, they defined two sets R(K) and S(K), where R(K) is
the set of prefixes of H into which Y (K) can be transformed with finite pseu-
dodistances, and S(K) associates every element in R(K) with its corresponding
pseudodistance with Y (K), for all K = 1, ...,M where M = |Y |. The problem
with this method of calculation (i.e., using these two sets) , is that the computa-
tion is so complicated and is not feasibly implemented. It also requires extensive
set-based computations. The details of the conceptual representation of the solu-
tion of [10], its FSM model, and how it differs from other FSM models given in
the literature, are included in [14]. We shall, however, use the dynamic program-
ming recursive relation explained above, and enhance it using a new structure
called the Linked List of Prefixes (LLP), which makes the computations feasible.

A trie is an alternative to a BST for storing strings in a sorted order [7]. Tries
are both an abstract structure and a data structure that can be superimposed
on a set of strings over some fixed alphabet [5]. As an abstract structure, they
are based on a splitting scheme, which, in turn, is based on how the letters are
encountered in the strings. In any specific implementation, the nodes of the trie
can be modelled and represented in different ways. They can be implemented
using an array [5], [9], a linked list, or even a binary search tree [1]. Fig. 1 (left
side) shows an example of a simple dictionary represented as a trie. Observe the
relationships between the prefixes of a string and its ancestors in the trie.

We now explain a feasible way of obtaining X+ when the dictionary is repre-
sented using tries. To calculate the best estimate X+, what we need is to divide
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Fig. 1. An example of a dictionary stored as a trie and the corresponding LLP with
the words {for, form, fort, fortran, formula, format, forward, forget}.

the dictionary into its sets of prefixes. Each set H(p) is the set of all the prefixes
of H of length less than or equal to p, for 1 ≤ p ≤ Nm, where Nm is the length of
longest word in H . The trie itself divides the prefixes and the dictionary in the
way we want, as each sub-trie starting from the root to level p corresponds to
all the prefixes in the set H(p). What we need is a data structure that facilitates
the trie traversal, and gives us a unique data structure that can always be used
to effectively compute the pseudodistances for the prefixes. We called this data
structure the Linked Lists of Prefixes (LLP).

The LLP consists of a linked list of levels, where each level is a level in the
corresponding trie. Each level, in turn, consists of a linked list of all prefixes
that have the same length p. The levels are ordered in an increasing order of
the length of the prefixes, exactly as in the case of the trie levels. The figure on
the right side of Fig. 1 shows the corresponding LLP for the trie shown on the
left side of Fig. 1. The character written in each node is actually a pointer to
the node of the trie itself, and so we can access the parent nodes in the trie in a
straightforward manner, as will be seen in the algorithm presently. The values of
D1 used during calculations is stored in the trie nodes. Thus, actually the LLP
is a data structure used to facilitate the traversing of the trie in the proposed
string correction algorithm.

Finally, we need to store a linked list of pointers to all the nodes in the trie
which corresponds to the words in the dictionary. This list is called“dictionary-
words”. The pseudo-code for constructing the LLP from a trie and the correct-
ness of the algorithm are given in [14].

3.1 The Procedure for Obtaining X+

Let U be a prefix corresponding to some node in the trie T . It can be seen from
(2) that if the pseudodistance between a certain node U and Y (K+1) has to be
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computed, it can be done with merely the knowledge of the pseudodistances
between each of U , Up (the parent of U), Ug (the grandparent of U), and the
string Y (K) respectively. In each node of the trie we store two values for the
pseudodistances, namely the previous value of D1 and its new value, new D1,
(both of which are initialized to ∞ for every node in the trie, or rather, in the
conceptual LLP). Observe that we need both of these quantities because the
computation of D1 will require the “old” values of D1 calculated in the previous
iteration, which we refer to as D1(U, Y K−1). We then proceed along the trie from
the root towards the leaves, and at each iteration, fill in the distances for nodes
at the same level and for nodes which are two levels deeper than at the previous
iteration. Indeed, it is at this stage that the LLP becomes useful. Rather than
work with set based operations as in [10], the LLP permits the access to nodes
level by level, while details of the parents and grandparents are gleaned from the
trie itself. The pseudo-code for the computation that formalizes this along the
trie and LLP and are omitted here. They can be found in [14].

4 Experimental Results

To investigate the power of our new method with respect to computation various
experiments were conducted. The results obtained were remarkable with respect
to the gain in time and the number of computations. The new method was
compared with Algorithm GLD, a PR scheme which used any traditional editing
[10], [11], [12], [18], [19], [23] algorithm using symbol-dependent costs as described
in Section 2, where the costs were assigned for elementary distances using the
GLD, and the inter-string distances were computed sequentialy.

The Dictionary consisted of 342 words obtained as a subset of the most
common English words [6] augmented with words used in computer literature1.
The length of the words was greater than or equal 7 and the average length of a
word was approximately 8.3 characters. Other experiments (see [14]) were also
done for larger subsets of the most common English words [6].

From these 342 words, five sets, SA, SB, SC, SD, and SE, of 1368 words each
were generated using the noise generator model described in [15]. We assumed
that the number of insertions was geometrically distributed with parameter β =
0.7. The conditional probability of inserting any character a ∈ A given that an
insertion occurred was assigned the value 1/26; and the probability of deletion
was set to be 1/20. The table of probabilities for substitution (typically called the
confusion matrix) was based on the proximity of character keys on the standard
QWERTY keyboard and is given in [15]2. The statistics associated with each
of the five sets are given in Table 1. Some of the words in the dictionary are
very similar even before garbling such as “official” and “officials”; “attention”,
“station” and “situation”. These are words whose noisy versions can themselves
easily be mis-recognized. The errors per word associated with these five sets was
bounded by 30%, 40%, 50%, 60% and 100% respectively.
• This file is available at www.scs.carleton.ca/∼oommen/papers/WordWldn.txt
• It can be downloaded from www.scs.carleton.ca/∼oommen/papers/QWERTY.doc
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Table 1. Noise statistics of the set SA, SB, SC, SD, and SE.

Errors SA SB SC SD SE

Number of insertions 873 1105 1545 1766 2763

Number of deletions 461 503 549 567 633

Number of substitutions 808 931 1028 1051 1120

Total number of errors 2142 2539 3122 3384 4516

Average % error 18.91 22.41 27.26 29.87 39.87

Maximum % error per word 30.00 40.00 50.00 60.00 100.00

Table 2. The experimental results obtained from each of the three sets for the 1368
noisy words. The results are given in terms of the number of operations needed, the
time and accuracy. The results also shows the percentage of savings in the total number
of operations and the time used when utilizing the LLP-based method as opposed to
the sequential method using Algorithm-GLD.

Operation SA SC SE
GLD LLP GLD LLP GLD LLP

Add 430529184 69466624 451174752 73954200 491263920 82668160

Min 132990720 18770224 139606272 19892118 152452224 22070608

Oper. 563519904 88236848 590781024 93846318 643716144 104738768

Savings 84.34 84.11 83.72

Time (sec.) 19 8 19 8 21 10

Savings 57.89 57.89 52.38

Accuracy 98.83 98.54 97.59 97.37 96.05 95.76

The two algorithms, Algorithm GLD (the algorithm which sequentially com-
puted the GLD for the entire dictionary) and our algorithm, Algorithm LLP,
were tested with the five sets of noisy words. We report the results obtained in
terms of the number of computations (additions and minimizations), the time,
and the accuracy for only the three sets SA, SC, SE, in Table 2. The results shows
the significant benefits of the LLP-based method with respect to the time and
number of computations. For example, for the set SA, the number of operations
is 563,519,904 for Algorithm GLD, and 88,236,848 for the LLP-based method
with a saving of 84.34%. The time taken (on a Pentium II processor, 1000 GHZ)
is 19 seconds for Algorithm GLD and just 8 seconds for the LLP-method, which
is a saving of 57.89%.

The savings in the computations are more than 80% for all sets which is
interesting, and the saving in time is more than 50%. The accuracy is very
slightly less than what can be obtained from the sequential computation, because
some of the words which contained two successive deletions, were not correctly
recognized by the LLP method. Indeed if these words were removed from the
test data, the accuracy will be the same for both schemes. For example, for the
set SE the test results shows that both schemes give the same recognition except
for one string in the LLP method, namely for the word “property”. The noisy
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word in this case was “opertzg” in which the first two symbols were successively
deleted. X∗, which generated Y , was estimated as the word “experts” by the
LLP method.

5 Conclusion and Future Work

In this paper we have presented a feasible solution for the problem of estimat-
ing a transmitted string X∗ by processing the corresponding string Y , which
is a noisy version of X∗, an element of a finite (but possibly, large) dictionary
H , when the whole dictionary is considered simultaneously. The method builds
on the concepts introduced by Kashyap et al. [10], where the set model used
in the computations was not feasible. We enhanced this by the introduction of
a new data structure called the Linked Lists of Prefixes (LLP), which can be
constructed when the dictionary is represented using a trie. The LLP is an en-
hanced, but modified, representation of the trie, which can be used to facilitate
the “dictionary-based” dynamic programming calculations. The LLP-based al-
gorithm for the syntactic PR of strings has been rigorously tested. The results
showed significant benefits (with respect to the time and number of computa-
tions) when compared with Algorithm GLD, the algorithm which sequentially
computes the GLD for the entire dictionary.

As a future work we would like to extend this method for probabilistic com-
putations and “two-sided tries”.
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Abstract. In this paper, we propose a way of incorporating additional
knowledge in probabilistic automata inference, by using typed automata.
We compare two kinds of knowledge that are introduced into the learn-
ing algorithms. A statistical clustering algorithm and a part-of-speech
tagger are used to label the data according to statistical or syntactic in-
formation automatically obtained from the data. The labeled data is then
used to infer correctly typed automata. The inference of typed automata
with statistically labeled data provides language models competitive with
state-of-the-art n-grams on the Air Travel Information System (ATIS)
task.

1 Introduction

Grammatical inference consists in learning formal grammars for unknown lan-
guages when provided with examples of strings belonging (or not) to the lan-
guage. Regular grammatical inference, in which the target grammar is supposed
to be regular, has received most of the attention. If one is provided with pos-
itive and negative examples, the Rpni algorithm [OG92] can be used to infer
deterministic finite automata.

In the case where only positive examples are available, theoretical results
[Gol67] show that the task becomes considerably harder. An alternative is to
learn a probabilistic finite automaton from the data, learning the regularities of
the distribution rather than those of the language: several algorithms have been
proposed [CO94,SO94,TDdlH00] for this task.

These algorithms generally perform well on small tasks but are not currently
able to obtain significant results on real world tasks where the size of the alphabet
and the noise are serious obstacles. Furthermore, very often the complexity of
the intended model is such that the quantity of learning data is insufficient. The
success of a model and a learning algorithm depends on their ability to include
prior knowledge, in order to compensate for the lack of data. Alternatively, with
only a fixed set of data, prior knowledge allows to learn more complex functions.

A. Fred et al. (Eds.): SSPR&SPR 2004, LNCS 3138, pp. 260–268, 2004.
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In the specific context of probabilistic model learning, the success of Hmms
in several application domains, like speech recognition or computational biology,
is partly due to the use of additional knowledge to design the structure of the
models: in speech recognition, the knowledge on the phonemic structure of ut-
terances and in computational biology, additional knowledge regarding the mean
length of proteins and additional distribution of amino acids are used to design
the models.

We believe that the use of additional knowledge in grammatical inference
can bring a number of advantages. Firstly to reduce the search space by exclud-
ing automata which do not conform with this knowledge; secondly to complete
the learning data with additional knowledge, for example by providing implicit
counter-examples: strings known not to belong to the target language; thirdly
to introduce in a simple way real world constraints that the induced formal
language must satisfy.

Kermorvant & de la Higuera [KdlH02] have proposed a framework based
on state typing to include additional knowledge into the automaton inference
process. State typing both reduces the search space of the probabilistic finite au-
tomata (Pfa) induction (hence decreasing the practical complexity of learning),
and guarantees the compatibility of the learned models with this knowledge.
The additional knowledge considered in the present paper either comes from
statistical clusters or part-of-speech tags.

We compare the use of these two kinds of additional knowledge in the frame-
work of language modeling: on the Air Travel Information System (Atis) task,
the results we report are comparable with those achieved by state-of-the art
n-grams models.

2 Regular Language Learning from Tagged Data

The search space for the problem of regular languages inference is finite but huge
[DMV94]: it is a partition lattice defined by the set of states of the prefix tree
acceptor (Pta). The Pta is the smallest tree-shaped deterministic automaton
accepting exactly I+. Under the hypothesis of the presence of a structurally
complete sample (i.e. a set of strings that makes use of all edges, nodes and
final states of the target), the target automaton is guaranteed to belong to this
lattice. A negative sample is generally used to control the generalization while
searching for the target. However, since the size of the lattice is exponential in
the size of the sample set, a good strategy is required to explore this lattice. We
choose to learn probabilistic finite automata so that we can, in principle, handle
two additional difficulties raised by real data: the lack of negative information
and the presence of noise. Besides, background knowledge of the application
domain is often available. In [KdlH02] a framework that includes additional
knowledge in the automaton inference algorithms is proposed. This framework is
the application of typing, as known for terms and trees, to finite state automata.

2.1 Typed Probabilistic Finite State Automata
We consider probabilistic finite state automata (Pfa), which provide a proba-
bilistic extension of finite state automata. A PfaA is a tuple < Q,Σ, δ, τ, q0, F >
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Algorithm 1 Generic Pfa induction algorithm.
Require:
I• , training set (sequences)
α, a precision parameter

Ensure: a probabilistic finite state automaton
A ← build PPTA(I• )
while (qi, qj)← choose states(A) do
if is compatible(qi, qj , α) then
merge(A,qi, qj)

return A

where: Q is a finite set of states, Σ is an alphabet, δ : Q×Σ → Q is a transition
function, τ : Q×Σ →]0..1] is a function which returns the probability associated
with a transition; q0 is the initial state, F : Q → [0..1] is a function which returns
the probability for a state to be final. A typed Pfa [KdlH02] is defined with the
addition of S, a set of types and σ, a typing function which associates a single
type to each state of the automaton.

Furthermore, we only consider Pfa which are structurally deterministic and
which define define a probability distribution on Σ∗ (trimmed and satisfy the
consistency constraint: ∀q ∈ Q,

[∑
a∈Σ τ(q, a)

]
+ F (q) = 1). The probability

assigned by the automaton to a string is classically the product of the transition
probabilities along any accepting path and the final probability.

There are several ways to define the typing function σ. In [KdlH02], it was
proposed to define the typing function σ by a type automaton constructed by
an expert, on the basis of some knowledge he may have of the domain. In this
paper, we propose to automatically infer the typing function from strings where
the symbols are tagged for example according to a part-of-speech tagger for
natural language sentences.

Typing functions could, in theory, be as complex as one may want. Practically
we do not want typing to be a burden to learning. Our current choice is to make
type-checking easy, even if this limits the expressiveness of the typing function.
The typing function (σ) must be able to type all states, and therefore possible
strings in a regular manner. Therefore two conditions must be met:

– if L is the set of all possible strings: ∀u ∈ L, σ(u) is defined;
– if we denote by σuv(u) the label of prefix u in the context of string uv:

∀uv, uw ∈ L ⇒ σuv(u) = σuw(u).

A typing function σ is admissible if the above conditions hold.
Hence one can associate various types to a symbol, but only one type to a

string. It should be noticed that this is a strong condition: in usual cases tags are
computed by taking into account both left and right-hand contexts. In section
4 we discuss various ways of relaxing this condition.
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2.2 Learning Typed Automata from Automatically Labeled Data

Several algorithms have been proposed to infer Pfa from examples using fre-
quencies [CO94,RST95,TDdlH00]. All these algorithms are based on a similar
scheme, which is presented in algorithm 1. Our inference algorithm for typed
automata from labeled data is also derived from this scheme that we explicit
below.

Given a set of labeled positive examples I+, the algorithm first builds the
typed probabilistic prefix tree acceptor (Ppta). The typed Ppta is an automa-
ton accepting all examples of I+, in which the states corresponding to common
prefixes are merged and such that a training count is attached to each state and
each transition. This count denotes the number of times this state, or transition,
is used while parsing the sample.Let C(q) (respectively C(q, a) and Cf (q)) de-
notes the number of times the state q (respectively the transition (q, a) and the
final state q) is used while parsing I+. An estimate τ̂ (resp. F̂ ) of the function τ
(resp. F ) can be computed from these counts:

∀a ∈ Σ, τ̂(q, a) = C(q,a)
C(q) F̂ (q) = Cf (q)

C(q)

The typing function of the typed Ppta is defined by the labels of the strings in
I+. When a string with label l is used to reach a state q of the typed Ppta, the
label l is the type of the state q: σ(q) = l. Note that the fact that the typing
function is admissible implies that a typed Ppta can always be built from a
given labeling.

The second step of the algorithm consists in visiting the states of the Ppta
(function choose states(A)), and testing whether the states are compatible and
can be merged. The compatibility criterion (defined in algorithm 1) by function
is compatible(qi, qj , α) depends on a precision parameter α. If the states are com-
patible, they are merged (function merge(A,qi, qj)). Usually, several consecutive
merging operations are made in order to maintain the deterministic structure of
the automaton. The algorithm halts when no more merging is possible. In the
case of algorithm Alergia [CO94], the compatibility of two states is based on
testing the compatibility of their associated probabilities.

By using only admissible typing functions, the introduction of type con-
straints in the learning algorithm is straightforward. Every time a merging op-
eration is considered, we check whether the states have the same type. This
constraint can easily be implemented in constant time: it is sufficient to test the
equality of the types of qi and qj in function is compatible(qi, qj , α). With this
constraint, the type of any string in the inferred language is guaranteed to be
consistent with the types of the strings in the learning set.

3 Experiments

We have tested our approaches on a language modeling task with the Air Travel
Information System (Atis) corpus. This corpus has been widely used in the
speech recognition community and specifically for probabilistic automaton in-
duction tasks (see e.g. [DC98,TDdlH00,LVC02]). This corpus consists in infor-
mation requests performed in American English.
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We use the Atis-2 sub corpus which is composed of a training set containing
13,044 utterances (130,773 tokens) and two test sets containing respectively 974
utterances (10,636 tokens) and 1001 utterances (11,703 tokens). The task vocab-
ulary is composed of 1,296 different words. All the automata are inferred on the
train set, the parameters are tuned on the first test set (named validation set),
and the second test set (named test set) is used for independent final evaluation.

The usual quality measure in language modeling tasks is test set perplexity:

PP = 2LL = 2−
1
||S||

∑
w∈S log2 P (w)

where P (w) denotes the predicted probability of word w and ||S|| denotes the
number of words in the test set. The smaller the perplexity the better the au-
tomaton can predict the strings observed in the test set. It is generally agreed
that perplexity is a good quality criterion for language models.

In order to guarantee that every word can be predicted with a non null proba-
bility, the inferred automaton must be smoothed. We interpolate the automaton
with a unigram model, which defines the probability P1(w) of each word w in the
training set, independently of its context. The probability of a word w assigned
by the smoothed automaton is then:

P (w) = βPPFA(w) + (1− β)P1(w)

This smoothing technique is very rudimentary but, as such, it best reflects the
quality of the induced Pfa alone. Finally, as some words of the application
vocabulary may not occur in the training set1, the unigram probability itself is
smoothed by absolute discounting [KN95].

3.1 Comparison of Two Typing Functions for Automata Inference

In this section, we compare the use of two kind of additional knowledge for
typed automata inference: Pos tags and statistical clustering. Our baseline is a
standard PFA inference algorithm (Alergia) not using state typing.

The Pos information was obtained by tagging the training set using the Brill
tagger [Bri92]. As a first approach, each word was tagged with its most likely
tag, disregarding the context rules. The resulting tagged training set contains
32 different Pos types.

The statistical information leading to the class tagging was obtained by the
clustering algorithm presented in [DC98]. For a given number of clusters, the
clustering algorithm iteratively constructs the classes so that the average mutual
information between the classes is maximized. Values for the number of clusters
ranging from 10 to 1000 have been tested.

The best standard automata inferred with Alergia yields a perplexity of
66 on the Atis test set. On the same test set, typed automaton inferred using
POS tags typing yields a perplexity of 57 and the best perplexity score, 42, is
obtained with the typed automaton using statistical clusters. The influence of 3
learning parameters was studied on the Atis development set:
• This is the case for 131 out of 1,296 words.
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Fig. 1. Results on the validation set: Percentage of sentences correctly parsed versus
the number of parameters of the automaton 1(a), perplexity of the sentences correctly
parsed 1(b), and perplexity with inferred typed automaton and unigram interpolation
1(c).

– the precision parameter α which controls the compatibility criterion and
therefore the number of compatible merging operations,

– the number k of distinct types,
– the interpolation parameter β.

Note that k can only be tuned when the types correspond to statistically
induced classes. In this case, the optimal number of classes is 90. In the case of
Pos tagging, the number of distinct types is defined a priori by the tagger and
cannot be tuned. The parameters α and k control the degree of generalization
allowed during the typed automaton induction. Hence these parameters control
the number of parameters of the inferred model (number of states and transitions
of the Pfa). The parameter β controls the weight of the induced Pfa in the
combined smoothed automaton.

Figure 1(a) shows the percentage of sentences from the validation set fully
parsed by the inferred typed automaton for the two kind of additional knowledge
with respect to the number of parameters of the typed automaton (number of
states and number of transitions). In this case, no smoothing is used. The typed
Ppta parses only 7% of the validation set whereas the universal automaton
which accepts all the sentences built with words of the training set, parses 94%
of the sentences in the validation set (6% of the sentences are not fully parsed
since they contain out-of-vocabulary words). For a fixed number of parameters,
the use of typed automata increase the number of sentences that can be parsed
compared to standard automata inferred with Alergia.

Figure 1(b) presents the perplexity obtained by the inferred typed automata
with respect to the number of sentences parsed. The best results are situated
in the bottom right corner of figure 1(b) as they correspond to high coverage
and small perplexity. The smoothed unigram parses 100% of the sentences but
yields a perplexity of 145. For a given number of parsed sentences, both the
Pos-based and cluster-based typed automata yield a smaller perplexity and the
typed automaton inferred with statistical classes yields the smallest perplexity. It
should be stressed that, as no smoothing is performed in this case, the perplexity
is only partial as it is computed over those strings that can be parsed.
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Table 1. Two approaches to use two different kinds of information and their best
perplexity results on the test set with interpolation to unigram.

typed automata inference on
inference classes + expansion

Pos tags Pos-typed Pos-class
automata automata

perplexity: 57 perplexity: 112

Statistical cluster-typed cluster-class
clusters automata automata

perplexity: 42 perplexity: 52

Figure 1(c) shows the perplexity obtained by the inferred typed automaton
interpolated with the smoothed unigram. The best perplexity reduction (39%
as compared with standard Alergia) is obtained when using typed inference
with 90 statistically defined classes with inference parameter α = 1.10−4 and
interpolation parameter β = 0.8.

3.2 Comparison with Class-Based Inference

In this section we compare our approach with a method previously introduced
to improve automata inference.

Dupont & Chase [DC98] proposed to use statistical clustering of symbols
to improve grammatical inference on large vocabularies. The first step of their
approach consists in building classes of symbols from the learning samples. Once
the classes are defined, each symbol is associated to a class and the probability of
each symbol w in its class g(w), denoted by P̂ (w|g(w)), can easily be computed.
The learning samples are then relabeled in terms of classes and an automaton is
inferred on the class labels using a classical inference algorithm such asAlergia.
Finally the automaton is expanded by replacing each class by all the symbols
it contains. More formally, once an automaton is inferred on the classes, each
transition (q,G) from a state q with label G is replaced by as many transitions
as there are symbols w such that g(w) = G. The probability estimates τ̂ (q, w)
of these transitions are given by τ̂(q, w) = τ̂ (q,G) · P̂ (w|G).

We propose to use the same scheme but with Part-of-Speech classes instead
of statistical clusters. The class automaton is inferred with Alergia on Pos
tags and expanded to words afterward. This yields to compare four approaches
that are summarized in Table 1. The perplexity results of these four approaches
is also shown on Table 1. Our approach, based on typed automata yields better
results than the approach based on class inference, both when using Pos tags
or statistical clusters.

3.3 Improved Smoothing Methods

The smoothing technique used in the evaluations described in section 3.1 and 3.2
is rudimentary. We argued that interpolation with a smoothed unigram guar-
antees to bound the perplexity while best reflecting the predictive power of the
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inferred Pfa alone. However, if the objective is to minimize test set perplexity,
more sophisticated smoothing techniques are required.

A very competitive language model on the Atis task is a trigram model with
Kneser-Ney back-off smoothing [KN95]. This smoothed trigram model combines
a trigram model and two back-off distributions, respectively based on a bigram
and a unigram model. The Atis test set perplexity of this combined model is
14.

Current results for the best typed automata inferred with 90 statistically
defined classes and smoothed with a simple back-off to unigram (a simplified
version of the smoothing scheme described in [LVC02]) gives a perplexity of
20. The trigram model smoothed with the same method (back-off to unigram)
gives a perplexity of 17. Further improvements of the smoothing techniques for
automata should therefore decrease the perplexity.

It should be noted that the number of parameters needed by the best typed
automata combined with a smoothed unigram is 1.1 ∗ 105. The trigram model
with Kneser-Ney smoothing to both bigram and unigram needs 6 ∗ 105 param-
eters. The smoothed typed automata needs less parameters to obtain a similar
perplexity on this task.

4 Discussion

It has been shown in [DC98] that the use of statistical class information improves
the quality of probabilistic automata used as language models. The present work
illustrates that this is even more true when statistically induced classes are com-
bined with typed Pfa inference.

The results obtained when using Pos tag information are less convincing,
even though it has been shown that grammatical information can help language
models. Let us stress however that we did not use here the full information
provided by the Pos tagger as each word was tagged according to its most
likely tag, disregarding the contextual rules. This approximation was required to
construct a typed Ppta, which is a deterministic Pfa as explained in section 2.2.
In order to fully take into account Pos information, several extensions of the
present approach are possible. Firstly inference algorithms could be developed to
infer (possibly) non-deterministic structures. Secondly extended typing functions
allowing several types per states and inducing multi-typed automata could be
developed.

Finally, the framework of typed automata is general and could easily be
adapted to other grammatical inference algorithms which have been shown to
have better performances than Alergia.

5 Conclusion

We have proposed a way to use additional knowledge in grammatical inference
with typed automata. When manually or automatically labeled data is available,
the labels can be used as types and the inference algorithm we have proposed
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guarantees that the inferred automaton is compatible with the labeled data. We
have compared the use of two kinds of labeling for probabilistic typed automata
inference. Part-of-speech labeling provided by a Pos tagger and statistical clus-
tering of words have been compared as labeling for natural language data. The
use of statistical word classes information allows us to infer better automata. Our
approach provides models which are competitive with state-of-the-art n-grams
with similar smoothing techniques while being more compact and needing less
parameters.
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Abstract. Language models are used in a variety of fields in order to
support other tasks: classification, next-symbol prediction, pattern anal-
ysis. In order to compare language models, or to measure the quality of an
acquired model with respect to an empirical distribution, or to evaluate
the progress of a learning process, we propose to use distances based on
the L• norm, or quadratic distances. We prove that these distances can
not only be estimated through sampling, but can be effectively computed
when both distributions are represented by stochastic deterministic finite
automata. We provide a set of experiments showing a fast convergence of
the distance through sampling and a good scalability, enabling us to use
this distance to decide if two distributions are equal when only samples
are provided, or to classify texts.

1 Introduction

A common task to machine translation [1], speech recognition [2], optical charac-
ter recognition [3] or computational biology [4] is that of constructing a language
model. Typical language models are n-grams [5], but Hmms also can be used [6].
Finite automata have been considered as alternative language models for nearly
10 years [7], with an extension to stochastic automata more adapted to the task
[8]. In a more general setting, stochastic or probabilistic automata have been
used in structural and syntactic pattern recognition for a number of years [9].
How to derive a grammar or an automata from data is usually called grammat-
ical inference or grammar induction: This has been studied in the framework of
pattern recognition [10, 11], with applications to textures in images, fingerprints
classification, dynamic systems or recognition of pictures of industrial objects.
The problem of learning a stochastic finite automaton is generally considered
to be a hard but important one [12], with smoothing a decisive component of
language modeling. Clearly, a better understanding of stochastic automata, and
moerover of their topological properties is necessary in order to better learn
them or compare them. Not much work has been done in this direction: Work
linked with the results we report here has been done by Fred [13], who computes
the weight of a language following a distribution, or Lyngsø et al. [4] who prove

A. Fred et al. (Eds.): SSPR&SPR 2004, LNCS 3138, pp. 269–277, 2004.
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that computing the L2-distance is tractable between distributions over finite
sets, or Carrasco who computes the Kulback-Leibler divergence between regular
distributions [14] or the L2-distance between distributions over trees [15].

We can thus identify the following tasks related with language modeling:
measure how well a sample corresponds to a distribution or how close a hypoth-
esis language is from a target, or even how close two samples are one from the
other. Traditionally researchers in the field have used perplexity as its measure for
the above questions, with the Kullback-Leibler divergence closely related to this
measure between a true or target distribution D and a hypothesis or candidate
distribution D′:

dKL(D,D′) =
∑
w∈Σ�

PrD(w) log
PrD(w)
PrD′(w)

The Kullback-Leibler divergence suffers from a number of drawbacks:

1. It is not a distance. Therefore topological operations are not easy, and using
samples to represent a distribution is not reasonable.

2. In the case where some string has a null probability in D′, but not in
D, then the Kullback-Leibler divergence is infinite. This implies that over-
generalization is necessarily going to appear. The language model can only
be considered when it is properly smoothed. But in this case it is hard to
know if (when concerned with testing) what we are measuring is the quality
of the model or that of the smoothing or alternatively of both, combined,
which may be what we are looking for.

These seems to be good reasons to propose an alternative measure to see how
close one distribution is to another. Furthermore this measure should be a dis-
tance, computable and easy to calculate, and not require the models to be
smoothed for computation to be possible. We give in section 2 the definitions of
stochastic deterministic finite automata (Dpfa), regular distributions, and the
probability functions that are associated. Distances between Dpfa are defined
and studied in section 3. In section 4, we experimentally study the distances:
A first set of experiments (section 4.1) on the well-known Reber grammar [16]
show that our measure can give a good estimation of the quality of the learned
automata. In section 4.2, we show that the speed of convergence of the distance
of a sample to the model is sufficiently fast to be able to decide in practice from
which automaton a sample is generated. These experiments are made on arti-
ficial data corresponding to parity functions, which are usually considered as a
hard case for learning. Then, section 4.3 deals with experiments on real data:
firstly, we show the L2 distance compares favorably to perplexity on a typical
speech language modeling task; a second set of experiments (section 4.4) on
French poems shows that the distance can be used in classification tasks. They
also show the scalability of these methods. In section 5 we discuss further work
and conclude.
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2 Probability Distributions over Sequences

Definition 1 (Distribution over strings). Let Σ be an alphabet i.e. a finite
set of letter, {a, b, . . .}. A string w is an element from Σ∗. The length of a string
w is denoted by |w|. The unique string with length 0 is λ, |λ| = 0. A probability
function is a function such that ∀w ∈ Σ∗, 0 ≤ PrD(w) and

∑
w∈Σ∗ PrD(w) = 1.

Definition 2 (Dpfa). A Dpfa is a tuple A = 〈ΣA, QA, qIA , δ•A, p•A, fA〉 where
ΣA is a finite alphabet, e.g. {a, b}, QA is a set of states, {q0, q1, q2, . . . , q|A|−1},
qIA is the unique initial state, δ

•
A : QA×ΣA �→ QA defines a transition function,

p•A : QA × ΣA �→ [0, 1] is a probability function, fA : QA �→ [0, 1] defines the
probability that a state is final.

Non-deterministic automata exist, but shall not be used in this paper. In the
following, when no ambiguity is possible, we will forget subscript A.

To be able to deal with strings, we generalize the automaton probability and
transition functions:

Definition 3 (Generalized probability and transition functions). Let
w ∈ Σ∗ be a string, let A be an Dpfa, and q a state,

pA(q, w) =
{

fA(q) if w = λ
p•A(q, a) · pA(δ•A(q, a), x) else (w = ax, a ∈ Σ, x ∈ Σ∗)

δA(q, w) =
{

q if w = λ
δA(δ•A(q, a), x) else (w = ax, a ∈ Σ, x ∈ Σ∗)

Definition 4. πA is the prefix probability function:

∀w ∈ Σ∗, πA(w) =
∑
x∈Σ∗

pA(wx)

The definitions are linked as follows:

∀w ∈ Σ∗, p(w) = π(w) · f(δ(qI , w))
∀w ∈ Σ∗, ∀a ∈ Σ, π(wa) = π(w) · p•(δ(qI , w), a)

∀w ∈ Σ∗, π(w) = p(w) +
∑
a∈Σ

π(wa)

3 Distances between Two Dpfa

In this section we define two measures over string probability distributions. Tech-
nically a first step is to compute, given A and A′ two Dpfa, the product prob-
ability of reaching two states q in A and q′ in A′:
Definition 5. Let (q, q′) ∈ QA × QA′ ,

ηqq′ =
∑

w∈Σ∗:
δA(qIA ,w)=q

δA′ (qIA′ ,w)=q
′

πA(w) · πA′ (w)
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We describe here a method to compute ηqq′ . When Σ∗ is not a finite set of
strings, the above sum may not be easily computable. We adapt the efficient
method that computes the d2 distance over trees [15] to the string case. The
method computes iteratively ηqq′ .

Note that λ is the only null-length prefix and πA(λ) = πA′(λ) = 1. That
allows us to write:

ηqIA qIA′
= 1 +

∑
q∈QA

∑
q′∈QA′

∑
a∈Σ:

δA(q,a)=qIA
δA′ (q

′,a)=qIA′

ηq,q′ · p•A(q, a) · p•A′(q′, a)

and ∀q ∈ QA, q′ ∈ QA′ �= (qIA , qIA′ )

ηqq′ =
∑
s∈QA

∑
s′∈QA′

∑
a∈Σ:

δA(s,a)=q
δA′ (s

′,a)=q′

ηs,s′ · p•A(s, a) · p•A′(s′, a)

The above relation corresponds to a system of linear equations. To solve it ef-
ficiently, when convergence is clear, terms are computed iteratively during a
predefined number k of steps. Complexity then is O(|QA| · |QA′ | · |Σ| · k).

In order to compare two distributions, we first evaluate the co-emission prob-
ability of each string, i.e. the probability that A and A′ generate independently
a same string.

Definition 6. The Co-emission probability of A and A′ is

CoEm(A,A′) =
∑
w∈Σ∗

(pA(w) · pA′(w))

=
∑
q∈QA

∑
q′∈QA′

ηqq′ · fA(q) · fA′(q′)

If comparing samples, co-emission may be null when large vocabulary and
long strings are used. It is then reasonable to compare not only the whole strings,
but their prefixes:

Definition 7. As above, the Prefixial Co-emission probability of A and A′ is

CoEmPr(A,A′) =
∑
w∈Σ∗

(πA(w) · πA′(w))

Note that CoEmPr is directly linked to η coefficients.

The above co-emission measures allow us to define two distances for the L2 norm:

Definition 8 (d2 distance between two models). The distance for the L2
norm, denoted by d2 is defined as:

d2(A,A′) =
√ ∑

w∈Σ∗
(pA(w) − pA′(w))

2

which can be computed easily by using:
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d2(A,A′) =
√
CoEm(A,A) + CoEm(A′,A′)− 2CoEm(A,A′)

Definition 9 (d2p distance between two models). The prefixial distance
for the L2 norm, denoted by d2p is defined as:

d2p(A,A′) =
√ ∑

w∈Σ∗
(πA(w)− πA′ (w))

2

Theorem 1. d2 and d2p are distances over Σ∗ (see [17] for the proof).

4 Experiments – Results

4.1 Identification Task

The Reber artificial grammar [16] has been used to prove that human language
learning is implicit (no conscious rules). Figure 1 shows a Dpfa representing this
grammar. We compare here distance d2 and perplexity pp between a learned
automaton and the target one.

Fig. 1. Reber grammar

We built learning samples with different sizes (100, 500, 1000 strings). Al-
gorithm MDI [8] is used to learn an automaton from these samples. MDI is a
state merging algorithm with currently the best results for language modeling
by Dpfa tasks; It makes use of a parameter (α) to adjust learning.
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Fig. 2. Comparison between perplexity and distance d• in the exact identification task

Figure 2 shows the results for a sample of size 500, but other sizes give similar
results: The structure of the automaton is well identified, but the probabilities
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are better estimated when sample size becomes larger. Size is drawn in log-scale
format. The point corresponding to a 8 states automaton is actually reached by
5 automata learned with 5 different settings of the α parameter (in the range
{0.005, 0.08}). Both pp and d2 are minimal with the same values of α (i.e. on the
same learned automaton) corresponding to the case where the target structure
is obtained. Over- and under-generalization (which does not reach the correct
structure) yields worse results. Again, it should be noted that the d2 results have
been obtained without smoothing the automaton; This is an advantage of the
technique.

4.2 Discrimination and Sample Robustness

In this section, the aim is to show that the d2 distance is robust for sampling,
or, in other words, is able to help us deciding if a sample is generated from
one automaton or another. A set of experiments and evaluation of the distance
behavior was carried out on artificial data. Parity functions [18] have been used
in various occasions as examples of functions that are hard to learn. A parity
function accepts strings if the total number of bs in a certain number of pre-
defined positions is even. To define this kind of functions as automata, we use
inversion positions expressions which are strings of n digits from {0, 1}. They
classify strings over a 2-letter alphabet Σ = {a, b}. A parity function f will ei-
ther accept a string of length n with an even number of bs in inversion positions
(marked by a 1), or a string of length n+ 1 with an odd number of bs in those
positions.

Fig. 3. f• Dpfa representation

For the experiment we created three functions/languages: f1 which represents
expression 101101 (represented Figure 3). f2 corresponds to expression 011010
and f3 has the same structure as f1 with small differences on transition proba-
bilities. Computation of the distance d2 is made on 15 samples (si) of different
sizes (from 10 to 10000 strings).

Results are shown on Figure 4. X axis represents the size of the data sets for
each function. Both X and Y axis are in logarithmic scale.

Figure 4 shows that lim|si|→∞ d2(si, fj) = d2(fi, fj). Moreover the conver-
gence is fast. A second point is that with n ≥ 200 we have a real difference
between d2(s1, f1) and the other computations. That allows us to hope to be
able to detect if a set has been sampled from a given automaton. We can also,
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Fig. 5. Behavior of the perplexity and the d• distance on ATIS database

as a relative result, note that the d2(s3, f1) curve is always under the one for
d2(s2, f1). We note that f1 is closer to f3 than to f2. Actually f1 and f3 represent
the same language with small differences on string probabilities.

4.3 Evaluation of the Quality of a Language Model

In this section, we show that the d2 distance can be a used as a good measure to
evaluate if a learned automaton is a good language model or not. As described in
the introduction, perplexity is often used to estimate this by using a test sample
for validation. Here, we compare d2 and perplexity between a learned automaton
and a test sample. We use the ATIS database [19]. The learning algorithm is
this time Alergia [20]: The merging process depends on Hœffding bounds (a
statistical test is performed) and a generalization parameter α. The original
algorithm is slightly modified in order to learn only acyclic automata. After
learning automata with different α values, we compute perplexity and d2 between
the learned automaton and a test sample. To compute perplexity we need to
smooth the automaton; we choose a simple smoothing method: interpolation
with a 1-gram. The results of the experiment are synthesized on Figure 5. X
axis is displayed in log scale format.
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Table 1. Success rates

Collection d• rate d• • rate # poems # strings # symbols

c• • 2.30 % 70.11 % 87 2381 46686
c• • 8.82 % 75.00 % 68 3067 61322
c• • 100.00 % 73.33 % 15 1079 27243
c• • 100.00 % 53.33 % 30 1398 26483

Globally, d2 behavior is close to that of pp. Moreover, we note that the
optimal automata for d2 and pp have similar sizes. Thus, distance d2 can be
considered as a good measure to estimate the quality of language learned model.
Again, we do not need to smooth the automaton to use this measure, which
allows it to be more objective when we only want to compare learning methods.

4.4 Classifying Authors

In this section, we use distance d2 to classify texts from different authors. We
used four collections of poems, two from Victor Hugo (cH1, cH2) and the two
others from Alphonse de La Martine (cM1, cM2). Each collection is used to
learn a language model (intended to represent the poet). From each collection
units of text (poems) are extracted. We then pair the collections (cH i with cM i)
and for each poem from collection 1 (resp. 2) compare it with poets cH2 and
cM2 (resp. cH1 and cM1). The experiment is successful if the distance between
the poem and the poet is less than the distance from the poem to the other
language model.

We present in table 1 the success rates of good classification for all the four
collections, with percentages of good classification and number of poems, sen-
tences (strings), word (symbols) of each collection. Globally, distance d2 provides
poor results: this is due to the fact that individual verses (the string unit) are sel-
dom repeated in different poems. In this case, the basic d2 classifier returns the
poem collection with the smallest co-emission probability. Distance d2p obtains
more convincing results: Common prefixes are reused by a poet. It should be
noted that results are only preliminar; We expect a distance measuring common
sub-strings to obtain better results.

5 Conclusion

The results reported in this paper indicate that distance d2 is an alternative to
perplexity for language modeling tasks. A certain number of questions arise from
our experiments: A theoretical study of the convergence rate would be helpfull;
Identification of the type of automata for which each distance is best suited is an
important task; We would like to continue the work on authors in order to enter
the debate over affiliations; And finally it would be nice to extend the prefix
distance, corresponding to a sub-string distance, and (this is harder) compute it
in a similar way?



Distances between Distributions: Comparing Language Models 277

References

1. Amengual, J.C., Sanchis, A., Vidal, E., Bened́ı, J.M.: Language Simplification
Through Error-Correcting and Grammatical Inference Techniques. Machine Learn-
ing Journal 44 (2001) 143–159

2. Ney, H.: Stochastic Grammars and Pattern Recognition. In: Proc. of the NATO
Advanced Study Institute. Springer-Verlag (1992) 313–344

3. Lucas, S., Vidal, E., Amari, A., Hanlon, S., Amengual, J.C.: A Comparison of
Syntactic and Statistical Techniques for Off-Line OCR. In: Proc. of ICGI 94. (1994)
168–179

4. Lyngsø, R.B., Pedersen, C.N.S., Nielsen, H.: Metrics and Similarity Measures for
Hidden Markov Models. In: Proc. of ISMB ’99. (1999) 178–186

5. Jelinek, F.: Statistical Methods for Speech Recognition. The MIT Press (1998)
6. Morgan, N., Bourlard, H.: Continuous Speech Recognition: an Introduction to
the Hybrid HMM/connectionnist Approach. IEEE Signal Processing Magazine 12
(1995) 24–42
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Abstract. A basic problem in the area of combinatorial algorithms for
genome evolution is to determine the minimum number of large scale
evolutionary events (genome rearrangements) that transform a genome
into another. The present paper is a contribution to the algorithmic
study of genom evolution by translocations which is an area related to
pattern recognition. Furthermore, it may be viewed as a contribution to
other areas related to pattern recognition like: error estimation, genetic
programming, disease diagnosis. In this paper we consider chromosomes
as being linear strings that exchange each other prefixes in the translo-
cation process. A new type of translocation distance between a pair of
multi-chromosomal genomes is introduced; we examine the complexity
of computing this distance in the case of uniform translocation, that is
at each step the strings exchange prefixes of the same length. We present
an exact polynomial algorithm based on the “greedy” strategy when the
target set is a singleton while a 2-approximation algorithm is provided
when considering arbitrary target sets. Some open problems are finally
formulated.

1 Introduction

Genomes of arbitrarily complex organisms are organized into chromosomes that
contain genes which may be considered as being arranged in linear order. Se-
quence alignment was actually the first step in molecular evolution studies but
in many cases sequence alignment is quite unreliable which makes further evo-
lutionary tree reconstruction almost impossible. It has been often found that
the order of genes is much more conserved than the DNA base sequence. In the
course of evolution, the genome of an organism mutates not only by processes at
the level of individual genes (point mutations: insertion, deletion or substitution
of individual bases) but also by some large-scale rearrangements in one evo-
lutionary event. Recently much attention has been given by this phenomenon.
One may argue that evolutionary and functional relationships between genes
can be captured by taking into considerations only local mutations. However,
the analysis of the genomes of some viruses (Epstein-Barr and Herpes simplex
viruses, see for instance [7, 13]) have revealed that the evolution of these viruses
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involved a number of large-scale rearrangements in one evolutionary event. Fur-
thermore, comparing plant and animal mitochondrial DNA, the point mutation
is estimated to be 100 times slower in plant than in animal, many genes are
nearly identical (more than 99% of them are identical) in related species [17].
These molecules which are almost identical in gene sequence differ fundamen-
tally in gene order. At this level, point mutations are less meaningful compared
to arrangements of gene fragments. See also [2, 7], for further discussions on this
topic.

Chromosomal rearrangements include pericentric and paracentric inversions,
intrachromosomal and interchromosomal transpositions, translocations, etc. For
a description of these rearrangements, the reader is referred to [21]. Translocation
is the biological process of exchanging material of the end of two chromosomes
and could result in a different genotype[12]. Such non-local operations might
permit an investigation of the evolutionary history for rather diverged organisms
that cannot be identified from the study of point mutations alone [19, 20]. Recent
developments in large-scale comparative genetic mapping seem to offer exciting
prospects for understanding mammalian genome evolution [4]. A grammatical
model based one these non-local operations can be found in [5] and [6]

The aim of this paper is to introduce a new type of translocation distance
and to investigate the complexity of computing this distance for uniform (equal-
length) translocation. This is a particular type of translocation which takes part
just between chromosomes that exchange prefixes of equal length.

Prior work dealing with the combinatorial analysis of genome operations has
focused on evolution distance in terms of inversions, transpositions or transloca-
tions for chromosomes formed from different markers which correspond to unique
segments of DNA. From the formal point of view this means that in traditional
genome rearrangement sorting problems the input data consists of permutations
of n labels, but this approach cannot capture duplication events. In this paper,
we considered chromosome as a nucleotide sequence unlike a unique marker se-
quence. Perhaps, this approach will not be practical for a while for lack of such
data, but we looked to this problem from a mathematical point of view only.
Kececioglu and Sankoff ([14, 15]) developed exact and approximation algorithms
for two types of inversion distance which was shown to be NP-complete [3]. More
recently [9] proposes a polynomial algorithm for signed inversion distance. Bafna
and Pevzner reported approximation algorithms for transposition distance [1].
Two highly relevant papers which present the first polynomial algorithms for
computing translocation distances are [10, 11]. Kececioglu and Ravi [16] dis-
cussed exact and approximation algorithms for distance involving translocations
alone as well as together with inversions. Some applications of these results to
biological data are now underway [2, 8]. The reader is also referred to [18] for a
review of open combinatorial problems motivated by genome rearrangements.

Our work differs from the aforementioned approaches in many respects: the
strings representing chromosomes may have multiple occurrences of the same
symbol, they may have common symbols, the number of copies of all strings in
the initial set is assumed arbitrarily large.
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2 Preliminaries

Let V be a given alphabet (practically this alphabet is the DNA alphabet
{A, T,C,G}); chromosomes may be viewed as strings over this alphabet. The
set of all nonempty strings over V is denoted by V +. For each string x ∈ V +,
whose length is denoted by |x|, x[i, j] delivers the substring of x that starts at
position i and ends at position j in x, 1 ≤ i ≤ j ≤ |x|. Conventionally, x[i, j] is
the empty string in all cases j < i. For two strings x, y over an alphabet V and
two integers 1 ≤ i < |x|, 1 ≤ j < |y|, we define the translocation operation

(x, y) �(i,j) (z1, z2) iff x = tu, y = vw, z1 = tw, z2 = vu, and |t| = i, |v| = j.

The pair of natural numbers (i, j) indicates the length of the prefixes they in-
terchange with each other. When we are not interested about the length of
these segments, we write simply �. Let us note that, from a chromosome and its
replica, say xyz, one may get two other chromosomes xyyz and xz. It is worth
mentioning here that this type of recombination is known as crossover between
”sister” chromatids and it is the main way of producing tandem repeats or block
deletions in chromosomes. We extend the translocation operation to a finite set
of strings A ⊆ V + by TO(A) =

⋃
x,y∈A{z, w|(x, y) � (z, w)}.

Let A be a finite set of strings such that each string of A has arbitrarily many
available copies. In other words, A may be viewed as the support of a multiset
of strings each of them having arbitrarily many copies. Define iteratively

TO0(A) = A, TOk+1(A) = TOk(A)∪TO(TOk(A)), TO∗(A) =
⋃
k≥0

TOk(A).

A translocation sequence in TO∗(A) is a sequence S = s1, s2, . . . , sn, where for
each 1 ≤ i ≤ n si = (xi, yi) �(ki,pi) (ui, vi), for some xi, yi, ui, vi ∈ TO∗(A) and
1 ≤ ki < |xi|, 1 ≤ pi < |yi|. Given a translocation sequence S as above and
x ∈ TO∗(A) we define

Pi(S, x) = card{j ≤ i|x = xj or x = yj}+ card{j ≤ i|xj = yj = x},

Fi(S, x)=
{

card{j ≤ i|uj = xj or vj = yj}+ card{j ≤ i|uj = vj = x}, if x /∈ A,
∞, otherwise.

The length of a translocation sequence S = s1, s2, . . . , sn is denoted by lg(S)
and equals n. A translocation sequence S as above is contiguous iff the following
two conditions are satisfied:

(i) x1, y1 ∈ A,
(ii) Fi−1(S, xi) > Pi−1(S, xi), and Fi−1(S, yi) > Pi−1(S, yi), for all 1 ≤ i ≤ n.

The second condition is very natural if one considers that the copies of the two
strings that exchange prefixes are not available anymore for further translocation
steps; it claims that at each translocation step at least one copy for any of the
two strings involved in this step is available. By CTS we mean a contiguous
translocation sequence. Let B be a finite subset of TO∗(A); a CTS S as above
is B-producing if Fn(S, z) > Pn(S, z) for all z ∈ B. In other words, S is B-
producing if at the end of all translocation steps form S we have at least one copy
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at each string in B. Roughly speaking, the translocation distance from A to B
(TD(A,B) shortly) is defined as the minimal number of steps strictly necessary
to get B starting from A, providing that at each step just one translocation takes
place. Formally,

TD(A,B) = min{lg(S)|S is a B − producing CTS in TO∗(A)}.
Sometimes we refer to B as the target set. In the sequel we are dealing with
the complexity of computing the translocation distance defined above for the
case of uniform translocation i.e. all strings exchange prefixes of equal length.
We distinguish two cases depending on the cardinality of target sets: singleton
target sets and arbitrary target sets.

3 Singleton Target Sets

As we said above, by uniform translocation we mean a special type of transloca-
tion so that prefixes which are to be exchanged are of the same length. Formally,
the translocation operation �(i,j) is said to be uniform iff i = j, so that we shall
simply write �i.

In the case of uniform translocation with a singleton target set, without loss
of generality we may assume that the initial set of strings contains only strings
of the same length, that is the length of the target string. The simple proof of
this statement is left to the reader. In conclusion, throughout this section the
strings in the initial set and the target string will be all of the same length.

Suppose that A = {x1, x2, . . . , xn} and let z be an arbitrary string of length
k; the following measure will be very useful in the sequel:

MaxSubLen(A, z, p) = max{q| ∃ 1 ≤ i ≤ n such that xi[p, p+q−1] =
z[p, p+ q − 1]}.

Note that with uniform translocation, a letter at position i in a string remains
at position i after moving to another string. Assume that z ∈ TO∗(A); define
iteratively the set H(A, z) of intervals of natural numbers as follows:
1. H(A, z) = {[1,MaxSubLen(A, z, 1)]};
2. Take the interval [i, j] having the largest j; if j = k, then stop, otherwise
put into H(A, z) the new interval [j + 1, j +MaxSubLen(A, z, j + 1)].

Note that we allow intervals of the form [i, i] for some i to be in H(A, z);
moreover, for each 1 ≤ i ≤ k there are 1 ≤ p ≤ q ≤ k (possibly the same) such
that i ∈ [p, q] ∈ H(A, z).

Lemma 1 Let S be a z-producing CTS in TO∗(A). Then,
lg(S) ≥ card(H(A, z)) − 1.

Proof. We prove this assertion by induction on the length k of z. For k = 1 the
assertion is trivially true because z must be in A, hence H(A, z) contains just
one element. Assume that the assertion is true for any string shorter than k. Let
us consider a CTS S = s1, s2, . . . , sq in TO∗(A) producing z. Moreover, we may
assume that si = (xi, yi) �pi (ui, vi), 1 ≤ i ≤ q, and z has been obtained in S at
the last step, that is either uq = z or vq = z. Let
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A′ = {x[MaxSubLen(A, z, 1)+ 1, k]|x ∈ A}, z′ = z[MaxSubLen(A, z, 1)+ 1, k].
For simplicity denote r = MaxSubLen(A, z, 1). Clearly, H(A′, z′) = {[i − r, j −
r]|[i, j] ∈ H(A, z)\{[1, r]}}, hence card(H(A′, z′)) = card(H(A, z))−1. Starting
from S we construct a CTS in TO∗(A′), producing z′ S′ = s′1, s

′
2, . . . s

′
m in the

way indicated by the following procedure:
Procedure Construct CTS(S,r);
begin
m := 0;
for i := 1 to q begin

if (pi > r) then
m := m+1; s′m = (xi[r+1, k], yi[r+1, k]) �pi−r (ui[r+ 1, k], vi[r+ 1, k]);

endif;
endfor;
end.

Claim 1: S’ is a CTS.
Proof of the claim. Firstly, we note that for each 1 ≤ i ≤ q so that pi ≤ r, the
relations ui[r + 1, k] = yi[r + 1, k] and vi[r + 1, k] = xi[r + 1, k] hold. Assume
that pi1 , pi2 , . . . , pim are all integers from {p1, p2, . . . , pq} bigger than r. Because
all p1, p2, . . . , pi1−1 equal at most r, it follows that both xi1 [r+1, k], yi1 [r+1, k]
are in A′. Now, it suffices to prove that for a given 2 ≤ j ≤ m, the relations

Fj−1(S′, xij [r + 1, k]) > Pj−1(S′, xij [r + 1, k]),
Fj−1(S′, yij [r + 1, k]) > Pj−1(S′, yij [r + 1, k]),

hold. We shall prove the first relation only. It is not hard to see that

Fj−1(S′, xij [r + 1, k]) =
∑

x[r+1,k]=xij [r+1,k]

Fij−1(S, x)− card(X) − card(Y ),

Pj−1(S′, xij [r + 1, k]) =
∑

x[r+1,k]=xij [r+1,k]

Pij−1(S, x)− card(X) − card(Y ),

where

X={t ≤ ij − 1|pt ≤ r, ut[r + 1, k] = vt[r + 1, k] = xij [r + 1, k]},
Y ={t ≤ ij − 1|pt ≤ r, ut[r + 1, k] = xij [r + 1, k] or vt[r + 1, k] = xij [r + 1, k]}.

In conclusion, as S is a CTS, it follows that Fj−1(S′, xij [r + 1, k]) > Pj−1(S′,
xij [r + 1, k]), and the proof of the claim is complete.

Claim 2: S’ is z’-producing.
Proof of the claim. More generally, we shall prove by induction on i that S′ is
producing ui[r + 1, k] and vi[r + 1, k] for all 1 ≤ i ≤ q. The assertion is trivially
true for i = 1. Assume that the assertion is true for all t ≤ i; we shall prove it
for i + 1. If ui+1[r + 1, k] is in A′ or pi+1 > r, we are done. If pi+1 ≤ r, then
ui+1[r + 1, k] = yi+1[r + 1, k]; for yi+1 /∈ A we have Fi(S, yi+1) > 0, hence there
exists t ≤ i such that ut = yi+1 or vt = yi+1. By the induction hypothesis, S′ is
producing ut[r + 1, k] which concludes the proof of the second claim.

But there exists at least one i such that pi ≤ r, it follows that m ≤ q− 1. By
the induction hypothesis, m ≥ card(H(A′, z′))− 1, and the proof is complete. �

The next result is a direct consequence of this lemma.
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Theorem 1 Let z be a string of length k and A be a set of cardinality n. There
is an exact algorithm that computes TD(A,z) in O(kn) time and O(kn) space.

Proof. The following algorithm indicates how to construct a CTS S = s1, s2 . . . ,
sm in TO∗(A) producing z, when z /∈ A, whose length is exactly card(H(A, z))
− 1.

Procedure Uniform translocation CTS construction(A,z);
begin
p :=MaxSubLen(A, z, 1); let x be a string in A with x[1, p] = z[1, p];
m := 0;
while p < k begin

r := MaxSubLen(A, z, p+ 1);
if r = 0 then THE STRING z CANNOT BE OBTAINED FROM A;

stop
else

let y be a string in A with y[p+ 1, p+ r] = z[p+ 1, p+ r];
m := m+ 1
sm = (x, y) �p (u, v)};
p := p+ r;
x := u;

endif
endwhile;
end.

It is easy to see that if the algorithm successfully terminates, then either u
or v is exactly z, and the length of the CTS determined by the algorithm is
exactly card(H(A, z))− 1. By the previous lemma, this in an optimal value. As
one can easily see the time complexity of this algorithm is given by the complex-
ity of computing the values MaxSubLen(A, z, p), which is O(kn). Obviously, it
requires O(kn) memory. �

4 Arbitrary Target Sets

We shall try to adapt the techniques used in the previous section for arbitrary
target sets, too. Let A be a finite set of strings and z ∈ TO∗(A); denote by

MaxPrefLen(A, z)=

⎧⎨⎩ |z|, iff z ∈ A,
max({q|q < |z|, there exists x ∈ A, |x| > q,

so that x[1, q]=z[1, q]} ∪ {0}),
MaxSufLen(A, z)=max({q| there exists x ∈ A, |x| ≥ |z|,

so that x[|x| − q + 1, |x|]=z[|z| − q + 1, |z|]} ∪ {0}),
ArbMaxSubLen(A, z, p)=max({q| there exists x ∈ A and |x| ≥ p+ q

such that x[p, p+ q − 1]=z[p, p+ q − 1]} ∪ {0}).

We define iteratively the set ArbH(A, z) of intervals of natural numbers as
follows, provided that all parameters defined above are nonzero:
1. ArbH(A, z) = {[1,MaxPrefLen(A, z)]};
2. Take the interval [i, j] having the largest j; if j = |z|, then stop. If j < |z| −
MaxSufLen(A, z), then put the new interval [j+1, j+ArbMaxSubLen(A, z, j+
1)] into ArbH(A, z); otherwise put [j + 1, |z|] into ArbH(A, z).
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Theorem 2 1. Let A be a finite set of strings and B be a finite subset of TO∗(A).

Then
∑
z∈B(card(ArbH(A,z))−1)

2 ≤ TD(A,B) ≤ ∑
z∈B(card(ArbH(A, z)) − 1).

2. There exist A and B ⊆ TO∗(A) such that TD(A,B) =∑
z∈B(card(ArbH(A,z))−1)

2 .

3. There exist A and B ⊆ TO∗(A) such that TD(A,B) =∑
z∈B(card(ArbH(A, z)) − 1).

Proof. 1. We shall prove the first assertion by induction on the length of the
longest string in B, say k. The non-trivial relation is∑

z∈B(card(ArbH(A,z))−1)
2 ≤ TD(A,B). (∗)

If k = 1, then B ⊆ A, hence card(H(A, z)) = 1 for all z ∈ B, therefore the
relation (∗) is satisfied. Assume that the relation (∗) holds for any two finite
sets X and Y , Y ⊆ TO∗(X), all strings in Y being shorter than k. Assume
that B \ A = {z1, z2, . . . , zm} and let S = s1, s2, . . . , sq, si = (xi, yi) �pi (ui, vi),
1 ≤ i ≤ q, be a B \ A-producing CTS in TO∗(A). Note that at least one string
in B \ A should exist, otherwise the relation (∗) being trivially fulfilled.

Consider m new symbols a1, a2, . . . , am and construct the sets:
A′ = {x[1, r]aix[r + 2, |x|]|x ∈ A, 1 ≤ i ≤ m}, B′ = {zi[1, r]aizi[r + 2, |zi|]|1 ≤
i ≤ m},, where r = min{pi|1 ≤ i ≤ q}. One can construct a B′-producing CTS
in TO∗(A′) of the same length of S, say S′ by applying the next procedure.

Procedure Convert(S);
begin
for j := 1 to m begin

z := zj; t := q;
while z /∈ A begin
find the maximal l ≤ t such that ul = z or vl = z;
t := l − 1;
if ul = z then replace ul by ul[1, r]ajul[r + 2, |ul|];

if pl > r then z := xl;
replace xl by xl[1, r]ajxl[r + 2, |xl|];

else z := yl;
replace yl by yl[1, r]ajyl[r + 2, |yl|];

endif;
else replace vl by vl[1, r]ajvl[r + 2, |vl|];

if pl ≤ r then z := xl;
replace xl by xl[1, r]ajxl[r + 2, |xl|];

else z := yl;
replace yl by yl[1, r]ajyl[r + 2, |yl|];

endif;
endif;

endwhile;
replace z by z[1, r]ajz[r + 2, |z|];

endfor;
replace the symbol on the position r + 1 in all strings in S that
have not been replaced so far by a• ;
end.

Now we apply the procedure in the proof of Lemma 1 to the sequence S′

for r previously defined. The obtained sequence S′′ is a B′′-producing CTS in
TO∗(A′′), where
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A′′ = {aix[r + 2, |x|]|x ∈ A, 1 ≤ i ≤ m}, B′′ = {aizi[r + 2, |zi|]|1 ≤ i ≤ m},
due to the two claims from the proof of Lemma 2.
For each 1 ≤ i ≤ m card(ArbH(A′′ , aizi[r+2, |zi|])) is either card(ArbH(A, zi))
or card(ArbH(A, zi))−1. Moreover, for each i such that card(ArbH(A′′, aizi[r+
2, |zi|])) = card(ArbH(A, zi)) − 1 there exist at least one step in S′ where the
strings exchange prefixes of length at most r. It follows that lg(S′′) ≤ lg(S′) −
 t/2!, where t = card({i|card(ArbH(A′′ , aizi[r+2, |zi|])) = card(ArbH(A, zi))−
1}). Consequently,

lg(S)= lg(S′) ≥ lg(S′′) +  t/2! ≥
∑m
1 (card(ArbH(A′′ , aizi[r + 2, |zi|]))− 1)

2
+

 t/2! ≥
∑m
1 (Arbcard(H(A, zi))− 1)

2
.

The reader may easily find sets A and B fulfilling the last two assertions. �

An α-approximation algorithm for a minimization problem is a polynomial
algorithm that delivers a solution whose value is at most α times the minimum.
From the previous theorem we have:

Theorem 3 There is a 2-approximation algorithm for computing the transloca-
tion distance from two sets of strings.

Proof. Obviously, an algorithm that computes
∑

z∈B(card(ArbH(A, z))−1) re-
quires O(n|B|), where n = card(A) and |B| is the sum of the lengths of all
strings in B. �

5 Conclusion

We have introduced a new translocation distance between two finite sets of
strings and proposed an algorithm, based on the “greedy” strategy, for comput-
ing this distance when the target set is a singleton. This is a constraint that does
not exclude many interesting biological applications. All results presented here
are valid for a particular type of translocation, namely the uniform translocation
where the strings exchange with each other prefixes of the same length. This re-
striction might be considered rather far from reality, but, even so, the problem of
finding a polynomial algorithm to compute the translocation between two finite
sets remains open. The next step is naturally to consider the case of arbitrary
translocation which is a more appropriate abstraction of the practical problem.
We hope to return to this topic in a forthcoming paper.
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Abstract. It is difficult to track, parse and model human-computer in-
teractions during editing and revising of documents, but it is necessary if
we are to develop automated technologies that will aid or replace humans.
This paper introduces a system for accessing and recording a stream of
events related to human actions in a real-time cartographic map revision
system. The recorded events are parsed into a sequence of meaningful
user actions and an action representation in XML format is generated.
We also report results of experiments on predicting user actions such
as view changes, edits, road tracking/production using hidden Markov
models.

1 Introduction

Analyzing and understanding human behaviour in software systems has gained
increasing interest in Artificial Intelligence, Pattern Recognition, Human - Com-
puter Interaction, and Cognitive Psychology. Surprisingly, very few research re-
sults have been utilized in real-world applications [1, 2]. A typical example is
that of semi-automatic road tracking in images where the human is only used
to initialize automated processes or as an editor at the end, with only a few or
no human-computer interactions along the way [3]. Because of the deficiencies
of computer vision algorithms, the performance of road tracking systems is very
limited, usually not reliable, and less efficient than humans performing the task
alone.

We have adopted a different paradigm: we study and model human perfor-
mance on such tasks, identify key actions and difficulties, and then develop algo-
rithms that improve the efficiency and accuracy of human operators. To achieve
this, we need to track, parse and model the user actions in real world tasks,
something that is rarely done in the document processing area [4, 5]. In this pa-
per, we introduce a real world application for computer aided map revision. The
software environment and the development tools in this project make it easy
to keep track of both the temporal and spatial information of the user actions
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in system-level events. These events are parsed into time-segmented, meaning-
ful and complete user action data that are stored in XML format. These data
can be used to model user behavior patterns, and to support and automate the
map revision process. In the next section, we briefly introduce the Raster Graph
Revision (RGR) system in the United States Geological Survey (USGS), the
class of maps of interest to this work. In Sections 3 and 4, we present a system
for tracking and parsing user actions. In Section 5 we present and discuss the
experimental results in modeling human viewing behaviour and evaluate user
performance using hidden Markov models (HMMs).

2 RGR System

One of the main paper products of the USGS topographic maps for the USA
is 7.5-minute quadrangle topographic map, which is the only uniform map se-
ries that covers the entire area of the continental United States in considerable
detail [6]. This map series consists of about 53,000 map sheets.

Current USGS maps are printed on white paper with six colors: black, red,
brown, green, blue and purple, one for each feature. The RGR system uses
existing film separates as the primary input and creates new film separates as
the primary output. Cronapaque positives are produced photographically from
the map separates and are scanned at 1000 dpi as raster images. The images, in
addition to the digital orthophoto quads (DOQs) of the area to be mapped, are
registered to the control file and displayed simultaneously on a computer screen
as the source for revision. DOQs are orthogonally rectified images from aerial
photos taken at height of 20, 000 feet with approximate scale of 1 : 40, 000. DOQ
can distinguish ground objects of 1 meter, which is enough for ground object
detection. Cartographers then make a visual comparison of the raster image and
DOQs. When a discrepancy is found between a feature on the raster image and
the DOQ, cartographers can add to, delete from, or modify the raster image to
match the DOQ. Figure 1 shows the environment of the RGR system.

The standard CAD tool for RGR systems is a Bentley Microstation. Bentley
I/RAS B is used to display and manipulate the scanned map layers, Z/I Imaging

Fig. 1. Map revision environment. Here previous map layers are aligned with current
digital image data.
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I/RAS C is used to display the DOQs, USGS RGR software provides CAD tools
to draw, delete and modify specialized graphic symbols on maps, and MVES
converts vectors and points to a symbolized raster format.

3 Tracking User Actions

In Microstation, interaction with the system is by keyboard or mouse. A simple
drawing operation may be achieved by clicking a tool icon on the tool bar or by
inputting a “key-in” command. To facilitate map revision, RGR uses a set of tools
for cartographic symbols, each of which, along with mouse actions, encompasses a
sequence of system events (key-ins). Each key-in is considered as an event. Events
from both inside or outside Microstation are processed by an input handler and
are sent to an input queue where a task ID is assigned to each event.

With the imbedded Microstation Development Language environment, we
can keep track of the states of the event queue and extract detailed information
on each event, as described in Table 1. These time-stamped sequences of system-
level events contain inter-action and intra-action information. The task, then, is
to parse these sequences into meaningful higher-level user action sequences.

Table 1. Data structure for system-level event.

event ID ID of the event
event name the key-in command
event type Is it a keyin, coordinate, or reset?
event time the time when the event is captured
event source where does the event come from
x coordinate x coordinate of the mouse clicking
y coordinate y coordinate of the mouse clicking

4 Analyzing and Parsing User Actions

Altogether there are 278 tools in the RGR software, each corresponding to a
human action. This number could be increased when new standards are adopted
in the USGS. Analysis of all these tools is not necessary. First, some tools are
used for features that rarely appear, or need not be revised in most cases. Second,
some tools relate to registration of the scans and DOQs, environment setting, file
input/output, and map plotting, and are not involved in the feature collection
process. Third, we only process actions related to feature collection, at least at
this initial stage of the project. As a result the number of tools is reduced to 144,
each being composed of a sequence of events. A complete action may contain
a tool selection, a sequence of coordinate clicks, and a reset operation. View
changes may occur before and after each coordinate click.

The actions can be grouped into 17 groups, each action group being defined
by the number of permissible coordinates and occurrence of reset operations.
Groups G0 to G11 contain system setting and drawing actions (e.g. draw a
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class-1 road or undo a previous action), groups V1 to V2 contain viewing actions
(e.g. zoom-in or pan-view), group R contains the “reset” action, and group CO
correspond to a coordinate click not involved in any action.

Action 1 Action 2 ........ Action n Action 1 Action 2 ........ Action n

Project

Task 1 Task 2 Task n........

........

Fig. 2. Hierarchy of the action database.

A sequence of system-level events is parsed into a tree structure as shown in
Figure 2. The root of the tree is a project, which is defined as the revision of a
map. A task is defined as the revision of specific ground object (e.g. a road, a
block of buildings, or a lake). Semantic information is contained at both project
and task level and can be tagged by human input. Finally, the user actions are
stored in a XML format database.

5 Issues in Computer Aided Map Revision

The purpose of computer aided map revision is to improve both the speed and
accuracy of the revision process. The solution to the first task is to reduce human
involvement in the drawing task by using feature tracking based on computer
vision. Until now, all research efforts fall in this area. However, the efficiency
and accuracy of the computer vision algorithms are not necessarily consistent
with human performance, suggesting that humans should be part of the feature
tracking process. On the other hand, humans too are not always accurate. Con-
sequently we envisage a tightly coupled, real-time, error-correcting interaction
between human and machine in order to make map revision more efficient. To
implement this we need to better understand these interactions.

5.1 Predicting Human Gaze with Hidden Markov Models (HMM)

One of the ways of reducing the human workload in map revision is to reduce
drawing actions and viewing changes in the map revision process. This can be
achieved by predicting when humans are likely to change viewing. To do so one
can use Markov or Hidden Markov Models [7, 1].

Along with the parsed human action sequences, we can also record the se-
quence of viewing locations (“gaze”). We have performed several experiments
with HMMs in order to study such viewing patterns. The states in the HMM
were defined as groups of actions where the groups were defined syntactically
and semantically. The syntactic groups were the 17 groups (17 states) defined
in Section 4, and the semantic groups were obtained by clustering actions based



Understanding Human-Computer Interactions in Map Revision 291

on their functions as used in the RGR system, such as a group of actions for
drawing transportation symbols or water body symbols. In this case, the actions
were divided into 6 groups (6 states). The observations were calculated from
the movements of the mouse. These movements were classified into either 9 (45o

step) or 17 (22.5o step) directions, with one direction in each group being used
for the no-movement case.

Two participants were required to perform three drawing tasks twice, one for
training and another for testing. The tasks involved the modification of roads,
buildings, water bodies, etc. The average time taken to finish each task was 46
minutes. Altogether 34644 system-level events with time-stamps were captured
and 9025 of these events were coordinate moves (changes in gaze). These events
were parsed into 2157 actions. Each task sequence contained 180 actions on
average. These task sequences were further cut into shorter sequences with 2
actions each. Finally, we obtained 560 training sequences and 540 test sequences
sampled at 1-second intervals, with an average length of 27 observations.

With the given number of states and observations, the degrees to which each
observation sequence could be predicted from the trained and untrained models
was determined by the degree to which the HMM could reproduce the movements
over a number of Monte Carlo trials. The results of these experiments are shown
in Table 2.

Table 2. The results of predicting next viewing change as a function of different
number of states (S) and observations (O) for two training sets and two test sets. Values
correspond to probabilities of correctly predicting the observation sequences given the
model and the Viterbi MAP solutions. The right column shows chance performance
levels. Average length of the observation sequences was 27.

Training1 Training2 Testing1 Testing2 Chance

17S 17O 0.72 0.63 0.61 0.63 0.06

6S 9O 0.72 0.63 0.61 0.63 0.11

2S 9O 0.79 0.69 0.67 0.69 0.11

The numbers in Table 2 refer to the average probabilities of correctly pre-
dicting the observation sequences given the model and the Viterbi MAP solution
over 100 Monte Carlo trials. This reduces to sampling from the state-dependent
observation vectors, given the Viterbi-predicted state for each observation value.
Three models were tested. Each model was estimated by first obtaining initial
estimates from the training sequences as all observations were automatically
labeled (states known). The model was then updated using the Baum-Welch
algorithm. We also tested a two-state model in which the states were either
system setting actions or drawing actions. The results show that in each state-
observation combination, probabilities of correctly predicting the observation se-
quences, given the models and Viterbi solutions, were significantly above chance
(last column of Table 2). These results are quite informative given the lengths
of the sequences (27 in average) and prediction rates significantly above chance.
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In real applications, however, predictions of viewing changes need to be much
more accurate. Further, complete viewing prediction requires not only a direc-
tion, but also an exact location on the map. This suggests that a simple analysis
of the user actions is not sufficient. The better prediction model should involve
the recognition of features from image and maps, as described below.

Current research results in semi-automatic or fully automatic road tracking
systems can be combined into the above model in order to provide support for
complete viewing prediction and automatic tracking of roads. In automatic road
tracking systems, the road seeds are found by the system without need to pre-
select points along the road [8]. It is normally difficult to extend these automatic
methods robustly and efficiently to very large images, such as the DOQs in this
project [9]. Our viewing prediction result provide the possibility to reduce the
searching area in a large image to relatively small areas in the predicted directions
so as to generate a semi-automatic road tracker. How large the predicted area is
can be decided by calculating the average length of the human viewing change
steps. In the next subsection, we introduce a simple semi-automatic road tracking
system on the assumption that target small area image has been extracted. Then
we compare the performance of human and computer in road tracking.

5.2 Comparing the Performance of Human
and Computer Vision-Based Road Tracking

In semi-automated road tracking systems, a human operator typically provides
initial parameters, including a starting point, a direction and a road width [8].
Baumgartner implemented a system with more extensive human computer inter-
actions [10]. When the system detects a possible failure of the tracking module,
it stops to allow the operator to select from a list of continuation options. In
such semi-automatic systems, it is assumed that the human can perform the task
correctly and precisely. Further, what the computer determines as “incorrect”
is also unclear and subject to error. This is not necessarily the case. To analyze
this, we developed a simple road tracker and compared its performance with
that of humans.

A road segment is determined by two consecutive coordinates (mouse clicks),
the axis joining the coordinates defines the human detected road. To compare
this axis with that detected by computer, we cropped the neighborhood image
of this road segment from the DOQ to reduce the search area (the size of a DOQ
is more than 2MB) and then performed Canny edge detection [11]. As a result,
points at maxima of gradient magnitude in the gradient direction are marked
as edges, which may include both road and non-road edges, such as contour of
cars. This edge operator is used because both straight and curved roadsides can
be detected. Abrupt greylevel changes caused by surface material changes can
also be detected and do not affect the extraction of candidate road edge points.
Figure 3(a) and 3(b) show an example of the cropped image and the image after
Canny edge detection.

For each point on the axis defined by the human operator, we constructed
a line perpendicular to the axis and determined the intersection points to the
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(b)(a) (c)

Fig. 3. (a) Cropped image from DOQ. (b) Human input (white blocks) and edges
detected by Canny edge operator. (c) Axis detected by computer.

edges. These points were the candidates of roadside. To reduce the disturbances
on the road, like cars and shadows, points on the edges with short length were
removed from the candidate list. If two or more candidates were found, the
road width limits defined by USGS was used as the upper and lower bounds
of the distances between roadsides [12]. The two closest intersections to the
axis detected by human, which also met the width limit, were selected as the
roadsides corresponding to the axis point. Connection of the mid-points of these
intersection pairs formed the axis detected by the computer. Figure 3(c) shows
the result of Canny-edge axis detection of the image in Figure 3(a).

Two kinds of errors occurred during Canny-edge axis detection. One kind
was caused by deficiencies in the Canny edge detection. When the road and the
background have similar greylevels, the Canny operator failed to mark the road
edges. To reduce this error, the roadsides were predicted by fitting a parabola to
the most recent road points, as described in [13]. This error can also be avoided
by detecting weak edges from gradient images using distance limits [14]. Another
type of error comes from disturbances on the road that have not been removed.
Some of them are connected with the roadsides, which made the road to be
thinner than the lower bound of the road width limit. Consequently, correct
road side candidates could not be selected by the system. This kind of error
could be avoided by jumping to the next axis point along the road.
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Fig. 4. Distances of road axis versus road angle changes in the training sets.

To compare human and computer performance, the mean distance of the axis
detected by computer and by human was calculated. Figure 4 shows the distri-
bution of the distances versus road angle changes on two training sets described
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in Section 5.1. The road angle change was obtained from the angle between two
consecutive axes detected by human. We expected that the distances between
the axis would increase along with the road angle changes, but the results show
that there is no relationship between the two. In most cases, the distances be-
tween the axis were less than 4 pixels despite the change of road angles. It is
within the tolerance of positional accuracy defined by USGS (maximum 6 pixels,
average 3 pixels) [15]. In the cases where the distances were too large to be ac-
ceptable, analysis shows that although most errors were caused by the deficiency
of the Canny-edge axis detection, some are caused by the inaccuracy of human in
georeferencing an ground object in DOQ with a map feature. The human input
may lie much closer to one roadside, or even falls outside of the road. In these
cases, the road tracking system may not select the correct roadside candidates.
An example of this deviation is shown in Figure 5.

(a) (b) (c)

Fig. 5. (a) Cropped image from DOQ. (b) Human input and edges detected by Canny
edge operator. (c) The white blocks at the end of the road are the input from human.
The small white dots show the axis detected by computer. Because the human input
road end points are shifted from the true centers, the computer can not detect all the
axis points correctly.

6 Conclusion

This paper has introduced a real world environment for map revision. The user
actions in the map revision are tracked and recorded as a time-stamped sequence
of events at the system level. These events are parsed into an event sequence
that is represented in XML format. This is - as far as we know - the first open
database on user behavior in real world applications involving document pro-
cessing, feature tracking, or pattern recognition.

Two experiments based on the human data are reported on predicting hu-
man viewing changes and comparison of the performances of human and com-
puter in road tracking. It is clear from these studies that in order to build a
human-machine system capable of improving human performance, we need a
more tightly coupled interaction between human and machine.
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Abstract. This paper presents and discusses an effective approach to assessing 
human postural deviations based on curvature measurements. Multiscale curva-
ture values are calculated from both parametric contours extracted from the sil-
houette image in sagittal plane and from the medial axis. The algorithms were 
applied to digital images of patients who have been submitted to Global Pos-
tural Reeducation (GPR) physiotherapy treatment. Features such as area, pe-
rimeter, center of mass, spreading, thinness degree and angulations are also ob-
tained for similarity shape analysis between images taken before and after the 
GPR treatment. The medial axis is evaluated to investigate how it can be used 
to infer the spine alignment of patients with postural deviations prior to taking 
exams such as x-ray or tomography.  

1   Introduction 

Unlike traditional physiotherapy approach, Global Postural Reeducation (GPR) 
physiotherapy treatment assesses human postural balance assuming human body as a 
complex set of interlinked segments. Thus, independent of the deviation’s location, it 
is important to observe the entire human silhouette image. The images used in this 
methodology are taken at different planes by a digital camera. Images taken on sagit-
tal plane provide knowledge of postural deviations such as thoracic kyphosis, lumbar 
hyperlordosis, cervical hyperlordosis, tibia angulation related to the feet, knee angula-
tions (flexion and extension) and pelvis (anterior and posterior tilts) [1]. 

In this work the performance of the GPR treatment is evaluated according to a fea-
sible curvature measure calculated to the sagittal plane contour of patient pictures that 
are taken before and after the treatment. This work adopts the multiscale curvature 
approach developed in [2]. 
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Other approaches related to this paper include the method proposed by Koara et al. 
[3] that generates the contour model of each link element of an articulated object by 
using hierarchical part decomposition method (HPD). The HPD method can divide 
the body regions into characteristic elements without any model of link parameters or 
shape based on the distribution of high-curvature points of the object’s contour in 
video sequences [3]. 

A new approach for object recognition based on polygonal approximation of the 
contour object was proposed in [4]. The authors adopted the polygon vertices as be-
ing the high curvature points of the contour applying the wavelet transform. 

Chang and Liu [5] presented a modified version of the curvature scale space (CSS) 
image of the contour [6,7] to recognize hand posture. 

The traditional clinical assessment of postural deviations in patients under 
physioteraphy treatment is achieved by the physiotherapist observing them in differ-
ent image planes, including the profile one (sagittal plane) before, during and after the 
treatment. The patterns of normal postures [4] are used to guide the exam that in-
cludes head projection analysis, alignment of thorax and back, alignment of arms 
relative to trunk, flexion of the knees and lumbar region curvature of the patient. This 
clinical assessment depends on the specialist ability, specially for subtle cases. Thus, 
this work provides a novel assessment method that measures the contour curvature 
for both sagittal plane image contour (SPIC) and the external contour of the medial 
axis (CMA). 

The procedure presented in this paper consists of two stages. In the first one, the 
curvature for both SPIC and CMA are calculated. In the second stage, the postural 
deviations are evaluated according to some features extracted from the patterns. 

The remainder of this paper is organized as follows. Section 2 presents a brief de-
scription of the curvature method used to assess posture patterns. Section 3 describes 
the geometric features used to evaluate the human shapes. Section 4 presents the 
experimental results and Section 5 provides the concluding remarks. 

2   Background 

The curvature defines the orientation changes in the tangential direction in each point 
of a given curve. A plot of a boundary curvature function can reveal sharp peaks 
corresponding to convex or concave regions in the boundary. Thus, the curvature 
analysis can be used to assist the physiotherapist in detecting human postural devia-
tions in sagittal plane images taken in the clinic according to some rules. 

The most popular method for multiscale curvature estimation uses a series of 
Gaussian to convolve with the curve contour. The Gaussian standard deviation con-
trols the smoothing effect and consequently the amount of details in the curve con-
tour. 

The representation of the original human contour is given in terms of the x and y 
coordinates along it. The signals x and y are obtained starting from the highest left 
point in the contour and following it in the counterclockwise manner. 
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The parametrized form of a given regular curve C is C(t) =  (x(t),y(t)), with t ∈  ⊂ 
ℜ, i.e. the parameter t has values over an interval  of the real line ℜ. The curvature 
of any point C(t0) =  (x(t0),y(t0)), t0 ∈ , is given by Equation (1). It measures direc-

tion changes on the contour and is defined as: 
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and y with respect to t. 
The curvature of a sagittal plane image contour can be estimated in terms of the 

Fourier transform of its x- and y- signals. Multiplying a set of Gaussian functions, 
with distinct standard deviations, by the Fourier spectra of the parametric x and y 
signals of the contour yields a shrinkage effect on the original shape. To overcome 
this effect, a scalar coefficient � for energy correction is multiplied by the x and y 
signals, according to César Junior et al [3]. This scheme is used before applying 
Equation (1). 

The proposed method consists in evaluating the curvature in each point of the pa-
tient’s contour, searching for local maxima values, i.e. high curvature points (HCP). 
These values reflect the most significant changes in the posture balance due to the 
GPR treatment. 

2.1   Symmetry Analysis 

Skeletonization [8], also known as the medial axis transform, is a process for reduc-
ing foreground regions in a binary image to a skeleton that largely preserves the ex-
tent and connectivity of the original region while throws away most of the original 
foreground pixels. The medial axis transform (MAT) is particularly interesting in this 
paper to addressing posture issue since it is closely related to the feasible alignment 
of the human spine. This section presents the MAT, also called symmetry axis trans-
form (SAT). 

We have assumed the medial axis as being the symmetry axis for the sagittal plane 
image contour. We have observed that the medial axis reflects relevant changes in the 
posture balance and it can be used by the physiotherapist to infer the patient’s pos-
ture.  

The overlapping of the medial axes of the patients and their respective contours are 
displayed in Fig. 2. The patients present sagittal deviations that are reflected in their 
medial axes taken before the GPR treatment as show Figs. 2(a), 2(c) and 2(e)). These 
postures in Figs. 2(b), 2(d) and 2(f) were flattened by the GPR treatment. The patients 
exhibit a stretched silhouette and significant differences can be noted bycomparing 
the cervical and lumbar regions of the patients. 
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 (a)   (b)             (c) (d)              (e)  (f) 
 

Fig. 1. The medial axis for sagittal plane image (bold line) of the (a) patient I before GPR, (b) 
patient I after GPR, (c) patient II before GPR, (d) patient II after GPR, (e) patient III before 
GPR  and (f) patient III after GPR. 

3   Shape Analysis 

The aim of this section is to present features used for shape analysis. The idea con-
sists in establishing the differences between the silhouette taken before and after the 
physiotherapy treatment. In the following, there are the relevant characteristics ad-
dressed to point out shape modifications due to the physiotherapy treatment. 

In this approach, the uncalibrated area (A) and perimeter (P) in pixels represent the 
geometrical features that describe the human silhouette. Derived from them, the com-
plexity (C) achieves a small numerical value for simple geometrically silhouettes and 
larger values for complex ones.  It is defined as: 

 .
A

C =
2 �

 (2) 

In [8] the area to perimeter ratio (APR) and thinness ratio (TR) are described by 
equations (3) and (4), respectively.    

 .
A

APR =
P

 (3) 

A
TR = 4 2P

⎛ ⎞
⎜ ⎟⎝ ⎠

 . (4) 

The center of mass (C.M.) can be used to show the stretching effect upon the pa-
tient posture. Derived from the center of mass, the maximum (Dmax) and minimum 

distances (Dmin) from the boundary points to the center of mass are useful to deter-

mine qualitatively the stretching degree of the posture.  The spreading measure (S) is 
derived from the principal component analysis [9], and it is presented in Equation (5) 
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where 1 and 2  are the two eigenvalues associated with the covariance matrix and 

1 > 2 . This measure will be low for long and thin silhouettes and high for flattened 

profiles. 

100 2S =  .
�1 2

 (5) 

4   Experimental Results 

The images were taken by a digital camera in different planes in the beginning, in the 
middle and at the end of the GPR treatment. The selected patients wore shorts to 
reduced tactile hints from garments and stood barefoot on a fixed platform. Further-
more, they had short hair to avoid hiding the cervical spine. These procedures were 
taken to improve the assessment of the sagittal deviations. 

Upon posture examination, patient I in Fig. 2(a) presents: lumbar hyperlordosis, 
thoracic hyperkiphosis and cervical hyperlordosis, head, hands and abdomen forward 
projected. After the GPR treatment, the new profile did not exhibit thoracic hy-
perkiphosis and the hands were aligned with the trunk. The thoracic and cervical 
regions presented standard flexion of the spine. 

Relevant points in the sagittal plane image contour were marked as show Figs. 3(a) 
and 3(c) to call attention of the remarkable changes achieved in their surroundings by 
GPR. These points were selected because they were located in regions of the human 
contours that presented significant changes in the global postural balance, such as 
neck, abdomen, hands, thoracic kyphosis, lumbar lordosis and cervical lordosis. The 
modified posture of the patient I in Fig.3(c) due to the physiotherapy treatment was 
straightforwardly reflected in the curvature graphs of Figs. 3(d) and 3(g). The ampli-
tude of the curvature values for these points displayed in Fig. 3(d) was decreased 
after GPR and the same effect was observed for the curvature (filled line) of the me-
dial axis closed contour in Fig. 3(g). 

By observing the curvature values and shape measures in Table 1 taken before and 
after GPR it can be noticed that all patients presented satisfactory results after the 
physiotherapy treatment. The curvature values for the points located in the cervical 
spine region confirmed the smoothing effect over the cervical hyperlordosis provided 
by the treatment. Similar results were observed in the lumbar spine, neck, abdomen, 
hands and thorax regions. 

The shape measures in Table 1 pointed to an increasing tendency of the spreading 
measure, except for patient II, but an otherwise decreasing tendency of the thinness 
ratio for all patients. It implies that there was a stretching effect in the silhouette of 
the patients I, II and III derived from the physiotherapy treatment. The decreasing 
effect on the x- coordinates of the center of mass indicates that the patient III did not 
present a compressed silhouette. It can be observed that the spinal curves were 
smoothed after GPR treatment. Even though the x- coordinates for the other two pa-
tients did not decrease, the postural balance improvement became evident.  
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    (a)                         (b) 

 

    (c)                        (d) 

                                   

 (e)           (f)                                                            (g) 

Fig. 2. Patient I  and (a) its contour before GPR, (b) its respective curvature graph, (c) its con-
tour after GPR (d) its respective curvature graph , (e) the medial axis (bold line) for the sagittal 
plane image before GPR, (f) the medial axis (bold line) for sagittal plane image after GPR  and 
(g) a close detail of the overlapped curvatures calculated for the medial axis contour taken  
before (filled line) and after (dotted line) GPR. 

5   Concluding Remarks 

The smoothing effect over the curvatures caused by the GPR treatment was more 
straightforwardly visible for the contour curvature values related to lumbar and tho-
racic regions of the patients using this kind of physiotherapy. The external contour 
curvature of the medial axis was measured to substantiate the curvature results of the 
sagittal plane image contour and to infer the spine alignment. The remarkable 
changes on the postural balance of the patients pointed out to the benefits of the treat-
ment. 
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Table 1. Shape measures and curvature values of the patient’s profiles taken before and after 
the GPR treatment. 

 Patient I Patient II Patient III 

 

 
Before 
GPR 

 
After 
GPR 

 
Before 
GPR 

 
After 
GPR 

 
Before 
GPR 

 
After 
GPR 

Shape Measures 
A 25132 22663 45046 45393 34284 29850 
P 1099 1098 1503 1575 1164 1143 
C.M. (228,54) (234,59) (308,58) (308,57) (245,49) (234,47) 
Dmin 27.203 26.401 37.74 35.51 34.99 27.78 

Dmax 264.19 264.89 364.79 377.93 279.33 267.17 

Dmed 138.63 139.26 202.49 195.83 151.21 145.36 

S 28.818 33.052 25.94 22.70 27.48 27.24 
C 19.556 20.575 19.98 20.85 17.73 18.66 
TR 0.075633 0.067268 0.071 0.065 0.095 0.084 
APR 22.868 20.64 29.97 28.82 29.45 26.12 

k(t) - Curvature Values 
Neck 0,1643 0,0519 0,3147 0,2217 0,2013 0,1420 
Abdomen 0,1706 0,1399 0,4027 0,3256 0,3760 0,2935 
Hands 0,2327 0,1305 0,4931 0,3915 0,4263 0,3087 
Lumbar 0,1423 0,0738 0,3429 0,2194 0,2837 0,2650 
Thorax 0,2142 0,1354 0,4500 0,4258 0,3911 0,3178 
Cervical 0,0113 0,0221 0,1616 0,1161 0,1221 0,0379 

K(t) - Curvature Values for the Medial Axis 
Neck 0.0086     0.0069     0.7000     0.6000     0.0084 0.0091 
Abdomen 0.0168     0.0106     0.7500     0.6667     0.0099 0.0109 
Hands 0.0145 0.0097 0.5750 0.5333 0.0073 0.0128 
Lumbar 0.0176     0.0083     0.7500     0.6667     0.0106 0.0081 
Torax 0.0088     0.0071     0.3250 0.4000 0.0042 0.0049 
Cervical 0.0187     0.0095 0.8250 0.7778 0.0095 0.0091 
 
The proposed method seems to be a promising approach for automatic evaluation 

of posture deviations because it can support visual diagnosis performed by the 
physiotherapist. It reduces the subjective evaluation of postural deviations establish-
ing a more precise clinical assessment tool. The advantage of this system over other 
medical imaging ones is the fact that it does not use ionizing radiation, it is portable, 
versatile, noninvasive and relatively low-cost. 
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Abstract. This paper describes a statistical framework for recognising
2D shapes with articulated components. The shapes are represented us-
ing both geometrical and a symbolic primitives, that are encapsulated
in a two layer hierarchical architecture. Each primitive is modelled so
as to allow a degree of articulated freedom using a polar point distri-
bution model that captures how the primitive movement varies over a
training set. Each segment is assigned a symbolic label to distinguish
its identity, and the overall shape is represented by a configuration of
labels. We demonstrate how both the point-distribution model and the
symbolic labels can be combined to perform recognition using a prob-
abilistic hierarchical algorithm. This involves recovering the parameters
of the point distribution model that minimise an alignment error, and
recovering symbol configurations that minimise a structural error. We
apply the recognition method to human moving skeleton.

1 Introduction

The task of recognising articulated shapes has attracted considerable interest in
computer vision. The main problem is how to robustly recover correspondence
when the object being tracked undergoes deformations and the detected feature
points defining the object are subject to noise. One of the most effective ways
of developing matching techniques is to draw on probabilistic and statistical
methods. This approach has lead to the development of point distribution models
[1], deformable templates [2] and condensation [3].

There are a number of ways in which object articulation can be modelled.
Perhaps the simplest of these is to decompose the shape into a skeletal form,
consisting of limbs or branches, and to model the articulation of the branches.
The mechanical movement of the resulting shape can be captured by the rotation
of the components. However, in order to constrain the change in shape to be
physically realistic bounds, or distributions, must be imposed on the rotation
angles [4, 5]. Hence, the mechanical constraints on articulation must be combined
with a statistical model of limb movement. In addition to movement of the limbs,
the articulated shape also has a structural composition, since the limbs can be
assigned labels to distinguish them, and the arrangement of the labels can be
used to provide further constraints for shape-recognition.

The aim in this paper is to develop a statistical framework that can be used
to recognise articulated shapes using information concerning limb movement and
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symbolic constraints concerning the overall shape structure. To do this, we de-
velop a hierarchical algorithm. Each shape is represented as an arrangement of
articulated limbs. The movement of the limbs is represented by a polar point
distribution model. The structural component of the model is represented by a
configuration of limb-labels. The recognition architecture has two intercommu-
nicating layers. The first of these is concerned with limb alignment, and this
aims to recover the lengths and polar angles of the limbs. The second aims to
assign limb-labels so that the overall structure is recovered consistently.

2 Point Distribution Models

The point distribution model of Cootes and Taylor commences from a set train-
ing patterns. Each training pattern is a configuration of labelled point co-ordi-
nates or landmarks. The landmark patterns are collected as the the object in
question undergoes representative changes in shape. To be more formal, each
landmark pattern consists of L labelled points whose co-ordinates are represented
by the set of position co-ordinates {X1, X2, ....., Xl} = {(x1, y1), ......(xL, yL)}.
Suppose that there are T landmark patterns. The tth training pattern is repre-
sented using the long-vector of landmark co-ordinates Xt = (x1, y1, x2, y2, · · · ,
xL, yL)T , where the subscripts of the co-ordinates are the landmark labels.
For each training pattern the labelled landmarks are identically ordered. The
mean landmark pattern is represented by the average long-vector of co-ordinates
Y = 1

T

∑T
t=1Xt. The covariance matrix for the landmark positions is

Σ =
1
T

T∑
t=1

(Xt − Y )(Xt − Y )T (1)

The eigenmodes of the landmark covariance matrix are used to construct the
point-distribution model. First, the unit eigenvalues E of the landmark covari-
ance matrix are found by solving the eigenvalue equation |Σ −EI| = 0 where I
is the 2L × 2L identity matrix. The eigen-vector φi corresponding to the eigen-
value Ei is found by solving the eigenvector equation Σφi = Eiφi. According
to Cootes and Taylor [1], the landmark points are allowed to undergo displace-
ments relative to the mean-shape in directions defined by the eigenvectors of
the covariance matrix Σ. To compute the set of possible displacement direc-
tions, the M most significant eigenvectors are ordered according to the magni-
tudes of their corresponding eigenvalues to form the matrix of column-vectors
Φ = (φ1|φ2|...|φM ), where E1, E2, ....., EM is the order of the magnitudes of the
eigenvectors. The landmark points are allowed to move in a direction which is
a linear combination of the eigenvectors. The updated landmark positions are
given by X̂ = Y + Φγ, where γ is a vector of modal co-efficients. This vec-
tor represents the free-parameters of the global shape-model. When fitted to an
observed set of landmark measurements Xo, the least-squares estimate of the
parameter vector is

γ =
1
2
(Φ+ ΦT )(Xo − Y )



306 Abdullah A. Al-Shaher and Edwin R. Hancock

3 Shape Representation

Our aim is to use point distribution models to account for shape deformations
due to limb articulation. The model is a two component one. First, we have a
limb-model. This accounts for the variations in shape of each of the individ-
ual limbs using a point distribution model to describe the modes of variation
of the landmark points about a mean shape. Second, we have a limb arrange-
ment model. This is an augmented point distribution model that describes the
arrangement of the centre points of the limbs, and their polar angles.

We are concerned with recognising 2D shapes by modelling segment move-
ment around the centre of the shape. The shape under study is assumed to be
segmented into a set of K jointed and non-overlapping limbs. The kth limb is
represented by a long-vector of consecutive landmark points

Xk = (xk1 , y
k
1 , x

k
2 , y

k
2 , ....x

k
nk

, yknk)
T

The centre-of-gravity of the limb indexed k is

ck =
1

|nk|

nk∑
i=1

(xki , y
k
i )

T

The overall shape is represented by a long-vector of consecutive limb centres
C = (cT1 , cT2 , .., cTK)

T . The centre of articulated shape is computed by averaging
the centre of the limbs

U =
1

|K|

K∑
k=1

ck

To model the articulated shape, we use a polar variant of the standard point
distribution model [6]. This model allows the primitives to move about the centre
of articulation According to this model the shape is viewed as an arrangement
of non-overlapping primitives. Each primitive is represented by mean point ck.
Limb articulation is represented by a set of limb-angles. For the kth limb the
angle is defined to be

θk = tan−1
U(y)− ck(y)
U(x)− ck(x)

and the angular arrangement of the limbs is represented by the vector Θ =
(θ1, θ2, ..., θK)T . The global movement of the limbs within a shape is specified
by the concatenated long-vector of angles and the centres-of-articulation, i.e. by
the vector S = (ΘT , CT )T .

To augment the geometric information, we assign symbols to the articulated
components. Each training pattern is assigned to a shape class and each com-
ponent primitive is assigned to a primitive class. The set of shape-labels is Ωc

and the set of articulated component or limb labels is Ωs. The symbolic struc-
ture of each shape is represented a permissible arrangement of limb-labels. For
shapes of class ω ∈ Ωc the permissible arrangement of limbs is denoted by
Λω =< λω1 , λ

ω
2 , ... >.
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4 Learning Mixtures of PDM’s

In Cootes and Taylor’s method [7], learning involves extracting a single covari-
ance matrix from the sets of landmark points. Hence, the method can only
reproduce variations in shape which can be represented as linear deformations
of the point positions. To reproduce more complex variations in shape either a
non-linear deformation or a series of local piecewise linear deformations must be
employed.

In this paper we adopt an approach based on mixtures of point-distributions.
Our reasons for adopting this approach are twofold. First, we would like to be
able to model more complex deformations by using multiple modes of shape
deformation. The need to do this may arise in a number of situations. The first
of these is when the set of training patterns contains examples from different
classes of shape. In other words, we are confronted with an unsupervised learning
problem and need to estimate both the mean shape and the modes of variation
for each class of object. The second situation is where the shape variations in the
training data can not be captured by a single covariance matrix, and a mixture
is required.

Our approach is is based on fitting a Gaussian model to the set of training
examples. We commence by assuming that the individual examples in the train-
ing set are conditionally independent of one-another. We further assume that the
training data can be represented by a set of shape-classes Ω. Each shape-class
ω ∈ Ωs has its own mean point-pattern Yω and covariance matrix Σω. With
these ingredients, the likelihood function for the set of training patterns is

p(Xt, t = 1, ..., T ) =
T∏
t=1

∑
ω∈Ωs

p(Xt|Yω , Σω) (2)

where p(Xt|Yω , Σω) is the probability distribution for drawing the training pat-
tern Xt from the shape-class ω. According to the EM algorithm, we can max-
imise the likelihood function above, by adopting a two-step iterative process.
The process revolves around the expected log-likelihood function

Qn+1 =
T∑
t=1

∑
ω∈Ωs

P (t ∈ ω|Xt, Y
(n)
ω , Σ(n)

ω ) ln p(Xt|Y (n+1)ω , Σ(n+1)
ω ) (3)

where Y
(n)
ω and Σ

(n)
ω are the estimates of the mean pattern-vector and the

covariance matrix for class ω at iteration n of the algorithm. The quantity
P (t ∈ ω|Xt, Y

(n)
ω , Σ

(n)
ω ) is the a posteriori probability that the training pat-

tern Xt belongs to the class ω at iteration n of the algorithm. The probability
density for the pattern-vectors associated with the shape-class ω, specified by the
estimates of the mean and covariance at iteration n+1 is p(Xt|Y (n+1)ω , Σ

(n+1)
ω ).

In the M, or maximisation, step of the algorithm the aim is to find revised es-
timates of the mean pattern-vector and covariance matrix which maximise the
expected log-likelihood function. The update equations depend on the adopted
model for the class-conditional probability distributions for the pattern-vectors.
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In the E, or expectation, step the a posteriori class membership probabilities
are updated. This is done by applying the Bayes formula to the class-conditional
density. At iteration n+ 1, the revised estimate is

P (t ∈ ω|Xt, Y
(n)
ω , Σ(n)

ω ) =
p(Xt|Y (n)ω , Σ

(n)
ω )π(n)t,ω∑

ω∈Ω p(Xt|Y (n)ω , Σ
(n)
ω )π(n)t,ω

(4)

where

π
(n+1)
t,ω =

1
T

T∑
t=1

P (t ∈ ω|Xt, Y
(n)
ω , Σ(n)

ω ) (5)

4.1 Mixtures of Gaussians

We now consider the case when the class conditional density for the training
patterns is Gaussian. Here we assume that the pattern vectors are distributed
according to the distribution

p(Xt|Y (n)ω , Σ(n)
ω ) =

1

(2π)L
√

|Σ(n)
ω |

exp
[
−1
2
(Xt − Y (n)ω )T (Σ(n)

ω )−1(Xt − Y (n)ω )
]
(6)

At iteration n+1 of the EM algorithm the revised estimate of the mean pattern
vector for class ω is

Y (n+1)ω =
T∑
t=1

P (t ∈ ω|Xt, Y
(n)
ω , Σ(n)

ω )Xt (7)

while the revised estimate of the covariance matrix is

Σ(n+1)
ω =

T∑
t=1

P (t ∈ ω|Xt, Y
(n)
ω , Σ(n)

ω )(Xt − Y (n)ω )(Xt − Y (n)ω )T (8)

When the algorithm has converged, then the point-distribution models for
the different classes may be constructed off-line using the procedure outlined in
Section 2.

We apply this learning procedure separately to the landmark data for the
individual limbs, and to the combined limb angle and limb-centre data. For the
limb with label λ, the estimated modal matrix is Φλ and the estimated parameter
vector is γλ. For the shape-class with label ω, on the other hand, the combined
modal matrix for the articulation angles and limb-centres is Φ̃ω and the result of
fitting to data is a parameter vector Γω . The firstK rows of Γ̃ω correspond to the
limb angles, and the remaining 2K to the long-vectors of limbs centres. However,
we need to constrain the parameters corresponding to the limb angles. Suppose
that the mean-vector for the limb-angles is Θ̂w and the corresponding covariance
matrix is Σw. The angular deformations are constrained to avoid flipping by
limiting the deformation vector. We use the variance associated with the eigen-
modes to constrain the deformation. The kth component of the parameter vector
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is constrained to fall in the interval −3
√

Ek ≤ Γ(k) ≤ 3
√

Ek The articulation
angles lie in the range −180◦ to 180◦ to avoid discontinuities associated with
the flip from 0◦ to 360◦. A similar procedure for learning is followed to learn the
variation in the polar representation of the limb and limb classes.

5 Hierarchical Architecture

With the limb-articulation and limb-centre point distribution models to hand,
our recognition method proceeds in a hierarchical manner. Our aim is to classify
the set of limb landmark long-vectors X = {z1, ..,zk, ...,zK) representing a
test-shape. To commence, we make maximum likelihood estimates of the best-fit
parameters of each limb-model to each set of limb-points. The best-fit parameters
γkλ of the limb-model with class-label λ to the set of points constituting the limb
indexed k is

γkλ = argmaxγ p(zk|Φλ, γ) (9)

We use the best-fit parameters to assign a label to each limb. The label is that
which has maximum a posteriori probability given the limb parameters. The
label assigned to the limb indexed k is

lk = argmax
l∈Ωs

P (l|zk, γλ, Φλ) (10)

In practice, we assume that the fit error residuals follow a Gaussian distribution.
As a result, the class label is that associated with the minimum squared error.
This process is repeated for each limb in turn. The class identity of the set of
limbs is summarised by the string of assigned limb-labels L =< l1, l2, ..... >.
Hence, the input layer is initialised using maximum likelihood limb parameters
and maximum a posteriori probability limb labels. The shape-layer takes this
information as input. The goal of computation in this second layer is to refine
the configuration of limb labels using global constraints on the arrangement
of limbs to form consistent shapes. The constraints come from both geometric
and symbolic sources. The geometric constraints are provided by the fit of a
polar limbs point distribution model. The symbolic constraints are provide by a
dictionary of permissible limb-label strings for different shapes.

The parameters of the limb-centre point distribution model are found using
the EM algorithm [8]. Here we borrow ideas from the hierarchical mixture of ex-
perts algorithm [9], and pose the recovery of parameters as that of maximising a
gated expected log-likelihood function for the distribution of limb-centre align-
ment errors p(X |Φω, Γω). The likelihood function is gated by two sets of prob-
abilities. The first of these are the a posteriori probabilities P (λωk |zk, γλωk , Φλω

k
)

of the individual limbs. The second are the conditional probabilities P (L|Λω) of
the assigned limb-label string given the dictionary of permissible configurations
for shapes of class ω. The expected log-likelihood function is given by

L =
∑
ω∈Ωc

P (L|Λω)
{∏

k

P (λωk |zk, γλωk , Φ̃λω
k
)
}
ln p(X |Φ̃ω, Γω) (11)
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The optimal set of polar limb arrangement parameters satisfies the condition

Γ ∗ω = argmax
Γ

P (L|Λω)
{∏

k

P (λωk |zk, γλωk , Φ̃λω
k
)
}
ln p(X |Φ̃ω, Γω) (12)

From the maximum likelihood alignment parameters we identify the shape-
class of maximum a posteriori probability. The class is the one for which

ω∗ = arg max
ω∈Ωc

P (ω|X, Φ̃ω, Γ ∗ω) (13)

The class identity of the maximum a posteriori probability shape is passed back
to the limb-layer of the architecture. The limb labels can then be refined in the
light of the consistent assignments for the limb-label configuration associated
with the shape-class ω

lk = arg max
λ∈Ωs

P (λ|zk, γkl , Φ̃λ)P (L(λ, k)|Λω) (14)

Finally, the maximum likelihood parameters for the limbs are refined

γk = argmax
γ

p(zk|Φ̃lk , γ, Γ ∗ω) (15)

These labels are passed to the shape-layer and the process is iterated to conver-
gence.

6 Models

To apply the model to shape-recognition, we require models of the alignment
error process and the label error process.

6.1 Alignment Errors

To develop a useful alignment algorithm we require a model for the measure-
ment process. Here we assume that the observed position vectors, i.e. zk are
derived from the model points through a Gaussian error process. According to
our Gaussian model of the alignment errors,

p(zk|Φ̃λ, γλ) =
1
2πσ

exp
[
− 1
2σ2

(zk − X̂λ − Φ̃λγλ)T (zk − X̂λ − Φ̃λγλ)
]
(16)

where σ2 is the variance of the point-position errors which for simplicity are
assumed to be isotropic. A similar procedure may be applied to estimate the
parameters of the polar limb-angle distribution model.
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6.2 Label Assignment

The distribution of label errors is modelled using the method developed by Han-
cock and Kittler [10]. To measure the degree of error we measure the Hamming
distance between the assigned string of labels L and the dictionary item Λ. The
Hamming distance is given by

H(L,Λω) =
K∑
i=1

δli,λωi (17)

where δ is the Dirac delta function. With the Hamming distance to hand, the
probability of the assigned string of labels L given the dictionary item Λ is

P (L|Λω) = Kp exp[−kpH(L,Λω)] (18)

whereKp = (1−p)K and kp = ln 1−pp are constants determined by the label-error
probability p.

Fig. 1. Human Training Sets

7 Experiment

We have evaluated our approach on human motion sequences. Figure 1 shows
some of the data used for the purpose of learning. In total, we used 14 distinct
classes of human motion for learning purposes. We made use of 18 frames per
class where each frame is segmented into 13 feature points representing the centre
of a limb. In figure 2, we show four example shapes recovered as the output of
our learning stage.

To evaluate recognition performance, we have used 1200 frames correspond-
ing to different motion classes for testing. Table 1 shows the label number of
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(a) (b) (c) (d)

Fig. 2. Learnt Shapes:(a) Boxing, (b) Kicking, (c) Relaxing, (d) Stretching

Table 1. Label replacement for shape classes

Boxing Kicking Relaxing Picking Stretching Shooting
Iter. No. Cor Wro Cor Wro Cor Wro Cor Wro Cor Wro Cor Wro

1 4 9 2 11 3 10 5 8 4 9 8 5

2 2 11 1 12 2 11 3 10 3 10 10 3

3 1 12 0 13 0 13 2 11 2 12 12 1

4 0 13 0 13 0 13 0 13 0 13 13 0

5 0 13 0 13 0 13 0 13 0 13 13 0

Table 2. Recognition rate for shape classes

Shape Samples Correct Wrong

Boxing 200 198 2

Kicking 200 163 37

Relaxing 200 197 3

Picking 200 181 19

Stretching 200 200 0

Shooting 200 179 21

Recognition Rate 93.16% 6.83%

correct and incorrect limb label assignment as a function of iteration number.
It is apparent that the error rate decreases for classes that are irrelevant to the
shape under recognition, while it increases for the correct class. Table 2 shows
the recognition rate for frames of the six classes of motion. The recognition rate
is of 93.16%. The poorest recognition occurs for the kicking, the picking and
the shooting classes. Since these classes share similar limb movement, we can
conclude that recognition is reasonably high. In Figure 3, we show the align-
ment process as a function of iteration number. The different curves are for
different motion classes. It is clear from the graph that the a posteriori prob-
ability converges on a clear ambiguous assignment from a state in which there
is a considerable ambiguity. Figure 4 shows the recognition rate for different
classes when random jitter is present. The recognition rate is reasonably high
even under noise.
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8 Conclusion

In this paper, we have described a method for fitting articulated shape-models
to landmark point data. The shape deformation process adopted is based on
point distribution models. The model representation is a hierarchical one. There
is a Cartesian deformation model for the limbs and the limb-centres, together
with a polar model which represents limb articulation. We develop a probabilis-
tic framework for fitting a mixture of articulated models to data. The method
delivers good results of human shape modelling.
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Abstract. In surveillance systems for monitoring people behaviours, it is im-
portant to build systems that can adapt to the signatures of people’s tasks and
movements in the environment. At the same time, it is important to cope with
noisy observations produced by a set of cameras with possibly different charac-
teristics. In previous work, we have implemented a distributed surveillance sys-
tem designed for complex indoor environments [1]. The system uses the Abstract
Hidden Markov mEmory Model (AHMEM) for modelling and specifying com-
plex human behaviours that can take place in the environment. Given a sequence
of observations from a set of cameras, the system employs approximate prob-
abilistic inference to compute the likelihood of different possible behaviours in
real-time. This paper describes the techniques that can be used to learn the dif-
ferent camera noise models and the human movement models to be used in this
system. The system is able to monitor and classify people behaviours as data is
being gathered, and we provide classification results showing the system is able
to identify behaviours of people from their movement signatures.

1 Introduction

Monitoring people behaviours in large and complex environments using multiple cam-
eras for automated surveillance is an important research area. Approaches to this prob-
lem usually divide the solution into two layers of processing: a low-level tracking com-
ponent processes low-level visual data from the cameras and produces a stream of
events which are then interpreted by a recognition module to produce high-level de-
scription of the people activities in the environment [2–5]. Oliver et al [2] propose a
Layered Hidden Markov Model (LHMM), where the classification results of the lower
layer are used as inputs to the higher layer. Ivanov and Bobick [3] proposed a two-stage
strategy to recognise the interactions of humans and vehicles. At the lowest level, the
system recognises simple events, which are used as inputs for a stochastic context-free
grammar parsing mechanism to recognise multi-object interactions at the higher level.

It is well-known that current low-level tracking techniques are not robust, and their
outputs are inherently noisy due to a variety of environmental and processing condi-
tions. Thus, it is up to the “high-level” module to deal with the imperfect output pro-

A. Fred et al. (Eds.): SSPR&SPR 2004, LNCS 3138, pp. 315–324, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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duced by low-level processing to produce robust and accurate descriptions of the ob-
served activities. We thus argue that the high-level behaviour recognition module needs
to be based on a framework that facilitates the modelling of and reasoning with un-
certainty. Previously, we proposed the use of the Abstract Hidden Markov mEmory
Model (AHMEM) for this purpose [1, 6]. In the AHMEM, behaviours are organized
into a stochastic hierarchy. Each behaviour can be refined into a sequence of more
simple behaviours at lower levels. In addition, the rules for refinement can be made
non-deterministic or stochastic. The model is as expressive as other grammar-based
models such as the Probabilistic Context Free Grammar (PCFG) [7], and can model
state-dependent goal-directed behavours. At the same time, it supports online, and effi-
cient probabilistic inference of high-level behaviours from low-level data. Furthermore,
the hierarchical nature of the model makes it suitable for the natural hierarchy existing
in spatial regions, making it scalable to larger and more complex environments.

The AHMEM framework also provides the flexibility for integrating with a noisy
low-level tracking module via a HMM-like model at the bottom level of the behaviour
hierarchy. This acts like an interface between the AHMEM and the low-level track-
ing module. This paper addresses the problem of learning the necessary parameters for
building this interface between the high-level and low-level tracking module. We pro-
vide techniques for estimating the obsevation models of the cameras, and to estimate
the movement models of people on one floor of a building. We then describe a com-
plete distributed surveillance system combining a low-level tracking module with the
AHMEM for behaviour recognition. We provide experimental results showing that the
system is able to monitor and robustly classify complex human behaviours in an indoor
environment.

The paper is organised as follows. An overview of the surveillance system is pro-
vided in Section 2. The techniques to learn observation models and movement models
for the surveillance system are presented in Sections 3 and 4, respectively. The system
implementation is described in Section 5. Finally, Section 6 presents the experimental
results of the implemented system in a real office-like environment.

2 Overview of the Surveillance System

The surveillance system has two major components: the distributed low-level tracking
module and the high-level behaviour recognition module. The distributed tracking mod-
ule extracts people trajectories using multiple static cameras. The trajectories are inputs
for the high-level behaviour recognition module. The implementation of the surveil-
lance system is described in [1].

In the behaviour recognition module, the AHMEM and its parameters define a con-
ditional distribution over the observation sequences given a behaviour: Pr(õ|πk). In
recognising the behaviour of a person in the scene, we are given a sequence of obser-
vations from the low-level tracking module: õt−1 = (o1, . . . , ot−1) up to the current
time t, and need to compute the probability Pr(πk

t |õt−1), where πk
t represents the pol-

icy being executed at level k and time t. This provides the distribution of the possible
behaviours that might be currently executed at level k in the hierarchy. The computa-
tion needs to be done at every time instance t when a new observation ot arrives. The
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problem is termed policy recognition [8], and is equivalent to the on-line inference (fil-
tering) problem in the AHMEM. An efficient approximate inference algorithm based
on the Rao-Blackwellised Particle Filter (RBPF) [9] for computing the probabilities is
given in [10, 8]

The necessary parameters for building the interface between the high-level and low-
level tracking modules are the observation models of cameras and the movement models
of people on one floor of a building [1]. In the following sections, we will describe the
techniques to learn these parameters in detail.

3 Learning Observation Models

The observation model for a camera C is defined as B = Pr(o|s, C), where s is the
state of a person and o is the observation. Usually, there are a large number of states in
the field of view (FOV) of the camera C. Thus, we have difficulty in creating enough
sample video sequences to learn B. Assume that the observation o is in one of the cells
within the neighbourhood of the state s (including s), and Pr(o|s, C) is unchanged for
all states s in the FOV of camera C, i.e. the statistics are spatially invariant. We can
compress the observation model B to a compressed observation model Bc, which is a
3× 3 matrix given as:

Bc =

⎡⎣Pr(onorthwest|C) Pr(onorth|C) Pr(onortheast|C)
Pr(owest|C) Pr(ocenter|C) Pr(oeast|C)
Pr(osouthwest|C) Pr(osouth|C) Pr(osoutheast|C)

⎤⎦
where onorth, onortheast, oeast, osoutheast, osouth, osouthwest, owest, onorthwest
and ocenter are nine possible observations of a true state s (see Fig. 1). Instead of
learning the observation model B, we can learn the compressed observation model Bc

from a set of sample video sequences.

onorth

oeastocenter

osouthwest

onortheast

osoutheast

owest

osouth

onorthwest

state s

Fig. 1. The possible observations of a state s.

We learn the compressed observation model Bc for a camera C from sample video
sequences, which are created by recording people in the environment from the views
of all cameras. We run the tracking system to obtain the real world coordinates of peo-
ple in the sample video sequences. Among these coordinates, we randomly choose N
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coordinates (x1,y1),. . . ,(xN ,yN ) that are originally generated from camera C. We con-
sider these coordinates as the observations of the people. We then manually extract
the corresponding person’s true positions: (xt1, y

t
1),. . . ,(xtN , ytN ). These coordinates are

mapped to the cells (states) in the environment, i. e. (x1, y1),. . . ,(xN , yN ) are mapped
to o1,. . . ,oN and (xt1, y

t
1),. . . ,(xtN , ytN ) are mapped to s1,. . . ,sN .

We estimate the compressed observation model Bc from the N observations o1,
. . . , oN and the N corresponding states s1,. . . ,sN . Note that Bc = Pr(o|C), where
o ∈ {onorth, onortheast, oeast, osoutheast, osouth, osouthwest, owest, onorthwest,
ocenter} (see Fig. 1). To estimatePr(onorth|C), we count the number of times that oi is
the northern neighbouring state of si from the N observations and the N corresponding
states. Pr(onorth|C) then equals the frequency that oi is the northern neighbouring state
of si. The remaining probabilities of Bc are estimated in a similar manner.

4 Learning Movement Models

For a bottom level behaviour π in a region R, we need to learn the movement model
A = Pr(s′ | s, π), which is defined for all states s in R and for all neighbouring states
s′ of s [1].

4.1 Dealing with Large Transition Models

For the case in which region R is small, we can learn A from a number of training
video sequences. However, when region R is large and has many states, the number of
training video sequences required to learn A is large due to the size of the state space.
Therefore, instead of learning the complete movement model A, which is a difficult
task, we compress A to a compressed movement model Ac and learn Ac.

In large regions, we are only interested in behaviours representing the action of a
person going to a destination such as going to a printer, going to a computer, and so on.
Thus, we can assume that each behaviour defined in a large region has a destination. The
compressed movement model Ac is defined as a 3×3 matrix specifying the probabilities
that a person moves to the next state, assuming that the direction to a destination is the
up-front vector. The compressed movement model Ac is given as:

Ac =

⎡⎣pnorthwest pnorth pnortheast
pwest pcenter peast
psouthwest psouth psoutheast

⎤⎦ (1)

Given a direction to reach the destination of π which is say East, Ac can be rotated
to apply the probabilities.

4.2 Compressing the Movement Model

The compressed movement model Ac can be computed from the movement model A.
We compute the probability psouth of Ac as:

psouth =

∑
s,s′, where s′=south(s,π) Pr(s

′|s, π)∑
s,s′ Pr(s′|s, π)
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where the state south(s, π) is computed as follows: The set of directions {North,
Northeast, East, Southeast, South, Southwest, West, Northwest } is rotated such that
the up-front vector (North) becomes the direction to reach to the destination of π from
s. Then, south(s, π) is the neighbouring state of the state s in the new South. In a similar
way, we can define north(s, π), northeast(s, π) and so on. The other probabilities of Ac

are computed in a similar manner.

4.3 Expanding Compressed Movement Models

The movement model A can be computed from the compressed movement model Ac

as follows: Note that A = Pr(s′|s, π), where s′ is a neighbouring state of s (including
s), and Ac is shown in Eq. 1. We first determine the relation among s, s′ and π. If
s′ = north(s, π), then Pr(s′|s, π) = pnorth, if s′ = northeast(s, π), Pr(s′|s, π) =
pnortheast, and so on.

4.4 Learning the Compressed Transition Models

The movement model of the behaviour π, i.e. A = Pr(s′ | s, π), and the observation
of each camera C, i.e. B = Pr(o|s, C), form a Hidden Markov Model. We propose
an algorithm based on the expectation maximisation (EM) algorithm for the Hidden
Markov Model (HMM) to learn the compressed movement model Ac. We term this
algorithm the EM algorithm for the HMM with compressed parameters (Algorithm 1.1).

The inputs for Algorithm 1.1 are the compressed observation models for the cam-
eras and a set of training sequences. The compressed observation models of the cameras
are learned as in Section 3. They remain unchanged throughout the algorithm. To gener-
ate the required training data for the algorithm, we determine all cameras that can view
the execution of the behaviour π, and record a set of video sequences of people execut-
ing π using these cameras. We take each video sequence as input to the tracking system
to extract the person’s trajectory. The trajectory is converted to a sequence of cells or
observations. As a result, we have a set of observation sequences for the behaviour π.

In the beginning, the algorithm initialises the initial state probability π and the
compressed movement model Ac. It also expands the compressed observation model
Bc(Ck) to the observation model B(Ck) (k = 0, . . . , no camera − 1). In the main
loop, for each observation sequence oj1, oj2,. . . ,ojmj (j = 1, 2, . . . , no seq), the algo-
rithm finds the camera that generates this observation sequence. Assume that camera
Ck is found. The algorithm expands the compressed movement model Ac to the full
movement model A. Then, it computes the sufficient statistics, which are the expected
frequency (number of times) in a state s at time t = 1, i.e. π̄j , and the expected num-
ber of transitions from a state s to a state s′, i.e. Āj . Āj is compressed to Āc

j . After
obtaining the expected sufficient statistics for all observation sequences, we estimate
the parameters of the HMM for the next iteration as π = normalise(

∑no seq
j=1 π̄j) and

Ac = normalise(
∑no seq

j=1 Āc
j). The algorithm terminates when the likelihood score

has reached a local minimum, and we obtain the compressed movement model Ac.
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Algorithm 1.1 The EM algorithm for the HMM with compressed parameters.

input
Obs. sequences oj• , oj• ,. . . ,ojmj (j = 1, . . . , no seq)
Bc(Ck), k = 0, . . . , no camera− 1)

output
Compressed movement model Ac

begin
Initialise π• • • , Ac• • •

Expand Bc(Ck)→ B(Ck),∀k = 0, . . . , no camera− 1
for i=1 to N

for j=1 to no seq
Get camera Ck which generates oj• , oj• ,. . . ,ojmj
Expand → A•i•

From π•i• , A•i• , B(Ck) and oj• , oj• ,. . . ,ojmj , compute:

π̄
•i•
j : expected frequency in state s at time t = 1

Ā
•i•
j : expected number of transitions from s to s′

Compress Ā•i•
j → Ā

c•i•
j

end
Compute π•i• • • , Ac•i• • • as:
π•i• • • = normalise(

∑no seq
j• • π̄

•i•
j )

Ac•i• • • = normalise(
∑no seq

j• • Ā
c•i•
j )

end
return Ac = Ac•N• • •

end

5 System Implementation in Real Environments

The implementation of the surveillance system in an office-like environment is de-
scribed in [1]. The environment has a Corridor, a Staff room and a Vision lab. The
surveillance system has six static cameras, in which two are in the Corridor, one in the
Staff room and the last three in Vision lab.

A three-level behaviour hierarchy is defined in the system (Fig. 2). The behaviours
at the bottom level represent the movement of a person within a single region (Corridor,
Staff room or Vision lab). The behaviours at the middle level represent the movement
of a person in the whole environment. The top level behaviours represent the different
tasks that a person might perform during the entire interval that the person stays in the
environment, i.e. printing the documents, using the library or an unclassified task.

The set of parameters of the behaviour hierarchy are described in [1]. The parame-
ters of the middle level and high level behaviours are defined manually, but they can be
learned easily by observing many real scenarios. The movement models of the bottom
level behaviours and the camera observation models are specified as follows:

5.1 Specifying the Compressed Observation Models for the Cameras

We learn the compressed observation models for the six cameras C0,. . . ,C5 as in Sec-
tion 3. We let people walk in the environment and record a set of video sequences seen
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The Corridor The Staff room The Vision lab

The environment

Middle level

The environment

(level 1)
Bottom level

(level 3)

(level 2)

(6) go to paper
(7) go to library
(8) access library

(12) go to printer
(3) exit left
(4) exit right

(5) go to Comp A (11) go to Comp B(1) go to Staff rm
(2) go to Vision lab

(9) walk ard Staff rm
(10) exit Staff rm

(14) exit Vision lab
(13) walk ard Vision lab

(2) go to printer 2
(3) go to paper 2

(5) access library 2

(7) exit 2
(4) go to library 2

(6) walk ard 2
(1) go to computer 2

(3) unclassified task 3
(2) use library 3
(1) print 3

Top level

Fig. 2. The behaviour hierarchy.

from the six cameras. With each camera, we obtain 100 coordinates of the people re-
turned from the tracking system and manually get the corresponding true coordinates.
From these coordinates, we estimate the compressed observation model for the camera.

Fig. 3(a)-(f) show the compressed observation models learned for the six cameras.
Note that a coordinate of a person returned from the tracking system (the person’s ob-
servation) is the centre of the bottom edge of the person’s bounding box. Therefore,
the observation of a person is usually nearer the camera than the person’s true position.
This explains why in the compressed observation model for camera C0, probabilities
Pr(onorth|C0) and Pr(oeast|C0) are quite high (see Fig. 3(a)). The probabilities of the
compressed observation models for the other cameras show the same property.

5.2 Specifying the Movement Models for Bottom Level Behaviours

The bottom level behaviours, which translate to the full or compressed movement mod-
els are learned as described in Section 4.

We learn the compressed movement model of behaviour go to printer as follows:
Behaviour go to printer can be viewed from cameras C0, C1 and C5. We record 30
video sequences of people executing behaviour go to printer from cameras C0, C1 and
C5. Then, we use Algorithm 1.1 to obtain the compressed movement model of be-
haviour go to printer (see Fig. 4(a)).

The movement models of other bottom level behaviours are learned in a similar way.
For example, the results of the learning steps for behaviours go to Linux, exit Vision,
go to paper, go to library and exit Staff are shown in Fig. 4(b)-(f).

6 Experiments and Results

To demonstrate that the parameters specified in Sections 5.1 and 5.2 allow the surveil-
lance system to recognise and monitor people behaviour reliably, we tested the system
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Fig. 4. The compressed movement models of behaviours go to printer, go to Linux, exit Vision,
go to paper, go to library and exit Staff.

with 16 video sequences. In each video sequence, a person performs a task of printing,
using the library or an unclassified task. The results of recognising these behaviours
over time are shown in Fig. 5. As in the figure, with each video sequence and at each
time slice, the system can recognise the most likely behaviour being executed by the
person. The winning top level behaviour is available only at the end of the correspond-
ing video sequence.

We compare the winning top level behaviours recognised by the system in the 16
video sequences with the groundtruth. The system correctly recognises the top level
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behaviours in 15 video sequences and misclassifies the top level behaviour in video
sequence 11 (see Table 1). In video sequence 11, a person is executing behaviour
use library 3, but the system recognises unclassified task 3 as the winning behaviour
(see Fig. 5, seq 11). This is because the person changes direction suddenly just before
leaving the environment. A re-examination of the diagram in Fig. 5 (seq 11) does show
that puse library 3 is approximately 0.4, and is significantly better than pprint 3. These
results show that the system is able to robustly recognise people activities.
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Fig. 5. Querying the top level behaviour in the 16 video sequences.

7 Conclusion

We have presented the techniques that can be used to learn camera observation models
and human movement models. These techniques are used in a surveillance system for
recognising and monitoring high-level human behaviours from multi-camera surveil-
lance data. The system can query the high-level behaviours executed by a person over
time. Behaviour classification results in a real environment demonstrate the ability of
the system to provide real-time monitoring of high level behaviours in complex spatial
environments with large state spaces.
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Table 1. The results of recognising the top level behaviour in the 16 video sequences.

Seq. Winning behaviour Time periods that the winning behaviour has the
highest probability

Compared with
groundtruth

1 print 3 26-27, 42-213=END correct
2 print 3 194-253=END correct
3 print 3 38-45, 47-231=END correct
4 print 3 89-93, 145-146, 170-170, 172-172, 174-176=END correct
5 print 3 48-51, 79-194=END correct
6 print 3 30-36, 48-311=END correct
7 print 3 51-51, 53-57, 68-294=END correct
8 print 3 54-323=END correct
9 use library 3 82-136=END correct

10 use library 3 95-149=END correct
11 unclassified task 3 1-107=END wrong
12 unclassified task 3 1-106, 123-181=END correct
13 unclassified task 3 1-106, 133-181=END correct
14 unclassified task 3 1-46, 149-252=END correct
15 unclassified task 3 1-108, 158-159, 162-191, 201-203, 207-246=END correct
16 unclassified task 3 1-239=END correct
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Abstract. In this paper, least squares and spectral methods for attributed graph 
matching are compared. For the least squares method, complete graphs and de-
composed graph models are considered in conjunction with the least squares 
approximations to optimal permutation matrices. We have used a version of 
Umeyama’s spectral method for comparison purposes. Results clearly demon-
strate how both these methods are affected by additive noise but that, in general, 
least squares methods are superior. 

1   Introduction 

Graphs are a very powerful tool for many practical problems including pattern recog-
nition and computer vision [1-8]. Graph matching algorithms can be divided into 
search-based methods and methods based on optimization [3]. Least squares (LSM) 
and spectral methods (SM) are two recent optimization methods for attributed graph 
matching. However, to this date, there has not been a direct comparison of their rela-
tive benefits and deficits. 

The method proposed by van Wyk et al.[1] is a more recent formulation of the least 
squares method. The essence of their method is to construct an interpolation function 
to approximate the best fitting permutation matrix (Interpolator-Based Kronecker 
Product Graph Matching (IBKPGM)) that maps vertices of one graph into the other. 
However, the method is less than ideal under additive noise conditions. Consequently 
it makes sense to integrate this method with graph models that are known to scale 
well with noise, in particular, those based on decomposition models. El-Sonbaty and 
Ismail [2] proposed a decomposition-based method where isomorphisms are estab-
lished between sets of subgraphs – to be explored within the context of the LSM in 
this paper. Grewe and Kak[11] also adopted the similar model to extract local feature 
set for 3D object recognition.   

An alternative to least squares methods is the spectral methods that have also re-
ceived recent attention [4-8]. The main advantage of SMs is their low complexity, but 
their disadvantage is, again, their sensitivity to noise. Umeyama [4] proposed an ei-
genvalue decomposition (EVD) approach for weighted graph matching. For two 
weighted graphs, eigenvalue decompositions were computed after which the product 
of the two eigenvector matrices were used as inputs to a linear assignment algorithm 
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to find the optimal isomorphism. Scott et al.[5] adopted a method that maximized the 
inner product of two affinity matrices to find the correspondence between two images. 
This approach was extended by Shapiro et al.[6]. For two image feature sets, the sin-
gular value decomposition (SVD) of their feature distance matrix was computed and 
the distances between each pair of eigenvectors were used to determine vertex corre-
spondences. Kosinov and Caelli[8] proposed an eigen-subspace projection clustering 
method for inexact graph matching. The main idea is that for a pair of graphs (having 
the same or different number of vertices) their eigenvalue/vector decompositions are 
obtained and the vertices are then projected into a normalized eigenspectral subspace 
that adjusts for differences in vertex numbers and spectral energies. They then per-
form clustering in this normalized subspace to determine correspondences. However, 
extensions of SMs to attributed graph isomorphisms have not been reported in the 
literature. 

In this paper, these two algebraic methods (SM, LSM) for attributed graph match-
ing  are compared. In addition, we propose an extension to the IBKPGM method 
based on using a piece-wise graph decomposition approach (the GDKPGM method). 
The layout of this paper is as follows. In Section 2, some preliminaries of the 
IBKPGM method are introduced. Extensions to current algorithms are proposed in 
Section 3. Some issues related to the attributed graph spectral method are discussed in 
Section 4, experimental results and comparisons are presented in Section 5. Section 6 
draws conclusions about such algebraic methods. 

2   The IBKPGM Method 

The focus of IBKPGM is a matching model for attributed graphs where an input 
graph, G: 

)}{,}{,,( 11
s
jj

r
ii BAEVG ===  (1) 

is matched to a reference graph, ’G , where   
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matrices and vertex attribute vectors, respectively. The reference and input graphs 
each have r edge attributes and s vertex attributes while the number of vertices in G’ 
and G are n’:=|V’| and n:=|V| , respectively (see [1] for details). 

Graph matching is then defined in terms of determining the permutation matrix, P, 
which minimizes   
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where ||·|| denotes the Frobinius matrix norm with typical values for q of 1 or 2 and 

where  TP corresponds to the transpose of P. Although some proposed algorithms 
attempt to solve Eqn. (3) directly, Van Wyk et al [1] used the Kronecker Product form 
of Eqn. (3) to allow for a method that approximates P using an Interpolator-Based 
Kronecker Product formulation.  
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In this method, each edge attribute matrix of size of n*n is transformed into a 

1*2n  column vector and each vertex attribute vector is transformed into a diagonal 
matrix first, and then, also, a vector. Thus, Eqn. (3) is rewritten as  

   )(min
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qsr

i
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+

=
Φ

Φ−   (4) 

where PP ⊗=Φ and ⊗  denotes the Kronecker product of matrices, vecZ is an op-
erator that transforms a matrix Z into a vector. If the least squares method is applied to 
Eqn. (4) directly, its complexity is high, requiring the calculation of the pseudo-

inverse of a )(*2 srn +  matrix. To overcome this, van Wyk et. al.[1] used the inter-
polator method to derive an approximate optimal solution to Eqn. (4). 

That is, if Eqn. (4) is viewed as the mapping )( ’
kk AFA = , where srk += ,...,1 , 

then the mapping of vertex i in ’A  to A  can be approximated using an interpolator-
based method described by  
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where ),( ⋅⋅K  is the reproducing kernel. A common choice is a linear kernel: 

vecYvecXvecYvecXK T)(),( =   (6) 

In this case the interpolator coefficients, ilC | , can be solved first by letting 

CGA =  (7) 
where 
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Based on the estimated interpolator coefficients, ilC | , the elements of Φ  can be 

calculated by (see [1] for more details) 
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Since, PP ⊗=Φ  , an approximation to the permutation matrix, P , namely, P , 

can be derived from Φ̂ : 
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van Wyk et. al. [1] have shown that if an optimal assignment method is adopted, 

F
PP − is minimum in the mean-square-error sense, where F is the Frobenius norm 

(F-norm). Consequently, the permutation matrix, P , can be derived from P based on 
an assignment algorithm. Albeit, this method still lacks robustness to noise. For this 
reason we explore how to integrate the core concept of IBKPGM but over subgraphs 
of the graphs using the following simple decomposition model.  

3   Graph Decompositions and GDKPGM Matching Algorithm 

Here we have used the decomposition model proposed by El-Sonbaty and Ismail [2] 
where, for each vertex, v, a subgraph is defined consisting of all vertices that are di-
rectly connected (a path length of 1) to v. Fig. 1 shows such a simple decomposition 
(trees rooted by each vertex, see [2] for details). 

 

 

 

 

 
(a)              (b)          (c)          (d)            (e) 

Fig. 1. Original graph (a) and all subgraphs (b)-(e) after decomposition. 

Suppose that after decomposition the set of reference graph subgraphs consists of 
’,..,1},{ njSGR j =  where n′  corresponds to the number of vertices in the refe-              

rence graph and SGRj to the subgraph corresponding to vertex j. Similarly, 

niSGIi ,..,1},{ = , corresponds to the subgraphs in the comparison (input) graph, hav-
ing n vertices.  

3.1   Algorithm 

1. Decompose both the input and reference graphs - as above.  
2. For each pair of jSGR  and iSGI , compute replicator coefficients, Cij 

for jiji GCA =  where iA represents the attribute matrix of subgraph iSGI  by Eqn. 

(8) of size, )(*2 srn + ; Gj  is derived from jSGR  by Eqn. (11). 

3. Compute P  from Eqns. (13) and (14) and use the matrix F-norm to obtain
ijF , 

F

T
jiij PPAAF ’−=  - the “cost” of matching the two subgraphs(vertices). 

4. Use an optimal assignment method to find optimal correspondence between sub-
graph jSGR  and iSGI . 



A Comparison of Least Squares and Spectral Methods for Attributed Graph Matching      329 

3.2   Complexity Analysis 

Discussion is limited to undirected, fully connected graphs and, for analysis conven-
ience, suppose the two graphs have the same number vertices, namely, nn ′= . The 
complexity of the IBKPGM method is )( 4nO being dominated by the extraction of the 

Kronecker match matrix when )( srn +>>  from Eqns. (5)-(14). If we directly use their 

method, the complexity is high, )( 6nO . However, the proposed algorithm can reduce 
complexity. Based on the decomposition model, the edge attribute matrix of each 
subgraph has the following form: all diagonal elements are zero, and there is only one 
non-zero column and row - namely, the total number of non-zero elements is 22 −n . 
If this matrix is transformed into a column vector, there are 22 −n  non-zero rows and 
the vertex attribute matrix has only n non-zero diagonal elements. Hence, for each 
subgraph all attribute matrices are transformed into vectors and rearranged into an 

)(*2 srn + matrix by Eqn. (8) having, at most, 23 −n  non-zero rows, where 22 −n  
rows are from the edge attribute matrix and n rows from vertex attribute matrix. 

According to Eqn. (12), the size of jG  is )(*)( srsr ++ , and the matrix iA  in 

Eqn. (12) has, at most, 23 −n  non-zero rows; therefore ijC  has at most 23 −n  non-

zero rows. For Eqn. (13), since C and A’

i have, at most, 23 −n  non-zero columns and 
rows their product has, at most, 23 −n non-zero elements, so the actual complexity is 

)( 2nO  for Eqn. (13). Thus, the total non-zero elements in Φ should be, at most, 

)23(*2 −nn , and the complexity of Eqn. (14) should be )( 3nO .  
van Wyk’s method [1] uses the Kuhn–Munkres optimal assignment algorithm to 

determine the final optimal correspondence between vertices. It has a complexity 

of )( 3nO [9]. However, Yamada [10] designed an optimal assignment algorithm 

whose complexity is )( 2nO which can be used to replace the Kuhn–Munkres method. 

Using this, then, the complexity of each loop of the GDKPGM algorithm is )( 3nO . 

Thus, the total complexity of this method is )( 5nO . It is one order higher than 
IBKPGM. For El-Sonbaty and Ismail’s method [2], its complexity is, best case, 

)( 3nO ; worst case, )( 5nO . 

4   Spectral Methods for Graph Matching (SMGM) 

Spectral methods typically consist of the following simple steps: 
 

1. For attributed graphs, compute their vertex-wise covariance matrix (column-

wise: AAT ). For simple non-attributed and undirected graphs, this corresponds to 
their adjacency matrices.  

2. For the above matrices, eigenvalue/vector decomposition is performed. 
3. Normalize common subspace bases (including sign correction or sign-independent 

comparisons) are computed for projecting vertices from both graphs. 
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4. Correspondence between the two graphs can be derived by clustering vertices in 
normalized common subspace (see Kosinov and Caelli [8]) or by solving an as-
signment problem. 

Umeyama’s method [4] is a representative example of this latter approach for the 
restricted case of weighted graphs. Here we have generalized his method for fully 
attributed vertices and edges. This generalization results in the following algorithm. 
1. For both input and reference graph, the vertex (n) and edge attribute values (r, s 

respectively) are defined as a single matrix where each vertex attribute vector is 
formatted as a diagonal submatrix, edge attributes as off-diagonal matrices, all be-
ing concatenated as a single nnsr ××+ ))((  matrix, A. 

2. The vertex-based covariance matrix, AAT , is computed. 

3. Eigenvalue/vector decomposition is performed on AAT  and a subspace dimension 
selected in terms of the first w eigenvalues/vectors. 

4. Correlations between the eigenvectors are computed as a measure of “distance”  
(“cost”) of matching vertices in this subspace. 

For eigenvectors of V1 and V2, which are from input graph and reference graph 
respectively, the product of 11*2 −VV is calculated to get a cost matrix. 

5. The best set of correspondences is selected by solving an optimal assignment prob-
lem based on the cost matrix at step 4. 

We have used this method for comparison with the LSM approaches. 

5   Experiments 

5.1   Random Graphs 

We have compared the results of the GDKPGM, IBKPGM and SMGM methods us-
ing full-connected random graphs as used by Van Wyk et al.[1]. The parameters 

srnn ,,,’  were fixed for each iteration. A reference graph was then randomly gener-

ated with all attribute values distributed between 0 and 1. An ’nn ×  permutation ma-
trix, P, was randomly generated to permute the row and columns. An independently 
generated noise matrix, having uniformly generated values within the [- , ; 0<  <1] 
interval was then added to each vertex and edge attribute. The task was then to match 
the original graph with the graph corresponding to the permuted, perturbed vertices 
and corresponding edges. The estimated probability of a correct vertex-vertex corre-
spondence was calculated as a function of ε for every 100 experiments. 

To evaluate performance we focused on the following questions.  

1) Does the decomposition method improve performance 
2) Is LSM always superior to SM?  
3) How do the parameters, { ε,,,,’ srnn }, influence the performance of above 

methods? 

The following experiments were conducted to explore these issues. First, the at-
tribute parameters, ),( sr , were set to )3,3( , and ),( nn′  to (10,10), (30,30), (50,50) 
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and (100,100). Second, )0,1(),( =sr , and ),( nn′  were set to (10,10), (30,30), (50,50): 

a simple weighted graph. Third, )1,1(),( =sr , and ),( ’ nn  were set to (10,10), (30,30), 

(50,50). Fourth, )0,2(),( =sr , and ),( ’ nn  were set to (10,10), (30,30), (50,50). Fig. 2 
shows results for the first experiment, and Tables 1-3 for the remaining.   

5.2   Results 

It can be seen in Fig. 2 that performance of the GDKPGM method is much better than 
that of IBKPGM. However, when ε is larger than 0.6, performance of GDKPGM also 
significantly decreases along with IBKPGM. Also, this decrease in performance in-
creases with n, the number of vertices in the reference graph although, in all cases, 
GDKPGM performance is superior to IBKPGM. In this case, however, SM is inferior 
to LSM. 

 

 

Fig. 2. Performance comparison of 3 methods, r=s=3, ),( nn′ =(10,10), (30,30), (50,50), 

(100,100). (r,s) correspond to numbers of edge and vertex attributes; ),( nn′ : to number of 

vertices in reference and input graphs. A, B, C represent the GDKPGM, IBKPGM and SMGM 
methods, respectively. 

Table 1 shows that, for a weighted graph (r=1,s=0), when the noise level is not large 
( 3.0<ε ), the SM is superior to LSM.  When 1.0=ε  the performance of SM is much 
better than that of LSM. But as the noise increases performance of SM decreases 
significantly, and when 4.0>ε  it is quite inferior to the LSM methods.  

Table 2 compares performance to that shown in Table 1 with an additional vertex 
attribute and demonstrates how additional constraints improved the performance            
of the LSM method but not the SM method, except for the low noise condi-
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tions: 1.0=ε . The same conclusion can be draw from results shown in Table 3 when 
compared to Table 1.  The difference in the experimental conditions for Table 2 and 
3, (both having 2 attributes) was that, for Table 2, there was one edge and one vertex 
attribute but there were only two edge attributes corresponding to Table 3. Overall, 
performance of all methods was better in Table 2 than that shown in Table 3.  

Based on above experimental result, some conclusion can be drawn.  

1) For low noise conditions, and with simple adjacency matrices or weighted 
graphs, SM is superior to LSM.  

2) For attributed graph matching (r,s > 1) the LSM is superior to SM. Further, the 
decomposition method used in conjunction with LSM consistently improves 
performance under all conditions. 

3) Increasing attributes of vertices is more helpful in improving performance than 
increasing the number of edge attributes. 

4) When the additive noise is large all three methods have poor performance, sug-
gesting the non-linear method [3], should be used. 

Table 1. Performance comparison of LSM and SM, )0,1(),( =sr , ),( nn′ =(10,10), (30,30), 

(50,50). See Fig. 2 for definitions of terms. 

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
LSM(10) 63.7 49.8 35.5 29.0 24.5 22.5 19.9 18.2 
SM(10) 84.5 55.5 42.5 23.6 19.1 17.7 14.2 12.4 
LSM(30) 33.7 18.5 13.6 10.8 9.6 8.3 7.9 6.3 
SM(30) 72.8 37.2 15.9 8.9 5.9 5.6 5.3 4.6 
LSM(50) 21.6 12.1 8.7 6.9 6.2 5.1 4.8 4.3 
SM(50) 55.8 25.5 7.9 4.9 3.8 2.9 2.8 2.5 

Table 2. Performance comparison of LSM and SM, )1,1(),( =sr , ),( nn′ =(10,10), (30,30), 

(50,50). See Fig. 2 for definitions of terms. 

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
LSM(10) 94.9 84.2 69.9 58.1 50.0 41.5 34.5 33.5 
SM(10) 93.0 68.5 48.2 30.9 23.8 21.4 19.6 16.2 
LSM(30) 85.8 60.6 39.9 27.5 20.7 17.9 14.4 11.1 
SM(30) 84.0 23.9 14.1 8.0 6.6 6.2 5.0 4.3 
LSM(50) 77.7 45.4 28.1 19.1 14.1 11.1 8.9 8.3 
SM(50) 69.8 13.3 8.6 5.0 3.5 3.1 2.8 2.0 

Table 3. Performance comparison of LSM and SM, )0,2(),( =sr , ),( nn′ =(10,10), (30,30), 

(50,50). (See Fig. 2 for definitions of terms). 

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
LSM(10) 90.0 74.1 56.1 48.0 39.1 30.8 26.1 25.1 
SM(10) 91.3 56.4 31.4 25.0 18.1 16.0 15.0 13.5 
LSM(30) 76.4 46.2 32.5 22.5 17.4 14.6 12.0 10.8 
SM(30) 82.1 20.9 9.9 6.2 4.8 4.4 3.8 3.5 
LSM(50) 66.3 33.9 21.9 14.5 11.9 9.3 7.4 6.4 
SM(50) 65.4 11.9 4.7 3.4 3.04 2.8 2.7 2.1 
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6   Conclusions 

In this paper, two main linear algebraic methods for attributed graph matching, LSM 
and SM have been compared along with a new graph decomposition model, combined 
with LSM, for attributed graph matching. For most cases, the LSM is superior to SM 
most probably due to the fact that the LSM uses more information than the SM. How-
ever, when there are few constraints such as in attributed or weighted graphs, LSM 
performance is inferior to the SM. For this reason SM would be the preferred algo-
rithm for matching graphs defined only be their adjacency matrices – the more com-
monly used graph data model for recent SM methods. But, the SM is quite sensitive to 
noise. However, when there is little noise, its performance is quite good. In so far as 
LSM methods are concerned when a graph decomposition model is combined with 
the LSM, generally speaking, performance along all dimensions improves. However, 
when noise and/or vertices numbers are large even LSM performance is not satisfac-
tory – suggesting that non-linear optimization, search methods, may provide better 
solutions. 
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Abstract. The Auction Graph Matching (AUGM) algorithm is pre-
sented. This algorithm is based on a novel joint probabilistic framework
that transforms the graph matching problem into a linear assignment
problem which is efficiently solved by the Bertsekas auction algorithm.
A salient feature of this single-pass auction-based approach is that the
inferred match probabilities are not only constrained over all objects in
the reference image, but are also constrained over all objects in the input
image.

1 Introduction

Representing the structural descriptions of objects by weighted graphs, reduces
the problem of contextual correspondence matching to finding error-correcting
graph or sub-graph isomorphisms, also referred to as the Graph Matching (GM).
As pointed out in Refs. [1], [2] and [3] the graph matching problem is closely
related to the Quadratic Assignment Problem which can be solved using a va-
riety of neural, annealing, graduated assignment and other iterative methods.
In general the Quadratic Assignment Problem is more difficult to solve than
the Linear Assignment Problem. Several breakthroughs to efficiently solve the
Linear Assignment Problem such as those detailed in Refs. [4] and [5] indicate
that there is much to gain if the GM problem can be transformed into a Linear
Assignment Problem. A method for achieving this transformation is presented
in this paper.

Although Quadratic Assignment approaches are not in general directly in-
terpretable using Bayesian frameworks such as those detailed in Refs. [6]–[15],
the Auction Graph Matching (AUGM) algorithm is built on a Bayesian foun-
dation. A Joint Probabilistic Framework is derived in the sequel that leads to
a Linear Assignment Problem which can be efficiently solved by the Bertsekas
auction algorithm [4]. The Joint Probabilistic Framework differs significantly
from previous probabilistic approaches for contextual correspondence and graph
matching, detailed in Refs. [6]–[15], in the following aspects: (1) Instead of di-
rectly inferring P (θi = θk), the probability of associating a vertex in the input
graph with a vertex in the reference graph, our main focus is on the inference

A. Fred et al. (Eds.): SSPR&SPR 2004, LNCS 3138, pp. 334–342, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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of the joint probabilities P (θi = θk,θj = θl) from which P (θi = θk) are inferred.
(2) Similar to the work of Kittler et al. [8], the AUGM is a single-pass tech-
nique. (3) Conventional probabilistic methods only constrain the probability of
a vertex in the input graph being associated with a vertex in the reference graph
over all the vertices in the reference graph. To further minimize the possibility
of false matches the AUGM algorithm also constrains the probability of a vertex
in the input graph being associated with a vertex in the reference graph, over all
the vertices in the input graph. (4) The AUGM algorithm does not rely on the
use of compatibility functions specified in terms of the face-units of the graph
under match, sparse graph structures or Bayesian edit distances based on these
notions.

2 Notation

Suppose an input graphs has n vertices represented by

Ω = {θ1, ..., θn} .

The objective is to calculate the probability of a vertex θi in the input graph,
being associated with a vertex θk in a reference graph having n̄ vertices, repre-
sented by

Ω =
{
θ1, ..., θn̄

}
.

In our framework it is assumed that n̄ ≥ n and that the probability values
P (θi = θk) are constraint by ∑

k

P (θi = θk) = 1, (1)

and ∑
i

P (θi = θk) = 1, n = n̄ (2)

0 ≤
∑
i

P (θi = θk) ≤ 1, n̄ ≥ n. (3)

If, in addition it is required that

P (θi = θk) ∈ {0; 1} (4)

then equations 1 to 4 represent the enforcement of two way assignment con-
straints. Previous Bayesian frameworks were in general not able to enforce con-
straint 2 or 3.

For each pair of vertices θi and θj , i �= j, we assume there are s binary
measurements corresponding to the attributes of the edges of the input graph:

Aij =
{
A
(1)
ij , ..., A

(s)
ij

}
, i �= j, i, j = 1, ..., n.
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3 Bayesian Reasoning Framework

As usual we will assume that the conditional probability density function

p(Aij |θi = θk, θj = θl) (5)

corresponds to the compatibility coefficients calculated between edges of the
input and references graphs using edge attributes. See for example Kittler et
al. [8] , Christmas et al. [6] or Faugeras and Price [16]. We will now investigate
how Eq. 5 relates to the joint probabilities P (θi = θk,θj = θl). Our approach
drastically differs from previous approaches in the sense that we do not try to
estimate or calculate the probabilities P (θi = θk|Aij) directly. Instead our main
computational focus is on the inference of the joint probabilities P (θi = θk,θj =
θl) from which all P (θi = θk) are estimated using a simple weighted summation
process. It is important to note that to infer P (θi = θk,), the probabilities of
associating a vertex in the input graph with a vertex in the reference graph,
our framework only relies on edge attributes. Self edges (self arcs) and vertex
attributes are not considered. As a consequence p(Aij |θi = θk, θj = θl) and
P (θi = θk,θj = θl) where i = j or k = l are not considered in our framework and
the independence assumption, i.e. P (θi = θk,θj = θl) = P (θi = θk)P (θj = θl),
holds. Observe that according to Bayes’ theorem

P (θi = θk, θj = θl|Aij) =
p(Aij |θi = θk, θj = θl)P (θi = θk,θj = θl)∑
k,l p(Aij |θi = θk, θj = θl)P (θi = θk,θj = θl)

, (6)

where i �= j or k �= l. Since all p(Aij |θi = θk, θj = θl) are fixed (via some
compatibility calculation) the only way to maximize the a posteriori probability
P (θi = θk, θj = θl|Aij) is by adjusting the joint probabilities P (θi = θk,θj = θl),
i.e.

P (θi = θk, θj = θl|Aij) = max
P (θi= θ̄k,θj= θ̄l)[

p(Aij |θi = θk, θj = θl)P (θi = θk,θj = θl)∑
k,l p(Aij |θi = θk, θj = θl)P (θi = θk,θj = θl)

]
(7)

where i �= j or k �= l subject to the constraints associated with P (θi = θk,θj = θl)
given by ∑

k,l,i�=j,k �=l
P (θi = θk,θj = θl) = 1, (8)

0 ≤
∑

i,j,i�=j,k �=l
P (θi = θk,θj = θl) ≤ 1, (9)

0 ≤ P (θi = θk,θj = θl) ≤ 1. (10)

Constraints 8 to 10 were derived using Eqs. 1 to 3 and the fact that P (θi =
θk,θj = θl) = P (θi = θk)P (θj = θl). Finding the constraint joint probabilities
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P (θi = θk,θj = θl) which maximize P (θi = θk, θj = θl|Aij) over all i, j can be
formulated as the following constrained optimization problem

min
∑
i,j,k,l

(
p(Aij |θi = θk, θj = θl)− P (θi = θk,θj = θl)

)2
(11)

with respect to P (θi = θk,θj = θl) where i �= j or k �= l, subject to Eqs. 8 to 10.

3.1 Joint Probability Inference

Since P (θi = θk,θj = θl) = P (θi = θl,θj = θk) when our graphs are undirected
and both these joint probabilities will belong to the same row of an assignment
matrix we cannot directly impose the constraint P (θi = θk,θj = θl) ∈ {0; 1}.
However, the fact that P (θi = θk,θj = θl) = P (θi = θl,θj = θk) when our graphs
are undirected implies that not all the joint probabilities P (θi = θk,θj = θl) need
to enter Eq. 11, conveniently reducing the dimension of the problem. In fact we
only need to consider the indices in the set

{i, j, k, l}j=i+1,...,n l=k+1,...,n̄ (12)

where i = 1, ..., n and k = 1, ..., n̄ provided that all final values for P (θi = θk,θj =
θl) are halved after solving the lower dimensional problem. It also implies that
we can now impose the binary constraint P (θi = θk,θj = θl) ∈ {0; 1} on the
lower dimensional problem and efficiently solve it using an optimal assignment
algorithm. Figure 1 details the time, averaged over a 1000 runs, to execute the
Bertsekas auction optimal assignment algorithm [4] written in C on a Pentium IV
platform running Windows XP. The generation time of random input matrices is
included in our time calculations. As expected the time required per assignment
calculation is dependent on the number of undirected edges in the input and
reference graphs. For undirected fully-connected graphs of the type considered
in this paper the number edges are given by η =

∑n−1
i=1 (n− i) where n represents

the number of vertices in the graphs.
Note that the cardinality of the subset {i, j}i,j=1,...,n is η =

∑n−1
i=1 (n − i)

and that the cardinality of the subset {k, l}k,l=1,...,n is η =
∑n−1

k=1 (n − k). The
dimension of the matrix passed to the Auction algorithm will therefore be η× η.
Consequently the rows of the assignment matrix are indexed by α = 1, ..., η
where α is related to indices i and j by α = (j − i) +

∑i
s=1 |Us|where j < i , Us

is defined as the set {i = s, j}j=i+1,...,n and |·| denotes cardinality. Similarly the
columns of the assignment matrix are indexed by β = 1, ..., n where β is related
to indices k and l by β = (l − k) +

∑k
s=1 |Us| where l < k and Us is defined as

the set {k = s, l}l=i+1,...,n.

4 Auction Assignment Algorithm for Graph Matching

Similar to the auction algorithm detailed in Ref. [4] we associate with each
column of our assignment matrix (joint probability matrix) a price, say ρβ . For
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our application we started by setting all the prices to zero. Let pαβ := p(θi =
θk, θj = θl|Aij) where α and β are related to indices i, j, k, l as described in the
previous section. A row α is defined as almost happy with a column β assigned
to it if

pαβα − ρβα ≥ max
β=1,...,n

{pαβ − ρβ} − δ,

where δ is a slack variable.
The auction process then proceeds by selecting a row, α, which has not been

assigned a column βα or is not almost happy. This row finds a column βα which
offers maximal value, i.e.

βα ∈ arg max
β=1,...,n

{pαβ − ρβ} .

Then

1. Row α exchanges its previous βα (if it had one) with the row its new βα was
assigned to at the beginning of the round.

2. The price ρβ associated with βα is set to ρβ = ρβ + maxβ {pαβ − ρβ} −
maxβ �=βα {pαβ − ρβ}+ δ.

The process is repeated in a sequence of rounds until all rows α are almost
happy. The slack value, δ determines how fast the algorithm will converge and
how optimal the final answer will be. For all our experiments we have set δ
to a small fixed value that will guarantee convergence to an optimal solution
as described in [4]. When the procedure terminates the joint probability values
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Fig. 1. Execution time of the Bertsekas auction routine.
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P (θi = θk,θj = θl) = P (θj = θl,θi = θk) corresponding to a row-column assign-
ment are set to 0.5 (see previous section for reason why not set to one). The rest
of the joint probability values are set to zero.

4.1 Marginal Probability Inference

After obtaining the constraint joint probabilities P (θi = θk,θj = θl) the desired
probabilities P (θi = θk) can be inferred using the following proposition:

Proposition 1. The probabilities inferred by

P (θi = θk) =

∑
j,l,j �=i,l �=k P (θi = θk,θj = θl)

n − 1 (13)

will satisfy the constraints given by Eqs. 1 to 3 if the joint probabilities P (θi =
θk,θj = θl) satisfy the constraints given by Eqs. 8 to 10.

Proof: Observe that
∑

k,l,i�=j,k �=lP (θi = θk,θj = θl) = 1 and that∑
j,k,l,j �=i,k �=lP (θi = θk,θj = θl) = n − 1 which implies that∑
k

∑
j,l,j �=i,l �=kP (θi=θk,θj=θl)

n−1 = 1. Eq. 1 is therefore satisfied. Similarly 0 ≤∑
i,j,k �=l,i�=jP (θi = θk,θj = θl) ≤ 1 and

∑
l,i,j,l �=k,i�=jP (θi = θk,θj = θl) ≤ n̄ − 1

which implies that 0 ≤ ∑
i

∑
j,l,j �=i,l �=kP (θi=θk,θj=θl)

n̄−1 ≤ 1. Eq. 3 is therefore satis-
fied since it is assumed that n̄ ≥ n.

4.2 Final Assignment

Once all P (θi = θk) are inferred, the most appropriate θk for a given θi is
obtained by

max
θk

{P
(
θi = θk

)
}k=1,...,n̄. (14)

It’s easy to see that if all edge attributes are unique and no additive noise is
present in the input graph that P :=

(
P

(
θi = θk

))
will be an assignment matrix

satisfying constraints 1 to 4.

5 Simulation Results

To test the performance of the AUGM algorithm dynamic random line match-
ing experiments, similar to those proposed by Caelli and Caetano [18], were
conducted. We prefer this type of experiment above the usual static applications
such as stereo line matching, the matching of road networks or buildings as this
allow us, through the addition of progressive noise and random line selection, to
derive representative (application specific) performance curves for the algorithms
included in our comparison. Although lines were used to represent the vertices
of a graph, vertex features were not derived nor used. Binary relationships be-
tween lines were used as edge attributes. The differences in orientation between
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lines, line length ratios and distances between line midpoints were used. Refer
to Li [19] for more information on the derivation of translation and orientation
invariant line features.

For our experiments reference graphs having 50 vertices (derived from a ran-
domly generated line image with line lengths uniformly distributed between 10
and 300 pixels) were used. For the first experiment input graphs were constructed
by randomly rotating and translating all 50 lines of the reference line images.
To test the robustness of the algorithms against line endpoint anomalies, uni-
form noise was added to the x and y coordinates of every line endpoint of the
translated and rotated image. Noise values were obtained by multiplying a ran-
dom variable – uniformly distributed on the interval [−1/2, 1/2] – by the noise
magnitude parameters given in figures 2 and 3. For the second experiment in-
put graphs were constructed by randomly selecting 20 lines from the reference
images before rotating, translating and adding noise.

We compared the performance of the AUGM algorithm to the performance of
the non-iterative probabilistic method for contextual correspondence matching
of Kittler, Petrou and Christmas (KPC) [8] since it is one of the most well-
known single-pass methods available, and similar to the AUGM algorithm, has
a probabilistic origin. The AUGM is also compared to Bayesian Successive Pro-
jection Graph Matching (BAYSPGM) algorithm described in [17] since it is a
single-pass technique derived by the authors which preceded and inspired AUGM
methodology. The estimated probability of correct vertex-vertex assignments are
reported in figures 2 and 3. These results were calculated for a given value of
noise magnitude by averaging the results from 200 trials. All algorithms were im-
plemented using the Gaussian compatibility function described in Ref. [6] (with a
diagonal covariance matrix) and the Faugeras-Price (FP) compatibility function
described in [16]. Although both compatibility functions were implemented for
all three algorithms only the best results obtained are reported. For the results
reported in figure 2 the AUGM algorithm was implemented using a Gaussian
compatibility function, and the KPC and BAYPGM algorithms using the FP
compatibility function. For the results reported in figure 3 the KPC and AUGM
algorithms were implemented using a Gaussian compatibility function and the
BAYSPGM algorithm using the FP compatibility function. From our results we
conclude that (for the application considered in this paper and the given com-
patibility functions) the AUGM algorithm performed significantly better than
the BAYSPGM algorithm, and that it performed slightly better than the KPC
algorithm for full-graph matching case.

6 Conclusion

A joint probabilistic framework was presented that transforms the GM prob-
lem into a Linear Assignment Problem that was solved in an efficient manner
using the Bertsekas auction algorithm. From the derivation of the joint proba-
bilistic framework it is clear that the formulation inherently makes provision for
input graphs with missing vertices. A strategy for handling spurious edges in
the input graphs and incorporating vertex features has been devised but due to
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Fig. 2. Matching 50 translated and rotated input lines to 50 reference lines: Estimated
probability of a correct vertex-vertex matching versus noise magnitude.
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Fig. 3. Matching 20 translated and rotated input lines to 50 reference lines: Estimated
probability of a correct vertex-vertex matching versus noise magnitude.

page constraints is beyond the scope of this paper. Work in progress include the
derivation of a hybrid auction algorithm to directly solve the graph matching
problem without first transforming it to a linear assignment problem.
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Abstract. The region’s internal properties (color, texture, ...) help to
identify them and their external relations (adjacency, inclusion, ...) are
used to build groups of regions having a particular consistent mean-
ing in a more abstract context. Low-level cue image segmentation in a
bottom-up way, cannot and should not produce a complete final “good”
segmentation. We present a hierarchical partitioning of images using a
pairwise similarity function on a graph-based representation of an im-
age. The aim of this paper is to build a minimum weight spanning tree
(MST ) of an image in order to find region borders quickly in a bottom-up
‘stimulus-driven’ way based on local differences in a specific feature.

1 Introduction

The authors in [16] asked: “How do we bridge the representational gap be-
tween image features and coarse model features?” They identify the 1-to-1 corre-
spondence between salient image features (pixels, edges, corners,...) and salient
model features (generalized cylinders, polyhedrons,...) as limiting assumption
that makes prototypical or generic object recognition impossible. They suggested
to bridge and not to eliminate the representational gap, and to focus efforts on:
i) region segmentation, ii) perceptual grouping, and iii) image abstraction.
In this paper, these goals are taken to consider multiresolution representations
under the viewpoint of segmentation and grouping. The multiresolution is con-
sidered under the abstraction viewpoint in [18].

The union of regions forming the group is again a region with both inter-
nal and external properties and relations. The segmentation process results in
“homogeneous” regions w.r.t the low-level cues using some similarity measures.
Problems emerge because i) homogeneity of low-level cues will not map to the se-
mantics [16] and ii) the degree of homogeneity of a region is in general quantified
by threshold(s) for a given measure [6]. The low-level coherence of brightness,
color, texture or motion attributes should be used to come up sequentially with
hierarchical partitions [29]. It is important that a grouping method has follow-
ing properties [5]: i) capture perceptually important groupings or regions,
which reflect global aspects of the image, ii) be highly efficient, running in time
linear in the number of pixels, and iii) creates hierarchical partitions [29].
� This paper has been supported by the Austrian Science Fund under grants P14445-
MAT, P14662-INF and FSP-S9103-N04.
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c© Springer-Verlag Berlin Heidelberg 2004



344 Yll Haxhimusa and Walter Kropatsch

The aim is to build anMST of an image by combining the advantage of regu-
lar pyramids (logarithmic tapering) with the advantages of irregular graph pyra-
mids (their purely local construction and shift invariance). The aim is reached
by using the method for selecting contraction kernels to achieve logarithmic ta-
pering, local construction and shift invariance [12]. Bor̊uvka’s algorithm [2] with
dual graph contraction (DGC) algorithm [17] builds in a hierarchical way an
MST (of the region) preserving the proper topology. After presenting related
works and the pyramid representation, we recall the Bor̊uvka’s MST algorithm
in Sec. 3. In Sec. 4 are given the definition of internal and external contrast, the
merging criteria and building the hierarchy of an image. Sec. 5 reports results.

1.1 Related Works

A graph-theoretical clustering algorithm consists in searching for a certain com-
binatorial structure in the edge weighted graph, such as an MST [5, 8], a mini-
mum cut [31, 29] and, the complete linkage clustering algorithm [19], reduces to
a search for a complete subgraph i.e. the maximal clique [24]. Early graph-based
methods [33] use fixed thresholds and local measures in finding a segmentation,
i.e MST is computed. The segmentation criterion is to break the MST edges
with the largest weight, which reflect the low-cost connection between two ele-
ments. To overcome the problem of fixed threshold, [30] attempts by normalizing
the weight of an edge using the smallest weight incident on the vertices touch-
ing that edge. The methods in [5, 8] use an adaptive criterion that depends on
local properties rather than global ones. The methods based on minimum cuts
in a graph are designed to minimize the similarity between pixels that are being
split [31, 29, 7]. A cut criterion in [31] is biased toward finding small components.
The normalized cut criterion [29] is defined to avoid this problem, which takes
into consideration self-similarity of regions. In contrast with the simple graph-
based methods, such as breaking edges in the MST , cut-criterion methods cap-
ture the non-local properties of the image. It also produces a divisive hierarchical
tree, the dendogram. However, they provide only a characterization of such cut
rather than of final segmentation as provided in [5]. A minimum normalized cut
approximation method [29] is computationally expensiv and the error in these
approximation is not well understood. The clustering algorithms based on max-
imal clique work on unweighted graphs derived from the weighted graphs by
means of some thresholding [15]. In [24] the concept of maximal clique is gen-
eralized to weighted graphs. Discrete replicator dynamics are used to find the
maximal cliques, which is an instance of the relaxation labeling algorithm [27].

Gestalt grouping factors, such as proximity, similarity, continuity and sym-
metry, are encoded and combined in pairwise feature similarity measures [29,
26, 7, 32, 28]. Another method of segmentation is that of splitting and merging
region based on how well the regions fulfill some criterion. Such methods [4,
25] use a measure of uniformity of a region. In contrast, [5, 8] uses a pairwise
region comparison rather than applying a uniformity criterion to each individual
region. Complex grouping phenomena can emerge from simple computation on
these local cues [20].
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Our method is related to the works in [5, 8] in the sense of pairwise compar-
ison of region similarity. Rather than trying to have just one “good” segmenta-
tion [5], the method produces a stack of (dual) graphs (a graph pyramid), which
down-projected on the base level will give a multi-level segmentation (a class of
segmentation). The segmentation result of [5] is also included in our hierarchy.

2 Irregular Pyramid Representation

Hierarchical structures for description of the data for clustering purposes are
studied very early in [19], or for image segmentation in [11]. In a regular image
pyramid the number of pixels at any level k, is λ times higher than the number
of pixels at the next reduced level k + 1. The so called reduction factor λ is
greater than one and it is the same for all levels k. If s denotes the number of
pixels in an image I, the number of new levels on top of I amounts to logλ(s)
(Figure 1a). Thus, the regular image pyramid is an efficient structure for fast
grouping and access to image objects in top-down and bottom-up processes [14],
because of the apriori known structure. However, the regular image pyramids are
confined to globally defined sampling grids and lack shift invariance and have
to be rejected as general-purpose segmentation algorithms [1]. These drawbacks
are avoided by irregular image pyramids (adaptive pyramids) [23, 13], where the
hierarchical structure (vertical network) of the pyramid is recursively built on
the data. In [22] is shown that irregular pyramid can be used for segmentation.

In irregular pyramids, each level represents a partition of the pixel set into
cells, i.e. connected subsets of pixels. The construction of an irregular image
pyramid is iteratively local [21, 12]. This means that we use only local properties
to build the hierarchy of the pyramid. On the base level (level 0) of an irregular
image pyramid the cells represent single pixels and the neighborhood of the cells
is defined by the 4 -connectivity of the pixels. A cell on level k + 1 (parent) is
a union of neighboring cells on level k (children). This union is controlled by so
called contraction kernels (decimation parameters) [17]. Every parent computes
its values independently of other cells on the same level. This implies that an
image pyramid is built in O[log(image diameter)] parallel steps. We represent
the levels as dual pairs (Gk, Gk) of plane primal graphs Gk and duals Gk. The
vertices of Gk represent the cells, and edges the neighborhood relations of the
cells on level k. The edges of Gk represent the borders of the cells on level k and
vertices meeting points of at least three edges from Gk. The sequence (Gk, Gk),
0 ≤ k ≤ h is called (dual) graph pyramid. See [17] for the complete formalism.
In order to simplify the paper presentation only graph Gk is used afterwards.

3 Minimum Weight Spanning Tree: Bor̊uvka’s Algorithm

Let G0(V,E, attrv, attre) be a given undirected, connected, attributed plane
graph consisting of the finite vertex set V and of the finite edge set E on the
base level (level 0) of the pyramid, attrv : v ∈ V → R+ and attre : e ∈ E → R+.
Let each edge e ∈ E be associated with a nonnegative unique real attribute
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Fig. 1. (a,b) Multiresolution pyramid. (c) Internal and external contrast.

Algorithm 1 – Bor̊uvka’s Algorithm.
Input: Attributed graph G(V,E).

1: MST := empty edge list.
2: ∀v ∈ V do { make a list of trees L } .
3: while { there is more than one tree in L } do
4: each tree T ∈ L finds the edge e with the minimum weight which connects T to

G \ T and add edge e to MST .
5: using edge e merge pairs of trees in L.

Output: Minimum weight spanning tree - MST .

(weight). The problem is formulated as construction of an MST of G. A de-
terministic solution is proposed by Bor̊uvka [2]. Bor̊uvka algorithm is similar
to Prim’s algorithm but executed simulteonosly on the whole graph. We use
Bor̊uvka’s algorithm to build MST in parallel [3]. The proof that Alg. 1 builds
the MST is analogously with the MST Kruskal’s proof [10].

Observation 1 In 4th step of the Algorithm 1, each tree T ∈ L finds the edge
with the minimal weight, and as trees become larger, the process of finding the
edge with the minimal weight for each tree T takes longer.

4 Hierarchy of Partitions

Hierarchies are a significant tool for image partitioning as they naturally mix
with homogeneity criteria [11]. The goal is to find partitions Pk := {CC(u1),
CC(u2), ..., CC(un)} in kth level of the pyramid such that these elements sat-
isfy certain properties. We compare pairwise of neighboring vertices, i.e. par-
titions to check for similarities [5, 8]. In [5] a pairwise group merge criterion
Comp(CC(ui), CC(uj)) is defined, that judges whether there is evidence for a
boundary between two partitions CC(ui), CC(uj) ∈ Pk. This criterion measures
the difference along the boundary of two components relative to a measure of
differences of components’ internal differences. This definition tries to encapsu-
late the intuitive notion of contrast: a contrasted zone is a region containing
two connected components whose inner differences (internal contrast) are less
than differences within it’s context (external contrast).
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4.1 Internal and Exernal Contrast

Let Gk be the graph on level k of the pyramid. Every vertex ui ∈ Gk is a
representative of a connected component CC(ui) of the partition Pk. The
equivalent contraction kernel (ECK) N0,k(ui) [17] of a vertex ui ∈ Gk, is a
set of edges of the base level e ∈ E0 that are contracted; i.e. applying ECK
on the base level, one contracts the subgraph G′ ⊆ G0 onto the vertex ui.
The internal contrast of the CC(ui) ∈ Pk is the largest dissimilarity of
component CC(ui), i.e. the largest edge weight of the N0,k(ui) of vertex ui ∈ Gk:

Int(CC(ui)) := max{attre(e), e ∈ N0,k(ui)}. (1)

Let ui, uj ∈ Vk be the end vertices of an edge e ∈ Ek. The external contrast
between two components CC(ui), CC(uj) ∈ Pk is the smallest dissimilarity
between component CC(ui) and CC(uj) i.e. the smallest edge weight connecting
N0,k(ui) and N0,k(uj) of vertices ui ∈ CC(ui) and uj ∈ CC(uj):

Ext(CC(ui), CC(uj)) := min{attre(e),
e = (v, w) : v ∈ N0,k(ui) ∧ w ∈ N0,k(uj)}. (2)

In Fig. 1c an example of Int(CC(uj)) and Ext(CC(ui), CC(uj)) is given. The
Int(CC(uj)) of the component CC(uj) is the maximum of weights of the solid
line edges, whereas Ext(CC(ui), CC(uj)) is the minimum of weights of the
dashed line edges (bridges) connecting component CC(ui) and CC(uj) on the
base level G0. By contracting the edges N0,k(uj) one arrives to the vertex uj .
The pairwise merge criterion Comp(CC(ui), CC(uj)) between two connected
components CC(ui) and CC(uj) can be defined as:

Comp(CC(ui), CC(uj))

:=
{
T if Ext(CC(ui), CC(uj)) ≤ PInt(CC(ui), CC(uj)),
F otherwise,

P Int(CC(ui), CC(uj)) := min( Int(CC(ui)) + τ(CC(ui)),
Int(CC(uj)) + τ(CC(uj)) ) . (3)

PInt(·, ·) is the minimum internal contrast difference between two components.
For the merge criterion Comp(·, ·) to be false i.e. for the border to exist, the ex-
ternal contrast difference must be greater than the internal contrast differences.
Any non-negative function τ(CC) of a single component CC can be used [5].

4.2 Construct Hierarchy of Partitions

A consequence of Obs. 1 is that a contraction of the edge e, which connects T and
G\T in the 4th step of Alg. 1 will speed up the search for minimum weight edges
in Bor̊uvka’s algorithm. Since each tree (on level k) after edge contraction will
be represented by a single vertex (in the level k+1), the edge with the minimum
weight would be in a local neighborhood. The DGC algorithm [17] contracts
edges and creates “super” vertices with father-son relations between vertices in
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Algorithm 2 – Construct Hierarchy of Partitions.
Input: Attributed graph G• .

1: k := 0
2: repeat
3: for all { vertices u ∈ Gk } do
4: Emin(u) := argmin{attre(e) | e := (u, v) ∈ Ek or e := (v, u) ∈ Ek}
5: for all { e := (ui, uj) ∈ Emin with

Ext(CC(ui), CC(uj)) ≤ PInt(CC(ui), CC(uj)) } do
6: include e in contraction edges Nk,k• •
7: contract graph Gk with contraction kernels, Nk,k• • : Gk• • = C[Gk, Nk,k• • ].
8: for all { ek• • ∈ Gk• • } do
9: set edge attributes attre(ek• • ) := min{attre(ek) | ek• • := C[ek, Nk,k• • ]}
10: k := k + 1
11: until { Gk = Gk−• }
Output: A region adjacency graph (RAG) at each level of the pyramid.

subsequent levels, whereas Bor̊uvka’s algorithm is used to create son-son relation
between vertices in the same level (horizontal relation).

The algorithm to build the hierarchy of partitions is shown in Alg. 2. Each
vertex ui ∈ Gk defines a connected region CC(ui) on the base level of the
pyramid. Since the presented algorithm is based on Bor̊ovka’s algorithm [2], it
builds an MST (ui) of each region, i.e N0,k(ui) = MST (ui) [9]. The idea is
to collect the smallest weighted edges e (4th step) that could be part of the
MST , and then to check if the edge weight attre(e) is smaller than the internal
contrast of both of the components (MST of end vertices of e) (5th step). If
these conditions are fulfilled then these two components are merged (7th step).
Two regions will be merged if their internal contrast is larger than the external
contrast, represented by the weight attre(e) of the connecting edge. All the edges
to be contracted form the contraction kernels Nk,k+1, which are then used to
create the graph Gk+1 = C[Gk, Nk,k+1] [17]. In general Nk,k+1 is a forest. We
update the attributes of those edges ek+1 ∈ Gk+1 with the minimum attribute of
the edges ek ∈ Ek that are contracted into ek+1 (9th step). This means the edge
attributes are inherited. It can be shown, that Alg. 2 produces an MST [10].
At each level of the pyramid a region adjacency graph (RAG) is created, in
an agglomerative way by topolgy preserving edge contraction. Each vertex of
these RAGs is the representative of a sub-trees of MST . This greedy algorithm
collects only the nearest neighbor with the minimum edge weights, known as
single linkage clustering, and merges them if the pairwise comparison (Eq. 3)
evaluates to “false”. See [9, 10, 5] for other properites of this algorithm.

5 Experiments on Image Graphs

We start with the trivial partition, where each pixel is a homogeneous region.
The attributes of edges are defined as the difference of its end point vertices.
The attributes of edges can be defined as the difference between features of
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end vertices, attre(ui, uj) := |F (ui) − F (uj)|, where F is some feature. Other
attributes could be used as well e.g. [29] attre(ui, uj) := exp{−||F (ui)−F (uj)||

2
2

σI
},

where F is some feature, and σI is a parameter, which controls the scale of
proximity measures of F . F could be defined as F (ui) := I(ui), for gray value
intensity images, or F (ui) := [vi, vi · si · sin(hi), vi · si · cos(hi)], for color images
in HSV color distance [29]. However the choice of the definition of the weights
and the features to be used is in general a hard problem, since the grouping
cues could conflict each other [20]. For our experiments we use the difference
between pixel intensities F (ui) := I(ui), i.e. attre(ui, uj) := |I(ui)− I(uj)|. For
color images we run the algorithm by computing the distances (weights) in RGB
color space. We define threshold function τ(CC) to be function of the size of CC
e.g. τ(CC) := α/|CC|, where |CC| is the size of the component CC and α is a
constant. This function controls the influence of the size of the components CC.
The algorithm has one running parameter α. This constant is used to produce a
kind of the over-segmented image. The influence of τ in Eq.3 decays after each
level of the pyramid, since the |CC| gets bigger. A larger α sets the preference
for larger components. A complex definition of τ(CC), which is large for certain
shapes would produce a partitioning which prefers certain shapes.

We use indoor and outdoor RGB images. We found that α := 300 produces
the best hierarchy of partitions of the images shown in Monarch1, Object452

and Object112 Fig.2(1,3,4) and α := 1000 for the image in Fig.2(2), after the
average intensity attribute of vertices is down-projected onto the base grid. Fig. 2
show some of the partitions on different levels of pyramid and the number of
components. In all images there are regions of large intensity variability and
gradient. This algorithm copes with this kind of images.

In contrast to [5] the result is a hierarchy of partitions at multiple resolu-
tions suitable for further goal driven, domain specific analysis. On lower levels
of the pyramid the image is over-segmented whereas in higher levels it is under-
segmented. Since the algorithm preserves details in low-variability regions, a
noisy pixel would survive through the hierarchy. Image smoothing in low vari-
ability regions would overcome this problem, and it is not done, since this would
introduce another parameter into the method. The hierarchy of partitions can
also be built from an over-segmented image to overcome the problem of noisy
pixels. For an over-segmented image, where the size of regions is large, the algo-
rithm becomes parameterless.

6 Conclusion and Outlook

In this paper we introduced a method to build a hierarchy of partitions of an
image by comparing in a pairwise manner the difference along the boundary of
two components relative to the differences of components’ internal differences.
Even though the algorithm takes simple greedy decisions locally, it produces per-
ceptually important partitions in a bottom-up ’stimulus-driven’ way based only
on local differences. It was shown that the algorithm can handle large variation

• 1)Waterloo image database and 2) Coil 100 image database
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1) Monarch 768× 512 3) Object45 128× 128

a) 0 (16 384) b) 10 (43)

a) 0 (393 216) b) 14 (108) c) 18 (35) d) 22 (18) c) 12 (13) d) 14 (3)

2) Woman 116× 261 4) Object11 128× 128

a) 0 (16 384) b) 10 (38)

a) 0 (25 056) b) 10 (38) c) 14 (7) d) 15 (3) c) 12 (6) d) 13 (2)

Level (# of partitions)

Fig. 2. Partitioning of images.

and gradient intensity in images. Since our framework is general enough, we can
use RAGs of any over-segmented image and build the hierarchy of partitions.
External knowledge can help in a top-down segmentation technique. A drawback
is that the maximum and minimum criterion are very sensitive to noise, although
in practice it has a small impact. Other criteria like median would lead to an
NP -complete algorithm [5]. Our future work is to define different comparison
functions which will prefer learned regions of specific shapes.
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Abstract. We present a novel clustering method using HMM parameter
space and eigenvector decomposition. Unlike the existing methods, our
algorithm can cluster both constant and variable length sequences with-
out requiring normalization of data. We show that the number of clusters
governs the number of eigenvectors used to span the feature similarity
space. We are thus able to automatically compute the optimal number
of clusters. We successfully show that the proposed method accurately
clusters variable length sequences for various scenarios.

1 Motivation

Although many algorithms exist for unsupervised classification of patterns into
clusters, most of these methods require the data space X consists of ‘identical
length’ data points (feature vectors) xi = (xi1, ..., xiN ) where N is the dimen-
sion of the data space, i.e. X : RN . Such algorithms include the ordinary im-
plementations of decision trees, neural nets, Bayesian classifiers, ML-estimators,
support vector machines, Gaussian mixture models, k-means, and hierarchical
approaches, self-organizing maps, etc [4].

However not all classification problems can be formulated into a data space
that contains only equal length feature vectors. For instance, lets consider the
following scenarios:

Example 1. A data space contains different shapes. We compute a sequence of
boundary coordinates for each shape by starting from a certain point on the
boundary. Then we obtain sequences such as si = ((xi1, yi1), ..., (xiNi , yiNi))
where (xij , yij) is the coordinate of the jth boundary point for the ith shape. In
this case, the length of the sequences are not necessarily same since the length
of the boundaries may be different, e.g. it is possible that N1 �= N2.

Example 2. A basket contains unknown number of not necessarily identical balls
labeled as a and b. At a random time instant we start drawing balls from this
basket. We keep record of the symbols on the balls. Then we stop drawing balls
at a random time instant. By repeating the experiment we obtain sequences as

s1 = abababababababababababababababababa
s2 = abababababababababa
s3 = bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb, etc.

A. Fred et al. (Eds.): SSPR&SPR 2004, LNCS 3138, pp. 352–360, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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Note that the length of these sequences are different. This process is analogous
to chopping a DNA into genes. Finding the common and divergent patterns
from a big pool of protein genomes, which come in various sizes, is a challenge
of current bioinformatics and requires clustering of variable length sequences.

We will refer the type of the data in these examples as variable length se-
quences. One way to adapt some of the above scenarios for ordinary classification,
which processes constant length sequences, is to normalize the length of the fea-
ture vectors. Although commonly used due to its simplicity, normalization of the
feature vector length (either by sampling or interpolation) causes severe degra-
dation and aliasing. Besides, some clustering approaches assume that they can
compute a centroid and then compare the data points with this centroid, as in
k-means. It is not possible to obtain such a centroid for variable length data.

Thus, we propose a clustering algorithm that can classify variable length
sequences. Our algorithm also estimates the optimum number of clusters and
does not require normalization of the length of the feature vectors. Instead of
working directly on the initial values, we transfer the sequences into a parameter
space using Hidden Markov Models (HMM), which captures the probabilistic
transition properties of sequential data.

In this work, we concentrate on the discrete label sequences. Using the pa-
rameter space representations, we compute an affinity matrix that shows the
similarity of a given pair of sequences. Then we decompose the affinity ma-
trix into a series of subspaces spanned by the eigenvectors corresponding to the
largest eigenvalues. We threshold the decomposed values and partition clusters
using simple connected component analysis. For each decomposition, we calcu-
late a validity score indicating the fitness of the current clusters to the data. We
determine the optimum number of clusters using the validity score. We give a
flow diagram of the method in fig. 1.

Fig. 1. Flow diagram of clustering sequences.

In the next section, we explain HMM’s and affinity matrix. In section 3, we
present eigenvector decomposition. In the following sections, we give details of
the clustering and discuss simulations.
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2 Parameter Space by HMM

We project each sequence si into the parameter space that is characterized by
a set of HMM parameters. HMM’s are richer representations of time series. An
HMM is a probabilistic model composed of a number of interconnected states,
each of which emits an observable output. A discrete hidden Markov model is
defined by a set of states and an alphabet of output symbols [6]. Each state is
characterized by two probability distributions: the transition distribution over
states and the emission distribution over the output symbols. A random source
described by such a model generates a sequence of output symbols as follows: at
each time step the source is in one state, and after emitting an output symbol
according to the emission distribution of the current state, the source jumps to
a next state according to the transition distribution of its current state. Since
the activity of the source is observed indirectly, through the sequence of output
symbols, and the sequence of states is not directly observable, the states are said
to be hidden.

An K-state {S1, S2, ..., SK}, discrete HMM is represented by:

1. A set of prior probabilities π = {πi} where πi = P (q1 = Si),1 ≤ i ≤ K.
2. A set of state transition probabilities H = {hij}, where hij = P (qt+1 =

Sj |qt = Si),1 ≤ i, j ≤ K.
3. A set of output distributions B = {bij}, where bij(y) = P (Ot+1 = y|qt =

Si, qt+1 = j),1 ≤ i, j ≤ K.

where qt and Ot are the state and observation respectively at time t. It is com-
mon to denote the an M -mixture of HMM’s by (Hm, Bm, πm), 1 ≤ m ≤ M .
For discrete HMM, algorithms exist for: 1) computing the probability of ob-
serving a sequence, given a model, 2) finding the state sequence that maximizes
the probability of the given sequence, when the model is known (the Viterbi
algorithm), 3) inducing the HMM that maximizes (locally) the probability of
the given sequence (the Baum-Welch algorithm, an expectation-maximization
algorithm).

For each sequence, we fit a HMM (a discrete model in case the sequence com-
ponents are labels, a continuous model in case the components are real numbers
that reflect certain proportional properties, e.g. magnitude, coordinate, etc). The
number of statesK, number of modelsM , and the HMM topology (left-to-right)
are assigned same for each sequence. This enables us to compute parameter space
distances using the model state transition, observation, and prior matrix differ-
ences [8].

Definition 1. A feature fi is a set of real numbers that correspond the HMM
parameters of a sequence si for a given number of states K, number of mixtures
M , and left-to-right topology using the sequence as an observation (fi : si →
(Hm, Bm, πm)i).

The problem of estimating the correct number of clusters is a difficult one:
a full Bayesian solution for obtaining the posterior probability on M , requires a
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complex integration over the HMM parameter space, as well as knowledge about
the priors on the mixture parameters and about the priors on M itself. Often
this integration cannot be solved in closed form, and Monte-Carlo methods and
other approximation methods are used to evaluate it. However, these methods
are computationally intensive [1].

Now, we can compute our affinity matrix. Given two sequences si, sj , we
determine the probability that feature set is generated by sj and feature set fj
is generated by si. This probability indicates the mutual ‘fitness’ of the given
sequences to corresponding HMM’s. Thus, the affinity matrix represents the
similarity of two sequences. The elements aij of A are equal to

aij = e−d(si,sj)/2σ
2

(1)

where the distance is defined as

d(si, sj) = |P (si|fi) + P (sj |fj)− P (si|fj)− P (sj |fi)| . (2)

and σ2 is a scaler. The affinity matrix components will have values close to 1 if the
corresponding sequences fit well to each other’s models, and close to 0 otherwise.
Note that similarity matrix A ∈ Rn×n is a real semi-positive symmetric matrix,
thus AT = A.

Next, we explain the details of the eigenvector decomposition process.

3 Eigenvector Decomposition

The decomposition of a square matrix into eigenvalues and eigenvectors is known
as eigenvector decomposition. For the affinity matrix A there are n eigenvalues λ
with associated eigenvectors v which satisfy Av = λv. To find these eigenvalues,
we rewrite the previous equation as (A−λI)v = 0 and determinant is computed
det(A − λI) = 0.

Let V ≡ [v1 v2 .. vn] be a matrix formed by the columns of the eigenvectors.
Let D be a diagonal matrix diag[λ1, λ2, .., λn]. Lets also assume λ1 ≥ λ2 ≥ ..λn.
Then the eigenvalue problem becomes

AV = [Av1 .. Avn] = [λ1v1 .. λnvn] = V D (3)

and A = V DV −1. Since A is symmetric, the eigenvectors corresponding to
distinct eigenvalues are real and orthogonal V V T = V TV = I, which implies
A = V DV T .

Iterative Eigenvector Computation. The main idea behind iterative com-
putation is the following. Suppose we have some subspace K of dimension k,
over which the projected matrix A has Ritz [7] value θk and a corresponding
Ritz vector uk. Let us assume that an orthogonal basis for K is given by the
vectors v1,v2, ...,vk (already determined eigenvectors).
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Quite naturally the question arises how to expand the subspace in order to
find a successful update for uk, which will become vk+1. To that end we compute
the defect r = Auk − θkuk. Then as in [3], we compute z̃ from (D − θkI)z̃ = r,
where D is the diagonal matrix of A as defined above. The vector z̃ is made
orthogonal to K, and the resulting vector is chosen as the new vk+1 by which
K is expanded. This method find the largest eigenvalues in absolute value. The
matrix (D−θkI)−1 can be viewed as a preconditioner for the vector r. Although
it is tempting to use this preconditioner as an approximation for (A − θkI),
it would not lead to an expansion of our search space. To avoid this stagna-
tion, we concentrate on the kth approximation uk of the eigenvector v, where
uk is normalized ||uk|| = 1. The residual r = Auk − θkuk is orthogonal to uk
because θk = uTk Auk is the Ritz value associated with uk. We project the eigen-
value problem Av = λv on span(uk), and on its orthogonal complement. This
leads to two coupled equations for λ and the complement z of v orthogonal to
uk: λ = uTkA(uk + z) and z ⊥ uk, (I − ukuTk )(A − λI)(I − ukuTk )z = −r.
Since λ is unknown, we cannot compute optimal update z from uk. However
it is reasonable to replace λ by the current approximation θk. Thus we obtain
r ⊥ uk, (I − ukuTk )(A − θkI)(I − ukuTk )z = −r as a good correction for uk.
Similarly, we compute the approximate solution z̃ using this equation, and by
making z̃ orthogonal to search space, we obtain vk+1. Briefly, we extract an
approximate eigenvalue from the search subspace, project it, solve the projected
eigenvalue problem, compute the corresponding Ritz value and residual, cor-
rect the approximate eigenvector u, and expand the search subspace with the
correction vector.

The above iterative prediction is used at the following clustering stage.

4 Clustering

Although eigenvector based clustering [2], [9], [5] is addressed before in the lit-
erature, to our knowledge no one has established the relationship between the
optimal clustering of the data distribution and the number of eigenvectors that
should be used for spanning before. Here we show that the number of eigenvec-
tors is proportional to the number of clusters.

Let a matrix Pk be a matrix in a subspace K that is spanned by the columns
of V such as Pk = [v1 v2 .. vk, 0] where V is the orthogonal basis satisfies
A = V DV T .

Now, we define vectors pn as the rows of the truncated matrix Pk as

Pk =

⎡⎢⎣p1
...
pn

⎤⎥⎦ =
⎡⎢⎢⎢⎣

v11 · · · v1k 0 · · ·
v21 · · · v2k 0 · · ·
...

...
vn1 · · · vnk 0 · · ·

⎤⎥⎥⎥⎦ (4)

We normalize each row of matrix Pk by pij ← pij/
√∑k

j p2ij . Then a correlation
matrix is computed using the normalized rows by Ck = PkP

T
k . For a given Pk,
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the value of pij indicates the degree of similarity between the object i and object
j. Values close to one correspond to a match whereas negative values and values
close to zero suggest that objects are different. Let ε be a threshold that transfers
values of matrix Ck to the binary quantized values of an association matrix Wk

as

wij =
{
1 cij ≥ ε
0 cij < ε

(5)

where ε ≈ 0.5. The clustering is then becomes grouping the objects that have
association values equal to one wij = 1.

To explain why this works, remember that eigenvectors are the solution of the
classical extremal problem maxvTAv constrained by vTv = 1. That is, find the
linear combination of variables having the largest variance, with the restriction
that the sum of the squared weights is 1. Minimizing the usual Lagrangian
expression vTAv−λ(vTv−1) implies that Av = λv. Thus, v is the eigenvector
with the largest eigenvalue.

When we project the affinity matrix columns on the eigenvector v1 with
the largest eigenvalue and span K1, the distribution of the aij will have the
maximum variance therefore the maximum separation. Keep in mind that a
threshold operation will perform best if the separation is high. To this end, if
the distribution of values have only two distinct classes then a balanced threshold
passing through the center will divide the points into two separate clusters. With
the same reasoning, the eigenvector v2 with the second largest eigenvalue, we
will obtain the basis vector that gives the best separation after normalizing the
projected space using the v1 since v1 ⊥ v2. It is important to note that, each
additional eigenvector enables us to divide the space into an extra cluster. Thus,
we conclude that;

Lemma 1. The number of largest eigenvalues (in absolute value) to span the
subspace is one less than the number of clusters.

As opposed to using only the largest or first and second largest eigenvectors
(also the generalized second minimum which is the ratio of the first and the
second depending the definition of affinity), the correct number of eigenvectors
should be selected with respect to the optimum cluster number.

After each eigenvalue computation of matrix A in the iterative algorithm, we
compute a validity score αk using the clustering results as

validity : αk =
k∑
c

1
Nc

∑
i,j∈Zc

pij (6)

where Zc is set of objects included in the cluster c, Nc number of objects in Zc.
The validity score gets higher values for the better fits. Thus, by evaluating the
local maxima of this score we determine the correct cluster number automati-
cally. Thus, we answer one important question of clustering; ”what should be
the total cluster number?”

The values of the thresholds should still be computed. We obtained projec-
tions that gives us the maximum separation but we did not determine the degree
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of separation i.e. maximum and minimum values of projected values on the basis
vectors. For convenience, we normalize the projections i.e. the rows of current
projection matrix (Vk) as pTp = 1 and then compute the correlation V T

k Vk.
Correlation will make rows that their projections are similar to get values close
to 1 (equal values will give exactly 1), and dissimilar values to 0. By maximizing
the separation (distance) between the points in different clusters on an orthonor-
mal basis, we pushed for the orthogonality of points depending their clusters;
pipj ≈ 1 if they are in the same cluster, and pipj ≈ 0 if they are not in the
same cluster.

As a summary, the clustering for a given maximum cluster number k∗ includes

1. Compute A, approximate eigenvectors using Ritz values λk � θk, find eigen-
vectors vk for k = 1, .., k∗,

2. Find Pk = VkV
T
k and Qk for k = 1, .., k∗,

3. Determine clusters and calculate αk,
4. Compute α′ = dα/dk and find local maxima.

The maximum cluster number k∗ does not affect the determination of the fittest
cluster; it only limits the maximum number of possible clusters that will be
searched.

5 Experiments and Discussion

We simulated the proposed method using several label sequences as given in
fig. 2. We conducted the following evaluations:

Language Discrimination:We generated three sequences of random integers
that are uniformly distributed in the range [1 : 10]. Then, we replaced each
number in the sequence with its English and Portuguese spellings to obtain the
letter sequences given in fig. 2-a (shown in black). Thus, each letter represents a
label. We trained 4-states HMM’s and applied eigenvector decomposition after
computing the affinity matrix. The validity reached maximum for cluster number
k = 2 and fig. 2-a shows the clustering results. As visible in the bottom part
of fig. 2-a (blue and red clusters), the HMM’s captured the dynamics of letter
ordering that is intrinsic to each language and identified the language clusters
accurately. We obtained similar results for different length sequences as well.
In the future, we plan o represent each word using a separate label rather that
using letters as labels for language related classification tasks.

Pattern Matching: We generated a total of 8 random length sequences that
can be partitioned into 4 patterns using two labels (a, b) as given in fig. 2-b,
left. After computing 2-state HMM’s we obtained the affinity matrix given in
fig. 2-c. The validity scores after iterative clustering is shown in fig. 2-d, where it
reaches maximum for the cluster number k = 4. The corresponding clusters after
eigenvector decomposition is given in fig. 2-d. The results prove that the proposed
method can accurately detect pattern similarities even though the length of the
sequences may differ significantly.
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(a)

(b)
(c) (d)

(e)

(f) (g) (h) (i)

Fig. 2. (a) Language discrimination set (upper) and the clustering results (lower). (b)
Pattern detection set (left) the computed clusters (right), and (c) affinity matrix, (d)
validity scores for this set. (e) Two random length, random distribution scenarios, (f-g)
affinity matrix and validity scores for the 1st column of (e), and (h-i) affinity matrix
and validity scores for the 3rd column of (e).

Random Letters:We generated random length, random distributed sequences
using labels (c, d, e, f, g, h, i, j) as given in fig. 2-e (1st and 3nd columns). In the
first column set, the first 10 sequences consist of uniformly distributed random
drawings of from set (c, d, e, f), and similarly the second 10 sequences are made
of (e, f, g, h), and the last 10 sequences are generated from (g, h, i, j) to allow
partial overlap between each domain. The affinity matrix and validity scores are
given in fig. 2-f and fig. 2-g, respectively. The maximum validity happens at
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k = 3. The second column shows the clustering results for this set. The third
row in fig. 2-e shows the random label sequences that are generated using the
set (e, f, g) (first 15 sequences) and a bigger inclusive set of (e, f, g, h, i) (last 15
sequences). The affinity is depicted in fig. 2-h and the validity scores in fig. 2-i.
As obvious in the clustering results, the optimum cluster number is estimated
accurately and the eigenvector decomposition partitioned correctly at each time.

In conclusion, the main contributions of this paper are:

– We proposed a new method to compare the variable length sequences using
the HMM parameter space.

– We showed that the number of largest eigenvalues (in absolute value) to span
subspace is one less than the number of clusters.

– We used the above result as a quality assessment criterion for cluster fit.

References

1. J. Alon, S. Sclaroff, G. Kollios V .Pavlovic, ”Discovering clusters in motion time-
series data”, Proceedings of Computer Vision and Pattern Recognition, 2003.

2. G.L. Scott and H. C. Longuet-Higgins, “Feature grouping by relocalisation of eigen-
vectors of the proxmity matrix” In Proc. British Machine Vision Conference, 103-
108, 1990.

3. G. Sleijpen and H. Van Der Vorst, “A Jacobi-Davidson iteration method for linear
eigenvalue problems”, SIAM J. Matrix Anal. Appl., vol. 17, 401–425, 1996.

4. A. K. Jain , M. N. Murty , P. J. Flynn, “Data clustering: a review”, ACM Computing
Surveys (CSUR), 31(3), 264-323, 1999.

5. J. Shi and J. Malik. “Normalized cuts and image segmentation” In Proc. IEEE
Conf. Computer Vision and Pattern Recognition, 731-737, 1997.

6. L. Rabiner. “A tutorial on hidden markov models and selected applications in speech
recognition”, Proceedings of IEEE, 77(2), 257–285, 1989.

7. R. B. Morgan, “Computing interior eigenvalues of large matrices” Linear Algebra
Appl., 154/156, 289-309, 1991.

8. P. Smyth, ”Clustering sequences with Hidden Markov Models”, Book: Advances in
Neural Information Processing Systems, The MIT Press, M.C. Mozer, M.I. Jordan,
T. Petsche, 648, 1997.

9. Y. Weiss, “Segmentation using eigenvectors: a unifying view”, Proceedings IEEE
International Conference on Computer Vision, 975-982, 1999.



A Kernel View
of Spectral Point Pattern Matching

Hongfang Wang and Edwin R. Hancock

Dept. of Computer Science, University of York
Heslington, York, YO10 5DD, UK
{hongfang,erh}@cs.york.ac.uk

Abstract. This paper investigates spectral approaches to the problem
of point pattern matching. Specifically, kernel principle component anal-
ysis (kernel PCA) methods are studied and compared with Shapiro and
Brady’s approach and multidimensional scaling methods on both syn-
thetic data and real world data. We demonstrate that kernel methods
can be effectively used for solving the point correspondence matching
problem with a performance that is comparable with other iterative-
based algorithms in the literature under the existing of outliers and ran-
dom position jitter. We also provide discussion of the theoretical support
from kernel PCA to the earlier approach of Shapiro and Brady.

1 Introduction

The problem of point pattern matching is to find one-to-one correspondences
among two given data-sets and serves as an important part in many computer
vision tasks. Graph spectral methods have been used extensively for locating
correspondences between feature point-sets, e.g. [8, 9]. In [8], Scott and Longuet-
Higgins first use a Gaussian weighting function to build an inter-image proximity
matrix between feature points in different images being matched and then per-
form singular value decomposition on the obtained matrix in order to get corre-
spondences from the proximity matrix’s singular values and vectors. This method
fails when rotation or scaling between the images is too large. To overcome this
problem, Shapiro and Brady [9] construct intra-image proximity matrices for the
individual point-sets being matched with an aim to capturing relational image
structure. The eigenvectors of the individual proximity matrices are used as the
columns of a modal matrix. Correspondences are located by comparing the rows
of the modal matrices for the point-sets under match. This method can be viewed
as projecting the individual point-sets into an eigenspace, and seeking matches
by looking for closest point correspondences. Carcassoni and Hancock have at-
tempted to improve the robustness of this method to point-jitter using robust
error kernels instead of the Gaussian [2] and have overcome problems due to
differences in the structure of the point-sets by using spectral clusters [3]. Multi-
dimensional scaling is also used to solve this problem by performing Procrustes
alignment in the eigenspace [6]. However, these two latter approaches involve
iterative computing which requires more computation than other approaches.
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This motivates us to seek point matching algorithms that are both robust and
without iteration. Kosibov and Caelli [1] have extended the Shapiro and Brady
method of seeking correspondences by searching for matches that maximise the
inner product of the truncated and re-normalised eignevactors.

The idea underpinning these spectral methods is to embed point-sets into
a common eigenspace, and to find correspondences by performing alignment
in this space. The key in this idea is that of finding the appropriate function
which captures the essential properties of the given data-set which should also
be robust under uncertainties such as outliers, random position jitter, occlusions,
etc., and identifying the common eigenspace. Also the captured properties should
be common in both data sets. The problem of how to select the best function, is
a topic that has recently attracted considerable interest in kernel learning theory.
The development of kernel PCA [7] provides us with a theoretically sound way
of improving the existing spectral point pattern matching algorithms since it
shares many features in common with spectral graph theory.

Our aim in this paper is to investigate the performance of kernel PCA for
solving the point correspondence problem and provide a robust one-to-one point
pattern matching algorithm which involves no iterations. We focus in detail the
Gaussian and polynomial kernels which are invariant to similarity transforma-
tions and reflection, and compare their performance in point pattern matching
with previous approaches. A common weakness with existing spectral methods is
that they are particularly sensitive to structural variations in the point-sets. We
demonstrate that the kernel approach is a feasible way for point pattern match-
ing and with an appropriate kernel function, in this work the polynomial kernel,
encouraging performance can be obtained and the results are less sensitive to
these problems than the previous graph spectral methods.

2 Spectral Point Pattern Matching

The problem of point pattern matching can be described as given two feature
point-sets X1 = {x1, . . . ,xm} and X2 = {y1, . . . ,yn} extracted from two differ-
ent images, establish a one-to-one point correspondences between the two data-
sets. Ideally, outliers can be removed from the data-sets during matching. In this
paper, the feature points in each data-set are in the form of xi = (x

(1)
i , x

(2)
i ) and

yi = (y(1)i , y
(2)
i ), respectively, where i are the indices and superscripts (1) and

(2) represent each point’s respective abscissa and ordinate. Our aim is to locate
correspondences between the two point-sets.

The approaches of graph spectral methods for point pattern matching is to
solve the point correspondence problem by first build a graph representation
for each data-set where each graph node corresponds to an image feature point,
and each edge between nodes corresponds to the relationships of the two feature
points. After the graph construction, represent each graph by a matrix and find
feature correspondences from the matrices’ eigendecompositions. These methods
aim to embed the dissimilarity (or similarity) properties of the original data
into a common space in which correspondence matching can be performed. As
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mentioned in the last section, the two essential ingredients are the dissimilarity
function and the embedding procedure. The dissimilarity properties are regarded
as weights of the edges and are expressed in the form of a proximity matrix A
with its elements Aij represents the dissimilarity relationship between feature
points xi and xj .

The objects in image frames are usually subject to transformations such as
translation, rotation, scaling, and reflection. Hence, it is desirable for the dissim-
ilarity function to be invariant under these transformations and thus provide a
basis for directly comparing images and for finding correspondences between the
original feature points and their transformed counterparts. It is known from ge-
ometry that the Euclidean distance is invariant to any similarity transformation,
so the dissimilarity functions underpinning many existing methods are related to
the Euclidean distance between feature points (see for example, [9, 8]). Another
example of similarity transformation-invariant property is the directional prop-
erties of feature points. This property can also be considered as a good candidate
for constructing a suitable similarity function for spectral point matching.

When viewed from the perspective of kernel PCA, applying a dissimilarity or
similarity function to the original data set is equivalent to the process of using
a kernel function to map the data into a higher, possibly infinite, dimensional
space. Moreover, this mapping interpolates the data in the new space according
to their transformation invariant properties. From this perspective, we believe
that kernel PCA provides us a sound theoretical explanation for spectral pattern
matching, and by applying an appropriate kernel function, expected matching
results should be obtained.

3 The Kernel Approach

Kernel PCA can be regarded as a generalization of PCA from a linear to a
nonlinear transformation space. In the literature it has been shown to provide a
better way of recovering the underlying principal components of the given data.

Conventional principal component analysis (PCA) provides an orthogonal
transformation of the data from a high dimensional space to a low dimensional
one which maximally preserves the variance of the original data. This is done
by computing the eigenvalues and eigenvectors of the covariance matrix C =
1
M

∑M
i=1(xi−x)(xi−x)T , and then use the first N normalized eigenvectors (N ≤

M , assume the eigenvalues are sorted in descending order) of the covariance
matrix as the main projection axes for the training data. Since the method
minimizes the residual covariance of the data points projected into the common
eigen-subspace, it thus gives an optimum representation of the original data in
the projection space.

The main difference between kernel PCA and conventional PCA is that ker-
nel PCA first uses a function T : x �→ Φ(x) to map the data from the low di-
mensional space into a new feature space F of higher dimension. Conventional
PCA is then performed on the transformed data matrix. This gives kernel PCA
the property of extracting nonlinear features from the data-set and makes it a
powerful tool in many applications.
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However, an explicit mapping T is not always exist. In real practices the
mapping is implicitly done by choosing a suitable kernel function K(xi,xj) for
data points xi and xj . However, there is a problem when choosing the function
K(xi,xj) since not every function is guaranteed to satisfy the requirements of
a feature space. An approach of choosing a qualified kernel function is to use
the properties described in the Mercer’s theorem [10] which states that any
continuous symmetric function K(xi,xj) that satisfies the positive semidefinite
condition

∫
X×X K(xi,xj)f(xi)f(xj)dxidxj ≥ 0 is ensured to be a kernel for

some feature space. This provides a broad way of choosing the kernel mapping
functions. In this paper, we study the Gaussian kernel and the polynomial kernels
in more detail for reasons described in the last section.

To extract the principal components of the mapped data, first a covariance
matrix needs to be constructed for the mapped data. Suppose that the data
{x1, . . . ,xm} in space F is centred, then the covariance matrix of the mapped
data in this space is:

C =
1

m− 1

m∑
i=1

Φ(xi)Φ(xi)T

Since the explicit mapping T is probably unknown, computing the covariance
matrix directly is not feasible. Schölkopf, Smola, and Müller showed in [7] that
by solving the eigen-equation mλα = Kλ in which the eigenvalues are mλ, the
pth feature vector, corresponding to the projection of the pth feature point on
the eigenspace, takes the form < vp, Φ(x) >= 1√

λp

∑m
i=1 αp

i k(xi,x), which can
be further simplified to ([5])

< vp, Φ(x) >=
1√
λp
(Kαp)n =

√
λpαp

n (1)

To generalize the method to non-centered data, the kernel function K be-
comes [7, 5] K ′ = (I − eeT )K(I − eeT ) where e = M−1/2(1, 1, . . . , 1)T .

Based on the interesting transformation invariants, two kernel functions, the
Gaussian kernel and the polynomial kernel, are of interest in this work. The
polynomial kernel has the form K(xi,xj) = (xi · xj + c)d, where c and d are
constants (d �= 0). It captures the directionality of the data which should be
very important for correspondence matching. However, the dot product is not
invariant under object’s scaling so there is still a magnitude problem we should
consider. To solve this problem, one way is to normalize the scaled and truncated
eigenvectors. Another method is to scale both of the two eigenvector matrices
by the eigenvalue matrix of the model data-set. In this work, the latter method
is chosen to eliminate this problem.

The Gaussian kernel has the form K(xi,xj) = exp{−d2ij/σ} where d2ij is a
dissimilarity metric between the points xi and xj , which usually takes the form
of a Euclidean distance between these two points as used in this work.

Having the kernel functions described, we now introduce our point matching
algorithm using kernel PCA techniques. We expect that a suitable kernel func-
tion will capture the object’s properties and feature points can be embedded
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into a lower dimensional feature space in terms of the extracted properties thus
provide a basis for one-to-one correspondence matching. In short, the following
procedures are taken for performing point matching by kernel PCA:

• Build a matrix representation A for each image, where the matrix elements
are computed by Aij = K(xi,xj), and xi and xj are two feature points from
the same image and also let the matrix A be centred;

• Perform the eigendecomposition of A: Aλ = λα, with λ the eigenvalues and
α the eigenvectors for each proximity matrix;

• Use equation (1) to compute the projection of each feature in the eigenspace
spanned by α. Only the first two eigenvectors are used in the polynomial
kernels, and only the first three are used in the Gaussian kernels;

• The correspondences between two feature point-sets are the pairs which have
the smallest Euclidean distance between them.

• The σ values in the Gaussian function are chosen automatically using the
heuristic formula σ = 1

0.09

∑m
i=1(

1
m

∑m
j=1 d2ij)

2, where dij are the Euclidean
distances between point pairs xi and xj .

One may find the above algorithm somewhat similar to the approach by
Shapiro and Brady [9]. In [9], a proximity matrix A is first built for each image
with the matrix elements computed as Aij = exp{−d2ij/2σ

2}, where d2ij is the
Euclidean distance between points xi and xj , and σ is an adjustable parameter.
Shapiro and Brady explain this as the mapping of the original two dimensional
data to a higher dimensional space and thus capture structural information from
the feature points. They then perform eigendecomposition on matrix A to obtain
its eigenvalues and eigenvectors and to get a new modal matrix which has the
descendant-sorted eigenvectors as its columns for each data set. The rows of
the matrix are then considered as the projections of the feature points into the
eigenspace. When the data sets are of different size, only the first M leading
eigenvectors from each data sets are used where M is the size of the smaller
data set. To make the algorithm more robust, Shapiro and Brady also suggest
to use the eigenvalues to scale their corresponding eigenvectors and put more
emphasis on the more significant eigenvectors. This acts in a more similar way
as the kernel PCA. Comparing with the kernel PCA approach described above,
one can see that in this way, Shapiro and Brady’s method can be regarded as a
special case of the kernel PCA approach, which assumes the data in the mapped
space has a mean zero and uses the Gaussian as the kernel function. Figure 3
shows the performance of Shapiro and Brady’s method and the kernel PCA with
a Gaussian kernel.

4 Experimental Results

Experiments are designed to compare the matching performance of the afore-
mentioned spectral point matching algorithms. In addition to the algorithms
described above, the multidimensional scaling is also included in this section.
MDS is also a method commonly used for data dimension reduction which is
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based on eigenvalues and eigenvectors of a dissimilarity matrix [4]. It attempts
to preserve the pairwise relationship between data points while mapping the data
into a low dimensional space. The experiments here of matching using MDS is
performed using the classical MDS in which the Euclidean distance is taken as
the dissimilarity measure.

Focuses of the experiments are on the performance of the algorithms when
the data are under transformations and contains uncertainties such as outliers
and random position jitter. For this purpose, the data in the experiments are
designed as in the following subsection.

4.1 The Data

The experiments are taken on both synthesized data and real data sets and have
the following designs:

1. Synthetic data: Assume two dimensional affine transformation. Given X =
{x1,x2, . . . ,xn}, a synthetic dataset Y = (X+5×11T )×0.6×R is generated

for testing the algorithms, where 1 = (1, . . . , 1)T , R =
[
cos θ sin θ
− sin θ cos θ

]
is the

rotation matrix and θ = 10
180 × π.

2. Real data: Here we use the hands sequence shown in Figure (1) and the CMU
house sequence ([3]) shown in Figure (2).

3. Noisy data: A Gaussian noise is added to the data set to test the robustness
of the algorithm. First A 2-D Gaussian random matrix D ∼ N(μ,Σ) is
generated, and then the data are added to the matrix of the second feature
point set X2 using the equation X2 = X2 +D

4. Data sets with different size: To simulate structural errors we delete l consec-
utive points, where l = 1, . . . , 5, from the second data set (the test data).
Also feature point sets in the CMU house sequence have different sizes. For
frame 01, 02, 03, 04, and 10 displayed in Figure (2), the sizes of each data-set
are 30, 32, 32, 30, 30, respectively.

4.2 The Results

To compare the performances of the kernel approaches when deformations are
present, experiments are performed on synthetically generated data where a 2D
translation, rotation and isoscaling are added. The effect of missing points and
random point position jitter in terms of the 2-D Gaussian random matrices with
different covariance matrices as described above are also tested. The results are
shown in Figure (3). The experimental results of random point jitter are averages
of 100 runs for each covariance matrix. In the experiments of different data sizes,
at the beginning, both data sets have 30 points. The results of missing points are
averaged over all 30 runs. The testing method of missing data are as described
above.

The results of the algorithms on real data sets are displayed in Figure (3),
and Table (1). The experiments on missing points are performed in the same
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Table 1. Matching results (Total error numbers)

Hand data CMU House

Frames 08 - 25 09 - 11 09 - 25 11 - 25 01 - 02 01 - 03 01 - 04 01 - 10

KPCA,Gaussian 30 7 22 21 17 21 4 17

KPCA,Polynomial 5 7 6 12 11 11 3 16

MDS 35 5 26 27 17 21 25 29

Shapiro&Brady 30 7 22 21 26 28 3 25

Fig. 1. The hand image data (From left to right, up to down: frame 08, 09, 11, 25)

way as for the synthetic data. The results are got from all 44 runs (since in this
part, each data set has 44 points at the beginning).

In all the experiments using Shapiro and Brady’s method, the eigenvalues
are used to enhance their corresponding eigenvectors in order to improve the
matching results.

From these experiments, we can see that the kernel PCA approach with a
polynomial kernel gives the best results. Experiments on the CMU house data
(table 1) also show that the polynomial kernel outperforms all the other algo-
rithms. In all the experiments, the performance of kernel PCA with a Gaussian
kernel and the Shapiro and Brady’s method ([9]) similar due to their close rela-
tionship.

5 Discussion

In this paper we have explored the use of kernel PCA with a polynomial kernel
function for finding correspondences between two feature point sets. A relation-
ship with Shapiro and Brady’s correspondence method [9] is also discussed. The
experimental results reveal that the method offers performance advantages over
a number of alternative methods. Besides of the plotted results, the polynomial
kernel also shows a more stable performance in experiments of different data size.
Even in worst cases it can still maintain a tolerable error rate. The performance
of our algorithm is also comparable to the approaches in [2, 3, 6]. The relative
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Fig. 2. The CMU house data (From left to right, up to down: frame 01,02,03,04,10)
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Fig. 3. Matching results (From left to right, up to down: synthetic data; hand 08 and
09; hand 08 and 11; effects of Gaussian random position jitter)
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weakness of the polynomial kernel is that it requires slightly more computing
time that other methods and this might be a problem when very big data sets
are being matched and the time requirements is strictly restricted. However this
is compensated by its non-iterative property. Comparing with previous iterative-
based methods, its computing is more efficient.

In Gaussian kernels, the choose of the parameter σ is not an easy task. In
[9], the value is chosen manually. In this paper, we use a heuristic formula based
on each data-set’s pairwise Euclidean distance matrix to compute the σ value
automatically. In our experiments, this formula always chooses an appropriate
σ value for different data sets.
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Abstract. This study investigates the processing of sonar signals with neural 
networks for robust recognition of indoor robot environment composed of sim-
ple objects (plane, corner, edge and cylinder). The neural networks can differ-
entiate more targets with higher accuracy. It achieves this by exploiting the 
identifying features extracted from sonar signals. In this paper we compare two 
different architectures of neural networks (global and specialized structure) in 
term of classification rates, the best classifier obtained is used to recognize a 
robot environment. The results strengthen our claims that sonar can be used as a 
viable system for object recognition in robotics and other application domains. 

1   Introduction 

In contrast, typical robotics applications only use sonar as a range finder, measuring 
the time-of-flight of the leading edge of the ultrasonic echo to determine the distance 
of the object that generated the echo [1,2]. Target differentiation is of importance for 
intelligent systems that need to interact with and autonomously operate in their envi-
ronment. Many works have studied ultrasonic sensors for this purpose [3,4]. Sonar is 
a very useful and cost-effective mode of sensing for mobile robots. The fact that 
sonar sensors are light, robust and inexpensive devices has led to their widespread use 
in applications such as map building [5], target tracking [6], and obstacle avoidance 
[7]. Although there are difficulties in the interpretation of sonar data due to poor 
angular resolution of sonar, multiple reflections and establishing correspondence 
between multiple echoes on different receivers [4], these difficulties can be overcome 
by employing an intelligent processing on sonar signals. This paper investigates the 
use of neural networks to process sonar signals encountered in target differentiation 
application for indoor environments. The motivation behind the use of neural network 
classifiers in sonar or radar systems is the desire to emulate the remarkable perception 
and pattern recognition capabilities of humans and animals [8], Carpenter used a 
Fuzzy ARTMAP neural network [9] to classify echoes from five objects.  A compari-
son between neural networks and standard classifiers for radar-specific emitter identi-
fication is provided by Willson [10]. Neural networks have also been used in the 
classification of sonar returns from undersea targets [8]. The purpose of this paper is 
to recognize a real indoor environment by using intelligent processing and ultrasonic 
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sensors. Before classification, we determine the most discriminant features set with 
several methods: sequential methods (Backward and Forward), optimal method 
(Branch and bound). 

The classifier used is determined by a comparison of two neural networks. The 
networks considered are the Global Neural Network (GNN) and the Specialized 
Neural Networks (SNN).  

2   Sonar System Description 

The system we presented uses two readily available 6500-series Polaroid sonar with 
80mm between centers. The sensors are mounted on the step by step motor (the step 
= 1.8°). It is contained in the copper box in order to avoid the interference between 
magnetic field and sonar signal. The sensors are employed as a transmitter/receiver 
(T/R) and a receiver (R). They are characterized by a 10m range and a beam aperture 

θ0 of about )61.0(1-sin0 aλθ = . Where 0fc=λ is the wavelength of the acoustic 

signal, a = 14mm is the radius of the transducer and f0 = 50kHz is the resonance 

frequency of the sensor. The most common sonar ranging system is based on the 
time-of-flight (TOF) which is the time elapsed between the transmission and the 
reception of a pulse. In commonly used TOF systems, an echo is produced when the 
transmitted pulse encounters an object and a range value 20ctr =  is produced with 

simple thresholding [5]. Here t0 is TOF and c is the speed of sound in air (c=343,3 

m/sec).  

3   Target Differentiation 

The target primitives modeled in this study are plane, corner, edge and cylinder with 
different dimension (Figure 1). Since the wavelength ( =λ 6.8mm) is much larger 
than the typical roughness of used object surfaces, in this case, targets reflect acoustic 
beams specularly, like a mirror [5].  

 
 

      

Fig. 1. Targets differentiated in this study. 
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4   Feature Vector 

4.1   Dimensionality Reduction 

There are two main reasons to keep the dimensionality of the pattern representation 
(i.e., the number of features) as small as possible: measurement cost and classification 
accuracy. A limited yet salient feature set simplifies both the pattern representation 
and the classifiers that are built on the selected representation. Consequently, the 
resulting classifier will be faster and will use less memory. Moreover, as stated ear-
lier, a small number of features can alleviate the curse of dimensionality when the 
number of training samples is limited. On the other hand, a reduction of the number 
of features may lead to a loss in the discrimination power and thereby decreases the 
accuracy of the resulting recognition system. The classification depends strongly on 
the features selected to represent the sample. Feature extraction is achieved by an 
heuristic method. Good feature selection method is an essential step in a classification 
system [11], which permits to reduce the space of class representation. Among the 
existing criteria we use the following criteria: 

)ˆˆ( trace b
-1
WJ =  (1) 

Where wΣ̂  is the estimated intra group covariance matrix, which characterizes the 

dispersion of points in a class. 
b

Σ̂ is the estimated inter group covariance matrix 

which characterizes the dispersion of classes between them.   
We made comparison of two feature selection algorithms, with the rate of            

classification. Forward and Backward sequential selection (FSS, BSS) [12,13] are the 
most common sequential search algorithms. FSS begins with zero features, evaluates 
all subsets with exactly one feature and selects the one with largest criteria. BSS 
instead begins with all features and repeatedly removes a feature whose removal 
causes the least decrease of criteria. At the k step, we add or remove the feature 

jξ  as: 

jik    -d1,i   )( ≠=≥± ± iJjkJ k()
 (2) 

Where J is the criteria (3), kΞ  is the whole set of features minus k features. The 

remaining parameters are most discriminative.  
After a rough selection of parameters we apply the branch and bound method 

(BAB) to refine the result. This method examines all feature subsets. It will always 
find an optimal solution but with cost of computational time. We look for *Ξ  as: 

{ }
⎪⎩

⎪
⎨
⎧

′Ξ=∗Ξ

∗∗=∗Ξ⊂Ξ

))(()(

,...,

dJMaxJ

ξξ
 (3) 

The selected parameters contain the main features of the signal received by each 
sensor (Figure 3). We can regroup these parameters in four categories: the maximal 
amplitude, the shape, the energy and the difference of viewpoints between these two 
signals. This set is chosen among the 113 initial features extracted from the received 
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signal, its envelope and its fast Fourier transformed (FFT) shown in Figure 2. The 
initial set of parameters component the maximum amplitude, time of flight (TOF), 
energy, length of the envelope and some Fourier transform coefficients. Because the 
device is composed of two sensors we also extract the differences between ampli-
tudes, lengths and distances.  

     
 

 

Fig. 2. Feature extraction : (a) real received signal, (b) the envelope of the echo and (c) fast 
Fourier transformed of the received signal. 

5   Neural Network Classifier 

We compare the classification rate of two supervised networks: Global Neural Net-
work and Specialized Neural Networks. These networks used are a multilayer percep-
tron with the gradient back-propagation algorithm. 

5.1   Global Neural Network (GNN) 

The network employed has one hidden, one input and one output layer. The hidden 
layer comprises 18 neurons. This number is determined by the heuristic method, 
which consists to compare the generalization error for several networks architecture, 
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we vary the hidden layer sizes and the input neurons. The number of output layer 
neurons is equal to the number of classes.  

The output is represented by a posteriori probability (Pr) of neural classification 

evaluated by a Softmax function (Equation 1) [14]:  
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jy  is the j output of the neural classifier, 

K  is a number of classes. 
 The maximal probability gives the membership class of example. The classifier is 

conceived after two phases: learning and generalization using ultrasonic data set.  

5.2   Specialized Neural Networks (SNN) 

This network is composed of several global neural networks (Figure 4). The number 
of networks is equal to the number of classes. Each network is specialized to recog-
nize one class. The number of output layer neurons is equal to 2, the class to differen-
tiate and the class “Others” which include all the other classes. Each network has a 
different architecture that we determine with the heuristic method. 
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Fig. 3. Specialized Neural Networks architecture. 

6   Results 

6.1   Data Base 

Two bases of measures have been done, one for the training and another for the gen-
eralization. Each one is composed of the four objects, plane, corner, cylinder and 
edge, placed at various distances from the sonar. The number of examples depends on 
the dimension of object. For the plane, we use two planes of 16cm and 122cm width, 
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the corner 25cm and 48cm width, the edge 20cm and 43cm width and for the cylin-
der, we use three with different diameter: 16mm, 4cm and 20cm.  

The range varies between 0.20m to 2.30m, with an increment of 20cm. The orien-
tation of the sensor varies between ± 20° with an increment of 5° . 

6.2   Determination of Discriminating Parameter 

Choosing the feature vector dimension is usually a compromise between classifica-
tion performance and computational time. We compare the FSS and BSS methods, 
according to the given rate classification by quadratic discriminant analysis (QDA). 
This method is based on the normal distribution: 
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k
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k
pXkf π   (5) 

Where μk and Σk are the class k (1 ≤ k ≤ K) population mean vector and covariance 

matrix. 

Entry Vector of GNN 
We determine the features used like entry vector of GNN with different methods 
(FSS, BSS and BAB). After comparison between FSS and BSS, we find that FSS 
gives the best result in term of classification until 30 parameters. We apply the BAB 
method to refine the final set. We could not use them for more than 30 parameters 
because of the importance of the computation time. 

Table 1. Features selection. 

 
FSS 

BAB 

Parameters number 113 60 30 5 
Mean rate of classification 94 90 80 76 

 
The table 1 shows the mean rate of object classification with different number of 

parameter using QDA. We reduce the dimension of patterns to 5 parameters that are: 
 

• Length of receiver echo, TOF of receiver (R), Difference between the two ampli-
tudes,Two Fourier transform coefficients that correspond to resonance frequency : 
50kHz of transmitter/receiver (T/R) and of receiver (R). 

Entry Vector of SNN 
The same methods are applied to obtain the entry vectors of each SNN network. 

The SNN structure is illustrated in Table 2, where each target has a different num-
ber of features, selected from the initial features set (see section 4) with the different 
selection feature methods (FSS, BSS and BAB). We choose the features number that 
correspond to the best rate classification. 
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Table 2. SNN structures. 

 Size of entry vector Classification 
rate (%) 

Plane 7 96 
Corner 5 92 
Edge 10 91 
Cylinder 7 95 

6.3   Classification 

The GNN has one hidden layer which comprises 18 neurons. The number of output 
layer neurons is 4. The number of input layer neurons is equal to 5 illustrated in (§ 
6.2). The SNN has a different number of hidden layer neurons for each object shown 
in Table 3. The number of output layer neurons is equal to 2. 

Table 3. Hidden layer neurons. 

 Hidden layer 
neurons 

Plane 17 
Corner 10 
Edge 13 
Cylinder 15 

 
Table 4 shows the rate of good classification in generalization given by the two 

methods (GNN, SNN) with the different objects (plane, corner, edge and cylinder).  

Table 4. Rate of good classification. 

 GNN SNN 
Plane 71% 99% 
Corner 73% 94% 
Edge 56% 96% 
Cylinder 60% 83% 

 
The Specialized Neural Networks method (SNN) offers a best rate of classification 

for all the simple targets (plane, corner, edge and cylinder). This method gives better 
results because each network is specialized for one class and the estimation of the 
separation surface between two classes (target and others) is simpler than for the four 
classes. 

6.4   Classification of Robot Environment 

We tested SNN performances on a robot environment composed of simple targets set 
(plane, corner and cylinder) with different dimensions. There are three cylinders with 
different diameters (20cm, 4cm and 2cm). 
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After scanning the environment, the aim is to recognize the targets encountered by 
the sonar system. We classified the two echoes viewed on the sensor line of sight. We 
added an ambiguity reject class to the networks output in order to reduce the classifi-
cation error. We reject an example in ambiguity when probabilities (given by equa-
tion 4) of the four networks outputs are equal. The result of classification is super-
posed on the environment and is shown in the Figure 4. 

 

 

Fig. 4. Classification of a robot environment. Classification are represented by letters: 
c=corner, p=plane, cy=cylinder, *p: second plane (second echo encountered on the sensor line 
of sight) and R= rejected measure. 

The expanded recognition areas are owed to the aperture of the emission signal 
(plane and cylinder). The error of classification is specially due to the occultation of 
some objects by others. In this case, the energy reflected by the object occulted is 
lower than the energy reflected by the first object  located in front of the sonar. The 
classification error of the environment is 3.7%. The result showed in figure 6 verifies 
the performance of the SNN method to recognize the simple targets. 

7   Conclusion 

Neural networks are employed to process real sonar data after trained to learn identi-
fying relations for the target primitives. In this study, The SNN method is compared 
to the GNN method to classify 2D indoor environment based on ultrasonic measures. 
The best result is obtained with the SNN method. The information included in the 
echo is sufficient to classify the environment in four classes (edge, corner, plane and 
cylinder) with good performances. The results confirm the value of sonar as a sensor 
for object recognition and suggested wider use of neural networks as robust pattern 
classifiers in sensor-based robotics.  For future works it is important to consider the 
unsupervised learning algorithms to make the classification process more robust to 
changes in environmental conditions. 
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Abstract. We focus on characterizing spatial region data when distinct classes 
of structural patterns are present. We propose a novel statistical approach based 
on a supervised framework for reducing the dimensionality of the initial feature 
space, selecting the most discriminative features. The method employs the sta-
tistical techniques of Bootstrapping simulation, Bayesian Inference and Markov 
Chain Monte Carlo (MCMC), to indicate the most informative features, accord-
ing to their discriminative power across the distinct classes of data. The tech-
nique assigns to each feature a weight proportional to its significance. We 
evaluate the proposed technique with classification experiments, using both 
synthetic and real datasets of 2D and 3D spatial ROIs and established classifiers 
(Neural Networks). Finally, we compare our method with other dimensionality 
reduction techniques. 

1   Introduction 

Feature selection is a very important process for analyzing patterns in spatial data. In 
certain application domains, such as in geography, meteorology or medicine, we seek 
to focus on specific Regions of Interest (ROIs) that occupy a small portion of the data 
and extract informative features [1]. Examples of such ROIs are areas with high levels 
of precipitation in meteorological maps and brain regions of high activity in fMRI1 
(see Figure 1). A well-known characterization technique is to map data using the 
extracted features into points in a K-dimensional (K-d) space [2].   
When dealing with spatial patterns, shape is one of the main characteristics that needs 
to be represented. Several approaches have been used for this purpose [3]. To obtain 
the initial characterization vectors here, we use an approach initially presented in [4] 
that considers properties of internal value of ROIs in addition to their shape. This 
method works particularly well for non-homogeneous as well as for homogeneous 
ROIs. It efficiently forms a K-d feature vector using concentric spheres in 3D (or 
circles in 2D) radiating out of the ROI’s center of mass and  extracting quantitative 
information regarding both its structure and content. In several cases though, the 
number of features extracted is too large to support efficient pattern analysis and 
classification.  

                                                           
1  Functional-Magnetic Resonance Imaging: shows physiological activity in brain. 
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Fig. 1. Examples of geographical / meteorological and medical 2D and 3D spatial ROIs. 

Several techniques have been proposed for reducing the dimensionality of data [5]. 
These approaches can be separated into two categories: (i) those having the property 
of transforming the initial features introducing a completely new subspace and, (ii) 
those that attempt to find an optimal subset of the initial features that are considered 
to be more significant.  

Principal Component Analysis (PCA), also known as Singular Value Decomposi-
tion (SVD), is the most widely used technique from the first category due to its con-
ceptual simplicity and efficient computation. It has been extensively used in many 
applications, such as medical image pattern analysis [6]. Multidimensional Scaling 
(MDS) is another dimensionality reduction technique with wide applicability [7]. The 
Discrete Fourier Transform (DFT) [8] and Wavelet Transform [9] have also been 
applied.   Algorithms in the second class search for an optimal subset of the initial 
vector attributes, rather than a transformation. A well-known technique is forward 
feature selection that seeks to find an optimal subset of features [10]. Other ap-
proaches [11] combine the process of attribute selection with the induction algorithm 
used for classification. Statistical pattern recognition techniques have also been pro-
posed [12]. Although proven effective, the first class of techniques fails to preserve 
the initial attribute values; the new feature vectors do not correspond to real data 
measurements. This introduces greater difficulty in interpreting the conceptual repre-
sentation of the new feature space.  

Our approach shares mostly characteristics of the second class of feature selection 
techniques and is based on a statistical framework that employs Bootstrapping, Bayes-
ian inference and the Markov Chain Monte Carlo (MCMC) techniques. Our method 
applies to cases where distinct classes of data are present and a training set of labeled 
instances is available. In the particular case examined here, the level of the discrimi-
natory significance of features varies across the classes of the observed data. These 
statistical techniques are used to select the most significant features, according to their 
discriminative power across the distinct classes of data, giving rise to a significant 
reduction in dimensionality.  

2   Methodology 

The general idea of the proposed feature selection technique is based on the assump-
tion that the classes are generated by distinct structural pattern distributions reflected 
by the characterization vectors for each class.  After learning a model/distribution for 
each    class (in fact, a posterior over the models)   using probabilistic modeling, boot- 
strapping and Bayesian inference, we find the features that are generated significantly 
differently under each model/class. We observe a training set T consisting of a num-
ber nj of objects (ROIs) Oi,j, i={1,…, nj}  of class j, j={1,…,M}. Each object is                  

characterized by a feature vector of size K. That is, Oi,j=(fi,j[1],…,fi,j [K]).  We would 
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like to use these features to determine appropriate ways to distinguish between differ-
ent classes. In the presentation of the proposed feature selection technique we assume 
that these features are given by the characterization procedure [4] described briefly in 
Section 1, although with appropriate preprocessing any other characterization proce-
dure can be used instead. In this case, feature fi,j[k] corresponds to the fraction of the 

object Oi,j  occupied by a sphere of radius rk (the fraction of the sphere occupied by 

the object  Oi,j  can be used as well). Let us consider consecutive features fi,j[k],          

fi,j[k-1] corresponding to radii rk, rk-1 respectively. The difference between such fea-
tures, calculated as a proportion of the total feature difference, is      

])1[][(])1[][(][ ,,,,, jijijijiji fKfkfkfkf −−−=Δ , where k=2,...,K. Note that after this 

normalization, the fractional proportions satisfy the relationship: ∑ Δ
= Kk
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and the 

components of  Δfi,j can be treated as probabilities. Let Δfi,j = (Δfi,j[2],…,Δfi,j[K]) be 

the observed probability vector attached to object i of class j  (i=1,…,nj;  j=1,…,M). 
We will consider these vectors to be the vectors representing (characterizing) the 

initial ROIs. We employ also the notation ∑ Δ=Δ
=
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,

1 , (j=1,.., M) for the 

observed probability vector for objects of class j. 
We assume that the observed probability vectors Δfj  arising from class j are gener-

ated by a (parametric) probability vector:  pj=( pj[2],…, pj[K]),  j=1,…,M. These are 

the “true” apriori values for the observed probabilities atattached to objects of class j, 
capturing the spatial pattern of the corresponding class. The procedure for selecting 
the most discriminative features is as follows:       

 

1. Bootstrapping is done by ‘sampling’ a large number, B, of instances from each ob-
served probability vector Δfi,j of class j. Each sample consists of different features, 
selected according to their component probabilities, which are actually equal to the 

Table 1. Symbol Table. 
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jiO ,  Object jni ,,1�=  of class Mj ,,1 �=  

][, kf ji  Feature Kk ,,1�= , of object jiO ,  
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n =

Δ = Δ∑    ,  j=1,…,M Observed probability vector for objects of class j 

( [2], , [ ])j j jp p p K= � ,  j=1,…,M Parametric probability vector for objects of class 
j 

( [2], , [ ])j j jnum num num K= � ,  

j=1,…,M 

Combined bootstrap count vector for objects of 
class j 

jN ,    j=1,…,M Combined bootstrap sample sizes for class j 
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feature values after the normalization step. Under the assumptions that (i) the fea-
ture vectors for different objects are mutually independent, and (ii) the observed 
probability vectors Δfi,j arising from each class are well characterized by parame-
ters, the count vectors obtained from this sampling are easily combined to form an 
approximate probability distribution for each class. We use the notation numj[k] to 

denote the number of times feature fk, k=1,…,K is chosen by the sample for class j,  

j=1,…,M. 
2. We also employ the notation Nj; j=1,…,M  for the total bootstrap sample size used 

for sampling from class j;  j=1,…,M.  

3. 
We assume that the components of the observed probability vectors Δfi,j (i=1,…,nj; 

j=1,…,M) are mutually independent, conditional on the true probability vectors 
pj=(pj[2],…, pj[K]), j=1,…,M  i.e.,  
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We note that, although it is tempting to assume that the observed probability vec-
tors have a multinomial (or multinomial-type) distribution in the parameters pj[k]; 

k=2,...,K ,  j=1,…,M, this is not possible in view of the fact that the components of the 
observed probability vectors are not integers. An alternative approach, which we 
propose here, involves constructing an approximate multinomial likelihood for the 
observed probability vectors using the bootstrap counts, numj[k] (k=1,..,p;  j=1,…,M) 
and basing inference on this likelihood.  We make the assumption that the likelihood 
of the observed probability vectors takes this form. This assumption is tantamount to 
assuming that the bootstrap sample sizes Nj (j=1,..,M) are ‘large enough’ to have the 

property that the vector, Nj * j, has components all of which are positive integers. 
The multinomial probability density function (see Equation 2.1) in the bootstrap count 
takes the form: 
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3. We postulate a parameter j with (apriori) mean value 1/Nj  having the following 

property: the observed probability vectors  jnj j
ff ,,1 ,.., ΔΔ  are mutually independ-

ent with a likelihood similar to that of j*numj  (j=1,…,M).  This is easily done by 

assuming an exponential prior with density j*exp{- j*Nj}. After inserting this pa-
rameter, the multinomial likelihood is transformed into: 
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where j=1,..,M.  We assume therefore that : 
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The posterior distribution of the parametric probability vectors p1,..,pM and scaling pa- 

rameters, 1,.., M  (calculated using the approximate likelihood (2.2)) is complicated 
in this case.  We have evaluated it using Markov Chain Monte Carlo (MCMC).  We 
note that the variability in estimates of the true probability values arises in Equation 
(2.4) from the variability in the (normalized) bootstrap counts. This variability de-
creases as the bootstrap sample sizes increase (by the law of large numbers).  Equa-
tion (2.4) is used in MCMC simulations to update the p’s.  We also note that as the 
bootstrap sample size increases, the distribution of the (scaled) combined count statis-
tics approach that of the mean observed probability attribute vectors, making our 
model asymptotically correct. 
 

4. We distinguish the best features (corresponding to radii) by evaluating a measure 
of variation Var[k] for the p’s at each radius k;  
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We distinguish the best one over each posterior simulation by choosing that feature fk’ 

corresponding to radius rk’ having the property that: 

},..,1];[max{]’[ KkkVarkVar ==  .                                                                (2.6) 
The feature having the maximum variation over the greatest number of posterior 
simulations (calculated using MCMC) is deemed the best.  This is justified by the fact 
that a high degree of variance for a specific attribute across the distinct labeled classes 
(inter-class variance) indicates a high degree of dissimilarity in the spatial pattern at 
the specific radius increment. Hence, the attribute can be considered to be highly 
informative with respect to class membership.  Also, employing a large number of 
bootstrap samples B reduces high variance that might exist due to noise.  

3   Experimental Results 

All the experiments were implemented in Matlab using the Statistics v.3 toolbox of 
Mathworks. For classifiers we used Neural Networks implemented by the PRTools 
v.3.1 toolbox for Matlab [13].  

3.1   Artificial Data 

We used artificial data sets that were generated using a parametric growth model for 
spatial ROIs introduced in [4]. The main idea is that the growth process begins with 
one initial voxel (or cell) at time t=0 and progresses using an “infection” procedure 
(see Figure 3), where each infected cell may infect its non-diagonal neighbors with 
some probability. The datasets are the following: (i) 2DHom: 100 2D Homogeneous 
ROIs, 50 spherical and 50 elongated  to  two  opposite  directions (north-south),   with 
14- feature characterization vectors (see Figure 2(b)-(c)), (ii) 2DNonHom: 100 2D 
Non-Homogeneous ROIs, 50 elongated to the one direction (north) and 50 elongated 
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to two opposite directions (north-south), with 14 - feature characterization vectors 
(see Figure  2(d)-(e)), (iii) 3DHom: 100 3D Homogeneous ROIs, 50 spherical and 50 
elongated to two opposite directions (north-south) , with 7 - feature characterization 
vectors and (iv)  3DNonHom: 100 3D Non-Homogeneous ROIs, 50 spherical and 50 
elongated to two opposite directions (north-south), with 14 - feature characterization 
vectors. Each dataset consists of two distinct labeled classes of spatial pattern. 
 

 
 

(a)                  (b)                (c)                   (d)              (e) 

Fig. 2. (a) a sample of the growth process, 2D samples of (b),(c) Homogeneous, and (d),(e) 
Non-Homogeneous ROIs used in our experiments. 

Using these artificial datasets we run a set of basic experiments. We tested 4 dif-
ferent combinations of bootstrapping sample size B and number of MCMC posterior 
simulations.  For  each  of  the  combinations,  we  discovered the most discriminative 
attributes for the ROIs of each set and assigned a weight to them in the range [0...1] 
that indicates their discriminative power. Figure 3 (a)-(d) illustrates these results. A 
basic observation from this first set of experiments is that, by increasing the number 
of bootstrap sample B the method discovers less attributes each with a more signifi-
cant weight. On the other hand, reducing the number of bootstrap sample B and in-
creasing the number of MCMC simulations tends to spread the weights to more at-
tributes, with a less significant weight factor to each individual attribute. 

  

(a)   (b)  

(c)  (d)   

Fig. 3. Discriminative power of attributes discovered by the proposed method for (a) 2DHom, 
(b) 2DNonHom, (c) 3DHom and (d) 3DNonHom datasets and for different combinations of 
Bootstrap sample size B and number of MCMC simulations. 

We continue with classification experiments using these selected discriminative 
features. The neural network consisted of one hidden layer with 5 neurons, number of 
inputs equal to the number  of attributes used in each case,  and one output indicating  
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the class. The training was performed using the Levenberg-Marquardt optimization 
and the training set size ranged from 5 to 45 samples from each class (two classes of 
50 ROIs each in every set). We report the curves of mean classification error after 40 
repetitions for all different sizes of the training data set. We also include the compara-
tive classification performance using (i) all the attributes of the Δfi,j characterization 
vectors and (ii) the first 5 (2D data) and 3 (3D data) most significant components of 
the SVD transformation applied on the Δfi,j characterization vectors. Figure 4 (a)-(c) 
shows the classification performance for the various cases. A first observation is that 
in any case the classification error is very small. The classification performance when 
using only the discriminative features selected by the proposed approach is, in almost 
all cases, comparable to (or better than) that of using all the features of the characteri-
zation vectors or those features obtained by SVD. 

3.2   Real Data 

We experimented using ROIs extracted from 3D fMRI brain activation contrast maps. 
The fMRI scans were obtained from a study designed to explore neuroanatomical 
correlates of semantic processing in Alzheimer’s disease [14]. For the experiments 
pre sented here, we focused only on a specific region of the brain that has been shown 
to be highly associated with the development of Alzheimer’s disease [15]. The dataset 
consisted of 9 control and 9 patient 3D ROIs and the characterization vectors were 
constructed using 40 features.  Figure 5 shows this ROI in consecutive 2D slices of 
the 3D volume. 

We applied the proposed feature selection technique for sample size B = 400 and 
number of MCMC posterior simulations = 1000. We perform classification experi-
ments, using the discriminative features selected. To avoid overfitting due to a small 
training dataset (9 controls vs. 9 patient samples) we applied one-layer perceptron 
networks trained by the Pocket algorithm and leave-one-out cross validation. We 

 
                     (a)                            (b)     (c)   
 

 

All features of the characterization vector. 
Selected features only, for B = 200, MCMC simulations = 1000. 
Selected features only, for B = 2000, MCMC simulations = 1000. 
Selected features only, for B = 200, MCMC simulations = 10000. 
Selected features only, for B = 20, MCMC simulations = 10000. 
SVD features 

Fig. 4. Neural network classification performance (mean error) when using all features, features 
obtained by SVD and features obtained by the proposed method for (a) 2DHom, (b) 
2DNonHom and (c) 3DNonHom datasets. 
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repeated the process of training and testing for 10 times and report the average accu-
racy.  The first row of  Table 2 includes   the classification  results when  using all the  
discriminative features  selected, as well as  subsets of them based on the significance 
 

 

Fig. 5. The ROI used for applying the proposed feature selection technique. It is shown in 
consecutive 2D slices after being overlaid on a canonical brain atlas. 

Table 2. Classification performances for the fMRI ROIs. 

 
The best  

features (13) 
(wk > 0) 

The best 
7 features 

(wk > 0.005) 

The best 
5 features 

(wk > 0.02) 

The best 
2 features 
(wk > 0.2) 

INITIAL 
All 40 

 features 

MCMC  85.56 % 84.44 % 87.22 % 82.78 % 
FFS 86.67 % 84.44 % 82.22 % 81.11 % 

82.22 % 

weights, wk, obtained by the proposed approach. The second row of Table 2 shows the 
comparative results when using the forward feature selection (FFS) approach. In all 
the experiments we used the initial characterization attribute values. The accuracy 
obtained when using all the initial 40 features is also reported.  It is interesting to 
observe that the proposed MCMC approach behaves better than the forward feature 
selection technique (greedy approach), especially when using only the highly dis-
criminative features (wk > 0.02); it is comparable to the greedy approach in all other 
cases. 

4   Conclusions 

We presented a novel dimensionality reduction technique which employs the statisti-
cal framework of Bootstrapping simulation, Bayesian inference and Markov Chain 
Monte Carlo (MCMC). The method applies when labeled distinct classes of spatial 
ROIs are available, aiming to select the most informative features with respect to 
class membership. The proposed approach assigns a weight to each selected feature 
revealing its discriminative power. We experimented both with synthetic and real data 
performing classification experiments using both all the initial characterization attrib-
utes and only the selected ones by the proposed method). We compared the proposed 
approach with SVD and forward feature selection. We concluded, on the data we 
experimented with, that the proposed approach always outperforms SVD. Also, it is 
better than forward feature selection as the number of selected features is reduced, 
making it a better alternative over the greedy approach. Finally, the proposed tech-
nique was shown to be effective when applied on real data. In this case the proposed 
technique performed better than the forward feature selection approach, especially 
when using highly discriminative attributes, while being comparable in other cases. 
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Abstract. In this paper, we present a new method of recognizing human actions 
by inference of stochastic grammars for the purpose of automatic analysis of 
nonverbal actions of human beings. We applied the principle that a human ac-
tion can be defined as a combination of multiple articulation movements. We 
measure and quantize each articulation movements in 3D and represent two sets 
of 4-connected chain code for xy and zy projection planes, so that they are 
appropriate for the stochastic grammar inference method. This recognition 
method is tested by using 900 actions of human upper body. The result shows a 
comparatively successful achievement of 93.8% recognition rate through the 
experiments of 8 action types of head and 84.9% recognition rate of 60 action 
types of upper body.  

1   Introduction 

Human action recognition is an active area of research in pattern recognition. Medical 
analysis of human gait movement, nonverbal communication in social psychology, 
VR using avatar control, automatic man-machine interaction, development of surveil-
lance systems, sign-language recognizer, choreographic analysis of dance and ballet, 
and gymnastic movement - all belong to this application area of automatic human 
action recognition. In some areas, action recognition systems are already established 
such as the Chinese Sensei system analyzing Tai-Chai recognizing and translating 
sign language [1,2].  

Practically, there are manifold phases in recognizing human actions in videos in-
cluding tracking of human, separation of human bodies from the background, identifi-
cation of body parts, and recognition of human actions [2].  There are various ap-
proaches to the recognition of human actions such as Dynamic Time Warping 
(DTW), template matching method, fuzzy method [2], Hidden Markov Model 
(HMM) and syntactic method [3,4] etc.  

In a previous research, Stochastic Context Free Grammar as one of the syntactic 
method was used to the recognition system of human actions [3]. The system consists 
of an HMM bank and a probabilistic Earley-based parser. Grammar inference was 
referred to as the further study in their framework of stochastic parsing. In this paper, 
we show that a stochastic regular grammar inference method can resolve this problem 
because it has no much limit in inferring the grammar. 
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This paper presents a recognition scheme to analyze human actions on 3D temporal 
data of video where an unsupervised inference procedure is introduced to stochastic 
grammars. This scheme is based on the principle that a human action is defined as a 
combination of multiple articulation movements which is built up from multiple mu-
tually-synchronized temporal data [5]. Human action is considered as a stochastically 
predictable sequence of states [3]. So, we apply a mixed statistical-syntactic approach 
to the recognition of human upper body action. In addition, we use a mechanism to 
infer stochastic grammars, which deals with learning the production probabilities for a 
set of given grammars. A grammar represents single human action.  

The remainder of this paper is organized as follows: Section 2 recalls the theoreti-
cal concepts and notations of stochastic grammar inference method. Section 3 pre-
sents a data representation for human action sequence used in our work. Section 4 
explains an overview of action recognizer and describes its main functions. Section 5 
shows experimental results and analysis. Finally, in the last section we provide some 
discussion about our contribution and its future works. 

2   Inference of Stochastic Grammar 

In our work, we apply an inference of stochastic grammar scheme to recognize human 
actions. In this section we concisely describe the appropriateness of our method for 
human action recognition and the theoretical concepts and notations of stochastic 
grammar inference method. 

2.1   Syntactic Pattern Recognition for Human Actions 

Syntactic pattern recognition is a method focused on the structure of pattern. The 
recognition method dismantles an objective pattern into simple subpatterns to recog-
nize and explain relations among the subpatterns with a grammar theory of formal 
language. In general a movement of one body part in a human action can be described 
as a sequence of subpatterns, such as left-left-left-right-right-right-up-down. In this 
case left, right, up, down are subpatterns that construct a movement of one body part. 
If a subpattern sequence includes transformations, noises, observatory errors, and 
incomplete feature extractions, etc., it is very difficult to express all actions in simple 
grammar although they have the same meaning. Stochastic grammar reflects these 
features most effectively, by applying probability to each grammar [6,7,8].  

Previous researches have been conducted to recognize all actions after the compo-
sition of some patterns to produce each grammar class. They need intricately huge 
labors to extract features of every object for its recognition and to artificially gram-
maticize distinctive ingredients. However, computers can construct standard patterns 
and automatically accumulate knowledge using an existing technique. A research has 
been actively performed on how an unknown pattern is recognized through accumu-
lated knowledge. Syntactic recognition through grammatical inference is applicable to 
this case [9]. An application of grammatical inference was implemented in the field of 
music processing for modeling musical style. The models were used to generate and 
classify music by style [10].   
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Stochastic grammar inference is a recognition method that satisfies grammatical in-
ference and stochastic grammar. This has already been implemented in several stud-
ies, such as normal or abnormal chromosome recognition [7], digit and shape recogni-
tion [11], text and speech recognition [12, 13] etc. Our study is an attempt to apply 
stochastic grammar inference to human action recognition.  

2.2   Theoretical Concepts and Notations 

In this subsection we introduce the inference of stochastic grammar method to seek 
the probability value of each production with given grammar and learning patterns. 
The given learning patterns are composed of subpatterns that respectively produce 
different grammar and probability value of each grammar.  

Let’s consider an M-class problem characterized by the stochastic grammars 
Gsk�(Nk, �k, Pk, Dk, Sk) for k�1, 2, ..., M. Nk is a finite set of nonterminals, �k is a 
finite set of terminals, Pk is a finite set of productions, Dk is a set of probability values 
of the production to be assumed, and Sk means the starting symbol [6].  In this paper, 
we define grammars for the actions of human upper body such as follows. 

Gsk�(N, Σ, P, Dk, S),  k ∈{1...M}, N�{S, R, L, U, D}, Σ �{right, left, up, down}, 
P = {    S -> right  R 

S -> left  L  
S -> up  U  
S -> down  D 

         
 

R -> right  R 
R -> left  L 
R -> up  U 
R -> down  D 
R -> right   
R -> left  
R -> up   
R -> down  

L -> right  R  
L -> left  L  
L -> up  U  
L -> down  D  
L -> right   
L -> left   
L -> up  
L -> down  

U -> right  R  
U -> left  L  
U -> up  U  
U -> down  D  
U -> right   
U -> left   
U -> up   
U -> down  

D -> right  R  
D -> left  L 
D -> up  U  
D -> down  D  
D -> right   
D -> left   
D -> up   
D -> down   } 

To estimate Dk, the probability Pkij associated with the production Ai→βj in Gsk 
must be obtained for each learning pattern set X of same actions. It is approximated 
by the relation ;  
                                         

∑=∧=
r

kir

kij

kijkij n
n

PPestimated                                             (1)  

In equation (1) nkij means the total average number of times when Ai j in Gsk is 
used to all the learning patterns. It is obtained by equation (2).  

                                 )()/()( hkijhsk

Xin
hkij xNxGpn

h
x

xn ••∑=                                    (2) 

In equation (2) n(xh) is the frequency of all patterns occurred in X, Nkij(xh) is the 

number of times that Ai j is used when a pattern of xh is parsed. p(Gsk/xh) means the 

probability with which a pattern of xh is produced from Gsk. ∑
r

kirn in (1) is computed 

over all productions in Gsk that have the same Ai [6]. 
If Dk, for k=1…M, is obtained, the inferring step of the stochastic grammar as the 

learning step is completed, and the recognition step to recognize some arbitrary pat-
terns can be performed. 
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3   Data Representation for Human Action Sequence 

A representation for recognition of human action is developed. To satisfy the specifi-
cation of stochastic regular grammar defined in this paper, raw data are converted to a 
suitable format using a preprocessing step.  

3.1   Data and Data Aquisition 

We utilized STABIL++ [14] to detect and track head and arm positions in video se-
quences. STABIL++ produces 3D positions of 11 color markers on each articulation, 
trunk, and head as in Fig.1. We call each color marker as a node. In our system, we 
use only 8 nodes such as 2 head nodes and 6 articulation nodes for 2 arms. Fig.2 
shows an example of video data sequence: an action of left arm turning forward.  

Data of node’s movement is a sequence of the pair of x, y, z position, (x,y,z) on the 
world coordinates. 

 

 

  

  

Fig. 1. Position of color markers.  Fig. 2. Example of video data sequence. 

3.2   Plane Projection of Quantized Data and 4-Connected Chain Coding 

(x,y,z)s of articulation are used after their quantization at intervals of 3 cm so that 
very small motions in an action are disregarded. After converting quantized data into 
projection values in each xy, zy plane, we code them in 8-connected chain codes. The 
8-connected chain coding of the projected data to xy plane has the meaning of left, 
left-up, up, right-up, right, right-down, down as in Fig.3(a). The 8-connected chain 
coding of the projected data to zy plane has the meaning of forward, forward-up, 
up, backward-up, backward, backward-down, down as in Fig.3(b). For example, the 
left window of Fig.3(c) shows the projection of a node movement to xy plane, and the 
right window is its projection to zy plane for an action in Fig.2. 

After projection, a subpattern sequence in 8-connected chain codes are transformed 
into one in 4-connected chain codes. Too many productions are created by using 8-
connected chain codes. It occurs high frequency of transition to next state and may 
decrease the recognition rate. To prevent it, we apply 4-connected chain coding. The 
4-connected chain coding of the projected data to xy plane has the meaning of left, 
up, right, down. The 4-connected chain coding of the projected data to zy plane has 
the meaning of forward, up, backward, down. For example, forward-down in 8-
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connected chain coding is transformed to forward and down in 4-connected chain 
code using the transformation rule [7]. The format of subpattern sequence will be 
indicated as (code code_count)s. “code” denotes each direction. “code count” refers to 
the repeating frequency of codes. An example of the subpattern sequence is shown in 
Table 1. 

 

 
(a) xy plane : 8-connected chain code 

 
(b) zy plane : 8-connected chain code 

 
(c) an example of xy, zy plane projection and 8-

connected chain coding 

Fig. 3. 8-connected chain code and result after plane projection and 8-connected chain coding. 

Table 1. An example of subpattern sequences for an action in Fig.2. 
node = left hand 
plane xy 

left 12  up 11  right 4  up 5  right 9  down 13  left 2 
down 1  left 5  down 2  left 3  up 13  left 1  up 1  # 

node left hand 
plane zy 

backward 23  up 16  forward 23  down 14  backward 6  down 2 backward 8 
up 7  backward 2  up 1  backward 6  down 2  backward 15 up 3  backward 2 
up 5  backward 2  up 9  forward 2  up 1 forward 2 up 1  forward 15  down 1 
forward 2  down 2 forward 4 down 10 backward 24  up 2  backward 2 
up 13  forward 3  up 2  forward 22  down 12 forward 2  down 5  # 

3.3   Specification of Stochastic Regular Grammar 

In our work, we represent 60 types of human actions using stochastic regular gram-
mar. We estimate a stochastic value for each production of the regular grammar. 
Thus, M grammars that classify M human actions are expressed as follows. Gsk_xy is 
the grammar for the pattern projected to xy plane. 

Gsk_xy�(Nxy, Σxy, Pxy, Dk_xy, S),  k∈{1...M},  

where Nxy�{S, R, L, U, D}, Σxy�{right, left, up, down} 
Gsk_zy is the grammar for the pattern projected to zy plane. 

Gsk_zy�(Nzy, Σzy, Pzy, Dk_zy, S),  k∈{1...M},  

where Nzy�{S, B, F, U, D}, Σzy�{backward, forward, up, down} 
Fig.4 shows a state diagram of automata for the pattern projected to xy plane.  
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right

left (left)

right (right)

left (left)

up (up)

down (down)

up (up) down (down)

right (right)

right (right)

right (right)
left (left)

left (left)
left (left)

down (down)

down (down)

down (down),

up (up)

up (up)

up (up)

(right)

 

                Fig. 4. State diagram of finite automata.   Fig. 5. The action recognizer. 

4   Overview of Action Recognizer and Its Main Functions 

Our action recognizer system is composed of a preprocessor, a stochastic grammar 
inference processor and a parsing processor. The preprocessor quantizes (x,y,z) data 
for input action and makes two sequences of 4-connected chain code for xy and zy 
projection planes. The stochastic grammar inference processor takes learning data and 
produces 16 probability tables by using the predefined regular grammar. Parsing 
processor takes subpattern sequences and searches a class with the highest stochastic 
value through the related stochastic information of the table. Fig.5 shows the structure 
of action recognizer. ANMC(Approximate Node Movement Classifier) is a preclassi-
fier for searching action classes which have the same movement complexity. In this 
case movement complexity is defined as the combination of moving nodes. 

4.1   Generation of Probability Tables 

The inference step of stochastic regular grammar is applied to 8 nodes and for each 
projection plane. So, 16 probability tables are derived from the inference of the sto-
chastic regular grammar.  

The probability value for each production is obtained as shown in Table 2. It is an 
example of one node. The productions are replaced with the Confrontation Rules 
defined to follow the method of Pkij. The subscript "k" means the position of the 
grammar class, the subscript "i" means the subscript on the left hand side, and the 
subscript "j" means the subscript on the right hand side. Confrontation Rules are as 
follows.   

A1 = S    
A2 = R    
A3 = L       
A4 = U       
A5 = D        

�����	
���  
�����������  
��������   
����������  

�����	
��  
��������  
������  
 �������  

 

Some examples of the probability values practically estimated are shown in the 
column D44 of Table 2. D44 means the probability value of productions estimated after 
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learning the action in Fig.2. This example shows the estimated probability value to the 
learning patterns of left hand node obtained through the projection on the xy plane. 

4.2   Classification and Parsing for Recognition 

When an action pattern is given, 16 subpattern sequences for 8 nodes on 2 projection 
planes are obtained after preprocessing. The parsing processor takes subpattern se-
quences as input, inspects moving nodes by ANMC and decides action classes that 
are compared. Then the nodes that are moved in action for each plane are calculated 
according to the “Multiplication Law of Probability”, because all movements of nodes 
are statistically independent. The result probability for one action is calculated as 
follows. ‘Nodei’ denotes a node probabilitiy. 

P(Nodei Nodej … Nodek) = P(Nodei)×P(Nodej)×…×P(Nodek), 

for any ������ {1…16} and i!"!# 

The parser estimates every probability for each action class that is comparable, and 
looks for an action class with the highest probability among them. 

5   Experimentation and Results 

In order to confirm the effectiveness of our method, three types of experiments are 
carried out. We show the experiment data, kind of experiments and recognition per-
formance of each experiment in our system.   

5.1   Experimental Data 

900 human upper body actions of 60 types that 3 persons gestured were recorded in 
STABIL++ system. 490 action data are used for learning and 410 action data are used 
for testing. Practically, the data for recognition to analyze actions are composed of the 
movements of head, bodies, arms, and of other compound body movements as in 
Table 3. These kinds of actions are selected with the reference to the data for human 
action analysis studies [15]. For example, head movements are hang down head and 
to the former place, raise head upward, turn head to the right and to the former place. 

Table 2. A probability table of left hand node for projection xy plane. 

 Productions Replaced Productions D1 D2 …… D44 …… Dm 

1 S -> right R A1 -$� �   P111 P211  0.12217  Pm11 

2 S -> left L A1 -$� � P112 P212  0.56045  Pm12 

3 S -> up U A1 -$� � P113 P213  0.30227  Pm13 

4 S -> down D A1 -$� � P114 P214  0.01511  Pm14 

5 R -> right R A2 -$� �� P121 P221  0.69052  Pm21 

…         
35 D -> up A5 -$� � P157 P257  0.00038  Pm57 

36 D -> down A5 -$�   P158 P258  0.05257  Pm58 
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Table 3. Summary of human upper body actions. 

Complexity Body Part Movement type Direction 
No. of 

Actions 

Head 
hang down, raise up, 

turn, bend, rotate 
up, down, right, left, 
forward, backward 8 

Trunk bend, turn, lean, shake 
right, left, 

forward, backward 
9 

Right hand or arm contacting, turn, raise 
up, down, right, left, 
forward, backward 14 

Primitive 

Left hand or arm contacting, turn, raise etc " 14 
Both hands or arms raise, turn, fold, cross " 8 

Combination 
Others  " 7 

5.2   Experimental Result 

Table 4 shows the results that have been obtained from 3 kinds of experiments with 
our action recognizer. Experiment 1 of 8 action types of head shows the recognition 
rate of 93.8%. In this experiment we don’t use the ANMC because head actions have 
all same movement complexity. 40 action data are used for learning and 32 action 
data for testing. Experiment 2 of 60 action types of head and body without ANMC 
shows the recognition rate of 64.6%. Experiment 3 of 60 action types of head and 
body with ANMC shows the recognition rate of 84.9%. 490 action data are used for 
learning and 410 action data for testing in experiment 2 and 3. The recognition rate is 
estimated as Recognition Rate=Number of Correctly Recognized Actions/Total Num-
ber of Actions.  

Table 4. Experimental results. 

Experiment Experimental Contents Learning Data Recognition Rate 
1 8 action types of head without ANMC 40  93.8 % (30/32) 
2 60 action types of head and body without ANMC 490 64.6 % (265/410) 
3 60 action types of head and body with ANMC 490 84.9 % (348/410) 

Our recognition method achieved comparatively high recognition rate for only one 
node, where the movement complexity is 1 such as in Experiment 1. Actions in Ex-
periment 2 and 3 have the movement complexity from 2 to 8. Nevertheless, we 
achieved comparatively high recognition rate in Experiment 3. A pre-classification 
technique of ANMC causes the recognition rate to be improved. 

6   Conclusions 

In this paper we proposed a recognition model to understand human upper body ac-
tions using stochastic grammatical inference method. Grammatical inferring has been 
left unexplored and referred to as the further study [3].  

3D data sequence of human actions are encoded into 4-connected chain codes, and 
projected to xy and zy plane. These sequences are processed as the input of the sto-
chastic recognizer. They are used in the learning step for building the probability 
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tables. Using these tables in the recognition step, each action is classified into the 
befitting class of human action.  

Our scheme is suitable not only for simple actions composed of single articulation 
movement, but also for complex actions composed of several articulation movements. 
We have showed the possibility of autonomous learning from predefined human ac-
tion patterns. In our experiments, 93.8% recognition rate of 8 action types of human 
head and 84.9% recognition rate of 60 action types of human upper body were 
achieved.  

The contact of human hands to another body part has much importance for the 
analysis of nonverbal actions of human [5,15]. However, the recognition system 
through the general inference method by the stochastic grammar doesn’t yet reflect 
the characteristics of nonverbal actions. The task for the future study may be the work 
to extend the inference method in this paper to reflect peculiarities of nonverbal ac-
tions. 
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Abstract. Classification fusion combines multiple classifications of data into a 
single classification solution of greater accuracy. Feature extraction aims to re-
duce the computational cost of feature measurement, increase classifier effi-
ciency, and allow greater classification accuracy based on the process of deriv-
ing new features from the original features. This paper represents an approach 
for classifying students in order to predict their final grades based on features 
extracted from logged data in an educational web-based system. A combination 
of multiple classifiers leads to a significant improvement in classification 
performance. By weighing feature vectors representing feature importance 
using a Genetic Algorithm (GA) we can optimize the prediction accuracy and 
obtain a marked improvement over raw classification. We further show that 
when the number of features is few, feature weighting and transformation into a 
new space works efficiently compared to the feature subset selection. This 
approach is easily adaptable to different types of courses, different population 
sizes, and allows for different features to be analyzed. 

1   Motivation 

Several web-based educational systems with different capabilities and approaches 
have been developed to deliver online education in an academic setting. In particular, 
Michigan State University (MSU) has pioneered some of these systems to provide an 
infrastructure for online instruction. The research presented here was performed on a 
part of the latest online educational system developed at MSU, the Learning Online 
Network with Computer-Assisted Personalized Approach (LON-CAPA).  LON-CAPA 
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is involved with two kinds of large data sets: 1) educational resources such as web 
pages, demonstrations, simulations, and individualized problems designed for use on 
homework assignments, quizzes, and examinations; and 2) information about users 
who create, modify, assess, or use these resources. In other words, we have two ever-
growing pools of data.  

This paper investigates methods for extracting useful and interesting patterns from 
these large databases of students using online educational resources and their re-
corded paths within the system. We aim to answer the following research questions: 
Can we find classes of students? In other words, do there exist groups of students 
who use these online resources in a similar way? If so, can we predict a class for any 
individual student? With this information, can we then help a student use the re-
sources better, based on the usage of the resource by other students in their groups? 

We hope to find similar patterns of use in the data gathered from LON-CAPA, and 
eventually make predictions as to the most-beneficial course of studies for each 
learner based on their past and present usage. The system could then make sugges-
tions to the learner as to how best to proceed. 

2   Background on Using GAs for Feature Selection/Extraction 

Genetic Algorithms (GA) have been shown to be an effective tool to use in data 
analysis and pattern recognition [1], [2], [3]. An important aspect of GAs in a learn-
ing context is their use in pattern recognition.  There are two different approaches to 
applying GA in pattern recognition: 

 

1. Apply a GA directly as a classifier. Bandyopadhyay and Murthy in [4] applied GA 
to find the decision boundary in N dimensional feature space. 

2. Use a GA as an optimization tool for resetting the parameters in other classifiers. 
Most applications of GAs in pattern recognition optimize some parameters in the 
classification process. Many researchers have used GAs in feature selection [5], 
[6], [7], [8]. GAs have been applied to find an optimal set of feature weights that 
improve classification accuracy. First, a traditional feature extraction method such 
as Principal Component Analysis (PCA) is applied, and then a classifier such as k-
NN is used to calculate the fitness function for GA [9], [10]. Combination of clas-
sifiers is another area that GAs have been used to optimize. Kuncheva and Jain in 
[11] used a GA for selecting the features as well as selecting the types of individ-
ual classifiers in their design of a Classifier Fusion System. GA is also used in se-
lecting the prototypes in the case-based classification [12]. 
 

In this paper we focus on the second approach and use a GA to optimize a combi-
nation of classifiers. Our objective is to predict the students’ final grades based on 
their web-use features, which are extracted from the homework data. We design, 
implement, and evaluate a series of pattern classifiers with various parameters in 
order to compare their performance on a dataset from LON-CAPA. Error rates for the 
individual classifiers, their combination and the GA optimized combination are pre-
sented.  
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Two approaches are proposed for the problem of feature extraction and selection. 
The filter model chooses features by heuristically determined “goodness/relevant” or 
knowledge, while the wrapper model does this by the feedback of classifier evalua-
tion, or experiment. Research has shown the wrapper model outperforms the filter 
model comparing the predictive power on unseen data [13]. We propose a wrapper 
model for feature extraction through setting different weights for features and getting 
feedback from ensembles of classifiers. 

3   Dataset and Class Labels 

As test data we selected the student and course data of a single LON-CAPA course, 
BS111 (Biological Sciences), which was held at MSU in spring semester 2003. This 
course integrated 24 homework sets, including 229 problems, all of which are online. 
All 402 students used LON-CAPA for this course. Some students who dropped the 
course in mid-semester have initial homework scores, but no final grades. After re-
moving those students, there remained 352 valid samples. The grade distribution of 
the students is shown in Fig 1. 
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Fig. 1. LON-CAPA: BS111 SS03, Grades distribution. 

We can group the students regarding their final grades in several ways, three of 
which are: 

The nine possible labels can be the same as students’ grades, as shown in Table 1 
 

1. We can group them into three classes, “high” representing grades from 3.5 to 4.0, 
“middle” representing grades from 2.5 to 3, and “low” representing grades less 
than 2.5, as shown in Table 2. 

2. We can also categorize students with one of two class labels: “Passed” for grades 
above 2.0, and “Failed” for grades less than or equal to 2.0, as shown in Table 3. 
 

An essential step in performing classification is selecting the features used for clas-
sification. The BS111 course had an activity log with approximately 368 MB. After 
cleansing, we found 48 MB of useful data. We mined from these logged data 
1,689,656 transactions from which the following features were extracted: 

Class Grade # of Std. Percentage 

1 0.0 37 10.51% 
2 0.5 2 0.57% 
3 1.0 21 5.97% 
4 1.5 52 14.77% 
5 2.0 53 15.06% 
6 2.5 51 14.49% 
7 3.0 52 14.77% 
8 3.5 32 9.09% 
9 4.0 52 14.77% 

Table 1. Selecting 9-class labels. 
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Table 2. Selecting 3-Classes labels regarding to students’ grades in course BS111  SS03. 

Class Grade # of Students  Percentage 
High Grade � 3.5      84       23.86% 

Middle 2.0 < Grade < 3.5 103       29.26% 
Low Grade � 2.0 165       46.88% 

Table 3. Selecting 2-Classes labels regarding to students’ grades in course BS111  SS03. 

Class Grade # of Students Percentage 
Passed Grade > 2.0 187 53.13% 
Failed Grade � 2.0 165 46.88% 

 
1. Total number of tries for doing homework. (Number of attempts before correct 

answer is derived) 
2. Total number of correct answers. (Success rate) 
3. Getting the problem correct on the first try vs. those with high number of tries. 

(Success at the first try) 
4. Getting the problem correct on the second try. 
5. Getting the problem correct between 3 and 9 tries. 
6. Getting the problem correct with high number of tries (10 or more tries). 
7. Total time that passed from the first attempt, until the correct solution was demon-

strated, regardless of the time spent logged in to the system. 
8. Total time spent on the problem regardless of whether they got the correct answer 

or not. 

4   Classification Ensembles 

Pattern recognition has a wide variety of applications in many different fields, such 
that it is not possible to come up with a single classifier that can give good results in 
all cases.  The optimal classifier in every case is highly dependent upon the problem 
domain. In practice, one might come across a case where no single classifier can 
achieve an acceptable level of accuracy. In such cases it would be better to pool the 
results of different classifiers to achieve the optimal accuracy. Every classifier oper-
ates well on different aspects of the training or test feature vector. As a result, assum-
ing appropriate conditions, combining multiple classifiers may improve classification 
performance when compared with any single classifier.  

The scope of this study is restricted to comparing some popular non-parametric 
pattern classifiers and a single parametric pattern classifier according to the error 
estimate. Four different classifiers using the LON-CAPA dataset are compared in this 
study. The classifiers used in this study include Quadratic Bayesian classifier, 1-
nearest neighbor (1-NN), k-nearest neighbor (k-NN), Parzen-window1.  These are 
some of the common classifiers used in most practical classification problems. After 
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some preprocessing operations the optimal k=3 is chosen for kNN algorithm. To im-
prove classification performance, a fusion of classifiers is performed. 

Normaliztion. Having assumed in Bayesian and Parzen-window classifiers that the 
features are normally distributed, it is necessary that the data for each feature be nor-
malized. This ensures that each feature has the same weight in the decision process. 
Assuming that the given data is Gaussian, this normalization is performed using the 
mean and standard deviation of the training data. In order to normalize the training 
data, it is necessary first to calculate the sample mean μ , and the standard deviation 

σ of each feature in this dataset, and then normalize the data using the equation (1). 

σ  
μ − = i 

i 
x 

x  (1) 

This ensures that each feature of the training dataset has a normal distribution with 
a mean of zero and a standard deviation of unity. In addition, the kNN method re-
quires normalization of all features into the same range.  

Combination of Multiple Classifiers. Clearly, the data here suggest that in combining 
multiple classifiers we can improve classifier performance. There are different ways 
one can think of combining classifiers: 

• The simplest way is to find the overall error rate of the classifiers and choose the 
one which has the least error rate on the given dataset. This is called an offline 
classification fusion. This may appear to be a classification fusion; however, in 
general, it has a better performance than individual classifiers.  

• The second method, which is called online classification fusion, uses all the classi-
fiers followed by a vote. The class getting the maximum votes from the individual 
classifiers will be assigned to the test sample.  

Using the second method we show that classification fusion can achieve a signifi-
cant accuracy improvement in all three cases of 2-, 3-, and 9-Classes. A GA is em-
ployed to determine whether classification fusion performance can be maximized. 

5   GA-Optimized Ensembles of Classifications 

Our goal is to find a population of best weights for every feature vector, which mini-
mize the classification error rate. The feature vector for our predictors are the set of 
eight variables for every student: Number of attempts before correct answer is de-
rived, Success rate, Success at the first try, Success at the second try, Success with 
number of tries between three and nine, Success with high number of tries, the time at 
which the student got the problem correct relative to the due date, and total time spent 
on the problem. We randomly initialized a population of eight dimensional weight 
vectors with values between 0 and 1, corresponding to the feature vector and experi-
mented with different number of population sizes. We found good results using a 
population with 200 individuals. Real-valued populations may be initialized using the 
GA MATLAB Toolbox function crtrp. For example, to create a random population of 
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200 individuals with eight variables each: we define boundaries on the variables in 
FieldD which is a matrix containing the boundaries of each variable of an individual.  
FieldD = [ 0 0 0 0 0 0 0 0 ;  % lower bound 
           1 1 1 1 1 1 1 1];  % upper bound 

We create an initial population with Chrom = crtrp(200, FieldD), So we have 
for example: 
Chrom = 0.23 0.17 0.95 0.38 0.06 0.26 0.31 0.52 
        0.35 0.09 0.43 0.64 0.20 0.54 0.43 0.90 
        0.50 0.10 0.09 0.65 0.68 0.46 0.29 0.67 
        0.21 0.29 0.89 0.48 0.63 0.81 0.05 0.12 

We used the simple genetic algorithm (SGA), which is described by Goldberg in 
[14]. The SGA uses common GA operators to find a population of solutions which 
optimize the fitness values. We used the Stochastic Universal Sampling [14] as our 
selection method, mainly due to its popularity and functionality. A form of stochastic 
universal sampling is implemented by obtaining a cumulative sum of the fitness vec-
tor, FitnV, and generating N equally spaced numbers between 0 and sum(FitnV). 
Thus, only one random number is generated, all the others used being equally spaced 
from that point. The index of the individuals selected is determined by comparing the 
generated numbers with the cumulative sum vector. The probability of an individual 
being selected is then given by  

 

(2) 

where f(xi) is the fitness of individual xi and F(xi) is the probability of that individual 

being selected. 
The operation of crossover is not necessarily performed on all strings in the popu-

lation. Instead, it is applied with a probability Px when the pairs are chosen for breed-
ing. We selected Px = 0.7 since this would preserve a reasonably high level of the 
original population. Intermediate recombination combines parent values using the 
following formula [15]: 

Offspring = parent1 + Alpha ×  (parent2 – parent1) (3) 

where Alpha is a scaling factor chosen uniformly in the interval [-0.25, 1.25].  
A further genetic operator, mutation is applied to the new chromosomes, with a set 

probability Pm as the rate of mutation. Mutation causes the individual genetic repre-
sentation to be changed according to some probabilistic rule. Mutation is generally 
considered to be a background operator that ensures that the probability of searching 
a particular subspace of the problem space is never zero. This has the effect of tend-
ing to inhibit the possibility of converging to a local optimum, rather than the global 
optimum. We considered Pm = 1/800 as our mutation rate, due to its small value with 
respect to the population. The mutation of each variable is calculated as follows: 

Mutated Var = Var + MutMx ×  range ×  MutOpt(2) ×  delta (4) 

where delta is an internal matrix which specifies the normalized mutation step size; 
MutMx is an internal mask table; and MutOpt specifies the mutation rate and its 
shrinkage during the run. 
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During the reproduction phase, each individual is assigned a fitness value derived 
from its raw performance measure given by the objective function. This value is used 
in the selection to bias towards more fit individuals. Highly fit individuals, relative to 
the whole population, have a high probability of being selected for mating whereas 
less fit individuals have a correspondingly low probability of being selected. The 
error rate is measured in each round of cross validation by dividing “the total number 
of misclassified examples” into “total number of test examples”. Therefore, our fit-
ness function measures the accuracy rate achieved by classification fusion and our 
objective would be to maximize this performance (minimize the error rate). 

6   Experimental Results 

Without using GA, the overall results of classification performance on our dataset for 
four classifiers and classification fusion are shown in the Table 4. Regarding individ-
ual classifiers, 1NN and kNN have the best performance in the case of 2-, 3-, and 9-
Classes, of approximately 62%, 50% and 35% accuracy, respectively. However, the 
classification fusion improved the classification accuracy significantly in all three 
cases. That is, it achieved 72% accuracy in the case of 2-Classes, 59% in the case of 
3-Classes, and 43% in the case of 9-Classes. 

Table 4. Comparing the average performance (%) of ten runs of classifiers on BS111 dataset 
for 2-, 3-, and 9-Classes, using 10-fold cross validation, without GA optimization. 

Classifier 2-Classes 3-Classes 9-Classes 
Bayes 52.6 38.8 22.1 
1NN 62.1 45.3 29.0 
kNN 55.0 50.6 34.5 

Parzen 59.7 42.9 22.6 
Classification Fusion 72.2 58.8 43.1 

For GA optimization, we used 200 individuals (weight vectors) in our population, 
running the GA over 500 generations. We ran the program 10 times and obtained the 
averages, which are shown, in Table 5.   

Table 5. Comparing the classification fusion performance on BS111 dataset Using-GA and 
without-GA in the cases of 2-, 3-, and 9-Classes, 95% confidence interval. 

Classifier 2-Classes 3-Classes 9-Classes 

Classification fusion of 4 Classifiers 
without GA optimization 71.19 ± 1.34 58.92 ± 1.36 42.94 ± 2.06 

GA Optimized Classification Fusion, 
Mean individual (not best value) 81.09 ± 2.42 70.13 ± 0.89 55.25 ± 1.03 

Improvement of Mean individual 9.82 ± 1.33 11.06 ± 1.84 12.71 ± 0.75 
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The results in Table 5 represent the mean performance with a two-tailed t-test with 
a 95% confidence interval. For the improvement of GA over non-GA result, a P-
value indicating the probability of the Null-Hypothesis (There is no improvement) is 
also given, showing the significance of the GA optimization. All have p<0.001, indi-
cating significant improvement. Therefore, using GA, in all the cases, we got more 
than a 10% mean individual performance improvement and about 11 to 16% best 
individual performance improvement. Fig. 2 shows the results of one of the ten runs 
in the case of 2-Classes. The dotted line represents the population mean, and the solid 
line shows the best individual at each generation and the best value yielded by the run 
(Due to the space limitation, only two graphs are shown). 
 

 

Fig. 2. GA-Optimized Combination of Multiple Classifiers’ (CMC) performance in the case of 
2- and 3-Classes, 200 weight vectors individuals, 500 Generations. 

Finally, we can examine the individuals (weights) for features by which we ob-
tained the improved results. This feature weighting indicates the importance of each 
feature for making the required classification. In most cases the results are similar to 
Multiple Linear Regressions or some tree-based software (like CART) that use statis-
tical methods to measure feature importance. The GA feature weighting results, as 
shown in Table 6, state that the “Success with high number of tries” is the most im-
portant feature in all three cases. The “Total number of correct answers” feature is 
also important in some cases.  

Table 6. Relative Feature Importance%, Using GA weighting. 

Feature 2-Classes 3-Classes 9-Classes 
Total Number of  Tries 18.9 17.8 10.7 
Total # of Correct  Answers 84.7 57.1 27.4 
# of Success at the First Try 14.4 55.2 34.2 
# of Success at the Second Try 16.5 25.9 22.0 
Got Correct with 3-9 Tries 21.2 38.8 11.1 
Got Correct with # of Tries � 10 91.7 69.1 67.3 
Time  Spent to Solve the Problems 32.1 14.1 28.3 
Total Time Spent on the Problems 36.5 15.4 33.5 
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7   Conclusions and Future Work 

We proposed a new approach to classifying student usage of web-based instruction. 
Four classifiers are used in grouping the students. A combination of multiple classifi-
ers leads to a significant accuracy improvement in the 2-, 3- and 9-Class cases.  
Weighing the features and using a genetic algorithm to minimize the error rate im-
proves the prediction accuracy by at least 10% in the all three test cases. In cases 
where the number of features is low, feature weighting worked much better than 
feature selection. The successful optimization of student classification in all three 
cases demonstrates the merits of using the LON-CAPA data to predict the students’ 
final grades based on their features, which are extracted from the homework data. 
This approach is easily adaptable to different types of courses, different population 
sizes, and allows for different features to be analyzed. This work represents a rigor-
ous application of known classifiers as a means of analyzing and comparing use and 
performance of students who have taken a technical course that was par-
tially/completely administered via the web. In the present work, we propose an ap-
proach for predicting students’ performance based on extracting the average of fea-
ture values over all of the problems in a course. For future work, we plan to 
implement such an optimized assessment tool for every student on any particular 
problem. Therefore, we can track students’ behaviors on a particular problem over 
several semesters. 
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Abstract. This paper describes an efficient algorithm for inverse halftoning of 
scanned color document images to resolve problems with interference patterns 
such as moiré and graininess when the images are displayed or printed out. The 
algorithm is suitable for software implementation and useful for high quality 
printing or display of scanned document images delivered via networks from 
unknown scanners. A multi-resolution approach is used to achieve practical 
processing speed under software implementation. Through data-driven, adap-
tive, multi-scale processing, the algorithm can cope with a variety of input de-
vices and requires no information on the halftoning method or properties (such 
as coefficients in dither matrices, filter coefficients of error diffusion kernels, 
screen angles, or dot frequencies). Effectiveness of the new algorithm is dem-
onstrated through real examples of scanned color document images. 

1   Introduction 

When we display or print out scanned document images (obtained through image 
input devices) without applying any image processing operations to them or after 
scaling or rotating them, we often observe image distortions or degradations such as 
moiré phenomena and graininess. Halftone areas on printed document images consist 
of dot patterns generated by screening methods or error-diffusion algorithms. Such 
dot patterns often interact with image processing operations (halftoning, scaling, etc.) 
performed by output devices such as printers or displays. This problem of image deg-
radation can be resolved if halftone areas composed of dot patterns are transformed to 
ideal continuous-tone representations. Such an operation of restoring ideal continu-
ous-tone representations from halftone dot patterns is usually referred to as inverse 
halftoning. In designing inverse halftoning algorithms for scanned document images, 
we require that characters, graphics such as line drawings, and significant edges be 
preserved without being blurred. 

Such processing for improving image quality has been embedded into imaging de-
vices such as copiers. In particular, there have been a number of methods for inverse 
halftoning. Methods applicable to halftone patterns generated by screening methods 
and error-diffusion algorithms are nonlinear permutation filters [1], a combination of 
Gaussian filters, median filters, and edge enhancement [2], and a wavelet-based 
method [3]. Statistical approaches include a convex-projection method using knowl-
edge on error-diffusion kernels and nonlinear optimization [4], MAP projection and 
estimation of error-diffusion kernels using a modified LMS method [5], Bayesian 
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estimation with nonlinear optimization [6], and MAP projection using wavelet [7]. 
However, they require expensive computation because iterative computations are 
involved. Kite et al. [8], Roetling [9,10], Miceli and Parker [11], and Chen and Hang 
[12] employ space-variant linear filters along with multi-scale gradient information. A 
hybrid LMS-MMSE method [13] and an LUT-based method [14] are computationally 
inexpensive. 

In network and Internet environments, digital image data acquired through any in-
put device can be transmitted to remote sites over networks, and the receiver can 
display or print out the image data delivered from unknown devices. Under these 
conditions, image data must be processed with software on individual PCs so that 
images can be printed or displayed in adequate quality without annoying distortions 
or degradations. Now, new technical requirements have emerged as follows: 

• Practical processing speed must be achieved under software implementation. 

Under network environments, image data delivered via networks from remotely lo-
cated input devices are often processed on individual PCs for improving image qual-
ity when the data are displayed or printed out. Practical processing speed must be 
achieved under software implementation on PCs. If space-variant linear filters or 
wavelet-based inverse halftoning algorithms are implemented with software, compu-
tation time is not acceptable when they are applied to scanned color document images 
of A4 or letter size.  

• Image processing systems must easily adapt to a variety of input devices. 

In image processing systems embedded into stand-alone imaging devices where 
input and output media are integrated, algorithms and parameters are designed so that 
they fit the color characteristics, resolution, and frequency characteristics (MTF) of 
particular devices. However, image-processing systems optimal for a particular imag-
ing device are not necessarily effective for other devices with different characteristics. 
Under network environments, there are large variations in characteristics of imaging 
devices, and the characteristics are even unknown when image data are transmitted 
from a remote site. Therefore, image-processing systems and algorithms must easily 
adapt to a variety of input devices. For instance, satisfactory image quality should be 
achieved for image data obtained through an unknown scanner just by setting a few, 
simple parameters. 

• Information on the halftoning methods or properties is not required. 

Specific methods for inverse halftoning can be employed if information is avail-
able on the halftoning method or properties (such as coefficients in dither matrices, 
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Fig. 1. Overview of the proposed algorithm. 
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filter coefficients of error diffusion kernels, screen angles, and dot frequencies). How-
ever, our targets are scanned images of books, magazines, journals, and newspapers 
that have been printed through unknown printing processes. Furthermore, characteris-
tics of halftone dot patterns cannot be extracted when the input device has a poor 
response to high frequencies or the image resolution is inadequate. Therefore, blind 
methods are required without depending on the type or properties of halftoning proc-
esses. 

In this paper, we describe an efficient algorithm for inverse halftoning of scanned 
color document images to resolve problems of interference patterns such as moiré and 
graininess when the images are displayed or printed out. The algorithm is suitable for 
software implementation and useful for high quality printing or display of scanned 
document images delivered via networks from unknown scanners. A multi-resolution 
approach is used to achieve practical processing speed under software implementa-
tion. Through data-driven, adaptive, multi-scale processing, the algorithm can cope 
with a variety of input devices and requires no information on the halftoning method 
or properties (such as coefficients in dither matrices, filter coefficients of error diffu-
sion kernels, screen angles, or dot frequencies). Effectiveness of the new algorithm is 
demonstrated through real examples of scanned color document images. 

This paper is organized as follows: An overview of the proposed algorithm is given 
in Sect. 2. The details of the algorithm are presented in Sect. 3. Examples and experi-
mental results are shown in Sect. 4. Sect. 5 is the conclusion. 

2   Outline 

We outline the approach to resolving the three problems mentioned in Sect. 1. The 
overall architecture is shown in Fig. 1. A multi-resolution approach is used to achieve 
practical processing speed under software implementation. In each resolution, through 
data-driven, adaptive, multi-scale processing, the algorithm can cope with a variety of 
input devices and requires no information on the halftoning method or properties. 

Multi-resolution Analysis 
According to the Mixed Raster Content (MRC) Imaging Model, a color document 
image is composed of the following two components: 

• Foreground: text, graphics (line drawings, in particular), and significant edges 
• Background: other areas (continuous tone areas)  
There are few significant edges in the background, which can be compressed to 

low resolution such as 100 dpi without perceptual degradation by human eyes, while 

          
                        (a)                (b)                (c)                  (d)                   (e) 

Fig. 2. (a) The background color is uniform or smoothly changes over the region. (b) The back-
ground consists of two or more distinct colors. (c) Location of windows. (d) Continuous tone 
representation for (a). (e) Continuous tone representation for (b). 
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high resolution is required to preserve high frequency components for the foreground. 
In terms of image representation, quite different methods and viewpoints are required 
for these two components. Therefore, the background can be processed on a reduced 
image in low resolution, and consequently, the overall throughput can be improved 
significantly.  

The multi-resolution analysis proceeds as follows: First, a reduced image I in low 
resolution is generated from the original image I0. On the reduced image I, foreground 
components F are extracted based on local features. The remaining areas are set to the 
background B. The background B is transformed to a continuous-tone representation. 

Next, the foreground components F are processed in the original resolution. Inside 
the area F, foreground components FF are further extracted based on local features, 
and the remaining areas are set to background BF. The background BF is also trans-
formed to a continuous-tone representation. 

Finally, the background components B represented as continuous tones, the fore-
ground components FF, and the background components BF represented as continu-
ous tones are synthesized together to obtain the restored image. 

Processing of Background: Multi-scale Analysis from Coarse to Fine 
The background components (B and BF) are transformed to continuous-tone represen-
tations. If the halftoning method and parameters for generating dot patterns are 
known, filter banks with appropriate support size can be prepared and space-variant 
linear filters can be applied to each pixel according to local image features. However, 
there is no information available to decide appropriate support size when characteris-
tics of the input device are unknown. Therefore, multi-scale analysis from coarse to 
fine is employed.  

In the background areas that remain after extracting the foreground, we consider a 
region R of size WW × . There should be no significant edges, characters, or graphics 
in this region R.  Therefore, if size W and location of R are appropriate, colors of pix-
els in region R can be replaced with the average color in R. For instance, for region R 

 

Fig. 3. Flowchart for the proposed algorithm. 
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shown in Fig. 2(a), an appropriate continuous tone representation can be obtained by 
this operation as shown in Fig. 2(d). 

However, distortions could be introduced when W is too large or location of R is 
inappropriate. For region R shown in Fig. 2(b), if windows are located as shown in 
Fig. 2(c), this operation leads to the representation shown in Fig. 2(e), where distor-
tions are observed. To resolve this problem, we need to detect distortions, redoing the 
transformation with smaller W.  

The edges on the transformed continuous-tone image should be a subset of edges 
on the original image, because smoothing or blurring has been applied. As far as the 
transformation process proceeds relevantly, there should not be edges on the trans-
formed image that do not exist on the original. For each pixel, the edge magnitude on 
the transformed image should not exceed that on the original. As shown in Fig. 2(e), 
if there are some edges in the transformed image that do not exist on the original, it 
implies that W is too large or location of R is inappropriate. To correct the distortions, 
the continuous-tone transformation is redone around the pseudo-edges with smaller 
W. Since it is difficult to set the appropriate scale W adaptively for each pixel without 
a priori knowledge, a coarse-to-fine strategy is employed along with detection of 
anomalies on the transformed image based on the edge feature. 

3   Algorithm 

Following the overview presented in Sect. 2, we describe the algorithm in this section. 
A flowchart for the proposed algorithm is presented in Fig. 3. An example of the 
original image I0 (400dpi) is shown in Fig. 4. 

Foregroung Extraction 
A reduced image I in low resolution (100 to 200dpi) is generated from the original 
image I0 by a simple local averaging method. The reduced image I is smoothed with a 
linear filter for noise reduction. The selection of this filter depends on the frequency 
characteristics of the input image, but we have only to prepare just a few types of 
filters to deal with a wide range of characteristics. Furthermore, all pixels are initial-
ized to background: [ ] Bji ∈,  for all i, j. Foreground components F, as shown in Fig. 

5, are extracted from the smoothed reduced image I by a locally adaptive thresholding 
technique, along with morphological dilation operations. 

Transformation of Background to Continuous Tone Representation 
The background areas B, as shown in white areas in Fig. 5, are transformed to a con-
tinuous tone representation through local, adaptive, multi-scale processing. Before the 
transformation, edge magnitude E0 is calculated on the reduced image I.  

Generation of Initial Transformed Images 
The initial transformed image is generated for background components B. As shown 
in Fig. 6, for each horizontal scan line, runs of the maximum length wsz (typically 
0.5mm) are constructed sequentially from left to right so that each run contains no 
foreground pixels inside. The average color is calculated for each run, and is set to 



412      Hirobumi Nishida 

each pixel on the run. In this way, the continuous tone representation C’ is obtained 
based on horizontal runs. Furthermore, the continuous tone transformation is applied 
to vertical runs of the generated image C’ in the same way as horizontal runs. The 
initial transformed image J is generated as a result of the continuous tone transforma-
tion for horizontal and vertical runs.  

Correction to Transformed Images 
The transformed image J is corrected through adaptive, multi-scale analysis of edges 
on the transformed images, based on the principle described in Sect. 2.2. 

(1) Reduce wsz to the half. If wsz is less than a predetermined size, then go to (7). 
(2) Compute the edge magnitude image E’ for the transformed image J. 
(3) Compute the pseudo edge image E1 from the difference between E’ and E0. For 

pixel (i, j), if ( ) ( )jiEjiE ,, 0>′ , set E1(i, j) to “ON,” otherwise “OFF.” 

(4) Using the new value of wsz, the continuous tone transformation is redone locally 
around “ON” pixels of E1. A new transformed image C is generated. 

(5) On the transformed image J, colors of )12()12( −⋅×−⋅ wszwsz  pixels around 

each “ON” pixel on the pseudo edge image E1 are replaced with those on the new 
transformed image C. 

(6) Go to (1) 
(7) End.  

The correction is applied from a coarse scale to a fine scale by detecting distortions 
through the analysis of edge magnitude between the original and the transformed 
images. Fig. 7 shows the result of the series of processing embedded into the original 
image I0. 

 
Fig. 5. Foreground components F extracted 
from the reduced image I. 

 
Fig. 6. Transformation into continuous tone 
representation.  

Fig. 4. Original image I
0
. 
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Processing in the Original Resolution and Synthesis 
The foreground components F extracted from the reduced image I are processed in 
the original resolution in order to obtain a continuous tone transformation in fine 
detail. Note that, in Fig. 7, there are still some pixels that need to be transformed to a 
continuous tone representation, particularly around characters and line drawings. 

Inside this area F, foreground components are extracted from the original image I0 
in the same way as described in Sect. 3.2. Let FF be the area extracted as foreground 
(Fig. 8), and BF be the remaining area. Furthermore, for the original image I0, the area 
BF is transformed to a continuous tone representation in the same way as described in 
Sect. 3.3, and the transformed image J0 is obtained.  

The continuous tone representation J of the background components B, the fore-
ground components FF, and the continuous tone representation J0 of the background 
components BF are synthesized together to obtain to the final restored image Q. Fig. 9 
shows the final result for the original image shown in Fig. 4.  

4   Experimental Results 

The proposed algorithm has been evaluated with real scanned document images to 
verify the effectiveness in terms of processing speed and image quality. 

Computation time in a low-end environment (Pentium III, 933MHz�256MB) has 
been measured for 24bit full-color images of scanned documents of A4-size (210mm 
by 297mm), in comparison with space-variant linear filters with support size 5x5 and 
7x7. Table 1 shows the quite promising results where remarkable acceleration can be 
observed for the proposed method. The result implies that practical processing speed 
can be achieved under software implementation. 

Some real examples are presented for scanned color document images. Fig. 10(a) is 
the original image generated by the Floyd-Steinberg error-diffusion algorithm and 

  

 Fig. 7. Transformed image J               Fig. 8. Foreground            Fig. 9. Final result Q .  
 embedded into the original image.      components FF. 
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Fig. 10(b) is the result of the continuous tone transformation. Because of the data-
driven, adaptive, multi-scale processing, there is no perceivable distortion in the trans-
formed image. Fig. 11(a) is a text image on top of grainy background and Fig. 11(b) is 
the result of the continuous tone transformation. The graininess of the background is 
completely resolved without blurring character strokes. Fig. 12(a) contains fine line 
drawings that are likely to be blurred by inverse halftoning and Fig. 12(b) is the result 
of the continuous tone transformation. Fine details are still preserved in the trans-
formed image.  

5   Conclusion 

We have described an efficient algorithm for inverse halftoning of scanned color 
document images to resolve problems of interference patterns such as moiré and 
graininess when the images are displayed or printed out. The algorithm is suitable for 
software implementation and useful for high quality printing of scanned document 
images delivered via networks from unknown scanners. A multi-resolution approach 
is used to achieve practical processing speed under software implementation. Through 
data-driven, adaptive, multi-scale processing, the algorithm can cope with a variety of 
input devices and requires no information on the halftoning method or properties. 
Effectiveness of the new algorithm has been demonstrated through real examples of 
scanned color document images. 

  

 

 
Fig. 10. Original image and result of the proposed algorithm. 

Table 1. Computation time in a low-end environment for full-color images of scanned docu-
ments of A4-size, in comparison with space-variant linear filters. 

Space-Variant Linear Filter 
Resolution dpi 

Proposed 
Method 5x5 7x7 

200 3sec. 11sec. 16sec. 
400 7sec. 46sec. 67sec. 
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Fig. 11. Original image and result of the proposed algorithm. 

  
Fig. 12. Original image and result of the proposed algorithm. 
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Abstract. In this work, we propose a new scheme for the recognition of
document images under a syntactic approach. We present a new method
to model the layout of the document using a tree-like representation
of the form. The syntactic representation of the documents are used
to infer a tree automaton for each one of the classes involved in the
task. An error-correcting analysis of tree languages allows us to carry
out the classification. The experimentation carried out showed the good
behaviour of the approach: error rate of 1.18%.

1 Introduction

Document processing [1],[20] can be decomposed into two phases, document
analysis and document understanding. Where the former attempts to obtain a
hierarchical representation of the document that embeds its geometric struc-
ture (i.e. [9]), the latter builds the logical structure of the document from the
information obtained in the first analysis [4].

Another line of work related to paper documents is Document Image Recog-
nition. The techniques applied to this task can be divided into two categories,
those based on matching local features (i.e. [2][16]) and those that combine both
local features and layout information (i.e. [17][19][21]).

In this work, we face the problem of form classification under a syntactic
approach. A new procedure is presented to represent the layout of the document.
Briefly, this method measures the importance of each of the components of the
image and then represents the relative position of each component using tree-like
components [7]. Once the documents are reduced to a tree-like structure, this
work uses a tree language inference algorithm [10] which builds a tree automaton
for each class of the problem using a minimum edition distance criterion.

In real applications, the documents to be classified usually do not fit exactly
in any class. Therefore, it is necessary to obtain the class that is nearest to
the document structure. In our work, to obtain that measure, we use an error

� Work partially supported by the Spanish CICYT under contracts TIC2000-1153 and
TIC2003-09319-C03-02.

A. Fred et al. (Eds.): SSPR&SPR 2004, LNCS 3138, pp. 416–424, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Syntactic Modeling and Recognition of Document Images 417

correcting analysis algorithm on tree automata [14]. This scheme and has shown
good performance in handwritten digit recognition [11].

This work is structured as follows. First of all, the required notation is pre-
sented. Then, the approach to be used is explained: the tree-like representation
procedure, the main features of the error-correcting analysis algorithm and the
tree language inference method. The experimentation carried out shows the good
performance of the approach (1.18% of error rate). Finally, the conclusions and
the proposed future lines of work are presented.

2 Notation and Definitions

A ranked alphabet is defined as an association of a finite alphabet V with a finite
relation r ⊆ (V × N). Let Vn denote the subset {σ ∈ V : (σ, n) ∈ r}.

Let V T be the set of finite trees whose nodes are labeled with symbols in V ,
where a tree is defined inductively as follows:

V0 ⊆ V T

σ(t1, ..., tn) ∈ V T ∀t1, ..., tn ∈ V T , σ ∈ Vn

Note that the set of symbols in Vn are the valid labels of the nodes with arity
n; therefore V0 is the set of valid leaf labels.

A deterministic tree automaton is defined as the four-tuple A = (Q, V, δ, F )
where Q is a finite set of states; V is a ranked alphabet; F ⊆ Q is a set of final
states and δ = (δ0, . . . , δm) is a finite set of functions defined as:

δn : (Vn × (Q ∪ V0)n)→ Q n = 1, . . . ,m
δ0(a) = a ∀a ∈ V0

δ can be extended to operate on trees as follows:

δ : V T → Q ∪ V0

δ(a) = a ∀a ∈ V0

δ(σn(t1, . . . , tn)) = δn(σn, δ(t1), . . . , δ(tn)) if n > 0

A tree t ⊆ V T is accepted by A if δ(t) ∈ F . This set of trees accepted by A
is defined as L(A) = {t ∈ V T |δ(t) ∈ F}, this set is also referred to as the tree
language accepted by A.

3 Document Image Classification

3.1 Tree-Like Representation

In this work, we used the database of structured forms NIST Special Database
6 (SD6)[3]. The database contains 12 different tax forms together with different
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schedules and form faces. Hence, 20 different form faces (classes) are represented
in the database. The images have been automatically derived and synthesized
and therefore contain no “real” tax data. Nevertheless, all the images appear to
be real hand-printed forms prepared by individuals. There are 900 simulated tax
submissions represented in the database averaging 6.22 form faces per submis-
sion. All the images are stored in a bitlevel black and white raster format.

Algorithm 3.1 Algorithm to obtain a tree-like model of the document images.
1. Blur the image and reduce it by one eighth. /* result: 256 grey-level image */
2. Detect the connected components (four connected pixels) of the image.
3. For each connected component of the image:

– Reduce it to its smallest rectangle.
– Reduce each rectangle to its central point and assign a value that is propor-
tional to the area of the rectangle to this point.

4. Set M to the maximum but two /* to smooth the value */ and m to the minimum
values in the image.

5. Let I = (M +m)/2;
6. Consider the following correspondence between intervals and symbols:

– Interval [0, 	I/2
]; symbol ’A’
– Interval [�I/2�, 	I
]; symbol ’B’
– Interval [�I�, 	(3I)/2
]; symbol ’C’
– Interval [�(3I)/2�, 	(23I)/10
]; symbol ’D’
– Interval [�(23I)/10�,∞]; symbol ’E’

7. Create the root node of the tree.
8. Set node to the root node of the tree
9. Divide the image in four quadrants
10. Create a child node to node for each quadrant (from left to right and downwards).
11. For each node (and its corresponding quadrant):

– If the quadrant contains more than one point, then label the (internal) node
with symbol σ and go to step 9.

– If the quadrant has no points, then label the node as a leaf using the symbol
empty.

– Otherwise, assign a symbol to the node (see step 6).
12. Return the tree obtained.

Quad trees (q-tree) [7] has been broadly used to obtain tree-like representa-
tions. These representations have shown to be useful in pattern recognition tasks
[10][11]. In order to capture only the more relevant features of the images, the
algorithm we propose takes into account a reduced image.

The first step in modelling the layout of the documents was to perform a
light blur of the images (we considered 5 × 5 pixels) and a reduction of the
image by one eighth. Then, the resulting 256 grey-level images were processed
to detect the connected-components. In this process, only four connected pixels
were considered. Each connected-component was then substituted by the mini-
mum rectangle that contains the component.
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The image of the document was then simplified to an image where all the
rectangles were reduced to a pixel in the middle of the rectangle with a weight
that is proportional to its area.

In a standard q-tree representation, the root of the tree is associated to
the whole image to model and any other internal node with one of the four
quadrants of its parent image. The process is repeated recursively until a node
represents a one-colour square, then, the node becomes a leaf labeled with the
color of the region. The variation of the q-tree representation used in this work
ends the recursion when the quadrant does not contain any point. The region
is then labeled with the empty leaf. When the region contains only one point,
the leaf is marked with a symbol that is proportional to the weight of the point
(five different labels were considered). A scheme of the entire process is shown
in Algorithm 3.1. An example of the run is shown in Figure 1. Note that no
preprocessing of the image (slant correction, rescaled or similar) was performed.

3.2 Error-Correcting Analysis

The treatment of noisy or distorted samples has always been a problem in pattern
recognition tasks, these distortions usually do appear as a side effect to the
acquisition, preprocessing or primitive extraction phases.

This work makes use of an error-correcting analysis algorithm that was in-
troduced in [14] and that gives a distance between a tree and a tree automaton.

To calculate the distance between a tree t to a tree automaton A, the al-
gorithm explores the tree, and calculates the cost of reducing each subtree of
the tree to each state of the automaton. To do this, the algorithm compares the
successors of a node with the different transitions of the automaton.

The method visits the tree nodes in postorder. Therefore, when a tree is
going to be analyzed, all the distances between its subtrees and the states of
the automaton have already been calculated. These distances are stored in a
matrix that is indexed by the nodes of the tree and the states of the automaton,
thereby avoiding calculations carried out previously (for details see [14]). The
whole process is carried out in polynomial time with respect to the size of the tree
and the number of states of the automaton. The authors prove that the distance
obtained is the minimum one according to the edit operations proposed.

3.3 Tree Language Inference

In our work, we model each class with a tree language. In order to obtain these
languages, it is possible to use several algorithms (for instance [5][6][8][13][15]).
In this work, we used a tree language inference algorithm that, in each step of
the inference process, considers the automaton of the previous step and a new
sample of the training set. Then, the inference algorithm performs an error-
correcting analysis on the tree automaton. The modification of the automaton
comes determined by the editing operations needed to force the automaton to
accept the sample.
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Fig. 1. Example of the run for Algorithm 3.1. From left to right and down-
wards: The original image (here reduced eight times), the blurred and reduced
image, the smallest rectangles that contain a connected component, the final
division in quadrants, and the resulting tree. A more compact notation for the
tree is: σ(σ(empty,σ(empty,empty, σ(A,C, empty, empty), empty), empty,B), empty,
empty,D).
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This algorithm has proven to be efficient when the differential features of the
representation are based on the presence of substructures, the length of these
substructures and their relative position in the sample representation.

There are two reasons why this new approach can be seriously considered for
syntactic pattern recognition. On the one hand, the representation power of tree
primitives is very high. On the other hand, this algorithm takes advantage of the
features (substructures) that are already considered in the automaton, adding
the new ones when they are presented in the inference process. As noted before,
this approach has been used previously in pattern recognition tasks with good
results.

4 Experimentation

Once the tree representation of the database was obtained, a tree automaton
was inferred to represent each class. In order to infer these automata, we used
the inference algorithm described above.

Fig. 2. Example images of each class in the dataset. Note the slant of the first image.
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Once the automata were inferred, we used the error-correcting parser on tree
automata to obtain the minimum distance of the test sample for each automa-
ton. The document images were classified into the class with a minimum value
criterion. This approach has previously been used in other pattern recognition
tasks with good performance (e.g. [12][11]).

Our approach needs some samples from each class in order to train the mod-
els. Therefore, the four classes with greatest number of available images were
selected from the database. These classes were: Form 1040 page 1, Form 1040
page 2, Form 1040 Schedules A and B. Example images are shown in Figure 2.

Two different experiments were performed. The models of the first experi-
ment were inferred using 200 samples per class. In the second experiment, we
used 300 samples per class. The results of the experimentation are shown in Ta-
ble 1. Note that due to the number of samples available, the number of samples
in the test set is not homogeneous.

Table 1. Results of the experimentation. The table on the left shows the confusion
matrix when 200 training samples were used. The table on the right shows the confusion
matrix when 300 samples were used to infer the automata.

class 0 1 2 3

0 399 1 0 0
1 1 399 0 0
2 1 17 268 4
3 1 0 2 377

class 0 1 2 3

0 398 2 0 0
1 0 399 1 0
2 1 7 178 4
3 0 0 0 280

The results show the excellent performance of our approach, an error rate of
1.84% was obtained when 200 samples were considered to infer the automata,
and an error rate of 1.18% was obtained when 300 samples were used.

5 Conclusions

In this work, we tackle the classification of hand-filled forms using a syntactic
approach. We propose a new procedure for modelling the layout of the forms
which obtains a tree-like representation. This representation allows us to use
a tree language inference algorithm to obtain a model for each class of the
classification task. An error-correcting analysis is carried out to classify the test
samples, taking into account the minimum editing-distance.

We used a subset of the NIST Special Database 6 of structured forms and our
syntactic approach to carry out the classification. The results of the experiments
show the excellent behaviour of the approach: an error rate of 1.18%.

As a future line of work, the preprocessing of the image (for instance, applying
methods to correct the slant of the image), should improve the results. Note that
the approach does not consider the use of probabilities. Another line of work is
the modification of the model to obtain a stochastic one which should also lead
to better results.
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Finally, the representation process could easily be modified for other pattern
recognition tasks and should be explored further. Also, other methods for mod-
elling the physical structure of forms [18] could be used in a syntactic approach
to classification to produce good results.

References

1. R. Cattoni, T. Coianiz, S. Messelodi, and C.M. Modena. Geometric layout analysis
techniques for document image understanding. Technical report, Instituto Trentino
di Cultura, 1998.

2. F. Cesarini, M. Gori, S. Marinai, and G. Soda. Informys: a flexible invoice-line form-
reader system. IEEE Transactions on Pattern Analysis and Machine Intelligence,
20(7):730–745, 1995.

3. D.L. Dimmick and M.D. Garris. Nist special database 6. structured forms database
2. Technical report, National Institute od Standards and Technology. Advanced
Systems Division. Image Recognition Group, 1992.

4. D. Dori, D. Doermann, C. Shin, R. Haralick, I. Phillips, M. Buchman, and D. Ross.
Handbook on Optical Character Recognition and Document Image Analysis. The
representation of document structure: a generic object-process analysis. World Sci-
entific Pub. Co., 1996.

5. H. Fernau. Learning tree languages from text. LNCS, 2375:153–168, 2002. 15th
Annual Conference on Computational Learning Theory (COLT 2002).
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13. D. López, J. Ruiz, and P. Garćıa. Pattern Recognition and String Matching, chapter
Inference of k-piecewise testable tree languages. Kluwer, 2003.
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Abstract. In this paper we present a symbols recognition system for graphic 
documents, based on a combination of global structural approaches. Our system 
allows to extract components and their loops, with their inclusion and neighbor-
ing links. So, it is possible to construct different graph types according to the 
considered recognition problem. Our system uses an XML representation of 
data, which allows an easy manipulation of these ones. We present some results 
on a symbols set of GREC2003’s recognition contest. 

1   Introduction 

This paper deals with the structural recognition of symbols applied to graphic docu-
ments. We present here a system based on a combination of global structural ap-
proaches. In the paper’s follow-up, we present in section (2) the general problem of 
structural recognition of symbols on graphic documents. The two following sections 
are dedicated to two main system’s parts: global structural analysis and images pre-
processing in section (3), and structural classification in section (4). In section (5), we 
present the use of XML in the system. In section (6), we present some results and 
analysis on a symbols set of GREC2003’s recognition contest. Finally, in section (7), 
we conclude and give some perspectives. 

2   Structural Recognition of Symbols 

Classically, a documents recognition system is decomposed into two main steps [7]: 
an images processing step and a recognition step. Two main approaches exist: statis-
tical & connexionnist, and structural & syntactic1. This paper deals especially with 
the structural approach. This one uses graph representations of documents’ objects. 

                                                           
1  In the paper’s follow-up, we talk about “structural” for “structural & syntactic”. 
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Into graphic documents, many objects could be described by graphs, especially sym-
bols [10]. Thus, in a structural recognition system of symbols, the images processing 
step extracts graphs from images corresponding to symbols, and the structural recog-
nition step exploits these graphs.  

The structural recognition step is generally used for symbols recognition, but also 
for other purposes like: learning, indexing, data structuring, and so on. It uses two 
main approaches: graph-matching [6], and graph-grammar [2]. The first one matches 
extracted graphs with model graphs. The second one applies different rules to trans-
form extracted graphs into model graphs. A graph problem depends on two criteria: 
graph/subgraph, and exact-inexact. If extracted graphs correspond exactly to model 
graphs, the problem is known as exact. Unfortunately, in image applications, ex-
tracted graphs are noisy. So, it is an inexact graph/subgraph problem. 

The images processing step extracts (or constructs) graphs from images corre-
sponding to symbols. Into a related paper [5], we talk about “structural analysis” for 
this images processing step and propose a classification into local and global ap-
proaches. The boundary between the two approaches is the connected component. 
Fig. 1 gives an example. The local approach (b) decomposes the connected compo-
nent (a) into arc, junction, and vector objects. The global approach (c) groups to-
gether three connected components (a) according to distance constraints. 

 

 

Fig. 1. (a) symbols (b) local structural analysis (c) global structural analysis. 

This paper especially deals with the global structural analysis. This one extracts 
spatial links between connected components, in order to construct graph representa-
tions of symbols. Therefore, this analysis processes only the segmented symbols (not 
connected). Moreover, the connected components are graphical primitives of “low 
semantic”. This allows to deal only with the few classes recognition problems. Three 
main approaches exist. The first one simply extracts connected components’ gravity 
centers in order to use distance constraints between them with graphs based algo-
rithms [11]. The next two extract more complete links from images between con-
nected components: the inclusion [8] and the neighboring [3] links. The first one 
generally is based on blob coloring methods [8], and the second one on the general-
ized Voronoi diagrams methods [3]. The Fig. 2 gives an example of symbol with its 
inclusion graph (a), and the neighboring graph of its central part (b). Also, “hybrid” 
approaches exist, like global/local [8] or statistical/structural [4] approaches. 

 

 

Fig. 2. (a) inclusion links (b) neighboring links. 
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In this paper we present a system for symbols recognition based on global struc-
tural analysis. This one exploits an approaches combination of global structural 
analysis. It allows to extract from images the connected components and their associ-
ated loops (see subsection 3.1), with their inclusion and neighboring links. So it is 
possible to construct different graph types according to the considered recognition 
problem. These graphs are next processed by a graph-matching algorithm. We pre-
sent this system in the three next sections. 

3   Global Structural Analysis and Images Pre-processing 

We present in this section the first system’s part for images processing. Methods 
presented in this section are grouped in a C++ library for connected components 
analysis, the CCLib2. We present first in subsection (3.1) the general method for con-
nected components labelling and loops extraction. In subsection (3.2), we present the 
methods to construct connected components graphs. Finally in subsection (3.3), we 
present a pre-processing method based on connected components’ surfaces analysis. 

3.1   Connected Components Labelling and Loops Extraction 

The central part of system’s images processings is a connected components labelling 
method. Our labelling method is based on regions aggregation with an 8 connectivity 
analysis of black pixels. The Fig. 3 gives an example with the original image (a), and 
four successive aggregation steps (b). During these steps, the aggregated pixels are 
erased (steps 1-3: 3 pixels, step 4: 1 pixel). 

 

 

Fig. 3. (a) image (b) four successive aggregation steps. 

This method is a few more complex than classical blob coloring methods [1], but 
labels and extracts in one step the connected components and their characteristics: 
gravity centers, areas “dx; dy”, contour pixels, and so on. The Fig. 4 gives an exam-
ple image (a) with its labelling result into SVG format (b) (see section 5).  

 

 

Fig. 4. (a) symbol (b) components labelling (c) loops extraction (d) inclusion graph. 

                                                           
2  Connected Component Library: http://site.voila.fr/mdhws/  



428      Mathieu Delalandre, Éric Trupin, and Jean-Marc Ogier 

We use too this labelling method to extract loops images3 (Fig. 4 (c)). The image’s 
borders are first initialized into the image’s background colour. Next, the image is 
inverted. This inverted image is next labelled. With the borders initialization, the first 
labelled connected component corresponds to image’s background. This one is 
erased, and the others are used to create the loops image (Fig. 4 (c)). 

3.2   Graphs Construction 

Two main links exist between connected components (see section 2), the inclusion 
and the neighboring links. We present first two methods to extract these links. Next, 
we present a method to construct hybrid graphs combining these two links. 

Firstly, we extract the inclusion links between connected components. The Fig. 4 
(d) gives an example of inclusion graph into XGMML format (see section 5) of Fig. 4 
(a). These inclusion links are directed, and give a tree description of symbol’s com-
ponents and their associated loops. Our method first extracts symbol’s loops image 
(Fig. 4 (c)). Next, it labels components image and its associated loops image (Fig. 4 
(a) and (c)). Finally in these two labelled images, the method analyses the contours’ 
labels of components and loops in order to extract their inclusion links (Fig. 4 (d)). 

Secondly, we extract the neighboring links between connected components. These 
links are undirected, and give a graph description of symbol’s components or loops. 
Our method is based on the extension of connected components’ contours. During 
this extension, the extended contours are labelled. The process is stopped when the 
extended contours meet other extended contours, connected components, or null 
zones “out of image”. The Fig. 5 (b left) gives an example of four successive steps of 
contours extension of Fig. 5 (a). Then, the method extracts the boundary points from 
the obtained labelled map of extended contours. The Fig. 5 (b right) gives an example 
of image representation of extracted boundary points of Fig. 5 (a). Finally, these 
boundary points are next analyzed in order to find the neighboring links between 
connected components. The Fig. 5 (c) gives the neighboring graph into XGMML 
format (see section 5) of Fig. 5 (a). This method is more complex (θ2 complexity)4 
than generalized Voronoi diagrams based methods (θ complexity) [3]. However, this 
method deals with the “high precision” problems. It allows to extract the exact 
boundary points (with a pixel precision), and gives in some cases more complete 
results than generalized Voronoi based methods. 

 

 

Fig. 5. (a) symbol (b) contours extension (c) neighboring graph. 

                                                           
3  In the paper’s follow-up, we talk about symbol’s “components” and associated “loops”. 
4  25.1 seconds for a no compressed plan of 364 Kbytes (CPU 2 GHz, Windows System). 
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Finally, we use a last method in order to construct hybrid graphs, with the inclu-
sion and neighboring links. The Fig. 6 (a) gives an example of hybrid graph into 
XGMML format (see section 5) of Fig. 5 (a), with the include links between con-
nected components and loops, and the neighboring links between loops (Fig. 5 (c)). 
Our method uses the neighboring and inclusion graphs, with their associated con-
nected components’ characteristics provided by the labelling method (label, gravity 
centers, areas, and so on.). Next, the method analyses the two graphs and connected 
components’ characteristics in order to construct the hybrid graphs. So, it is possible 
to construct three hybrid graph types, components based, loops based, loops and 
components based “both”. The Fig. 6 (b), (c), and (d) give examples of three hybrid 
graph types into XGMML format (see section 5) of Fig. 4 (a). 

 

 

Fig. 6. (a) hybrid graph (b) components based (c) loops based (d) both based. 

3.3   Images Pre-processing 

The graph construction methods presented in the last subsection (3.2) are based on 
connected components extraction. Therefore, these methods are very sensitive to 
sparse noise (small components and loops adding). The Fig. 7 (b) gives an example of 
sparse noised image of Fig. 7 (a).  

 

 

Fig. 7. (a) model image (b) sparse noised image (c) filtered image. 

To solve this problem, we use a filtering method based on connected components’ 
surfaces analysis (1). First, a table (S) of no null connected components’ surfaces is 
created. This one can be created from components image, loops image, or to merge 
the both. From this surfaces table, a surface ratios table (R) is computed. The maxi-
mum ratio (r) is searched in order to find the surface threshold of image (th). The Fig. 
7 (c) gives an example of filtered image of Fig. 7 (b). 
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4   Structural Classification 

The extracted graphs (see section 3) are next exploited by an inexact graph-matching 
algorithm [9]. This algorithm allows to compute5 similarity criterion between graphs 
(2), based on the overlap between a candidate graph (g1) and a model graph (g2). 
This overlap corresponds to their common sub-graph (gc). Two similarity criteria are 
computed (3) according to the common elements number {cnn, cen} on the nodes 
(δn), and on the edges (δe). The global similarity criterion is obtained by variance 
computation of (δn) and (δe). The classification’s result corresponds to model graph’s 
label of minimum global similarity criterion. 
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The model graphs are learned through a graphics user interface: ojgBE6. The Fig. 6 
gives examples of graphs’ graphics visualizations. ojgBE allows to edit labelled 
graphs, directed and/or undirected. The edited graphs are included into a graphs base. 
The ojgBE user can browse into this graphs base and perform various actions like: 
graph labelling, graph copy, base sorting, graph orientation change, similarity analy-
sis, and so on. The graphs base is stored into XGMML format (see section 5).  

5   XML Use in System 

The different system’s parts (sections 3 and 4) generate output data into XML and its 
sub-languages. The use of this data representation language offers several enhance-
ments in comparison with classical formats. XML is a meta-language because it is 
defined as a root language, which enables to define specialized sub-languages. We 
use SVG7 for graphic data representations (Fig. 4 (b)). We also use XGMML8 for 
graphs descriptions (see Fig. 6) in the global structural analysis tools (see section 3), 
the structural classifier (see section 4), and the graphics user interface ojgBE (see 
section 4). XML uses parsers and transforming processors. The parsers easily access 
to XML data, and the processors easily transform the XML data according to XSLT9 
scripts. This enables an easy data manipulation in the system, for data communication 
between system’ parts (sections 3 and 4), and results evaluation (see section 6). 

                                                           
5  We don’t develop this algorithm here and report the reader to [9]. 
6  Open java graph Base Editor: http://site.voila.fr/mdhws/ 
7  Scalable Vector Graphics. 
8  eXtensible Graph Markup and Modeling Language. 
9  eXtensible Stylesheet Language Transform. 
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6   Experiment, Results, and Analysis 

We present here some results obtained on a symbols set of GREC200310’s recognition 
contest. This symbols recognition contest deals with the recognition of segmented 
architectural and electrical symbols (Fig. 8). Different sample tests are available10 
according the classes number (symbols set), binary or vectorial degradations11, scale 
or orientation changes, and so on. These sample tests are available with their models 
files, in order to evaluate recognition results. 

We have tested our system with a symbols set of 9 symbols (Fig. 8). We have used 
a hybrid graph representation based on loops’ neighboring links (see subsection 3.2). 
Indeed, the inclusion and neighboring graphs aren’t adapted for this recognition ap-
plication. The inclusion graphs are similar for symbols s8 and s9, and the loops based 
neighboring graphs for symbols s1 and s7. Also, the components based hybrid graphs 
are similar for symbols s1 and s4. We have tested our system on 600 images, with 6 
sample tests (of 100 images sized) of binary degradations (degrad-level2-m1 to de-
grad-level2-m612). The Fig. 7 (a) gives an example of binary degradation of Fig. 7 
(b). 

 

 

Fig. 8. Symbols set. 

The Fig. 9 (a) gives the samples tests’ results. We obtain perfect results on all tests, 
except on the test5 (89%). In order to complete these results, we have measured two 
noise types. The first one is an estimation of dilatation noise (4). This estimation (Êd) 
is computed between test images (ti), and model images (mi). It is based on the search 
of common black pixels number (cbp) between test and model images, and the black 
pixel number (bp) of test image. The second one is a structural noise. This structural 
noise gives the rate of noised graphs into the extracted graphs. These noised graphs 
are detected in regard to their model graphs. These two measures give noise rates 
before and after the global analysis step. We can see on Fig. 9 a partial correlation 
between the two noise curves. Indeed, loops and components are “bullet-proof” 
graphical primitives (the perfect results prove it). The main problem is the dilatation 
noise which created loops closures and components merges on symbols’ noised im-
ages. This dilatation noise is the main problem area of structural noise. 

)(),(1),(ˆ tibpmiticbpmitiEd −=  . (4) 

                                                           
10  International Conference on Graphics Recognition 2003: http://www.cvc.uab.es/grec2003/  
11 We report the reader to contest’s web page10 for information on the noise models used. 
12 In the section’s follow-up, we talk about test1, test2, and so on. 

s1 s2 s3 s4 s5 s6 s7 s8 s9 
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Fig. 9. (a) sample tests recognition results (b) symbols recognition results. 

In order to analyze the structural noise distribution, we have computed the recogni-
tion rate and structural noise rate for each symbol class with all tests’ results (Fig. 9 
(b)). We can see a high level of noise (>15%) for symbols s1, s2 and s3. The Fig. 10 
gives examples of the three main cases of structural noise met for these symbols. The 
first one is the components merge case (a). Indeed, the dilatation noise can merge the 
nearest components. It is a typical structural noise of symbol s1 and s2. The second 
one is the loops closure case (b). The dilatation noise can close the small size loops. 
This structural noise appears on symbols s2, s3, and s7. The last one is the neighbor-
ing links distortion case (c). The loops’ distortions create and delete neighboring links 
in some difficult cases (like s3). The Fig. 9 (c) gives the model neighboring image 
(left), and an example of test neighboring image (right). The loops’ distortions add 
diagonal neighboring links (with small boundaries) between symbol’s loops. Still, the 
structural noise’s effects depend of symbol classes. In the case of symbol s7 and s1, a 
low level of noise has important effects on the symbols recognition. In the case of 
symbols s2 and s3, a high level of noise has no effect on the symbols recognition. 
Indeed, the graph models used haven’t the same “bullet-proof” criterion. In Fig. 9 (b) 
we have computed (and sorted) for each model graph the minimum similarity crite-
rion with the other base’s model graphs. This minimum criterion can be view as the 
“bullet-proof” criterion of considered model graph. Like this, we can see two main 
classes in the model graphs base: symbols of low minimum similarity criteria (≤0.15) 
(s1, s5, s7, s8, and s9), and symbols of high minimum similarity criteria (≥ 1.25) (s2, 
s3, s4, and s6). 

 

 

Fig. 10. (a) components merge (b) loops closure (c) neighboring links distortion. 
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7   Conclusion and Perspectives 

In this paper we have presented a symbols recognition system applied to graphic 
documents. This system is based on a combination of global structural approaches. It 
allows to extract components and their loops, with their inclusion and neighboring 
links. It is possible to construct different graph types according to the considered 
recognition problems. These graphs are next processed by an inexact graph-matching 
algorithm. We present some recognition results and analysis on a noisy symbols set 
of GREC2003’s contest. This system gives very good results. Still, it is sensitive to 
dilatation noise. Moreover, the global approaches allows to deal only with segmented 
symbols, and the few classes recognition problem.  

For the perspectives, we want first realized contextual pre-processing step, in order 
to erode the dilated images. Next, we want to combine our global approach with sta-
tistical approach [4] in order to deal with the large classes recognition problems. Also, 
we want to extend our methods library with a generalized Voronoi method, in order 
to reduce the images’ process times in the case of “low precision” problems. Finally, 
we want to combine our graph-matching algorithm with a graph-grammar tool, in 
order to correct some structural noise cases. 
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Abstract. In recognition of composite graphic objects, topological spatial rela-
tionships of their components play an important role. Although most researchers 
focus on binary topological relationships, they cannot carry all information of the 
internal structure of the compound objects. Therefore, we introduce the ternary 
relationship, which is a complement to the binary relationship, to describe 
composite graphic objects. Moreover, we provide a constrained partial permu-
tation algorithm based on both the binary and ternary topological spatial rela-
tionships to recognize the sketchy objects input by users in an online manner. 
Experimental results show that this approach is both efficient and effective for 
online composite graphics recognition in our sketch-based graphics input system 
– SmartSketchpad. 

1   Introduction 

Sketching is a way of externalizing ideas, of turning internal thoughts public, of 
making fleeting thoughts more permanent [1]. People usually use sketches to express 
and record their ideas in many domains, including mechanical engineering, software 
design, information architecture [2] and map schematizing [3]. Although it may be easy 
for people to understand the designer’s intention, which is presented in his sketches 
intangibly, it is not an easy case for computers. The ambiguity of sketches causes many 
problems in recognition.  

The online graphics recognition problem can be specified into three levels: primitive 
shape recognition, composite object recognition, and document-level recognition and 
understanding [4]. For composite object recognition, existing approaches can be 
divided into two categories: the SPR (Statistical Pattern Recognition) approaches, such 
as Neural Networks (NN) [5] and Hidden Markov Model (HMM) [6], and the SSPR 
(Syntactical and Structural Pattern Recognition) approaches, such as Attributed Rela-
tion Graph (ARG) and Region Adjacent Graph (RAG) [7][8]. These methods mainly 
focus on unitary or binary relationships. In addition, contextual (top-down) knowledge 
has also been used to recognize freehand sketches of simple 2-D mechanical de-
vices [9].  

Sketches have the advantage of conveying elements and spatial relations in the real 
world with elements and spatial relations on paper and describing visuospatial ideas 
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directly [1]. Users’ sketchy objects are composed of both primitive shapes (e.g. line 
segments, arc segments, and ellipses) and their topological spatial relationships. These 
relationships among the primitive shapes play an important role in identifying com-
posite objects. For example, when people distinguish one object from the others, they 
usually pay more attention to the structure of its components than to the absolute 
position, size, and orientation of each component. Topological relationship is a par-
ticular subset of geometric relations that are invariant under geometric transformations 
such as translation, rotation, and scaling. Traditionally, topological relationship is 
defined between two objects, such as regions, lines or points [10]. Zhan [11] provided 
eight binary topological relations between two fuzzy regions that are distinguished by 
the 9-intersection model [10], e.g. disjoint, contains, inside, equal, meet, covers, 
coveredby, and overlap. However, binary topological relationship itself cannot carry 
all information of the internal structure of composite objects. For example, it is im-
possible to distinguish the relative sequence of three lines, which are parallel, only with 
binary topological relationships. However, with the proposed ternary relationships, we 
are able to distinguish it easily. In this paper, two ternary relations are introduced, 
which, along with certain binary relationships, are used to describe the internal struc-
ture of composite graphic objects. A constrained partial permutation algorithm is also 
presented to recognize sketchy objects using these relationships. Experimental results 
show that this approach is both efficient and effective for online composite graphics 
recognition in our sketch-based graphics input system – SmartSketchpad [12]. 

The remainder of this paper is organized as follows: Section 2 introduces 5 classes 
of binary topological relationships and two ternary topological relationships that are 
used in our system. Section 3 presents a constrained partial permutation algorithm for 
recognition of sketchy objects using their topological relationships. Experiments and 
evaluations are presented in Section 4. Section 5 presents concluding remarks.  

2   Topological Spatial Relationship 

2.1   Notations 

The point in 2D plane can be denoted as Pt. The primitive shape in a graphic object, as 
we consider, can be line segment (denoted as Ls), arc segment (denoted as As), or 
ellipse (denoted as E). The primitive shape is denoted as P, and CLASS(P) is the class 
of P. L is the line in which the segment (Ls) locates and Ra is the circle on which the arc 
segment (As) locates. The relationship between two primitive shapes (e.g. P1 and P2) 
can be denoted as R(P1,P2) and R’(P|P1,P2) is a ternary relationship among three 
primitive shapes (e.g. P, P1, and P2). Moreover, we use R(P,•) or R’(P|•,•) to express all 
binary or ternary relationships which contain P and Φ(R(P,•)) or Φ(R’(P|•,•)) is the 
number of relationships in R(P,•) or R’(P|•,•). 

In addition, ƒ(x,y) is the function of the primitive shape. For line, ƒ(x,y)= ax+by+c, 
where b>=0 and if b=0, a>0. For ellipse, ƒ(x,y)=(x-x0)

2/a2+(y-y0)
2/b2-c, where c>0 and 

a,b≠0. For circle, ƒ(x,y)= (x-x0)
2+(y-y0)

2-c, where c>0.  
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2.2   Binary Topological Relationships 

We first define five binary spatial relationships that are useful for sketch recognition as 
follows. 

Definition 1. Binary Topological Relationships 
Given two primitive shapes P1 and P2, the binary spatial relationship R(P1,P2) can be 
defined as follows, which are also illustrated in Fig. 1. 

(i). Interconnection (RIC): P1 and P2 have common end points, or two ellipses join 
together (Fig. 1(a)). Denoted as RIC(P1,P2).  

(ii). Tangency (RT): The end points of P1 are quite close to (or touching) some inner 
points of P2, or a line segment is tangent to an ellipse (Fig. 1(b)). Denoted as 
RT(P1,P2).  

(iii). Intersection (RIS): If P1 and P2 have common inner points (Fig. 1(c)), we define it 
as RIS(P1,P2).  

(iv). Parallelism (RP): P1 and P2 are line segments and are approximately parallel [13] 
within a sufficiently close distance (Fig. 1(d)). Denoted as RP(P1,P2). 

(v). Concentric (RC): The centers of two ellipses or arc segments are sufficiently close 
(Fig. 1(e)). Denoted as RC(P1,P2).  

According to above definition, the relationship R can be recognized even after 
geometric transformations. Therefore, these binary relationships are insensitive to the 
direction, the size and the rotation.  
 

 

Fig. 1. Some examples of binary spatial relationship, with joint points drawn in thick black. 

2.3   Ternary Topological Relationship 

The above binary relationships are insufficient to distinguish all possible spatial rela-
tions among components. For instance, we cannot distinguish the relative sequence of 
three parallel lines or three concentric ellipses with only binary relationships. There-
fore, the ternary relationship is introduced. Before we present the detailed definitions of 
the ternary relationship, we first define another two binary relationships: the over 
relationship and the below relationship. Given two primitive shapes P and P’, which 
are not exactly the same in their geometric functions, and if the function of P is ƒ(x,y), 
we define: 

Definition 2. The over relationship 
If ∀Pt in the primitive shape P’, ƒ(Pt)≥0 and there is at most one point Pt’ at which 
ƒ(Pt’)=0, we can say P’ is over P, denoted as P’↑P. 
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Definition 3. The below relationship 
If ∀Pt in the primitive shape P’, ƒ(Pt)≤0 and there is at most one point Pt’ at which 
ƒ(Pt’)=0, we can say P’ is below P, denoted as P’↓P. 

Although the over/below relationships for circles or ellipses are rotation-invariant, 
the two relationships for lines are sensitive to rotation. Therefore, we define the fol-
lowing two ternary relationships based on the over/below relationships. 

Definition 4. The middle relationship  
Given three primitive shapes (P,P1,P2), if P1↑P and P2↓P, we can say that P has the 
middle relationship with the other two primitive shapes (P1 and P2), denoted as 
R’M(P|P1,P2).  

Every three primitive shapes may have more than one (at most two) middle rela-
tionship. For example, the object in Fig. 2 has three line segments and one ellipse. The 
three line segments have two middle ternary relationships: R’M(Pa|Pc,Pb) and 
R’M(Pb|Pa,Pc) which are drawn from the over/below relationships Pc↑Pa, Pc↓Pb, Pa↑Pb 
and Pb↓Pa.  
 

 

Fig. 2. An example object and its ternary relationships. 

Definition 5. The parallel-middle relationship  
If RP(P1,P2) or RC(P1,P2), and there is a primitive shape P, which can meet the condi-
tions: P↓P1 and P↑P2, we say that these three primitive shapes have the parallel-middle 
relationship, denoted as R’P-M(P|P1,P2).  

Apparently, the parallel-middle relationship can meet the rotation-invariance, that 
is, R’P-M(P|P1,P2)=R’P-M(P|P2,P1). In addition, for the line segments, this ternary rela-
tionship is sensitive to the parallel relationship. Therefore, we cannot use the traditional 
parallel definition. For example, Pc and Pa in Fig. 3 may be considered as parallel under 
the traditional definition. Therefore, we use Revankar and Yegnanarayana’s method 
[13] to judge the parallel relationship.  
 

 

Fig. 3. The parallel-middle relationship is sensitive to the definition of the parallelism. 

3   Sketch Recognition 

The key problem in the composite object recognition process is how to match a sketchy 
object (SO) with a pre-defined object (PO). Obviously, enumeration of all possible 



438      Binbin Peng et al. 

cases is equivalent to a Partial Permutation problem, which is proved to be an 
NP-complete problem [14]. For an object composed of more than 8 components, it is 
not suitable to enumerate all cases in on-line recognition system. In fact, most per-
mutations are illegal mappings due to violation of some constraints and can be ne-
glected directly during the permutation process. Hence, this partial permutation is a 
constrained one and is referred to as the Constrained Partial Permutation by Xu et al. 
[15]. Xu et al.’s method [15] is based on binary relationships. In this paper, we improve 
it by handling with the ternary relationships as well as binary relationships.  

3.1   Constrained Partial Permutation 

Definition 6. Constrained Partial Permutation 
Given that SO contains m primitive shapes (e.g. O1, O2, .. Om) and PO contains n 
primitive shapes (e.g. P1, P2, .. Pn) where m≤n, select m integers from [1..n], and then 
rank them in a list as enumeration sequence, written as B(1)B(2)…B(m), where, 1, 2, …, 
k, …,m are the positions in the list and B(1), B(2), …, B(k), …B(m) are the values (1..n) 
at these positions in the list. We regard SO as a part of PO, only if we can find a 
possible enumeration sequence which satisfies all of the following three constraints:  

Constraint 1: ∀r∈[1,m], CLASS(Or)=CLASS(PB(r)), Φ(RIC,T,IS,P,or C(PB(r),•))%Φ(RIC, T,IS,P,or 

C(Or,•)), Φ(R’M(PB(r)|•,•))%Φ(R’M(Or|•,•)) and Φ(R’P-M(PB(r)|•,•))%Φ(R’P-M(Or|•, •)) 
Constraint 2: ∀r, s∈[1,m], if there is a binary relationship RIC,T,IS,P,or C(Or,Os), there must 

be a relationship RIC,T,IS,P,or C(PB(r),PB(s)) of the same type. 
Constraint 3: ∀r, s, t∈[1,m], if there is a ternary relationship R’M or P-M(Or| Os, Ot), there 

must be a relationship R’M or P-M(PB(r)|PB(s), PB(t)) of the same type. 

To improve the efficiency of constrained partial permutation, we define four de-
nying rules as follows:  

Definition 7. Single Denying Rule:  
Given r∈[1..m] in SO and i∈[1..n] in PO, Pi cannot be put into the place r, that is, Br ≠i, 
written in a 2-tuple (i, r), if one of the following conditions can be met: (1) 
CLASS(Or)!CLASS(Pi); (2) Φ(RIC,T,IS,P,or C(Pi,•))<Φ(RIC,T,IS,P,or C(Or,•)); (3) Φ(R’M(Pi 

|•,•))<Φ(R’M(Or|•,•)); (4) Φ(R’P-M(Pi|•,•))<Φ(R’P-M(Or|•,•)). 

Definition 8. Pair Denying Rule 1: 
Given r, s∈[1..m] in SO and i, j∈[1..n] in PO, and Pj has been put into the place s (that 
is, Bs=j), if Or has the binary relationship RIC,T,IS,P,or C(Os, Or) but Pi does not have the same 
binary relationship RIC,T,IS,P,or C(Pi, Pj), Pi cannot be put into the place r, that is, (i, r)-(j, s). 

Definition 9. Pair Denying Rule 2: 
Given r, s∈[1..m] in SO and i, j∈[1..n] in PO, and Pj has been put into the place s (that 
is, Bs=j), if Or has the ternary relationship R’M, or P-M(Or|Os,•) or R’M, or P-M(Os|Or,•) but Pi 
does not have the same ternary relationship R’M, or P-M(Pi|Pj,•) or R’M, or P-M(Pj|Pi,•), Pi 
cannot be put into the place r, that is, (i, r)-(j, s).  
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Definition 10. Triangle Denying Rule: 
Given r, s, t∈[1..m] in SO and i, j, k∈[1..n] in PO, Pj has been put into the place s and Pk 
has been put into the place t (that is, Bs=j and Bt=k), if Or has the ternary relationship 
R’M, or P-M(Or|Os,Ok) or R’M, or P-M(Os|Or,Ok) but Pi does not have the same ternary rela-
tionship R’M, or P-M(Pi|Pj,Pk) or R’M, or P-M(Pj|Pi,Pk), Pi cannot be put into the place r, that is (i, 
r)-(j, s)(t, k).  

Therefore, given a permutation B(1)B(2)…B(m), we can derive a function ƒ: 
[1..m]→[1..n], where ƒ(i)=B(i) for any i∈[1..m]. We obtain four denying rules ac-
cording to the following steps:  

Step 1: if ƒ is rejected by constraint 1, there must exist r (r∈[1..m]), which let Or and 
PB(r) meet the single denying rule. Then we obtain a single denying rule (B(r), r).  

Step 2: if ƒ is rejected by constraint 2, there must exist r, s∈[1..m], which let Or Os and 
PB(r) PB(s) meet the pair denying rule 1. Then we obtain a pair denying rule (B(r), 
r)-(B(s), s).  

Step 3: if ƒ is rejected by constraint 3, there must exist r, s∈[1..m], which let Or Os and 
PB(r) PB(s) meet the pair denying rule 2, or there must exist r, s, t∈[1..m], which let Or, 
Os, Ot and PB(r), PB(s), PB(t) meet the triangle denying rule. Then we obtain a pair de-
nying rule (B(r), r)-(B(s), s) or a triangle denying rule (B(r), r)-(B(s), s)(B(t), t). 

In order to acquire all possible permutations, we enumerate all such m-digit integers 
from the smallest, i.e., 123…m, to the largest, i.e., n (n-1) (n-2) … (n-m+1). Each time 
we give its next permutation by finding the smallest m-digit number that is not found 
before. The denying rules will be generated gradually. If the current permutation is 
b1b2…bk-1ibk+1…bm, and it is rejected by the single denying rule (i,k), we directly skip all 
permutations with the form b1b2…bk-1iBk+1…Bm, where Bx (x=k+1..m) belongs to the set 
{1,2,3,…n}-{b1,b2,…bk-1,i} and Bp!Bq (p, q=k+1..m). If the current permutation is 
b1b2…bk-1ibk+1…bt-1jbt+1…bm, where t>k, and it is same when it is rejected by the pair 
denying rule (i, k)-(j, t) or the triangle denying rule (i, r)-(j, s)(t, k). By doing so, many 
illegal mappings (permutations) can be pruned directly in the enumerating process.  

3.2   Similarity 

The similarity between SO and PO in a given match (legal mapping/permutation 
B(1)B(2)..B(m)) is denoted by BSim (SO,PO)  and defined as the weighted sum of the 

similarities of all pairs of matched primitives, as follows. (L(P) is the length (for 
line/arc segments) or perimeters (for ellipses) of a primitive shape P.) 
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Then, the final similarity between SO and PO is defined as the maximal similarity 
under all possible mappings/permutations, as follows. 
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where (SO, PO)ψ is the set of all legal mappings between SO and PO. 
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4   Experiments 

4.1   Experimental Environments 

In this experiment, we simulate the sketch-based graphics input and recognition 
process in practical applications. Firstly, 349 composite graphic objects are created to 
form a database. Each object in the database contains no more than 15 components. 
Secondly, we use the method of Xu et al. [15] to generate queries from these objects 
randomly and match these queries with those objects in the database. For a given 
graphic object, which has m components, denote the width and height of the object as w 
and h respectively. A query is generated according to a noise rate τn, which is used to 
simulate the drawing noises, and a completion rate τC, which is used to simulate the 
incomplete form.  

Algorithm 2: Query Generating. (Given a graphic object with n components and its 
completion rate τC) 

Step 1: randomly select n*τC components. 
Step 2: generate simulation noises for each component. 

Step 2.1: generate a horizontal shifting factor ιH and a vertical shifting factor ιV 
between -τn and +τn. Then shift this component by ιH*w horizontally and by ιV*h 
vertically. 

Step 2.2: generate a random scaling factor ιS between 1-τn and 1+τn, and then rescale 
the component according to ιS. 

Step 2.3: for each component, generate a random rotation factor ιR between -τn*  
and τn* , and then rotate the component according to ιR counterclockwise. 

Step 3: Combine these n*τC components as a whole group, then shift, rotate, and 
rescale this group, randomly, to form a query q. 

Fig. 4(a) shows a regular object stored in the database and Fig. 4(b) is the generated 
query object for this regular object at τC = 0.9 and τn =0.1. 
 

 

Fig. 4. An example of generated query object from a regular object. (a) The original model object 
stored in the database; (b) the generated query at τ

C
 = 0.9 and τ

n
 =0.1. 

For the i-th object in the database, we can generate a query qi randomly according to 
τn and τC. Next, we rank all POs in the database according to their similarities to qi in a 
descending order. Denote the position of the i-th object itself in the ranking list as 
Ranki, e.g., Ranki equals to 2, that is, the i-th object has the second highest similarity to 
the query qi. The recall rate Rn is defined as: 
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The experiment environment is Pentium III 1.3G CPU, 256MB memory, Windows 
XP, Visual C++ 6.0. 

4.2   Performance Evaluation 

In the experiment, τn is set to be 0, 0.1, and 0.2, respectively, to simulate different 
drawing styles. τn=0 is set to simulate a very formal drawing, which has few noise. 
τn=0.1 is set to simulate an ordinary user-sketched drawing, which has some noises. 
τn=0.2 is set to simulate a haste drawing, which has many noises when user draws 
freely. On the other hand, τC increases from 0.5 to 1.0 simulating different completion 
status. Ri is defined in Eq (3). Ri in percentage under different τn and τC are shown in 
Fig. 5. 

From Fig. 5 we can see that our algorithm is relatively sensitive to noises when a few 
components have been drawn. As more components have been drawn (i.e., as the 
object is more complete), higher recall rates can be achieved. We can also see that, 
when noises are relatively small (τn=0 or 0.1), the sketchy graphic object can be suc-
cessfully recognized before it has been drawn completely. For instance, when a user 
has drawn 80% of his/her intended object with τn=0.1, the rate of successful recognition 
is above 80%. Hence, we can draw the conclusion that our approach can achieve good 
performance under noises for incomplete sketchy input.  

Our algorithm uses not only the binary relationship but also the ternary relationship 
to recognize composite objects. This method can get a better performance than the 
method only using the binary relationships (that is, Xu et al.’s method [15]). Fig. 6 
shows that the recall ratio of our algorithm is higher than Xu et al.’s algorithm when 
τn=0.1 and τn=0.2.  

The time cost in the recognition process is also a much-concerned factor for evalu-
ating our approach’s performance. Especially, in our real-time interactive sketch 
recognition environment, the time cost should be as small as possible. The time cost 
comparison between our approach and Xu et al.’s approach is listed in Table 1. From 
this table, we can find that our algorithm is more efficient than Xu et al.’s algorithm. 
From all comparisons in our experiment, we find that our approach can save 56.3% 
time compared to Xu et al.’s algorithm in average and the recall ratio is also higher than 
Xu et al.’s approach.  

Table 1. Comparison of time cost of our algorithm and Xu et al.’s algorithm for some shapes 
(Milliseconds). 

The number of components in the object 8  10 12  14  
Time cost of Xu et al.’s algorithm 30 310 100 750 
Time cost of our algorithm 10 50 70 400 
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Fig. 5. Performance evaluation of the composite graphic object recognition. 
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Fig. 6. Comparison of recall ratio between our algorithm and Xu et al.’s algorithm [15]. 

5   Conclusion 

In this paper, we have proposed two ternary spatial relationships among graphic 
components. The constrained partial permutation algorithm [15] has been improved to 
handle both binary and ternary topological spatial relationships for recognition of 
sketchy objects input by users in an online manner. From the experimental results, we 
can see that our improvement is more efficient and effective than Xu et al.’s method 
[15] and is practical in real-time sketch-based graphics input and recognition systems.  
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Abstract. A lot of different features have been proposed for on-line sig-
nature verification. By using these features, researchers implicitly believe
they have high consistency as well as high discriminatory power. How-
ever, very little work has been done to measure the real consistency of
these features. In this paper, we propose a model for consistency mea-
sure. Experiments were conducted to compare a comprehensive set of
features commonly used for on-line signature verification.

1 Introduction and Motivation

Feature extraction and selection is the key for signature verification. A lot of
work has been done on this [8, 9]. Different research groups use different features
to discriminate genuine and forged signatures. The prerequisite for any feature is
high consistency. That is, the feature from genuine signatures should be close to
each other while the feature from forgeries should be far away. On-line signatures
captured by digitizing device usually contains the information of the movement
of pen (X-, Y -coordinates), pressure, altitude [8], etc. From the coordinate se-
quence, speed and acceleration can be derived. Among these information and
potential features, which of them are reliable or consistent? Some researchers
believe that the dynamic information such as the speed, acceleration or pressure
are difficult to forge, thus they are able to distinguish skilled forgeries. How-
ever, the prerequisite is that the dynamic information from the authentic person
should be consistent, otherwise false rejection will be incurred. Currently, we
are lack of a solid support that the dynamic information are reliable or not. By
using the extracted features, researchers implicitly believe they have high consis-
tency as well as high discriminatory power. However, due to lack of consistency
measure and benchmark databases, no experiment has been done to study the
consistency of features proposed by a variety of research groups. Blind feature
extraction can be avoided if there is a consistency measure model.

In this paper, we propose a consistency model and compare the consistencies
of some commonly used features in on-line signature verification.
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2 Consistency Measure

2.1 A Novel Consistency Model

Before we describe the consistency model, we need to know the basic require-
ments of on-line signature verification system.

Signature verification is a special two-category classification problem: true
or false. We say it ”special” because it is different from regular two-category
problem. Fig. 1 shows the geometric difference. In the regular case, there are
two clusters which can be discriminated by the decision boundary. The boundary
is usually an open hyper-plane, as shown in fig. 1 a). However, in the case of
signature verification, there is only one cluster, i.e., the set of genuine signatures,
while forged signatures have no clustering characteristic because they have no
reason to be close to each other. Therefore, the decision boundary must be a
closed hyper-plane.

a) b)

Fig. 1. Two different cases of two-category classification problem. a) Regular two-
category problem has two clusterings with open decision boundary. b) Signature ver-
ification is a special two-category problem with closed decision boundary around the
clustering genuine signatures.

Given few samples of genuine signatures(no more than 6 usually), it is very
challenging to determine the decision boundary (threshold) no matter what kinds
of features are used. Because of limited training samples, the consistency of fea-
ture becomes extremely important. There are many potential features to choose
[7, 4, 1] and many new features are being invented. Thus, we are facing an in-
creasing demand for a consistency model.

A simple consistency measure was defined by Lee etc [4] as:

di(a) =
|m(a, i)− m(f, i)|√
σ2(a, i) + σ2(f, i)

, (1)

where di(a) means the consistency of feature i for subject a, m(a, i) is the mean
of feature i from genuine signatures,m(f, i) is the mean of feature i from corre-
sponding forgeries and σ2(a, i) or σ2(f, i) means the variation of feature i from
genuine or forged signatures.

While this model is appropriate for regular two-category classification, it
faces severe problems for signature verification:
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– σ2(f, i) does not make sense. As shown in fig. 2 b), signature verification
is a special two-category classification problem where the forgeries have no
reason to be close to each other.

– The mean m(a, i) can not be calculated directly. For example, if we define
the coordinate sequence itself (X , Y or [X,Y ]) as feature, it is difficult
to obtain the mean because the sequences are usually of different lengths.
Even sequences can be re-sampled [1] to be of the same length, the mean of
signature sequences actually does not mean anything.

– The calculation of distances between features are not limited to Euclidean
norm. For example, if we define the sequence [X,Y ] as feature, we should
use DTW (Dynamic Time Warping [3]) instead of Euclidean distance. There-
fore, the calculation of |m(a, i) − m(f, i)| and σ2 should be generalized to
incorporate different distance measures.

For above reasons, we need to tailor this model radically. Therefore, we define
the consistency of feature i on subject a as:

Cons(a, i) =
|MDMi(a, a)− MDMi(a, f)|√

σ2DMi
(a, a) + σ2DMi

(a, f)
, (2)

where the notions are described as follows:
DMi: distance measure associated with feature i. We acknowledge that differ-

ent features may have different distance measures, e.g., Euclidean norms, DTW,
cross-correlation, etc.

MDMi(C1, C2) : the mean of the feature distances (by distance measureDMi)
between pairwise objects in class C1 and class C2. Formally,

MDMi(C1, C2) =
1

|C1||C2|
∑

c1∈C1,c2∈C2,c1 �=c2
DMi(c1, c2), (3)

where DMi(c1, c2) denotes the distance of feature i between object c1 and c2.
a: a set of genuine signatures. f : a set of corresponding forged signatures.
σ2DMi

(a, a): The variation of the feature distances (by distance measureDMi)
within genuine signatures.

σ2DMi
(a, f): The variation of the feature distances (by distance measureDMi)

between genuine and forged signatures.

2.2 Discussion

In the consistency model above, we calculate the mean of feature distances
instead of the feature itself because some kinds of features have meaningless
”mean” (for example, the coordinate sequence). Also, feature is usually asso-
ciated with a certain kind of distance measure. Above model takes this into
account. Therefore, the model is applicable for all kinds of features proposed for
on-line signature verification.

Note that the consistency of feature i as Cons(a, i) is for a particular subject
a. The same feature could have different consistency value on different subjects.
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Given a data set which consists of a set of subjects, we will calculate the mean
and the standard deviation of the consistency value.

3 Commonly Used Features

We subjectively choose over 20 features and compare their consistencies on the
SVC signature database[6]. We briefly discuss these features here. Details are
referred to corresponding papers.

– Coordinate sequences. X , Y , [X,Y ] are the most straightforward features.
The lengths of these features from different signatures are usually different.
Therefore, DTW is used as distance measure [3]. There exist some variants
of sequence here. Some researchers propose that the sequence be re-sampled
so that they have equal arc-length [1]. We will compare their consistency
with/without re-sampling.

– Speed sequences. Speed V , speed of X coordinate Vx and speed of Y co-
ordinate Vy can be derived from sequence [X,Y ] directly by subtracting
neighboring points. From the speed, acceleration Va can be further derived.

– Pressure, altitude, azimuth. Pressure is one of the most common dynamic
information of on-line signature. Some devices can capture additional infor-
mation, such as azimuth (the clockwise rotation of cursor about the z-axis )
and altitude( the angle upward toward the positive z-axis)[6].

– Center of Mass x(l) and y(l), Torque T (l), Curvature-ellipse s1(l) and s2(l).
The five features were defined in [1]. Center of Mass is actually the smoothed
coordinate sequence by Gaussian filter. Torque measures the area swept by
the vector of pen position. s1(l) and s2(l) measure the curvature ellipse based
on moments. The distance measure used here is cross-correlation (Pearson’s
r) weighted by the consistency of points.

– Average speed V , average positive speed on X-axis V x+, average positive
speed on Y -axis V y+ , total signing duration Ts. Lee etc[4] lists two sets of
features. These four features have the highest preference in the first set. The
distance measure is Euclidean norm.

– cos(α), sin(α), Curvature β. α is the angle between the speed vector and
the X-axis. The three features are proposed by Jain etc[7]. It also proposes
coordinate sequence difference δx and δx. Actually, δx and δx are the same
as feature # 5 and # 6 in table 1 respectively.

All above features and corresponding distance measures are summarized in table
1. We have to notice that these features are only a small portions of the proposed
features for signature. We choose them because we believe they are among the
most promising ones according to our experience.

4 Comparison of Consistency

We used the released SVC database [6] to calculate the consistencies of the fea-
tures in table 1. SVC has two sets of signatures, namely task 1 and task 2. Each
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Table 1. Commonly used features.

# Feature Dist. Measure

1 X-coordinate: X DTW

2 Y -coordinate: Y DTW

3 Coordinates: [X, Y ] DTW

4 Speed: V DTW

5 Speed X: Vx DTW

6 Speed Y : Vy DTW

7 Pressure: P DTW

8 Acceleration: Va DTW

9 Altitude: Al DTW

10 Azimuth: Zu DTW

11 Center of Mass X: x(l) Weighted r

12 Center of Mass Y : y(l) Weighted r

13 Torque: T (l) Weighted r

14 Curvature-ellipse: s• (l) Weighted r

15 Curvature-ellipse: s• (l) Weighted r

16 Average speed: V Euclidean

17 Average positive Vx: V x+ Euclidean

18 Average positive Vy: V y+ Euclidean

19 Total signing time: Ts Euclidean

20 Curvature: β DTW

21 Angle: sin(α) DTW

22 Angle: cos(α) DTW

signature is represented as a sequence of point, which contains X coordinate,
Y coordinate, time stamp and pen status (pen-up or pen-down). In task 2, ad-
ditional information like azimuth,altitude and pressure are available. There are
40 subjects in each task with 20 genuine signatures and 20 forgeries for each
subject.

To compare the consistency of different features fairly, we need to normalize
the raw signatures as well the feature distances. We normalized each signature
by the same preprocessing: 1) smooth the raw sequence by Gaussian filter; 2)
rotate if necessary [2]; 3) normalize the coordinate of each signature Sigi by:

Xi =
Xi − min(Xi)

max(Xi)− min(Xi)
, Yi =

Yi − min(Yi)
max(Yi)− min(Yi)

(4)

The feature distance must be normalized because we have different distance
measures here, such as DTW, Euclidean norm and weighted cross-correlation.
Normalization of distances is done as follows. Suppose we apply DMi to class
a (genuine signatures ) and class f (forgeries). We first calculate all pairwise
feature distances within class a by DMi. We find the maximum feature distance
(denoted as Dmax). Then, we calculate all pairwise feature distances between
class a and f . For each dist among these distances, no matter within a or between
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a and f , we normalize it by e
−dist

2∗Dmax . In this way, all distances are mapped to a
value between 0 and 1. The larger the distance, the closer the value to 1.

Same feature may have different consistency on different subjects. Thus, we
calculated the mean of consistency of each feature as well as its standard devia-
tion cross subjects.

In addition, to show the relation between feature consistency and its discrim-
inatory power in verification, we calculated the EER (Equal Error Rate) for each
feature. We randomly chose 5 genuine signatures from each subject and used the
left 35 signatures for verification. Given a testing signature, we calculated the
feature distance with all the 5 genuine signatures one by one and returned the
maximum normalized distance as similarity output (except the weighted cross-
correlation distance, where we output the minimum normalized distance). To
determine the EER, we varied the threshold from 0% to 100% and found the
point where the FRR (False Rejection Rate) equals the FAR (False Acceptance
Rate). By universal threshold, we chose the same threshold for all subjects to
calculate the total error rate. By user-dependent threshold, we chose the optimal
threshold for each subject and took the average error rate.

The results are summarized in table 2 in the increasing order of mean con-
sistency value.

From the results as shown in table 2, we have the following observations:

– Although azimuth and altitude have relatively high mean consistency, they
have high standard deviations, which means their discriminatory ability are
not stable cross subjects. The corresponding high EER confirms this.

– Some features, like curvature-ellipse s1(l) and s2(l), torques T (l), center of
mass x(l) and y(l) are not good enough for skilled forgeries, although they
are sophisticated and might be enough for random forgeries. This means,
complex features are not necessary better than simpler ones.

– Features like # 17 through # 19 are too simple to carry enough discrimina-
tory information. Thus, they have high EERs. They could be used to prune
random forgeries but non-reliable for accepting genuine ones.

– EER has negative relation with the level of consistency, although the EERs
do not strictly increase with the consistency decreasing. The variation of
consistency also acts to affect the verification performance. This confirms the
consistency of feature is directly related to its performance on verification.

Here we have to emphasize that all the EERs in table 2 are high because
we used only one feature each time for verification. How to combine these fea-
tures optimally is still an open problem. We also have to mention that further
experiments on real and larger signature databases are necessary to claim the
consistency of any given feature.

There is a belief in on-signature verification community that the curve of
the signature should be re-sampled with uniform equal arc-length [7, 1, 2]. Is
this necessarily true? We conducted experiments to answer this question. We
re-sampled all the signature to be of length N and calculated the consistencies
of features and corresponding EERs. The results are summarized in table 3 with
N = 200 (we varied N and found the results had no much difference). Note that
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Table 2. Consistencies of features (mean and standard deviation) and EERs (by uni-
versal threshold and user-dependent threshold).

Feature Consistency EER
Mean Std. Univ. T. User. T.

Zu 1.3789 3.2333 35.06% 26.63%

Vy 1.3255 0.3231 22.06% 11.38%

Vx 1.2644 0.3659 22.65% 16.81%

V 1.2374 0.4143 23.44% 17.63%

Ts 1.2025 0.8128 30.31% 28.18%

Al 1.1829 4.578 37.63% 29.06%

cos(a) 1.1199 0.2845 26.72% 16.19%

[X,Y ] 1.1061 0.1795 22.91% 16.83%

sin(a) 1.0997 0.2491 29.56% 20.63%

Va 1.0966 0.3199 29.29% 22.50%

P 1.0647 0.375 36.86% 25.56%

β 0.985 0.1767 28.90% 20.81%

Y 0.9252 0.1921 25.86% 18.68%

X 0.7784 0.1313 29.59% 25.13%

y(l) 0.637 0.1397 28.81% 19.19%

x(l) 0.6023 0.122 29.59% 23.00%

T (l) 0.5291 0.1504 33.63% 25.68%

V 0.4814 0.1761 34.50% 31.94%

V y+ 0.4587 0.1662 36.69% 33.88%

V x+ 0.3983 0.1717 36.69% 34.00%

s• (l) 0.3158 0.0295 43.86% 42.19%

s• (l) 0.3158 0.0292 43.96% 42.13%

Table 3. Consistencies of features and EER with uniform arc-length re-sampling.

Feature Consistency EER
Mean Std. Univ. T. User. T.

Vy 0.8841 0.2425 32.36% 20.81%

Vx 0.8714 0.3025 30.44% 21.00%

V 1.1452 0.3066 27.94% 17.63%

cos(a) 1.082 0.2352 29.41% 20.25%

[X,Y ] 1.0546 0.5839 26.63% 20.94%

sin(a) 0.8093 0.2661 32.56% 23.69%

β 0.8941 0.2360 32.19% 24.75%

Y 0.8683 0.2667 29.94% 21.56%

X 0.7893 0.4407 34.03% 29.63 %

some features in table 1 have no sense or difference with the signatures being
re-sampled. Compared the consistencies and EERs with/without re-sampling,
we can see that re-sampling does not necessarily improve performance. On the
contrary, the performance is damaged to some degree.
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5 Conclusion Remarks

A novel consistency model tailored for on-line signature verification is proposed
in this paper. The consistency of feature is directly related to the feature’s per-
formance on signature verification. We conducted experiments to calculate the
consistencies of a set of features. The results summarized in table 2 show that
some features such as speed, coordinate sequence, angle α have relatively high
consistency, while some others like azimuth, altitude, curvature-ellipse s1(l) and
s1(l) are non-reliable. Also, we found that the re-sampling with uniform arc-
length does not necessarily increase performance.
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Abstract. The direct computation of natural image block statistics is
unfeasible due to the huge domain space. In this paper we shall propose
a procedure to collect block statistics on compressed versions of natural
4 × 4 patches. If the reconstructed blocks are close enough to the orig-
inal ones, these statistics can clearly be quite representative of the true
natural patch statistics. We shall work with a fractal image compression–
inspired codebook scheme, in which we will compute for each block B
its contrast σ, brightness μ and a normalized codebook approximation
DB of (B − μ)/σ. Entropy and mutual information estimates suggest
a first order approximation p(B) � p(DB)p(μ)p(σ) of the probabibility
p(B) of a given natural block, while a more precise approximation can
be written as p(B) � p(DB)p(μ)p(σ)Φ(||∇B||). We shall also study the
structure of p(σ) and p(D), the more relevant probability components.
The first one presents an exponential behavior for non flat patches, while
p(D) behaves uniformly with respecto to volume in patch space.

1 Introduction

Natural images, that is, those derived from natural scenes, have a distinctive
nature that makes them far from random. In particular, they convey “informa-
tion” that allows their processing by the human visual system. In fact, natural
image information is not distributed uniformly over the image: there are parts
that are most relevant to the human visual system, while other are far less rele-
vant. It is therefore clear that the undestanding of their statistical behavior it is
extremely important, not only for basic human visual processing but also for a
number of everyday visual information processing tasks such as for instance effi-
cient static and dynamic image compression. A large effort has been undertaken
in that direction [7, 2, 9]; a thorough and recent survey is in [8]. In any case, it
can be quite easily seen that direct statitistics computation for 4 × 4 natural
image blocks is not currently possible. In fact, state of the art lossless image
compression (see e.g. [10]) can achieve for 8 bit gray level images compression
rates down to 2.5 bits per pixel. Thus, a block of size 4 × 4 would requires in
average about 16× 2.5 = 40 bits. Assuming that this representation is close to
the informational limit of the lossless representation of the image, it follows that

� With partial support of Spain’s CICyT, TIC 01–572.
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Fig. 1. Statistics computed from other codebooks are similar, provided the source
image is “rich” enough, as exemplified here.

natural block statistics require at least 240 4×4 blocks or, in other words, about
240−16 � 16 × 106 natural 1024× 1024 images. Direct statistics computation is
clearly not possible today because of, among other things, the lack of so many
machine readable raw images.

We shall work here with the equivalent representation (B̃, σ, μ) of a natural
block B, with σ, μ the standard deviation and mean of B and B̃ its normaliza-
tion B̃ = (B−μ)/σ. Direct statistics are clearly possible for the 1–dimensional σ
and μ, while this is not so for B̃. To estimate them we shall approximate natural
patches B̃ by normalized blocks DB extracted from a given codebook. Since an
approximation B̃ � DB immediately translates into the affine approximation
B � σDB+μ, it is natural to try to derive D through fractal image compression
(FIC) techniques [1]. If a good reconstruction quality is obtained, the (DB, σ, μ)
statistics should provide meaningful approximations to those of (B̃, σ, μ). This
will be done in section 2, where we shall introduce a concrete FIC codebook,
namely, 4 × 4 domains extracted from the well known Lena image, and shall
use it to approximate about 280 million natural 4 × 4 patches extracted from
the well known Van Hateren database [2]. Although the concrete codebook used
certainly influences the resulting statistics, we have obtained similar results us-
ing codebooks derived from other images, provided they are “rich” enough. This
is the case, for instance, of figure 1, derived from the Van Hateren database.
That section also describes the approximating technique used to collect the raw
frequency data for the approximations B � (DB, σ, μ), which are analyzed in
section 3. The main results of that section are, first, several entropy and mutual
information estimates for the joint (DB , σ, μ) distribution and the marginals of
DB, σ and μ. These estimates suggest as a first approximation that the marginals
may be taken to be independent, that is, that p(DB, σ, μ) � p(DB)p(σ)p(μ), de-
composition that still leaves about 1.5 bits of mutual information between DB

and (σ, μ) to be explained. To do so we shall refine the previous first order ap-
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proximation to a second one of the form p(DB, σ, μ) � p(DB)p(σ)p(μ)Φ(||∇B||).
The structure of the p(DB), p(σ) and p(μ) marginals is dealt with in section 3.
While p(μ) does not carry significant information, we shall see that p(σ) has an
exponential structure and that p(DB) follows a nearly uniform behavior with
respect to volume in image space. A final section contains a summary of the
paper and pointers to further work.

2 Methods

As the natural patch source, we shall work with 4300 8 bit gray level images of
size 1540× 1024 from the Van Hateren database. We shall restrict ourselves to
their 1024× 1024 squared centers and take out flat blocks, that is, those B with
σ ≤ 3 (about 20% of all patches). As mentioned above, we shall approximate a
normalized natural patch B̃ = B−μ

σ by another normalized domain DB taken
from a codebook derived from a 256 × 256 version of the well known Lena
image as follows: we will first extract all its 4 × 4 (overlapping) blocks. This
gives (256− 4 + 1)2 � 216 codebook domains, that become 220 after adding for
each block its 8 isometries and its negative (recall that we are reconstructing B
using positive σB contrast factors). Again, we will exclude flat domains, about
25% of the initial Lena domains.

Thus, we will not estimate the direct distribution p(B) but instead that
of the B approximation p(DB, σB , μB). To minimize the distortion that this
approximation is bound to introduce, we shall take DB as the codebook domain
for which

dist(B,D) = ||B − σBD − μB||∞ = sup |Bij − σBDij − μB| (1)

verifies dist(B,D) ≤ dM , taking in what follows dM = 8. Reconstructing a full
image I = {Bs} by its patches’ approximations Î = {DB

s }, our choice of dM
should ensure that ||I − Î||2 ≤ 8 and the PSNR of the reconstruction Î verifies
PSNR(Î) = 20 log10(

255
||I−Î||2

) ≥ 20 log10(
255
8 ) � 30. We shall discard those B

for which a matching domain cannot be found. They are about a 1 per 1000 of
all non flat domains, which results in a final number of about 232× 106 � 227.79

disjoint 4× 4 patches.
Finding matching domains requires to perform at some point the costly

full block comparisons in (1), that can make FIC very time consuming. To
speed things up, we shall precede full block comparisons with a hash–like pre–
comparison. We define a hash function (see [3] for further details)

h(D) =
H∑
h=1

(⌊
Dihjh

λ

⌋
%C +

C

2

)
Ch−1 =

H∑
h=1

bhC
h−1. (2)

with Dihjh , 1 ≤ h ≤ H , adequately chosen points in D, and H , C and λ appro-
priately chosen parameters. In what follows we shall take the four corner pixels
and an extra middle pixel and thus H = 5; as the base C we shall take C = 16.



Statistical Structure of Natural 4× 4 Image Patches 455

0 1e+08 2e+08 3e+08
Number of blocks

0

0.2

0.4

0.6

0.8

1

I(s
ig

m
a 

|| 
b)

 [b
its

]

Experimental measurement
Regression y=0.16823+10^{−12} N

0 1e+08 2e+08 3e+08
Number of blocks

24

25

26

27

H
(x

,y
,s

,s
ig

m
a,

b)
 [b

its
]

Experimental entropy
29.87+(2.2 10^10/N)^0.25
27.82−sqrt(3.28 10^8/N)
26.77 − (7.1 10^7)/N

Fig. 2. Large sample behavior of the mutual information I(σ||μ) (left) and of the total
entropy H(i, j, s, σ, μ) (right) estimates. While the left picture saturates, this is not the
case for the H(i, j, s, σ, μ) estimate.

The choice of λ should ensure that Dihjh is distributed more or less uniformly on
the interval [−λC

2 , λC
2 ], and, thus, that (2) defines a uniform base C expansion.

A good choice for this would be to take λ in the interval 0.5–1, but to streamline
our subsequent discussions, we shall take λ = 2. Once the values h(D) have been
computed for all codebook domains, those with the same value are stored in the
same linked lists over a hash pointer table. Full block comparisons for a natural
block B are performed only over the domains in the linked lists whose h index
is contained in the B dependent set H(B) = {hδ(B)}, where

hδ(B) =
H∑
h=1

(⌊
Bihjh − μB

λσB
+ δh

⌋
%C +

C

2

)
Ch−1 =

H∑
h=1

rδhC
h−1, (3)

with the displacement vector δ = (δ1, . . . , δH)t verifying |δh| ≤ 1. It is not
difficult to show that this searching procedure will provide the optimal matching
domain DB . Our coding of a block B will then be

T (B) = (i, j, s, σ, μ)

where (i, j) indicates the position in the Lena image of the left upper corner
of the matching domain, and s is an index for the isometry and negative used
(notice that the dilations in (1) are positive).

In order to obtain the statistics described in the next section, we shall com-
pute first basic frequency value sets Pi over 9 image batches. All of them contain
registers of the form [i, j, s, σ, μ, c], with c counting the number of patches in the
file with σ, μ statistics and a matching i, j, s domain; they are sorted in lexico-
graphic order. We then perform a first merge over 9 of these Pi sets to arrive to
larger value sets Qj and then a second merge over 9 of the Qj sets to arrive to
6 large files Sk of statistical values, 5 of them corresponding to 729 = 93 image
batches and a smaller sixth one for the last 650 images. A final merge of these
6 files will give the statistics described in the next section.
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Table 1. Different entropy measures (in bits) of image statistics (first column) and
limit estimates for them.

Quantity Value Limit estimates

N 231511046 —
log• N 27.7865
H(i, j, s, σ, μ) 26.7141 29.87
H(i, j, s) 17.8156 17.82
H(σ, μ) 10.4627 10.46
I(i, j, s||σ, μ) 1.5642 0.474
I(σ||μ) 0.1698 0.115
I/H(i, j, s, σ, μ) 5.86 % 1.70 %
I(σ, μ)/H(σ, μ) 1.62 % 1.10 %

3 Entropy and Mutual Information Estimates

It is well known that the accuracy of any discrete probability entropy estimate
depends on its sample regime, that is, the relationship between the sample num-
ber N and the number M of non–empty bins, i.e., of non–zero probabilities. In
our case two very different regimes are to be considered. In the first one, we shall
have N # M ; this is the case for the joint (σ, μ) distribution and to a smaller
extent for the (i, j, s) distribution. In this regime [6] we should expect for large
N that the entropy and mutual information estimates closely approach satura-
tion limit points that we can take as the true entropy and mutual information
values. Figure 2, left, depicts this situation for the mutual information I(σ||μ).
It has been computed for the full sample size range and shows a extremely fast
drop for sample sizes below 106 followed by a nearly horizontal behavior after-
wards. This can be interpreted as showing the sample information ÎN estimates
to saturate at a limiting value I = 0.17 which we can take as the actual value
of I(σ||μ). On the other hand, the right picture shows a quite different situa-
tion for the joint entropy H(i, j, s, σ, μ). Clearly a saturation point has not been
achieved, which shows that we are still far from an N # M regime. Notice that
while we have logN � 28 for the full database sample, the full sample estimate
for ĤN (i, j, s, σ, μ) is 26.7, which is a lower bound for logM . In other words
logN/M ≤ 1.3, that is, we are in the N � M regime. A similar situation holds
for I(i, j, s||σ, μ).

Table 3 collects these empirical entropy and mutual information estimates
and also some estimates of possible limit values derived from functional approx-
imations to the empirical data. In most cases they are close to the empirical
estimates, while this is not the case for H(i, j, s, σ, μ) and I(i, j, s||σ, μ). We
shall take these values as a starting point for our discussion. It can be seen from
this table that the mutual information between the σ and μ is very small, about
0.17 bits, less than 2% of the joint entropy; therefore we can assume that σ and
μ are independent. On the other hand, the mutual information I(i, j, s||σ, μ) is
about 1.56, less than 10% of the joint entropy. Therefore, this suggests the first
order approximation
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Fig. 3. Left: conditional expectation Φ(||∇B||) in (6) as a function of ||∇||. For lower
values of ||∇||, that are the predominant in the distribution, no correction is possible.
For larger ||∇|| the approximation results to be approximately exponential. Right:
relative frequencies of σ in a logarithmic scale. The linear central behavior suggests an
exponential distribution.

p(B) = p(B̃, σB , μB) � p(iB, jB, sB, σB, μB) � p(iB, jB, sB)p(σB)p(μB), (4)

which nonetheless leaves more than one mutual information bit to be explained.
To do so, we shall study what we may call the divergence, that is, the average

d(i, j) = Es,σ,μ

[
p(i, j, s, σ, μ)

p(i, j, s)p(σ)p(μ)
,

]
over the joint and (i, j, s) and σ and μ distributions. Values of d different from
1 indicate deviations from the independence assumption and projecting them
back over the Lena image suggests that image borders are the main source of
the divergence. Thus any correction to (4) should be significantly different from 1
over edge blocks. Other natural assumptions are that it be isotropic, translation
invariant and not dependent on the block’s absolute brightness, but only on the
difference B−μ. Moreover it is natural to look for a lowest order approximation.
All this suggests to refine (4) to

p(B) � p(DB)p(μB)p(σB)Φ(||∇B||). (5)

In order to find a reasonable Φ we have compared the conditional average

Φ(||∇B||) = E||∇B||

[
log2

p(i, j, s, σ, μ)
(p(i, j, s)p(σ)p(μ)

]
(6)

with E||∇B|| denoting the conditional expectation with respect to ||∇B||. This is
depicted in figure 3, left, which shows that while for the lower ||∇B|| patches, the
most predominant ones in natural images, no correction appears to be possible,
Φ(||∇B||) can be quite well linearly approximated for the right side high ||∇B||
values. In turn, this suggests that a natural approximation for Φ(s) is

Φ(s) = e−0.923+0.0337s, s ≥ 25
= 0, 0 < s < 25
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with the constant 0.923 being a normalization value so that the second order cor-
rection is actually a probability. A natural interpretation of the positive constant
0.0337 in Φ is to see it as a high–contrast patch distribution correction, a high
information natural image component, as shown for instance in [4]. To check the
impact of this second correction, we have re–computed now the mutual infor-
mation between the experimentally obtained distribution and the above second
order corrected distribution, which turns out to be 0.621 bits, that is, about 1
bit less than the previous estimate. Therefore, just 2.3% of the total information
is not covered now by the second approximation. In any case, further alterna-
tives for the correction have to be studied. For instance, there are indications
that better edge detectors than simple gradient approximations could give better
results.

4 Structure of the p(i, j, s), p(σ) and p(μ) Probabilities

The μ distribution depends on the camera’s calibration and can be easily ma-
nipulated through, say, histogram equalization. It is thus largely irrelevant. The
histogram of the σ distribution is depicted in figure 3, right, in vertical logarith-
mic scale. The figure shows a central linear behavior, suggesting an exponential
distribution, with changes at the boundaries. The drop at around 100 is due to
the limited range of brightness levels, with a theoretical maximum below 128
for 256 gray levels. Although seemingly hinting at some underlying structure,
the cusp–like peak at 0 is mostly due to the layered structure of natural images,
that produces many near flat, small deviation blocks. Anyway, the σ distribution
makes clear that σ carries significant structural information. One way to visual-
ize this is to project for each domain D with coordinates i, j in the Lena image
the corresponding value of − log p(σ). When done, it shows a clear correlation
between edges and large − log p(σ) values that makes clearer the significace of
the σ component.

It is more complicated to visualize the structure of p(i, j, s). A possibility is
to fix our attention in the (i, j) distribution, and to consider the corresponding
Lena domains as bins were the sample patches fall. Defining N(m) as the number
of such bins getting m sample patches, it can be seen that logN(m) shows a
near parabolic structure, which is still more clear in figure 4, left, where N(m)
has been corrected taking into account the volume surrounding each codebook
domain. To perform this correction, we may a priori assume that the hash linked
lists cover regions with essentially the same volume, and also that all domains of
a given list have the same volume. This implies that the a priori probability of
a domain D is thus proportional to ν(h(D)), with ν(h) the number of codebook
domains D′ such that h(D′) = h. We then correct the direct counting estimate
m′ of the number of patches a certain domain D gets to m = m′ × ν(h(D)).
The corrected N(m) values are depicted in figure 4, left. As it can be seen,
the parabolic fitting is quite good for the higher patch count right part, which
suggests that there is a volume uniform distribution of natural patches between
codebook domains, that is, that the probability of a codebook regionR receiving
a patch is proportional to its volume V (R).
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Fig. 4. Volume–corrected (left) values of logN(m), with N(m) the relative number
of domains gettin m natural blocks, that suggest a volume–uniform distribution of all
normalized natural patches among codebook domains. This is not true, however, for
high contrast patches: the right image shows a markedly higher proportion for them
among high count domains.

We have also computed the distribution over m of the patches’ average σ
values, which shows that the left area corresponds mostly to low σ patches, with
small denominators in (3) and, hence, larger hash values, that may cause them
to be assigned to wrong matching domains. This would have a little effect in
domains with a large block count, as they would lose about as many blocks as
they gain, but a bigger one in domains getting fewer blocks. In any case, the
natural interpretation of figure 4 is to assume a volume–uniform distribution
for the (i, j) domain statistics, as the near gaussian behavior of N(m) is easiest
explained as a large sample aproximation of a binomial distribution. Apparently
this may contradict recent results in [4], that show a marked structure of high
contrast natural 3 × 3 blocks. However, notice that figure 4, right, depicting
the proportion of the high-contrast codebook domains getting a (normalized)
number m of patches, has a very sharp rise at the high patch count area. In
other words, the high contrast blocks studied in [4] have an statistical behavior
of their own, certainly not following the uniform behavior just described.

5 Summary and Future Directions

In this article we have shown how a representation B � (DB, σ, μ) of natural
image 4 × 4 blocks B, with σ, μ the block’s variance an mean and DB a code-
book approximation to the normalization of B, can be used to obtain significant
natural image statistics. In fact, we have shown that these blocks’ probabilities
can be represented as a product of nearly independent factors. The analysis of
these factors allows us to conclude that at least in the scale investigated (about
one minute of angle), the information is essentially carried by a block’s variance,
that roughly correlates with the block’s edges. This is in accordance with the
well known Marr [5] hypothesis that natural image information is extracted from
biological systems using its most singular points, e.g. its edges. However, it may
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be of some interest to point out that, here, this conclusion is drawn without any
regard to the receiving system, but just by using information theoretical consid-
erations; this may suggest that biological systems have adapted themselves to
extract the part of a natural image most relevant in terms of information theory.
On the other hand, the above results may have applications in, for instance,
fast search engines in image databases, or in transmission of moderate quality
images over low bit rate, noisy channels. All these matters are currently being
researched.
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Abstract. This paper describes a method for curvature dependent skele-
tonisation in grey-scale images. We commence from a magnetostatic anal-
ogy, where the tangential edge flow is intepretted as a current. A vector
potential is constructed by integrating the current weighted by inverse
distance over the image plane. The skeleton corresponds to the location
of valley lines in the vector potential. To damp noise effects we damp the
current with an exponential function of the local curvature. In addition,
we describe a number of postprocessing steps that can be used to im-
prove the quality of the detected skeletons. In the end, we compare the
effects of two alternative ways for noise damping.

1 Introduction

Skeletal abstractions have been used to great effect in the representation and
recognition of both 2D and 3D shapes. Some of the earliest work was performed
by Blum [2], who showed how the skeleton could be used for the morphologi-
cal analysis of biological forms. Most of the existing work of skeletonisation has
focused on binary valued objects [1, 7–9, 12]. Here a number of methods have
been investigated including the medial axis transform [1], the chordal axis trans-
form [7], and the grassfire transform [2], More recent work has focused on the
analysis of the skeleton as the singularities in the eikonal equation for inward
boundary motion [8]. An analysis of this system using the Hamilton-Jacobi equa-
tions of classical mechanics has shown how the skeleton can be detected using the
divergence of the distance map for the object boundary [9]. Recently, Torsello
and Hancock [12] have shown how the Hamilton-Jacobi skeleton can be improved
by modifying the eikonal equation to take into account curvature effects.

In addition there has been a limited effort directed at the analysis of grey-
scale objects. For instance, Tari, Shah and Pien [10] have proposed a linear
diffusion equation to smooth out noise and extract skeletons directly from the
grey scale images. Tek et al [11] have shown that an orientation sensitive distance
propagation function can be used to extract symmetries from fragmented con-
tours by labelling skeletal points according to whether or not they represent the
collision of consistently oriented boundary fronts. Cross and Hancock [3] have
appealed to a magnetostatic analogy in which the edge tangent flow is regarded
as a current density on the image plane. The differential structure of the result-
ing vector potential can be used to characterise symmetry lines, boundary-edges
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and corners [5]. By sampling the vector potential at various heights above the
image plane, a scale-space representation is induced. One of the shortcomings
with this method is that like the binary skeleton, there is no way of moderating
the effects of high curvature effects, other than by smoothing. This can prove
time consuming and has the effect of removing genuine boundary structure.

The aim in this paper is to return to the magnetostatic analogy, and to incor-
porate curvature dependent damping of the current, i.e. the edge tangent flow.
This has the effect of controlling boundary noise and improving the shapeliness
of the skeleton. To improve the postprocessing of the vector potential, we apply
hysteresis linking to the candidate skeleton points. In the end, we demonstrate
how can we control the degree of smoothing of high curvature boundary features.

2 Image Representation Using Vector Potential

We commence by convolving the raw image I with a Gaussian kernel of width
σ. The kernel takes the following form

Gσ(x, y) =
1

2πσ2
exp

[
−x2 + y2

2σ2

]
(1)

With the filtered image to hand, the Canny edge map is recovered by computing
the gradient

E = ∇Gσ ∗ I (2)

In order to compute a vector field representation of the edge-map, we will need
to introduce an auxiliary z dimension to the original x − y co-ordinate system
of the plane image. In this augmented co-ordinate system, the components of
the edge-map are confined to the image plane. In other words, the edge-vector
at the point (x, y, 0) on the input image plane is given by

E(x, y, 0) =

⎛⎜⎝∂Gσ∗I(x,y)
∂x

∂Gσ∗I(x,y)
∂y

0

⎞⎟⎠ (3)

For an ideal step-edge, the resulting image gradient will be directed along the
boundary normal. In order to pursue our magneto-static analogy we would like
to interpret the raw edge responses as elementary currents which flow around
the boundaries and give rise to a vector potential. In other words, we would like
to organise the elementary currents so that they are tangential to the boundaries
of physical objects. Accordingly, we re-direct the edge-vectors to that they are
tangential to the original planar shape by computing the cross-product with the
normal to the image plane ẑ = (0, 0, 1)T . The elementary current-vector at the
point (x, y, 0) on the input image plane is defined to be

j(x, y, 0) = ẑ ∧ ∇Gσ ∗ I(x, y) (4)

The key idea underlying the image representation is to characterise edges and
symmetry lines using a vector potential. Edges corresponded to locations where
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the elementary current re-enforce one-another. In other words, the boundaries
are identified as local maxima of the vector potential. Symmetry points are
those at which there is cancellation between diametrically opposed elementary
currents. Axes of symmetry are lines of local minimum in the vector potential.
At the level of fine detail, intensity ridges or ravines (lines) give rise to local
symmetry axes.

According to magneto-statics, the vector-potential associated with a field
of elementary currents is found by integrating over volume and weighting the
contributing currents according to inverse distance. In other words, the vector
potential at the point r = (x, y, z)T in the augmented space in which the original
image plane is embedded is

A(x, y, z) = μ

∫
V ′

j(x′, y′, z′)
|r − r′| dV ′ (5)

where r′ = (x′, y′, z′)T and μ is the permeability constant which we set equal to
unity. Since the contributing currents are distributed only on the image plane,
the volume integral reduces to an area integral over the image plane. As a result,
the components of the vector potential are as follows

A(x, y, z) =

⎛⎜⎜⎝
−

∫ ∫ ∂Gσ∗I(x′,y′)
∂y′

1√
(x−x′)2+(y−y′)2+z2

dx′dy′∫ ∫ ∂Gσ∗I(x′,y′)
∂x′

1√
(x−x′)2+(y−y′)2+z2

dx′dy′

0

⎞⎟⎟⎠ (6)

The structure of the vector-potential deserves further comment. In the first
instance, the components are confined to the x − y plane for all values of the
auxiliary co-ordinate z. However, as we move away from the image plane the
role of this auxiliary dimension is to average the generating currents over an
increasingly large area of the original image plane. In other words, if we sample
the vector-potential for various x − y planes at increasing height above the im-
age plane, we induce a scale-space representation. We exploit this property to
produce a fine-to-coarse image representation as we sample the vector potential
at increasing heights above the physical image plane.

3 Curvature Estimation

In this section we consider how to incorporate curvature dependent smoothing
into the vector potential to control the effects of high curvature boundary noise.
To measure the curvature we use the method developed by Harris [4] which is
itself an extension of Moravec’s [6] corner detector. We commence by approxi-
mating the Hessian matrix H = ∇∇T I by the matrix E = (∇I)(∇I)T , i.e.

E =
[

I2x IxIy
IxIy I2y

]
(7)

where Ix and Iy are the first-derivatives of the image I in the x and y direc-
tions. Suppose that α and β are the eigenvalues of the symmetric matrix E. The
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eigenvalues are proportional to the principal curvatures of the image intensity
function, and the product of eigenvalues αβ is hence proportional to the Gaus-
sian curvature, while the sum of eigenvalues α + β is proportional to the mean
curvature. According to Harris, the curvature response is the weighted sum of
mean and Gaussian curvatures R = αβ−k(α+β)2. The quantity R can be used
to characterise image features using the following tests

R > 0 detected corners
R < 0 detected edges
R ≈ 0 flat area

We use the curvature measure to damp the current density. We adopt a model
in which the effect of the current decays exponentially with the curvature of the
image. The modified current density is

j(x, y, 0) =
[
ẑ ∧ ∇Gσ ∗ I(x, y)

]
e−K·Rx,y

where K is a constant. Hence, the contribution from straight boundary segments
is enhanced and the contributions from corners or places where the edge direction
changes rapidly are suppressed.

By varying the constant K, we can control the degree of smoothing of high
curvature boundary features. When K equals zero , then the original current
density is recovered. When K is increased, the amount of curvature suppression
is increased. As we will demonstrate later, the method of smoothing effect of
boundary noise does not blur away genuine skeleton structures.

With the current density to hand, the vector potential is computed by per-
forming the volume integration in Equation 6.

4 Skeletonisation and Noise Elimination

According to Cross and Hancock’s [3] representation of image structure, sym-
metry lines follow the local minima of the vector potential and edge contours
follow the local maxima. When viewed from the perspective of the differential
structure of the vector potential, symmetry lines are locations where the com-
ponent of the curl in the image plane vanish, i.e. ẑ ∧ ∇ ∧ A(x, y, z) = 0; edges
are locations where the transverse component of the divergence vanishes, i.e.
∇ · (ẑ ∧ A(x, y, z)) = 0. The main problem with this method for feature local-
isation is that it is subject to noise. In their work, Cross and Hancock fitted a
prism surface to localise symmetry lines. Here we adopt a more sophisticated
approach.

We commence by applying hysteresis linking to the edge (ridge) and symme-
try (valley) lines in the vector potential to improve connectivity. For the edge
(ridge) lines we perform connected components analysis. We dismember the web
of ridge and valley lines at the locations of T-junctions. We then note the where-
abouts of closed edge (ridge) lines. We remove those symmetry (valley) lines
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that fall outside the closed edge contours, and retain only those that remain in
the interior.

We illustrate the steps of our algorithm. In Figure 1(a) we show the raw
image used in our study. Figures 1(b) and 1(c) show the principal curvatures.
The maximum curvature is large along the edge contours of the image while the
minimum curvature is large only at the locations of corners and noise. Figure 1(d)
shows the magnitude |j| of the damped current density. White points correspond
to locations where there is strongest damping, while the darker points correspond
to strong current density. In Figure 1(e) we show the magnitude of the vector
potential. Turning our attention to the postprocessing of the vector potential,
the detected ridge and symmetry lines are shown in Figure 1(f). Figure 1(g)
shows the result of applying hysteresis linking to the symmetry (valley) lines.
After connected components analysis is performed, and the external symmetry
lines have been removed then the resulting skeleton is shown in Figure 1(h). If
the skeleton is dismembered at T-junctions, and branches with weal response
are removed the result shown in Figure 1(i) is obtained. Finally, we fit straight
lines to the detected symmetry lines and merge lines that are nearly parallel and
close to each other, to obtain the result shown in Figure 1(j).

5 Experiment

In this section, we provide some experimental evaluation of our noise-damped
vector potential representation. The experimental work is divided into two parts.
We commence with some examples on synthetic images to illustrate the effect
of K in damping the noises compared with the similar effect from increasing
height. Next we furnish some real-world examples.

On the first row of Figure 2, we show three synthetic images with small spikes
on the boundary and with a grey scale gradient on the interior. From the second
row, we show in turn the magnitude of the vector potential displayed as a surface
plot D, and, the correspondent detected ridges and ravines in black and white.
For the first three rows of plots of vector potential, we increase the parameter K
from 0 to 1, and then to 1.5. As we increase K, the effect is to damp-out noise
while retaining the detail of the skeleton. As explained earlier, we can endow
our image representation with a scale-space dimension by sampling the vector
potential at increasing heights above the image plane. This is shown on the last
two rows of vector potential plot by increasing the sampling height as we descend
the columns. The effect of increasing the sampling height is also to smooth away
noise, but this is as the expense of detail in the detected skeleton.

In Figure 3, we show some real-world images. There are four sets of images,
grouped vertically for the first three with another one left at the bottom. For
the vertical groups, the top panel shows the original image, the second panel
shows the initial output, the third panel and the bottom panel show the output
smoothed by increasing K and height respectively. While for the last group, the
order is from top to bottom and from left to right.
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(a) Original image (b) First curvature matrix

(c) Second curvature matrix (d) Damped response from R
function

(e) Vector potential magnitude (f) Ridges and ravines

(g) Symmetry lines after hys-
teresis

(h) Skeleton lines

(i) Segmented skeleton lines (j) Skeleton in straight lines

Fig. 1. Skeletonisation and noise elimination
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Fig. 2. Synthetic images with increasing K and height
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Height = 1      K = 0

Height = 1      K = 0

Height = 1      K = 0

Height = 1      K = 4

Height = 1      K = 3

Height = 1      K = 5

Height = 3      K = 0

Height = 1.5      K = 0

Height = 3      K = 0

Height = 1      K = 0

Height = 1      K = 5 Height = 2      K = 0

Fig. 3. Experimental results for real world objects
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The main feature to note from these examples is that we can damp the noise
by increasing parameter K as well as by increasing the height, but curvature
damping outperforms height sampling in the following ways. First, the visual
appearance of the results is more pleasing. Second, we preserve local curvature
information. Third, as is the case with the synthetic images, when we increase
the height, some useful ridges and ravines, especially ridges, begin to vanish
rapidly as well as the noise.

6 Conclusion

In this paper, we incorporate curvature effects into the computation of grey-
scale skeletons. The method builds on the magnetostatic analogy of Cross and
Hancock, and employs a curvature dependent current damping. In addition, we
have described a number of postprocessing steps that can be used to improve the
quality of the detected skeletons. The advantages of the method are improved
noise resilience of the detected skeleton, and better skeleton connectivity. In the
end, we illustrate how to control high boundary noise by varying constant K
rather than by increasing height. This results in good noise control and does not
blur the details of the skeleton.
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Abstract. In this paper we propose an automatic method to locate Brazilian li-
cense plates in digital images acquired from a real monitoring traffic system. 
The approach is based on the correlation between lines of the preprocessed im-
age and a square wave form that resembles lines in the region of the pattern 
plate. The maximum correlation points out the horizontal and vertical crossing 
axes over the plate. Prior to locating plates, the post processing Min/Max 
scheme is applied to the binary images in order to diffuse segmentation remnant 
noise. 

1   Introduction 

Many intelligent systems have been developed for traffic control and monitoring 
system in the last decade. Applications such as detection of irregular vehicles, parking 
and toll control, license plates location and reading are spread all over the world. 
These applications are based on automatic recognition of the license plates. 

Comelli et al. [1] presented a system to recognize Italian license plates passing 
through a tollgate. The recognition system consisted of three main phases as follows: 
plate location, image preprocessing and characters recognition. Fig. 1 exhibits the 
modules that compounds this system. The preprocessing module consisted of conven-
tional filtering and enhancement techniques and the characters within the plates were 
recognized by using a combination of operators based on pattern matching and tem-
plates. The algorithms were tested on more than three thousand real images with a 
recognition rate close to 91%. In [2] Naito and Tsukada proposed a robust plates rec-
ognition system. This system is capable of capturing fine image under bad illumina-
tion conditions, from twilight up to noon in the sunshine, capturing non-blurred mov-
ing vehicle images and recognizing plates even being inclined. In this system, even if 
the position of TV camera varied widely over 97% of the license plates could be rec-
ognized successfully [2]. Naito and Tsukada [2] evaluated the license plates location 
in binary images instead of using gray level images in order to simplify this task. 
Inspired in this idea we propose in this paper an algorithm to locate license plates in 
binary images. Our proposed method concerns the modules inside the dotted lines in 
Fig.1. It was developed to locate Brazilian license plates in digital images, although it 
is potentially applicable to other foreign plates. 
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Fig. 1. Vehicle plate recognition system. 

An image-based recognition system proposed in [6] applies neural network for 
automatic vehicle plate recognition.  It consists mainly of two processes: the training 
process and the recognition process. In the former the database of coded plates char-
acters is built and the neural networks are trained to recognize. The latter includes the 
vehicle plate localization, plate binarization, symbol segmentation, coding of seg-
mented symbols and character recognition. The system was assessed according two 
aspects such as: the ability to estimate plate position and the plate characters recogni-
tion rate. 

This paper is organized as follows. Section 2 describes the proposed methodology 
used to locate license plates. In Section 3 the experimental results are presented and 
Section 4 summarizes the conclusions. 

2   The Proposed Methodology 

This paper proposes an algorithm to locate license plates in moving or parked vehicles 
images. The method achieves the maximum correlation operator between the lines of 
the binary image and a wave form that resembles the pattern plate. In order to im-
prove the segmentation process we apply the Min/Max method proposed by Malladi 
and Sethian [3] to remove the remnant noise of the segmentation process.  

The background concepts on which the proposed method is based on such as seg-
mentation, the Min/Max post-processing scheme and the correlation approach are 
described in the following. 

2.1   Image Segmentation 

Segmentation is an important task in systems based on digital image processing. Tra-
ditionally, thresholding segmentation methods [5] are very popular and computation-
ally efficient in case of bimodal histograms. When these methods are extended to 
multimodal histograms images they tend to be computationally expensive and inaccu-
rate. However, it is not the aim of this paper to develop or improve segmentation 
methods. Therefore a simple bilevel thresholding method is used to generate a binary 
image of the license plate pointing out it from the background. 
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2.2   The Min/Max Post-processing Method 

Level set methods are interactive schemes for noise removal and image enhancement. 
Some algorithms based on these schemes require a stopping criterion due to Gray-
son’s theorem that says the contour shrinks to zero and disappears [4].  

In [3] was proposed a function called Min/Max that switches between removing 
noise and maintaining essential image properties. It means that the correct curvature 
flow is based on neighbourhood characteristics. The Min/Max function is presented in 
Equation (1), where Ave is defined as the average value of I in a disk of radius R cen-
tered around the point (x,y) [4].  
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The radius R implies that the Rth pixels order structures are diffused into the back-
ground values. In the test images, the noise is characterized by small structures of first 
order. Due to this, the radius R =1 was chosen in order to diffuse remnant small struc-
tures from the segmentation process.  

Fig. 2(a) displays a binary image of a vehicle plate and Fig. 2(b) shows its en-
hanced version applying the Min/Max scheme. As a consequence of the post-
processing task it can be observed a visual improvement in the segmented image.  It is 
worth noting that the segmentation remnant noise in Fig. 2(a) can affect the localiza-
tion algorithm performance.  Thus, the good quality of the images is assured by the 
post-processing task leading to accurate results. 

  

(a)     (b) 

Fig. 2. (a) Segmented plate image and (b) the enhanced version. 

2.3   The Proposed Method Based on Maximum Correlation 

To locate plates the proposed method calculates the correlation between the locally 
enhanced binary image (img) and a 1-D square wave function, with period p and 
length l (f(p,l)). The use of a square wave form is justified by the amplitude patterns 
found in lines over the plate characters region in the binary image. These patterns are 
shown in Fig. 3, where the central region exhibits the plate patterns. 

The Location Process Using the Square Wave Function 
The period of the square wave function is defined as being the half of width of the 
plate character and the length of the convolution mask l is determined by the width of 
the plate (Fig. 4).  
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Fig. 3. The pattern line of a plate image. 

 

Fig. 4. The square wave function. 

Once defined the wave form pattern, the correlation matrix is calculated and the 
maximum value in it points towards the plate location. The coordinates of the maxi-
mum correlation are used to indicate the center of the crossing axes in the located 
plate. The mathematical expression that defines it is given by:  

max{ ( , )}PlateLocation img f p l= ∗ . (2) 

where max indicates the maximum correlation value in the correlation matrix, and 
{∗} indicates the convolution operator. 

Fig. 5 presents the correlation result between a 1-D square wave function and the 
wave form in Fig. 6. 

3   Experimental Results 

The algorithm was applied to a set of 40 real test images. The database was divided 
into group 1 and group 2. The former consisting of 7 parked vehicles images and the 
latter consisting of 33 moving cars images taken by a real monitoring traffic system. 
Fig. 6 shows a parked vehicle image and Fig. 7 shows the located plate. Fig. 8 and 
Fig. 9 illustrate the original vehicle image and the incorrect plate location when ap-
plied to a moving car image. Fig. 11(a) and Fig. 13(a) illustrate the differences be-
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tween the images that were post-processed and the ones that were not. The use of the 
post-processing Min/Max scheme improved the performance of the localization algo-
rithm as display Fig. 11(a) and Fig. 13(a). The correct plate location corresponds to 
the horizontal and vertical axes crossing and it was obtained an overall error rate be-
low 3% using the set of test images.  

Different parameters p and l were set to parked and moving vehicles images, since 
these values depend on the distance that the pictures are taken by the acquisition sys-
tem. For parked vehicles images p=10 and l=200 (pixels), for moving cars images 
p=15 and l=200 (pixels).  

 

 

Fig. 5. The correlation result. 

 

Fig. 6. Parked vehicle image. 

 

Fig. 7. The located plate. 

 

Fig. 8. Moving vehicle image. 
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Fig. 9. Incorrect located plate. 

 

Fig. 10. Moving vehicle image. (Acquisition system in an indirect look). 

  

(a)     (b) 

Fig. 11. (a) Located plate using the Min/Max scheme and (b) not using it. 

 

Fig. 12. Moving vehicle image. (Acquisition system in a direct look). 

  

(a)     (b) 

Fig. 13. (a) Located plate using the Min/Max scheme and (b) not using it. 

4   Concluding Remarks 

The test images used in this paper were segmented simply employing a threshold 
segmentation method. The threshold value was not automatically adjusted for each 
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image because it is difficult to set it for any kind of gray level image. To improve the 
proposed vehicle plates localization method, the binary images were enhanced by 
applying the suitable Min/Max scheme. This post-processing algorithm eliminated the 
remnant noise in the segmented vehicles images and provided reasonable localization 
results.  

The preliminary tests of the algorithms were taken on the set of parked vehicles 
images producing good results as presents Fig. 7. Furthermore, the most relevant 
results of the algorithms concerns the moving car images taken by a real monitoring 
traffic system in different illumination conditions and car positions. Neither the pa-
rameters of the square wave function nor the image position were changed during the 
tests. 

The critical point of the proposed method is the segmentation method. As displays 
Fig. 14 the plate localization result was influenced by the bilevel thresholding scheme 
used to segment the image. Thus, further developments will focuse segmentation 
improvements to overcome these kind of difficulties. It is worth noting that the algo-
rithm was adjusted to the Brazilian plates, thus the wave form depends on the national 
plate pattern and the acquisition system of the license vehicle plates. Therefore, it can 
be adjusted to different plate patterns.  
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Abstract. Statistical analysis of spatially uniform signal contexts allows Dis-
crete Universal Denoiser (DUDE) to effectively correct signal errors caused by a
discrete symmetric memoryless transmission channel. The analysis sets no lim-
its on a probability signal model apart from stationarity and ergodicity. Statistics
of signal contexts are used first to learn the probability of errors and then to de-
tect and correct the errors. Therefore a proper choice of context is an essential
prerequisite to the practical use of DUDE. We propose to use the maximum like-
lihood estimate of context assuming the signals are modelled with a nonparamet-
ric generic Markov–Gibbs random chain or field. The model adds to stationarity
and ergodicity only one more condition, namely, pairwise dependences between
each signal and its context. Experiments with noisy binary images confirm a fea-
sibility of such adaptive context, show some advantages of DUDE over more
conventional median filtering, and relate the choice of a proper context size to the
maximum entropy of the context statistics used for image denoising.

1 Introduction

Although denoising is one of the most extensively studied areas of signal and image
processing, the variety of models and techniques involved is permanently growing (see,
e.g., [1–3, 5] to cite a few). Discrete Universal Denoiser (DUDE) proposed recently
in [6] recovers an original 1D sequence or 2D array of signals by analysing signal
contexts in a noisy signal set corrupted by a memoryless symmetric transmission chan-
nel. In spite of simplicity, such signal model is of interest in many important practical
applications where probability characteristics of signals are unknown, except for sta-
tionarity and ergodicity. The context consists of signals in a fixed (translation invariant)
neighbourhood of each position in the sequence or array. Because marginal probabil-
ity distributions of stationary and ergodic signals are translation invariant, DUDE uses
relative frequencies of different signals with the same context first to learn the error
probability for the channel and then to detect and correct errors.

Efficiency of DUDE essentially depends on context geometry, i.e. the number and
relative positions of neighbours. Generally, most adequate geometry depends on signal
sets to denoise. But typically the context is pre-defined by heuristic considerations,
e.g., signals in a fixed rectangular window around each position. This paper attempts
to directly estimate the best context assuming that the noisy signals are samples of a
nonparametric generic Markov–Gibbs random chain or field [4]. This spatially uniform
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model is also stationary and ergodic, but it adds one more general restriction, namely,
only pairwise dependencies between each signal and its context. This restriction allows
for the approximate maximum likelihood estimate (MLE) of the context.

The paper is organised as follows. Section 2 describes DUDE in brief, compares it
to a conventional median filter denoiser (MFDE), and discusses the MLE of context for
the Markov–Gibbs signal model. Experiments with DUDE and MFDE and an entropy-
based choice of the context size are presented in Section 3.

2 Maximum Likelihood Context

For brevity, we address only 2D binary images, although with obvious changes our
consideration applies also to 2D arrays and 1D sequences of multi-level signals. Let
R = {(x, y) : x = 0, . . . , X − 1; y = 0, . . . , Y − 1} denote an arithmetic 2D lattice
supporting signal arrays g : R → Q where Q = {0, . . . , Q − 1} is a finite set of scalar
signals (Q = 2 for binary images). A translation invariant neighbourhood of size K for
each site (x, y) ∈ R effects conditional probabilities of signal values g(x, y) ∈ Q. Its
geometry is specified by a set of (x, y)-incrementsN = {(ξk, ηk) : k = 1, . . . ,K} such
that each signal g(x, y) has the contextCj = {g(x+ ξ, y+ η) : (ξ, η) ∈ N; (x+ ξ, y+
η) ∈ R}. For binary images, there are 2K different contexts Cj ; j ∈ {0, . . . , 2K − 1},
such that j is the binary number q1q2 . . . qK where qk ∈ Q.

Both DUDE and MFDE use contexts to decide whether a binary signal is true or
corrupted. The passive MFDE follows the majority rule: each signal g(x, y) is true if at
least half of the context signals (g(x + ξ, y + η) : (ξ, η) ∈ N) have the same value.
The active DUDE finds 2K+1 conditional frequencies f(q|Cj); q ∈ Q, of signals in
a pixel, given its context Cj of size K; f(0|Cj) + f(1|Cj) = 1. If the minimum of
these two frequencies is less than a certain threshold, θ, then such “less frequent” signal
with this particular context is assumed to be noisy and will be reversed. The threshold
derived in [6] depends on the noise probability estimated by the minimum conditional
frequency of signals over all the contexts: Prnoise ∼= minj,q{f(q|Cj}.

We consider a noisy signal array g = (g(x, y) : (x, y) ∈ R) as a sample of a
Markov–Gibbs random field with translation invariant geometric structure of pairwise
dependencies between signals [4]. The model is specified with the Gibbs probability
distribution

Pr(g|N) ∝ exp

⎛⎝ ∑
(x,y)∈R

⎛⎝V (g(x, y)) +
∑

(ξ,η)∈N
Vξ,η(g(x, y), g(x+ ξ, y + η))

⎞⎠⎞⎠
Here, V : Q → U and Vξ,η : Q → U are Gibbs potentials and U is the set of
real numbers bounded from above. Both the potentials for and spatial geometry N of
interdependent signal pairs are not predefined, may differ for different types of signals,
and are estimated from a given signal array g.

The log-likelihood L(N|g) = 1
XY log Pr(g|N) maximised by the potentials and

depending only on the neighbourhood N is analytically approximated as L(N|g) =
−∑Q−1

q=0 f(q|g) log f(q|g) + ∑
(ξ,η)∈N dξ,η(g) by adapting the derivation in [4] to

different marginal signal probabilities. Here, dξ,η(g) is the squared distance between
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Fig. 1. Noiseless “Stars”, “Cyrillic Text”, and “Brodatz’s Cane”.

Noise: 5% 10% 20%

e• • • • = 0.06% 0.2% 1.1%

e• • • • = 0.04% 0.4% 1.5%

Fig. 2. Noisy and denoised “Stars”.

Table 1. Estimates of the noise probability Pr• • •• • in DUDE.

Image: “Stars” “Cyrillic text” “Brodatz’s Cane”
Pr• • •• • ,%: 5 10 20 5 10 20 5 10 20
Size K: 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4
Estimate, %: 5.1 2.3 9.9 8.3 19.8 19.2 7.4 5.2 12.7 10.4 23.0 20.6 5.7 4.9 11.2 10.1 23.8 19.7

the frequency distribution Fξ,η(g) = {fξ,η(q, s|g) : q, s ∈ Q2} of actual signal
cooccurrences (g(x, y) = q, q(x + xi, y + η) = s) in translation invariant pixel
pairs (x, y), (x + ξ, y + η) : (x, y) ∈ R; (x + ξ, y + η) ∈ R and the like distri-
bution of independent signals with the same marginal probabilities f(q|g); q ∈ Q:
dξ,η(g) =

∑
(q,s)∈Q (fξ,η(q, s|g)− f(q|g)f(s|g))2. Therefore, the approximate MLE
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Noise: 5% 10% 20%

e• • • • = 2.1% 4.2% 9.3%

e• • • • = 4.4% 6.3% 10.2%

Fig. 3. Noisy and denoised “Cyrillic Text”.

of the context of a given size K is specified for a particular signal array g by the K
top-rank distances dξ,η(g). But it is still necessary to quantitatively relate the context
size K ensuring better performance to the context statistics used by DUDE.

3 Adaptive Maximum Entropy Contexts

Figure 1 shows initial binary images “Stars”, “Cyrillic text”, and “Brodatz’s Cane”
used in experiments and having 0.3%, 21%, and 66% of black pixels, respectively. The
noisy versions obtained by modelling a symmetric transmission channel are presented
in Figs. 2–4 together with results of denoising. The channel makes independent random
bit inversions with a fixed probability p = 0.05, 0.10, or 0.20. Experiments below
compare DUDE with the adaptively chosen contexts to MFDE with the same contexts.

For small context sizes, the minimum relative frequency of contexts is a reasonable
probability estimate. But as mentioned in [6], it fails for larger contexts due to a large
number of too rare or simply absent signal configurations in a given image. Thus we
estimate the noise probability and the relevant threshold using only small radially sym-
metric contexts. Table 1 shows these latter estimates for the symmetric contexts of size
2 and 4 in the noisy images in Figs. 2–4. The estimate for size K = 4 fails for “Stars”
because of a very small black area. To conduct all experiments in the same conditions,
the probability estimates for the smallest symmetric context of size 2 is used below. For
two other images the estimates for the size 4 are more adequate, but changes in quality
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Noise: 5% 10% 20%

the best DUDE-context in the window 13× 13

e• • • • = 1.6% 2.7% 7.6%

e• • • • = 2.2% 3.5% 7.1%
the best DUDE-context in the window 81× 81

e• • • • = 1.2% 3.4% 9.4%

e• • • • = 2.2% 4.1% 9.7%

Fig. 4. Noisy and denoised “Brodatz’s Cane”.

of denoising are marginal. In all our experiments asymmetric neighbourhoods ranked
below symmetric ones. Thus, we use below only these latter.

Tables 2–4 present residual errors after image DUDE and MFDE using radially
symmetric adaptive contexts N = {(ξi, ηi), (−ξi,−ηi) : i = 1, . . . ,K of size K =
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Table 2. Denoising of “Stars”: 0.3% black (B) and 99.7% white (W) pixels (e... denotes the total
residual error after denoising; “B” and “W” indicate the individual residual errors for the black
and white areas of the noiseless image, respectively; the maximum entropy and the minimum
total errors are boldfaced; the individual errors are in italic and underlined).

Half-size i 1 2 3 4 5 6 7 8 9 10
Noise: 5% (actual: B 2.19%; W 5.09%); θ = 0.096

(ξi, ηi) (0, 1) (1, 0) (0, 2) (1, 1) (2, 0) (0, 2) (1,−2) (0, 3) (1,−1) (5,−1)
Entropy 1.0 2.2 2.5 2.2 1.6 1.3 1.2 1.0 0.9 0.8
e• • • • ,% 0.2 0.08 0.06 0.08 0.1 0.2 0.3 0.4 0.5 0.8

B,% 53.6 4.9 5.5 4.4 3.8 2.2 2.2 2.2 2.2 2.2
W,% 0.01 0.06 0.05 0.07 0.1 0.2 0.3 0.4 0.5 0.7

e• • • • ,% 0.8 0.1 0.04 0.05 0.05 0.1 0.1 0.1 0.1 0.2
B,% 2.7 2.2 3.3 14.2 15.3 30.1 38.3 50.3 48.1 64.5
W,% 0.1 0.03 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Noise: 10% (actual: B 10.9%; W 9.9%); θ = 0.178
(ξi, ηi) (0, 1) (1, 1) (0, 2) (2, 0) (2,−1) (1, 0) (2, 2) (1,−2) (1, 2) (4, 2)
Entropy 1.0 1.9 2.9 2.8 2.3 1.8 1.5 1.3 1.1 1.0
e• • • • ,% 0.3 0.2 0.2 0.2 0.4 0.5 0.9 1.3 1.9 2.5

B,% 99.5 65.6 61.2 42.6 27.9 12.0 10.9 10.9 10.9 10.9
W,% 0.0 0.03 0.05 0.1 0.3 0.5 0.9 1.3 1.8 2.5

e• • • • ,% 2.8 1.0 0.4 0.2 0.2 0.1 0.1 0.2 0.2 0.2
B,% 13.1 24.6 27.3 33.9 42.6 37.2 50.8 56.3 61.2 71.6
W,% 2.8 0.9 0.3 0.1 0.03 0.02 0.0 0.0 0.0 0.0

Noise: 20% (actual: B 21.9%; W 19.9%); θ = 0.317
(ξi, ηi) (0, 2) (2,−2) (3,−5) (1,−1) (4, 6) (1, 1) (3, 4) (6, 3) (2,−1) (2, 4)
Entropy 1.0 1.5 2.5 3.1 3.1 2.5 1.9 1.5 1.1 0.8
e• • • • ,% 0.3 0.3 0.3 0.5 1.1 2.3 4.5 7.4 10.2 13.1

B,% 99.5 99.5 99.5 92.8 80.3 64.5 51.4 43.7 32.2 28.4
W,% 0.0 0.0 0.02 0.2 0.4 2.1 4.3 7.3 10.1 13.0

e• • • • ,% 10.0 6.0 3.5 2.2 1.5 1.0 0.7 0.6 0.5 0.4
B,% 32.8 50.8 69.9 67.8 78.1 75.4 82.0 88.5 87.4 92.4
W,% 10.2 5.9 3.3 2.0 1.2 0.8 0.5 0.3 0.2 0.1

2, 4, . . . , 20. These results suggest that the entropy of distribution of the minimum rel-
ative frequencies of signal contexts roughly indicates the best choice of K . In the most
cases, the maximum entropy either points directly to the context yielding the smallest
residual error or to the adjacent variant. Apart from “Stars” under most intensive noise,
DUDE always outperforms MFDE, but both the denoisers are opposite with respect to
which areas are successfully denoised or additionally corrupted.

The channel with 5% noise had actually corrupted only 2.2% of the small black
“Stars”. The best DUDE result fot the context of size 3 is slightly worse than of MFDE
with the same context. Both DUDE and MFDE additionally corrupt the black areas
(to 5.5% and 3.3%, respectively) while almost completely clean the white background
(0.05% and 0.01% of the residual noise, respectively, comparing to the initial 5.09%).
When the context size increases, DUDE corrupts the black area less (down to 2.2%)
but simultaneously leaves a bit more noisy white area (up to 0.7%). MFDU behaves in
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Table 3. Denoising of “Cyrillic text”: 20.7% black (B) and 79.3% white (W) pixels (the same
notation as in Table 2).

Half-size i 1 2 3 4 5 6 7 8 9 10
Noise: 5% (actual: B 4.98%; W 5.06%); θ = 0.137

(ξi, ηi) (1, 0) (0, 1) (1,−1) (1, 1) (2, 0) (0, 2) (0, 5) (0, 4) (2, 1) (2,−1)
Entropy 1.0 2.4 3.3 3.7 3.5 2.6 1.7 1.1 0.7 0.5
e• • • • ,% 3.5 2.8 2.3 2.1 2.1 2.0 2.1 2.2 2.3 2.4

B,% 12.5 8.2 5.6 5.0 4.8 5.0 5.2 5.3 5.3 5.3
W,% 1.1 1.4 1.4 1.3 1.4 1.2 1.2 1.3 1.5 1.6

e• • • • ,% 4.4 4.8 5.4 6.0 6.3 6.5 6.6 7.5 8.0 8.4
B,% 10.1 11.1 12.5 14.1 16.6 15.6 16.8 19.2 21.8 23.8
W,% 3.0 3.1 3.5 3.8 3.6 4.0 4.0 4.4 4.3 4.4

Noise: 10% (actual: B 9.83%; W 10.0%); θ = 0.222
(ξi, ηi) (1, 0) (0, 1) (1,−1) (1, 1) (2, 0) (0, 2) (0, 5) (0, 4) (2, 1) (2,−1)
Entropy 1.0 2.4 3.2 3.7 3.7 3.0 1.9 1.1 0.7 0.5
e• • • • ,% 6.1 5.0 4.5 4.2 4.2 4.0 4.2 4.5 4.9 5.4

B,% 18.3 17.6 11.9 11.4 10.9 10.5 10.5 10.5 10.4 10.2
W,% 2.9 1.7 2.5 2.3 2.4 2.3 2.5 2.9 3.5 4.2

e• • • • ,% 7.3 6.3 6.5 6.8 7.1 7.3 7.4 8.2 8.6 9.0
B,% 13.8 13.7 15.0 16.2 18.6 17.8 18.8 21.1 23.5 25.4
W,% 5.5 4.3 4.3 4.3 4.0 4.5 4.3 4.7 4.7 4.7

Noise: 20% (actual: B 19.8%; W 19.9%); θ = 0.355
(ξi, ηi) (1, 0) (0, 1) (1,−1) (1, 1) (2, 0) (0, 2) (0, 5) (0, 4) (2, 1) (2,−1)
Entropy 1.0 2.3 3.2 3.4 3.5 3.5 2.2 1.2 0.7 0.5
e• • • • ,% 13.0 10.4 9.7 9.4 9.3 9.4 10.7 11.6 13.1 15.0

B,% 29.9 28.2 30.0 27.8 26.2 25.6 25.6 23.5 21.3 20.4
W,% 8.5 5.7 4.4 4.6 4.8 5.1 6.7 8.5 10.9 13.5

e• • • • ,% 15.3 12.0 10.9 10.3 10.2 10.1 9.9 10.2 10.5 10.8
B,% 22.4 21.1 21.4 22.0 24.0 23.7 24.9 26.9 28.1 29.2
W,% 13.4 9.6 8.2 7.1 6.5 6.4 5.9 5.7 5.8 5.9

the opposite way because the larger contexts result in more corrupted black areas (up
to 64.5%) while the white background becomes completely noiseless. For the larger
noise level, the trends are even more transparent. With the small-size contexts (K ≤ 5),
the overall quality of DUDE is better. But DUDE considerably corrupts the black area
and simultaneously reduces the noise in the white area while MFDU less corrupts the
former but less clean the latter. For larger contexts (K > 5), MFDU becomes more
efficient. Anyway, as follows from Table 5, heuristic choice of the context gives slighly
worse results than the maximum entropy based one.

For two other images with more balanced ratios of black and white areas, DUDE
always outperforms MFDE under the adaptive context. But the difference tends to be-
come low when the noise level increases. Once again, in “Cyrillic text” DUDE starts
from an additional corruption of the smaller black area and cleans the white one to the
larger extent. Then the corruption of the former decreases (but no lesser than the noise
level) whereas the level of noise cleaning in the latter varies only slightly up and down.
MFDU gradually corrupts the black area more and more while slightly improves the
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Table 4. Denoising of “Brodatz’s Cane”: 66% black (B) and 34% white (W) pixels (the same
notation as in Table 2).

Half-size i 1 2 3 4 5 6 7 8 9 10
Noise: 5% (actual: B 4.98%; W 4.99%); θ = 0.108

(ξi, ηi) (0, 1) (1, 0) (1,−1) (1, 1) (0, 2) (1, 2) (1,−2) (2, 0) (2,−1) (2, 1)
Entropy 1.0 2.4 3.3 2.9 2.0 1.4 1.1 0.9 0.7 0.6
e• • • • ,% 2.2 1.8 1.6 1.4 1.5 1.7 2.0 2.2 2. 5 2.7

B,% 1.7 1.6 1.0 1.1 1.2 1.4 1.6 1.8 2.1 2.2
W,% 3.1 2.1 2.7 2.0 2.1 2.2 2.6 2.9 3.2 3.4

e• • • • ,% 2.2 1.9 2.2 2.5 2.8 3.4 4.0 4.5 5.0 5.3
B,% 2.0 1.0 0.7 0.6 0.5 0.6 0.6 0.5 0.5 0.5
W,% 2.7 3.4 4.8 6.1 7.2 8.9 10.4 12.0 13.4 14.4

Noise: 10% (actual: B 9.76%; W 9.79%); θ = 0.200
(ξi, ηi) (0, 1) (1, 1) (1,−1) (1, 1) (0, 2) (1, 2) (2, 0) (1,−2) (2,−1) (2, 1)
Entropy 1.0 2.5 3.3 3.3 2.4 1.6 1.1 0.8 0.6 0.5
e• • • • ,% 4.9 3.5 3.2 2.7 2.8 3.5 4.1 5.0 5.8 6.5

B,% 4.2 2.2 1.9 1.6 1.8 2.5 3.1 4.1 5.0 5.9
W,% 6.3 6.1 5.7 4.7 4.5 5.3 5.8 6.6 7.2 7.5

e• • • • ,% 4.9 3.5 3.4 3.5 3.9 4.4 4.8 5.1 5.6 5.9
B,% 4.6 2.4 1.7 1.6 1.3 1.2 1.2 1.0 1.1 1.0
W,% 5.6 5.5 6.6 7.3 8.8 10.4 11.6 12.9 14.2 15.3

Noise: 20% (actual: B 19.7%; W 20.1%); θ = 0.317
(ξi, ηi) (0, 1) (1.0) (1,−1) (1, 1) (0, 2) (1, 2) (1,−2) (2, 0) (2,−1) (2, 1)
Entropy 1.0 2.4 3.2 3.5 3.1 1.9 1.1 0.7 0.4 0.3
e• • • • ,% 13.2 9.6 8.6 7.6 8.0 9.7 12.1 14.8 16.8 18.3

B,% 11.8 7.7 5.0 3.9 5.0 6.7 9.6 13.1 15.8 17.7
W,% 15.5 13.0 15.3 14.5 13.7 15.1 16.6 17.8 18.3 19.1

e• • • • ,% 13.2 9.6 8.1 7.1 6.7 6.7 6.9 6.9 7.2 7.5
B,% 12.4 8.3 6.0 5.0 3.8 3.5 3.2 2.7 2.6 2.4
W,% 14.2 11.9 11.9 11.0 12.0 12.9 13.9 14.9 15.9 17.3

Table 5. Denoising of “Stars”: the nearest symmetric 8-neighbourhood.

Noise θ Residual noise
DUDE MFDE

e• • • • ,% B-noise,% W-noise,% e• • • • ,% B-noise,% W-noise,%
5% 0.096 0.08 3.28 0.07 0.08 23.0 0.01
10% 0.178 0.26 29.0 0.18 0.21 29.0 0.12
20% 0.362 0.43 73.8 0.22 2.08 35.5 1.98

noise removal from the white area when the context size is growing up. If the sizes of
the black and white areas are closer (“Brodatz’s Cane”), these differences as well as the
differences in the total quality of denoising decrease, and at lower noise levels DUDE
outperforms MFDE while for the higher noise MFDE turns to be slightly better. Both
the denoisers in this case reduce about 60–70% of the initial noise.

Comparisons to a heuristic context selection show that in the most cases the adap-
tive choice returns better contexts. It is worthy to mention that the best contexts are
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not necessarily continuous. For “Stars” and “Cyrillic text”, the window size to compare
possible pixel pairs almost does not impact the choice of the very first characteristic
neighbours. The characteristic context for the periodic texture “Brodatz’s Cane” esti-
mated in the smaller window 13 × 13 differs from the context in the larger window
81 × 81 (see Fig. 4). It should be noted that under the manually selected best thresh-
old θ, the latter disjoint context results in even slightly better denoising. But when the
thresolds are estimated from the noisy image itself, the contexts for the smaller windows
give better results.

4 Conclusions

These and other similar experiments show that, in principle, the contexts for DUDE
may be chosen using the maximum likelihood structure of pairwise signal dependences
in noisy binary images. If the noiseless black and white area are not considerably un-
balanced, the active DUDE with the adaptively chosen context mostly outperforms the
more conventional passive MFDE. But the higher the noise, the smaller the difference
between both the denoisers. The size of the context can roughly be related to the max-
imum entropy of the distribution of the minimum relative frequencies of signals with
the same contexts (these frequencies are used for DUDE itself, too).

When denoising an image, MFDE always additionally corrupts the non-dominant
area in favour of cleaning the dominant one. DUDE is also biased to the latter area but
corrupts it to the lesser extent.
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Abstract. A structural knowledge-based search method is utilized for the esti-
mation of geometric transforms from airborne video sequences. Examples are 
projective planar homographies and constraints such as the fundamental matrix. 
These estimations are calculated from correspondences of interest points be-
tween two images. Different approaches are discussed to cope with the problem 
of outlier-correspondences. To ensure any-time performance the search process 
is implemented in a data-driven production system. The pose estimation from 
planar homographies is compared to estimations from fundamental matrices. A 
fusion of both approaches is proposed. The image processing is performed by 
bottom-up structural analysis using an assessment-driven control. Examples are 
from the thermal spectral domain. 

1   Introduction 

Pose trajectory estimation from moving cameras is an important task for scene recon-
struction as well as navigation.  Research in this field was stimulated by development 
of mobile autonomous robots. Particularly, methods using projective geometry were 
utilized [3][6][9]. Recently, unmanned aircraft equipped with video cameras are gain-
ing increased attention for civil as well as military applications like traffic monitoring 
[16] or surveillance tasks.  The appearance of a scene viewed from an aircraft depends 
on the flight altitude and the height of the sensed objects. If this ratio is large, the 
scene will appear flat. This implies a different approach than a spatial scene.   

Flat scenes are treated by planar homographies. These may be estimated by e.g.  
minimizing the sum of absolute errors [1]. Given a Gaussian distribution on the dis-
placements of the corresponding image positions it can be shown that the minimiza-
tion of the sum of the squared errors is the optimal solution [9]. Actually, the direct 
linear transform (DLT) methods proposed today minimize an “algebraic” squared 
error sum that is not identical with the squared displacement error in the 2-d image 
coordinates. However, it has been shown that this error minimization approximates 
the Gaussian minimization very closely provided that the coordinates are normalized 
in a proper way [6]. The main disadvantage of minimization of squared error sums is 



Pose Estimation from Airborne Video Sequences      487 

the sensitivity to the inclusion of outliers into the calculation. An outlier is a corre-
spondence that has been erroneously constructed. It does not follow the distribution 
assumptions underlying the estimation. Because of its possibly large displacement and 
particularly because of squaring, it may have a large weight in the computation where 
it should be neglected. Outliers cannot be avoided if automatic estimation is the task. 
Therefore so-called “robust” methods are proposed.  

Section 2 presents and compares three robust estimation methods to solve the prob-
lem of planar homography estimation with DLT squared error sum minimization. The 
term “outlier” and its meaning in the context of homography estimation from airborne 
videos is further investigated in Section 3. Section 4 compares the pose estimation 
from planar homographies to estimations from fundamental matrices.  A fusion of 
both approaches is proposed in Section 5. The image processing is performed by data-
driven structural analysis and an assessment-driven control. All example data are 
taken from the thermal spectral domain to ensure independence of the daylight. 

2   Robust Estimation of Planar Homographies 

Robust estimation methods may be classified into approaches that assume the exis-
tence of mutually exclusive sets of inliers and outliers (Section 2.2) and others that 
assign weights to the correspondences (Section 2.1).  

2.1   Iterative Re-weighting Least Squares (IRLS) 

An example of the assigning of weights to the correspondences is iterative re-
weighting least squares [7]. The inverse of the residual of the least squares solution of 
each correspondence of the complete sample is used to re-weight its influence. Corre-
spondences yielding a large residual error will be punished and correspondences 
yielding a small error will gain more influence. If a large portion of the correspon-
dences is expected to be wrong, a local minima problem may occur. The convergence 
of IRLS to the desired minimum is theoretically not guaranteed. It may end up with 
zero-error and thus infinite weight on an arbitrary minimal sample and random small 
weights on all other members. However, in our examples we found that it does con-
verge slowly but robustly to a good solution. IRLS-estimation of 2D-homographies is 
available in public code libraries [17]. Proposals are made for the handling of occlu-
sion outliers and lighting changes within the IRLS-method [8].   

2.2   Random Sample Consensus 

The standard method for inliers-outliers discrimination is the random sample consen-
sus approach (RANSAC) [4]. The calculation is performed on minimal samples 
which are randomly picked from the complete sample of correspondences. The result 
of the calculation is tested on all the other correspondences giving a residual error. If 
this error is smaller than a threshold ts, the correspondence will be termed to be in 
consensus with the actual sample. After repeating this procedure a sufficient number 
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of times the search is terminated. The termination criterion bases on a minimum size 
of the current best consensus m and a maximal number of cycles nc. There is an elabo-
rate theory for the choice of these parameters (ts, m, nc) from the expected portion of 
outliers, a standard deviation of the error of the position of inliers, and a significance 
level [6]. The sample with the highest consensus is chosen and the corresponding 
consensus set is used to determine the estimation by mean squared error minimiza-
tion.  

a
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Fig. 1. Image pair of a thermal video sequence and corresponding points. a,b) Best GSAC-
sample in black, other correspondences in white; c,d) RANSAC-sample with innlier (black) and 
outlier (white); g,h) incorrect correspondence excluded by both methods; e,f) incorrect corre-
spondence found as RANSAC-inlier; i) greater section around that location showing that it 
results from partial occlusion. 
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2.3   Good Sample Consensus 

Some authors proposed to modify random sampling by taking also the quality of the 
samples into account [11], [13]. This obvious idea is not new and has already been 
touched in the original paper of RANSAC [4].  For such improvements a criterion 
always has to be defined that assesses the suitability of a sample for the intended 
calculation. For example the position of the corresponding points within the images 
will be important for estimating homographies. They should cover as much area of 
the images as possible. Moreover, more than two collinear points should be avoided. 
Fig. 1 shows images with large homogenous regions and the structure concentrated in 
few regions. Because RANSAC only counts the number of mutually consistent corre-
spondences, it may concentrate too much on densely structured regions and tend to 
under-estimate the importance of good but rather isolated correspondences elsewhere, 
e.g. the correspondences in the lower left corner that are missing in the inliers set of 
RANSAC.  

In GSAC the assessment criterion is used to control the search for a good sample 
on which the solution is based. The correspondences in the lower left corner are now 
included. Section 5 explains how GSAC can be implemented by a structural method.      

3   Classification of Correspondences 

1) Correspondences Consistent with the Homography Model: A correspondence 
between structures in two different images will be called correct if the location on the 
object in the scene that caused them is the same. Additionally they must fulfill the 
model constraint. For homography estimation only those objects that are located on 
the assumed plane can cause correct correspondences. In urban terrain this plane will 
be at the average height of the buildings. Of course, we will have to tolerate small 
deviations from this constraint. The residual error will mainly result from the localiza-
tion error of the 2d-structures and may be modeled as normally distributed.  

2) Correspondences Consistent with a More General Geometric Model: In an 
urban area there may be tall buildings that are jutting out of the plane. Corresponding 
structures resulting from the roofs of such tall buildings will violate the homography 
constraint. Still, they may be correct in the sense that they come from the same physi-
cal property. Their deviation from the homography follows a different rationale: They 
will be located close to the epipolar line which goes through the point determined by 
the homography and through the epipole. They should be excluded from the estima-
tion of the scene plane, but they may be included into the estimation of the camera 
rotation and epipole.  

3) Correspondences from Moving Objects: Video sequences taken by a moving 
sensor yield image pairs that were obtained at different time instants. Moving objects 
in the scene may cause semantically correct correspondences that neither follow the 
planar homography nor the epipolar constraint. However, such correspondences from 
moving objects are required for applications like traffic monitoring. Fig 2 shows such 
a correspondence resulting from a moving vehicle. The correspondence is indicated as 
a white line, while other correspondences are drawn in black. 
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a)   b)   

Fig. 2. Nadir looking sequence taken from urban terrain; example of a correct correspondence 
that is an outlier to the epipolar constraint estimation (a moving car on the ground); a) larger 
sections with surroundings, b) corresponding structures. 

4) False Correspondences: Using an automatic method to construct the correspon-
dences we cannot avoid the handling of semantically false correspondences. Most 
often these will result from occlusion phenomena. Fig. 1e and Fig. 1f show an exam-
ple, where the outlines of a warm flat building roof (white) are partially occluded by a 
tall building in front of it (grey) – compare Fig. 1i. There is a structure correspon-
dence located on the T-junctions caused by this occlusion.  Such correspondences do 
not follow any predictable error function. They may accidentally be inside the error 
bounds of a homography estimation like the RANSAC-estimation displayed in Fig. 1a 
and Fig. 1b.   

4   Robust Estimation of Epipolar Constraints 

A central theorem of projective geometry states that from a pair of views of a scene 
the mutual orientation and translation of the cameras can be calculated from at least 
seven corresponding point-pairs (x, x’) and that the position of the corresponding 
points in the 3d scene also follows from this reconstruction [6]. This is a constructive 
argument that is based on the inference of the fundamental matrix F from the corre-
spondence data. This matrix formulates the epipolar constraint by stating xTFx’=0. It 
can also be estimated from this simple linear equation using at least eight correspon-
dences. Such estimation is depicted in Fig. 3e and Fig. 3f. Problems with instability of 
the solution will occur, if all the correct correspondences are located in one plane. 
This happens in flat terrain. For testing this automatically, samples that are inconsis-
tent with the homography model (see Section 3 class 2) are searched. Fig. 3e shows a 
sample of correspondences that gives the epipolar constraint depicted in Fig. 3f. But, 
this sample is smaller than the best GSAC-sample for the homography displayed in 
Fig. 3c. Moreover, in forward looking situations like the one presented in Fig. 3 the 
epipole (black/white cross) may be inside the frame, and scene reconstruction is im-
possible for the area around the epipole. 

The effort for a random search for suitable minimal samples (containing seven or 
eight correspondences) is a rising polynomial with degree seven or eight with grow-
ing portion of outliers. Therefore, some authors introduced an intermediate part-of 
hierarchy into the samples [2].  Others propose a “plane plus parallax” approach [14]. 
First, one estimates a homography H that maps those points located on a dominant 
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plane from one image to the other Hx=x’ (Section 2). Then the homography can be 
decomposed in the form H=R-ntT. R is the camera rotation matrix and the outer prod-
uct ntT results from the plane normal n and the camera translation t [3]. 

If we use normalized camera coordinates the 3-d vector t can also be interpreted as 
epipole. Multiplying the skew-matrix constructed from this vector with the rotation 
matrix R will give the fundamental matrix F belonging to the image pair. This matrix 
estimation for the epipolar constraint may then be refined using additional correspon-
dences of the type mentioned in Sect. 3 class 2). In Fig. 3d the estimated homography 
is presented as a white vector field and the calculated epipole. In spite of the consid-

 

Fig. 3. Example of estimations from a forward looking oblique sequence; a) all correspon-
dences on one frame b) same on other frame c) GSAC consensus correspondence set for homo-
graphy estimation d) homography displayed as vectors on a grid array e) consensus correspon-
dence set for epipolar estimation f) epipolar constraint; for each point on the grid the epipolar
line is indicated and connected to the point. 
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erably non-planar structure of the valley scene this turns out more stable than the 
direct epipolar constraint estimation. Particularly, the difference between the epipole 
estimations in Fig. 3d and Fig. 3f is considerable. A small rotation of the camera 
combined with such a displacement of the epipole give roughly the same point 
movements for forward looking geometries.  

5   Production Nets for GSAC-Estimationof Geometric Entities 

The pose estimation is partitioned into several steps 
and intermediate results. The overall structure of the 
process can be depicted by a so-called production net 
(Fig. 4). This bipartite graph contains productions and 
concepts (object types) as nodes. Arcs go from an ob-
ject concept to a production whenever the objects are 
input to the production. Arcs go from a production to a 
concept whenever these concepts are constructed by 
the production. The productions contain constraints 
that incoming objects must fulfill to fit into the con-
struction of the out-going objects of a higher concept. 
They also contain the functions that are necessary to 
construct these objects. The constructive part also con-
tains an assessment part that evaluates the newly built 
object. Details of the control mechanism have been 
published in [15]. The assessment criteria used here are 
named in Fig. 4.  

The processing starts with the application of an in-
terest operator on the images that marks locations 
where neither homogeneity nor an aperture problem is 
likely [5]. Pixels trespassing a threshold form the 
primitive objects P of the structural analysis. Produc-
tion p1 groups such primitive objects into interest ob-
jects I using vicinity as its constraint, center of gravity 
as its function and total mass for its assessment. The 
position of such an interesting location I is determined 
with sub-pixel-precision. Given such an object produc-
tion p2 will search the other image for corresponding 
partners. It will construct new objects correspondence 
C for all such objects and assess them by means of 
correlation. Each such object may vote for a translation 
transform. Production p3 forms objects T of a pair of 
correspondence objects C. Since they may be used to 
vote for similarity transforms, these objects are as-
sessed according to the distance between the two loca-
tions in the image. Large distances give more precision 
for such estimation.  Production p4 gathers two such 
objects T and forms a quadruple object Q from them. 
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Fig. 3. Production-net with
assessment criteria for bottom-
up data-driven control. 



Pose Estimation from Airborne Video Sequences      493 

From these a cue to the homography can be calculated. It is not only important that all 
four correspondences in such an object Q must be inliers of the type discussed in 
Section 3 class 1). Also no three of the four points are allowed to be collinear. They 
should cover as much area as possible. Therefore the area of the smallest of the four 
triangles in the quad is chosen as the assessment criterion. Production p5 clusters the 
homography estimations from several consistent objects Q. The result is a new object 
H that is calculated via DLT squared error sum minimization from the sample of 
correspondences preceding the objects Q in the cluster. Thus Productions p4 and p5 
implement the GSAC-rationale outlined in Section 2.3. An object H is assessed not 
only according to the number of correspondences in it, but also according to the as-
sessment of the preceding objects Q. Production p6 searches well directed for the 
outliers of the cluster process implemented by Production p5. There may be corre-
spondences in them that belong to the type described in Section 3 class 2). This re-
sults in spatial cue objects S. Such objects contain a fundamental matrix estimation. 
They are assessed according to the inconsistence of the homographies preceding 
them. Of course such cues need affirmation because it may result from correspon-
dences of the types discussed in Section 3 classes 3) and 4). Production p7 clusters 
consistent objects S into a well founded fundamental matrix estimation object F 
where the calculation is based again on DLT with the sample of the preceding corre-
spondences. 

The control scheme forms hypothesis of each newly constructed object and all the 
productions to which an arc goes from its type. These hypotheses get a priority ac-
cording to the assessment of the object. All hypothesis compete for computational 
resources. In this manner homographies and fundamental matrices are already esti-
mated from prominent and well positioned correspondences while other less impor-
tant interest point objects still wait for an opportunity to search for correspondences in 
the other image. The process may be terminated at any time followed by choosing the 
best object H or F obtained up to this time instance according to the same assessment 
criteria. 

6   Conclusion 

Camera pose estimation using fundamental matrices as well as planar homographies 
can be obtained from the same images. The decision of which method should be pre-
ferred depends on the situation. Intermediate results give criteria for the choice. For a 
selected method the best sample of correspondences has to be searched. A structural 
knowledge-based approach combines both methods, uses well directed search and 
avoids early decisions. During the search run weights are assigned to entities like 
correspondences between structures in different images, pairs of such correspon-
dences, quadruples and larger sub-sets. Each intermediate result is evaluated and the 
control of the whole system is based on these evaluations. Thus spurious calculations 
are avoided. Originally the production net approach has been invented for dealing 
with costly object recognition tasks in an accumulative way using affirmative inter-
mediate results [10]. In pose estimation intermediate results may also be mutually 
competing. Thus, the assessments are a key issue in balancing such system. Tests 
comparing GSAC homography estimation performance to RANSAC and IRLS on a 
collection of example data are under way and will be published in [12]. 
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Abstract. In this paper, we describe a multistage decision making sys-
tem to deal with the problem of automatic sports video classification.
The system is founded on the concept of cues, i.e. pieces of visual ev-
idence, characteristic of certain categories of sports that are extracted
from key frames. The main decision making mechanism is a decision
tree which generates hypotheses concerning the semantics of the sports
video content. The final stage of the decision making process is a Hid-
den Markov Model system which bridges the gap between the semantic
content categorisation defined by the user and the actual visual content
categories. The latter is often ambiguous, as the same visual content may
be attributed to different sport categories, depending on the context. We
tested the system using two setups of HMMs. In the first, we construct
and train an HMMmodel for each sport. A post-processing step is needed
in this setup to combine the outcomes of the individual HMMs. In the
second setup, we eliminate the need for post-processing by constructing
a single HMM with each node representing one of the sports we want to
detect. Comparing the results obtained from both setups showed that a
single HMM delivered the better performance.

1 Introduction

In this paper we consider the problem of automatic sports video categorisation.
This problem arises during multidisciplinary events such as Olympic Games
where huge volumes of video material are recorded, with the content randomly
switching from one discipline to another. A coarse automatic annotation in terms
of sport identity would aid the production of event summaries for news cast and
other applications.

Much research in the field of multimedia analysis and retrieval is targeting
the domain of sport videos. The reason is that most sport videos have a well-
defined content structure and official rules and procedures compared to videos
from other domains. Moreover, most sporting events take place in one location.
That means only a limited number of cameras are needed to cover the play
area and capture the event. Therefore, a set of characteristic views recorded by
those cameras can be defined and associated with the events. Figure 1 gives an
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Fig. 1. Sport views

example of wide variety of views that exist in two sport disciplines, swimming
and hockey.

Other work, specific to some form of sports annotation, include [3] in which
the authors addressed the problem of parsing the content of football video pro-
grams. They used domain knowledge about football to construct an a priori
model to aid the task of classifying key-frames of each shot to a predefined set of
events. Xu et al [12] also addressed the problem of segmenting football videos into
two basic semantic units “play” and “break”. Addressing football videos analy-
sis and summarisation as well, Ekin et al [2] proposed a fully automated system
using both cinematic and object-based features. Chang et al [1] proposed a sta-
tistical method for the automatic extraction of predefined highlight segments in
a baseball game video using an HMM built for each class of highlight. HMMs
were also used by [5] for tennis scene classification and segmentation. An HMM
was used to fuse audio and visual information. They also used HMMs to model
tennis syntax and the hierarchical structure of a tennis match.

In this paper we propose a multistage decision making system that is founded
on the concept of visual cues — pieces of visual evidence, characteristic of certain
categories of sports that are extracted from key frames. The main decision-
making mechanism is a decision tree which generates hypotheses concerning the
semantics of the sports video content. The final stage of the decision making
process is an HMM system which bridges the gap between the semantic content
categorisation defined by the user and the actual visual content categories. Two
setups of HMM are considered. In one setup, we constructed and trained an
HMM for each sport investigated in our research. This setup is motivated by
the fact that each HMM corresponding to a certain sport is constructed and
trained independently. However, using this setup, a post-processing is needed to
combine the outcomes of the individual HMMs to reach a final decision. In the
other setup, a single HMM is constructed with each node representing one of
the sports investigated. This setup has the advantage that it requires no post-
processing. To reach a decision using this setup, we need to find the single best
state sequence for the given observation sequence.
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The paper is organised as follows. In Section 2 we give an overview of the
system. We briefly describe the cue concept and how to generate cues deemed
indicative of sport types in Section 3. Section 4 describes the process of gener-
ating sports video content hypotheses using decision trees. The post-processing
of the decision tree outputs using two setups of HMMs is discussed in Section 5.
The results of experiments designed to test and compare the two HMM setups
is presented in Section 6. The paper is concluded in Section 7.

2 System Overview

In this section we give an overview of the system (Figure 2) and describe its vari-
ous elements. Our goal in this paper is, given a video stream that contains sports
material from one or more disciplines, to automatically segment the stream into
sequences and label each sequence with the corresponding sport label.

First, the video stream is segmented to shots which are the basic temporal
units in our system. For each shot, a number of key frames are extracted. The first
stage of the decision-making process is the cue detection. Cue detectors operate
on the key frames and generate judgement about the presence or the absence of
the objects they try to detect. The shot after this stage is represented by the
cues. This is distinct from the conventional approaches which are based on low
level generic image features derived from colour and texture. Cues offer higher
level representation which is application domain specific. Most importantly, they
transform diverse input data structures into a standard form which facilitates
the decision making process and promotes modularity (i.e. exploiting additional
cues). Examples of cues could be: grass, sky, swimming pool lanes.

The second stage classifies each shot to one of the characteristic views, de-
fined for each sport, using the information provided by the cue detectors. The
functionality of this stage is realised by a decision tree classifier. The knowledge
embodied in the decision tree is learnt from a set of labelled training samples
covering all views the system is trying to detect. The decision tree is then used
to classify each shot into one of the sport view categories.

The output of the decision tree may be subject to error due to either errors
in the cue extraction or genuine ambiguity, i.e. the presence of cues that are
characteristic of more than one discipline (e.g. crowd views). The third stage is
designed to minimise this error by exploiting the temporal context using HMMs.
HMMs, which process the sequence generated by the decision tree, bridge the
gap between the semantic video content labelling by human observer and the
data-driven hypotheses generated by automatic classification methods.

The individual stages of the system are described next in more detail.

3 Cue Detectors

In much of the previous work in automatic annotation of video material, the
annotation consisted of the output of various feature detectors (i.e. MPEG7 de-
scriptors). By itself, this information bears no semantic connection to the actual
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Fig. 2. Proposed System

scene content — it is simply the output of some image processing algorithm.
The cue detection approach [6] is taking the process one stage further. In this
approach, the connection between low-level image data outputs and the seman-
tics of the scene content can be defined by means of a set of training processes.
Thus for example the system can be trained to associate the output of a tex-
ture feature detector with crowds of people in the scene. This mechanism can
then be used to generate confidence values for the presence of a crowd cue in
a scene, based on the scene texture. Different cues can then be combined to
generate higher-level information, e.g. the type of sport being played. Figure 3
illustrates the cue generation process which involves three phases. Different cue
detection methods have been developed [9, 8, 7]. Each method can be used to
form a number of different cue-detectors provided that suitable training data is
available.

Let us suppose that we have a set of M trained cue-detectors. Each cue
detector operates on the key frame images and generates two pdf values p(x|C)
and p(x|C̄), where C is the cue looked for by the cue detector and x denotes the
measurement vector used. Assuming equal prior probabilities, we can estimate
the a posterior probability P (C|x) of an instance of a cue, C, existing in the
image as follow:

P (C|x) = p(x|C)
p(x|C) + p(x|C̄) (1)

Thus, for each key frame, we will obtain k values, one for each cue. A shot can
then be represented by a vector S = (C1, C2, ..., Cj, ..., CM ) where Cj is the mean
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value of the posterior probabilities computed by the jth cue-detector on the key
frames that belong to the shot.

4 View Classification

Based on earlier experience [4], we opted for a decision tree learning algorithm
to build the model for solving the problem of classifying a shot to one of a set of
predefined sport views. The “C4.5” algorithm [10] was adopted. The process of
constructing a decision tree classifier requires a set of training examples. Each
example is represented by the cue vector, S. A class label, which is typically a
camera view, is attached to the examples. A splitting criterion, Information im-
purity, is used to recursively partition the training set in a way that increases the
homogeneity of its partitions. The partitioning stops when one of the stopping
rules is triggered at a node. This node becomes a class node and a label which
represents the sport view with the largest number of shots is attached to it.

The classification of a shot using decision trees proceeds from top to bottom.
Depending on its cue values, S navigates through the decision tree till it reaches
a class node. The navigation is guided by the rules of the decision nodes visited.
The shot is assigned the label attached to the class node at which its navigation
terminates.

5 Post-processing Using HMMs

The HMM (described in detail in [11]) is a powerful tool, widely used in pattern
recognition. In this paper, HMM is employed to minimise the ambiguity of clas-
sifying using a decision tree by exploiting the temporal context. HMMs bridge
the gap between the semantic video content labelling by human observer and
the data-driven hypotheses generated by automatic classification methods.
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Two HMM setups are considered (Figure 4). In the first setup, we construct
and train a separate HMM model for each sport we want to detect. In this setup,
the forward algorithm can be used to compute the likelihood that an observation
sequence is emitted by an HMM. Figure 5(a) shows the output of four HMMs
operating on a sequence. Note that the output of HMM corresponding to the
sport of the subsequence will exhibit the least change of all of the HMMs. To
exploit this, we compute the discrete derivative of each HMM output and smooth
the result with a Gaussian kernel (Figure 5(b)). The subsequence is labelled with
the identity of this HMM.
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Fig. 4. The two HMM setups considered in our system

In the second setup, we construct a single HMM with each node in this HMM
representing one of the sports we want to detect. In this setup, the problem we
need to solve is to find the single best state sequence given the observation
sequence generated by classifying a sequence of shots using the decision tree
classifier. The Viterbi algorithm is used to realise the most likely sequence state.

6 Experimental Results

In this section, we describe the experiments to evaluate the proposed system,
and compare the results obtained from applying the two HMM setups. The ex-
perimental data is taken from video material from the 1992 Barcelona Olympic
Games. The material includes four Olympic sport disciplines (hockey (H), swim-
ming (S), track events (T), yachting (Y)). The material was manually ground-
truthed and split into three sets. One set was reserved for training the decision
tree classifier; the second set was used for HMM training, and the remaining
set was reserved for testing the system. Thirty-seven visual cues were identified,
trained and used to generate cue evidence for the study.
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Fig. 5. Output from four HMMs operating on a sequence generated by the decision
tree classifier

Table 1. Confusion matrix for sports shot classification of the proposed system using
four competing HMMs (Setup 1)

H S T Y Recall Precision

H 522 23 30 3 90.3% 87.0%

S 30 909 11 14 94.3% 93.4%

T 49 11 469 0 88.7% 92.0%

Y 0 30 0 370 92.5% 95.6%

Table 2. Confusion matrix for sports shot classification of the proposed system using
a single HMM (Setup 2)

H S T Y Recall Precision

H 551 5 16 6 95.3% 91.4%

S 46 903 14 1 93.7% 98.8%

T 6 6 516 1 97.5% 94.5%

Y 0 0 0 400 100.0% 98.0%

We tested the proposed system on 52 sequences. Table 1, shows the results
obtained from the experiments using Setup 1 in which four competing HMMs
are used, one for each discipline. The results obtained from experimenting with
the proposed system using single HMM, with each state in this HMM represent
one of the sports investigated in this paper, are summarised in Table 2.

The proposed system performed well with both setups. The overall recog-
nition rate is 91.87%(standard deviation = 5.08%) for Setup 1 compared to
95.91%(standard deviation = 3.18%) for Setup 2. We performed a t test and the
test suggested that the difference between the performance of the two setups
was significant statistically. Moreover, using setup 2 proved to be more conve-
nient since it requires no post-processing on the obtained results. As far as the
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accuracy of classification for individual sports is concerned, we noticed that the
hockey, track events and yachting classification rate using Setup 2 were signifi-
cantly better than when using Setup 1. Swimming performance, was almost the
same in both setups.

One advantage of the proposed system is its ability to segment a sequence
comprising more than one discipline and label the subsequences with the corre-
sponding sport label. This information can be used to perform further analysis
on any subsequence using specialised model once we know its coarse label.

Doing more analysis on the results, we noticed that just over 70% of the
subsequences were correctly labelled and 3% were mislabelled. The boundaries
of the remaining 27% of the subsequences, do not exactly correspond to the
groundtruthed test data. However, in 59% of the latter cases, the errors in the
boundaries are due to ambiguity in the material rather than the classification
system, i.e. crowd shot at the beginning or the end of a sport event.

7 Conclusion and Future Work

In this paper, a multi-stage decision-making system for sports video classification
was proposed. The first stage of the decision-making process detects application-
specific cues. The second stage attaches a label, from a set of prototypical views
of each sport, to each shot, using the information provided by the cue detection
stage. The functionality of this stage is realised by a decision tree classifier. The
third stage uses HMMs to process the sequence of view labels generated by the
decision tree. The output of this stage is a final decision regarding the identity
of the sport represented by the sequence, taking advantage of the temporal
context. We experimented with the proposed system using two setups of HMM,
four competing HMMs, one for each discipline, and a single HMM with each
node representing a sport. It was noticed from the experiments that using single
HMM delivered better results.

Our future plans include providing cues that deal with modalities other than
the visual ones. They are expected not only to improve the sports video cate-
gorisation performance but also help to detect highlights such as hockey goal,
etc. It is intended to use audio, speech and motion cues for this purpose.

Acknowledgements

This work was supported by the IST-2001-34401 VAMPIRE project funded by
the European IST Programme.

References

1. P. Chang, M. Han, and Y. Gong. Extract Highlights From Baseball Game Video
With Hidden Markov Models. In IEEE International Conference on Image Pro-
cessing (ICIP’02), 2002.



Temporal Post-processing of Decision Tree Outputs 503

2. A. Ekin, A. M. Tekalp, and R. Mehrotra. Automatic Soccer Video Analysis and
Summarization. IEEE Transactions on Image Processing, 12(8):796–807, July
2003.

3. Y. Gong, T.S Lim, and H.C. Chua. Automatic Parsing of TV Soccer Programs.
In IEEE International Conference on Multimedia Computing and Systems, pages
167 – 174, May 1995.

4. E. Jaser, J. Kittler, and W. Christmas. Building Classifier Ensembles for Auto-
matic Sports Classification. In Roli F Windeatt T, editor, Proceedings of the 4th
International Workshop on Multiple Clasifier Systems (MCS 2003), volume 2709
of Lecture Notes in Computer Science, pages 366–374. Springer-Verlag, June 2003.

5. E. Kijak, G. Gravier, P. Gros, L. Oisel, and F. Bimbot. HMM Based Structuring
of Tennis Videos Using Visual and Audio Cues. In IEEE International Conference
on Multimedia and Expo (ICME), volume 3, pages 309–312, July 2003.

6. J. Kittler, K. Messer, W. Christmas, B Levienaise-Obadia, and D. Koubaroulis.
Generation of Semantic Cues for Sports Video Annotation. In Proceedings of the
2001 International Conference on Image Processing (ICIP 2001), Thessaloniki,
Greece, pages 26–29, October 2001.

7. B. Levienaise-Obadia, J. Kittler, and W. Christmas. Defining Quantisation Strate-
gies and a Perceptual Similarity Measure for Texture-Based Aannotation and Re-
trieval. In In IEEE, editor, ICPR’2000, volume III, 2000.

8. J. Matas, D. Koubaroulis, and J. Kittler. Colour Image Retrieval and Object
Recognition Using the Multimodal Neighbourhood Signature. In D Vernon, editor,
Proceedings of the European Conference on Computer Vision LNCS, volume 1842,
pages 48–64, 2000.

9. K. Messer and J. Kittler. A Region-Based Image Database System Using Colour
and Texture. In Pattern Recognition Letters, page 1323 1330, 1999.

10. J. R. Quinlan. C4.5 : Programs for machine learning. Morgan Kaufmann, 1993.
11. Lawrence R. Rabiner. A Tutorial on Hidden Markov Models and Selected Appli-

cations in Speech Recognition. IEEE, 77(2):257–286, 1989.
12. P. Xu, L. Xie, S. Chang, A. Divakaram, A. Vetro, and S. Sun. Algorithms and

System for Segmentation and Structure Analysis in Soccer Video. In IEEE Inter-
national Conference on Multimedia and Expo (ICME), 2001.



A. Fred et al. (Eds.): SSPR&SPR 2004, LNCS 3138, pp. 504–511, 2004. 
© Springer-Verlag Berlin Heidelberg 2004 

A New Method of Polyline Approximation 

Alexander Gribov and Eugene Bodansky 

Environmental System Research Institute (ESRI) 
380 New York St., Redlands, CA 92373-8100, USA 

{agribov,ebodansky@esri.com} 

Abstract. Many methods of a raw vectorization produce lines with redundant 
vertices. Therefore the results of vectorization usually need to be compressed. 
Approximating methods based on throwing out inessential vertices are widely 
disseminated. The result of using any of these methods is a polyline, the verti-
ces of which are a subset of source polyline vertices. When the vertices of the 
source polyline contain noise, vertices of the result polyline will have the same 
noise. Reduction of vertices without noise filtering can disfigure the shape of 
the source polyline. We suggested a new optimal method of the piecewise linear 
approximation that produces noise filtering. Our method divides the source 
polyline into clusters and approximates each cluster with a straight line. Our op-
timal method of dividing polylines into clusters guarantees that the functional, 
which is the integral square error of approximation plus the penalty for each 
cluster, will be the minimum one. 

Keywords: vectorization, polyline compression, polyline approximation, shape 
analysis. 

1   Introduction 

Many methods of a raw vectorization produce lines with redundant vertices. There-
fore the results of vectorization usually need to be compressed. In additional to com-
pression, noise filtering usually should be done, because a noise caused by source 
document distortion, scanning, and binarization may be too big. 

Compression methods based on throwing out inessential vertices are widely dis-
seminated, maybe because of their simplicity [1-5]. The result of using any of these 
methods is a polyline, the vertices of which are a subset of source polyline vertices. If 
the vertices of the source polyline contain noise, vertices of the result polyline ob-
tained with compression will have the same noise. Reduction of vertices without noise 
filtering can disfigure the shape of the source polyline. So as we have mentioned 
before [6], compression methods have to be used cautiously. 

Pavlidis and Horwitz [7] suggested a method of the piecewise linear approximation 
that produces not only compression, but also noise filtering. The source polyline is 
divided by some vertices that we call “critical points” into polygonal sectors or clus-
ters. The method of least squares is later used for approximating clusters with straight 
lines. The main problem consists of finding the critical points. 

The «split and merge» method suggested by Pavlidis and Horwitz defines the 
minimum number of critical points such that the maximum deviation of approxima-
tion of each cluster with the straight line or the sum of integral square errors of each 
cluster is not more than a given threshold. The algorithm is suboptimal. 
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The vertices of the result polyline are intersections of adjacent approximating 
straight lines. These vertices do not necessary coincide with vertices of the source 
polyline. The threshold of approximation error controls the precision of approxima-
tion. The precision of the result polyline could be better than the precision of the 
noisy source line if a suitable threshold was selected. 

Our algorithm divides the source polyline into clusters and approximates each clus-
ter with a straight line similarly to the aforementioned algorithm. The technique of 
choosing critical points guarantees that the functional that is the integral square error 
of approximation plus the penalty for each critical point will be the minimum one. 

2   Problem Statement 

a. Let ip , where ni ,...,0= , are vertices of the source polyline P . Let decomposi-

tion vertices 
jqp  divide P  into the set of non-overlapping polygonal sectors, 

where ( )mjq j �,0, = , are the indices of source polyline vertices (see Fig. 1). 

The number of decompositions of P  into m sectors is 1
1
−

−
m
nC . The number of all 

possible decompositions of P  is 12 −n . 
 

 

Fig. 1. Decomposition of the source polyline P  into polygonal sectors. 

b. Approximates each polygonal sector jQ  with a straight line jL  minimizing inte-

gral square error 
jj qq ,1−

ε  (see Appendix 1). 

c. Let the measure of the error of the polyline approximation be a functional 

{ }( ) ∑
=

Δ⋅+=Δ
−

m

j
qq mqmF

jj
1

,1
,, ε  , (1) 

where Δ ( )0≥Δ  — is a penalty for each straight segment of the result polyline. 
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d. For a given Δ , let the optimal decomposition be the decomposition for which 
functional F  is minimal. Approximation precision depends on the penalty Δ . 
The smaller Δ  is, the more decomposition points will be found. If 0=Δ , all ver-

tices of the source polyline are decomposition points and 0=F . As ∞→Δ , the 
source polyline becomes one polygonal sector. 

e. After finding the optimal decomposition or critical points, polygonal sectors have 
to be approximated by optimal straight lines. Then, the intersections of the lines 
approximating the adjusted polygonal sectors should be found. The new polyline 

goes through these intersections ( )mjrj ,...,0, = . The beginning and the end of 

the new polyline are built as projections of the beginning and the end points of the 
source polyline to the first and last straight segments of the new polyline. 

3   Iterative Algorithm for Obtaining an Optimal Solution 

Let niPi ≤,  be polylines defined by the first i  straight segments of the source poly-

line P . 

Given that the optimal decompositions of 11,...,, PPP kk −  are known, we know the 

optimal (minimal) values of functional (1), the number of decomposition sectors 

),...,1(, kimi = , and the decomposition points ),...,1;,...,1(, i
i
s mskiq ==  for 

each of these polylines. 

Find the optimal decomposition of 1+kP . This task may be solved with an exhaus-

tive search. 

Let j
kM 1+  be a minimum value of the functional, when the last decomposition 

point of polyline 1+kP  is jp . Obviously, Δ++= ++ 1,1 kjj
j

k MM ε  and 00 =M . 

Let j
kM 1+  be minimal when the value of )0,...,1,(, −= kkjj  is equal to *j , or 

*

11
j

kk MM ++ = . 

The optimal decomposition of the source polyline will be built when 1−= nk . 

The computational complexity of this algorithm is )( 2nO , because the complex-

ity of the calculation of 1, +kjε  is )1(O  [7]. 

4   Optimization 

The described algorithm can be accelerated by the minimum estimation 21,
1
jj

kM +  of the 

functional j
kM 1+  for the case, when j  is located in the half-open interval [ )21, jj . If 

3
1

j
kM +  was found for some 3j  which does not belong to [ )21, jj , and 3

1
j

kM +  is less 
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than 21,
1
jj

kM + , then the beginning of the last polygonal sector for optimal decomposi-

tion cannot belong to [ )21, jj  and it is not necessary to analyze vertices located in-

side this half-interval. 

In Appendix 2 two minimum estimations were found 

Δ++= +−+ 1,1
,
1 21

21
kjj

jj
k MS ε  and 1,11

,
1 22

21
+−−+ += kjj

jj
k MK ε . 

Therefore 

1,11
,
1 221

21 },max{ +−−+ +Δ+= kjjj
jj

k MMM ε  . (2) 

The minimum estimation (2) essentially accelerates the algorithm because the last 
point of the optimal decomposition of a long line is usually located closer to its end 
than to its beginning. The optimized algorithm is described in Appendix 3. 

Fig. 2 compares the result of approximation obtained by suggested method and 
with a compression algorithm of Douglas-Peucker [1]. A regular decagon was used as 
ground-truth polyline. After densification, 1000 points were calculated. To obtain the 
source polyline, white noise was added to the coordinates of these points.  

 

 
a) b) 

 

The ground-truth decagon 
The source polyline (densified and noisy) 
The result of approximation 

Fig. 2. The result of approximation of the regular decagon with a) the suggested method and 
b) Douglas-Peucker compression [1]. 

Fig. 3 shows the dependence of the optimal value of functional (1) on penalty Δ , 
and Fig. 4 shows the dependence of the number of polygonal sectors on penalty Δ  
for the optimal decomposition of the source polyline. The horizontal segments in 
Fig. 4 show intervals of Δ , inside which the optimal number of segments are con-
stant and decomposition vertices are not changed. The interval of Δ , corresponding 
to the result polyline with 10 segments, is the longest (in logarithmic scale) with the 
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exception of a singular case (the end interval). It is evidence of the stability of the 
algorithm to variations of Δ . 

5   Conclusion 

The goal of the article is to build an algorithm of filtering random errors of polylines. 
Suggested algorithm approximates the source noisy polyline with the new one. The 
vertices of the new polyline do not necessary coincide with vertices of the source 
polyline. The algorithm is based on the minimization of the functional that is the sum 

 

Fig. 3. Dependence a value of the functional (1) on the penalty Δ . 

 

Fig. 4. Dependence the number of polygonal sectors on the penalty Δ . 
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of the integral square error of approximation and a penalty Δ  for each vertex of the 
result polyline. 

Because the algorithm filters random noise the result polyline describes the shape 
of the ground-truth polyline better than the noisy source polyline. Therefore our algo-
rithm is good for recognition of critical points. 

The number of vertices of the result polyline usually is less than of the source poly-
line. Therefore the suggested algorithm can be used for compression. In the article we 
do not discuss the problem of stability of result polyline vertices found as intersec-
tions of straight lines. One more problem that was not analyzed here is selection of 
value of penalty Δ . Meanwhile correctness of selection of Δ  can be evaluated only 
by the operator. 
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Appendix 1 

The parametric description of the source line is ( ) ( )( ) [ ]Tttytx ,0,, ∈  — where 

( ) ( )( )tytx ,  are the coordinates, t  is the distance between the beginning and the 

current point of the polyline measured along the polyline, T  is the polyline length. 

Let ( ) ( ) ( ) ( )( )∫ ++=
2

1

21

2,
, sincos

j

j

l

l

C
jj dtCtytx ααε α  be an integral square error of 

approximation of the polygonal sector, located between 1j -th and 2j -th vertices of 

the source polyline, with straight line 0)sin()cos( =+⋅+⋅ Cyx αα . 

Let 
21, jjε  be the minimum integral square error, i.e. { }C

jj
C

jj
,
,

,
, 2121

min α

α
εε =  

The optimal approximating straight line is defined with the next ( )αcos , ( )αsin , 

and C . 



510      Alexander Gribov and Eugene Bodansky 

( )
⎪
⎪

⎩

⎪
⎪

⎨

⎧

<
+

−

≥
+

=

yyxx

xy

yyxx

xy

xy

VV
V

VV
V

V

,
4

,
4

2

cos

22

22

ω
ω

ω
α , 

( )
⎪
⎪

⎩

⎪
⎪

⎨

⎧

<
+

≥
+

−

=

yyxx

xy

xy

yyxx

xy

VV
V

V

VV
V

,
4

2

,
4

sin

22

22

ω

ω
ω

α , 

( ) ( )
12

sincos

jj

yx

ll

VV
C

−
⋅+⋅

−=
αα

, 

where jl  is the distance between the beginning of the polyline and j-th vertex meas-

ured along the polyline, 

( ) yyxxxyyyxx VVVVV −++−= 22 4ω , 

( )∫=
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x dttxV , ( )∫=
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The minimum integral square error equals [7]: 

( ) ⎟⎠
⎞⎜⎝

⎛ +−−+= 22
2
1

, 4
21 xyyyxxyyxxjj VVVVVε . 

Appendix 2 
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These inequalities can be proven with two obvious expressions: 

njjjjjjjjj ≤≤≤≤∀≤+ 321,,, 0
313221

εεε  and njjMM jj ≤≤≤∀≤ 210
21

. 

Appendix 3: The Fast Algorithm of Optimal Decomposition  
of the Polyline 1+kP  

1. Calculates the functional Δ+=Δ++= ++ kkkk
current
k MMM 1,1 ε  supposing 

that a new decomposition point is the vertex of the source polyline with index 

kjcurrent = . 

2. Calculates with expression (2) the minimum evaluation of the functional k
kM ,0

1+  

if the decomposition point is located inside the half-interval [ )k,0 . 

3. If current
k

k
k MM 1

,0
1 ++ < , then k

kM ,0
1+  and [ )k,0  are sent to the priority queue. 

4. While the priority queue is not empty 

a. Takes from the priority queue the request eb
kM ,

1+ ,[ )eb,  with the minimum 

value. 

b. If current
k

eb
k MM 1

,
1 ++ ≥ , the request is not processed and end of algorithm. 

c. If Nbe <−  (in our case 8=N )  
then a loop: for j  from b  till 1−e . 

• Calculates j
kM 1+ . 

• If current
k

j
k MM 11 ++ < , then jjcurrent = , j

k
current
k MM 11 ++ = . 

Else splits [ )eb,  into two half-intervals [ )jb,  and [ )ej, . 

• Calculates with expression (2) the minimum evaluations of the functionals 
jb

kM ,
1+  and ej

kM ,
1+ , suggesting that the new decomposition point is located 

first in [ )jb,  and then in [ )ej, . 

• If current
k

jb
k MM 1

,
1 ++ < , then jb

kM ,
1+  and [ )jb,  are sent to the priority queue. 

• If current
k

ej
k MM 1

,
1 ++ < , then ej

kM ,
1+  and [ )ej,  are sent to priority queue. 

At the end of the algorithm, currentjj =*  and current
kk MM 11 ++ = . 

Splitting a half-interval can be done in different ways. One of them is dividing by 
two. 
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Abstract. Many attempts have been made to represent families of 2D
shapes in a simpler way. These approaches lead to so-called structures
as the Symmetry Set (SS) and a subset of it, the Medial Axes (MA).
While the latter is commonly used, the former is still in the mathematical
research stage. One reason for this is that in contrast to the SS, the
MA can be computed efficiently and fast, and yields one connected
component for a closed shape.
In this paper a natural complement of the symmetry set, called the Anti-
Symmetry Set (ASS), is used to connect components bearing the full
richness of the symmetry set. Secondly, new ways are presented to vi-
sualize these sets. One uses the radius of the describing circle as extra
dimension, the other, the so-called pre-Symmetry Set (pre-SS), uses the
parameter space. Example shapes show the extra information carried in
the ASS and the pre-SS in determining the special points on the SS as
well as revealing the structure of the SS in more detail. They are also
capable of distinguishing between different shapes where the SS and the
MA in some cases fail.

1 Introduction

In 2D shape analysis the simplification of shapes into a skeleton-like structure
is widely investigated. The Medial Axis (MA) skeleton [4] is commonly used,
since it can be calculated in a fast and robust way. Many resuls on simplification,
reconstruction and database search are reported. The MA is a member of a
larger family, the Symmetry Set (SS), exhibiting nice mathematical properties,
but difficult to compute and yielding distinct branches [6, 7]. To overcome the
latter we introduce the anti-symmetry set (ASS), resulting in a connected set.

Secondly, while the 2D visualization of theMA skeleton is unambiguous due
to its limiting nature, the SS may give rise to intersecting curves that sometimes
occur due to projections. Together with the need for augmenting the skeleton
with information of the radius / scale / distance from the boundary at which
it occurs, the need for a representation in a space with an extra dimension is
evident - something that was already known for the skeleton [4] and used in
the so-called Shock Graph method [15]. It has been mentioned by Wright et al.
[17], but not been used afterwards. Another way of representation is obtained

� This work is part of the DSSCV project supported by the IST Programme of the
European Union (IST-2001-35443).
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when the SS is considered in the parameter space, yielding the so-called Pre-
Symmetry Set. A reason for using the SS instead of the MA is that the SS can
be caught in a linear data structure, as presented elsewhere[12], in contrast to
the graphs needed for representation of the MA.

We will first give a short overview on theMA and the SS and then introduce
the ASS and new ways for visualization.

2 Some Background Theory on Shapes

In this section we give the necessary background regarding properties of shapes,
the Medial Axis, the Symmetry Set, labelling points on these sets and give an
example to clarify the definitions.

Let S(x, y) = {(x, y)|L(x, y) = 0} denote a closed 2D shape. Then N (x, y) =
(Lx, Ly)(L2x+L2y)

−1/2 denotes its unit normal vector, and κ(x, y) = −(L2xLyy −
2LxLyLxy+L2yLxx)(L2x+L2y)

−3/2 its curvature. The evolute E(t) is given by the
set S+N/κ. Even if the curve is smooth and differentiable, the evolute contains
non-smooth and non-differentiable points, viz. those where the curvature is zero
or takes a local extremum, respectively.

2.1 The Medial Axis and Symmetry Set

The Medial Axis (MA) is defined as the closure of the set of centers of circles that
are tangent to the shape at least two points and that contain no other tangent
circles: the are so-called maximal circles. The Symmetry Set SS is defined as
the closure of the set of centers of circles that are tangent to the shape at least
two points [6, 5, 8, 7]. Obviously, the MA is a subset of the SS [7].

To calculate these sets from above definition, the following procedure can be
used: Let a circle with unknown location be tangent to the shape at two points.
Then its center can be found by using the normal vectors at these points: it
is located at the position of each point minus the radius of the circle times
the normal vector at each point. To find these two points, the location of the
center and the radius, do the following: Given two vectors pi and pj (right, with
i = 1 and j = 2) pointing at two locations at the shape, construct the difference
vector pi − pj. Given the two unit normal vectors Ni and Nj at these locations,
construct the vector Ni + Nj . If the two constructed vectors are non-zero and
perpendicular,

(pi − pj).(Ni +Nj) = 0, (1)

the two locations give rise to a tangent circle. The radius r and the center of the
circle are given by

pi − rNi = pj − rNj . (2)

2.2 Labelling Points

It is known that the MA in itself carries insufficient information for represent-
ing and reconstruction a shape, since different shapes can yield the same MA.
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Therefore additional information can be added to theMA and used, as proposed
by various authors [13–16]. It has been shown by Bruce et al. [6] that only five
distinct types of points can occur for the SS, and by Giblin et al. [8, 7] that they
are inherited by the MA. An A21 point is the “common” midpoint of a circle
tangent at two distinct points of the shape. An A1A2 point is the midpoint of
a circle tangent at two distinct points of the shape but located at the evolute.
An A21A

2
1 point is the midpoint of two circles tangent at two pairs of distinct

points of the shape with different radii. An A31 point is the midpoint of one circle
tangent at three distinct points of the shape. An A3 point is the midpoint of a
circle located at the evolute and tangent at the point of the shape with the local
extremal curvature.

Based on the behaviour of the radii one can impose vectors on the MA
denoting increasing radius, for example. This has been done in the so-called
Shock Graph approach by Siddiqi et al. [13–16]. The MA or the SS together
with the radius function is sufficient to reconstruct the shape [7].

3 Beyond the Symmetry Set

In this section we present three ways to add extra information to the SS based
on Eqs. (1-2). The first is straightforward: use the radius of tangent circle to
each set, as described in the previous section as an extra dimension. The second
method is an extension of the SS, called the anti-symmetry set (ASS). Thirdly,
the pre-symmetry set (pre-SS) will be introduced as analysis and visualization
tool. We focus on the SS, since the MA is only a subset of it.

3.1 The SS Radius Space

Having incorporated the radius function upon the SS one has extra information.
This information can be exploited in much more detail when the radius is con-
sidered as an extra dimension. First attempts were reported in [17], albeit only
on a spline approximation of the shape. Using this dimension, the 1D curves in
the 2D plane become 1D curves in 3D space. In this 3D space the SS curves
reveal information that does not appear in a trivial manner in the 2D plane. For
example, at an A21A

2
1 point of the SS, two curves are intersecting in 2D, but

obviously not in 3D, since two different radii were involved. At an A31 point, in
contrast, three curves still intersect in the 3D space.

On the other hand, points at the SS that arise from locally minimal or
maximal circles are clearly visible as local extrema of the 3D curve with respect
to the radius.

3.2 The Anti-symmetry Set

Another extension is the Anti-Symmetry Set (ASS). It is defined as the set
of points satisfying Eq. 1, but not being part of the symmetry set. Figure 1b
clarifies this.
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The points p1 to p4 have in common that they give rise to points on theMA
or the SS in specific pairs. For example, p1and p2 define a MA (and SS) point
and p1and p4 a SS point. The other combination p1 and p3 satisfies Eq. 1, but
is not part of the SS: they are part of the ASS.

The anti-symmetry set appeared in the early 1990’s due to Blake et al. [3, 2]
in the field of robotics. There they considered this set in order to find an optimal
finger position for a two finger grasp. Another – perhaps less striking – name is
due to Giblin [11]: the Mid Parallel Tangent Locus, describing exactly what it
is.

3.3 The Pre-symmetry Set

One way to visualize the locations the sign changes of Eq. 1 is by taking all
points on the shape pair wise and plot these sign changes in a diagram. This was
used by Holtom [11] and Giblin and Sapiro [9, 10, 1] in a different context (affine
symmetry sets). Following their line of reasoning this diagram should be called
the pre-SS. Since it consists of non-intersecting lines for the SS it can act as a
linear data structure describing the shape. In combination with the ASS, same
intersections occur as with the SS [12]. In the next section we will discuss the
pre-SS and its properties in more detail.

4 Example Shapes

In this section we deal with some example shapes, staring with the simplest
one: an ellipse. Since the ellipse is highly symmetric, some results may seem
trivial, while others give a false intuition. We therefore continue with two other
examples: a “cubic oval” [5] and a concave shape.

4.1 Ellipse

The ellipse L(x, y) = x2 + 4y2 − 4 = 0 has N (x, y) = (x, 4y)(x2 + 16y2)−1/2,
and κ(x, y) = −32(x2+4y2)(4x2+64y2)−3/2, with extremal values 1/4 and 2 at
the four locations (0,±1) and (±2, 0), respectively. The evolute consists of four
parts, joined at cusps at the locations (0,±3) and (±3/2, 0).

To find the MA with Eq. 2 we have two points on the shape with y1 = −y2
and x1 = x2 and ỹ1 = ỹ2 = 0 and x̃1 = x̃2 for (x̃, ỹ) a point on the MA. Then
y1− 4ry1/

√
x2 + 16y21 = y2− 4ry2/

√
x2 + 16y22 yields r = −

√
x2 + 16y22/4. To-

gether with y1,2 = ±
√
4− x2 this gives r = −

√
16− 3x2/4. Then the points

on the MA are given by (x̃, ỹ, r) = (x + rN, y + rN, r) = (x − x/4, y −
4y/4,−

√
16− 3x2/4) = (3x/4, 0,−

√
16− 3x2/4). Note that x ∈ [−2, 2], so x̃ ∈

[−3/2, 3/2]. The radius varies from −1/2 at the endpoints to −1 at the origin.
So it has a MA formed by a straight line along the x-axis with its endpoints at
the cusps of the evolute within the shape: (±3/2, 0).

Similarly, one can find the expression for the SS to be the curve above
combined with the curve (x̃, ỹ, r) = (0, 3y,−

√
4 + 12y22), which varies from

(0,−3,−4) via (0, 0,−2) to (0, 3,−4), since y ∈ [−1, 1], as shown in Figure 1c.
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Fig. 1. a) The ellipse, its evolute and itsMA (horizontal line) and SS (both lines) in
2D. b) Combinations of points contribute to theMA, SS, orASS. c) 3D representation
of the SS. d) The SS and ASS in 3D.
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Fig. 2. The pre-SS. Left to right: all zerocrossings, the ASS part and the SS part.

It therefore has a SS formed by the MA, and a straight line along the y-axis
with its endpoints at the cusps of the evolute outside the shape: (0,±3). So at
the origin in 2D we have an A21A

2
1 point, with radii 2 and 1, see Figure 1a.

The ASS points are found as those points with (x1, y1) = (−x2,−y2) and
with radii r =

√
x21 + y21), varying between 1 and 2. This is identical to the two

radii of the SS at the planar origin. The pre-SS and the parts of it determining
the SS and the ASS are shown in Figure 2 from left to right. The diagrams are
symmetric in the diagonal pi, pi. The dark lines represent the zero crossings of Eq.
1. At intersections of the diagonal and a zero crossing, a branch of the SS starts in
an A3 point. Since the shape is closed, the lines continue through the boundaries:
the square represents a torus, since the starting point is arbitrary. Therefore the
SS part contains four intersections with the diagonal, corresponding to the four
cusps of the evolute. The two lines forming the SS of the square in the left
image constitute one branch of the SS. The long line together with the point at
the origin (being a A3 point) forms the second part of the SS. The ASS image
connects the curves. The intersections of the SS and the ASS are local extrema
w.r.t. radius of the SS, see Figure 1d.

4.2 The Cubic Oval

Firstly the closed part of a cubic oval given by y2 = 2bxy + a2(x − x3), with
a = 1.025 and b = 0.09 is taken. Then six extrema of the curvature occur,
while the curvature doesn’t change sign and the shape is thus convex [6]. The



On Extending Symmetry Sets for 2D Shapes 517

0

0.25

0.5

0.75

1

x

�0.4

�0.2

0

0.2

0.4

y

�1

�0.75

�0.5

�0.25

t

0

0.25

0.5

0.75

x

�1

�0.75

.5

0

0.25

0.5

0.75

1

x

�0.4

�0.2

0

0.2

0.4

y

�1

�0.75

�0.5

�0.25

t

0

0.25

0.5

0.75

x

�1

�0.75

.5

Fig. 3. Evolute of the cubic oval with the SS (a )and the ASS and the SS (b) in 2D.
Radius space with the SS (c) and the ASS and the SS (d).
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Fig. 4. The pre-SS of the cubic oval. Left to right: all zerocrossings, the ASS part and
the SS part.

extra extrema of the curvature arise from a perturbation of the shape [5]. Since
they alternate along the shape, a maximum and a minimum are created. As a
consequence, the evolute is self-intersecting. Furthermore, the evolute consists
six cusps. A direct consequence of this in its turn is that a new branch of the
SS is created, since these branches always start in the cusps. This branch must
be essentially different from the two other branches, since the original branches
start in cusps that both arise from either local maxima of the curvature, or
minima. These SS curves essentially need to have a local extremum with respect
to the radius in 3D, as in Figure 1c. The newly created branch, however, has a
minimum and a maximum as endpoints, so its behaviour in 3D must be different.
The behaviour of the pre-SS is also different: a new branch implies a new “line”
in the pre-SS. Since the perturbation is a local effect, not all points on the shape
are involved in creation the new branch. The “line” in the pre-SS thus must be
a closed loop. This is indeed what occurs in Figure 4.

The projection of the SS and the ASS with the SS, Figure 3, shows that
again three curves joining pair wise in cusps for the ASS. The newly created
branch shows some extra behaviour, as shown in Figure 5a. As clearly visible,
the new branch bounces twice to the evolute, thus containing two A1A2 points.
In the pre-SS (Figure 5b) these points are visible as the local extrema in vertical
or horizontal direction of the closed loop (which has four, but two are due to the
symmetry along the diagonal) due to the same bouncing.

Taking a closer look at the pre-SS, one can see that the curve starting top-left
also contains two pairs of local extrema. Consequently, one of the two original
curves also contains two A1A2 points. This could also have been seen from the
SS shown in Figure 5a: one curve traverses the evolute, which can only occur
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Fig. 5. Close up of the cubic oval with its evolute and symmetry set. Pre-SS of the
cubic oval, with special points (see text).

by a double A1A2 combination. A way to get a grip on this is by the following:
Consider the manifold making the swallowtail, with the A3’s on the corners. The
symmetry sets walks along the manifold, starting from one A3. Then it comes
to the “end” of the manifold and continues its walk along the down-under part
until it comes again to an end, where it goes on along the upper part until it
reaches the second A3 corner point. The same holds for the part of the symmetry
set from which this new part originated1.

As a result of the creation the new and old curve intersect in a A31 point,
where a circle is located tangent to three different points of the shape. Here three
branches of the SS intersect. This A31 point is also visible, albeit a bit hidden,
in the pre-SS. Figure 5b shows the pre-SS with all the special points: the A1A2
points as the local extrema in horizontal or vertical direction, the A3 points at
the intersection of a curve with the diagonal, the local extrema on the 3D SS
curves as the intersections of the SS and ASS zero crossing curves, and the
A31 as the set of points linked by the lines. Only at a A31 point there are three
points in the pre-SS with the combination (p1, p2), (p1, p3), and (p2, p3) (and, of
course, its diagonal symmetric counterpart). The 3D visualization of the ASS
and the SS, Figure 3d, shows again this all in one plot.

4.3 The Concave Case

As a more complicated concave shapes the one given by the equation (x2+ y2+
a2)2 = b2 + 4a2x2, with a = 1.99 and b = 4 is taken . However, this example
shows that the pre-SS for solely the SS part fails in determining the shape, see
Figure 7: it has the same structure as the ellipse. This difference becomes clearer
in Figure 6: The SS contains two straight lines, just as for the ellipse, albeit in
this case one line “goes via infinity”, since κ = 0, causing the two crosses. In
3D the distinction between the two branches on each side going to infinity is
clearly visible (Figure 6c). The upper one corresponds to a ’negative’ radius, i.e.
• This is the result of unfolding [5] the A• that appeared when the perturbation held
one double (non-generic) extremum, i.e. the transition from 0 to 2 new extremal
values of the curvature of the shape.
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Fig. 6. Evolute of the concave shape with the SS (a) and the ASS and the SS (b).
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Fig. 7. Left to right: The pre-SS, the ASS part and the SS part.

the radius related to a normal pointing outwardly. So again in the SS and ASS
combination, the local extrema of the positive radii branches are connected. Note
that the part along the x-axis contains three extrema.

5 Summary

In order to gain sufficient information from the MA or the SS additional in-
formation is needed. In this paper we extended the SS with information of the
ASS, the pre-SS and the visualization using the describing circle as an extra
dimension. The representations in parameter space and in 3D space carry more
information than the commonly used 2D visualization. In 3D possible ambigui-
ties are avoided, while the use of the ASS guarantees a connection between the
local extrema of the main positive radii branches, which are the main curves of
symmetry. Next, we showed that special points along the SS can also be found
in the pre-SS, that can be used as a good indicator of the complexity of the
SS and as localization tool for determining special points on it. Using these
extensions of the SS, one is able to catch the SS in a linear data structure [12],
dependent on the 1D curves in the pre-SS, in contrast to the graphs needed for
representation of the MA.
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Abstract. The shape is one of most important feature for characterising an ob-
ject. However, most shapes that are expressed with primitive uniform features 
have difficulty reflecting their logical and structural properties. In this paper, 
we propose a structural analysis scheme for the shape feature structured by 
logical properties, as well as a similar retrieval method. A shape is represented 
as a set of curve segments with a specific pattern. As a fundamental unit, a 
curve segment has adaptive features based on the logical property of its pattern. 
The relationship information of curve segments is expressed as a structural fea-
ture. We also use it as a feature for “coarse-fine” matching because our shape 
features have global characteristics as a structural feature and local characteris-
tics as an adaptive feature of shape. Our experiments show that structural-
adaptive features through logical analysis result in effectively classifying 
shapes according to their cognitive characteristics. Various experiments show 
that our approach reduces computational complexity and retrieval cost. 

1   Introduction 

Many information retrieval systems use images are faced with the challenge of repre-
senting and retrieving images. These systems have domain-dependent features in 
terms of retrieval or show improper results. This is because most researches have 
represented image as a primitive feature. Most primitive features express image as a 
low-level feature and numerically define the correlation between points. Researchers 
who have studied content-based retrieval systems define image as data with rich con-
tent. They classify features that compose image into a primitive feature and a logical 
feature[1][2]. A logical feature connotes a complex content, including semantic in-
formation. In [3], content is defined as “an understanding of the semantics of ob-
jects.” Therefore, features that represent rich contents of an image must have a logical 
property in order to properly reflect semantic contents. In this aspect, the shape fea-
ture among many features that represent image has been widely used by virtue of its 
ability to recognize similar images.  
                                                           
*  This research has been supported by Korean Science and Engineering Foundation No. R01-

2002-000-00298-0 
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In this paper, we analyze shape according to the composition of its structural unit 
with logical properties. Fundamental units with adaptive features and structural rela-
tions between these units represent the logical contents of shape. We use a curve 
segment as a fundamental element to express the appearance of a shape. Structural 
and adaptive features are extracted through a logical and structural analysis using a 
curve segment. The structural feature as a global feature is used as a coarse-matching 
feature because it contains pattern and relationship information of curve segments 
comprising the whole shape. The adaptive feature, on the other hand, is a local fea-
ture. Using this feature produces correct results because of its ability to reflect spe-
cific geometrical properties of each pattern segment. Our experiments show how 
retrieval cost is reduced when conducting a search using these structural-adaptive 
features.  

This paper is organized as follows: In chapter 2, we will explain a logical analysis 
scheme of the shape. In chapter 3, we will explain extraction methods of structural 
and adaptive features. A matching process and similarity function is explained in 
chapter 4. Experiment results and performance are shown in chapter 5. Related works 
are summarized in chapter 6, and the conclusion is drawn in chapter 7. 

2   Structural Analysis of Shape 

We define a shape as a set of curve segments with a pattern. Through preprocessing, 
we extract the necessary primitive feature in order to define the logical property and 
fundamental unit. Using this, we structure shape. 

Preprocessing 
We extract contour points from image’s object to represent shape. However, because 
the size of contour points is too large, we use an adequate number of interest points 
that reflect a characteristic of a shape that is extracted from contour points. Interest 
points are aligned clockwise and described as a set  },....,,{ 21 npppS = , where an in-

terest point is denoted by 
ip  and subscript n  is the index number of the aligned in-

terest point. A 
cp  is the gravity point of a shape. Two features are extracted from 

these interest points: θ and α feature.  

• ipfθ =)(   θi  = 
kc ppp1∠   , n     1 ≤< k   

• 
ipfIA =)(   αi = 

11 +−∠ iii ppp , 360        0 〈〈 iα  

In our work, a curve is separated using α  feature of interest points that comprises 
a concave part. The separated segment is defined as curve segment, 

}180)(),(    ,|{ >≤≤= ieisi pfIApfIAieiispCS  

If CS includes two interest points, it becomes a concave segment. CS merges with 
the next CS into the new CS, if the next CS is also a concave segment. CS is a fun-
damental unit for the structured analysis of a shape. 
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Structure of Shape 
Curve segments have specific patterns according to logical property. Logical proper-
ties are characteristics that logically define the curve pattern of CS. We redefine CS 
with logical properties as PS(Pattern Segment), and we generate PSS(Pattern Seg-
ment Sequence) as our shape feature to represent the structure and characteristic of 
shape. The logical properties of CS are expressed as adaptive features. The relation-
ship between them is defined as follows: 

 

• Shape S = PSS  
• PSS = {PS} + structural features 
• PS = CS + pattern type (with adaptive features that reflect logical properties by 

pattern type) 
 

A CS has two logical properties: convex/concave property and turning property. 

Definition 1. Convex/Concave Property. If interest points included in CS are all 
concave interest points or convex interest points, we define this CS with con-
vex/concave property. Therefore, it is 180)( >∀ kpfIA or 180)( <∀ kpfIA , when 

CSpk ∈  and iekis << . 

Turning property means that CS changes direction or goes around a specific cen-
ter.  

Definition 2. Turning Property. Let CS be a sequence of two CS: 
1CS =  

},,...,{ mis pp  },...{2 iem ppCS = , where CSpm ∈ . One of them is CS with conver 

property and the other is CS with concave property. We define this CS as one with 
turning property if MBR(Minimal Boundary Rectangle) generated from convex CS 
overlap with MBR generated from concave CS. 

PS is CS that has a specific pattern. First, CS is classified into either a concave 
curve segment or convex curve segment according to definition 1. Then, a turning 
curve segment is classified according to definition 2. The PSS is thus defined as 

}1      ,,,|{ siaflistsflistptPSPSPSS ii ≤≤>=<=  }1  si ≤≤  where, pt  is a pattern type, sflist  

is structural featuress, and aflist  represents adaptive features of PS. PSS is stored in a 

database where information of interest points are saved. 

3   Features Extraction of Pattern Segment 

PSS has structural and adaptive features. PS that is an element of PSS shows a geo-
metrical property of the partial curve to compose a shape through adaptive features.  

Structural Features 
Related information between PSs is used in order to compare the whole structure of 
shape. The α  feature of interest point that divides adjacent PSs is simply used as a 
structural feature in our work. However, another shape is made by case even if they 
have the same α  feature. The (a)(b) of Figure 1 shows such an example. 
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(a)            (b)                    (c)                (d) 

Fig. 1. (a) original shape, (b) an inner angle is the same as (a), but is a different shape. (c) origi-
nal shape, (d) appearance of the curve is the same (c), but has a different scale ratio. 

When a set of curves is compared, its structural feature will be reflected because 
the difference in the shape depends on the size difference even if the adjacent curves 
are similar to each other (Fig.1 (c)(d)). As explained above, when the pattern type of 
PSS of two shapes being compared is the same one, its structural features are used to 
calculate the structural difference of the shape.  
 

• α  feature of a PS’s last interest point, distα  - Because this feature is most simple 
feature to represent relationship between adjacent PSs, we use it when measuring 
structural similarity.  

• Pattern range, pr  -The start base angle ( sa ) and end base angle ( ea ) features are 

appended in order to solve the problem that α  feature of two shapes is the same 
but appear to be different (Fig.1 (a)(b)). The start base angle is 

ieisis ppp 1+∠  and 

the end base angle is 
isieie ppp 1−∠ .  

• Size ratio of PS, sr  - To solve problems such as (c) and (d) of Fig. 1, we extract 
the proportion of a PS to whole shape. 

Adaptive Features 
Adaptive features are features that reflect the logical and geometrical properties of 
each PS. They are called “adaptive features” because each of the different features 
adequately reflects the property of PS and is used in each of them. Representative 
adaptive features are as follows: 

 

• Average of α  feature, αcc  - This feature represents the degree of circularity.  
• Eccentricity e  - This represents the eccentricity of the polygonal segment.  

)),((  ,2/)(   ,
1

1
kieis
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)/( llengslengslenge +=  

(1) 

A function ),( pLdp  return the length of perpendicular line from point p to line 

L . If e  = 0.5, the MBR of the segment is almost a regular polygon. If e  > 0.5, it will 
appear as an elongated segment pointing right to left. Otherwise, it will appear as an 
elongated segment pointing upwards. 

• Turning angle ta  - A ta  is calculated from PS with partial or global turning prop-
erties. This feature extracts MBR from the concave segment of PS with a turning 
property. The center points of turn and turning angle are extracted from this MBR.  



Structural Analysis and Matching of Shape by Logical Property      525 

4   Matching 

Similarity retrieval is executed using PSS. First of all, we filtered shapes that are most 
similar according to the structural information of PSS in order to reduce search cost. 
Similarity costs of structural and adaptive features are combined to calculate an inte-
grated similarity cost.  

Pattern Segment Matrix 
For structural matching, the PSS feature of shape D in the database is compared with 
query shape Q. A Pattern Segment Matrix (PSM) is generated in order to find a com-
parably similar segment sequence. PSM expresses a value to represent the identity of 
pattern types between the PSSs of two shapes as elements of the matrix: 

),( 
     ..   ,0

..   ,1
  ’ DPSSDPSQPSSQPS

ptDPSptQPS

ptDPSptQPS
valuesM cr

cr

cr
rc ∈∈

⎩
⎨
⎧

≠
=

=  

PSS of Q (QPSS) and PSS of D (DPSS) are used to represent the row and column 
axis of the matrix, M. After generating the matrix, we test whether the value of 1 
continuously appears in a clockwise direction if M’s value is 1. Again, we test the 
PSM made with QPSS, which was generated in reverse to find the symmetric shape. 
CSP(Candidate Similar Pattern sequence) are sequential segments with a similar 
pattern type between Q and D.CSP represent PSs with similar pattern  in a diagonal 
direction in PSM. The CSP is as },,|{ >=<= slengsdsqCSPCSPCSP ii

 where, 

sq stands for index r of QPSS, the starting point of sequence, and sd is c  index of 

DPSS, and sleng is length of the sequence. 

Similarity Cost 
The rCSP , the segment sequence most similar to the shape of query and shape of 
database, is selected from PSM. The rCSP  is a CSP that is selected due to structural 
matching.  

),,(    ),3/)(( iiiiiii CSPsrprdistsrprdistMAXrCSP ∀∈++= αα  (2) 

Among the CSP, we select rCSP  with a maximum similarity value between struc-
tural features. The adaptive features of two PSs included in rCSP are compared. 
PtDist is the distance between adaptive features of two PSs. A similarity of adaptive 
features extracted according to segment pattern is calculated using Euclidian distance. 
The total similarity cost is defined as 

)(                      

) (
2

)(
   

aturesAdaptivefeDist

featuresStructuralDist
DrQr

SimCost

×

×+=  (3) 

In (3), if value of ) ( featuresStructuralDist exceeds 0.8, then its value is 1. The Qr  

and Dr  are the ratios of PSs belonging to rCSP  in the whole shape.  
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5   Experiments 

The feasibility of structured analysis based on the logical characteristic of a shape and 
the utility of its adaptive features can be verified through experiments. For these, we 
use two test databases: 1,100 shapes from SQUID and 216 shapes selected from 
MPEG-7 test database. A search is then carried out with QBE. 

5.1   Experimental Setup and Results 

We have developed a prototype system with MS Visual C++ 6.0, and Oracle 8i.          
Figure 2 shows a block diagram of our prototype system. 

 

 

Fig. 2. Block Diagram of our Prototype System. 

 
 

      Fig. 3. Classified Shapes.             Fig. 4. Query Results. 



Structural Analysis and Matching of Shape by Logical Property      527 

Figure 3 shows a retrieval result using only the PSS and logical properties from 
SQUID data. The global turning feature of the shapes in the second row of Figure 3 is 
applied. This retrieval result is the same as results produced by humans. Figure 4 is a 
result from the second test database, which has similar candidate shapes of partially 
various transformations that are highly similar. On an average, the extracted features 
are as follows: For SQUID, contour point is 693, interest points are 22 and PS is 8. 
For the second database, contour point is 878, interest points are 23 and PS is 7. 

5.2   Performances 

We complete a performance evaluation of shape features with features that are used, 
such as storage cost and feature extraction cost. We then compare our scheme with 
some representative methods such as the Grid Based Method and the Fourier Descrip-
tors Method in [4]. 

Table 1. Storage Cost and Feature Extraction Cost Comparison. 

Criteria Grid Based Method 
Fourier Descriptors 

Method 
Ours 

Storage 
cost  

2*((mj/gn)2)/8+8 8 * fn 13 * m 

Extraction 
cost 

To find the major axis 
O(N2) 
To find the minor axis 
O(N) 
To rotate and scale O(N) 
To generate a binary num-
ber O(N3) 

To find the centroid 
O(NlogN) 
To find all radii and 
compute FD coeffi-
cients O(r2) 
To generate signature 
O(r) 

To extract the inter-
est point O(NlogN) 
To segment PSS 
O(m) 
To extract struc-
tural-adaptive fea-
tures O(m) 

 
In Table 1, mj is the major axis size and gn is the grid cell size for the grid-based 

method. The fn is the number of Fourier coefficients and r is the number of radii for 
the Fourier Descriptors Method. In our scheme, m is the number of interest points. 
Our scheme shows better performance from the point of view of feature extraction 
cost. This is almost the same as the generation time of TPVAS in [4]. Tables 2 and 3 
show computation cost to prepare internal data for searching and the space require-
ment to use in each searching step. 

Table 2. Computation Cost.   Table 3. Used Features and Size. 

 

Step Cost 
To make Pattern 
Matrix 

O(s2) 

To make CSPs O(s2) 

To generate rCSP O(cs) 

Search step Used Features and Size 

Structural  Pattern type feature : 6 bit * 
s 
Structural feature : 26 bit * s 

Adaptive Adaptive features : average 9 
byte * s 
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In Tables 2 and 3, s is the number of a curve, and cs is the number of CSP. On the 
average, s is such a small number that it is about 1/3 of interest points. Our scheme 
has a merit to search with only a small quantity of structural features. We analyzed 
how search cost can be decreased on several representative query set for the second 
database.  

 

Fig. 5. Search Space Comparison Graph. 

Query set Q1 is queries that use shape data, which are then transformed by rota-
tion, symmetry and scaling to the same shape. Query set Q2 is queries that use shapes 
with 2 or 3 PSs. Query set Q3 is queries that use shapes with more than 7 PSs. We 
then sort the data results according to similarity in value. The digit numbers on the y-
axis refer to the number of images. Q1 approximates results with only structural fea-
tures. In Q2, with a few PSs, shapes searching all appear as a result of the compara-
tively high similarity value. However, in Q3, there are more objects to search. This is 
because the partial matching value is included in the high ranking of results while 
some parts of PSs, with a query match with shapes, have fewer PSs. 

6   Related Works 

Contour- and region-based features are part of the representation method (Curvature 
Scale Space and Zernike Moment) of shape information adopted by the MPEG-7. 
Main topics covered by contour-based researches include matching strategies with 
contour points or additional information such as curvature of shape as well as meth-
ods for interest point extraction that preserves the original shape contour while reduc-
ing dimensionality [5]. In [6], Curvature Scale Space (CSS) information is taken at 
multi-resolution. In [7], e-envelope characteristics are represented by contour points. 
In [8], an object’s shape is presented with line segments, and features derived from 
the line segments are used for matching. Using contour points, the multi-level resolu-
tion pyramid structure is designed and used for retrieval [9]. As an effort to solve 
these problems, concave/convex segment is extracted from the contour as shown in 
[10], and similarity search is conducted using dynamic programming. However, poor 
search performance is a common problem among researches that use these primitive 
features. 
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7   Conclusion 

In this paper, we suggested methods to analyze a shape logically and to structure 
designed properties. A shape is composed of a curve segment as a fundamental unit. 
A curve segment has specific logical properties according to geometrical pattern. 
Through this, pattern segment is generated from curve segment. Pattern segment 
sequence possesses structural features between adjacent pattern segments. We use 
adaptive features extracted according to the segment’s geometrical features. It is pos-
sible to increase the accuracy of search in comparison with ordinary point features. 
Since pattern segment reflects local features, it can be used for searching partial or 
overlapped objects. Experimental results show that our shape feature adequately 
represents object shape; and that it is possible for the retrieval method to improve 
accuracy and efficiency. Further researches for the proper classification of PS’s pat-
tern are needed so that it can represent the semantic feature of shape and enhance 
search performance. The designed logical properties are applied to various shapes of 
closed polygons. These logical features extend meaningful semantic features by inte-
grating with other features.  
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Abstract. Shape matching typically relies on the candidate shapes be-
ing normalised for scale before the matching takes place. Many methods
rely on finding the boundary or normalising the area of the shape. This is
problematic when the object contains holes, or two objects have different
underlying shapes. The advantage of our method is that the scale can be
normalised separately from the shape.

1 Introduction

The shape of an object is typically defined as the configuration of pixels within
the object, minus the effects of scale, rotation or translation. Shape matching
techniques therefore need a way to cancel out, correct, or ignore these effects. In
the case of scale, the objects can be resized to some nominal scale. However, this
relies on generating a scale value for the object under examination, not always
an easy task.

One technique is to detect the boundary of a shape and then use that in-
formation to determine a scale factor for the whole object. In the simplest case
of a solid object with a clear unbroken outline (i.e. a silhouette), this is quite
straightforward. However, there are a number of complications that may arise.
For instance, the boundary of the object may not be clearly defined - it may
be blurred or otherwise hard to determine. The object may also have multiple
potential boundaries, due either to holes in the object, or to the object itself
being composed of a number of separate parts. Even a single clear boundary
may cause problems depending on its configuration, for example, if it doubles
back on itself.

As such, it would appear that one of the major difficulties facing such feature-
based derivations of scale is the resolution of ambiguities, a task which must
largely be performed in the design phase, and by which they are later constrained.
Additionally, there is the issue that, if only the boundary is being used, then
arguably much potentially valuable information is being discarded. This may for
instance make boundary-only based methods vulnerable to noise.

Another approach is to compute the area of the shape and then use that as
a scale factor. While this works successfully for objects of precisely the same
shape, if there is some perturbation of the shape, for example an internal hole,
the scale will change.

A. Fred et al. (Eds.): SSPR&SPR 2004, LNCS 3138, pp. 530–537, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Scale Descriptors through Phase Unwrapping 531

We seek here to develop a technique that avoids the limitations of feature
based techniques by finding a linear variate of scale based on the process of phase
unwrapping.

2 Fourier Descriptors

We begin our analysis by assuming that we have an image of an object, centred
at the origin, but with unknown scale and orientation. In addition, there is a
degree of uncertainty as to whether any given point is inside the shape or not. As
a result we may not be able to find an accurate boundary. We therefore define
a shape function as a probability density

p((r, θ) ∈ S) (1)

defined in the polar coordinate system (r, θ). In order to digitise this shape, we
form a polar pixel lattice defined by p(i, γ).

2.1 Radial Shape Slices

A radial slice is then defined as the vector

v(γ) = [p(0, γ), p(1, γ), . . . , p(n, γ)]T (2)

The vectors v may be regarded as feature vectors for the shape, and statis-
tical analysis of this feature space can provide a good characterisation of the
overall scale of the shape. However, the unknown scale and orientation parame-
ters modify the feature space in a very non-linear manner.

A change in the orientation of the shape will result in a change in the order
of the vectors. We can accommodate this simply by using a statistic which does
not depend on the order of the samples.

The effects of scale however, present a more challenging problem. A change
in the scale of the shape will result in a change of the indices of the vectors
themselves, a highly non-linear process, making analysis of the set of all vectors
extremely difficult. We therefore need some method of converting this change in
indices into a change in the values at each index.

2.2 Fourier Descriptors of Radial Shape Slices

We commence by applying the Discrete Fourier Transform directly to our radial
slices.

(x0, x1, . . . , xn) = DFT(p(0, γ), p(1, γ), . . . , p(n, γ)) (3)

The quantities x0, . . . , xn are complex numbers that can be represented in
terms of a phase and a magnitude component.

This Fourier shape description is completely general, in the sense that the
inverse DFT will recover the original data perfectly, for any possible shape. How-
ever, realistic shapes will span only a small subset of the possible shape space.
For instance, rapid changes in either radial or angular directions are unlikely.
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In other words, the amount of information present in a radial slice is typically
much less than the size of the feature space would suggest.

Fourier descriptors provide an elegant means of discarding this excess infor-
mation, in that we can simply discard high-frequency components. In addition,
it has been previously shown that much of the information present in a signal
is contained in the phase component alone [7], allowing us to discard all the
magnitude information, further halving the size of our representation.

As a result, the original radial slice vector can ultimately be replaced by the
first few components of the Fourier phase.

vf (γ) = (φ0, φ1, . . . , φk)T (4)

By using a reduced representation, we can both reduce the storage space
required, and boost the efficiency with which the representation can be manip-
ulated.

3 Scaling and Fourier Descriptors

One important property of the Fourier Transform is that translations in the
original data correspond to changes in the phase values of the DFT. Thus, we
have converted the effects of scaling from a change in the indices of the values to
a change in the values themselves. The change in phase values can be described
mathematically by use of the Fourier Shift Theorem:

f(t − t0) = ejωt0F(ω) (5)

This demonstrates that as the values in the radial slices change index values
(the ‘shift’ in the above equation), then the phase values will be incremented or
decremented accordingly. Notice however, that this assumes that all index values
in the radial slice will be shifted by a constant amount, something that will not
be the case as the shape is resized. Scaling operations, by their very definition,
will stretch or contract the waveform represented by the radial slice.

It is easy to obtain a fixed shift for a fixed change in scale by simply sampling
the radial slices logarithmically. This is equivalent to sampling the original shape
function exponentially. In other words, we re-define eq. 2 as

v(γ) = [p(eβiγ)]T (6)

The phase representation can then be constructed as before.

3.1 Phase Wrapping and Unwrapping

The problem with adding an offset to each of the phase values is that phase values
are constrained to lie between 0 and 2π. Adding values that would take them
beyond these limits merely causes them to wrap around. In other words, there
are multiple solutions to the phase shift of a particular frequency component.
For a measured phase shift of φ, the possible solutions are φ, φ + 2π, ..., φ+ nπ
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(where n can also be negative). For this reason, it is not possible to directly infer
the shift from the phase change.

The problem of determining the number of times the phase ‘wraps’ is known,
unsurprisingly, as phase unwrapping. Phase unwrapping procedures are per-
haps most commonly employed in decoding data supplied by Synthetic Aperture
Radar (SAR), or other techniques that represent distances in terms of phases. If
the total range of distance to be measured is greater than the wavelength used by
the measuring device, then the data will be returned in a wrapped state. Under
the assumption that the true data varies smoothly, fringes or jumps in the phase
values can be interpreted as wrapping events. However, noise and discontinuities
in distance confound this process. There are a number of algorithms for tackling
the unwrapping of wrapped-phase-only data [3, 8, 1, 10, 9, 11, 6].

Fig. 1. Phase Unwrapping

In contrast to the problem faced in decoding SAR data however, we have the
original data which gives rise to the phase information, making the unwrapping
problem more tractable. There are a few techniques that make use of this extra
data. Perhaps the most famous was published by Tribolet [12] and functions
by re-integrating the derivative of the phase values, on the assumption that
the general gradient of the curve formed by the phase values will not change
significantly at wrapping points.

Later McGowan and Kuc published an ‘exact’ method [5], which was sub-
sequently refined by Long [4]. These algorithms purport to calculate an exact
solution numerically, but have the drawback that they can be very computation-
ally demanding, both in processing time and storage space.

Most recently of all, Krajńık has published a method [2] that claims to be
both swift and accurate. It functions in an iterative manner, determining the
unwrapped phase for each phase value from the previous phase value, working
through the phases in order of their corresponding frequencies. Specifically, he
defines the phase increment between adjacent frequencies to be:

ΔΦn+1 = ARG
(

Xn+1

Xn

)
(7)

In essence, this complex division results in a third complex number whose
phase is the difference in phase between the first two values. For this reason, it
is important that the (wrapped) phase does not change by more than π between
adjacent phase values, something that can be achieved by padding the original
data with zeros, thus interpolating the data in the frequency domain.
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One issue that plagues all the aforementioned unwrapping techniques is the
case of zeros on the complex plane (i.e.: where the magnitude is zero). At these
points, it becomes impossible to tell whether a wrap has occurred or not. Such
zeros are most likely to occur with synthetic data however, rather than real-
world input. Zeros could potentially be eliminated by adding a small amount of
noise to the signal.

4 Shape Scale Representation

4.1 Basic Method

The method we used was to generate 360 radial slices. These slices were sampled
from the perimeter inwards (the last sample corresponded to the centre of the
shape), making a total of 64 samples per slice. The test shapes were white
(value=255) against a black background (value=0). Each of the slices were then
extended from 64 to 4096 values by padding with zeros. This was to ensure
that the phases of adjacent frequencies would not differ by more than π, as per
Krajńık’s technique.

The Discrete Fourier Transform of each slice was calculated and Krajńık’s
iterative method used to find the first 10 unwrapped phases (this proved to be a
good balance between efficiency and accuracy) from the complex output of the
DFT. All other phase and magnitude information was discarded.

Finally, all 360 sets of unwrapped phases were averaged together to yield a
single set of unwrapped phases whose values represented the scale of the shape
in question.

4.2 Measurement of Scale for a Single Object

Our first example consists of a simple image of a car, at 3 scales. The 3 images
represent successive doublings in scale.

As can be seen from the graph, the doublings in scale are represented by a
constant change in the gradient of the curve formed by the unwrapped values.
This verifies that we can measure the scale of an object through this technique.
Note that we can obtain the scale by using just a single frequency component,
eg: the 10th component.

4.3 Shape Matching

We can also make use of this technique to align two shapes in rotation and scale.
The technique is as follows:

Given two images to match, we will refer to one of them as the base image,
and the other as the test image. We start by generating a set of 360 radial
slices for the base image, generating phase information from these slices and
unwrapping the phases, as described previously.

We then rotate the test image relative to the base image in a number of
increments. At each step of the rotation, we generate the set of unwrapped
phases for the test image.
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Fig. 2. Unwrapped Phases for Car Images

Finally, we calculate the difference between the unwrapped phase values at a
particular frequency (eg: the 10th frequency component) for the corresponding
slices of the base and test images. These differences are used to increment an
accumulator array, indexed by rotation angle and difference in unwrapped phase.

If the two images are rotationally aligned then we would expect to find the
same difference between the unwrapped values for the slices of the test image
and the corresponding slices of the base image, for every slice, because the scal-
ing difference is the same for every corresponding pair of slices (this of course
assumes isotropic scaling). Hence, in our case, we would expect to see 360 counts
of the same difference value, with that difference value representing the overall
difference in scale between the two objects. As the two images drift out of ro-
tational alignment, corresponding slices will not represent the same parts of the
objects, and instead a broad range of difference values will be obtained.

Ultimately then, we can expect to find a spike in the accumulator array
corresponding to the relative rotation and scale factors. This is indeed the case
in fig. 4, where we can see a clear spike in the accumulator data indicating that
the third step of the test image rotation sequence is that which most closely
matches the base image, confirming what we can see from a visual inspection of
the data.

The peaks near the bottom of the grid are caused by single-pixel discrepan-
cies due to the pixellated nature of the images, exaggerated by the exponential
sampling.

An important point to note is that it is not necessary to actually rotate the
test shape relative to the base shape. The same effect can be obtained merely by
re-ordering the original radial slices (or, more accurately, the sets of unwrapped
phases generated from them) of the initial test shape image. Thus it is only
necessary to generate one set of unwrapped phase slices for the test image.
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Fig. 3. Base Shape and Series of Rotated Test Shapes
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Fig. 4. Accumulator Array

Also, it would be possible to perform the alignment iteratively, starting with
10 coarse radial slices, using these to align the shapes roughly, and then repeating
the process at a finer resolution for only part of the images. This would mean
that only a few sets of unwrapped data would need to be generated.

4.4 Partial Matches

It is also possible to use this technique to make partial matches. When the shapes
shown in fig. 5 were processed, they produced the accumulator graph shown. The
two spikes on this graph indicate that there were two possible matching scales.
This could potentially be useful when trying to match partially occluded objects.

5 Conclusion

We have presented here a new technique for obtaining a scale factor for unknown
shapes that avoids many of the limitations of feature-based scale-finders, while
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Fig. 5. Shapes That Match at Two Possible Scales

also being more robust and precise than area-based methods. The technique can
also be adapted to form the basis of an efficient shape-matching system.
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Abstract. A computerized pulmonary segmentation based on the de-
tection of oriented edges was performed in postero-anterior (PA) digital
radiography (DR) images. To further improve detection of lung contours,
a method based on the use of active contours models was developed.
First, the technique calculates a set of reference lines to determine the
relative position of the lungs in the image. Then, vertical and horizontal
rectangular regions of interest (ROIs) are studied to identify the prelimi-
nary edge. These points are an approximation to the lung edges that are
adjusted using the active contours models. We studied the influence of
the different parameters of the active contours on the final result over 30
DR images. Results prove that the active contour models, with selected
parameters, can be used to improve the results of a given segmentation
scheme.

1 Introduction

Digital radiography (DR) is becoming the standard for pulmonary imaging [1] [2].
DR provides high spatial and contrast resolution for the lung parenchyma. DR
also opened the possibilities for computer-aided diagnosis (CAD) applications
in chest imaging, such as pulmonary nodules detection [2] [3], characterization
of interstitial disease [4], measurement of pulmonary volume [5], and detection
of cardiomegaly [6] and pneumotoraces [7]. A survey of the CAD in the chest
radiography can be found in [8].

Lung segmentation is a necessary prerequisite for all of these quantitative
analysis applications. Several investigators have developed techniques for CAD
segmentation of pulmonary DR images. Xu and Doi [9] have determined the rib
cage boundary using a set of ROIs, which are selected over the maxima and min-
ima of the gray-level values on horizontal profiles. Duryea et al. [10] searched the
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lung contour studying the difference between the consecutive maxima and min-
ima of horizontal profiles. Armato et al. employed an iterative global gray-level
thresholding and a local gray-level threshold analysis with the resulting image to
determine the lung edge in PA [11] and lateral [12] chest radiographs; Carrascal
et al. [5] determined a group of reference lines, defined a set of rectangular ROIs
and identified the pulmonary border using edge enhancement and thresholding
techniques. Vittitoe et al. [13] employed Markov random field modeling for iden-
tifying lung regions. Tsujii et al. [14] classified the pixels of the DR using an
adaptative-sized hybrid neural network. Van Ginneken et al. [15] developed and
compared several segmentation techniques: a matching approach, pixel classi-
fiers based on several combinations of features, a rule-based scheme that detects
lung contours using a general framework for the detection of oriented edges and
ridges in images, and a hybrid scheme. Later, an active shape model was used
by van Ginneken et al. [16] to obtain the segmentation.

Investigators use different algorithms to obtain the segmentation. Of interest
is that there is a common step to all of them: it consists on the adjustment of
an initial contour in order to correct, complete or smooth it. We believe that
the active contour models (snakes) can be very helpful to perform this task.
This technique was previously used in chest radiography by Yue et al. [17] to the
detection of the rib borders. We propose an automatic lung segmentation scheme
that calculates a set of reference lines to determine the relative position of the
lungs in the image. Using these lines, a collection of rectangular ROIs to cover
the pulmonary border is sequentially defined. To obtain the points of the border,
the averaged horizontal or vertical profile in each ROI was analyzed. Finally, the
algorithm fits the set of points using an active contour model. The influence of
different parameters of the active contour models, such as the relative weights
of the three energies (continuity, curvature and image energy) was studied.

2 Materials

A total of 30 PA chest radiographs were employed to develop the method. DR
was performed using a Siemens Thorax FD (Siemens AG, Munich, Germany)
with a matrix of 3K×3K (pixel size of 143 μm) and 4096 gray level resolution
in DICOM format. No distinction was made between normal and pathological
cases. The computer programs were written in C++ programming language on
Solaris 2.8 operating system. CNT (Mallinckrodt Institute of Radiology, Wash-
ington University School of Medicine) libraries have been used for development
of DICOM utilities. A Sun Ultra80 Workstation (Sun Microsystems, Inc., Moun-
tain View, CA) was used for all the calculations.

3 Methods

To develop the computerized system to automatically extract the lung contour,
we have followed three steps: a) calculation of the reference lines; b) calculation
of the points near the lung edge; and c) correction of the rough border using a
snake.
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Fig. 1. Horizontal 1(a) and vertical signature 1(b)

3.1 Reference Lines

We used the definition of horizontal and vertical thoracic signature (equations 1
and 2) suggested by Meyers et al. [18]:

Shor(j) =
Nfil∑
i=0

I[i, j] (1)

Sver (i) =
Ncol∑
j=0

I [i, j] (2)

and that are represented in the figures 1(a) and 1(b). The midline Cmid (1 in
figure 2) of the thoracic cage was determined by searching the central maximum
of the horizontal signature of the image (figure 1(a)). The upper and lower
limits of the rib cage were obtained from the vertical signature (figure 1(b)), the
maximum in the first third of the derivative being the upper limit Rup (2), and
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the lower limit being the maximum of the last half of the derivative. Since the
lower limit of the left lung can be very different of the lower limit of the right
lung we calculated the vertical signature of each hemithorax and we obtained
two lower limits, Rright

low (3) and Rleft
low (4). The lateral limits of the lungs were

calculated as follows: we calculated for each hemithorax an averaged horizontal
profile of the Rup−Rlow

3 rows over Rlow. The external lateral limit of the right
lung Crigth

ext (5) was the first maximum of the profile an the internal limit Cright
int

(7) was the maximum of the derivative close to Cmid. For the left lung, C
left
ext (6)

was the last maximum and Cleft
int (8) was the minimum of the derivative close to

Cmid. In the figure 2 the reference lines are shown.

Fig. 2. Reference lines

3.2 Calculation of the Initial Points

Lung contour was divided into four zones: apex, mediastinum, diaphragm and
rib cage border, that were calculated separately. The edge points were calculated
by using a set of rectangular ROIs oriented either vertically (in the apex and the
diaphragm) or horizontally (in the mediastinum and rib border). The position of
these ROIs was determined by using the reference lines. In the apex, the ROIs
had 30 columns width, and were located under Rup. The ROIs of the diaphragm
were of the same size being calculated sequentially between Cint and Cext, the
first was calculated around Rlow and the position of the edge point then calcu-
lated determined the position of the next ROI. The first and the last points of the
diaphragm determined the position of the first ROIs of the rib cage border and
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the mediastinum, the remainder are calculated from the edge points obtained.
In order to calculate the edge, the points of each ROI were averaged to obtain an
horizontal or vertical average profile. To reduce the number of candidates, every
point of the profile was averaged with its 30 neighbors, taking into account that
we were searching a large structure such as the lung edge. After this, depending
on the type of border that we were searching, the minima or the maxima of
the first derivative were calculated. If there were more than one candidate, the
difference between the density of gray levels of the 50 neighbors after and before
the point was calculated and the one that had the greater difference in absolute
value was chosen.

3.3 Correction of the Border Using a Snake

With the method described above we calculated an outline of the lung edge. The
points did not join smoothly and any of the points did not correspond with the
true lung border, because of this the border needed to be adjust. To do this we
used the energy-minimizing curves known as snakes introduced by Kass et al.
[19] for detecting lines and curves in an image. The snake is an active contour
model which constantly minimizes an energy functional that consists on both the
internal and external energy. The internal energy serves to impose continuity and
smoothness constraint on the shape of the snake while the external energy tends
to pull the snake toward salient image features such as image edges. Representing
the snake by a parametric curve v(s) = [x(s), y(s)], the energy functional can be
written as:

Esnake ≡
∫ 1

0

Esnake(v(s))ds =
∫ 1

0

[Eint(v(s)) +Eext(v(s))]ds (3)

This expression must be discretized for using it in a digital image. Then the
curve v(s) ≈ vi = (xi, yi), where 0 ≤ i < N , being N the number of points of
the snake. In this way, the expression 3 can be written as:

Esnake =
N∑
i=0

(Eint(i) +Eext(i)) (4)

To minimize this expression Kass et al. [19] used techniques of variational calcu-
lus, Amini et al. [20] pointed out some problems with this approach and proposed
an algorithm using dynamic programming. Since this method is slow we decided
to use the greedy algorithm proposed by Williams et al. [21] that defines the
internal and external energies as follows:

Esnake =
N∑
i=0

[α(i)(d̄ − |vi − vi−1|) + β(i)|vi−1 − 2vi + vi+1|+ γ(i)Eimage(i)] (5)

where d̄ is the average distance between the points of the snake, Eimage is a
function of the point i of the image and the parameters α, β and γ govern the
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(a) (b)

Fig. 3. Fitted rib cage border: using a gradient filter (3(a)) and a Sobel filter (3(b)) as
image energy. The black dots are the initial and the white the fitted contour

relative weight of the energies. The evolution of the snake depends on the elec-
tion of the function Eimage(i) that allows for determining the type of features
of the image that attract the snake and the parameters that allows to deter-
mine the shape of the snake. Since each zone of the lung border has different
characteristics, a snake with several values to the parameters and Eimage(i) was
created, depending on the position of the point. Then four sets of parameters
and four Eimage(i) (apex, mediastinum, diaphragm and rib cage border) were
searched.

4 Results and Discussion

We calculated the initial border in 30 PA chest images, in order to obtain the
necessary features of the snake that best fitted the lung contour. The influence of
different image energies (the gradient and the Sobel filters to detect horizontal
and vertical edges) was studied using standard parameters. The final border
was calculated and, for each zone the energy that obtained the best result was
selected. In the active contour schemes the use of Eimage = −grad[I(x, y)] is
usual. However, in the thorax DR images this energy did not obtain the best
result because there are many edges in the image, some of them become more
pronounced than the lung contour. The best example of this are the ribs, when
the initial contour was adjusted with Eimage = −grad[I(x, y)], the snake in the
rib border tended to move closer the ribs. This effect is shown in figure 3. To
solve this problem, we used the knowledge about the direction of the edges that
we were searching. Each zone in the lung have different characteristics, the apex
and the diaphragm are mainly horizontal edges and the mediastinum and rib
border are vertical. Then we used the Sobel filters (Sx[I(x, y)] and Sy[I(x, y)])
as the Eimage. In the figure 3 is shown how this election changed the final result.
With this energies, the influence of the parameters was analysed. In order to
reduce the number of possibilities we only used three values (0, 5, 1 and 1, 5)
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(a)

(b) (c)

Fig. 4. 4(a) Resulting lung border. Comparison of the initial (black dots) and final
contour (white dots): 4(b) in the clavicle region (1); 4(c) in the cardiophrenic and
costophrenic angles (2)

for the parameters α, β and γ. Then, there were 27 possible combinations of
parameters for each zone. Since the features of the initial border were known,
not all of this possibilities were used in the posterior analysis. For example, it
was known that the initial contour was very irregular. However, the lung contour
must be rounded and as a result the β parameter should be 1 or 1, 5 to eliminate
the corners. In the same way γ should not be very small for not loosing the
image information. Then the combinations for which γ was less than the other
parameters were eliminated.

In the first stage, we obtained the final border after being fitted using the
remainder combinations of parameters. An experienced radiologist selected the
two or three sets of parameters that best fitted in each region. Once the sets of
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parameters were selected the fit of the initial border was repeated, but employing
different values for the parameters of each region. In the final step, a radiolo-
gist evaluated the accuracy of each calculated contour and the parameters that
obtained the best result was chosen. In figure 4(a) an example of the final lung
contour obtained is shown. The β parameter is always high in order to obtain a
smoothness effect, eliminating the irregularities in the contour. The α parameter
tends to approximate the points of the snake. It helps in the task of eliminating
the irregularities and is fundamental to correct the wrong edge points (example
in fig. 4(b). As the first contour is often wrong in the ribs and the clavicle (fig. 3
and 4(b)) it was necessary to increase the value of this parameter in this region.
On the other hand, if α and β are high, the snake tends to eliminate the true
lung corners, such as the cardiophrenic and costophrenic angles, specially when
their edges are fuzzy. To reduce this effect, the parameters α and β for the di-
aphragmatic region are low compared to the other regions. With a correct choice
of the parameters, this effect was reduced but not eliminated as we have shown
in the fig. 4(c). To improve the detection, an alternative method to carefully
detect these angles, and a snake with an attractive term of energy [19] could be
used in these regions.

Finally, the best results were obtained with (α = 1, β = 1.5, γ = 1) for the
rib border, (α = 0.5, β = 1.5, γ = 1.5) for the apex, (α = 0.5, β = 1, 5, γ = 1)
for the mediastinum and (α = 0.5, β = 1, γ = 1.5) for the diaphragm.

These results demonstrate that a snake with the appropriate features can
be used to correct, smooth and complete the results of a given segmentation
scheme.
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Abstract. We present a novel approach that exploits shape context to recognize 
emotion from monocular dance image sequences. The method makes use of 
contour information as well as region-based shape information. The procedure 
of the method is as follows. First, we compute binary silhouette images and its 
bounding box from dance images. Next, we extract the quantitative features that 
represent the quality of the motion of a dance. Then, we find meaningful low-
dimensional structures, removing redundant information but retaining essential 
information possessing high discrimination power, of the features using SVD 
(Singular Value Decomposition). Finally, we classify the low-dimensional fea-
tures into predefined emotional categories using TDMLP (Time Delayed Multi-
Layer Perceptron). Experimental results demonstrate the validity of the pro-
posed method.  

1   Introduction 

For the last couple of years many researchers have focused on recognizing human 
emotion to achieve a more efficient and natural human-computer interface. The emo-
tion recognition methods that extract emotional information from speeches or facial 
expressions have been extensively investigated [12-15]. However, gesture-based 
methods have been less explored except for a method that uses physiological signals 
[16]. This may be due to the fact that gestures are much too high dimensional, dy-
namic and ambiguous to analyze and recognize exactly.  

Among some interesting exceptions are the following. To analyze the dynamically 
changing human motion, Kojima et al. defined “rhythm points” that means the time 
of the start and the end of a motion, so that the whole motion could be represented as 
the collection of partial motions (a unit of motion) with a period [10]. Wilson et al. 
also tried to identify temporal aspects of gesture [11]. They proposed a method that 
detects candidate rest states and gesture phases from gestures spontaneously gener-
ated by a person telling a story. Kojima’s and Wilson’s method are appropriate for 
analyzing a simple or well-regulated motion such as small baton-like movement. In 
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general, however, human motions (especially in case of dance in this paper) are not 
so simple so we cannot easily determine the start/end of a unit of motion or rest state. 
Thus, their promising methods do not seem to be applicable to general human mo-
tions. In addition, these methods only aims at analyzing human motion but does not 
pay attention to emotions. 

Recently, some methods that can recognize human emotion from modern dance 
image sequence have been introduced [3-6]. Dance is the most universal way of ex-
pressing human emotion. To represent the high-dimensional and dynamic change of 
gestures, these methods simplified the dynamic dance to the movement of rectangle 
surrounding human body and exploited several features related to the motion of rec-
tangle using Laban’s effort theory [9]. Then they analyzed the features and tried to 
find the relationship between the features and human emotion. They showed satisfac-
tory results in most cases. However, they were confronted with difficulties in some 
cases. For example, when the bounding box associated with a human motion is the 
same as that associated with another one, they cannot discriminate the differences 
between the two human motions.  

To resolve the problem mentioned above, this paper presents a method of exploit-
ing new shape information for representing human motion. Note that the previous 
methods focus on only region-based shape information – the features such as bound-
ing box or centroid etc. belong to the region-based shape information – but we addi-
tionally use the contour-based shape information, i.e. the number of dominant points 
on the boundary of human body. Thus our method can discriminate the subtle differ-
ence between the shape of human motion that have the same bounding box informa-
tion.  

The number of the computed dominant points can explain how complex or star-
like human motion is and thus be regarded as a contour-based shape descriptor [1]. It 
cannot explain the details of the shape context of human motion. However, it may 
suffice to utilize rough contour information because we do not aim to answer the 
question to "what is the gesture he/she has just made?" but to catch the overall mood 
i.e. emotion.  

The structure of this paper is as follows: In Section 2, we briefly describe the over-
view of emotion recognition system. The contour approximation algorithm used in 
our method is presented in Section 3. We then demonstrate the result of a variety of 
experiments in Section 4. We conclude in Section 5.  

2   Overview of the Emotion Recognition System 

It is not easy to directly extract high-level (and qualitative) information like emotion 
from low-level (and quantitative) data like human motion. Recently, however, efforts 
to extract human emotion from dance have been made. Many researchers thought that 
it would be easier to recognize emotion from dance than from ordinary human 
motions because dance is what fully expresses human emotion.  
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Some introduced Laban’s movement theory [9] to represent emotional dance quan-
titatively. Suzuki et al. [3] and Camurri et al. [6] presented a methodology for map-
ping dance into emotional categories that represent human emotion based on the 
Laban’s theory for the first time. Suzuki et al. and Camurri et al. had shown the pos-
sibility of directly recognizing human emotion from dance image sequences. Woo et 
al. proposed a method that nonlinearly maps dance into emotional categories and 
emphasized the importance of flow1 by introducing the Time Delayed Multi-Layer 
Perceptron (TDMLP) [4]. Recently, we extended the work of Woo et al. and pro-
posed a statistical approach that recognizes the human emotion faster and more accu-
rately [5].  

 

Fig. 1. Overview of emotion recognition system. The system directly maps low-level features 
extracted from dance images into predefined emotional categories. 

�
Fig. 2. Object segmentation. This shows the result of applying the background subtraction and 
the shadow elimination to an image. Refer to [7] for more details. 

Table 1. Features extracted from binary images. 

The aspect ratio of rectangle H/W 
The coordinate of centroid (Cx, Cy) 

The coordinate of the center of rectangle (Rx, Ry) 

The silhouette area Ss 

The rectangle area Sr 

The velocity of each feature f(.) 
The acceleration of each feature g(.) 

f(xn) = xn-xn-1, g(xn)=xn-2*xn-1+xn-2 

                                                           
1  Flow means the temporal variation of human motion, which is one of the factors that Laban 

adopted to quantitatively represent human motion. 
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Figure 1 shows the overview of our previous system [5]. First, the background and 
shadow in dance images are eliminated using the difference keying and normalized 
difference keying technique separately and then binary silhouette images and their 
bounding box are computed (Figure 2). Next, the features representing the quality of 
the motion of a dance are extracted (Table 1). These features are related to the factors 
i.e. space, time, weight, flow that Laban adopted to find out effort2 from human mo-
tion. That is, Laban thought that they could quantitatively represent something (it 
may be emotion here) included in human motion. Next, Singular Value Decomposi-
tion (SVD) is applied to the extracted features and then the low-dimensional features 
associated with large eigen-value are selected. This has an effect of discriminating 
noisy information from the reliable features. Finally, the low-dimensional features are 
classified into predefined emotional space using TDMLP.  

3   Emotion Recognition Using Contour Approximation 

While the features (Table 1) used in our previous system could be easily computed in 
real-time and showed a good performance, there was difficulty in discriminating 
between similar but contextually different human motions as shown in Figure 3. 
Therefore, we need to find new features to resolve this problem. In this paper, we 
compute the dominant points on the boundary of the silhouette area to represent hu-
man motion more exactly. To do this, we introduce the number of the dominant 
points as a new feature.  

 

Fig. 3. Similar but contextually different motions. With only a bounding box, we cannot dis-
criminate between two motions.  

We use the Teh-Chin’s algorithm [2] to detect the dominant points because it has 
shown reliable results even if the object is dynamically scaled or changed. The Teh-
Chin algorithm is as follows: A measure of significance, e.g. curvature must be de-
termined over some region of support. However, there is rarely a sound basis for 
choosing region of support. The chord length and the perpendicular distance can 
provide a basis for choosing the appropriate region of support. And the measure of 

                                                           
2  Laban asserted that human motion include one’s temper or propensity. In other words, hu-

man beings express themselves and transmit something (Laban called it effort) rising form 
their hearts through performing a motion. 
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significance of each point is determined by using the neighboring points within the 
extent of the region of support. The measure of significance and the region of support 
of each point are then used to guide the selection of points to be removed. The points 
remaining after the removal process are the dominant points. 

Now we can figure out that the dominant points are those points that have a sig-
nificant change of curvature. This means that an object that has many dominant 
points is star-like; on the other hand, an object that has few dominant points is circu-
lar. The number of dominant points represents the shape complexity of an object. Fig. 
4 shows this relationship. The shape of an object has something to do with space in 
Laban’s theory. 

 

Fig. 4. Dominant point detection on real and synthetic images. The number of dominant points 
is associated with the complexity of the object. 

 

Fig. 5. The difference of the number of dominant points between similar but contextually dif-
ferent motions. In the left, a little motion of her left leg gave rise to more dominant points. 

To exactly discriminate the similar but contextually different human motions, we 
must be able to describe the shape of the motions in detail. To do so, we will have to 
use the coordinates of respective dominant points. As mentioned earlier, however, we 
only need to use the number of dominant points because our aim is to catch the over-
all mood included in the motion of a dance. As shown in Fig. 5, the difference be-
tween similar but contextually different human motions can be detected easily even if 
we only use the number of dominant points. Notice that we could not discriminate the 
difference between similar but contextually different human motions using the 
bounding box information in Fig. 3. 
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4   Experiments and Results 

To obtain experimental sequences, we captured the dance motion from 4 professional 
dancers using a video camera (Cannon MV1). The dancers freely performed the vari-
ous movements of a dance related to pre-defined emotional categories (happy, sur-
prise, angry, sad) within a given period of time. Fig. 6 shows the examples of dance 
images. 

 

 

Fig. 6. Dance images. Each dancer performed the movements of a dance freely to express her 
emotion. 

We eliminated the background and shadow of each frame in sequence and ex-
tracted binary images using the method previously explained. As shown in Table 2, 
we extracted 21 (7+7+7) features (of which we used in our previous method [5], we 
made Ss and Sr into one, i.e. ratio between them, and added Nd as a new one) repre-

senting dancing motion and applied SVD to them. We calculated the contribution 
coefficients (see Appendix) for 12 eigen-vectors having large eigen-values and ex-
tracted 12 features weighted with the contribution measure of every frame. Finally, 
we buffered 24 weighted features with one delay and exploited them as the input of 
the TDMLP. Then the TDMLP learned to map the weighted features to predefined 
emotional categories (happy, surprise, angry, sad) and was tested (= used) to recog-
nize the emotion that an arbitrary dance image sequences represents. The TDMLP 
consists of 24 input nodes, 96 hidden nodes, and 4 output nodes. For more details 
about the experimental environments, refer to [5]. 

Table 2. Features used in the proposed method. 

The aspect ratio of rectangle H/W 
The coordinate of centroid (Cx, Cy) 

The coordinate of the center of rectangle (Rx, Ry) 

The ratio between silhouette area and rectangle area Ss/Sr 

The number of dominant points on boundary Nd 

The velocity of each feature f(.) 
The acceleration of each feature g(.) 

f(xn) = xn-xn-1, g(xn)=xn-2*xn-1+xn-2 
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Table 3. Recognition rate inside the training sequence. 

Output
Input 

Happy Surprised Angry Sad 

Happy 88%(79%)3 2%(11%) 10%(8%) 0%(2%) 
Surprised 2%(3%) 80%(78%) 12%(11%) 6%(8%) 

Angry 12%(23%) 4%(0%) 84%(70%) 0%(7%) 
Sad 0%(0%) 12%(7%) 2%(1%) 86%(92%) 

Table 4. Recognition rate outside the training sequence. 

Output
Input 

Happy Surprised Angry Sad 

Happy 75%(52%) 14%(16%) 11%(24%) 0%(8%) 
Surprised 14%(16%) 70%(76%) 11%(0%) 5%(8%) 

Angry 14%(14%) 15%(12%) 60%(64%) 11%(10%) 
Sad 0%(0%) 11%(4%) 2%(2%) 87%(94%) 

 
Table 3 and 4 shows the cross-recognition rate of four emotions to the dance im-

age sequences inside and outside the training sequence respectively. In Table 3, we 
trained with sequences from all four dancers and tested with sequences again from all 
dancers. In Table 4, we tried to train with three dancers and test with the 4th dancer. 
The proposed method shows improved performance (higher and balanced recognition 
rate) than our previous system both inside and outside the training sequence. It is 
clear that this improvement results from using the new contour-based shape informa-
tion, i.e. Nd because we used the same features excepted for this information in our 

previous method. Significantly, the proposed system can discriminate between some 
differences (e.g. the difference between happy and surprise in Table 3) that the previ-
ous method could not.  

5   Conclusion 

We have presented a new approach for recognizing human emotion from dance im-
age sequence. A key characteristic of our approach is the use of contour-based shape 
information together with region-based shape information. Thus our method could 
recognize the difference between similar but contextually different human motions 
that have the same bounding box information. Consequently, our method noticeably 
improved the performance of emotion recognition compared with the previous ones 
that only use the region-based shape information. 

It was confirmed that recognizing human emotion using not physical entities but 
approximated features based on Laban’s theory is feasible and shows acceptable 
performance (above 70% recognition rate in outside the training sequence). 

                                                           
3  A parenthesized value presents the result of our previous method [5]. 
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Currently, we are continuing this line of research by trying to recognize human 
emotions from traditional dance performance that are a little bit different from mod-
ern ones. 
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Appendix: Contribution Coefficient Vector 

In case of extracting n features from the dance sequence having m frames, we apply 
SVD to the measurement matrix F that has m×n features as its elements: 

TVUF Σ=  
The r eigen-vectors (u1, u2, …, ur) associated with large eigen-values are repre-

sented by linear combination of the feature vectors (f1, f2, …, fn). That is: 
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This is rewritten as follows: 

,,,2,1 rifor �== ii Fu  

Here, we call �i contribution coefficient vector and it’s solved as follows: 
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Abstract. Concavity trees are structures for 2-D shape representation.
In this paper, we present a new recursive method for concavity tree
matching that returns the distance between two attributed concavity
trees. The matching is based both on the structure of the tree as well
as on the attributes stored at each node. Moreover, the method can
be implemented on parallel architectures, and it supports occluded and
partial matching. To the best of our knowledge, this is the first work to
detail a method for concavity tree matching. We test our method on 625
silhouettes in the context of shape-based nearest-neighbour retrieval.

1 Introduction

A new concavity-tree extraction algorithm and a method for shape-based image
retrieval have been proposed in [1]. This paper complements that work by de-
tailing a concavity-tree matching method. Together, the two papers constitute,
to the best of our knowledge, the first work that reports on the applicability of
concavity trees to shape-based image retrieval. The proposed matching method
is well suited to labelled concavity trees, but is by no means confined to them;
it can be applied to the matching of any labelled trees.

A concavity tree is a data structure used for describing non-convex two di-
mensional shapes. It was first introduced by Sklansky [2] and has since been
further researched by others [3–6]. A concavity tree is a rooted tree where the
root represents the whole object whose shape is to be analysed/represented. The
next level of the tree contains nodes that represent concavities along the bound-
ary of that object. The following level contains nodes, each representing one of
the concavities of its parent, i.e., its meta-concavities. If an object or a concavity
is itself convex, then the node representing it does not have any children. Typi-
cally, each node in a concavity tree stores attributes, or features, describing the
underlying object or concavity. Concavity trees are clearly a tool for structural
pattern recognition in which a pattern (a 2-D shape in our case) is decomposed
into its primitive components. Figure 1 shows an example of a shape (a), its con-
vex hull, concavities, and meta-concavities (b), and its corresponding concavity
tree (c). The shape has five concavities as reflected in level one of the tree. The
four leaf nodes in level one correspond to the highlighted triangular concavi-
ties shown in (d), whereas the non-leaf node corresponds to the (non-convex)

A. Fred et al. (Eds.): SSPR&SPR 2004, LNCS 3138, pp. 556–564, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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Fig. 1. An object (a), its convex hull and concavities (b), the corresponding concavity
tree (c), and contour sections corresponding to concavities (d-g).

concavity shown in (e). Similarly, the nodes in levels two and three correspond
to the meta-concavities highlighted in (f) and (g), respectively. The tree shown
in (c) was extracted using the contour-based algorithm presented in [1]. That
algorithm is able to deal with the many minor “noisy” concavities seen along the
boundary of the shape in (a). In addition to the feature vector labelling the tree
nodes, other “helper” features are computed by the tree extraction algorithm
and stored at each node (as the tree is being constructed.) They include the
level of the node, the height, number of nodes, number of leaves in the subtree
rooted at the node, as well as the relative size of the concavity (represented by
the node) with respect to its parent.

Structural matching of trees is computationally expensive, especially if the
trees are not rooted. Three (structural) tree matching classes exist [7]: perfect
matching (isomorphism), partial matching, and similarity matching. The third
class is more useful for classification and retrieval purposes. Inexact and heuristic
methods for similarity matching of trees exist in the literature in many contexts
including shock tree matching [8], remote sensing [9], and VLSI [10].

The decision of whether two objects have similar shapes or not is based on
both the shape of the whole object as well as the shapes of the objects’ primitives.
Moreover, shape can be described using high- and low-level features. The main
goal of the proposed matching method is to enhance image similarity retrieval
by incorporating high-level structural shape information (trees) as well as low-
level shape information (labels) of the whole object and its primitives into the
matching process. The analysis and matching of single-object logo images is one
viable application of the proposed method.
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2 Concavity-Tree Matching

This section details the proposed concavity-tree matching method. Suppose we
would like to find a measure of similarity between two general labelled trees T
and S. We assume the following:

– Number of nodes in T (S) is n (m), where n > 0 (m > 0.)
– Number of subtrees rooted in level 1 in T (S) is N (M), where N ≥ 0
(M ≥ 0.)

– M ≥ N . If this is not the case, we just switch the names of the two trees.
(Note that M ≥ N does not necessarily imply that m ≥ n.)

– A = {T (1), · · · , T (N)} and B = {S(1), · · · , S(M)} are the sets of subtrees
rooted in level one of T and S, respectively.

– Nodes in T and S are labelled with l-dimensional feature vectors xi =
(xi1 , · · · , xil) and yj = (yj1 , · · · , yjl), where i and j denote the nodes of
T and S, respectively, 0 ≤ i < n, and 0 ≤ j < m.

– x0 and y0 are the attributes of the root nodes of T and S, respectively.
– Each of the individual features, xi (yi) in vector x (y) is bounded between

zero and a maximum value maxi, 1 ≤ i ≤ l.

The proposed method computes a distance D(T, S) between the two trees as
a measure of dissimilarity. The closer the distance is to zero, the more the two
shapes are similar and the closer it is to one, the more dissimilar they are.

In matching the two trees, we can identify four cases as follows:

1. N = M = 0.
2. N = M,N > 0,M > 0.
3. N = 0,M > 0.
4. N > 0,M > 0,M > N (the most general case.)

2.1 Case 1, N = M = 0

This case is the simplest case (see Figure 2a); there is no structural matching
and the distance between T and S is

D(T, S) = a d(x0,y0) (1)

where a is a constant between zero and one (discussed later.) Typically, a = 1/3.
d(x,y) is defined as follows.

d(x,y) =
1√∑l

i=1max2i

√√√√ l∑
i=1

(xi − yi)2 (2)

That is, d(x,y) is the Euclidean distance between x and y normalized by the
maximum possible distance between x and y. This will guarantee that d(x,y)
is bounded between zero and one.
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Fig. 2. Concavity-tree matching. Case 1 (a), case 2 (b).

2.2 Case 2, N = M,N > 0,M > 0

Here, the first step toward matching the two trees is to find a bijective mapping
function F : A → B that relates each T (k) in A, 1 ≤ k ≤ N , to its “closest”
match in B. This mapping is based on the distance between the x0 and y0 as
well as on other features such as the height and total number of nodes in the
subtrees. The goal is to find the best possible match between the components of
each pair in the mapping. This case is shown in Figure 2b where, as an example,
M = N = 3. The distance between T and S is then defined as

D(T, S) = a d(x0,y0) + b

[
1
N

N∑
k=1

D(T (k), F (T (k)))
]

(3)

where a is the same constant as in case 1 and 0 < b < 1− a.

2.3 Case 3, N = 0,M > 0

In this case, T is a single (root) node and S is not. This is depicted in Figure 3a
where S has, as an example, M = 3 subtrees. To match the two trees, we need
to make the number of subtrees, N and M , equal. We therefore add, at level
one of T , M dummy single-node subtrees T (k), 1 ≤ k ≤ M , and we define

A′ = {T (1), · · · , T (M)} (4)

Each node in the added subtrees is labelled with a dummy feature vector v.
By definition, d(v,y) = 1.

A bijective function G : A′ → B is then defined such that the concavity
represented by G(T (i)) has an area (relative to its parent) larger than or equal
to the area of the one represented by G(T (j)), for i > j.
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Fig. 3. Concavity-tree matching. Case 3 (a), case 4 (b).

The distance between T and S is given by

D(T, S) = a d(x0,y0) + c

[
h

M∑
k=1

(1− h)k−1D(T (k), G(T (k)))
]

(5)

where a is the same constant as in cases 1 and 2, c = 1 − a, and 0 < h < 1
(typically 0.5, discussed later.)

2.4 Case 4, N > 0,M > 0,M > N

Case 4 (Figure 3b) is the most general one and it combines the previous cases.
We first find a function F : A → B that relates each T (k) in A, 1 ≤ k ≤ N , to
its “closest” match in B. F in this case is an injective function. That is, M −N
elements in B are not in the range of F . Let

B′ = {S(k) : S(k) /∈ range of F} (6)
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Fig. 4. The distance between a single-node tree and a tree with height n whose nodes
(except leaves) have m children.

The next step is to add, at level one of T ,M−N dummy single-node subtrees
T (k), N < k ≤ M , and to define

A′ = {T (k) : N < k ≤ M} (7)

As in case 3, we define a bijective function G : A′ → B′ such that the
concavity represented by G(T (i)) has an area (relative to its parent) larger than
or equal to the area of the one represented by G(T (j)), for i > j. The distance
between T and S is then given by

D(T, S) = a d(x0,y0) + b

[
1
N

N∑
k=1

D(T (k), F (T (k)))
]
+

c

[
h

M∑
k=N+1

(1− h)k−N−1D(T (k), G(T (k)))
]

(8)

where a is as defined in cases 1, 2, and 3, h is as defined in case 3, and b and c
are real positive constants (weights) such that a+ b+ c = 1.

3 Discussion and Examples

In this section, we examine the role of the method parameters and their effects on
the matching process. Four parameters are involved in the tree distance measure,
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namely, a, b, c, and h. The first three parameters determine the weight given
in the matching process to the overall shape attributes (a), the shapes of the
underlying primitives (concavities) (b), and the cost of inserting new nodes in
the smaller tree (c). Typically, a is first chosen such that it reflects the extent
to which the similarity is based on the attributes in the root node, then b and
c are chosen such that a + b = 1 (case 2), a + c = 1 (case 3), or a + b + c = 1
(case 4). In case 4, one possible variation is to choose b and c such that their
ratio is N/(N +M). If a and c are chosen to be much smaller than b, this will
give more weight in the distance to the common part of the objects and hence
allow for occluded matching.

Prior to recursively calling itself M times, each call to the matching method
requires 1 + MN feature vector comparisons, resulting in a complexity of
O(l M2), including any sorting operation. Consequently, a worst-case time com-
plexity for the whole matching would be O(l MH+1), where H is the height of
the “higher” tree, and l, as defined before, is the dimensionality of the feature
vector labelling the nodes of the trees. M here is the maximum branching fac-
tor in the two trees, i.e., the number of children of the node with the highest
number of children in any of the two trees. Clearly, this is an upper bound that
is rarely reached (in the context of concavity trees) unless every node in both
trees has M children. Given that the number of nodes m in a tree is at most
(MH+1−1)/(M−1), which is O(MH), then the matching complexity, which was
seen to be O(l MH+1), can also be expressed as O(l mM). Moreover, because
they are independent, recursive calls to D(T, S) can be done in parallel, which
significantly improves the matching speed.

Figure 4 shows the distance between two trees, one is a single-node tree and
the other has a height of n and its non-leaf nodes each has m children. The
distance between the feature vectors in the root of the two trees is assumed to
be 0.8. The plots show that as n and m increase, i.e., as the second tree grows,
the distance approaches one. The rate of distance increase as a function of an
increase of n and/or m can be controlled by adjusting the values of a and h.

D(T, S) is bounded by 1. What makes this characteristic suitable for shape
matching using concavity trees is the following. If T1, T2, and T3 are three
trees such that T1 has say 10 nodes, T2 has 100 nodes, and T3 has 110 nodes,
D(T1, T2) is approximately the same as D(T1, T3) (slightly smaller). Which is
desirable, since both T2 and T3 are much different from T1. Another important
characteristic is that as we move down the tree, each level gets less and less
weight in the overall distance. So all the level is treated in a similar way. This
is different from other tree matching algorithm where the weight of each node
decreases monotonically both horizontally and vertically.

Figure 5 shows the pair-wise distances between 5 shapes. We note that the
distance increases in each row from left to right and decreases in each column
downward (as would be desired). Moreover, the closest non-identical pairs are
in order: (4,5), (3,4), (2,3), and (1,2), which is also desired.
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Fig. 5. The progression of the pair-wise distance between similar shapes.
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Fig. 6. Performance curves and query example.

4 Experimental Results

We use a database of 625 logo images to assess the new distance measure. We
label the trees with two sets of attributes, namely SCX (Solidity, Eccentricity,
and eXtent) [11] and moment invariants. We use 50 hand-sketched query images
to test the retrieval performance with and without trees. In Figure 6 (a) and (b),
the vertical axis is the percentage of the query images that were in the first k
(horizontal axis) retrievals. In the plot for example, about 30% of the 50 query
images returned the correct database image as the first hit (using SCX labelled
trees). From the plots, it is clear that the performance of the SCX feature was
improved by 20% when used in conjunction with concavity trees (the accuracy
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actually tripled). The performance of moment invariants was similarly boosted
by 15%. Figure 6 (c) and (d) show two sample queries that returned the target
image in first position (using SCX labelled trees.) Using just SCX, the target
images were originally in the 13th and 21st positions, respectively. The distance
(to the query the image) is shown above each retrieved image.

5 Conclusion

This paper detailed a new recursive method for 2-D shape matching based on
matching concavity trees. The method is suitable for concavity trees but can
be applied to other attributed trees as well. Experiments using the proposed
matching method show an increase of retrieval performance by at least 15%.
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Abstract. We investigate a number of approaches to pose invariant face recog-
nition. Basically, the methods involve three sequential functions for capturing 
nonlinear manifolds of face view changes: representation, view-transformation 
and discrimination. We compare a design in which the three stages are opti-
mized separately, with two techniques which establish the overall transforma-
tion by a single stage optimization process. In addition we also develop an ap-
proach exploiting a generic 3D face model. A look-up table of facial feature 
correspondence between different views is applied to an input image, yielding a 
virtual view face. We show experimentally that the four methods developed  
individually outperform the classical method of Principal Component Analy-
sis(PCA)-Linear Discriminant Analysis(LDA). Further performance gains are 
achieved by combining the outputs of these face recognition methods using dif-
ferent fusion strategies. 

1   Introduction 

Face recognition has a benefit over other biometric techniques such as fingerprint and 
iris recognition in that humans can be identified without notice and at distance. How-
ever, to realize this potential, it is essential to counteract the degradation in perform-
ance exhibited by face recognition systems for views different from the frontal pose. 
View-changes can be learned from prototype faces and the learned models can be 
applied to other individuals. 

Classically, a generic 3D model of a human face has been used to synthesize face 
images from different view points[8] and approximate models, such as a cylinder, 
have also been  applied to face recognition. More recently, Vetter and Poggio[1] 
showed that the 2D image based technique is a viable method for view synthesis and 
recognition of face classes. In their work, face images are first represented in the 
view-subspace and the transformation matrix between the different view representa-
tions is computed in the sense of Least Square Error(LSE). Blanz[4] utilized a 3D 
morphable model and Yongmin Li[2] applied Kernel Discriminant Analysis and 3D 
Point Distribution Model for view-invariant face recognition. In spite of the recent 
successes, all the above methods have a strong drawback in requiring dense corre-
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spondence of facial features for image normalization. The step of feature detection or 
correspondence solving, which is needed for separating the shape and texture compo-
nents of face images in these methods, is usually difficult itself. Errors in correspon-
dences seriously degrade the overall face recognition performance of these methods 
as shown in [4]. Among other relevant works, Graham and Allinson[3] applied a 
Neural Network for learning the view transfer function of the normalized face images 
with a fixed eye position. Talukder[6] also proposed the method for the simply nor-
malized images by using fixed eye points, which involves a linear view-transfer ma-
trix obtained by the LSE method[1]. 

In this paper, we propose robust base classifiers for face identification at unknown 
views and a combining classifier for accuracy improvement. It is assumed that a sin-
gle model image is given and face images are registered with reference to the eye 
positions. The classifiers differ in the way they model face view-changes. They can 
be categorized into methods based on statistical learning of face images at different 
poses and methods based on 3D face models. The two piecewise linear methods and 
the nonlinear kernel method are adopted as the base classifiers, which are based on 
statistical learning of face images. In addition, a computationally  efficient approach, 
which stores the correspondence information of 3D face models at different views in 
a look-up table, is also developed for complementing the statistical learning methods. 
These base classifiers are quite different in their nature owing to different sources of 
information and architectures used. This motivates us to combine them for further 
accuracy improvement. 

2   Base Classifier Design 

There are a number of factors that cause the face data distribution of different poses 
to be nonlinear; this naturally motivates us to exploit the benefits of non-linear archi-
tectures. The existing view-invariant face recognition methods can generally be de-
composed  into three sequential steps: representation, view-transformation and dis-
crimination function. First an input face image is projected into a view subspace via a 
function, S, which is obtained by linear or nonlinear subspace analysis of face images 
within a certain range of view-angles, as 

)avg(xSb vivviv ,,, =  (1) 

where iv ,x  is the i-th face image in the set drawn from a certain small range of views, 

v. A linear matrix (LM)[1] or Neural Network[3] can be utilized to learn the transfer 
function V between the different view representations in the sense of LSE, 

∑
=

−
N

i
r,if,i

1

2

V
)V(bbmin  (2) 

where f and r denote a frontal-view and a rotated-view respectively and N is the 
number of images. The face images transformed to the frontal-view and the original 
frontal view faces are the input for learning a discriminant function D. LDA or Gen-
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eralized Discriminant Analysis(GDA)[7] can be applied to learn the function map-
ping the pose corrected face images into discriminative feature vectors, i.e. 

avg)),D(V(bdavg),,D(bd r,ir,if,if,i ==  (3) 

where avg is a global mean. The final classification is based on the nearest neighbor 
matching of the feature vectors d . As the performance of this system depends on the 
choice of each transformation function, various combinations of linear and nonlinear 
functions obtained by statistical learning have been compared in [10]. The study 
showed that the piecewise linear combinatorial method, “PCA(as a S)-LM(as a V)-
LDA(as a D)” is one of the most accurate classifiers. As its computational cost is low, 
PCA-LM-LDA has been adopted as a base classifier in this study. However, it should 
be noted that this combinatorial method must yield a sub-optimal solution since  each 
step is separately trained. 

A novel nonlinear discriminant analysis, called “Locally Linear Discriminant 
Analysis(LLDA)”, has been developed to provide a unified framework for the three 
stage structure. It concurrently finds the set of locally linear transformations to yield 
locally linearly transformed face classes that maximize the between-class covariance 
while minimizing the within-class covariance as shown in Figure 1. 

 

Fig. 1. LLDA for pose-invariant face classification; Left shows the original data distribution 
and the found components and right shows the transformed data distribution. 

The solutions for the frontal and rotated face images found by this method, 
fU and 

rU  respectively, correspond to the combined three stage transformation function as 

discussed above, i.e.  

)avg,(xUd),avg,(xUd rr,irr,iff,iff,i == , 

)())( )D(V(SU,D(SU ⋅≡⋅≡→ rrff
. 

(4) 

For details of the novel algorithm, LLDA, please refer to the study[5]. LLDA and 
PCA-LM-LDA will be discussed in more detail in the experimental sections. 

Generalised Discriminant Analysis (GDA), which transforms the input space into a 
high-dimensional feature space by using a kernel function Φ and then linearly 
separates the data, is also developed. The major difference from the above piece-wise 
linear methods is that a single nonlinar transformation function ΦU  such that 

)avg,x(Ud),avg,x(Ud )()( r,ir,if,if,i Φ=Φ= ΦΦ  (5) 

is applied to different view face images while different sets of linear functions are 
exploited for different view faces in the two piecewise linear classifiers in (3) and (4). 
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Although the methods based on statistical learning of 2D images are effective for 
capturing face view changes, a complementary benefit of the more classical method 
based on 3D face models has also been investigated. We propose to replace the proc-
esses of texture mapping, 3D rotation and rendering in graphics with a direct image 
transformation based on a look-up table(LUT) as shown in Figure 2. By using the 
average LUT, rotated face images are virtually generated from the frontal face 
images; Intensity of a pixel of a rotated face image ),( yxIr

 is obtained from that of 

the corresponding pixel of the frontal image 
fI  as ( )),(),( yxIyxI fr LUT= , where 

LUT  is a funcntion which yields a stored coodinates. The view-transformation 
through the LUT is very fast. The rotation direction from the frontal to an arbitrary 
angle is more beneficial as most of the pixel information is kept. Each pose group has 
an average correspondence LUT. After transforming frontal faces to a certain view, 
LDA is applied to the pairs of the transformed and the original images at the same 
view yielding the output feature vectors d. Consequently, the proposed method 
deploys the view-specific discriminant functions of LDA. 

 

Fig. 2. Virtual View Generation by using the 3D correspondence LUT. 

3   Combining Strategies and Experiments 

3.1   Combining Techniques 

Fusion at the confidence level is considered, where the matching scores reported by 
the individual classifiers are combined. We have tested the simple fixed combining 
rules such as the sum, product, maximum, minimum and median rule to access the 
viability of combining the pose-invariant face classifiers. The use of any trained com-
biner instead of the fixed rules, provided a suitable evaluation set is available, would 
be an extension to our work. The confidence value )(xijC  of the base classifier j for 

class i is the normalized Euclidean distance of the output vectors d produced by                  
the base classifier. The confidence value is scaled by using the small independent 
evaluation set so that it is in the range of [0,1]. The combining classifier 

{ }cii ,...,1),()( == xQxQ  is defined as follows: 
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∏=
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iji )(xCQ     ∑=
j

iji )(xCQ         )(max xCQ ij
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i =  

)(min xCQ ij
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i =    )(xCQ ij
j

i median=  ∑=
j

ijji w )(xCQ  (6) 

3.2   Experimental Setup 

We used the two data sets, XM2VTS[19] as the main set and PIE[12] as the set for 
further comparison of the base classifiers. XM2VTS data set was annotated with pose 
labels of the face. The face database consists of 2950 facial images of 295 persons 
with 5 pose variations (F,R,L,U,D) and 2 different time sessions (S1,S2)( 5 months 
time elapse). This may be the largest public data set which has a sizeable population 
of subjects taken in different poses. Each pose group has a small view range due to 
the unexpected error in personal pose. The images were normalized to 46*56 pixel 
resolution with a fixed eye position. The experimental sets consist of 1250 images of 
125 persons, 450 images of 45 persons and 1250 face images of 125 persons for the 
training, evaluation and test respectively. The training, evaluation and test set have 
different face identities. The training set was utilized to learn the transformation func-
tions of the base classifiers whereas the evaluation set served to adjust the parameters 
of the classifier:  kernel parameters of GDA, the dimensionality of the output vectors 
and scaling parameters of the individual classifiers for combining. These were care-
fully chosen to achieve the best performance of each. The recognition performance is 
reported as the recognition rate on the test set. The frontal face F-S1 of the test set 
was selected as a gallery and the 9 rotated face images of the test set were exploited 
as queries. One more independent protocol was built based on the PIE data set: The 
selected PIE set consists of 15 images (3 poses x 5 illuminations ) of 66 identities as 
shown in Figure 3. This was equally divided into the training and test set. The frontal 
face F1 of the test set was selected as a gallery and all the other images of the test set 
were exploited as queries. 

3.3   Performance Comparison of the Base Classifiers 

3.3.1   Performance of the Individual Classifiers 
All the base classifiers have been tested on the XM2VTS DB.  For the method of 3D 
correspondence LUT, 108 SNU 3D scanned facial models[11] were used.  For GDA, 
an RBF kernel with an adjustable width was deployed. Of the proposed four base 
classifiers, the two methods, PCA-LM-LDA and 3D LUT, explicitly generate view-
rotated images. The characteristics of the two transformation results are quite differ-
ent as shown in Figure 4. While, the generalization performance of the transformation 
of the statistical learning based method, PCA-LM-LDA is much degraded for the 
non-trained individuals, the 3D model based method, 3D LUT, maintains its perform-
ance. On the contrary,  LLDA and GDA implicitly represent the face images so that 
the rotated faces have a similar representation to that of the frontal view images. The 
recognition performance of the base classifiers is shown in Figure 5.  
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Fig. 3. Sample images of the PIE DB. 

(a)  

(b)  

(c)  

Fig. 4. Examples of the synthesized faces on XM2VTS DB. (a)5 views of the training faces 
(b)Tranformed faces to a frontal view by PCA-LM-LDA (c)Transformed frontal faces to a 
rotated view by 3D-LUT. 

      

Fig. 5. Recognition rates (in %) of individual experts on XM2VTS DB. 

All the four classifiers much outperformed the classical face recognition method, 
PCA-LDA, where the basis functions of LDA are learned from the eigenfeatures of 
the training set. The dimensionality of the feature vector at both PCA and LDA stages 
was carefully controlled to yield its best result. The LLDA method performed best, 
but the others were also comparable. 
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3.3.2   PCA-LM-LDA vs. LLDA 
We look at the two methods, LLDA and PCA-LM-LDA more closely as the both are 
trained on the same sources of information and have similar architectures, which are 
piecewise linear. The PCA-LM-LDA method learns the representation, view-
transformation and the discriminant function separately with an indirect objective 
function for classification. In contrast, in the LLDA,  all the procedures are concur-
rently optimized directly for classification. Their difference is more apparent from the 
results on a dataset which varies in illumination as well as pose in Table 1. Please 
refer to the recognition results of the frontal faces by the conventional PCA-LDA for 
comparison. Illumination changes were relatively well compensated and generalized 
to novel test faces as compared with pose variations. Some results are ommited here 
and it is because the results were similar to those of the previous subsection. 

Table 1. Recognition rates (in %) on PIE DB. 

PCA-LDA PCA-LM-LDA LLDA 
 R1 59 L1 44 R1 59 L1 59 

F2 85 R2 26 L2 22 R2 41 L2 30 
F3 100 R3 56 L3 44 R3 56 L3 63 
F4 100 R4 56 L4 37 R4 56 L4 56 
F5 67 R5 30 L5 15 R5 30 L5 26 
avg 88  45  33  48  47 

3.4   Combining Results 

Figure 6 shows the combining results of all the 4 base classifiers by the 6 different 
gating rules. All 6 different gating rules improved the average performance of the 
best base classifier. 

The number of combined experts ranges from 1 up to 4. We first find the best ex-
pert, LLDA and then add the next best performing experts, the sequence of which is 
PCA-LM-LDA, 3D LUT, GDA, yielding the combined results by the sum and prod-
uct rules. The results are shown in Figure 7. Interestingly, the recognition rate consis-
tently improved  as the number of different base classifiers increased. It is also noted 
that the improvement rate achieved with 2 experts was relatively low in the case of 
the different session experiment. This might be because the two combined base clas-
sifiers, LLDA and PCA-LM-LDA are the most correlated classifiers, due to the simi-
lar sources of information used and their piecewise linear structures. In conclusion, 
the performance improvement achieved by the proposed combining classifier is quite 
impressive compared with the conventional PCA-LDA method in face recognition: 
46.8% → 73.2% for the same session and 34.8% → 54.4% for the different session 
respectively. 
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Fig. 6. Recognition rates (in %) of combining classifiers on XM2VTS DB. 

 

Fig. 7. Average recognition rate for the number of the combined base classifiers. 

4   Conclusion 

We have proposed a combining classifier based on the modelling of face view-
changes. Robust base classifiers are obtained by learning the statistics of 2D images 
or fitting generic 3D models. The proposed base classifiers outperform the classical 
method of LDA.  The fusion of the different classifiers yields an impressive perform-
ance improvement owing to their different characteristics in terms of  sources of 
information exploited and architectures used. We intend to improve the performance 
of the proposed approach by exploiting dense facial feature correspondences for an 
image regularization step in the future. The current performance was obtained with 
the images registered with a fixed eye position and this can be seen as a poor basis of 
the image normalization for the method. 
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Abstract. We propose a criterion for selection of independent binary di-
agnostic tests (signs). The criterion maximises the difference between the
logodds for having the disease and the logodds for not having the disease.
A parallel is drawn between the logodds criterion and the standard min-
imum error criterion. The error criterion is “progression non-monotone”
which means that even for independent binary signs, the best set of two
signs might not contain the single best sign. The logodds criterion is pro-
gression monotone, therefore the selection procedure consists of simply
selecting the individually best features. A data set for scrapie in sheep
is used as an illustration.

Keywords: feature selection, combining diagnostic tests, independent
binary features, logodds criterion, veterinary medicine, diagnosis of
scrapie in sheep.

1 Introduction

Diagnosis can be viewed as an example of a classification problem. The features
are the diagnostic tests or the clinical signs. The classes are the possible diag-
noses. Here we consider two classes, denoted by D+ (disease present) and D−

(disease absent) and binary features (a sign can only be present or absent, and
a test can only be positive or negative). We assume that the only information
available to us is in the form of expert estimates of the probabilities P (T+i |D+)
and P (T+i |D−), where T+i stands for “test i is positive” and T−i stands for “test
i is negative”. Without loss of generality we can relabel all the signs and tests
so that ‘present’ sign or ‘positive’ test indicate more strongly D+ than disease
D−, i.e., P (T+i |D+) > P (T+i |D−).

The common intuition is that the more independent signs/tests we have
present/positive, the higher is the probability for D+.

Selection of the best subset of signs or tests is an importrant topic espe-
cially in high dimensional problems. While feature selection is a well developed
topic within pattern recognition [1,2], selection of classifiers to form an ensemble
(diagnostic test selection) is a less developeded topic in the literature. Classi-
fier selection belongs in the field of multiple classifier systems, usually called

A. Fred et al. (Eds.): SSPR&SPR 2004, LNCS 3138, pp. 574–582, 2004.
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“overproduce and select” [4]. In our set-up the two selection tasks are equiva-
lent, therefore feature selection techniques can be applied to selecting classifiers.
Without loss of generality in the rest of the paper we will talk about test selection
only.

The most common selection criterion is the minimum of the classification
error. In this paper we derive a different criterion to assess the usefulness of a
diagnostic test. The rationale behind this criterion is to maximize the difference
between our belief that the individual has the disease (D+) if all tests are positive
and the belief that the individual does not have the disease (D−) if all the tests
are negative. The presumption is that if mixed results are obtained, further
tests, probably more expensive or invasive, will be used to clarify the diagnosis.
We illustrate the proposed criterion on a set of expert estimates of probabilities
P (T+i |D+) and P (T+i |D−) for scrapie in sheep.

2 Criteria for Selection of Diagnostic Tests

2.1 Classification Error

No diagnostic test is perfect so some individuals with a positive test result will
not have the disease while others with a negative test result will have the disease.
Conventionally the accuracy of a diagnostic test is measured by two values, the
sensitivity and the specificity, defined as follows

sensitivity =
number of individuals with the disease and a positive test

number of individuals with the disease

specificity =
number of individuals without the disease and a negative test

number of individuals without the disease
.

More formally the notation often seen in the epidemiology literature is shown
in the table below where α and β are probabilities

T • T− sum

D• 1− β β 1

D− α 1− α 1

In this table 1− β is the sensitivity of the test and 1−α is the specificity of the
test. In probabilistic terms

sensitivity = P (T+|D+) and specificity = P (T−|D−).

The error of a test is

P (error) = P (T− ∧ D+) + P (T+ ∧ D−) (1)

For this paper we will assume that both types of error are of equal con-
sequence. Also we will assume that we are equally unsure about whether an
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individual does or does not have the disease (P (D+) = P (D−) = 1
2 ). In these

circumstances equation (1) leads to

P (error) = P (T− ∧ D+) + P (T+ ∧ D−)
= P (T−|D+)× P (D+) + P (T+|D−)× P (D−)

=
1
2
×

(
P (T−|D+) + P (T+|D−)

)
= 1− 1

2
× ((1 - β) + (1 - α))

Minimising the error is a sensible criterion. However it is not without its
problems. Toussaint (1971) [5] showed that the best test is not necessarily in the
best pair of tests. The following hypothetical data shows this. For three tests
(labelled A, B and C) we have

test sensitivity specificity P (error)
A 0.90 0.90 0.100
B 0.80 0.95 0.125
C 0.70 0.99 0.155

The best individual test is A, followed by B then C. If we use two tests to
make the diagnosis, e.g., A and B, and assume that the tests are independent,
then the error can be calculated using the method shown in Table 1.

Table 1. Calculation of the error of the combined test (A and B) for independent A
and B

Test results (X) P (X|D• ) P (X|D−) minimum

TA• ∧ TB• 0.9 × 0.8 = 0.72 0.1× 0.05 = 0.005 .005
TA• ∧ TB− 0.9 × 0.2 = 0.18 0.1× 0.95 = 0.095 .095
TA− ∧ TB• 0.1 × 0.8 = 0.08 0.9× 0.05 = 0.045 .045
TA− ∧ TB− 0.1 × 0.2 = 0.02 0.9× 0.95 = 0.855 .020

When calculating the value for P (error) we have to remember that the prob-
abilities need to be weighted by the probabilities of having or not having the
disease. As these are both assumed to be 12 here then we can sum the minimum
probabilities and multiply by 1

2 to get .0825. Similarly we find P (error) is .0695
and .05975 for the pairs A & C and B & C respectively. Thus the best pair is
B & C, which does not include the best individual test. P (error) using all three
tests is .0495. The errors associated for each possible combination of the three
tests are shown in Figure 1.

It is findings like these that make feature selection a difficult problem. We
shall refer to this phenomenon by calling the error criterion ‘progression non-
monotone’. We note that the error criterion is monotone with respect to nested
sets, i.e. for any independent tests A and B
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Fig. 1. The error for each combination of tests

P (error for A ∧ B) ≤ P (error for A) & P (error for A ∧ B) ≤ P (error for B)

The fact that the error criterion is progression non monotone, even for inde-
pendent features, means that there is no simple straightforward procedure for
selecting the optimal feature subset. Can we find another criterion which is both
intuitive for diagnostic purposes, and is progression monotone?

2.2 Logodds Criterion

From a Bayesian viewpoint the probability that an individual has the disease
after we have observed a positive test result (P (D+|T+)) is a measure of our
belief that the individual actually has the disease. Probabilities (P ) are often
more conveniently expressed as odds P

1−P , which can then be combined after
taking their logarithms. Here the odds of having the disease is

ODDS(D+ : D−|T+) = P (D+|T+)
1− P (D+|T+) =

P (D+|T+)
P (D−|T+)

Intuitively we would like this value to be high as it means that if we get
a positive test result then we increase our belief that the individual has the
disease. Similarly we would like our belief in the individual having the disease to
be decreased when we get a negative test result. The odds of having the disease
given a negative test result is ODDS(D+ : D−|T−) = P (D+|T−)

1−P (D+|T−) =
P (D+|T−)
P (D−|T−) .

We would like this to be as small as possible.
We define the diagnostic value of a particular test T to be

v(T ) = log(ODDS(D+ : D−|T+))− log(ODDS(D+ : D−|T−)).
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This criterion maximises the difference in our belief of being diseased between
a positive test result being obtained and a negative test result being obtained.
From the definition of Bayesian probability we have

P (D+|T+) = P (T+|D+)× P (D+)
P (T+|D+)× P (D+) + P (T+|D−)× P (D−)

(2)

=
(1− β)× δ

(1− β)× δ + α × (1− δ)
(3)

where δ = P (D+) and α and β are as defined above.
Similarly

P (D−|T+) = α × (1 − δ)
α × (1 − δ) + (1− β)× δ

This leads to

ODDS(D+ : D−|T+) = δ

1− δ
× 1− β

α

Taking the logarithm of this leads to our measure of belief in being diseased
when a positive test result is obtained.

log(ODDS(D+ : D−|T+)) = log δ

1− δ
+ log

1− β

α

Similarly our measure of belief in being diseased when a negative test result
is obtained is

log(ODDS(D+ : D−|T−)) = log δ

1− δ
+ log

β

1− α

Taking the difference of these two logodds terms leads to our logodds criterion

v(T ) = log
1− β

α
− log β

1− α
(4)

= log
sensitivity

1− sensitivity + log
specificity

1− specificity (5)

Notice that δ is not involved in the criterion. This means that the prior
probability we have for an individual being diseased plays no part in deciding
which test is the best. This has important consequences when we come to look
at the situation when we combine the results from more than one test.

Suppose that T is a combined test consisting of T1, T2, . . . , Tn. A positive
combined test will be equivalent to all individual tests giving positive results,
i.e., T+ = T+1 ∩ T+2 ∩ . . . ∩ T+n . A negative combined test will be equivalent
to all individual tests giving positive results, i.e., T− = T−1 ∩ T−2 ∩ . . . ∩ T−n .
Using the assumption of independence, we can show that

v(T ) =
n∑
i=1

v(Ti).
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for any values of the prior probability δ. Let S denote the set of all available
diagnostic tests. Our proposed criterion is

max
T⊆S

v(T ) = max
T⊆S

∑
Ti∈T

v(Ti).

For the example data shown above the logodds criterion values can be cal-
culated as shown in Table 2. Using this criterion the best test is C, followed by
A then B. The real advantage of this criterion can now be seen. After we have
got the results of the best test (C here) then our prior probability of the disease
has changed. But this plays no part in deciding which test to use in conjunction
with it. So the second best test to use in combination with test C is test A. The
result of combining all three tests and showing all possible results is given in
Figure 2.

Table 2. Calculation of the logodds criterion

test sensitivity specificity log •−β
α
log β

•−α
logodds

1− β 1− α criterion

A 0.90 0.90 2.197 -2.197 4.394
B 0.80 0.95 2.773 -1.558 4.331
C 0.70 0.99 4.248 -1.194 5.442
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Fig. 2. The logodd criterion for all possible results of 3 tests

Visually the logodds criterion finds the test with the largest difference be-
tween the logodds for a positive and a negative test result.

2.3 Differences between the Logodds and the Error Criteria
The following example shows that the logodds criterion is different from the
error criterion. Consider again the three tests A, B and C. Let α1 = 0.1 and



580 Christopher J. Whitaker, Ludmila I. Kuncheva, and Peter D. Cockcroft

β1 = 0.1 be the respective errors for test A. Figure 3 depicts the regions for α2
and β2 for another test. If the point specified by the pair (α2, β2) is inside one
of the shaded regions (e.g. Test C), then the second test is worse than A on the
error criterion but better than A on the logodds criterion. However if the point
is not inside the shaded region (e.g. Test B) then the test is worse than A on
both criteria.

Fig. 3. Regions for α• and β• where the (individual) error criterion and logodd criterion
disagree

An important difference between the two criteria is the computational ef-
fort required for estimating the error for a set of tests T = {T1, . . . , Tn} ⊆ S.
For the error criterion, the error is the sum of 2n terms, one for each possible
combination of test results. These are calculated from the expert estimates of
the probabilities. Since the error criterion is progression non monotone, special
procedures have to be applied to navigate through the subsets T . On the other
hand, the logodds criterion is progression monotone. It is a simple sum whereby
we can maximise each component so as to get the a total maximum. Thus the
set of the individually best n features is the best set of n features according to
the logodds criterion.

3 Results for Scrapie Data

Scrapie is a notifiable disease of sheep. We consider 285 clinical signs that may
be observed in either scrapie or in 62 differential diagnoses [6]. The available data
is in the form of probabilities P (T+i |D+) and P (T+i |D−), where i = 1, . . . , 285,
D+ is scrapie, and D− is any of the other diagnoses. It is not practical to observe
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all 285 clinical signs on sheep suspected for scrapie. Kuncheva et al. (2003) [3]
report an analysis which uses sequential feature selection (SFS) to choose 15 signs
based on the classification error criterion. Table 3 shows the 15 signs selected by
the error criterion through the SFS procedure and the 15 signs selected by the
logodds criterion. The numbers in front of the signs show the individual rank
according to the error criterion. The sign with rank 1, Hyperaesthesia, is the
most important discriminatory sign according to the error criterion.

Table 3. The 15 diagnostic signs (tests) selected through the error criterion (via SFS)
and the logodds criterion. Given in brackets are (P (T • |D• )/P (T • |D−)). ‘R’ is the
individual rank of the sign by the error criterion

R Sign R Sign

1 Hyperaesthesia (.87/.06) 2 Weight loss (1/.25)

2 Weight loss (1/.25) 1 Hyperaesthesia (.87/.06)

3 Pruritus (.8/.07) 3 Pruritus (.8/.07)

21 *Increased respiratory rate (0/.19) 4 Abnormal behaviour (.7/.06)

4 Abnormal behaviour (.7/.06) 5 Underweight (.9/.25)

5 Underweight (.9/.25) 21 *Increased respiratory rate (0/.19)

9 Tremor (.63/.09) 22 *Sudden death (0/.18)

22 *Sudden death (0/.18) 18 Abortion or weak newborns (.3/.02)

6 Dysmetria (.67.1) 6 Dysmetria (.67.1)

7 Ataxia (.77/.2) 9 Tremor(.6/.09)

8 Grinding teeth (.67/.11) 10 Trembling (.6/.09)

10 Trembling (.6/.09) 8 Grinding teeth (.7/.11)

11 Alopecia (.57/.08) 23 *Tachycardia (0/0.13)

12 Seizures or syncope (.52/.1) 25 *Reluctant to move (0/.13)

13 Rumen hypomotility (.47/.1) 11 Alopecia (.6/.08)

Notes:
1. The signs marked with a * had to be relabeled so as to ensure that
P (T •i |D• ) > P (T •i |D−).
2. For calculation purposes, all 0’s were reassigned to 0.01 meaning “very rare” and
all 1’s were reassigned to 0.99 meaning “almost sure”.

The table shows that the logodds criterion has selected 12 of the 15 features
that were chosen by the error criterion. Two of the three different features cho-
sen by the logodds criterion have sensitivities of 0. If the expert estimates are
incorrect in the extremes (0 or 1), then the logodds criterion might give undue
weight to such features.

4 Conclusions

The difference between the error and logodds criteria can be viewed in the fol-
lowing way. A pharmaceutical company creates a diagnostic test and measures
its worth by means of the number of misdiagnoses that ensue. This is a perfectly
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sensible for the company. However an individual is only interested in the results
of the test on themselves. The best test for the individual is the one that leads
to the most information about whether the individual actually has the disease.
The logodds criterion attempts to measure this. In this sense the criterion is
intuitive for diagnostic purposes.

The logodds criterion is progression monotone. This means that we can de-
termine at the outset the ordering of the worth of the tests using this criterion.
The advantage is that as the prior belief plays no part in the criterion then this
ordering is the one that applies every time we want to include the results of
another test. The computational efficiency savings follow from the progression
monotonicity.
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Abstract. Handwritten text recognition is one of the most difficult
problems in the field of pattern recognition. Recently, a number of clas-
sifier creation and combination methods, known as ensemble methods,
have been proposed in the field of machine learning. They have shown
improved recognition performance over single classifiers. In this paper a
number of ensemble methods for handwritten word recognition are de-
scribed, experimentally evaluated, and compared to each other. Those
methods include classical, general purpose ensemble methods as well as
novel ensemble methods specifically developed by the authors for hand-
written word recognition. The aim of the paper is to investigate the
potential of ensemble methods for improving the performance of hand-
writing recognition systems. The base recognition systems used in this
paper are hidden Markov model classifiers.

Keywords: ensemble methods, handwritten word recognition, hidden
Markov model (HMM).

1 Introduction

The field of off-line handwriting recognition has been a topic of intensive research
for many years. First only the recognition of isolated handwritten characters was
investigated [26], but later whole words [25] were addressed. Most of the systems
reported in the literature until today consider constrained recognition problems
based on vocabularies from specific domains, e.g. the recognition of handwrit-
ten check amounts [13] or postal addresses [15]. Free handwriting recognition,
without domain specific constraints and large vocabularies, was addressed only
recently in a few papers [16, 22]. The recognition rate of such systems is still low,
and there is a need to improve it.

The combination of multiple classifiers was shown to be suitable for improving
the recognition performance in difficult classification problems [18, 27]. Also in
handwriting recognition, classifier combination has been applied. Examples are
given in [20, 28]. Recently new ensemble creation methods have been proposed
in the field of machine learning, which generate an ensemble of classifiers from a
single classifier [3]. Given a single classifier, the base classifier, a set of classifiers
can be generated by changing the training set [2], the input features [12], the
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input data by injecting randomness [4], or the parameters and the architecture
of the classifier [23]. Examples of widely used methods that change the training
set are Bagging [2] and AdaBoost [5]. Random subspace method [12] is a well-
known approach based on changing the input features. A summary of ensemble
methods is provided in [3].

Although the popularity of multiple classifier systems in handwritten recog-
nition has grown significantly, not much work on the use of ensemble methods for
handwritten word recognition has been reported in the literature. This issue was
recently addressed by the authors in a few papers [6, 7, 9–11]. In [6] ensemble
methods using several prototypes were introduced. In [7] new boosting algo-
rithms based on AdaBoost [5] were proposed. Ensemble methods using feature
selection algorithms were introduced in [9] while a special combination scheme
was described in [10]. Results of classical ensemble methods were reported in
[11]. In the present paper we introduce a novel ensemble method and compare
the most promising ensemble methods among each other, using a uniform frame-
work for experimental evaluation. In contrast with earlier work reported by the
authors, a more sophisticated base classifier is used. Also a new ensemble method
is proposed (Subsection 3.2).

The rest of this paper is organized as follows. The base classifiers for hand-
written word recognition used in the experiments are presented in Section 2. In
Section 3, the ensemble methods evaluated in this paper are described. Then, in
Section 4, experimental results of the ensemble methods with optimal parameter
values are given. Finally, some conclusions are drawn in Section 5.

2 Handwritten Word Recognizers

The handwritten word recognizers used in this paper are similar to the one
described in [22]. We assume that each handwritten word input to the recognizers
has been normalized with respect to slant, skew, baseline location and height (for
details of the normalization procedures see [22]). A sliding window of one pixel
width is moved from left to right over the word and nine geometric features are
extracted at each position of the window. Thus an input word is converted into
a sequence of feature vectors in a 9-dimensional feature space. The geometric
features used in the system include the fraction of black pixels in the window,
the center of gravity, and the second order moment. These features characterize
the window from the global point of view. The other features give additional
information. They represent the position of the upper- and lowermost pixel, the
contour direction at the position of the upper- and lowermost pixel, the number
of black-to-white transitions in the window, and the fraction of black pixels
between the upper- and lowermost black pixel.

For each uppercase and lowercase character, an HMM is build. For all HMMs
the linear topology is used, i.e. there are only two transitions per state, one to
itself and one to the next state. The character models are concatenated to word
models. There is exactly one model for each word from the underlying dictionary.
This approach makes it possible to share training data across different words.
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Two different versions of the classifier described in the previous two para-
graphs, called C1 and C2 in the following, are employed in this paper. For clas-
sifier C1 a fixed number of 14 states per HMM were used and the distributions
of the features in each state of an HMM were modeled by single Gaussians.
Four iterations of the Baum-Welch algorithm [24] were used for the training of
the classifier. The number of states per HMM and the number of training it-
erations are optimal values (as determined by means of a validation set) under
the assumption that the same number of states is needed for each individual
character.

Classifier C2 is a significantly refined version of classifier C1. The number
of states of the HMMs were optimized by the Quantile method [30] for each
character individually. As a result, each individual character model has a differ-
ent number of states. In addition the distributions of the features in each state
of an HMM were modeled by Gaussian mixtures instead of single Gaussians.
The training method of classifier C2 was optimized on a validation set, using an
optimization strategy described in [8].

3 Ensemble Methods

In this section the ensemble methods used in the experiments are described.
The ensemble methods are divided in four categories: classical ensemble methods,
partitions based ensemble method, novel boosting algorithms, and feature search
ensemble method.

3.1 Classical Ensemble Methods

Two classical ensemble methods, AdaBoost and random subspace method were
investigated in the experiments.

AdaBoost [5] modifies the original training set for the creation of the en-
semble. Each classifier is trained on a different training set of the same size as the
original training set. The main idea of AdaBoost is to concentrate the training
on “difficult” patterns. The classical AdaBoost algorithm can only be used for
two-class problems, but AdaBoost.M1 [5], a simple extension of AdaBoost, can
cope with multi-class problems. Consequently, AdaBoost.M1 was applied in the
experiments.

In the random subspace method [12] the individual classifiers use only a
subset of all features for training and testing. The size of the subsets is fixed and
the features are randomly chosen from the set of all features. In the experiments
of this paper, 6 out of 9 features were selected, i.e. the fixed feature set size is 6.

The classical ensemble Bagging [2] was also tested. As it produced inferior
results, no description and no results of Bagging are given in this paper.

3.2 Partitions Based Ensemble Method

The basic algorithm of the partitions based ensemble methods can be described
as follows. First, the whole training set is split into several partitions. Then each
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classifier is trained on all patterns of one of these partitions. This means that
if the training set is split in n partitions, n different classifiers are obtained.
There are two key parameters of this ensemble method. The first parameter is
the algorithm actually applied to perform the partitioning, and the second is the
number of partitions

For the experiments the partitioning was based on a clustering of the words
according to their writing style. The whole training set was first clustered into
groups of words with similar writing style where each group forms a partition.
This was done by extracting some features of the handwritten text and applying
the k-means clustering algorithm [14]. As we are using the IAM database [21], we
always have complete pages of handwritten text, produced by the same writer,
at our disposal (compare Section 4). Therefore the features were extracted from
a whole page and all words of a page belong to the same cluster. The two features
used for the clustering are the following:

– Words per component: The average number of words per connected compo-
nent is calculated where small components are removed by a filtering pro-
cedure. A value of one of this feature corresponds to a complete cursive
handwriting, i.e. the case where one connected component always represents
exactly one word. By contrast, words consisting of isolated hand-printed
characters have significantly lower values.

– Character width: The average width of the characters, in terms of pixels, is
calculated. To this aim the lines of the pages are segmented in words using
the procedure presented in [29]. The character width is then calculated as
the sum of the lengths of the words of a page divided by the number of
characters.

Both features were linearly normalized so that the mean of the features was 0
and the standard deviation was 1.

The influence of the second parameter, the number n of partitions, is as
follows. The higher the number of n is, the more similar are the writing stiles of
the words of the same cluster. On the other hand, the average training set size
decreases linearly with the number of clusters. As the performance of a system
normally increases with the size of the training set, a rather high number of
clusters will lead to classifiers with low performance. Usually, n is a parameter
the optimal value of which needs to be experimentally determined.

3.3 Novel Boosting Algorithms

As mentioned before, the original AdaBoost algorithm only works for two-class
problems. AdaBoost.M1 [5] is a straightforward extension that basically regards
the multi-class problem as a two-class problem with the two classes “correct” and
“not correct”. However, by doing this, we loose a great deal of information. In
[7] three ensemble methods were introduced which are based on AdaBoost.M1,
but which take all classes into account. The simple probabilistic boosting (SPB)
defines the selection probability of a training pattern as a linear function of the
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likelihood of the misclassification of this pattern by the ensemble consisting of
all already created classifiers. The effort based boosting (EBB) only trains with
training elements for which the inclusion of instances of these elements leads,
with a certain likelihood, to their correct recognition. Thus training elements
which are always misclassified, even when including many of their instances in
the training set, are not used for the training. The simple probabilistic boosting
with effort (SPBE) is a combination of SPB and EBB. For more details of the
three novel boosting algorithms we refer to [7].

3.4 Feature Search Ensemble Method

The feature search ensemble method described in this subsection was first in-
troduced in [9]. The key idea of the method is not to select feature subsets for
the individual classifiers of the ensemble randomly, as it is done in the random
subspace methods [12], but to repeatedly apply an algorithm that selects a well
performing features subset. In principle any known algorithm for feature selec-
tion can be used. In the ensemble method presented in this paper, a feature
search starting with the empty set of features and a feature search starting with
the full set of features were applied alternatively.

Similarly to most feature selection algorithms, the method applied in this
paper tries to maximize the value of an objective function f . For a single clas-
sifier system this objective function is simply the classifier’s performance on a
validation set. However, in the present case we want to maximize the perfor-
mance of the whole ensemble. Therefore the objective function f measures the
performance of the ensemble consisting of all classifiers which were already cre-
ated and the classifier which is actually considered. The measurement of f is
performed on a separate validation set. Ideally f also incorporates an estima-
tion of the potential for improvement when adding more classifiers. In [9] two
different objective functions were defined.

4 Experiments

For isolated character and digit recognition, a number of commonly used data-
bases exist. However, for the task considered in this paper, there exists only one
suitable database to the knowledge of the authors, holding a sufficiently large
number of words produced by different writers [21]. Consequently this database
was used in the experiments.

Two sets of experiments were done. The first set of experiments were con-
ducted in order to evaluate the ensemble methods for a rather simple, straight-
forward base classifier. In these experiments the base classifiers C1 was used.
In the second set of experiments the highly optimized classifier C2 was used as
the base classifier. For the experiments of the second set the optimal number of
classifiers was determined in a separate experiment.

To combine the individual classifiers of the ensembles the following combi-
nation schemes were applied:
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1. Voting scheme (voting): Only the top choice of each classifier is considered.
The word class that is most often on the first rank is the output of the
combined classifier. Ties are broken by means of the maximum rule (max)
or the median rule (med), which are only applied to the competing word
classes.

2. Performance weighted voting (perf weight): Here we consider again the top
class of each classifier. In contrast with regular voting, a weight is assigned
to each classifier. The output of the combined classifier is the word class
that received the largest sum of weights. The weight of a classifier is the
performance of this classifier on the training set.

3. Weighted voting using optimized weights (ga weight): This scheme is similar
to perf weight, but optimal weights are used which are calculated by a genetic
algorithm based on the results of the classifiers achieved on the training set
[19].

4. Special combination scheme for HMM-based recognizers (special): This com-
bination was introduced in [10]. It integrates all HMMs of the different clas-
sifiers that correspond to the same character into a single HMM.

In the first set of experiments a data set of 10,927 words with a vocabulary of
size 2,296 was used. That is, a classification problem with 2,296 different classes
was considered. The total number of writers who contributed to this set is 81. A
training set containing 9,861 words and a test set containing 1,066 words were
chosen in such a way that none of the writers of the test set were represented in
the training set. Thus the experiments are writer independent. For the feature
search ensemble method the training set was randomly split in a training set
of 8,795 words and a validation set of 1,066 words. For this set of experiments
the base classifier C1, as described in Section 2, was used. The recognition rate
of the base classifier C1 was 66.23 %. The results of the ensemble methods are
shown in Table 1. The name of the ensemble method is indicated in the column
ensemble method. Please note that parameters of some ensemble methods were
varied and only the results of the ensemble methods using the best parameter
values, i.e. those which lead to the highest recognition rates on the test set, are
shown. These parameter values are also given in the column ensemble method.
(See [7, 9] for details of these parameters). In column cn the number of classifiers
in the ensemble is given. The column combination scheme gives the scheme for
which the highest recognition rate is obtained. The obtained recognition rate is
finally shown in the last column.

Table 1 shows that the recognition rate of the base classifier was increased by
2.88 % up to 5.81 %. The table furthermore shows that the ensemble methods
of all categories are able to significantly improve the performance of the base
classifier. We note that the classical ensemble methods were outperformed by all
other ensemble methods specially developed by the authors for the domain of
handwriting recognition.

In the second set of experiments a larger training set of 18,920 words and
a larger test set of 3,264 words were used. The vocabulary of the experiments
contains 3,997 words, i.e. a classification problem with 3,997 different classes is
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Table 1. Best results of the ensemble methods for base classifier C• . The performance
of C• is 66.23 %.

ensemble method cn combination scheme rec. rate.

classical:AdaBoost 14 perf weight 69.11 %

classical: random subspace method 25 ga weight 69.35 %

partitions based 5 special 70.83 %

boosting: EBB, α = 1.5 10 ga weight 69.82 %

feature search, f• 10 vote best med 72.04 %

Table 2. Best results of the ensemble methods for base classifier C• . The performance
of C• is 80.36 %.

ensemble method cn combination scheme rec. rate.

classical: AdaBoost 14 vote max 82.02 %

classical: random subspace method 25 vote med 80.76 %

partitions based 3 special 81.07 %

boosting: SPBE, e• 14 vote max 82.69 %

feature search, f• 13 vote med 82.69 %

considered. The set of writers of the training set and the set of writers of the
test set are disjoint, so the experiments are again writer independent. The total
number of writers who contributed to this data set is 153. For the feature search
ensemble method the training set was randomly split three times in a training
set of 17,920 words and a validation set of 1,000 words. The recognition rate of a
system was calculated by averaging over the system’s recognition rates obtained
for each of the three splits. The base classifier C2, as described in Section 2, is
used. The recognition rate of the base classifier was 80.36 %.

The results of the second set of experiments are shown in Table 2 where the
same notation as in Table 1 is used.

The recognition rate of the base classifier was increased by 0.4 % up to 2.33
%. This again shows that the ensemble methods of all categories are able to
improve the performance of the base classifier. The random subspace method
obtained only moderate improvements. The partitions based ensemble method
did not perform as well as the classical method AdaBoost in this case. But
both the boosting and the feature search ensemble methods were better than
AdaBoost.

5 Conclusions

In this paper classical ensemble methods and novel ensemble methods specially
developed for the domain of handwriting recognition were compared to each
other. Two series of experiments were conducted. In the first series a rather
simple and straightforward base classifier was used, while the base classifier of
the second series was highly optimized. The results show that in both cases the
performance of the base classifier can be significantly improved through the use
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of ensemble methods. The ensemble methods developed specifically for the task
of handwriting recognition obtained either better results than the classical ones
or produced much smaller ensembles. A possible future work is the evaluation of
ensemble methods which use several base classifiers with different architectures.
By applying an ensemble method on each base classifier and fusing the ensembles
the performance may be increased even more. This was already confirmed in
some earlier works for the case of two base classifiers. It may be promising to
extend this approach to the case of more than two base classifiers.
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Abstract. In this paper we describe several new methods to build a
kernel matrix from a collection of kernels. This kernel will be used for
classification purposes using Support Vector Machines (SVMs). The key
idea is to extend the concept of linear combination of kernels to the
concept of functional (matrix) combination of kernels. The functions in-
volved in the combination take advantage of class conditional probabili-
ties and nearest neighbour techniques. The proposed methods have been
successfully evaluated on a variety of real data sets against a battery of
powerful classifiers and other kernel combination techniques.

1 Introduction

Support Vector Machines (SVMs) have proven to be a successful tool for the
solution of a wide range of classification problems since their introduction in [3].
The method uses as a primary source of information a kernel function K(i, j),
where K is Mercer’s kernel and i, j represent data points in the sample: By the
Representer Theorem (see for instance [16]), SVM classifiers always take the form
f(x) =

∑
i αiK(x, i). The approximation and generalization capacity of the SVM

is determined by the choice of the kernel K [4]. A common way to obtain SVM
kernels is to consider a linear differential operator D, and choose K as Green’s
function for the operator D∗D, where D∗ is the adjoint operator of D [15]. It is
easy to show that ‖f‖2 = ‖Df‖2L2

. Thus we are imposing smoothing conditions
on the solution f . However, it is hard to know in advance which particular
smoothing conditions to impose for a given data set. Fortunately, kernels are
straightforwardly related to similarity (or equivalently distance) measures, and
this information is actually available in many data analysis problems.

Nevertheless, using a single kernel may be not enough to solve accurately
the problem under consideration. This happens, for instance, when dealing with
text mining problems, where analysis results may vary depending on the docu-
ment similarity measure chosen [9]. Thus, the information provided by a single
similarity measure (kernel) may be not enough for classification purposes, and
the combination of kernels appears as an interesting alternative to the choice of
the ‘best’ kernel.

A. Fred et al. (Eds.): SSPR&SPR 2004, LNCS 3138, pp. 592–600, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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The specific literature on the combination of kernels is rather in its begin-
nings. A natural approach is to consider linear combinations of kernels. This is
the approach followed in [10], and it is based on the solution of a semi-definite
programming (SDP) problem to calculate the coefficients of the linear combina-
tion. The solution of this kind of optimization problems is computationally very
expensive [19]. Another problem regarding this method is the overfitting due to
lack of capacity control. A different approach is proposed in [2]. The method,
called MARK, builds a classifier (not the specific kernel matrix) by a boosting
type algorithm.

In this paper we describe several methods to build a kernel matrix from a
collection of kernels for classification purposes. The key idea is to extend the
concept of linear combination of kernels to the concept of functional (matrix)
combination of kernels.

The paper is organized as follows. Section 2 describes the proposed methods
for combining kernels. The experimental setup and results on real data sets are
described in section 3. Section 4 concludes.

2 Methods

LetK1,K2, ...KM be a set ofM input kernels defined on a data setX , and denote
by K∗ the desired output combination. Let y denote the label vector, where for
simplicity yi ∈ {−1,+1} (the extension to the multilabel case is straighforward).

To motivate the discussion, consider the following (functional) weighted sum
of the kernels:

K∗ =
M∑

m=1

Wm · Km , (1)

where ‘·’ denotes the element by element product between matrices, and Wm =
[wm(i, j)] is a matrix whose elements are nonlinear functions wm(i, j), with i and
j data points in the sample. Notice that if wm(i, j) = μm, where μ1, . . . , μM are
constants, then the method reduces to a simple linear combination of matrices:

K∗ =
M∑

m=1

μmKm . (2)

As mentioned in Section 1, in [10] a method is suggested to learn the coefficients
μm of the linear combination by solving a semi-definite programming problem.
We will refer to this method as SDP.

Taking μm = 1
M , the average of the kernels is obtained. This method will be

refered in the following as AKM (Average Kernel Method).
Regarding our proposals, consider the (i, j) element of the matrix K∗ in (1):

K∗(i, j) =
M∑

m=1

wm(i, j)Km(i, j) . (3)
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Next we will show how to calculate the weighting functions wm(i, j). To this
aim, we will make use of conditional class probabilities. Consider the pair (i, yi)
and an unlabeled observation j. Given the observed value j, define P (yi|j) as
the probability of j being in class yi. If i and j belong to the same class this
probability should be high. Unfortunately this probability is unknown and it has
to be estimated. In our proposals we will estimate it by P (yi|j) = nij

n , where
nij is the number of the n-nearest neighbours of j belonging to class yi. Notice
that each kernel induces a different type of neighborhood. Hence, it is advisable
to estimate this probability for each kernel representation, that is, for the kernel
Km we will estimate the conditional probabilities Pm(yi|j).

2.1 The Probability Weighting Scheme (‘ProbWS’)

The first proposed method builds K∗ by defining wm(i, j) in (3) as:

wm(i, j) = τ (Pm(yi|j) + Pm(yj |i))q , (4)

where τ is introduced to assure that
∑

m wm(i, j) = 1, and q is a positive constant
to control the value of the weights. Within this setting, the weights quantify the
relative importance of each kernel: If i and j belong to the same class (say yi),
the proportion of the nearest neighbours of j belonging to yi should be high. So,
the method favours the kernel whose induced neighbourhood shows the highest
agreement with the data label information.

Given that K∗ is not necessarily a linear combination of kernels, positive
definiteness of K∗ is not guaranteed. Several solutions have been proposed to
face this problem [14]: A first possibility is to replace K∗ by K∗ + λI, for λ > 0
large enough to make all the eigenvalues of the kernel matrix positive. Another
direct approach is to use Multidimensional Scaling to represent the data set in
an Euclidean space. Finally, it is also possible to define a new kernel matrix as
K∗TK∗ [17].

2.2 The Exponencial and Polynomial Weighting Scheme Methods

The next two methods are influenced by the ideas in [12, 5] where the variables
are weighted according to their relative discrimination power. We make use of
similar ideas to raise the weight of kernels with expected good classification per-
formance and, analogously, to diminish the influence of less informative kernels.

Let

P̄ (yi|j) =
1
M

M∑
m=1

Pm(yi|j) , (5)

and

rm(i, j) =

(
P̄ (yi|j)+P̄ (yj |i)

2 − Pm(yi|j)+Pm(yj|i)
2

)2
Pm(yi|j)+Pm(yj |i)

2

, (6)

where rm(i, j) is designed to measure the ability of kernel m to predict P̄ (yi|j)
and P̄ (yj |i). The value of rm(i, j) will be inversely related to the discrimination
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power of Km with respect to the whole set of kernels: The numerator in (6)
approaches zero when the information conveyed by Km tends to be similar to
the information collected by the entire set of kernels.

Now, we construct wm(i, j) as a function of rm(i, j). The relative relevance
of kernel Km can be evaluated by:

wm(i, j) = τ exp

(
q

1
rm(i, j)

)
. (7)

We call this method ‘exponential weighting scheme’ (ExpWS). The parameter
q is used to control the influence of rm(i, j) on wm(i, j). If q = 0, this influence
is ignored, and the method reduces to the AKM method. On the other hand, for
large values of q, changes in rm will be exponentially reflected in wm. A different
choice to quantify the relative importante of Km is given by:

wm(i, j) = τ

(
1

rm(i, j)

)q

, (8)

where τ and q play the same role as before. Using q = 1, 2 we have linear
and quadratic weighting schemes, respectively. We will label this method as
‘polynomical weighting scheme’ (PolyWS).

2.3 The Percentile Methods

Unlike the previous methods, the techniques introduced in this section do not
build a functional (matrix) combination of kernels. Consider the ordered se-
quence of kernels:

min
1≤m≤M

Km(i, j) = K[1](i, j) < K[2](i, j) < . . . < K[M ](i, j) = max
1≤m≤M

Km(i, j) .

The two new methods we propose build each element of K∗ using, respectively,
the following formulae:

K∗(i, j) = K[(
P̄(yi|j)+P̄ (yj |i)

2

)
M

] , (9)

K∗(i, j) =
K[P̄ (yi|j)M] +K[P̄ (yj|i)M]

2
. (10)

We will denote these methods by ‘percentil-in method’ and ‘percentil-out
method’, respectively.

If the class probabilities P̄ (yi|j) and P̄ (yi|j) are high, we can expect a high
similarity between i and j and both methods will guarantee a high K∗(i, j). If
the class probabilities P̄ (yi|j) and P̄ (yi|j) are both low, K∗(i, j) will be also low.
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2.4 The ‘MaxMin’ Method

The next method can be considered as a mixture of the previous combina-
tion techniques. The method produces a functional combination of two kernels,
namely, the maximun and the minimun of the ordered sequence of kernels:

K∗(i, j) = K[M ](i, j)

(
P̄ (yi|j) + P̄ (yj |i)

)
2

+ (11)

K[1](i, j)

(
P̄ (−yi|j) + P̄ (−yj|i)

)
2

If i and j belong to the same class then the conditional class probabilities P̄ (yi|j)
and P̄ (yj |i) will be high and the method guarantees that K∗(i, j) will be large.
On the other hand, if i and j belong to diferent classes the conditional class
probabilities P̄ (yi|j) and P̄ (yj |i) will be low and the method will produce a
value close to the minimun of the kernels.

2.5 The ‘Pick-out’ Method

This is the limiting case of the ‘MaxMin’ method. We take P̄ (yi|j) = P̄ (yj |i) = 1
if i and j belong to the same class and P̄ (yi|j) = P̄ (yj |i) = 0 otherwise.

K∗(i, j) =

⎧⎨⎩ max
1≤m≤M

Km(i, j), if i and j belong to the same class

min
1≤m≤M

Km(i, j), if i and j belong to different classes (12)

In this way, if i and j are in the same class, it is guaranteed that K∗(i, j)
will be the largest possible according to the available information. If i and j
belong to different classes, we can expect a low similarity between them, and
this is achieved by the choice of the minimum kernel value. This method was
first introduced in [13], in the context of classification problems with asymmetric
similarity measures.

3 Experiments

To test the performance of the proposed methods, a SVM has been trained on
several real data sets using the corresponding kernel matrixK∗. For the ProbWS,
ExpWS and PolyWS methods the value of the parameter q has been assigned
via cross-validation.

Given a non labelled data point x, K(x, i) has to be evaluated. We can
calculate two different values for K(x, i), the first one assumming x belongs to
class +1 and the second assumming x belongs to class −1. For each assumption,
all we have to do is to compute the distance between x and the SVM hyperplane
and to assign x to the class corresponding to the largest distance from the
hyperplane.

In the following, for all the data sets, we will use 80% of the data for training
and 20% for testing.
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We have compared the proposed methods with the following classifiers: Mul-
tivariate Additive Regression Splines (MARS) [6], Logistic Regression (LR), Lin-
ear Discriminant Analysis (LDA), k-Nearest Neighbour classification (kNN) and
SVMs using a RBF kernel Kc(xi, xj) = e−‖xi−xj‖

2/c, with c = 0.5d, where d is
the data dimension (see [18] for details).

3.1 Cancer Data Set

In this section we have dealt with a database from the UCI Machine Learn-
ing Repository: the Breast Cancer data set [11]. The data set consists of 683
observations with 9 features each. For this data set we have combined three ker-
nels: a polynomial kernel K1(xi, xj) = (1 + xTi xj)2, a RBF kernel K2(xi, xj) =
exp(−||xi − xj ||2) and a linear kernel K3(xi, xj) = xTi xj . We have normalized
the kernels in order to compare them: K̄ij =

Kij−min(Kls)
max(Kls)−min(Kls) . The results,

averaged over 10 runs, are shown in Table 1.

Table 1. Classification errors for the cancer data.

Method Train error Test error Support vectors

K• :Polynomial 0.1 % 8.6 % 8.0 %

K• :RBF 0.0 % 10.2 % 65.7 %

K• :Linear 2.6 % 3.6 % 7.1 %

AKM 1.3 % 3.8 % 31.4 %

ProbWS 1.8 % 3.2 % 39.6 %

ExpWS 0.0 % 3.2 % 90.6 %

PolyWS 2.4 % 2.9 % 33.4 %

Percentil-in 1.9 % 3.4 % 59.9 %

Percentil-out 1.5 % 3.5 % 33.1 %

MaxMin 0.7 % 2.9 % 24.5 %

Pick-out 1.7 % 2.9 % 11.4 %

kNN 2.79% 3.6 %

MARK-L 0.0 % 11.7 % 18.3 %

MARS 2.7 % 3.2 %

LDA 3.8 % 4.4 %

LR 13.1 % 13.1 %

SDP 0.0 % 6.6 % 61.4 %

SVM 0.0 % 4.4 % 49.5 %

The Pick-out, MaxMin and PolyWS methods show the best overall perfor-
mance. All our combination methods provide better results than the SVM with
a single kernel, using usually significantly less support vectors. The standard de-
viation of the test error (over 10 runs) was below 1% for all the studied methods.

It is well known that the choice of kernel parameters is often critical for the
good performance of SVMs. Combining kernels provides a solution that min-
imizes the effect of a bad parameter choice. Next we illustrate this situation
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using a battery of RBF kernels on the cancer data set. Let {K1, . . . ,K12} be a
set of RBF kernels with parameters c = 0.1, 1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
respectively. Table 2 shows the performance of the proposed methods when com-
bining all these kernels. Again, the results have been averaged over 10 runs.

Table 2. Classification errors for the cancer data using a battery of RBF kernels.

Method Train error Test error Support vectors

Best RBF 2.3 % 2.6 % 13.6 %

Worst RBF 0.0 % 24.8 % 73.5 %

AKM 1.6 % 2.9 % 21.6 %

ProbWS 1.4 % 2.9 % 19.2 %

ExpWS 1.6 % 2.8 % 21.4 %

PolyWS 0.1 % 2.9 % 31.6 %

Percentil-in 1.9 % 2.6 % 7.7 %

Percentil-out 1.7 % 2.5 % 9.5 %

MaxMin 1.9 % 2.6 % 9.0 %

Pick-out 2.7 % 3.2 % 7.7 %

MARK-L 0.0 % 3.5 % 18.3 %

SDP 0.0 % 3.1 % 39.1 %

The Percentil-out method improves the best RBF kernel under considera-
tion while the MaxMin and Percentil-in methods show a similar performance
to that of the best RBF. In particular, the results provided by the combination
methods are not degraded by the inclusion of kernels with a bad generalization
performance.

3.2 A Handwritten Digit Recognition Problem

The experiment in this section is a binary classification problem: the recognition
of digits ‘7’ and ‘9’ from the Alpaydin and Kaynak database [1]. The data set
is made up by 1128 records, represented by 32 × 32 binary images. We have
employed three different methods to specify features in order to describe the
images. The first one is the 4 × 4 method: features are defined as the number
of ones in each of the 64 squares of dimension 4 × 4 . The second method was
introduced by Frey and Slate [7]: 16 attributes are derived from the image, re-
lated to the horizontal/vertical position, width, height, etc. The last method
under consideration was designed by Fukushima and Imagawa [8]: features are
defined as a collection of 12 different representations in a 4× 4 square. This is a
typical example with several different sources of information and probably com-
plementary. We have used these representations to calculate three kernels from
the Euclidean distance. Classifier performance for all the methods is tabulated
in Table 3. We have taken the 4 × 4 representation to train kNN, MARS, LR
and LDA methods. The Percentil-in and Percentil-out methods achieve the best
results on classification. Furthermore, the MaxMin, Pick-out and ExpWS com-
binations improve the results obtained using the rest of the techniques except
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kNN. The excellent performance of kNN may be due to the fact that the result
in the table has been obtained using only the best digit codification (4 × 4).
When the other codification methods are used, the error of kNN increases up to
1.7%.

Table 3. Classification errors for the handwritten digit data set.

Method Train error Test error Support vectors

4× 4 0.0 % 3.6 % 3.6 %

Frey-Slate 5.5 % 11.1 % 9.8 %

Fukushima 0.0 % 4.5 % 7.0 %

AKM 0.0 % 4.5 % 13.1 %

ProbWS 0.0 % 4.5 % 13.1 %

ExpWS 0.5 % 3.3 % 15.1 %

PolyWS 0.5 % 3.6 % 4.6 %

Percentil-in 0.0 % 1.1 % 10.9 %

Percentil-out 0.0 % 1.1 % 32.8 %

MaxMin 0.0 % 1.9 % 34.2 %

Pick-out 0.0 % 3.1 % 16.9 %

kNN 0.0 % 0.6 %

MARK-L 0.0 % 4.2 % 13.0 %

MARS 0.1 % 3.9 %

LDA 0.4 % 5.0 %

LR 0.0 % 3.6 %

SDP 0.0 % 3.6 % 6.2 %

4 Conclusions

In this work we have proposed several techniques for the combination of kernels
within the context of SVM classifiers. The suggested methods compare favor-
ably to other well established classification techniques and also to other kernel
combining techniques in a variety of real data sets. Within the group of the com-
bining techniques proposed in this paper, there is not an overall better method.
Further research will focus on the theoretical properties of the methods and
extensions.
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Fusing Segmentation and Classification
from Multiple Features

Roberto Manduchi

University of California, Santa Cruz
Santa Cruz, CA 95064

Abstract. This paper presents a strategy for combining the results of
image classification and image segmentation. The visual features used
for classification and segmentation may be different in general. Fusion
is performed in a Maximum Likelihood framework using the Expecta-
tion Maximization algorithm. Preliminary results show that segmenta-
tion may effectively contribute to increase the quality of classification.

1 Introduction

In several computer vision problems, the analyst has access to different types
of observables (let’s call them “features”) for the same image. These features
often correspond to very different physical causes. For example, the color of a
pixel depends on the combination of the reflectance of the surface, the spectrum
of the illuminant, and the illumination geometry. The texture around a pixel
depends on local albedo and/or geometrical variations. The optical flow at one
point depends on the 3D motion of the imaged surface relative to the camera.
All of these different observables should be combined to infer information about
the scene.

Two fundamental low–level tasks of image analysis are segmentation/group-
ing and classification, as summarized below.

1. Segmentation/grouping: The aim is to identify perceptually homogeneous
regions in the image. Such regions don’t have pre-defined labels: they do
not necessarily correspond to semantic categories known in advance. Seg-
mentation is typically performed by first establishing a suitable similarity
metric, sometimes derived by generative models. The segmentation problem
can then be recast as an optimization task (energy or cost minimization [17],
Maximum Likelihood or Maximum a posteriori [16]). This approach is in-
herently global, in that the decision at any pixel requires examination of all
other points in the image.

2. Classification (labeling): In this case, a number of classes is known in advance,
together with their statistical description or at least with a number of labeled
training samples. The goal is to assign each image point or region to just one
class. Classification may use image features defined at the pixel level (such as
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color, motion field or texture1), or at a higher abstraction level (e.g., shape or
spatial distribution). Note that even in the case of pixel–based classification,
global reasoning is often invoked to enforce spatial coherence priors.

Whereas these two families of algorithms are traditionally used in different
contexts, we show in this paper that segmentation, an unsupervised process
that is blind to the semantic categories defined by the user, can actually be
used to improve the classification process. This is particularly useful in two
cases of practical importance. The first case is when the visual features used
to segment the image cannot be used for classification. For example, gradient–
based techniques such as snakes can effectively isolate an image region, but
classification based on the boundary contour alone may be difficult. Another
example is the use of optical flow to identify areas corresponding to different
motion models. Once these regions have been segmented out, further reasoning,
possibly using different features such as color, texture and shape, should be used
for region labeling.

The second case of interest is when there is shortage of training data. Due
to the “curse of dimensionality”, high–dimensional features (e.g., texture) re-
quire much larger training data sets than low–dimensional features (e.g., color).
Whereas learning a classifier may be unpractical in such cases, clustering only
requires a notion of distance in feature space, which can be defined without
reliance on training data.

Intuitively, segmentation should provide some sort of prior information to
the classifier. If two image points belong to the same segment, it is reasonable to
expect (although by no means necessary) that they also belong to the same class.
A naive application of this intuition could lead to a procedure that assigns all
points in the same segment to the class that is best represented in the segment.
This “hard” fusion policy, however, would be unsatisfactory in general; a softer
strategy that takes into consideration the degree of confidence in both classifi-
cation and segmentation would be much more desirable. Indeed, our algorithm
requires that the result of these two operation is expressed either in terms of a
class– (or segment–) posterior distribution or, equivalently, in terms of class– (or
segment–) conditional likelihoods. These type of information is normally avail-
able from the classifier. For what concerns the segmenter, some algorithms do
produce soft cluster assignment (e.g., Expectation Maximization), while others
produce hard (binary) assignments (e.g. k–means, graph cutting, snakes). It is
always possible, though, to artificially “soften up” the result of hard segmenter,
by creating at each point a distribution over the set of segments, peaking at the
segment assigned to that point.

The intuition behind our approach is simple. The segmenter identifies areas
that are homogeneous, according to one considered feature. We hypothesize that
there is a correlation between these segments and the semantic classes that we
actually interested in. The result of the classifier (based on a different feature)
• Strictly speaking, texture is an attribute of a region, not of a single pixel. However,
one may define a texture field, by assigning to each pixel the texture of a small region
centered in that pixel.
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will be biased toward using any evidence of such correlation. The correlation
between clusters and classes, however, is unknown, and must be estimated from
the image being analyzed. This “chicken and egg” problem is solved using the
elegant formalism of the Expectation Maximization algorithm.

The main hypothesis used by our approach is the conditional independence
of the two features for each class/cluster combination. This is a generalization of
class–conditional feature independence, often assumed in decision fusion. When
this property is satisfied, it is well known that the posterior class distribution
given the two observed features factorizes into the product of the two marginal
posterior class distributions (divided by the class prior). Classifiers that com-
pute the product of these two posterior distributions are often called “naive
Bayes”. Since the conditional assumption is at the core of our algorithm, we
discuss its relevance and shortcomings in Section 2. Our iterative solution to the
class/segment fusion is introduced in Section 3, where we also show an example
of application. Section 4 has the conclusions.

2 Conditional Independence and Bayes Fusion

We introduce here the notation that will be used throughout this article. Let f1
and f2 be two different local feature vectors. For example, f1 could be the (r,g,b)
color at a pixel, and f2 the texture descriptor at the same pixel. Consider a set
of N classes {cj}. The class–conditional likelihood of feature fi given class cj
is represented by pi(fi|cj). Pj represents the prior probability of class cj , while
Pi(cj |fi) is represents the class–posterior probability distribution for a given
feature fj . Bayes’ rule can thus be expressed as Pi(cj |fi) = pi(fi|cj)P (cj)/p(fi),
where pi(fi) is the total likelihood of feature fi. The mode of the posterior
probability yields the Bayes classification at the chosen pixel.

The fusion problem arises when we have independent information about class
assignment from the two features f1 and f2. We would like to infer P1,2(cj |f1, f2)
from P1(cj , f1) and P2(cj , f2) (or, equivalently, p1,2(f1, f2|cj) from p1(f1|cj) and
p2(f2|cj)). Unfortunately, it is impossible, in general,to infer the joint density
p1,2(f1, f2|cj) from its marginals. A popular simplifying assumption is the class–
conditional independence of the two features, that is:

p1,2(f1, f2|cj) = p1(f1|cj)p2(f2|cj) (1)

for each choice of class cj . This assumption is easily transformed into an equiv-
alent condition on the posterior distributions:

P1,2(cj |f1, f2) = P1(cj |f1)P2(cj |f2)/P (cj) (2)

Equation (2) determines a Bayes fusion classifier, more commonly known as a
naive Bayes system [11, 3]. These two terms will be liberally interchanged in this
work.

How acceptable is the conditional independence assumption? Although it is
a weaker condition than total independence, conditional independence can be
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grossly violated in practice. The real question, however, is how much this (gen-
erally wrong) assumption affects the classification performances. For example,
it would be interesting to compare the misclassification rate of the Bayes fusion
classifier with the (necessarily lower) Bayes rate (that is, the misclassification
rate of the Bayes classifier which uses the real joint posterior P1,2(cj |f1, f2) [16]).
An analytical expression for such quantities cannot be found in general, although
Shi and Manduchi [18] computed an upper bound for the difference of these two
misclassification rates as a function of the correlation between the two features
in a simple equivariant Gaussian case.

It is well known that, in practical applications, Bayes fusion (or naive) clas-
sifiers perform rather well, despite the possible inaccuracy of the approximation
in (1) [11, 3]. Experimental studies include [8, 9]. Friedman [4] justifies the some-
times surprisingly good results achieved by naive Bayes classifiers in light of the
bias/variance dilemma. The bias/variance theory, first introduced by Geman for
the regression problem [5], links the expected quadratic estimation error to the
randomness in the choice of the training data set and the complexity of the algo-
rithm. More precisely, the bias represents the difference between the estimates,
averaged over all possible choices of training samples, and the optimal (in L2
sense) estimate (i.e., the conditional expectation). The variance is the actual
variance of estimation, again computed using the distribution over the training
samples. In general, complex regression algorithms have low bias but high vari-
ance (i.e. they may overfit the data), while this behavior is reversed for simpler
algorithms. Since the squared bias and the variance contribute as additive terms
to the overall estimation error, it is seen that lower complexity algorithms may
outperform more complex algorithms when only a limited amount of training
data is available (see also [14, 15, 13]).

A similar situation occurs in the case of classification, although the definition
of bias and variance is somewhat different here. Friedman [4] first showed that
even in this case, variance with respect to the choice of training sample has an
important role in the quality of the result (that is, the misclassification rate).
Further work in the field includes [10, 1, 2, 19, 20]. In spite of their obvious bias
(consequent to the approximation in (1)), naive Bayes systems are described
by a “simple” posterior distribution, and it is reasonable to assume that they
are less sensitive to the choice of the training data [4]. Shi and Manduchi [18]
confirmed this hypothesis, by showing experimentally that the difference between
the misclassification rate of a Bayes fusion classifier and the Bayes rate decreases
as fewer and fewer data are used for training.

3 Bayes Fusion of Segmentation and Classification

In this section we tackle the main objective of this contribution, namely the
fusion of a classifier with a segmenter. As we mentioned in the Introduction,
we will assume that segmentation is expressed by either a posterior distribution
Pk(sk|fi) over the set of segments {sk}, or a conditional likelihood pk(fi|sk).
Let’s assume that f1 is the feature used for classification, and f2 is the feature
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used for segmentation. We would like to be able to use the segmentation using
f2 to assist the classification over the set of classes {cj}. Formally, our problem
an be formulated as follows:

Given P1(cj |f1) and P2(sk|f2), estimate P1,2(cj |f1, f2).

We could also consider a parallel problem, but defined using the conditional
likelihoods:

Given p1(f1|cj) and p2(f2|sk), estimate P1,2(cj |f1, f2).

This formulation makes our fusion problem similar to the case of Section
2, with one important difference: now the two marginal posterior distributions
are defined over different sets, {cj} and {sk}, that are semantically different
(and have different cardinality in general). In order to attempt a solution to this
problem, we first extend the notion of conditional independence to the case of
conditional likelihoods defined over the cartesian product of the features and the
cartesian product of the class/segment sets:

p1,2(f1, f2|cj , sk) = p1(f1|cj)p2(f2|sk) (3)

The same cautionary disclaimer about the validity and consequences of the con-
ditional independence approximation, discussed in Section 2, applies to this case
as well. Given this assumption, we can use Bayes’ rule to write the joint posterior
distribution given the two features as follows:

P1,2(cj , sk|f1, f2) =
p1(f1|cj)p2(f2|sk)P1,2(cj , sk)∑
j̄,k̄ p1(f1|cj̄)p2(f2|sk̄)P1,2(cj̄ , sk̄)

(4)

The posterior distribution P1,2(cj |f1, f2) can then be obtained by marginalizing
P1,2(cj , sk|f1, f2) in (4):

P1,2(cj |f1, f2) =
∑
k

P1,2(cj , sk|f1, f2)

The only unknown quantity in (4) is the joint prior distribution P1,2(cj , sk). In
fact, this distribution is the key to understanding our fusion strategy. One easily
proves that if the priors are separable, that is, if P1,2(cj , sk) = P1(cj)P2(sk),
then segmentation does not contribute to the fusion process. Indeed, in this case
P1,2(cj , sk|f1, f2) factorizes into P1(cj |f1)P2(sk|f2), and marginalization over sj
simply yields P1(cj , sk|f1, f2) = P1(cj |f1).

The more interesting cases are when P1,2(cj , sk) is not separable, that is,
when knowledge about which segment the point belongs to gives us some prior
information about the class. Since we don’t know P1,2(cj , sk), we should try to
extract it from the data. We will first consider the case the conditional likelihoods
p1(f1|cj) and p2(f2|sk) (and therefore p1,2(f1, f2|cj , sk) from (3)) are known, or
that a reasonable assumption about their values can be made. We can then use



606 Roberto Manduchi

a Maximum Likelihood criterion, and search for the joint priors that maximize
the likelihood of the data p1,2(f1, f2) according to our model, where

p1,2(f1, f2) =
∑
j,k

p1,2(f1, f2|cj , sk)P1,2(cj , sk)

A classic solution is given by the Expectation Maximization algorithm, based on
the following iterations:

1. For each pixel x in the image, use the current values for P1,2(cj , sk) to
estimate an updated posterior distribution P1,2(cj , sk|f1(x), f2(x)) as by (4);

2. For each class cj and segment sk, average the posterior probabilities
P1,2(cj , sk|f1(x), f2(x)) over the image to obtain the updated prior distribu-
tion P1,2(cj , sk).

At each step, the total likelihood p1,2(f1, f2) increases or stays the same, and
therefore this procedure is guaranteed to converge to a (possibly local) maximum.

If the conditional likelihood of one feature (or both) is not known, but the
class– or segment–conditional probability is known, then some modifications are
in order. This could be the case when a hard segmenter is artificially transformed
into a soft segmenter by creating a simple posterior distribution at each pixel,
as mentioned earlier in the Introduction. For example, for a pixel x with fea-
ture f2(x) that was assigned to segment sk, we could hypothesize a posterior
distribution2

P2(sr|f2) = 1− ε , r = k
ε/(Ns − 1) , r �= k

where Ns is the number of segments, and ε is a (small) positive constant. By
averaging the values of P2(sk|f2) over the image, one can estimate the prior
P2(sk). One could then set an artificial total likelihood p2(f2) that is constant
over all features in the image. At this point, the conditional likelihoods can be
computed using Bayes’ rule.

As an application example, consider the image of Figure 1. In this case, color
was used for classification, while texture was used for segmentation. A poorly
trained color classifier produced the unsatisfactory labeling of Figure 1 (b). The
three classes are: obsidian (the blue-ish rock, c1); basalt (the red rock, c2); and
sand (c3.) Texture–based unsupervised segmentation into two regions s1 and s2
(using Gabor features) yielded the results shown in Figure 1 (c). Texture was
unable to separate the two rocks, but did a good job at separating both rocks
from the sand. The fused classification (into the original three classes) is shown
in Figure 1 (d). It is seen that the quality of classification has improved through
fusion, although a small region surrounding the blue rock has been misclassified.
Table 1 shoes the joint prior distribution P1,2(cj , sk), which cannot be factorized
into the product of the two marginal priors.
• This distribution may be inconsistent if two points with exactly the same feature f•
belong to different segments. This has not proven to be a problem in practice.
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(a) (b)

(c) (d)

Fig. 1. (a): Original image. (b): Supervised color–based classification (green: obsidian;
blue: basalt; red: sand.) (c) Unsupervised texture–based segmentation. (d) Fusion of
segmentation and classification.

Table 1. The prior distribution P• ,• (cj , sk) for the example of Figure 1. Note that
P• ,• (cj , sk) is not separable.

s• s•
c• 0.120 0.262

c• 0.001 0.045

c• 0.564 0.008

4 Conclusions

Our fusion technique merges information from classification and segmentation
(with each point of the image characterized by an assignment distribution.)
In some sense, this corresponds to looking at the segmentation as a kind of
classification itself, with classes that don’t have a logical correspondence with
those used by the classifier.

A more intriguing form of hybrid fusion would also consider cases where only
partial segmentation is available, such as an edge segment partially separating
two regions. This edge segment may provide useful information to the classifier
(the regions at the two sides of the edge are likely to contain points from two
different classes). Unless one enforces contour closure, however, this information
cannot be directly exploit using the framework discussed in this paper, and more
research is needed for this type of problems.
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Abstract. In recent years a number of authors have suggested that
combining classifiers within local regions of the measurement space might
yield superior classification performance to rigid global weighting
schemes. In this paper we describe a modified version of the CART algo-
rithm, called ARPACC, that performs local classifier combination. One
obstacle to such combination is the fact that the ‘optimal’ covariance
combination results originally assumed only two classes and classifier
unbiasedness. In this paper we adopt an approach based on minimiz-
ing the Brier score and introduce a generalized matrix inverse solution
for use in cases where the error matrix is singular. We also report some
preliminary experimental results on simulated data.

Keywords: Local Combination, Brier Score, CART

1 Introduction

The notion that the combination of classifiers based on local accuracy estimates
may prove superior to an ensemble based on globally defined weights is one that
has emerged several times in recent years ([10],[9],[13],[2]), though as yet there
would seem to exist little understanding of why such methods should work in
practice beyond the purely intuitive, and no algorithmic method for defining a
useful partition of the feature space for local combination. In this paper we pro-
pose using a modified version of the CART tree algorithm [3] for this purpose.
We combine the classifiers in our ensemble locally, by assigning separate weight-
ing schemes to each leaf node of our ‘combination tree’. Note the distinction
between this idea and the model trees proposed by other authors [6], where local
models are fitted within nodes of a tree; we assume that our ensemble classifiers
are induced using the full design set, and given this our aim is to combine their
output in the most efficient way possible.

Our algorithm, called ARPACC (Automatic Recursive Partitioning Algo-
rithm for Classifier Combination), relies on the use of the ‘optimal’ results for
the weighted sum combination of classifiers through the minimisation of com-
bined error covariance. We have extended these results in a number of ways.
We drop the assumption of classifier unbiasedness with respect to the training
data, and propose a natural extension to the case of more than two classes. We
motivate this through the use of the Brier score measure of classifier fit. We
also introduce a solution for the optimal weights in cases where the error ma-
trix is singular, together with a necessary and sufficient condition for this to be
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true (singular error matrices become more common as we consider smaller and
smaller subsamples of the design data).

Our intention is to increase the flexibility of our combination scheme and
thereby exploit a corresponding decrease in the bias of the combined classifier.
The computation of the optimal weighting scheme across a node depends, how-
ever, upon our ability to estimate the mean error of a classifier across the corre-
sponding subsample of the design data. As we recursively partition our training
space the variance of these estimates is bound to increase, due to the diminishing
size of the sample over which it is calculated. This is the familiar bias-variance
tradeoff that affects most recursive classification methods. We have observed,
however, that ARPACC trees tend to be robust to overfitting especially when
combining classifiers that tend naturally to underfit. This is most likely to occur
in feature spaces of high dimensionality, or when the number of class labels is
large.

In Section 2 of this paper we describe the optimal combination scheme ar-
gument that we use to calculate weighting schemes for terminal nodes. Section
3 details the ARPACC algorithm and the results of some simulated trials, while
Section 5 provides a visual illustration of local classifier combination.

2 Optimal Weighted-Sum Combination

Suppose that we are presented with a supervised classification problem in some
measurement space x, where for a fixed location the posterior class probability of
observing class c is generated by some underlying target function f(c|x) taking
real values in [0, 1]. Suppose also that we have an ensemble of classifiers f̂k(c|x)
that are approximations to this underlying function. Our goal is to combine these
classifiers in such a way as to ensure optimal classifier performance, measured
in terms of test error rate on future observations. Kittler [11] has demonstrated
that one of the most robust combination strategies in this circumstance is the
weighted sum rule, or

f̂(c|x) =
K∑
k=1

wkf̂k(c|x).

where the wk are positive classifier weights to be determined. It is natural to
treat this as a regression problem and adopt the strategy of minimizing the total
mean-squared distance across the training data between each observed value and
our approximation,

1
N

∑
c

N∑
n=1

(
δ(c|xn)− f̂(c|xn)

)2
,

where δ(c|xn) = 1 if training example n has class c, and 0 otherwise. The above
is the Brier or quadratic score, a common measure of classifier performance. The
Brier score is an estimate of the Brier Inaccuracy over the full space χ:

Eχ

∑
c

Eδ|c,x
(
δ(c|x)− f̂(c|x)

)2
.
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It can be shown (see [7]) that minimizing the Brier inaccuracy is equivalent to
minimising

Eχ

∑
c

(f(c|x)− f̂(c|x))2,

which is the mean squared error of our f̂ relative to f . This is important because
it means that in the absence of any knowledge about f(c|x), we can use our
observed design set class labels as a proxy in solving for the optimal weights.
Of course, any solution derived in this way is only ‘optimal’ with respect to the
training data: as always we rely on a large sample that is in some sense a good
reflection of the target function.

If we denote the ‘error’ of a particular classifier within our ensemble relative to
a specific training object as ek(xn) = δ(c|xn)−f̂k(xn) for class c, then minimising
the Brier score of our ensemble is the same as minimising

1
N

N∑
n=1

∑
c

[
K∑
k=1

wkek(xn)

]2
,

which may be written in matrix form as w′Ew, where w is a vector of weights
and the ijth entry of the square ‘error’ matrix E, eij = 1

N

∑
n [eiej ]. Prior

applications of this method set out to minimize either the total error variance of
the combined classifier, or the total mean square error of a two class combined
classifier. By adopting the multi-class Brier score, we are able to extend the
solution to more than two classes in a natural way. We assume that each class
label has its own separate associated weighting scheme, so that by minimizing
the error of the combined classifier for each δ(c|x) we are minimizing the total
Brier score.

The solution for the weights vector was first derived by Bates and Granger in
1969 [1] for ensembles of size two, and extended to ensembles of more than two
classifiers by Dickinson [4]. Dickinson began by assuming that the errors were
normally distributed with mean zero, ie. that Eχek = 0 ∀ k, and this assumption
leads to a solution that minimizes the error variance of the combined classifier.
In fact the assumption is unnecessary, and for our purposes it would clearly be
restrictive. Across the global space it may be fair to assume that the expected
error of a classifier is zero with respect to the target function, but within a small
local region of that space this is very unlikely to be true.

Dropping the assumption leads us to the following revised solution for classi-
fier combination based on mean square error, derived by Hashem and Schmeiser
[8] in the context of regression neural networks. They impose the restriction
that the wk should sum to one by introducing the Lagrange multiplier λ, and
minimising the function

σ =
K∑
i,j

wiwjeij + λ

(
k∑

i=1

wi − 1
)

.



612 Ross A. McDonald, Idris A. Eckley, and David J. Hand

We differentiate with respect to each of the parameters (w1, ..., wk, λ) in turn,
so that

δσ

δwi
= 2

K∑
j=1

wjeij + λ (i = 1, ...,K)

and
δσ

δλ
=

K∑
i=1

wi − 1.

Setting these equal to 0, we get(
1′K (0)
E 1K

)(
wmin
λ/2

)
=

(
(1)
0K

)
where 1K and 0K are the column vectors of K ones and K zeros respectively,
and the notation () denotes a single integer. Thus(

wmin
λ/2

)
=

(
1′K (0)
E 1K

)−1( (1)
0K

)
.

The solution to the above is given by the first entry in the inverted matrix, so:

wmin =
E−11K
1′KE−11K

.

Negative weights may arise for ensembles of more than two classifiers. In
extreme cases, this can lead to combined predictions outside the range [0, 1]. As
a stop-gap measure, we can deal with this by setting negative output predictions
to 0, and output predictions greater than 1 to 1.

In the course of our research we also extended the solution to cases where the
matrix E proves to be singular. This can frequently happen by accident, espe-
cially where component classifiers make similar predictions, or where we perform
a large number of calculations on training sets of diminishing size, as with the al-
gorithm in the next section. As we base our combination weights on smaller and
smaller subsets of the training data, the likelihood of our encountering a singular
error matrix becomes very high. Our more general solution is as follows:
If E is non-singular

wmin =
E−11K
1′KE−11K

.

If E is singular form the matrix Q = E + 1K1′K . If Q is non-singular

wmin = Q−11K .

If Q is singular

wmin =
Qg1K
1′KQg1K

where g denotes the generalized matrix inverse. We derived the following as a
necessary and sufficient condition for the matrix E to be singular. Let Ŷi denote
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the vector of predictions of ensemble classifier i on the training data and Y
denote the vector of true class labels. If the matrix E is singular, then for some
subset(s) of classifiers i ∈ S, say, there exists a linear combination

∑
i∈S siŶi

such that
(
∑
i∈S

si)Y =
∑
i∈S

siŶi.

The converse is also true.
The above condition will be met if one or more classifiers match the train-

ing data predictions exactly (but note that this does not necessarily imply that
the classifiers are identical). It will also be met if two or more classifiers, or
linear combinations of subsets of classifiers, make identical predictions (this cor-
responds to

∑
i∈S si = 0). This is most likely to happen when the number of

training samples is small, as for a fine partition of the training data.
It is also possible to show that the total squared error of the combined en-

semble is less than or equal to that of any component classifier. The proof is
similar to the proof in [5] relating to combined variance.

3 The ARPACC Algorithm

In this section we outline the results of some preliminary experiments on simu-
lated data produced using ARPACC, a modification of the CART algorithm [3]
that uses the optimal weighting results of the previous section to build classifier
combination trees.

To modify the CART algorithm to perform local classifier combination we
need to change the the splitting criterion and the calculation of node predic-
tions. Rather than associating each terminal node with a prediction based on
the assigned training data, each node is treated as a partition and is assigned
the optimal local weighting scheme for the given training sample at that node,
calculated via the expressions at the end of the previous section. The splitting
criterion is calculated by applying these weights to the predictions of the clas-
sifiers under consideration, and summing the training error of the combined
classifier.

We deal with problems of more than two classes by associating a separate set
of weights with each class (so that we might simultaneously decide that we trust
ensemble classifier A’s class 1 predictions, but assign a low weight to its class 3
predictions, for example). During splitting the total current error of the tree is
replaced by the expected Brier score across all nodes and training examples.

The chief difference between this and the standard tree classifier is that our
algorithm does not make any predictions in its own right. The model output by
ARPACC is only a framework in which global classifiers are combined locally.
This is underlined by the fact that any or all of these classifiers could themselves
be trees.

Our first simulated experiment consists of a series of trials, each comprising
five random repetitions of classifier fitting and combination. In each trial we
first fix the value of three parameters: s, the sample size for each class, d, the
dimensionality of the problem, and c, the total number of classes.
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For each class and each dimension, we generate two integer values between 1
and 100 uniformly and at random, and then generate s random normal variates
using these values as the mean and variance. These values are rounded down
to the nearest integer (to speed up computation). The resulting clusters are
rotated by forty-five degrees in consecutive pairs of dimensions. Two classifiers
are fitted to the training sample: a CART tree computed using S-Plus with the
default parameters, and Venables and Ripley’s multinomial method, computed
with S-Plus using the function multinom [12], which uses neural networks to fit
log-linear models. The CART tree stopping criterion is a node size of 5, and the
ARPACC trees are grown to a fixed size of 50 terminal nodes.

Five trials are run for each choice of parameters. The results in Table 1
below summarize the sample sizes, and the mean improvement of the global and
local combination methods over the best single-classifier test error rate, as a
percentage of points misclassified.

Table 1. Results of simulated experiments with a local combination algorithm.

Global ARPACC
Classes Dimensions Train Size Test Size Test Error Test Error

Improvement Improvement

2 2 2,000 2,000 0.00% s.d 0.14 0.16% s.d 0.13

3 3 3,000 3,000 -0.03% s.d 0.10 0.52% s.d. 0.42

5 5 5,000 5,000 1.00% s.d. 1.12 2.90% s.d. 1.55

6 4 2,000 2,000 0.42% s.d. 0.34 1.70% s.d. 0.39

10 8 2,000 2,000 1.72% s.d. 2.89 3.90% s.d. 2.00

The above results would appear to suggest that the performance of the
ARPACC tree improves as the number of dimensions and classes is increased.
We believe that this is due to the propensity of our standard classifiers to un-
derfit problems of high dimension, with the combination tree providing us with
a measured means of correcting for this underperformance.

4 Combining a Tree and a Neural Network
Using ARPACC

The aim of this section is to provide a visual representation of what an ensemble
classifier created using the ARPACC algorithm might look like. We begin by
generating 500 training and 2,000 test observations distributed uniformly in two
dimensions, and use the target probability function
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f(1|x) =
cos

(
2π

√
(x21 + x22)

)
+ 1

2

to randomly assign each observation to one of two categorical classes. Panel 1 in
Figure 1 shows how the design sample appears in two dimensional space. Panel
2 is a contour plot of the generating function f across the same range.

To our design sample we fit a CART tree, using the tree function in S-Plus,
and a neural net created using Venables and Ripley’s neural net library for S-Plus
[12]. This is a 2-3-1 neural network with 13 weights, and the fitting algorithm is
allowed to run for 100 iterations.

Contour plots of the predictions made by the tree model and the neural net-
work model are shown in panels 3 and 4 of figure 5. Here the greyscale level
represents the ‘confidence’ level of the prediction, ranging from black (high con-
fidence in the first class) to white (high confidence in the second class). The test
error rates for the tree and the neural net, ie. the number of misclassified test
examples divided by the total number of test examples, are 0.221 and 0.2225
respectively. Although these test error rates are close, a visual inspection tells
us that the forms of the fitted models are in fact very different, and that both
underfit. Empirically we have found that the pairing of a tree and a neural net
model is a good one for combination, since they tend to complement each other
well.

We now combine the two models globally using two sets of weights generated
using the optimal MSE solution. The weights are 0.91 for the tree and 0.09 for
the neural network. This means that the combined model heavily favours the
tree over the neural network. The resultant predictions are plotted in panel 5.
The test error rate of this globally combined model is 0.215, lower than that
of either of the component models. Visually, the combined classifier appears a
slightly better fit to the true f .

Our final model is that produced when the ARPACC algorithm uses the
training data to fit a fifty node combination tree. The test error rate for this
model is 0.2, a further improvement on the global combination. A visual exam-
ination of the plot in panel 6 tells us that at least some of this improvement
probably results from an improved model fit in the region around the centre of
the plot.

The test error results for all our models, as a fraction of points misclassified,
are summarized in Table 2.

Table 2. Absolute training and test errors for the models used in the simulated exam-
ple.

Model Training error Test Error

CART Tree 0.1280 0.2210
Neural Net 0.1780 0.2225

Global Combined Model 0.1260 0.2150
50-Node ARPACC 0.1100 0.2000
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Fig. 1. An example of local classifier combination. (1) 500 data points in 2 dimensions
randomly mapped to 2 classes with probabilities generated via a smooth cosine func-
tion. (2) The underlying function f . (3) A CART tree fitted to the training data. (4)
A 2-3-1 neural network fitted to the training data. (5) The optimal global combined
classifier. (6) A local combination as fitted by a 50-node ARPACC tree.
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5 Conclusions and Future Work

In this paper we have proposed the use of optimal weights within local regions of
the measurement space, have introduced solutions for more than two classes and
singular error matrices, and have experimented with the ARPACC algorithm as
one means of defining a suitable feature space partition.

We have also experimented with a pruning method for ARPACC based on
the minimal cost-complexity pruning methods used for CART. At present our
Matlab implementation of this proves computationally expensive, and we hope to
improve it in the future. We also plan to experiment with ensembles of more than
two classifiers, and to produce test error results for real classification problems.

Acknowledgements

RAM was supported in this work by Shell Research Ltd. and research grant
number 0130322X from the Engineering and Physical Sciences Research Council.

References

1. J. M. Bates andW. J. Granger. The combination of forecasts. Operational Research
Quarterly, 20:451 – 468, 1969.

2. H. Blockeel and J. Struyf. Frankenstein classifiers: Some experiments on the sisy-
phus data set. Proceedings of IDDM 2001, pages 1 – 12, 2001.

3. L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and
Regression Trees. Wadsworth, U.S., 1984.

4. J. P. Dickinson. The combination of short term forecasts. Proc. Univ. of Lancaster
Forecasting Conference, 1972.

5. J. P. Dickinson. Some comments on the combination of forecasts. Operational
Research Quarterly, 26:205 – 210, 1975.

6. E. Frank, Y. Wang, S. Inglis, G. Holmes, and I. Witten. Using model trees for
classification. Machine Learning, 32:63–76, 1998.

7. D. J. Hand. Construction and Assessment of Classification Rules. John Wiley &
Sons, Chichester, 1997.

8. S. Hashem and B. Schmeiser. Improving model accuracy using optimal linear
combinations of trained neural networks. IEEE Transactions on Neural Networks,
6:792 – 794, 1995.

9. T. M. Joergensen and C. Linneberg. Feature weighted ensemble classifiers - a
modified decision scheme. In Multiple Classifier Systems (MCS) 2001, pages 218
– 227. Springer-Verlag, 2001.

10. M. S. Kamel and N. M. Wanas. Data dependence in combining classifiers. In
Multiple Classifier Systems (MCS) 2003, pages 1 – 14. Springer-Verlag, 2003.

11. J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas. On combining classifiers. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20(3), 1998.

12. W. Venables and B. Ripley. Modern Applied Statistics with S-Plus. Springer-Verlag,
1994.

13. K. Woods, W. P. Kegelmeyer, and K. Bowyer. Combination of multiple classifiers
using local accuracy estimates. IEEE Transactions on Pattern Analysis and Machie
Intelligence, 19:405 – 410, 1997.



Bounds for the Average Generalization Error
of the Mixture of Experts Neural Network

Luı́s A. Alexandre1,�, Aurélio Campilho2, and Mohamed Kamel3

• Networks and Multimedia Group, IT, Covilhã, Portugal
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Abstract. In this paper we derive an upper bound for the average-case gener-
alization error of the mixture of experts modular neural network, based on an
average-case generalization error bound for an isolated neural network. By doing
this we also generalize a previous bound for this architecture that was restricted
to special problems.
We also present a correction factor for the original average generalization error,
that was empirically obtained, that yields more accurate error bounds for the 6
data sets used in the experiments. These experiments illustrate the validity of the
derived error bound for the mixture of experts modular neural network and show
how it can be used in practice.

Keywords: modular neural networks, mixture of experts, generalization error
bounds

1 Introduction

This paper addresses generalization error bounds for supervised learning. In [1], an
average-case generalization error bound was introduced that is not as pessimistic as the
error bounds derived using Vapnik-Chervonenkis theory [2] since the later are based on
a worst case analysis. In this paper we derive an upper bound for the average-case gen-
eralization error of the mixture of experts (ME) [3] modular neural network (MNN),
based on the average-case generalization error bound introduced in [1] for a single
multi-layer perceptron (MLP). By doing this we also generalize a previous bound for
this architecture [4] that was restricted to special problems (problems that could be com-
pletely separated into two subproblems without overlapping classes, by a hyperplane in
the input space) and was derived assuming that the gate does not introduce errors and
does not use adjustable parameters.

The bound proposed here assumes that the generalization error of the experts is
higher than their training set error. In fact, this assumption was already made in the
derivation of the bound for the isolated MLP in [1]. It also assumes independency be-
tween the errors of the gate and of the experts.
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We tested the error bound on 6 publically available data sets corresponding to real
classification problems, with distinct characteristics (number of features, number of
patterns and number of classes). These experiments showed that the derived bound was
not useful because it was quite loose. This was due to the original expression for the
average generalization error (AvGE) in [1] and not to the derivation of the bound for
this particular architecture. Thus, we found empirically a modified expression for the
AvGE of the isolated MLP, that when used to derive the AvGE of the ME architecture,
produces much tighter bounds.

The paper is organized as follows: the next section describes the ME MNN, section
3 introduces the average error bound for a single NN. In section 4, the AvGE error bound
for the ME is derived. Three experiments are presented in section 5, with a discussion
of their results. The final section presents the conclusions.

2 The Mixture of Experts MNN

The idea behind the MNN is the divide-and-conquer paradigm: the problem should be
divided into smaller subproblems that are solved by experts and their partial solutions
should be integrated to produce a final solution.

To use an MNN, three stages have to be considered: first, the task decomposition
where the problem is divided into smaller problems, each one to be given to one of
the modules or expert networks. Then each individual expert is trained until it learns
to solve its particular subproblem. Finally, a decision integration strategy is used to
combine the decisions of the experts to produce a final network output.

The decision integration can be obtained through different approaches: using a gat-
ing network [5], making the modules vote [6] or through hierarchical integration (which
can also use voting and/or gating networks) [7, 8].

In this paper we consider the use of a gating network. The gate is trained to learn
which region of the input space should be classified by which expert.

During the test phase, when the gate receives an input pattern it decides which is
the expert that should classify the pattern and selects one of the experts to produce the
final classification. This type of MNN is called a Mixture of Experts.

3 Average Error Bound

3.1 Problem Definition

The bounds discussed in this paper apply to the generalization error of a learning ma-
chine, and in particular, to an MLP and its generalization, an MNN.

We now discuss the general learning problem and define explicitly the generaliza-
tion error and the empirical error (the one measured in the section 4).

Consider a learning problem in which a learning machine is given a set of data
{x1, . . . , xm} and it is expected that, by adjusting a set of parameters, w, it can learn to
associate the respective targets {y1, . . . , ym} to each input.

Typically, for a classification problem, which is the type of problem we are address-
ing in this paper, xi ∈ X and X ⊆ Rn and yi ∈ Y and Y = {1, 2, . . . , L}, where L is
the number of classes in the problem.
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Let Z = X×Y . Each zi = (xi, yi) is called a training sample. The joint distribution
P (x, y) is represented by P (z).

For a particular choice of the parameters w, the learning machine produces a hy-
pothesis. Each hypothesis is represented by f(x,w). When the prediction f(xi, w) is
different from the respective target yi, a loss occurs. This loss is measured by the loss
function l(y, f(x,w)).

The expected value of the loss is called generalization error and is given by

R(w) =
∫
Z

l(y, f(x,w))dP (z) (1)

For the majority of real problems, R(w) is not zero. Usually it is not possible to find
R(w) since the distribution P (z) is not known. Instead, the empirical error is found,

Em(w) =
1
m

m∑
i=1

l(yi, f(xi, w)) (2)

This is an estimate of R(w).
Usually the data set is divided into two disjoint sets, one is used for training, or the

adjustment of the weights w, and is called the training set. The other is used to estimate
R(w) and is called a test set. The empirical error measured in the training set is usually
called the training set error.

In this paper we are concerned with an average error bound for R(w). We call it the
Average Generalization Error (AvGE).

3.2 AvGE for the MLP

The AvGE for an MLP was introduced in [1]. It has the form of

AvGEMLP ≤ α+
1
2

√
d

m
(3)

where α is the training set error, d represents the number of weights and m is the number
of training samples. Note that it is an upper bound for the generalization error based on
the training set error and a penalty for the number of weights that is reduced by the
number of training samples.

3.3 AvGE for the ME MNN

To produce an AvGE for the ME MNN we first introduce the complement of the AvGE,
the AvGC, which we define as

AvGC = 1− AvGE (4)

It is the ‘Average Generalization Correctness’.
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Using this definition it is possible to write, assuming independency between the
errors made by the gate and by the experts,

AvGCME = AvGCg

N∑
i=1

P (modi)AvGCi (5)

where AvGCg is the AvGC of the gate, P (modi) is the probability that the module i
is chosen by the gate and AvGCi is the AvGC of module i.

The assumption of the independency of the errors will not be true only in points on
the frontiers between distinct regions of expertize of different experts.

To obtain the AvGE for the ME, we replace in expression (5) the relation in expres-
sion (4) for the gate and the individual modules, we get

AvGEME = 1−AvGCME = 1−
[
(1− AvGEg)

N∑
i=1

P (modi)(1− AvGEi)

]
(6)

After some simple manipulation, we get

AvGEME = β +AvGEg(1− β) (7)

with

β =
N∑
i=1

P (modi)AvGEi (8)

To obtain the upper bound for the AvGEME we have to find a lower bound for β.
A trivial lower bound is zero, but we can assume that the generalization error will be
higher than the training set error, and thus β has the following upper and lower bounds

N∑
i=1

P (modi)αi ≤ β ≤
N∑
i=1

P (modi)

(
αi +

1
2

√
di
mi

)
(9)

The upper bound is obtained directly from expression (8) by simply replacing
AvGEi by expression (3), with each variable using a subscript i that corresponds to
the expert i.

Now it is possible to write the final expression for the AvGEME

AvGEME ≤
N∑
i=1

P (modi)

(
αi +

1
2

√
di
mi

)

+

(
αg +

1
2

√
dg
mg

)(
1−

N∑
i=1

P (modi)αi

)
(10)

We will now use this bound to predict the generalization error of the ME MNN. Note
that the parameters di, dg , mi and mg are set a priori. The P (modi) can be estimated
from the proportion of points in the training set that belong to the region assigned for
expert i. The αi (the training set errors) are estimated and the number of modules used,
N , is defined by the task decomposition algorithm or set a priori.
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4 Experiments

4.1 Introduction

In these experiments we intend to show how the expression (10) can be used to bound
the generalization error.

We use six data sets that illustrate different conditions: the number of classes ranges
from 2 to 10; the number of data points ranges from 106 to 2126; the number of features
ranges from 2 to 60.

Table 1 contains information about these data sets. They are all publically available,
and the table shows references to their sources. It also shows the name, number of data
points, number of features and the number of classes.

Table 1. The data sets used in the experiments.

Data set Name N. points N. features N. classes Source

1 Breast cancer 106 9 6 [9]
2 Cleveland 296 13 5 [10]
3 CTG 2126 22 10 [9]
4 Diabetes 768 8 2 [10]
5 Speech recognition 608 2 4 [5]
6 Sonar 208 60 2 [10]

4.2 Classification

As we made the experiments, we noticed that the original error bound in expression (3)
was quite loose. This behavior was also observed by Gu and Takahashi in [11] when
they applied another average error bound to MLPs.

We empirically found that if instead of using d = (number of weights) we used
d = (number of weights)/18, the error bound becomes much tighter. A justification
for this replacement is that in fact, although d was considered the number of weights
for an MLP in [1], it is more recently considered to be an upper bound on the number
of adjustable weights of the MLP (Lemma 1 in [11]). Hence, it can be replaced by a
smaller value. Of course, a theoretical guideline for the value of d to use is desirable.

In what follows we present measures of the two versions of the error bound for the
ME: AvGEME and AvGEME2. They both correspond to expression (10), but the for-
mer uses d = (number of weights) and the later uses d = (number of weights)/18.

The experiments were made with the holdout method: half the data set was used for
training and the other half for testing. Then the data sets were used with inverted roles
(the original training set became the test set and the original test set became the training
set) and the error and error bounds were averaged between the two repetitions.

The task decomposition was made with the fuzzy c-means algorithm [12]. The ex-
perts and the gate were one hidden-layer multi-layer perceptrons (MLPs) trained with
resilient backpropagation [13], for 100 epochs. The number of hidden layer neurons
used for each expert and for the gate are listed in tables 2 and 3. These numbers were
obtained empirically and gave acceptable classification errors for all data sets. We were
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Table 2. The topology of the experts and gate along with the error and error bounds with standard
deviations when using two experts.

Data set Topology AvGEME (std) AvGEME• (std) Error (std)

1 10,10,4 163.0 (2.3) 40.6 (3.6) 39.6 (10.7)
2 5,5,2 89.6 (4.7) 29.6 (5.9) 47.6 (0.5)
3 21,21,4 76.1 (0.2) 21.4 (0.1) 19.3 (1.1)
4 1,1,6 50.2 (0.2) 30.2 (0.2) 27.9(0.4)
5 2,2,2 29.2 (0.6) 11.3 (0.7) 9.6 (1.9)
6 2,2,6 174.0 (0) 41.0 (0) 20.2 (1.6)

Table 3. The topology of the experts and gate along with the error and error bounds with standard
deviations when using three experts.

Data set Topology AvGEME (std) AvGEME• (std) Error (std)

1 10,10,10,4 186.3 (3.4) 48.2 (1.2) 32.1 (8.0)
2 5,5,5,2 108.9 (2.3) 33.2 (0.2) 45.3 (3.8)
3 21,21,21,4 88.1 (0.9) 24.1 (1.1) 20.0 (1.0)
4 1,1,1,6 51.1 (0.6) 25.2 (0.7) 23.1 (2.8)
5 2,2,2,2 32.9 (0.2) 11.9 (0.2) 7.9 (0.9)
6 2,2,2,6 191.1 (1.0) 45.0 (0.2) 17.3 (6.8)

not concerned in finding the optimal value of the number of neurons, we intended only
to illustrate the behavior of the error bound derived in section 3.2.

Table 2 shows the values obtained in the experiments using two experts in the mix-
ture of experts. The second column (topology) gives the number of hidden layer neurons
used with each expert and gate, respectively. For instance, 18,18,2 means that both the
first expert and the second had 18 neurons in the hidden layer and that the gate used 2
neurons in the hidden-layer.

Table 3 shows the values obtained in the experiments using three experts in the
mixture of experts.

4.3 Discussion

The Errors. The true errors are smaller when the experiment is done with three experts
than when it is done with only two. This is not surprising since in the first case the
number of weights used in the MNN is larger and it can adjust itself better to the data.
There is one exception, that is data set 3. This indicates that for this particular problem
a division in three sub-problems does not improve its learnability when compared to a
division in only two subproblems.

The Bounds. In all cases, the AvGEME2 is tighter than AvGEME , indicating that d
should not be set to the number of weights but to a smaller value. This is due to the fact
that the AvGEME2 gives a smaller penalty for the increase in the number of adjustable
parameters in the model (the network weights) than AvGEME .



624 Luı́s A. Alexandre, Aurélio Campilho, and Mohamed Kamel

In all cases, both the AvGEME and the AvGEME2 increase their values when
going from an MNN with two experts to one with three experts. This is due to an
increase in the total number of weights for the MNNs with 3 experts when compared to
the MNN used for the same problem but with only 2 experts.

The bound AvGEME is always larger than the measured error. But for the bound
AvGEME2 this does not happen with data set 2. Both with the 2 expert MNN and with
the 3 expert MNN, the bound AvGEME2 is considerably smaller than the measured
error. The bounds have an important component that is the measured training error. We
checked the training and test set errors for an isolated MLP for this data set and there
is a big difference between their values. Training set error is about 15% while the test
set error is over 40%. We think this explains the poor performance of the bound for this
particular case. The reason for the difference between the training and test errors might
be due to a training overfitting.

The predictions of the AvGEME2 bound are very close to the measured errors.
The exceptions are data set 3, which was already mentioned, and data set 6. This data
set represents a problem in a high dimensional space (60-dimensional). This makes
the number of weights of an MLP vary a great deal with the introduction of a single
neuron in the hidden layer (each new hidden layer neuron adds 61+(number of classes)
weights to the MLP). So it is easy to go from one situation where the number of weights
is insufficient to learn the problem to one where the network overfits the problem. We
argue that the difference between the bound and the errors measured for this data set is
due to the possibly larger than necessary number of weights used in the network.

5 Conclusions

In this paper we developed an average error bound for the mixture of experts MNN. It
is an extension of the bound presented in [1] for an isolated NN. It also generalizes the
bound in [4] since there are no restrictions on the data sets or on the type of gate used.
This way it can be applied to any classification problem.

We also propose an empirical correction factor to the original expression in [1] that
produces much tighter bounds. A theoretical justification for the particular value of this
adjustment is still lacking.

These bounds can be used to estimate the generalization error of the ME MNN, as
illustrated in the experiments section and they behave well for most of the tests made.
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Abstract. This paper studied PCA mixture model in high dimensional
space. A novel EM learning approach by using perturbation was proposed
for the PCA mixture model. Experiments showed the novel perturbation
EM algorithm is more effective in learning PCA mixture model than an
existing constrained EM algorithm.

1 Introduction

In recent years, there has been increasing interest in PCA mixture model. Mix-
ture model provides a simple framework for modelling data complexity by a
weighted combination of component distributions [1, 2]. It has been widely used
in machine learning, image processing, and data mining due to its great flexi-
bility and power. However, since the component distributions in mixture model
are usually formalized to be probability density functions, there are limited ap-
plications to practical problems in high dimensional space.

As a variation of mixture model, PCA mixture model is proposed to use
principal component analysis (PCA) to express component distributions. The
idea of PCA mixture model is motivated by a mixture-of-experts technique that
models a non-linear distribution by a combination of local linear sub-models,
each with a relatively simple distribution [3, 4]. Hinton et al. [5] proposed a
PCA mixture model based on the reconstruction error. Tipping and Bishop de-
fined a mixture model for probabilistic principal component analyzers (PPCA),
whose parameters can be determined using an EM algorithm [6]. Recently, mix-
tures of probabilistic principal component analyzers was used to model data
that lies on or near a low dimensional manifold in a high dimensional observa-
tion space [7]. Kim et al. discussed the problem to select model order for PCA
mixture model [8].
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Expectation-maximization (EM) algorithm is a powerful algorithms for max-
imum likelihood (ML) or maximum a posterior (MAP) estimation in problems
with incomplete data, e.g., fitting a mixture model to observed data [9, 10]. The
EM algorithm provides iterative formulae for the estimation of the unknown
parameters of the mixture. The drawbacks of EM algorithm for a problem in
high dimensional space is that the mixing components are assumed to have
probability density functions in the data space. In practical problems, the mix-
ing components may only have probability density functions in low dimensional
manifolds.

In this paper, the EM algorithm for PCA Gaussian mixture model is stud-
ied. It is organized as follows. Section 2 gives an introduction to the Gaussian
mixture model. Section 3 proposes a new EM algorithm for PCA mixture model.
Experiments are performed in Section 4. Finally, conclusions are drawn in Sec-
tion 5.

2 The EM Algorithm for Gaussian Mixtures

A Gaussian mixture is defined as a combination of Gaussian densities. A Gaus-
sian density in a d-dimensional space, parameterized by its mean m ∈ �d and
d × d covariance matrix C, is defined by the density:

φ(x; θ) =
1

(2π)
d
2 |C| 12

exp{− (x − m)tC−1(x − m)
2

}, (1)

where θ = (m,C).
A mixture of k Gaussian densities is then defined as:

fk(x) =
k∑

j=1

πjφ(x; θj), (2)

with
k∑

j=1

πj = 1, (3)

where θj = (mj , Cj) and πj ≥ 0, for j = 1, 2, · · · , k. The πj are called the mixing
weights and φ(x; θj) the components of the mixture.

A training set Xn = {x1, x2, . . . , xn} of independent and identically dis-
tributed points xi ∈ �d is assumed to be sampled from Eq. (2). The task is to
estimate the parameters of the mixture that maximize the log-likelihood

L =
1
n

n∑
i=1

log fk(xi). (4)

The Expectation-Maximization (EM) algorithm is a well-known statistical
tool for maximum likelihood problems involving hidden or unobserved vari-
ables [9]. In the case of mixtures, the unobservable variable can be regarded
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as the component from which each input point has been sampled. The EM al-
gorithm enables us to update the parameters of a given k-component mixture
with respect to Xn such that the log-likelihood of Xn is never smaller under the
new mixture.

Let
rji = P (j|xi) (5)

be the posterior probability that the point xi is sampled from the jth mixing
component. The EM iteration consists of one expectation step (E-step) and one
maximization step (M-step) as follows.

• E-step
By the Bayes rule, the expectation values of rji can be given from the mixture
model of Eq. (2) from the previous iteration:

rji =
πjφ(xi; θj)

fk(xi)
, (6)

where θj = (mj , Cj).
• M-step

The component parameters can be estimated from samples and the expec-
tation values of rji of Eq. (6):

πj =
1
n

n∑
i=1

rji, (7)

mj =
1

nπj

n∑
i=1

rjixi, (8)

Cj =
1

nπj

n∑
i=1

rji(xi − mj)(xi − mj)t. (9)

3 EM Algorithm for PCA Mixture Model

In this section, we will discuss the limitation of EM in high dimensional space
firstly and then propose a novel EM algorithm for PCA mixture model.

3.1 Limitation of EM

In a high dimensional space, some mixing components may lies on or near a
low dimensional manifold. In other words, for some mixing components, the
covariance matrices C may be singular in high dimensional space so that there are
not Gaussian densities of Eq. (1). In this case, Eq. (1), then E-step of Eq. (6), can
not be conducted since there are not inverse matrices for such mixing components
which are degenerate in a low dimensional manifold.
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3.2 PCA Mixture Model

One solution to the above limitation of EM is to describe Gaussian density of
Eq. (1) by using principal component analysis (PCA).

Let Ψ = (ψ1, · · · , ψd) be the matrix whose columns are the unit-norm eigen-
vectors of the covariance matrix C of Eq. (1). Let Λ = diag(λ1, · · · , λd) be the
diagonal matrix of the eigenvalues of C, where λi are the eigenvalues correspond-
ing to the eigenvectors ψi (i = 1, · · · , d). We have

Ψ tCΨ = Λ. (10)

Let
y = Ψ t(x − m), (11)

where y = [y(1), y(2), · · · , y(d)]′ and y(i) is the ith principal component of the
d-dimensional vector y.

Assume that λi (i = 1, · · · , d) are ranked in order from larger to smaller as
follows:

λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0. (12)

The covariance matrix C can be any covariance matrix of the k mixing com-
ponents and the mean m can be any mean of the k mixing components. Let C
be Cj , the covariance matrix of the jth mixing component. If Cj is non-singular,
we will have λd > 0. Then, the Gaussian density of Eq. (1) in x space can be
expressed in y space as follows:

φ(y; θj) =
d∏

i=1

1
(2πλi)

1
2
exp{− [y(i)]

2

2λi
}. (13)

Note that y not only depends on x, but also depends on θj = (mj , Cj).
If Cj is singular, some last λ’s will have a value of zero. This means that the

jth mixing component is distributed in a low dimensional manifold in original x
space. So, there doesn’t exist a Gaussian density of Eq. (13) in x space for the
mixing component.

Assume that

λ1 ≥ · · · ≥ λdj > λdj+1 = · · · = λd = 0, (14)

where dj is the number of non-zero eigen-values of the covariance matrix Cj

of the jth mixing component. For the jth mixing component, there exists a
Gaussian density in a low dimensional [y(1), y(2), · · · , y(dj)] space as follows:

φ(y; θj) ≈
dj∏
i=1

1
(2πλi)

1
2
exp{− [y(i)]

2

2λi
}. (15)

The dj(j = 1, · · · , k) in Eq. (15) can be called as an order of principal components
for the jth mixing component. If dj is equal to d, i.e., dj = d, Eq. (15) is the
same as Eq. (13). In other word, Eq. (13) is a special case of Eq. (15).
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What is a PCA mixture model? Now, we can give a definition. We define
the mixture model of Eqs. (2), (3) and (15) as a PCA mixture model, where
dj(j = 1, · · · , k), the orders of principal components for the mixing components,
can be determined by Eq. (14) or by any other assumptions. This definition can
be regarded as a generalization of the PCA mixture model used in [8], where
dj(j = 1, · · · , k) is assumed to be the same value.

Note that the fk(x) in the PCA mixture model is not a probability density
function now. It is just a structure description of the data set in high dimensional
space.

3.3 A Perturbation Approach

Recently, Kim et al. discussed the problem to select model order for PCAmixture
model [8], and proposed a constraint with dj(j = 1, · · · , k) as follows:

d1 = d2 = · · · = dk. (16)

Under the constraint of Eq. (16), dj(j = 1, · · · , k) have to be the smallest of all
the orders of principal components for the mixing components. This assumption
increases the difficulty in learning the PCA mixture model.

In general, when dj < d, no matter whether dj(j = 1, · · · , k) are equal to
each other, it is difficult to estimate rji in classical E-step by using Eq. (15)
directly. The reason is that Eq. (15) may be a probability density in a different
space for the different j(j = 1, . . . , k), even under the constraint of Eq. (16).

Our idea is to assign a very small positive value ε to the last eigenvalues
λdj+1 , · · · , λd in Eq. (14). So, we have

λ1 ≥ · · · ≥ λdj > λdj+1 = · · · = λd = ε > 0, (17)

where ε can be called a perturbation factor.
By introducing a perturbation factor in Eq. (17), we make the covariance

matrix Cj of the jth mixing component be non-singular. Therefore, Eq. (13) can
be directly used to estimate the raw values of rji of Eq. (5) as follows:

rji = πjφ(y; θj), (18)

where according to Eq. (11), y = yi is obtained from the point xi instead of x,
and θj = (mj , Cj) instead of θ = (m,C).

Note that all the raw values rji(j = 1, · · · , k) will further be normalized by

k∑
j=1

rji = 1. (19)

So, a novel E-step by using perturbation can be introduced as follows:
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• Perturbation E-Step

$ For C = Cj , the covariance matrix of the jth mixing component, make
a PCA decomposition of Eq. (10) , and obtain all the d eigenvalues
λi (i = 1, · · · , d) and corresponding eigenvectors ψi (i = 1, · · · , d).

$ According to Eq. (17), determine dj and assign ε to the last d− dj eigen-
values λdj+1 , · · · , λd.

$ For each point xi(i = 1, · · · , n), compute the projection of xi on all the d
principal components according to Eq. (11).

$ Update the expectation values of rji of Eq. (5) according to Eqs. (13,17,
18,19).

Our novel EM algorithm by using perturbation for PCA mixture model includes
the novel perturbation E-step and the classical M-step of Eqs. (7,8,9).

4 Experiments

In this section, some experiments are performed to see if the novel EM algo-
rithm by using perturbation is effective to learn both non-degenerate mixing
component and degenerate mixing component.

4.1 Synthetic Data

Although PCA mixture model is motivated by difficulties in the estimating of
distributions in high dimensional space, it is of some significance to have an
initial evaluation on the learning algorithms with problems in low dimensional
space.

For simplicity, a problem of only two mixing components in two dimensional
space is considered: one with a degenerate density in one dimensional subspace,
and the other with a non-degenerate density in two dimensional space. We have
considered four examples as follows.

• Example (a) One mixing component has a degenerated density in the direc-

tion of
[
1
−1

]
. The other has a covariance of

[
1 0.6
0.6 1

]
. The first principal

directions of these two mixing components are orthogonal to each other.
• Example (b) One mixing component has a degenerated density in the direc-

tion of
[
1
−1

]
. The other has a covariance of

[
1 0.6
0.6 3

]
. The first principal

directions of these two mixing components are approximately orthogonal to
each other.

• Example (c) One mixing component has a degenerated density in the direc-

tion of
[
1
−1

]
. The other has a covariance of

[
1 −0.6

−0.6 3

]
. The first principal

directions of these two mixing components are approximately parallel to each
other.
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• Example (d) One mixing component has a degenerated density in the direc-

tion of
[
1
−1

]
. The other has a covariance of

[
1 −0.6

−0.6 1

]
. The first principal

directions of these two mixing components are parallel to each other.

We draw 100 samples respectively for each mixing component. These four ex-
amples are displayed in Fig. 1 respectively.

4.2 Experimental Results and Analysis

For each example, we have performed experiments to learn PCA mixture model
by our perturbation EM algorithm and the constrained EM algorithm used in [8]
with a constraint of Eq. (16).

The experimental results with four examples by our perturbation EM algo-
rithm are displayed in Fig. 1 (a1), (b1), (c1) and (d1) respectively. The experi-
mental results with four examples by the constrained EM algorithm are displayed
in Fig. 1 (a2), (b2), (c2) and (d2) respectively. In Fig. 1, the distribution cen-
ters are marked in green color for all the learned mixing components, and the
probability ellipses in blue color are drawn to enclose about 90% samples for all
the learned mixing components if without degeneration.

From Fig. 1, we can have the following facts and discussion:

• Our perturbation EM algorithm is effective to learn PCA mixture model. For
each example, the novel perturbation EM algorithm is effective to learn both
non-degenerate mixing component and degenerate mixing component.

• The constrained EM algorithm [8] is not as effective as the perturbation EM
algorithm to learn PCA mixture model. It becomes more difficult for the
constrained EM algorithm to learn the mixing components when the first
principal directions of two mixing components become more parallel to each
other.

5 Conclusion and Future Work

In this paper, we have studied PCA mixture model in high dimensional space
and have given an analysis to the limitation of EM algorithms for PCA mix-
ture model. A novel EM learning approach by using perturbation is proposed
for PCA mixture model. Experiments with synthetic data show the novel per-
turbation EM algorithm is more effective to learn both non-degenerate mixing
component and degenerate mixing component in PCA mixture model than an
existing constrained EM algorithm.

In our future work, we are focusing on investigating some learning algorithms
for PCA mixture model for practical problems in high dimensional space, such
as face recognition and facial expression analysis. In these problems, only a small
number of samples are available, and a singular decomposition theorem is used to
obtain some eigen-vectors for non-zero eigenvalues. In other words, for practical
application problems, the dimension d may be too high to obtain all the d eigen-
vectors in Eq. (10) and the transformation from x-space to y-space in Eq. (11)
is not available.
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(a1) (a2)

(b1) (b2)

(c1) (c2)

(d1) (d2)

Fig. 1. Experiment results with four examples: (a1,b1,c1,d1) by our perturbation EM
algorithm, and (a2,b2,c2,d2) by the constrained EM algorithm [8].
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Abstract. Mixture modelling is a hot area in pattern recognition. This
paper focuses on the use of Bernoulli mixtures for binary data and, in
particular, for binary images. More specifically, six EM initialisation tech-
niques are described and empirically compared on a classification task
of handwritten Indian digits. Somehow surprisingly, we have found that
a relatively good initialisation for Bernoulli prototypes is to use slightly
perturbed versions of the hypercube centre.
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1 Introduction

Mixture modelling is a popular approach for density estimation in both super-
vised and unsupervised pattern classification [7]. On the one hand, mixtures are
flexible enough for finding an appropriate tradeoff between model complexity
and the amount of training data available. Usually, model complexity is con-
trolled by varying the number of mixture components while keeping the same
(often simple) parametric form for all components. On the other hand, maxi-
mum likelihood estimation of mixture parameters can be reliably accomplished
by the well-known Expectation-Maximisation (EM) algorithm.

Although most research in mixture modelling has focused on mixtures for
continuous data, there are many pattern recognition tasks for which binary or
discrete mixture models are better suited. This paper focuses on the use of (multi-
variate) Bernoulli mixtures for binary data and, in particular, for binary images.
EM-based maximum likelihood estimation of Bernoulli mixtures is known even
before the general statement of the EM algorithm in 1977 [3]. In fact, the basic
formulae appear in a proposed problem of the classic 1973 book by Duda and
Hart [4, pp. 256 and 257], who attribute to Wolfe their derivation in 1970 [4,
p. 249]. In spite of being known for more than three decades, Bernoulli mixtures
as such have seldom been assessed in practice. In [6], for instance, a more com-
plex yet closely-related model is successfully tested on a conventional OCR task,
but no comparative results are provided for the simpler, pure Bernoulli mixture
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model. It seems that this pure model has been only applied to non-conventional
tasks such as unsupervised modelling of electropalatographic data [2].

During the past few years, we have found that Bernoulli mixtures are really
effective in certain supervised text classification tasks [5, 9]. Moreover, since these
tasks can be considered somewhat non-conventional, we have recently tried out
Bernoulli mixtures on a more conventional pattern recognition task involving
binary images [8]. As in the case of text classification, the results obtained are
encouraging.

In view of their potential, we think that Bernoulli mixtures deserve more
attention. In particular, as with any kind of mixtures, it is important to take
care of EM initialisation in order to fine-tune Bernoulli mixture learning. This
paper compares six initialisation techniques, which are described in section 4,
after a review of the model and the basic theory on its EM-based maximum
likelihood estimation (sections 2 and 3). Then, experimental results are reported
on a classification task of handwritten Indian digits.

2 Bernoulli Mixtures

A (finite) mixture model consists of a number of mixture components, I. It
generates a D-dimensional sample x = (x1, . . . , xD)t by first selecting the ith
component with prior probability p(i), and then generating x in accordance with
the ith component-conditional probability (density) function p(x | i). The priors
must satisfy the constraints:

I∑
i=1

p(i) = 1 and p(i) ≥ 0 (i = 1, . . . , I). (1)

The posterior probability of x being actually generated by the ith component
can be calculated via the Bayes’ rule as

p(i |x) = p(i) p(x | i)
p(x)

(2)

where

p(x) =
I∑

i=1

p(i) p(x | i) (3)

is the (unconditional) mixture probability (density) function.
A Bernoulli mixture model is a particular case of (3) in which each component

i has a D-dimensional Bernoulli probability function governed by its own vector
of parameters or prototype pi = (pi1, . . . , piD)t ∈ [0, 1]D,

p(x | i) =
D∏
d=1

pxdid (1 − pid)1−xd (4)
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Consider an arbitrary component p(x | i). It identifies a certain subclass of binary
vectors “resembling” its parameter vector or prototype pi. In fact, each pid is
the probability of bit xd to be one, whereas 1− pid is the opposite.

Equation (4) is just the product of independent, unidimensional Bernoulli
probability functions. Therefore, a single multivariate Bernoulli component can
not capture any kind of dependencies or correlations between individual bits. As
with other types of mixtures, this is implicitly done by mixing several compo-
nents in the right proportions.

Also as with other types of mixtures, Bernoulli mixtures can be used as class-
conditional models in supervised classification tasks. Let C denote the number
of supervised classes. Assume that, for each supervised class c, we know its prior
p(c) and its class-conditional probability function p(x | c), which is a mixture of
Ic Bernoulli components,

p(x | c) =
Ic∑
i=1

p(i | c) p(x | c, i) (5)

Then, the optimal Bayes decision rule is to assign each pattern vector x to a
class c∗(x) giving maximum a posteriori probability:

c∗(x) = argmax
c

p(c |x) (6)

= argmax
c

(
p(c) p(x | c)

)
(7)

= argmax
c

(
log p(c) + log p(x | c)

)
(8)

= argmax
c

(
log p(c) + log

Ic∑
i=1

p(i | c)p(x | c, i)
)

(9)

3 Maximum Likelihood Estimation

Let X = {x1, . . . ,xN} be a set of samples available to learn a Bernoulli mixture
model. This is a statistical parameter estimation problem since the mixture is
a probability function of known functional form, and all that is unknown is a
parameter vector including the priors and component prototypes:

Θ = (p(1), . . . , p(I),p1, . . . ,pI)t. (10)

Here we are excluding the number of components from the estimation problem,
as it is a crucial parameter for controlling model complexity and receives special
attention in section 5.

Following the maximum likelihood principle, the best parameter values max-
imise the log-likelihood function of Θ,

L(Θ |X) =
N∑

n=1

log

(
I∑

i=1

p(i) p(xn | i)
)

. (11)
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In order to find these optimal values, it is useful to think of each sample xn
as an incomplete component-labelled sample, which can be completed by an
indicator vector zn = (zn1, . . . , znI)t with 1 in the position corresponding to the
component generating xn and zeros elsewhere. In doing so, a complete version
of the log-likelihood function (11) can be stated as

LC(Θ|X,Z) =
N∑
n=1

I∑
i=1

zni (log p(i) + log p(xn|i)) , (12)

where Z = {z1, . . . ,zN} is the so-called missing data.
The form of the log-likelihood function given in (12) is generally preferred

because it makes available the well-known EM optimisation algorithm (for finite
mixtures) [3]. This algorithm proceeds iteratively in two steps. The E(xpectation)
step computes the expected value of the missing data given the incomplete data
and the current parameters. The M(aximisation) step finds the parameter values
which maximise (12), on the basis of the missing data estimated in the E step.
In our case, the E step replaces each zni by the posterior probability of xn being
actually generated by the ith component,

zni =
p(i) p(xn | i)∑I

i′=1 p(i′) p(xn | i′)

(
n = 1, . . . , N
i = 1, . . . , I

)
, (13)

while the M step finds the maximum likelihood estimates for the priors,

p(i) =
1
N

N∑
n=1

zni (i = 1, . . . , I), (14)

and the component prototypes,

pi =
1∑N

n=1 zni

N∑
n=1

znixn (i = 1, . . . , I). (15)

To start the EM algorithm, initial values for the parameters are required. To
do this, it is recommended to avoid “pathological” points in the parameter space
such as those touching parameter boundaries and those in which the same pro-
totype is used for all components [2]. Provided that a non-pathological starting
point is used, each iteration is guaranteed not to decrease the log-likelihood func-
tion and the algorithm is guaranteed to converge to a proper stationary point
(local maximum). Also, for the sake of robustness, it is important to introduce
some sort of model smoothing.

4 Initialisation Techniques

As said above, the only condition for proper EM initialisation is to avoid “patho-
logical” points in the parameter space. Unfortunately, this does not say too much
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about the actual technique we should use. So, to clarify ideas, let us first distin-
guish between mixture proportions and Bernoulli prototypes. Clearly, a natural
choice for the initialisation of mixture proportions is to be as impartial as pos-
sible, that is, to set them all to the same value:

p(i) =
1
I

(i = 1, . . . , I) (16)

The tricky problem is to devise an adequate initialisation technique for Bernoulli
prototypes. In this case, the simplest yet natural option is to randomly draw each
prototype from the open unit hypercube:

prandi = rand
{
x ∈ [ε, 1− ε]D

}
(i = 1, . . . , I) (17)

where ε (0 < ε ≤ 0.5) is a positive constant intended to exclude extreme prob-
ability values. This random initialisation was used in [2]. Generally speaking,
each possible non-pathological prototype has the same chance of being chosen.

A possible drawback of initialisation (17) comes from the fact that almost all
potential prototypes have nothing in common with the training data. Therefore,
it is almost sure that it will pick a poor starting point in terms of likelihood. A
possible remedy to this drawback is to restrict the set of potential prototypes to
the training data,

pprotoi = xrand{1,...,N} (i = 1, . . . , I) (18)

but these prototypes are completely pathological (made up of zeros and ones).
A straightforward solution to this pathological nature is to linearly combine (17)
and (18):

prprotoi = αprandi + (1− α)pprotoi (i = 1, . . . , I) (19)

where α (0 ≤ α < 1) measures the “global randomness” of prprotoi , as opposed to
1−α, which measures its “closeness” to the training data. We call this technique
random prototypes. We used it in [5] (α ≈ 0) and [8] (α = 0.75).

Although (19) will usually provide acceptable initialisations in terms of like-
lihood, it may be improved in some cases, especially when initialising a mixture
of many prototypes. In this case, it is hardly likely that the prototypes chosen
will uniformly cover all regions in which training bit vectors appear. On the con-
trary, it is more likely that some of these regions will become “overpopulated” by
prototypes, while other regions will not be covered enough. This eventual failure
can be easily prevented by considering prototypes as “facilities” to be located
in a “maximally dispersed” way. More specifically, the following algorithm does
the job:

pmaxmini =

⎧⎨⎩xrand{1,...,N} if i = 1
argmax
x∈X

min
i′=1,...,i−1

d(x,pmaxmini′ ) if i > 1 (20)

where d(·, ·) is an appropriate distance function for bit vectors (e.g. the Hamming
distance). The basic idea behind (20) is simple: the ith prototype chosen is the
training bit vector which is farthest away from its closest prototype among those
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(i−1 prototypes) previously chosen. As with (18), some sort of randomisation or
smoothing is also required to avoid exact zeros and ones. We used this algorithm
in [9], where it was called maxmin initialisation.

The three initialisation techniques discussed so far (random, random proto-
types and maxmin) have been used in previous works but they have not been yet
compared on the same basis. Since this work is a good opportunity to consider
any reasonable initialisation heuristic, we have also considered three additional
techniques that can be interpreted as minor variations on the same idea: to use
the same vector for all mixture prototypes. The rationale behind this idea is that
we have to be as neutral as possible during EM initialisation and then rely on
the EM itself for the purpose of specialising each prototype in a different data
subclass. Of course, each prototype has to be (randomly) perturbed since the
use of the very same vector in all components leads to a well-known pathological
starting point [2]. The three minor variations we are talking about are:

1. Hypercube centre: all prototypes are slightly perturbed versions of 0.5.
2. Data mean: all prototypes are slightly perturbed versions of the data mean.
3. Class mean: all prototypes of the mixture for class c are perturbed versions
of the class c data mean.

5 Experiments

The experiments reported in this section correspond to an OCR task consisting in
the recognition of handwritten Indian digits. They were designed to compare, on
the same basis, the six initialisation techniques described in the previous section.
Also, they can be considered as a continuation of the experiments reported in [8].

The dataset used here comprises the 10425 digit samples included in the non-
touching part of the Indian digits database recently provided by CENPARMI [1].
Original digit samples are given as binary images of different sizes (minimal
bounding boxes). To obtain properly normalised images, both in size and posi-
tion, two simple preprocessing steps were applied. First, each digit image was
pasted onto a square background whose centre was aligned with the digit centre
of mass. This square background was a white image large enough (64×64) to ac-
commodate most samples though, in some cases, larger background images were
required. Second, given a size S, each digit image was subsampled into S × S
pixels, from which its corresponding binary vector of dimension D = S2 was
built. Figure 1 shows one preprocessed example of each Indian digit (S = 30).

0 1 2 3 4 5 6 7 8 9

Fig. 1. 30× 30 examples of each Indian digit.
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The standard experimental procedure for classification error rate estimation
in the CENPARMI Indian digits task is a simple partition with 7390 sam-
ples for training and 3035 for testing (excluding the extra classes delimiter
and comma). Using this procedure, we obtained the results shown in Figure 2.
This Figure includes six graphs arranged in a matrix of two columns and three
rows: the graphs in the left column correspond to the random, random proto-
types ((19) with α = 0.75) and maxmin initialisation techniques; while those
in the right column refer to the three minor variations of the “same-vector”
idea proposed in the preceding section. For each initialisation technique and
each I ∈ {1, 2, 5, 10, 15, 20, 25}, the standard experimental procedure was run
50 times, each one entailing an I-component Bernoulli mixture classifier trained
from a different random seed. Each graph includes four curves computed from
these runs: the (normalised) average log-likelihood of the classifier parameters
for both the training and test sets, and the average classification error rate,
also for both sets (error bars show standard error). Taking into account the re-
sults reported in [8] for this task, here we have only considered a resolution of
S = 20 pixels. Also, in order to allow direct comparison, only classifiers with
class-conditional mixtures of identical number of components, Ic = I, have been
considered.

From the results shown in Figure 2, it can be said that all techniques give
similar results, except random initialisation, which does not seem to be as good as
the others. An immediate consequence of this result is that maxmin initialisation
becomes less attractive since, in comparison with its alternatives, it is more
computationally demanding and difficult to implement. Let us compare random
prototypes with hypercube centre, which somehow surprisingly appears to be a
good choice among the three variations of the “same-vector” idea. For ease of
comparison, the error rate curves (for test data) of these techniques are plotted
together in Figure 3. Although standard error bars overlap, we would say that
hypercube centre is a bit superior to random prototypes.

6 Conclusions

The results presented in this paper can be considered as a continuation of previ-
ous work on the use of Bernoulli mixtures for binary data and, in particular, for
binary images. Six EM initialisation techniques have been described and com-
pared on an OCR task consisting in the recognition of handwritten Indian digits.
Three of these techniques have been already used in our previous works, though
here we have tried to provide a better description of them and, more importantly,
a common basis for empirical comparison. The other three techniques, which are
proposed here, can be interpreted as minor variations on a very simple idea (to
use the same vector for all prototypes). From the empirical results obtained in
the Indian digits recognition task, we can conclude that “random prototypes”
(linear combination of random parameters and randomly chosen training bit
vectors) and “hypercube centre” (all prototypes are slightly perturbed versions
of 0.5) are relatively good initialisation techniques.
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Fig. 2. Comparison of six initialisation techniques: log-likelihood and error rate (for
training and test data) of the I-component Bernoulli mixture classifier (I = 1, . . . , 25).
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Fig. 3. Comparison of “random prototypes” and “hypercube centre” initialisations:
error rate (for test data) of the I-component Bernoulli mixture classifier (I = 1, . . . , 25).
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Abstract. In this paper, we formally present a novel estimation method, referred
to as the Stochastic Learning Weak Estimator (SLWE), which is used to estimate
the parameters of a binomial distribution, where the convergence of the estimate
is weak, i.e. in law. The estimation is based on the principles of stochastic learn-
ing. Even though our new method includes a learning coefficient, λ, it turns out
that the mean of the final estimate is independent of λ, the variance of the fi-
nal distribution decreases with λ, and the speed decreases with λ. Similar results
are true for the multinomial case. An empirical analysis on synthetic data shows
the advantages of the scheme for non-stationary distributions. Conclusive results
demonstrate the advantage of SLWE for a pattern-recognition problem which has
direct implications in data compression. In this case, the underlying distribution
in the data file to be compressed is non-stationary, and it is estimated and learnt
using the principles highlighted here. By classifying its variation and using it in
the compression, the superiority of the scheme is documented.

1 Introduction

The theory of estimation has been studied for hundreds of years [1, 15]. It is also easy
to see that the learning (training) phase of a statistical pattern recognition system is,
indeed, based on estimation theory [2, 17]. Estimation methods generally fall into vari-
ous categories, including the Maximum Likelihood Estimates (MLE) and the Bayesian
family of estimates.

Although the MLEs and Bayesian estimates have good computational and statistical
properties, the fundamental premise for establishing the quality of estimates is based on
the assumption that the parameter being estimated does not change with time. In other
words, the distribution is assumed to be stationary. Thus, it is generally assumed that
there is an underlying parameter θ, which does not change with time, and as the number
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of samples increases, we would like the estimate θ̂ to converge to θ with probability
one, or in a mean square sense.

There are numerous problems which we have recently encountered, where these
strong estimators pose a real-life concern. One scenario occurs in pattern classifica-
tion involving moving scenes. We also encounter the same situation when we want to
perform adaptive compression of files which are interspersed with text, formulae, im-
ages and tables. Similarly, if we are dealing with adaptive data structures, the structure
changes with the estimate of the underlying data distribution, and if the estimator used is
“strong” (i.e., w. p. 1), it is hard for the learned data structure to emerge from a structure
that it has converged to. Indeed, we can conclusively demonstrate that it is sub-optimal
to work with strong estimators in such application domains, i.e., when the data is truly
non-stationary.

In this paper, we shall present one such “weak” estimator, referred to as the Stochas-
tic Learning Weak Estimator (SLWE), and which is developed by using the principles
of stochastic learning. In essence, the estimate is updated at each instant based on the
value of the current sample. However, this updating is not achieved using an additive
updating rule, but rather by a multiplicative rule, akin to the family of linear action-
probability updating schemes [6, 7]. The formal results that we have obtained for the
binomial distribution are quite fascinating. Similar results have been achieved for the
multinomial case, except that the variance (covariance) has not been currently derived.

The entire field of obtaining weak estimators is novel. In that sense, we believe
that this paper is of a pioneering sort – we are not aware of any estimators which are
computed as explained here. We also hope that this is the start of a whole new body
of research, namely those involving weak estimators for various distributions, and their
applications in various domains. In this regard, we are currently in the process of deriv-
ing weak estimators for various distributions. To demonstrate the power of the SLWE
in real-life problems, we conclude the paper with conclusive results applicable to data
compression problems, in which the underlying distribution is non-stationary.

The more detailed application of these results in adaptive data compression, statis-
tical pattern recognition, adaptive data structures, and scene analysis is currently under-
way. Finally, the application of non-linear updating schemes to obtain weak estimators
is also open, although some initial results are currently available.

To devise a new estimation method, we have utilized the principles of learning as
achieved by the families of Variable Structure Stochastic Automata (VSSA) [3, 4, 6]. In
particular, the learning we have achieved is obtained as a consequence of invoking algo-
rithms related to families of linear schemes, such as the Linear Reward-Inaction (LRI)
scheme. The analysis is also akin to the analysis used for these learning automata. This
involves first determining the updating equations, and taking the conditional expecta-
tion of the quantity analyzed. The condition disappears when the expectation operator is
invoked a second time, leading to a difference equation for the specified quantity, which
equation is later explicitly solved. We have opted to use these families of VSSA in the
design of our SLWE, because it turns out that the analysis is considerably simplified
and (in our opinion) fairly elegant.

The question of deriving weak estimators based on the concepts of discretized LA
[8, 10] and estimator-based LA [5, 9, 11, 13, 14, 16] remains open. We believe, however,
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that even if such estimator-based SLWE are designed, the analysis of their properties
will not be trivial.

2 Weak Estimators of Binomial Distributions

Through out this paper we assume that we are estimating the parameters of a bino-
mial/multinomial distribution. The binomial distribution is characterized by two pa-
rameters, namely, the number of Bernoulli trials, and the parameter characterizing each
Bernoulli trial. In this regard, we assume that the number of observations is the number
of trials. Thus, all we have to do is to estimate the Bernoulli parameter for each trial.
This is what we endeavor to do using stochastic learning methods.

Let X be a binomially distributed random variable, which takes on the value of
either ‘1’ or ‘2’1. We assume that X obeys the distribution S, where S = [s1, s2]T . In
other words,

X = ‘1’ with probability s1
= ‘2’ with probability s2 ,

where, s1 + s2 = 1.
Let x(n) be a concrete realization of X at time ‘n’. The intention of the exercise is

to estimate S, i.e., si for i = 1, 2. We achieve this by maintaining a running estimate
P (n) = [p1(n), p2(n)]T of S, where pi(n) is the estimate of si at time ‘n’, for i = 1, 2.
Then, the value of pi(n) is updated as per the following simple rule:

p1(n+ 1)← λp1(n) if x(n) = 2 (1)

← 1− λp2(n) if x(n) = 1 . (2)

where λ is a user-defined parameter, 0 < λ < 1.
In order to simplify the notation, the vector P (n) = [p1(n), p2(n)]T refers to the

estimates of the probabilities of ‘1’ and ‘2’ occurring at time ‘n’, namely p1(n) and
p2(n) respectively. In the interest of simplicity, we omit the index n, whenever there is
no confusion, and thus, P implies P (n).

The first theorem, whose proof can be found in [12], concerns the distribution of
the vector P which estimates S as per Equations (1) and (2). We shall state that P
converges in distribution. The mean of P is shown to converge exactly to the mean of
S. The proof, which is a little involved, follows the types of proofs used in the area of
stochastic learning [12].

Theorem 1. Let X be a binomially distributed random variable, and P (n) be the esti-
mate of S at time ‘n’. Then, E [P (∞)] = S. �

The next results that we shall prove indicates that the distribution of E [P (n+ 1)]
follows E [P (n)] in a Markovian manner. We derive the explicit Markovian dependence,
and allude to the resultant properties by virtue of the ergodic nature of the Markov
matrix. This leads us to two results, namely that of the limiting distribution of the chain,

1 We depart from the traditional notation of the random variable taking values of ‘0’ and ‘1’, so
that the notation is consistent when we consider the multinomial case.
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and that which concerns the rate of convergence of the chain. It turns out that while the
former is independent of the learning parameter, λ, the latter is determined only by λ.

The reader will observe that the results we have derived are asymptotic results. In
other words, the mean of P (n) is shown to converge exactly to the mean of S. The
implications of the “asymptotic” nature of the results will be clarified presently. The
proofs of Theorems 2, 3 and 4 can be found in [12].

Theorem 2. Let X be a binomially distributed random variable governed by the dis-
tribution S. If P (n+ 1) is the estimate of S at time ‘n+ 1’, E [P (n)] obeys an ergodic
Markov chain whose steady state distribution converges to S. �

Theorem 3. Let X be a binomially distributed random variable governed by the dis-
tribution S, and P (n) be the estimate of S at time ‘n’ obtained by (1) and (2). Then,
the rate of convergence of P to S is fully determined by λ. �

We now derive the explicit expression for the asymptotic variance of the SLWE. A
small value of λ leads to fast convergence and a large variance and vice versa.

Theorem 4. Let X be a binomially distributed random variable governed by the dis-
tribution S, and P (n) be the estimate of S at time ‘n’ obtained by (1) and (2). Then,
the algebraic expression for the variance of P (∞) is fully determined by λ. �

When λ → 1, it implies that the variance tends to zero, implying mean square
convergence. The plot of the variance of p1(∞) against λ, is depicted in Fig. 1, where
s1 = 0.6 and s2 = 0.4. Observe that the maximum value of the variance, Var[p1(∞)]
= s1s2 = 0.24, is attained when λ = 0, and the minimum value of the variance,
Var[p1(∞)] = 0, is achieved when λ = 1.

Although the result derived is of an asymptotic sort, if the value of λ is even as
“small” as 0.9, the SLWE will be able to track the change, even if the environment
switches its Bernoulli parameter after 50 steps. Observe too that we do not need to
introduce or consider the use of a “sliding window”.

3 Weak Estimators of Multinomial Distributions

In this section, we shall consider the problem of estimating the parameters of a multi-
nomial distribution. The multinomial distribution is characterized by two parameters,
namely, the number of trials, and a probability vector which determines the probabil-
ity of a specific event (from a pre-specified set of events) occurring. In this regard, the
number of observations is the number of trials. Thus, we are to estimate the latter prob-
ability vector associated with the set of possible outcomes or trials. Specifically, let X
be a multinomially distributed random variable, which takes on the values from the set
{‘1’, . . . , ‘r’}. We assume that X is governed by the distribution S = [s1, . . . , sr]T as:

X = ‘i’ with probability si, where
∑r

i=1 si = 1.
Also, let x(n) be a concrete realization of X at time ‘n’. The intention of the exer-

cise is to estimate S, i.e., si for i = 1, . . . , r. We achieve this by maintaining a running
estimate P (n) = [p1(n), . . . , pr(n)]T of S, where pi(n) is the estimate of si at time
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Fig. 1. Plot of the function Var[p• (∞)] for different values of λ in the interval [0, 1], where
s• = 0.6 and s• = 0.4.

‘n’, for i = 1, . . . , r. Then, the value of p1(n) is updated as per the following simple
rule (the rules for other values of pj(n) are similar):

p1(n+ 1)← p1 − (1− λ)
∑
j �=1

pj when x(n) = 1 (3)

← λp1 when x(n) �= 1 (4)

As in the binomial case, the vector P (n) = [p1(n), p2(n), . . . , pr(n)]T refers to the
estimate of S = [s1, s2, . . . , sr]T at time ‘n’, and we will omit the reference to time ‘n’
in P (n) whenever there is no confusion.

The results that we present now are as in the binomial case, i.e. the distribution of
E [P (n+ 1)] follows E [P (n)] in a Markovian manner. This leads us to two results,
namely to that of the limiting distribution of the chain, and that which concerns the rate
of convergence of the chain. It turns out that both of these, in the very worst case, could
only be dependent on the learning parameter λ. However, to our advantage, while the
former is independent of the learning parameter, λ, the latter is only determined by it
(and not a function of it). The complete proofs of Theorems 5, 6 and 7 are found in [12].

Theorem 5. Let X be a multinomially distributed random variable governed by the
distribution S, and P (n) be the estimate of S at time ‘n’ obtained by (3) and (4). Then,
E [P (∞)] = S. �

We shall now state that the convergence of P to S occurs in a Markovian manner
and derive the explicit form of the underlying Markovian matrix, say, M . Thus, we
analyze the properties of M , and in particular, its eigenvalue properties.

Theorem 6. Let X be a multinomially distributed random variable governed by the
distribution S, and P (n) be the estimate of S at time ‘n’ obtained by (3) and (4). Then,
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the expected estimated probability vector follows a Markovian behavior in which every
off-diagonal term of the underlying Markov matrix has the same multiplicative factor,
(1− λ). Furthermore, the final expected solution is independent of λ. �

The convergence and eigenvalue properties of M follow.

Theorem 7. Let X be a multinomially distributed random variable governed by the
distribution S, and P (n) be the estimate of S at time ‘n’ obtained by (3) and (4). Then,
all the non-unity eigenvalues of M are exactly λ, and thus the rate of converge of P is
fully determined by λ. �

A small value of λ leads to fast convergence and a large variance, and vice versa.
Again, although the results we have derived are asymptotic, if λ is even as “small” as
0.9, after 50 iterations, the variation from the asymptotic value will be of the order of
10−50. In other words, after 50 steps, the SLWE will be able to track this change. Our
experimental results demonstrate this fast convergence.

4 Experimental Results

To assess the efficiency of the SLWE introduced here, we have estimated the parameters
for binomial and multinomial random variables using a value of λ = 0.99. We have also
estimated the parameters of these random variables by following the traditional MLE.

4.1 Binomial Random Variables

The estimation of the parameters for binomial random variables has been extensively
tested for numerous distributions. In the interest of brevity, we merely cite one spe-
cific example. Also, to make the comparison meaningful, we have followed the MLE
computation using the identical data stream. In each case, the estimation algorithms
were presented with random occurrences of the variables for n = 4, 000 time instances.
In the case of the SLWE, the true underlying value of s1 was initially set to be 0.8,
and randomly modified after every 500 steps. The new values in the next periods were
uniformly drawn from the interval [0, 1], being 0.42, 0.92, etc.

We report two kinds of results. In the first case, the results obtained are from a
single run. The plot of this behavior is shown in Fig. 2. Observe that the MLE starts
with an initial value of 0.5 and attains a value quite close to 0.8 in the first time period.
As opposed to this, the SLWE starts close to the value 0.5, but quickly (in less than
100 iterations) converges to a value close to 0.8. Thereafter, the MLE is not capable
of tracking the “switching” of the Bernoulli parameter. Thus, at the end of the second
period, during which the value of s1 is 0.42, the MLE attains a value of 0.638794,
which is significantly different from the true one. The SLWE, however, quickly learns
that the parameter has changed, and its estimate, p1, of s1 is much closer to the true
value. In the interest of playing on a level field, we have assumed that neither algorithm
is aware of the switching nature of the environment. In other words, the MLE does not
use a “sliding window” to estimate the running mean. The behavior of the MLE would
probably be superior if this information were provided, but the question of how large
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Fig. 2. Plot of the expected value of p• (n), at time ‘n’, which was estimated by using the SLWE
and the MLE. The actual values of s• , which change every 500 time steps, are also plotted.

this window should be, is a consideration that is not easily determined. This would be
specially crucial in fast-changing environments, where the SLWE would not require
any additional information.

In order to demonstrate the superiority of the SLWE over the MLE on an ensemble
of experiments, we also report the respective ensemble averages. The same experiment
was repeated 1, 000 times, and the ensemble average at every time step was recorded.
Clearly, the variations of the estimates would be much smoother. This behavior is shown
in Fig. 3. Observe that the MLE follows s1 exactly in the first window, but is thereafter
severely handicapped in tracking the variations. In contrast, the SLWE quickly adjusts
to the changes, as expected, in a geometric manner. In our opinion, the results are quite
impressive. The plot of the “empirical” variance (shown in [12]) is identical.

4.2 Multinomial Random Variables

We have also performed simulations for multinomial random variables, where the pa-
rameters were estimated by following the SLWE and the MLE. We considered a multi-
nomial random variable, X , which can take any of four different values, namely ‘1’,
‘2’, ‘3’ or ‘4’. As in the binomial case, we ran the estimators for 4, 000 steps, and re-
peated this 1, 000 times. We then took the ensemble average. For each experiment, we
computed ||P − S||, the Euclidean distance between P and S. This was a measure of
how good our estimate, P , was of S.

The plot of the latter distance obtained from our experiments is depicted in Fig. 4.
While the distance of the SLWE quickly drops towards zero for every “switch” of S, the
MLE is not able to capture these “switches” properly. Experimental results on real-life
problems, involving adaptive data compression show a similar pattern [12].
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Fig. 3. Plot of the estimated probability of s• , p• (n), at time ‘n’ by utilizing two approaches:
the SLWE and the MLE. The actual values of s• , which change every 500 time steps, are also
plotted.
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Fig. 4. Plot of the Euclidean norm of P − S (or Euclidean distance between P and S), where P
was estimated by using both the SLWE and the MLE. The values for the distances are computed
for groups of 500 steps.

5 Conclusions and Future Work

In this paper, we have considered the problem of estimating the parameters of a dis-
tribution from its observations. Unlike traditional estimates that possess strong conver-
gence properties, we have argued that there is a need for estimates that do not possess
such strong convergence properties. Motivated by real-life applications, we formally
presented an estimation method based on the principles of stochastic learning, which
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yields the binomial and multinomial estimates that converge weakly, i.e. in law. In the
case of the binomial distribution, even though our new method includes a learning coef-
ficient, λ, the mean of the final estimate is independent of λ, but the asymptotic variance
decreases with λ, as does the convergence. Similar results are true for the multinomial
case. Experimental results for both binomial and multinomial random variables, and for
compressing data files drawn from non-stationary sources demonstrate the superiority
of the SLWE over the MLE in these application domains.
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Abstract. This paper introduces the Path Relinking Particle Filter (PRPF) algo-
rithm for improving estimation problems in human motion capture. PRPF hy-
bridizes both Particle Filter and Path Relinking frameworks. The proposed algo-
rithm increases the performance of general Particle Filter by improving the 
quality of the estimate, by adapting computational load to problem constraints 
and by reducing the number of required evaluations of the weighting function. 
We have applied the PRPF algorithm to 2D human pose estimation. Experimen-
tal results show that PRPF drastically reduces the MSE value to obtain the set 
of markers with respect to Condensation and Sampling Importance Resampling 
(SIR) algorithms.  

1   Introduction 

Automatic visual analysis of human motion is an active research topic in Computer 
Vision and its interest has been growing during last decade [1][2][3]. Biomechanics of 
Human Movement is an interdisciplinary area, supported by Biomedical Sciences, 
Mechanics and other different technologies, that studies the human body behavior 
subject to mechanical loads [4]. This area has evolved into three main fields [4]: 
medical, sports and occupational.  

A typical biomechanical study involves four phases: (i) defining a suitable theo-
retical model, (ii) obtaining relevant point (marker) coordinates, (iii) performing the 
kinematic analysis, and (iv) determining parameters of interest. Manual digitizing is 
generally used to obtain the marker coordinates. These procedures are slow and re-
quire the supervision of specialists in human anatomy. Automated marker-based sys-
tems [5] permit to automatically obtain the set of marker coordinates, although they 
are intrusive and force the use of expensive specialised hardware. Therefore, the goal 
of research in human motion capture is the development of an automatic full-body 
tracking system, which runs under conventional hardware, and oriented to processing 
realistic applications.  

Most of human motion analysis studies are based on articulated models that prop-
erly describe the human motion [1][6][7][8]. Recent research in human motion analy-
sis makes use of the particle filter framework. The Particle Filter (PF) algorithm, (also 
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termed as Condensation algorithm) enables the modelling of a stochastic process with 
an arbitrary probability density function (pdf), by approximating it numerically with a 
set of points called particles in a state-space process [9]. Deutscher [5] developed an 
algorithm termed Annealed Particle Filter (APF) for tracking people using articulated 
models. 

The principal contribution of this paper is the development of the Path Relinking 
Particle Filter (PRPF) algorithm. The algorithm is inspired by the Path Relinking 
metaheuristic proposed by Glover [10][11] as a way to integrate intensification and 
diversification strategies in the context of combinatorial optimization problems. PRPF 
hybridizes both Particle Filter (PF) and Path Relinking (PR) frameworks in two dif-
ferent stages. In the PF stage, a particle set is propagated and updated to obtain a new 
particle set. In PR stage, a selected elite set from the particle set is selected, and new 
solutions are constructed by exploring trajectories that connect each of the particles in 
the elite set. PRPF algorithm significantly improves the performance of both general 
and other optimized particle filters. 

2   Particle Filter 

General particle filters (PF) are sequential Monte Carlo estimators based on particle 
representations of probability densities which can be applied to any state-space model 
[12]. The state-space model consists of two processes: (i) an observation process 
p(Zt|Xt), where X denotes the system state vector and Z is the observation vector, and 
(ii) a transition process p(Xt|Xt-1). Assuming that observations {Z0, Z1, … , Zt} are 
sequentially measured in time, the goal is to estimate the new system state              
{ 0, 1, … , t} at each time. In the framework of Sequential Bayesian Modelling, 
posterior pdf is estimated in two stages:  

(i) Prediction: the posterior pdf p(Xt-1|Zt-1) is propagated at the time t using the 
Chapman-Kolmogorov equation: 

∫ −−−−− = 1t1t1t1tt1tt )d|)p(|p()|p( XZXXXZX  (1) 

A predefined object motion model is used to obtain an updated particle set. 
(ii) Evaluation: the posterior pdf is computed using the observation vector Zt:  
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The aim of the PF algorithm is to recursively estimate the posterior pdf p(Xt|Zt), 
that constitutes the complete solution to the sequential estimation problem. This pdf is 
represented by a set of weighted particles {(xt

0, t

0)… (xt

N, t

N)}, where the weights t

n 
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n) are normalised. The state t can be estimated by the equation: 
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A pseudocode of a general PF is shown in Figure 1. PF starts by setting up an ini-
tial population X0 of N particles using a known pdf. The measurement vector Zt at 
time t, is obtained from the image. Particle weights t are computed using weighting 
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function. Weights are normalized and a new particle set X*

t is selected. As particles 
with larger weight values can be chosen several times, a diffusion stage are applied to 
avoid the loss of diversity in X*

t. Finally, particle set at time t+1, Xt+1, is predicted by 
using the motion model. 

algorithm PARTICLE_FILTER ((IN)M: video_sequence; 
(IN)N:number_of_particles; (OUT) t: estimates_set) 
var t: time; 

 t: weight_set; 
 Xt, X

*
t, Xt+1: particle_set; 

 Zt: measurement_vector;  
begin 

   t := 0; 
   Xt := Initialize(N); 
   repeat  
      Zt := ObtainMeasures(S, t); 
������ t := Evaluate(Xt, Zt); 
      [Xt, t] := Normalize(Xt�� t); 
������ t := Estimate(Xt�� t);  
      X*t := Select(Xt, t); 
      X*t := Diffuse(X

*
t); 

      Xt+1 := Predict(X
*
t); 

      t := t+1; 
    until (termination_condition) 

end. 

Fig. 1. General Particle Filter Algorithm. 

Several optimized algorithms from the general PF approach, which use different 
strategies to improve its performance have been proposed [5][10][12]. For example, 
the Sampling Importance Resampling (SIR) algorithm [12] reduces the effects of the 
degeneracy phenomenon. The goal of SIR algorithm is to eliminate those insignificant 
particles and to consider the contribution of those ones with larger weight values. 
Reference [5] presents an Annealed Particle Filter (APF) to track human motion using 
a proposal articulated body model. APF is applied to searching in high dimensionality 
spaces. This filter works well for articulated models with 29 DOFs. Partitioned Sam-
pling (PS) [12] is a statistical approach to tackle hierarchical search problems. PS 
consists of dividing the state-space into two or more partitions, and sequentially ap-
plying the stated dynamic model for each partition followed by a weighted resampling 
stage. The advantages of this technique are that the number of required weighting 
function evaluations is reduced.  

3   Path Relinking 

Path Relinking (PR) [10][11] is an evolutionary metaheuristic in the context of the 
combinatorial optimization problems. PR constructs new high quality solutions by 
combining others obtained solutions by exploring paths that connect these solutions. 
To yield better solutions than the original ones, PR starts from a given set of elite 
solutions obtained during a search process, called RefSet (short for “Reference Set”). 
These solutions are ordered according to their quality, and new solutions are then 
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generated, by exploring trajectories that connect solutions in the RefSet. The metaheu-
ristic starts with two of these solutions x’ and x’’, and it generates a path:      x  = x(l), 
x(2), …, x(r) = x , in the neighbourhood space that leads towards the new solution 
sequence. In order to produce better quality solutions, it is convenient to add a local 
search optimization phase. Figure 2 sketches a pseudocode of the PR metaheuristic. 

algorithm PATH_RELINKING ((IN)Solutions: Solution_set; (IN) S: 
weight_set; (IN)b: RefSet_size; (IN)NumImp: Integer; (IN)Zt: measure-
ment_vector; (OUT)RefSet: Solution_set; (OUT) R: weight_set)  
var P, NR: weight_set; 

RefSetNew, Path: Solution_set; 
 NewSubSets: Pairs_of_Solutions; 
 NewSolutions: Boolean;   

begin 
   [RefSet, R] := MakeRefSet(Solutions, S, b); 
   [RefSet, R] := Order(RefSet); 
   NewSolutions := TRUE; 
   while (NewSolutions) do 
      NewSubsets := MakeNewSubsets(b); 
      NewSolutions := FALSE; 
      while (NewSubsets = ø) do 
         Path := MakePath(NewSubSets(1)); 
         P := Evaluate(Path, Zt); 
         [Path, P] := Improve(Path, P, NumImp); 
         [RefSetNew, RN] := Update(RefSet, R, Path, P); 
         if (RefSetNew <> RefSet) then 
            NewSolutions := TRUE; 
         end if 
         NewSubsets := Delete(NewSubsets, 1); 
      end while 
      RefSet := RefSetNew; 
      R���� RN 
   end while 

end. 

Fig. 2. Template of the Path Relinking metaheuristic. 

4   Path Relinking Particle Filter 

The Path Relinking Particle Filter (PRPF) algorithm is introduced in this paper to be 
applied to estimation problems in sequential processes that can be expressed using the 
state-space model abstraction. As pointed in section 1, PRPF integrates PF and PR 
frameworks in two different stages. The PRPF algorithm is centered on a delimited 
region of the state-space in which it is highly probable to find new better solutions 
than the initial computed ones. PRPF increases the performance of general PF by 
improving the quality of the estimate, by adapting computational load to constraints 
and by reducing the number of required evaluations of the particle weighting function. 
Figure 3 shows a graphical template of the PRPF method. Dashed lines separate the 
two main components in the PRPF scheme: PF and PR optimization, respectively. 

PRPF starts with an initial population of N particles drawn from a known pdf. Each 
particle represents a possible solution of the problem. Particle weights are computed 
using a weighting function and a measurement vector. PR stage is later applied to 
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improve the best obtained solutions of the particle filter stage. A Reference Set (Ref-
Set) is created selecting the b (b<<N) best particles in particle set. New solutions are 
generated and evaluated, by exploring predefined trajectories that connect all possible 
pairs of particles in the RefSet. Paths are generated following those directions accord-
ing to the state-space axes. In order to improve the solution fitness, a local search 
from some of the generated solutions within the PR procedure is performed. Worst 
solutions in the RefSet are replaced when there are better performance new ones. PR 
stage ends when new generated solutions RefSetNew do not improve the quality of the 
RefSet. Once the PR stage is finished, the “worst” particles are replaced with the Ref-
SetNew solutions. Then, a new population of particles is created by selecting the indi-
viduals from particle set with probabilities according to their weights. In order to 
avoid the loss of diversity, a diffusion stage is applied to the particles in new set. 
Finally, particles are projected into the next time step by making use of the update 
rule. The proposed pseudocode of PRPF algorithm for visual tracking is shown in 
Figure 4. 

PRPF system estimator quality is improved and the required number of evaluations 
for the weighting function is also reduced. Therefore, PRPF search in state-space is 
not performed randomly like in a general particle filter. PRPF is time-adaptive since 
the number of evaluations of the weighting function changes in each time step. If the 

 

Fig. 3. Path Relinking Particle Filter scheme. Actual frame measures are required during.
EVALUATE and UPDATE stages (*). 
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initial solutions in the RefSet are far away one from each other, then paths connecting 
solutions are long, and the number of explored solutions increases. It is not possible to 
have any estimate of the previous state of the system at the beginning of the visual 
tracking, thus the particle filter is usually randomly initialized. The number of indi-
viduals in the particle filter does not change during the algorithm execution. PRPF 
algorithm reduces the total required number of evaluations of the weighting function 
when increasing the number of total time steps.  

algorithm PRPF((IN)M: video_sequence; (IN)N: number_of_particles; 
(IN)b: RefSet_size; (IN)NumImp: Integer; (OUT) t: estimate_set) 
var t: integer; 

 t,� P, R, NR: weight sets; 
Xt, X

*
t, RefSet, RefSetNew, Path: particle sets; 

 NewSubSets: Pairs of Particles; 
 NewSolutions: Boolean; 
 Zt: measurement vector; 

begin 
   t := 0; 
   Xt := Initialize(N); 
   repeat 
      Zt := ObtainMeasures(M, t); 
������ t := Evaluate(Xt, Zt); 
      [RefSet, R]:=PATH_RELINKING(Xt, t, b, NumImp, Zt); {See fig. 2} 
������ t := Estimate(RefSet�� R); 
      [Xt, t] := Update(Xt, t, RefSet, R); 
      [Xt, t] := Normalize(Xt�� t); 
      X*t := Select(Xt�� t); 
      X*t := Diffuse(X

*
t); 

      Xt+1 := Predict(X
*
t); 

      t := t+1; 
   until (termination_condition) 

end. 

Fig. 4. Path Relinking Particle Filter Algorithm. 

5   Considered Upper-Body Model for Pose Estimation 

The automatic computation of marker coordinates is the aim of human pose estima-
tion system. Our proposed PRPF system is applied to determine the position and ori-
entation of body segments in the global frame. The set of particles describe complete 
solutions for the tracking problem. The particle structure in an eight-limbs model is: 

[ ]87654321118765432111 ,,,,,,,,y,x,,,,,,,,,y,x ����������  (4) 

where x and y are the spatial positions,  is the angle and x�  represents the first deriva-
tive of magnitude (velocity). 

A geometrical model is used to represent the human upper-body in a 2D space as a 
hierarchical set of articulated limbs. It stores time-independent parameters describing 
the body components. On the other hand, each particle stores time-dependent values 
relating to limbs position and orientation. Therefore, it is possible to build blobs and 
edges pixel maps combining the particle state prediction and the geometrical model. 
Figure 5(a) shows the proposed blobs and edge models for upper body tracking. 
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Fig. 5. (a) Proposed human upper-body model. (b) Measurement process: (1) initial image, (2) 
feature extraction, (3) particle prediction and (4) particle weight computation. 

Figure 5(b) represents the measurement process to obtain the particle weights. To 
construct the weighting function it is necessary to use adequate image features. Con-
tinuous edges extracted from a human image usually provide a good measure of visi-
ble body limbs. Canny edge detection method can be used to extract edges. Edges 
outside from human silhouette are removed using background subtraction. The result-
ing edges are then smoothed using a convolution operation. This produces a pixel 
map EM which assigns each pixel a value related to its proximity to an edge. Another 
pixel map EP is built using edges produced by the geometrical model of the configura-
tion predicted by the ith particle, for each pixel (j) in the pixel map. Differences be-
tween these two pixel maps are computed by: 

∑ −=
j

P
j

M
j

i
E EEC  (5) 

Similarly, background subtraction was used to obtain human silhouette. Two pixel 
maps BM and BP are built and compared to compute the corresponding values of Cj

B. 
Finally, edges and blobs coefficients are combined to obtain ith particle weight using 
the following weighting function: 

)( i
B

i
E CCi e +−= απ  (6) 

where  is an experimental parameter. 

6   Results 

To demonstrate the advantages of proposed PRPF algorithm, three different particle 
filter algorithms (Condensation, SIR and PRPF) were implemented using MATLAB 
6.1. We tested the developed algorithms for tracking people who performed planar 
movements in different scenes. A Pentium 4 1.7 GHz. computer and a webcam were 
used for the experiments. Performance of Condensation using 4000 particles, SIR 
using 2000 particles (at each sampling stage) and PRPF using 200 particles in the 
particle set and four solutions in the RefSet were evaluated. Manual digitizing was 
performed to take a reference in order to evaluate the qualitative performance of the 
different algorithms. Different estimations of the x coordinate for the right wrist 
marker over a 50 frames video sequence using PRPF, SIR, Condensation and manual 
digitizing are shown in figure 6. The required number of evaluations of the weighting 
function related to each frame in the video sequence of figure 7 was 4000 for SIR 
particle filter algorithm and 2838 for the PRPF algorithm. 
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Fig. 6. (a) Estimation of the x coordinate of the right wrist using a manual procedure, the Con-
densation, SIR and PRPF algorithms. 

Fig. 7. Estimates in different frames using: (a) Condensation (b) SIR and (c) PRPF. 

Table 1. MSE respect to manual digitizing of Condensation, SIR and PRPF for two sequences. 

Image Sequence 1 Image Sequence 2 Marker 
Condens SIR PRPF Condens SIR PRPF 

X Vertex 3.19 e+001 4.92 e+001 1.26e+001 1.17e+002 1.26e+002 7.65e+001 
Y Vertex 6.49 e+001 9.52 e+001 1.20e+001 6.07e+001 6.47e+001 3.04e+001 
X Neck 3.26 e+001 2.93 e+001 2.83e+001 2.23e+001 2.68e+001 1.16e+001 
Y Neck 3.00 e+001 2.48 e+001 1.04e+001 2.78e+001 2.66e+001 1.19e+001 

X R Shoulder 2.59 e+001 2.10 e+001 1.31e+001 2.15e+001 2.11e+001 7.10e+000 
X L Wrist 3.12 e+002 1.69 e+001 5.71e+000 1.37e+003 1.19e+003 9.37e+001 
Y L Wrist 8.29 e+002 4.54 e+002 8.69e+000 2.18e+003 9.64e+002 1.76e+001 

Mean 152.15 107.52 15.31 425.69 341.62 37.38 

 
 

Figure 7 shows the achieved experimental model configuration results using the 
Condensation, SIR and PRPF algorithms for the same video sequence. Table 1 shows 
the deviations from manual digitizing of the estimates using the considered algo-
rithms. The Mean Square Error (MSE) deviation for the set of all markers averaged 
by the two sequences was 26.34 using PRPF, 224.57 using SIR and 288.92 using 
Condensation algorithm respectively. Note that MSE has decreased to 11.73% of the 
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SIR error and to 9.12% of the Condensation error. This is due to a drastic improve-
ment of the RefSet quality after Path Relinking optimization. 

7   Conclusion 

The main contribution of this work is the Path Relinking Particle Filter (PRPF) algo-
rithm, developed for estimation problems in sequential processes that are represented 
by the state-space model abstraction. Experimental results have shown that PRPF 
appreciably increases the performance of general and SIR particle filters. We have 
applied the proposed PRPF algorithm to the 2D human pose estimation problem. 
PRPF increases the accuracy for automatically obtaining the marker coordinates with 
a more reduced particle set in 2D biomechanical analysis. As future work the PRPF 
will be applied to perform the tracking of 3D images for human pose estimation in 
biomechanics applications. In addition, a study of PRPF properties oriented to reduce 
execution time of the proposed algorithm is necessary. 
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Abstract. Several clustering algorithms equipped with pairwise hard
constraints between data points are known to improve the accuracy of
clustering solutions. We develop a new clustering algorithm that extends
mixture clustering in the presence of (i) soft constraints, and (ii) group-
level constraints. Soft constraints can reflect the uncertainty associated
with a priori knowledge about pairs of points that should or should not
belong to the same cluster, while group-level constraints can capture
larger building blocks of the target partition when afforded by the side
information. Assuming that the data points are generated by a mixture
of Gaussians, we derive the EM algorithm to estimate the parameters of
different clusters. Empirical study demonstrates that the use of soft con-
straints results in superior data partitions normally unattainable without
constraints. Further, the solutions are more robust when the hard con-
straints may be incorrect.

1 Introduction

Modern cluster analysis [1] is largely driven by the quest for scalable and more ro-
bust clustering algorithms capable of detecting clusters with diverse shapes and
densities. Data clustering is an ill-posed problem when the associated objective
function is not well defined, leading to fundamental limitations of generic clus-
tering algorithms. Multiple clustering solutions may seem to be equally plausible
due to an inherent arbitrariness in the notion of a cluster. Any side (auxiliary)
information must be used in order to reduce this degeneracy of possible solutions
and improve the quality of clustering.

Unlike supervised classification, only recently some attention has been given
to the role of prior information in data clustering. Prior information can be avail-
able in several forms: labelled data, known data groupings or associations, addi-
tional inter-pattern similarity estimates, feature relevance, object ranks, etc. We
are primarily interested in various inter-point constraints that can complement
already known pattern or proximity matrix. For example, pairwise constraints
on the data points tell us which pairs of points must be placed in the same
cluster (positive constraint) or different clusters (negative constraint). Ideally,
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c© Springer-Verlag Berlin Heidelberg 2004
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the target partition must satisfy all the given data constraints. Hence, a clus-
tering algorithm should be driven by attribute (feature) values as well as the
constraint information, such that the clustering solution is biased in favor of the
constraints.

Constraints are naturally available in many clustering applications. For in-
stance, in image segmentation one can have partial grouping cues for several
regions to assist in the overall clustering [2]. Clustering of customers in market-
basket database can have multiple records pertaining to the same person. In
video retrieval tasks different users may provide alternative annotations of im-
ages in small subsets of a large database [3]. Such groupings may be used for
semi-supervised clustering of the entire database.

The prior knowledge was provided at the instance level in the form of posi-
tive (must-link) and negative (cannot-link) pairwise constraints in [4, 5]. A con-
strained k-means algorithm is proposed in [4]: must-link data points are replaced
by their centroid, and a data point is assigned to the closest cluster center that
does not violate any constraints. “Soft” constraints were introduced in the disser-
tation of Wagstaff [6], where a heuristic is employed to assign a point to a cluster
that gets the lowest penalty for constraint violations. Similarly, the constrained
version of COBWEB algorithm is considered in [5]. Constrained modification of
the complete-link algorithm was proposed in [7]. Spectral clustering is modified
in [8] to work with constraints. Again, a heuristic procedure augments the affin-
ity matrix derived from feature space by the constraints. The EM algorithm for
mixture model clustering with hard data constraints was developed in [9] and
was shown to be superior to the constrained k-means algorithm [4]. Constraints
were also incorporated into image segmentation algorithms using graph-based
clustering in [10, 2]. Recently, Xing et al. [11] proposed a way to perform clus-
tering by metric learning using side-information: metric can be learned from the
constraints and then applied globally in the feature space to obtain the final
clustering. Correlation clustering [12] uses only the positive and negative con-
straints to partition the vertices in a graph. It has been extended to cope with
soft constraints [13, 14].

The main contribution of this paper is to adopt soft constraints in mixture
(model-based) clustering. Each constraint becomes a real valued variable in be-
tween 0 and 1. The value of the constraint reflects the certainty of the prior
knowledge that a pair of objects comes from the same cluster. Variable strength
of the constraint allows for better control of clustering bias introduced by the
constraints. Our main clustering algorithm is based on a generative model, where
constraint variables are explicitly identified with the nodes in the corresponding
Bayesian network. In this sense, we extend the work by Shental et al. [9] whose
method included only the hard constraints into the mixture model clustering.
To account for soft constraints, we use a more sophisticated graphical model,
yet preserve linear complexity of the inference process (clustering) in the model.
Coupled with mixture clustering, soft constraints are not strictly enforced but
rather serve as prior values that can be changed by the observed data. Mutually
conflicting “soft”constraints are allowed. Moreover, our model can operate with
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group constraints, namely we can specify the certainty of each of several points
belonging to the same cluster (not in a pairwise manner).

2 Clustering with Constraints

Consider a data set D = {y1, . . . ,yN} of size N . Let zi ∈ {1, . . . ,K} be the
(hidden) cluster label of point yi, where K is the number of clusters. Suppose
we want to incorporate the constraint that the first three points y1, y2 and y3
are in the same group and should belong to the same cluster. This can be done by
setting z1, z2 and z3 to a common value w1, z1 = w1, z2 = w1 and z3 = w1. Here,
w1 is an auxiliary random variable that serves as a “group-label”1 – cluster label
of the group {y1,y2,y3}. The likelihood function for the observed data D can
be derived based on the group membership assumptions, and the EM algorithm
is used for parameter estimation [9].

Note that the equalities z1 = w1 and z2 = w1 mean that this pairwise con-
straint is “hard”, namely, the points y1 and y2 are certain to have the same
cluster label. In general, this may not be true. Alternatively, we require zi = wl

to be true only with a probability γil. The value of γil ∈ [0, 1] can be interpreted
as the strength of the constraint that yi belongs to the l-th group. To have a
logically consistent framework, any yi without any associated constraint infor-
mation should be equivalent to γil = 0, ∀l. This ensures uniform treatment for
data points with and without constraints. If γil = 0, zi is chosen independently
of the other group and cluster labels.

Formally, let αj be the prior probability for the j-th mixture component
qj(y; θj), which is parameterized by θj . For simplicity, we write qj(y) = qj(y; θj).
Let wl (l = 1, . . . , L) be the set of (hidden) group-labels. Each group label can
take a value from 1 to K. Let vi be a discrete random variable that takes value in
{0, . . . , L} and determines how zi is generated. If vi = l, the point yi participates
in the l-th group and thus zi = wl and P (vi = l) = γil. When vi = 0, label zi
is generated independently according to the prior probabilities {αj}. Hence, the
model for yi is specified as follows:

P (wl = j) = αj , l ∈ {1, . . . , L}, j ∈ {1, . . . ,K} (1)
P (vi = l) = γil, i ∈ {1, . . . , N}, l ∈ {1, . . . , L} (2)

P (zi = j|vi, w1, . . . , wL) =

{
αj if vi = 0
δwl,j if vi = l

(3)

p(y|z = j) = qj(y), (4)

where δij is the Kronecker delta. An example of such model with seven data
points and three group labels is shown in Figure 1. Typically, when a user speci-
fies γil, many of them are set to zero. It means that the label zi is only tied to a
small number of group-labels. The case when zi has more than one group-label
corresponds to the existence of possibly incompatible constraint, because zi can
• It corresponds to the term “chunklet” defined in [9].
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Fig. 1. An example of the graphical model for the proposed soft constraint. There
are seven data points {y• ,y• , . . . ,y• } with three group-labels {w• , w• , w• }. There are
competing constraints for z• . Note that each connected component in the graph is
a polytree and hence the belief propagation algorithm can be used. The number of
clusters, K, determine the possible values that wl and zi can assume.

belong to more than one group. This probabilistic model can be given generative
interpretation (Figure 1). First, the L group-labels {wl} are generated according
to the component prior probabilities {αj}. For each i ∈ {1, . . . , N}, we generate
vi with the probabilities {γil}. The outcome determines how zi gets its value: if
vi is between 1 and L, zi is set to wl; otherwise, zi is generated independently
according to {αj}. Based on the value of zi, the point yi is generated from qzi(y).

2.1 Constraints Specification

One important advantage of adopting soft constraints is its robustness. It is usu-
ally difficult to obtain definitive statements on the properties of patterns in real
world applications. Thus a practical clustering algorithm using constraint infor-
mation should tolerate noisy constraints. However, a single erroneous “cannot-
link” constraint can break down the constrained k-means algorithm in [4]. The
dissimilarity values between multiple items can be drastically altered by a single
bad constraint. In our proposed approach, zi = wl is required to be true only
with a certain probability. This flexibility protects us from disastrous clustering
solution when some constraints may be wrong. Although the algorithm in [9]
also does not break down in view of erroneous constraints, later in section 3 we
shall demonstrate that the use of soft constraints in the proposed algorithm can
lead to superior results when the constraints are noisy.

Different constraints are specified by assigning different values to γil, which
in turn specifies the topology of the graphical model by the sparsity of the ma-
trix {γil}. Note that we have made the abstraction that the group-label may not
correspond to the label of any particular data point. However, it is easy to en-
force the group-label wl to be the same as the cluster label zi by setting γil = 1.
Equivalence constraint information between yi and yj can then be incorporated
by setting γjl to be the confidence that they are in the same cluster. The ab-
straction of group-label is useful in the distributed learning scenario described
in [9]. Different teachers are asked to assign group labels to different subsets of
the data. Further, suppose the teachers also provide confidence values in their
assignment. Let wl correspond to a group labelled by a certain teacher. The
confidence that yi belongs to the l-th group is represented by γil.
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2.2 Parameter Estimation

The model parameters {αj} and {θj} can be estimated by maximizing the data
log-likelihood function. Note that γil values are provided by the user and do
not need to be estimated. Since {zi}, {vi} and {wl} are hidden variables, this
is a missing data problem and the EM algorithm can be used. We refer the
readers to texts like [15] for more details on the EM algorithm. The complete
data log-likelihood can be written as

L = log p({yi}, {zi}, {wl}, {vi})

=

{
−∞ ∃vi �= 0 : zi �= wvi∑N

i=1

(
log qzi(yi) + log γvi,i + δvi,0 logαzi

)
+

∑L
l=1 logαwl otherwise

(5)

The data is said to be inconsistent (have zero probability) if there exists vi �=
0 such that zi �= wvi . Let θ denote the current parameter estimate. Taking
expectation of L with respect to the missing data, given θ and D, we obtain

E[log p({yi}, {zi}, {wl}, {vi})]

=
N∑
i=1

K∑
j=1

P (zi = j|{yi}) log qj(yi) +
L∑
l=1

K∑
j=1

P (wl = j|{yi}) logαj+

N∑
i=i

L∑
l=0

P (vi = l|{yi}) log γli +
N∑
i=1

K∑
j=1

P (vi = 0, zi = j|{yi}) logαj

(6)

Note that different yi’s may not be independent because they can be related
indirectly by a common wl. Also, the inconsistency of hidden data does not
depend on the parameter values. The expected value of L is computed over only
the set of consistent values of hidden variables and hence no infinite values are
encountered. The expected complete data log-likelihood can be maximized with
respect to the parameters {αj, θj} by

α̂j =
∑L

l=1 P (wl = j|{yi}) +
∑N

i=1 P (vi = 0, zi = j|{yi})∑K
j=1

(∑L
l=1 P (wl = j|{yi}) +

∑N
i=1 P (vi = 0, zi = j|{yi})

) (7)

μ̂j =
∑N

i=1 P (zi = j|{yi})yi∑N
i=1 P (zi = j|{yi})

(8)

Ĉj =
∑N

i=1 P (zi = j|{yi})(yi − μ̂j)(yi − μ̂j)T∑N
i=1 P (zi = j|{yi})

, (9)

where the j-th component is assumed to be a Gaussian with mean μj and co-
variance Cj . The parameter update in Equations (7) to (9) corresponds to the
M-step of the EM algorithm. The E-step consists of the computation of the
probabilities P (wl=j|{yi}), P (zi=j|{yi}) and P (vi=0, zi=j|{yi}). Unlike the
standard Gaussian mixture, it is not easy to express these probabilities by simple
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equations because of the interdependence of {yi} via wl. Instead, these proba-
bilities can be computed by standard Bayesian network inference algorithms like
belief propagation or junction tree. The two-variable query P (vi=0, zi=j|{yi})
can be easily handled since the node vi is a parent of zi. Because of the simplicity
of the structure of the graphical model, inference can be carried out efficiently.
In particular, the complexity is virtually the same as the standard EM algorithm
when there are no competing constraints for all the data points. This is the most
usual scenario in constraint clustering.

3 Experiments

3.1 Synthetic Data

In the first experiment, we investigate how constraint information can be used
to bias the search for the appropriate clusters. Four 2D Gaussian distributions
with mean vectors [ 1.52.5 ],

[−1.5
2.5

]
,
[−1.5
−2.5

]
,
[
1.5
−2.5

]
, and identity covariance matrix

are considered (Figure 2). 200 data points are generated from each of the four
Gaussians. The number of target clusters (K) is two. The two natural clusters
are recovered by the EM algorithm without any constraint (Figure 2(a)). Ten
multiple random restarts are used to avoid poor local minima.

Now suppose that prior information favors two vertical clusters instead of
the more natural horizontal clusters. This prior information can be incorporated
by constraining a data point in the leftmost (rightmost) top cluster to belong to
the same cluster as a data point on the leftmost (rightmost) bottom cluster. We
select 50 points randomly (L = 50) and link them to seven different points. To
create more realistic constraints, a link can be absent with a probability of 0.05.
The strength of the constraint is randomly drawn from the interval [0.6,1]. To
demonstrate the importance of soft constraints, the constraints are corrupted
with some noise: a data point is connected to a randomly chosen point with
probability one minus the constraint strength. An example of the constraints is
shown in Figure 2(b).

The proposed algorithm is run using the specified soft constraints and the
obtained clustering solution is shown in Figure 2(c). The constraint information
indeed helps to detect the preferred cluster structure, instead of natural clus-
ters in Figure 2(a) when the constraints are absent. The soft constraints can
be converted to hard constraints by changing all nonzero γli to 1. In this case,
the proposed algorithm becomes equivalent to the algorithm in [9] for positive
constraints. The result of using hard constraints is shown in Figure 2(d). While
the estimated cluster structure is close to what we seek, the noise in the con-
straints notably distorts the detected clusters. This confirms that the use of soft
constraints can significantly improve the robustness of mixture model clustering
with hard constraints.

3.2 Real World Data Set

In the second experiment, we investigate how constraints can assist in obtain-
ing superior cluster boundaries. Two data sets from the UCI machine learning
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(a) Result without constraints (b) Soft constraints

(c) Result of soft constraints (d) Result of hard constraints

Fig. 2. The results of soft constraint clustering on a synthetic data set of 800 points.
The ellipses represent the estimated Gaussian components. The solid lines in (b) cor-
respond to the “strong” constraints, while the dotted lines correspond to the “weak”
constraints.

repository are considered. The Iris data set (iris) has 150 points in 4D from 3
classes. The wine recognition data set2 (wine) has 178 points with 13 features
from 3 classes. For each data set, half of the points are used for training (learning
the clusters), and the rest for testing (comparing the clusters obtained with the
ground truth). A Gaussian is fit to each of the classes and the ambiguous data
points (5% of the total number of data) are identified by examining the class
posterior probabilities and the true class labels. The ambiguous data points are
then constrained to be in the same cluster as the points near the center of the
class. Examples of ambiguous data points are shown in Figure 3. For each data
set, we randomly split them into two parts. As in the previous experiment, the
strength of the constraint is drawn randomly from [0.6,1], and the constraint
is additionally corrupted by noise. The clusters obtained (with soft constraints)
are used to “classify” the other half of the data points. The experiment is re-

• The variables of wine are standardized to have means equal to zero and variances
equal to one.
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Fig. 3. The iris data set projected to the first two principal components. The eight
ambiguous data points are circled.

peated 20 times. The error rates of “no constraint’, “soft constraint” and “hard
constraint” are 6.7%, 2.7% and 8% for iris, and 5.6%, 3.4% and 3.4% for wine.
For both the data sets, soft constraints yield clusters that are at least as good
as clusters obtained by hard constraints 19 times out of 20, with 8 ties for iris
and 6 ties for wine. Soft constraints also give better clusters than no constraints
(18 out of 20 for iris and 19 out of 20 for wine), with 6 ties for iris and 7 ties
for wine. Soft constraint information indeed helps to identify the target clusters
more accurately and tolerates potentially erroneous constraints.

4 Conclusion and Future Work

We have proposed a new EM algorithm for clustering in the presence of soft
constraints. Experimental results demonstrate that the proposed approach is
promising and can be superior to hard constraints in the presence of noise. One
notable property of the proposed approach is its efficiency. Despite the apparent
increase in the complexity of the model, no additional parameters need to be
estimated when compared with a standard mixture of Gaussians. Also, the infer-
ence procedure is of similar complexity as the standard EM algorithm when each
data point is associated with few group-labels. One limitation of the proposed
algorithm is that it does not deal with the negative constraints. In principle,
the graphical model can be extended in a manner similar to [9] to include the
negative constraints. We choose not to do so, however, for two reasons. First, the
addition of negative constraints results in only a slight improvement as reported
in [9]. Secondly, the presence of negative constraints can increase the complexity
of the graphical model and hence increase the inference complexity.

There are several directions for future work. The total strength of constraint
information is currently determined by the number of constrained data points.
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This can be undesirable as a large amount of data can dilute the constraint
information. This relates to the fundamental issue of how to appropriately weight
the information contained in the data and the constraints. One possibility is
to include an additional penalty term in the likelihood function that balances
the posterior probabilities of cluster labels with the constraints. The number of
cluster, K, is assumed to be given. Since we are using a mixture model, the
idea of minimum message length described in [16] can be adopted to the current
algorithm to estimate K.
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Abstract. Most machine learning algorithms are designed either for
supervised or for unsupervised learning, notably classification and clus-
tering. Practical problems in bioinformatics and in vision however show
that this setting often is an oversimplification of reality. While label in-
formation is of course invaluable in most cases, it would be a huge waste
to ignore the information on the cluster structure that is present in an
(often much larger) unlabeled sample set. Several recent contributions
deal with this topic: given partially labeled data, exploit all information
available. In this paper, we present an elegant and efficient algorithm
that allows to deal with very general types of label constraints in class
learning problems. The approach is based on spectral clustering, and
leads to an efficient algorithm based on the simple eigenvalue problem.

1 Introduction

We address the clustering problem where general information on the class labels
yi of some of the samples xi (i = 1, . . . n) is given. This problem of taking
general label information into account has received increasing attention in recent
literature, and is know under different names as side information learning, semi-
supervised learning, transductive learning (in a more restrictive setting), learning
from (in)equivalence constraints, and more.

Roughly two ways of addressing the problem can be distinguished. Some of
the methods try to learn a metric that is in accordance with the side information
given, after which a standard clustering method can be applied, such as in [7,
11, 2]. Other methods propose actual adaptations of algorithms that were orig-
inally designed for clustering or for classification, such as in [9, 12, 3, 4, 1, 6, 10,
13]. These adaptations make it possible to take general types of label informa-
tion into account. In this paper, we describe a novel fast, principled and highly
general method that belongs to the second category of algorithms.

The label information to be dealt with can be of two general forms: in the
first setting subsets of samples are given for which is specified that they belong
to the same class; in the second setting, similarly subsets of samples with the
same label are given, but now additionally, for some pairs of such subsets, it is
given that they contain samples that do not belong to the same class. Note that
the standard transduction setting, where part of the samples is labeled, is in fact
a special case of this type of label information.

A. Fred et al. (Eds.): SSPR&SPR 2004, LNCS 3138, pp. 671–679, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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In this paper, we present an elegant way to handle the first type of label
information in both the two class and the multi class learning settings. Further-
more, we show how the second type of label information can be dealt with in
full generality for the two class case.

In a first section we will review spectral clustering as a relaxation of a com-
binatorial problem. In the second section, we will show how to enforce the con-
straints to the spectral clustering method, first for the two class case, and sub-
sequently for the multi class case. Then, without going into detail, we will point
out how the constraints can be imposed in a soft way as well. Finally, empirical
results are reported and compared to a recently proposed approach [4] that is
able to deal with similar settings and has comparable computational cost.

General Notation: 1 is a column vector containing all ones, sometimes its size n
is indicated as a subscript: 1n. The identity matrix is denoted by I. A transpose
will be denoted by a prime ′. The matrix containing all zeros is denoted by 0.
Matrices are denoted by upper case bold face, vectors by lower case bold face,
and scalars by standard lower case symbols.

2 Spectral Clustering

Spectral clustering methods can best be seen as relaxations of graph cut prob-
lems, as clearly presented in [8]. Below a detailed derivation will be discussed
only for the two class setting.

2.1 Two Class Clustering

Consider a weighted graph over the nodes each representing a sample xi. The
edge weights correspond to some similarity measure to be defined in an appro-
priate way. These similarities can be arranged in a symmetric affinity matrix
K: its entry at row i and column j, denoted by Kij , represents the similarity
between sample xi and xj 1.

A graph cut algorithm searches for a partition of the nodes in two sets (cor-
responding clusters of the samples xi) such that a certain cost function is mini-
mized. Several cost functions are proposed in literature, among which the average
cut cost and the normalized cut cost are best known and most widely used.

For the normalized cut cost, the discrete optimization problem can be written
in the form (see e.g. [8]):

miny
y′(D−K)y

y′Dy
(1)

s.t. 1′Dy = 0 (2)
yi ∈ {y+, y−} (3)

• In many practical cases this similarity will be given by a kernel function k(xi,xj) =
Kij in which case K is semi positive definite, often named the kernel matrix.
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where y+ and y− are the two possible values the yi take depending on the class
xi is assigned to, and D = diag(K1) is a diagonal matrix containing all row
sums di of K as its diagonal entries. The matrix D −K is generally known as
the Laplacian of the graph associated with K. Note that the Laplacian is always
semi positive definite.

It is constraint (3) that causes this problem to be combinatorial. However, the
relaxed problem obtained by dropping this constraint can be solved very easily as
we will show now. Furthermore, using the resulting vector y as an approximation
has been observed to be very effective in practical problems. Note that since the
scale of y in fact does not matter, we can as well solve

miny y′(D−K)y
s.t. y′Dy = 1

1′Dy = 0 (4)

If we would drop constraint (4), the minimization becomes equivalent to solving
for the minimal eigenvalue of

(D−K)y = λDy (5)

or, after left multiplication with D−1/2

D−1/2(D−K)D−1/2v = λv (6)
with v = D1/2y.

Now note that this is an ordinary symmetric eigenvalue problem, of which
the eigenvectors are orthogonal. Since the Laplacian and thus also D−1/2(D −
K)D−1/2 is always semi positive definite, none of its eigenvalues can be smaller
than 0. We can see immediately that a 0 eigenvalue is achieved by the eigenvector
v0 = D1/21. This means that all other eigenvectors vi of D−1/2(D −K)D−1/2

are orthogonal to v0, such that for all other eigenvectors vi and thus for yi =
D−1/2vi, we have that v′0vi = 1′Dyi = 0. It thus follows that constraint (4) is
automatically taken into account by simply solving for the second smallest eigen-
value of (6) or (5). This is the final version of the spectral clustering method as
a relaxation of the normalized cut problem2.

2.2 Multi-class Clustering

In the k-class case, one usually extracts the eigenvectors y1,y2, . . . ,yk−1 corre-
sponding to the smallest k − 1 eigenvalues (excluding the 0 eigenvalue). Then,
these vectors are put next to each other in a matrix Y =

(
y1 y2 · · · yk−1

)
, and

subsequently any clustering algorithm can be applied to the rows of this matrix3.
Every sample xi is then assigned a label corresponding to which cluster row i of
Y is assigned to.
• We can follow a similar derivation for the average cut cost function, ultimately
leading to solving for the second smallest eigenvalue of (D−K)y = λy. All results
presented in this paper can immediately be transferred to the average cut variant of
spectral clustering.

• In [5] it is suggested to first normalize the rows ofY before performing the clustering.
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3 Constrained Spectral Clustering

The results in this paper derive from the observations that

– constraining the labels according to the information as specified in the in-
troduction can be seen as constraining the label vector y to some subspace;

– it is easy, in principle and computationally, to constrain the vector y to this
subspace, while optimizing the Rayleigh quotient (1) subject to (2).

We will first tackle the two class learning problem subject to general la-
bel equality and inequality constraints. Afterwards, we show how equality con-
straints can be handled in the multi class setting.

3.1 Two Class Learning

Consider again the unrelaxed graph cut problem (1),(2),(3). We would now like
to solve it with respect to the label information as additional constraints. For this
we introduce the label constraint matrix L ∈ {0, 1}n×m (with n ≥ m) associated
with the label equality and inequality constraints:

L =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1s1 1s1 0 · · · 0 0 0 · · · 0
1s2 −1s2 0 · · · 0 0 0 · · · 0
1s3 0 1s3 · · · 0 0 0 · · · 0
1s4 0 −1s4 · · · 0 0 0 · · · 0
...

...
... · · ·

...
...

... · · ·
...

1s2p−1 0 0 · · · 1s2p−1 0 0 · · · 0
1s2p 0 0 · · · −1s2p 0 0 · · · 0
1s2p+1 0 0 · · · 0 1s2p+1 0 · · · 0
1s2p+2 0 0 · · · 0 0 1s2p+2 · · · 0

· · ·
...

... · · ·
...

...
... · · ·

...
1sc 0 0 · · · 0 0 0 · · · 1sc

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Hereby, every row i of L corresponds to sample xi, in such a way that samples
corresponding to one block row of size sk are given to belong to the same class
(i.e., for ease of notation the samples are sorted accordingly; of course also the
rows of K need to be sorted in the same way). On the other hand, inequality
constraints are encoded by the first 2p block rows: for all k ≤ p, samples from
block row k are given to belong to a different class as samples from block row
k + 1. For the last c − 2p blocks no inequality constraints are given. Note that
in most practical cases, many block row heights sk will be equal to 1, indicating
that no constraint for the corresponding sample is given.

Using the label constraint matrix L, it is possible to impose the label con-
straints explicitly, by introducing an auxiliary vector z and equating

y = Lz.



Learning from General Label Constraints 675

Then again constraint (3) is dropped, leading to

min
z

z′L′(D−K)Lz
z′L′DLz

s.t. 1′DLz = 0

or equivalently

minz z′L′(D−K)Lz
s.t. z′L′DLz

1′DLz = 0 (7)

Note that (similarly as in the derivation on standard spectral clustering above)
after dropping the constraint (7), we would only have to solve the following
eigenvalue problem

L′(D−K)Lz = λL′DLz (8)

or, by left multiplication with (L′DL)−1/2 and an appropriate substitution:

(L′DL)−1/2[L′(D−K)L](L′DL)−1/2v = λv (9)
with v = (L′DL)1/2z

Again, one can see that the extra constraint is taken into account automati-
cally by picking the second smallest eigenvalue and associated eigenvector of this
eigenvalue problem. To this end, note that (L′DL)−1/2[L′(D−K)L](L′DL)−1/2

is semi positive definite, such that its smallest eigenvalue is larger than or equal
to 0. Now, note that the 0 eigenvalue is actually achieved for4

v0 = (L′DL)1/2 ·
(
1 0 · · · 0

)′
.

Thus, since (9) is an ordinary symmetric eigenvalue problem, all other eigenvec-
tors vi have to be orthogonal: v′0vi = 0. This means that(

1 0 · · · 0
)
(L′DL)1/2 · (L′DL)1/2z = 0

and thus 1′DLz = 0.
As a result, it suffices to solve (9) or equivalently (8) for its second smallest

eigenvalue, and constraint (7) is taken into account automatically.
In summary, the procedure is as follows

– Compute the affinity matrix K and the matrix D =K1.
– Compute the label constraint matrix L.
– Compute the eigenvector z corresponding to the second smallest eigenvalue
of the eigenvalue problem L′(D−K)Lz = λL′DLz.

– Compute the resulting relaxed label vector as y = Lz.

• To see this note that L ·
(
1 0 · · · 0

)′
= 1.
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All operations can be carried out very efficiently, thanks to the sparsity of L.
The most expensive step is the eigenvalue problem, which is even smaller than
in the unconstrained spectral clustering algorithm: the size of the matrices is
only m × m instead of n × n (where m is the number of columns of L).

As a last remark in this section, note that we are actually not interested in
the component of y along 1. Thus, we could choose to take ỹ = L·

(
0 z2 · · · zm

)′
as an estimate for the labels, instead of y = Lz. This results in the fact that
estimates for labels ỹi that were specified to be different are actuallyopposite
in sign. Therefore thresholding the vector ỹ around 0 in fact makes more sense
than thresholding y around 0.

3.2 Multi-class Learning

In the multi class setting, it is not possible anymore to include label inequality
constraints in the same straightforward elegant way. The reason is that the true
values of the labels can not be made equal to 1 and −1 anymore.

We can still take the equality constraints into account however. This means
we would use a label constraint matrix of the form

L =

⎛⎜⎜⎜⎝
1s1 0 · · · 0
0 1s2 · · · 0
...

... · · ·
...

0 0 · · · 1sc

⎞⎟⎟⎟⎠ ,

constructed in a similar way. Note that this time we don’t need a column con-
taining all ones, as such vector 1 is included in its column space already.

As in the unconstrained spectral clustering algorithm, often k−1 eigenvectors
will be calculated when k clusters are expected, leading toY =

(
y1 y2 · · · yk−1

)
.

Finally, the clustering of xi is obtained by clustering the rows of Y.

4 Softly Constrained Spectral Clustering

In both the two class case and the multi class case, the constraints could be
imposed in a soft way as well. This can be done by adding a cost term to the cost
function that penalizes the distance between the weight vector and the column
space of L, in the following way (we give it without derivation or empirical results
due to space restrictions):

miny γy′(D−K)y + (1 − γ)y′(D−DL(L′DL)−1L′D)y
s.t. y′Dy = 1 and 1′Dy = 0

where γ is called the regularization parameter. Again the same reasoning can
be applied, leading to the conclusion that one needs to solve for the second
smallest eigenvalue (i.e. the smallest eigenvalue different from 0) of the eigenvalue
problem: [

γ(D−K) + (1− γ)(D−DL(L′DL)−1L′D)
]
y = λDy (10)
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Fig. 1. The cost (within class variance divided by total variance of the eigenvectors)
for spectral learning [4] in dash-dotted line, as compared with our method in full line
as a function of the fraction of labeled samples (on a log scale), on the left for the
three newsgroup dataset, on the right for the 10-class USPS dataset. For reference, the
unconstrained cost is plotted as a horizontal dashed line.

For γ close to 0, the side-information is enforced very strongly, and y will satisfy
the constraints nearly exactly. In the limit for γ → 0, the soft constraints become
hard constraints.

5 Empirical Results

We report experiments for the transduction setting, and this for the three news-
group dataset (2995 samples) as also used in [4], and for the training subset
of the USPS dataset (7291 samples). Comparisons are shown with the method
proposed in [4]. This method works in similar settings and has a similar compu-
tational cost. We construct the affinity matrix in the same way as in that paper,
namely by equating the entries Kij equal to 1 if j is among the 20 samples lying
closest (in euclidian distance) to i or vice versa.

Since spectral clustering methods provide eigenvectors on which subsequently
a clustering of the rows has to be performed, and since we are only interested in
evaluating the spectral clustering part, we used a cost function defined on the
eigenvectors themselves (without doing the actual clustering step). Specifically,
the within cluster variance divided by the total variance in the eigenvectors is
used as a quality measure, attaining values in between 0 and 1. All experiments
are averaged over 10 randomizations of the labeled part of the training set; each
time the standard deviation on the estimated average is shown on the figures.

Figures 1 show that the performance of both methods effectively increases
for increasing fractions of labeled samples on the three newsgroup dataset as
well as on the USPS dataset. Moreover, for small fractions of labeled samples
(which is when side information methods are most useful in practice), the newly
proposed performs slightly but significantly better.

Subsequently, we solve a binary classification problem derived from the USPS
dataset, where one class contains the samples representing numbers from 0 up
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Fig. 2. Similar experiment as in figures 1, but now in the binary classification setting.
One class contains all handwritten digits from 0 to 4, the other class contains the digits
from 5 to 9. As can be expected the score for no labeled data at all is really bad.

to 4, and the other class from 5 up to 9. In figure 2 we see that the performance
of both methods is indistinguishable in this case. Note however that relatively
few information is already sufficient to provide a significant improvement over
the clustering with no label information at all.

6 Conclusions and Further Work

We have presented an efficient, performant and natural method to incorporate
general constraints on the labels in class learning problems. The performance of
the method compares well with a recently proposed approach that has a similar
computational cost and that is designed to deal with a similar generality of
learning settings. However further empirical investigation would be useful.

As compared to other related approaches in literature, the constrained spec-
tral clustering method compares favorably in two respects. First, computation-
ally the method is very attractive since basically it only requires the computation
of a few dominant eigenvectors of a matrix with less than n rows and columns (n
being the number of samples). Second, the method not only deals with the trans-
ductive learning setting, but addresses more general side information learning in
the same natural way, both for two class and multi class problems.

Note that the softly constrained version can be seen as the application of the
spectral clustering method to a sum of two affinity matrices, where one of both
is derived from the label constraints. In principle, one may be able to construct
a label affinity matrix for very general label information, also for the the multi
class case. This will be subject of a later paper.
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Abstract. The problem of estimating high density regions from uni-
variate or multivariate data samples is studied. To be more precise,
we estimate minimum volume sets, whose probability is specified in ad-
vance. This problem arises in outlier detection and cluster analysis, and
is strongly related to One-Class Support Vector Machines (SVM). In
this paper we propose a new method to solve this problem, the Support
Neighbour Machine (SNM). We show its properties and introduce a new
class of kernels. Finally, numerical results illustrating the advantage of
the new method are shown.

1 Introduction

The task of estimating high density regions from data samples arises explicitly
in a number of works involving interesting problems such as outlier detection or
cluster analysis (see for instance [7, 4] and references herein). One-Class Support
Vector Machines (SVM) [7, 9] are designed to solve this problem with tractable
computational complexity. We refer to [7] and references therein for a complete
description of the problem and its ramifications.

In this work, a new algorithm to estimate high density regions from data
samples is presented. The algorithm relaxes the density estimation problem in
the following sense: instead of trying to estimate the density function at each
data point, an easier to calculate data-based measure is introduced in order to
establish a density ranking among the sample points.

The concrete problem to solve is the estimation of minimum volume sets of
the form Sα(f) = {x|f(x) ≥ α}, such that P (Sα(f)) = ν, where f is the density
function and 0 < ν < 1. Throughout the paper, sufficient regularity conditions
on f are assumed. For space reasons, proofs of propositions and theorems are
omitted.

The rest of the paper is organized as follows. Section 2 introduces the Support
Neighbour Machine and its properties. In Section 3, a kernel formulation of
Support Neighbour Machines is shown. In Section 4, the performance of One-
Class SVM and Support Neighbour Machines is compared on a variety of both
artificial and real data sets. Section 5 concludes.
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2 The Support Neighbour Machine

There are data analysis problems where the knowledge of an accurate estimator
of the density function f(x) is sufficient to solve them, for instance, mode esti-
mation [1], or the present task of estimating Sα(f). However, density estimation
is far from trivial [8, 7]. The next definition is introduced to relax the density
estimation problem: the task of estimating the density function at each data
point is replaced by a simpler measure that asymptotically preserves the order
induced by f .

Definition 1 (Neighbourhood Measures). Consider a random variable X
with density function f(x) defined on IRd. Let Sn denote the set of random
independent identically distributed (iid) samples of size n (drawn from f). The
elements of Sn take the form sn = (x1, · · · , xn), where xi ∈ IRd. Let M : IRd ×
Sn −→ IR be a real-valued function defined for all n ∈ IN. (a) If f(x) < f(y)
implies lim

n→∞
P (M(x, sn) > M(y, sn)) = 1, then M is a sparsity measure.

(b) If f(x) < f(y) implies lim
n→∞

P (M(x, sn) < M(y, sn)) = 1, then M is a
concentration measure.

Example 1. M(x, sn) ∝ 1/f̂(x, sn), where f̂ can be any consistent non-para-
metric density estimator, is a sparsity measure; while M(x, sn) ∝ f̂(x, sn) is a
concentration measure. A commonly used estimator is the kernel density one
f̂(x, sn) = 1

nhd

∑n
i=1K(‖x−xi‖h ).

Example 2. Consider the distance from a point x to its kth-nearest neighbour in
sn, x(k): M(x, sn) = dk(x, sn) = d(x, x(k)): it is a sparsity measure. Note that dk
is neither a density estimator nor is it one-to-one related to a density estimator.
Thus, the definition of ‘sparsity measure’ is not trivial. Another valid choice is
given by the average distance over all the k nearest neighbours:M(x, sn) = d̄k =
1
k

∑k
j=1 dj = 1

k

∑k
j=1 d(x, x(j)). Extensions to other centrality measures, such as

trimmed-means are straightforward.

Our goal is to obtain some decision function h(x) which solves the problem
stated in the introduction, that is, h(x) = +1 if x ∈ Sα(f) and h(x) = −1
otherwise. We will show how to use sparsity measures to build h(x). To this
aim a new algorithm, the Support Neighbour Machine, is introduced. Consider
a sample sn = {x1, . . . , xn}. The SNM method works by solving the following
optimization problem:

max
ρ,ξ

νnρ −
n∑
i=1

ξi

s.t. g(xi) ≥ ρ − ξi ,
ξi ≥ 0, i = 1, . . . , n ,

(1)

where g(xi) = M(xi, sn) is a sparsity measure, xi ∈ sn, ξi are slack variables,
ν ∈ [0, 1] is a predefined constant and ρ is a variable whose role will become
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clear below. Note that the calculus of g(x) is not involved in the optimization
process; it has to be determined in advance.

The SNM problem formulation is very similar to the linear One-Class SVM
formulation (see [5]), but the solution to problem (1) is simpler and its continuity
and differentiability is straightforward (while the use of the L1 norm in the linear
One-Class SVM problem implies non derivability, and using any other Lp norm
would imply non linearity).

The motivation to adopt the name ‘Support Neighbour Machines’ is simple:
‘sparsity’ and ‘concentration’ are both neighbourhood measures.

The next proposition shows that the decision function h(x) = sign(ρ∗−g(x))
will be non-negative for at least a proportion equal to ν of the training sn sample,
where ρ∗ is the value of ρ at the solution of problem (1). Following [7], this result
is called ν-property.

Proposition 1 (ν-property). At the solution of problem (1) the following two
statements hold:

1. 1
n

∑n
i=1 I(g(xi) < ρ) ≤ ν ≤ 1

n

∑n
i=1 I(g(xi) ≤ ρ), where I stands for the

indicator function and xi ∈ sn.
2. With probability 1, asymptotically, the preceding inequalities become equali-
ties.

Remark 1. If g(x) is chosen to be a concentration measure, then the decision
function has to be defined as h(x) = sign(g(x)− ρ∗).

Notice that ν in problem (1) represents the fraction of points inside the support
of the distribution if g(x) is a sparsity measure. If a concentration measure is
used, ν represents the fraction of outlying points. The role of ρ becomes now
clear: it represents the decision value which, induced by the sparsity measure,
determines if a given point belongs to the support of the distribution.

As the next theorem states an asymptotical result, we will denote every
quantity depending on the sample sn with the subscript n. The theorem goes
one step further from the ν-property, showing that, asymptotically, the SNM
algorithm finds the desired α-level sets.

In order to formulate the theorem, we need a measure to estimate the differ-
ence between two sets. We will use the dμ-distance. Given two sets A and B

dμ(A,B) = μ(AΔB) , (2)

where μ is a measure on IRd, Δ is the symmetric difference AΔB = (A ∩ Bc) ∪
(B ∩ Ac), and Ac denotes the complementary set of A.

Theorem 1. Consider a measure μ absolutely continuous with respect to the
Lebesgue measure. The set Rn = {x : hn(x) = sign(ρ∗n−g(x)) ≥ 0} dμ-converges
to a region of the form Sα(f) = {x|f(x) ≥ α}, such that P (Sα(f)) = ν. There-
fore, the Support Neighbour Machine estimates a density contour cluster Sα(f)
(which, in probability, includes the mode).
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We provide an estimate of a region Sα(f) with the property P (Sα(f)) = ν.
Among regions S with the property P (S) = ν, the region Sα(f) will have mini-
mum volume as it has the form Sα(f) = {x|f(x) ≥ α}. Therefore we provide an
estimate that asymptotically, in probability, has minimum volume.

Finally, it is important to remark that the quality of the estimation procedure
heavily depends on using a sparsity or a concentration measure (the particular
choice is not – asymptotically – relevant). If the measure used is neither a con-
centration nor a sparsity measure, there is no reason why the method should
work.

3 Kernel Formulation of SNM

In this section we will show the relation between SNM and One-Class SVM. In
order to do so we have to define a class of neighbourhood measures.

Definition 2 (Positive and Negative Neighbourhood Measures).
MP (x, sn) is said to be a positive sparsity (concentration) measure if
MP (x, sn) is a sparsity (concentration) measure andMP (x, sn) ≥ 0.MN(x, sn)
is said to be a negative sparsity (concentration) measure if −MN(x, sn)
is a positive concentration (sparsity) measure.

Given that negative neighbourhood measures are in one-to-one correspondence
to positive neighbourhood measures, only positive neighbourhood measures need
to be considered. The following classes of kernels can be defined using positive
neighbourhood measures.

Definition 3 (Neighbourhood Kernels). Consider the mapping φ : IRd →
IR+ defined by φ(x) = MP (x, sn), where MP (x, sn) is a positive neighbourhood
measure. The function K(x, y) = φ(x)φ(y) is called a neighbourhood kernel. If
MP (x, sn) is a positive sparsity (concentration) measure, K(x, y) is a sparsity
(concentration) kernel.

Note that the set {φ(xi)} is trivially separable in the sense of [7], since each
φ(xi) ∈ IR+. Separability is guaranteed by Definition 2.

The strategy of One-Class support vector methods is to map the data points
into a feature space determined by a kernel function, and to separate them
from the origin with maximum margin (see [7] for details). In order to build a
separating hyperplane between the origin and the points {φ(xi)}, the quadratic
One-Class SVM method solves the following problem:

min
w,ρ,ξ

1
2
‖w‖2 − νnρ+

n∑
i=1

ξi

s.t. 〈w, φ(xi)〉 ≥ ρ − ξi ,
ξi ≥ 0, i = 1, . . . , n ,

(3)

where φ is the mapping defining the kernel function, ρ and ξi are variables whose
meaning is the same as that in problem (1), and ν ∈ [0, 1] is an a priori fixed
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constant. In the following we will refer to ‘quadratic One-Class SVM’ simply as
‘One-Class SVM’.

The next theorem illustrates the relation between SNM and One-Class SVM
when neighbourhood kernels are used.

Theorem 2. Define the mapping φ(x) = MP (x, sn). The decision function
h(x) = sign(ρ∗V −w∗φ(x)) obtained from the solution ρ∗V and w∗ to the One-Class
SVM problem (3) using the sparsity kernel K(x, y) = φ(x)φ(y) coincides with
the solution obtained by solving the SNM problem (1) using a positive sparsity
measure.

It remains open to show if the decision function obtained from One-Class SVM
algorithms within the framework in [7, 5] can be stated in terms of positive
sparsity or concentration measures. The next remark provides the answer.

Remark 2. The exponential kernel Kc(x, y) = e−‖x−y‖
2/c is neither a spar-

sity kernel nor a concentration kernel. For instance, consider a univariate bi-
modal density f with finite modes m1 and m2 such that f(m1) = f(m2).
Consider any positive sparsity measure MP (x, sn) and the induced mapping
φ(x) = MP (x, sn). As n → ∞, the sparsity kernel K(x, y) = φ(x)φ(y) would
attain its minimum at (m1,m2) (or at two points in the sample sn near to the
modes). On the other hand, as the exponential kernel Kc(x, y) depends exclu-
sively on the distance between x and y, any pair of points (a, b) whose distance is
larger than ‖m1−m2‖ will provide a valueKc(a, b) < Kc(m1,m2), which asymp-
totically can not happen for kernels induced by positive sparsity measures. In
this case, the neighbourhood kernel has four minima while the exponential ker-
nel has the whole diagonal as minima. The reasoning for concentration kernels is
analogous. A similar argument applies for polinomial kernels with even degrees
(odd degrees induce mapped data sets that are non separable from the origin,
which discards them).

Note that, while SNM work with every neighbourhood measure, the separability
condition of the mapped data is necessary when One-Class SVM are being used,
restricting the use of neighbourhood measures to positive or negative ones. This
restriction and the fact that SNM provide a simpler linear approach make the
use of SNM advisable when neighbourhood measures are being used.

4 Experiments

In this section we compare the performance of One-Class SVM and SNM for
a variety of artificial and real data sets. Systematic comparisons of the two
methods as data dimension increases are carried out. First of all we describe the
implementation details concerning both algorithms.

With regards to One-Class SVM we adopt the proposal in [7], that is, the
exponential kernel Kc(xi, xj) = e−‖xi−xj‖

2/c is used (the only kernel tested for
experimentation in that work). To perform the experiments, a range of values
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for c has been chosen, following the widely used rule c = hd (see [6, 7]), where
h ∈ {0.1, 0.2, 0.5, 0.8, 1.0} and d is the data dimension.

Concerning SNM, two different sparsity measures have been considered:

– M1(x, sn) = dk = d(x, x(k)), the distance from a point x to its kth-nearest
neighbour x(k) in the sample sn. The only parameter in M1 is k, which takes
a finite number of values (in the set {1, · · · , n}). We have chosen k to cover a
representative range of values, namely, k will equal the 10%, 20%, 30%, 40%
and 50% sample proportions. Therefore we choose k as the closest integer to
hn, where n is the sample size and h ∈ {0.1, 0.2, 0.3, 0.4, 0.5}.

– M2(x, sn) =
1∑n

i=1 exp
(
− ‖x−xi‖22σ

) , where σ ∈ IR+. The only parameter

in M2 is σ. We want σ to be related to the sample variability and, at the
same time, to scale well with respect to the data sample distances. We choose
σ = hs, where s = max d2ij/ε, h ∈ {0.1, 0.2, 0.5, 0.8, 1.0}, d2ij = ‖xi−xj‖2 and
ε is a small value which preserves scalability in M2. For all the experiments
we have chosen ε = 10−8.

MeasureM1 has been described in Example 2 in Section 2. MeasureM2 is of the
type described in Example 1. M2 uses as density estimator the Parzen window
[8]. Note that Theorem 1 guarantees that asymptotically every sparsity measure
(and in particular the two chosen here) will lead to sets containing the true
mode.

4.1 Artificial Data Sets

In the first experiment we have generated 2000 points from a gamma Γ (α, β)
distribution, with α = 1.5 and β = 3. Figure 1 shows the histogram, the gamma
density curve, the true mode (α− 1)/β as a bold vertical line, the SNM estima-
tions with sparsity measure M1 (five upper lines) and the One-Class SVM (five
lower lines) estimations of the 50% highest density region. The parameters have
been chosen as described at the beginning of Section 4, and lines are drawn for
each method in increasing order in the h parameter, starting from the bottom.
Being our goal to detect the shortest region of the form Sα(f) = {x : f(x) > α}
(that must contain the mode), it is apparent that the SNM regions improve
upon the One-Class SVM regions. All the SNM regions contain the true mode
and are connected. All the One-Class SVM regions are wider and show a strong
bias towards less dense zones. Furthermore, only in two cases the true mode is
included in the estimated SVM regions, but in these cases the intervals obtained
are not simply connected. SNM using measure M2 provide similar intervals to
those obtained using measure M1, and are not shown for space reasons.

In the second experiment a mixture of a normalN(0, 1) and a uniform U(6, 9)
distribution is considered. Figure 2 shows the results. All the One-Class SVM
(five lower lines) estimations spread part of the points in the uniform zone.
However, all points in this zone have lower density than those found by the
SNM procedure.
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Fig. 1. Gamma sample with 2000 points. The figure shows the histogram, the density
curve, a vertical line at the true mode, the SNM estimations with sparsity measure M•
(five upper lines) and One-Class SVM (five lower lines) estimations of the 50% highest
density region.

Fig. 2.Mixture sample with 3000 points. The figure shows the histogram, the estimated
density curve, the SNM estimations with sparsity measure M• (five upper lines) and
One-Class SVM (five lower lines) estimations of the 50% highest density region.

4.2 Increasing the Dimension of the Data Space

In this experiment we want to evaluate whether the performance of the SNM
and SVM algorithms degrades as the data dimension increases. To this end,
we have generated 20 data sets with increasing dimension from 2 to 200. Each
data set contains 2000 points from a multivariate normal distribution N(0, Id),
where Id is the identity matrix in IRd. Detailed results are not shown for space
reasons. We will only show the conclusions. Since the data distribution is known,
we can retrieve the true outliers, that is, the true points outside the support
corresponding to any percentage specified in advance. For each dimension and
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Table 1. Percentage of true outliers detected using the One-Class SVM, d = 9.

Results for One-Class SVM – Cancer Data

c = hd 0.1d 0.2d 0.5d 0.8d 1.0d

Success % 53.7 % 61.3 % 72.4 % 78.6 % 79.7 %

Table 2. Percentage of true outliers detected using the SNM with M• , n = 683.

Results for SNM with M• – Cancer Data

k � hn 0.1n 0.2n 0.3n 0.4n 0.5n

Success % 94.1 % 95.0 % 95.0 % 95.0 % 95.8 %

each method, we have determined, from the points retrieved as outliers, the
proportion of true ones.

As the data dimension increases, the performance of One-Class SVM de-
grades: it tends to retrieve as outliers an increasing number of points. The best
results for One-Class SVM are obtained for the largest magnitudes of the param-
eter c. Regarding the SNM procedure, robustness with regard to the parameter
choice is observed. Dimension barely affects the performance of the SNMmethod,
and results are consistently better than those obtained with One-Class SVM. For
instance, for a percentage of outliers equal to 1%, the best result for One-Class
SVM is 15%, against 100% using the SNM method (for all the sparsity mea-
sures considered). For a percentage of outliers equal to 5%, the best result for
One-Class SVM is 68%, against 99% using the SNM method.

4.3 Cancer Data Set

This data set is given by a 699× 9 matrix of clinical measures taken on breast
cancer patients [2]. After removing cases with missing values, the matrix di-
mensions are 683 × 9 and the real class distribution becomes 65% benign and
35% malignant. The cancer data set is interesting for various reasons: relatively
high dimension, overlap, unbalanced classes and different density distributions
for each group. This data set has traditionally been approached from a super-
vised point of view, using classification schemes. Here we focus on a different
point of view: we hypothesize that there is only one multivariate (approximate
normal) distribution made up of bening cases (65% of the sample) and that
the malignant cases are (asymmetrically distributed) outliers. This hypothesis
is graphically supported by two-dimensional projections (see for instance [3]).
Therefore, we run SNM and One-Class SVM on the cancer data set to detect
the 65%-level set, and the percentage of outliers (malignant cases) detected by
each of the algorithms is checked. Results are shown in Tables 1 and 2. The best
One-Class SVM model detects 79.7% of the outliers, while the worst SNM model
detects 94.1% of the outliers, with the best SNM result being equal to 95.8%.
Once more the choice of the sparsitiy measure does not affect the results.
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5 Conclusions

In this paper the Support Neighbour Machine, a new method to estimate min-
imum volume sets of the form Sα(f) = {x|f(x) ≥ α}, has been proposed. The
new algorithm introduces the use of neighbourhood measures. These measures
asymptotically preserve the order induced by the density function f . In this way
we avoid the complexity of solving a pure density estimation problem.

Regarding computational results, SNM performs consistently better than
One-Class SVM in all the tested problems. The advantage that the SNM has
over the One-Class SVM is due to Theorem 1 which guarantees that the SNM
algorithm tends to (asymptotically) find the desired α-level sets. The subopti-
mal performance of One-Class SVM may arise from the fact that its decision
function is not based on sparsity or concentration measures.
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Abstract. Detection of regions similar to a single given texture in ar-
bitrary colour images is difficult for conventional supervised or unsu-
pervised segmentation techniques. We introduce a novel partially super-
vised algorithm that solves this problem using similarity between local
statistics on different levels of pyramidal representations of the texture
and the image. Most characteristic statistics for the texture are esti-
mated in accord with a generic Gibbs random field model with spatially
homogeneous pairwise pixel interactions. Empirical distributions of the
self-similarity values for the texture itself are used to separate the de-
sired texture from an arbitrary background. Experiments with different
images, including aerial images of the Earth’s surface, show this algo-
rithm effectively detects regions with spatially homogeneous and weakly
homogeneous textures.

1 Introduction

Both unsupervised and supervised texture segmentation has been intensively
studied for long time. In both the cases the goal is to separate an image into
regions containing each an individual spatially homogeneous texture. But most
typical practical segmentation problems belong to partially supervised segmen-
tation such that the training information is available only for few regions of
interest, while the information about all other non-target regions is absent. The
partially supervised segmentation is necessary for identifying regions of interest
in remote sensing of the Earth’s surface, medical diagnostics, and industrial vi-
sion. One more typical application is the content-based image retrieval (CBIR)
(see, e.g., comprehensive surveys in [1, 9, 10]). The partially supervised segmen-
tation allows for retrieving images from a large image database that contain
regions similar to a given small query image [13].

Up to now, partially supervised segmentation has not been under intensive
studies although it cannot be performed with existing supervised or unsuper-
vised techniques. Nonetheless, several schemes for one-class classification were
proposed for some applications [2, 6, 11].

The algorithm in [14] separates homogeneous texture from an arbitrary back-
ground using local and global distributions of colours and colour cooccurrences.
In line with other statistical approaches, it is suitable for translation invariant

A. Fred et al. (Eds.): SSPR&SPR 2004, LNCS 3138, pp. 689–697, 2004.
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textures. But many of real visually homogeneous textures are weakly variant
with respect to translation, and their spatial homogeneity is recovered better
using a pyramidal image representation. This paper attempts to detect a weakly
inhomogeneous texture in an arbitrary colour image as well as compare a few
different measures of similarity between two probability distributions.

2 Basic Steps of Detection Algorithm

The basic steps are as follows given a value of ζ̄:

1. Create a codebook with a fixed number of codevectors for the training sample
using colour space vector quantization (CSVQ).

2. Convert the training sample into the index image with respect to the code-
book.

3. Find the maximum deviation of each codevector with respect to the training
sample.

4. Create the index image for the original image with the codevectors and their
deviations.

5. The above two index images become the base levels of pyramids. Find the
number K of pyramid levels based on the sizes of the training area and a
fixed moving window.

6. Find a characteristic subset of colour cooccurrence histograms (CCHs) for
the base training level image of the index training sample and collect the
corresponding global normalized CCHs (nCCHs). Set k = 0.

7. Find a cumulative empirical distribution of distances between the local nC-
CHs over the moving window around each pixel and the like global nCCHs
over the whole training image at level k.

8. Calculate the distances between the local nCCHs for the candidate regions
and the global nCCHs for the training image at level k. Get the cumulative
distance map.

9. Calculate the rejection rate ρ if k = 0, then select a distance threshold ζk
using the distribution at step 7.

10. If ζk ≤ ζ̄ or k ≥ K, go to next step, otherwise go to step 13.
11. Set the next level: k = k + 1.
12. Build up the index image of the candidate regions and training image at

level k. Go to step 7.
13. Detect the regions by thresholding the cumulative distance map at step 8

with ζk.

Details of the CSVQ (step 1) has been already discussed in paper [14]. The
codebook B = [bk : k = 1, . . . , N ] was obtained in [14] by approximating an em-
pirical colour distribution for the training sample Str with a mixture of Gaussians
(GM). But such an approximation is not effective in the case of a small number
of sparsely or uniformly distributed codevectors. To avoid the above difficulties,
the colour thresholding in this paper uses the codebookB and its deviation array
Δ = [δk : k = 1, . . . , N ] with respect to the training sample. Each element δk is
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the maximum deviation of the codevector bk within its corresponding partition
in the training sample.

In the index image, each initial colour is replaced by the index of the closest
codebook colour (in terms of the Cartesian distance) if the distance is less than
a predefined threshold, δ, or is considered as background otherwise.

Let G(0) = [gi(0) : i ∈ R0; gi(0) ∈ N] and Gtr(0) = [gtrj (0) : j ∈
Rtr
0 ; gtrj (0) ∈ N] be the base index image for the original colour image to be

segmented and the base training image, respectively, on the supporting finite
arithmetic lattices R0 = {(x, y) : x = 0, . . . , X0 − 1; y = 0, . . . , Y0 − 1} and
Rtr
0 = {(x, y) : x = 0, . . . , Xtr

0 −1; y = 0, . . . , Y tr
0 −1}. At level k+1 of the pyra-

mid, the imageG(k+1) = [gx′,y′(k+1) : (x′, y′) ∈ Rk+1; gx′,y′(k+1) ∈ N] can be
obtained from the preceding image G(k) = [gx,y(k) : (x, y) ∈ Rk; gx,y(k) ∈ N]
at level k by downsampling: Xk+1 = %Xk/2&, Yk+1 = %Yk/2& and gx′,y′(k+1) =
g�x/2�,�y/2�(k) for all (x′, y′).

3 Texture Similarity Measure

Let A = {(ξa, ηa) : a = 1, . . . , A} be the most “energetic” translation invariant
families of interacting pixel pairs (see [14] in detail). Let Fa(G) = [Fa(q, s|G) :
q, s ∈ N] and Fa,i(G) = [Fa,i(q, s|G) : q, s ∈ N] denote the global normalized
colour cooccurrence histogram (nCCH) for the family Ca and the local nCCH
over the rectangular moving window W̃ = Wx × Wy around a position i in the
image G, respectively. The interaction energy εa(G) for the family Ca (see [3]
in detail) is defined as:

εa(G) =
∑

(q,s)∈N2
Fa(q, s | G)

(
Fa(q, s | G)− 1

|N|2

)
The number K of pyramid levels depends on the radius r of the base training

area and the width of the moving window W̃ so that the training pixels at the
highest pyramidal level are still sufficient for collecting the CCHs to represent
the texture at this level:

K =
ln(2r)− ln(min(Wx,Wy))

ln 2
(1)

Let the characteristic subset of pixel neighbours A(0) = {(ξ0a, η0a) : a =
1, . . . , A} be the clique families with the top-rank interaction energies εa(Gtr(0))
over the index training image Gtr(0) and the maximum energy
εmax = max{εa(Gtr(0)) : a = 1, . . . , A}. The corresponding subset A(k) at
level k is denoted as A(k) = {(ξka , ηka) : a = 1, . . . , A} so that

ξka = ξ0a, if %ξ0a/2k& < 2; ξka = %ξ0a/2k&, otherwise.
ηka = η0a, if %η0a/2k& < 2; ηka = %η0a/2k&, otherwise.

The paper [12] has investigated the changes of pairwise pixelwise interaction
structures along the Gaussian pyramid. The structure A(k) at level k reflects
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more long-range interaction than A(k − 1) at level k − 1. Pyramidal similarity
may be justified only if textures become more homogeneous when adding more
up levels so that the assumption of translation invariant pixel interactions can be
satisfied. For weakly homogeneous or inhomogeneous textures, the most charac-
teristic interactions belong to the long-range ones which cannot be captured in
the base level given a small moving window but can be reduced and captured at
the up levels, so the detection performance may be improved. However, for homo-
geneous textures, their short-range ones are already captured at the base level,
adding more up levels may not improve the performance and may decrease the
discriminability due to the lack of their characteristic short-range interactions
at up levels. Therefore, this algorithm will start from the base level of pyramid
and go up level by level until a criterion is satisfied. Let the pixelwise distance
measure be the cumulative distance along the pyramid levels k = 0, . . . , L:

DL
i (Fi(G),F(Gtr)) =

L∑
k=0

1
|A(k)|

∑
a∈A(k)

εmax

εa(Gtr(k))
•

Da, i
2k

(
Fa, i

2k
(G(k)),Fa(Gtr(k))

)
(2)

where Da, i
2k

(
Fa, i

2k
(G(k)),Fa(Gtr(k))

)
is the distance between the local nCCH

at the position i
2k
over the image G(k) at level k and the global nCCH over the

training image Gtr(k) for the clique family Ca, i ∈ R0, and it is scaled with the
ratio εmax

εa(Gtr(k))
to be comparable each other.

Let fa = {fa,i : i = 1, . . . , n;
∑n

i=1 fa,i = 1} and fb = {fb,i : i = 1, . . . , n;∑n
i=1 fb,i = 1} be two discrete density functions. The dissimilarity measure

d(fa, fb) between the two functions can be done in many ways. The experiments
in [7] had shown that the fidelity measure tends to give sharper results if two
density functions to be compared are quite close each other, comparing to χ2 [8]
and Jensen-Shannon divergence (JS) [5] measures. The quadratic form distance
(QF) [4] can be the best solution because its similarity matrix may consider the
closeness between the training colours.
(1) The symmetric χ2-distance:

d(fa, fb) =
n∑

i=1

(fa,i − fb,i)
2

fa,i + fb,i
, 0 ≤ d(fa, fb) ≤ 2 (3)

(2) The fidelity measure:

d(fa, fb) =

√√√√1−
(

n∑
i=1

√
fa,i

√
fb,i

)2
, 0 ≤ d(fa, fb) ≤ 1 (4)

(3) The quadratic form distance (QF):

d(fa, fb) =
√
(fa − fb)TA(fa − fb), 0 ≤ d(fa, fb) ≤

√
2 (5)
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(a) GrassPlantsSky.1 (b) Training samples (c) For “aloe”: K=1,

|N|=16, ζ • .• •• =0.55

(d) For “sky”: K=1, (e) For “bush”: K=3, (f) For “aloe & bush”:

|N|=14, ζ • • •• =1.13 |N|=16, ζ • .• •• =0.47 K=2,|N|=16,ζ • .• •• =0.50

Fig. 1. Results of detecting for different training samples using χ• -distance measure
from the image GrassPlantsSky.1.

where A = [aij ] is the similarity matrix, and aij denote the cross-bin similarity
between bins i and j. Let dij be the Euclidean distance between colour i (or a
pair of colours i) and colour j (or a pair of colours j), dmax = maxi,j(dij), then
aij = 1− dij

dmax
.

The resulting regions can be obtained from the distance map
{DL

i (Fi(G),F(Gtr)) : i ∈ R0} by a distance threshold ζρL. All the pixels where
their distances are less than ζρL will be remained. Let ζρL be chosen from the
empirical distribution of distances {DL

j (Fj(Gtr),F(Gtr)), j ∈ Rtr
0 } over the

training texture pyramid {Gtr(0), . . . ,Gtr(L)} by rejecting a certain small per-
centage ρ of the topmost training distances. The rejection rate ρ depends on the
homogeneity of the training sample. Let D0

max = max{D0
j (Fj(Gtr),F(Gtr)) :

j ∈ Rtr
0 } be the maximum distance over the base level of the training sample.

Assume that a fixed value ζ̄ is the threshold of homogeneity depending on spe-
cific distance measure and D̂ is the upbound of a distance measure, and ρ̂ is the
pre-defined maximum rejection rate. Then the rejection rate ρ is defined as:

1. ρ = 0%, if D0
max ≤ ζ̄ (homogeneous training sample);

2. ρ = ρ̂(D0
max−ζ̄)
D̂−ζ̄ × 100%, otherwise (inhomogeneous training sample, e.g. ρ̂ =

20%).

4 Experimental Results and Conclusions

The experimental analysis and comparisons are based on visual observation due
to the lack of the “ground truth” for the specific detection problems. Further-
more, the detecting requirements usually depend on specific applications.

The first examples use two colour images (768×512) GrassPlantsSky.1 (a) in
Fig. 1 and ValleyWater.2 (a) in Fig. 2 from the MIT Media Lab VisTex database,
and (b) shows the different training samples cut from the original ones. The
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(a) ValleyWater.2 (b) Training samples (c) For “water”: K=3,

|N|=11, ζ • .• •• =0.92

(d) For “grass”: K=3, (e) For “earth”: K=2, (f) For “earth & grass”:

|N|=16, ζ • .• •• =0.49 |N|=16, ζ • .• •• =0.54 K=3,|N|=16,ζ • •• =0.54

Fig. 2. Results of detecting for different training samples using χ• -distance measure
from the image ValleyWater.2.

parameters are chosen as follows: the moving window Wx × Wy = 17× 17, only
one (|A| = 1) most energetic family of pixel pairs per each training sample
Gtr selected within all the relative shifts (ξa ≤ Wx, ηa ≤ Wy), the maximum
rejection rate ρ̂ = 20%, the χ2-distance measure in Eq. (3) and ζ̄ = 0.5. The
detecting results with the different training samples are illustrated in (c)-(f) in
Fig. 1 and 2 respectively, the white areas are the rejected regions. Note that K is
the number of pyramid levels in Eq. (1), the subscript L and superscript ρ of ζρL
represents the stop level and the rejection rate, respectively. Clearly, the training
areas can be always detected. The similar regions to the training area are almost
found out. Meanwhile, most of these training regions are inhomogeneous, the
results can be refined by using more levels of pyramids.

A special colour aerial image in (a) of Fig. 3 provided by the Institute of
Communication Theory and Signal Processing (TNT), University of Hannover,
is used below as a test example to search for each of the four training regions
in (b) of Fig. 3 : field (homogeneous), vegetation (homogeneous), residential
area (weakly homogeneous), and industrial area (inhomogeneous). The curves
in (a) of Fig. 4 illustrate the empirical distributions of the quantized distances
D0

j (Fj(Gtr),F(Gtr)) for their base level L = 0 only (see Eq. (2)) over the
training samples, using χ2-distance measure with D0

max as the distance threshold
(i.e. ρ = 0%). The narrower the range of distances,the more homogeneous the
texture. It is reasonable to set ζ̄ = 0.5 being the threshold of homogeneity for
χ2-distance measure. In the same way, ζ̄ = 0.5 for fidelity measure and ζ̄ = 0.25
for quadratic form (QF) from the curves in (b) and (c) of Fig. 4, respectively.

Meanwhile the ratio between ζ̄ and a distance upbound D̂ is 0.25, 0.5, and
0.176 for the χ2-distance, fidelity measure, and QF distance respectively, we can
expect that the QF has the best performance and the χ2-distance can perform
better than fidelity measure. This can be verified by the comparison using dif-
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(a) Original aerial image (b) Training samples

(c) ζ • •• =0.43 (d) ζ • •• =0.48 (e) ζ • .• •• =0.24

(f) ζ • •• =0.24 (g) ζ • •• =0.35 (h) ζ • .• •• =0.16

(i) ζ • .• • •• =0.45 (j) ζ • .• •• =0.47 (k) ζ • .• •• =0.21

(l) ζ • .• •• =0.47 (m) ζ • • .• •• =0.49 (n) ζ • • .• •• =0.22
χ• -distance fidelity measure QF distance

Fig. 3. Comparison using different distance measures: χ• -distance (left), fidelity mea-
sure (middle), and QF distance(right) with different training samples: “field” (second
row), “vegetation” (third row), “residential area” (fourth row), and “industrial area”
(fifth row), |N| = 16.

ferent distance measures with the different training samples demonstrated in
(c)-(n) of Fig. 3. But QF is too time consuming so that it practically cannot
be applied when |N| > 16. Furthermore, we can see that the performance for
the homogeneous training samples “field” and “vegetation”, and for weakly ho-
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(a) χ• -distance (b) fidelity measure (c) quadratic form (QF)

0 ≤ d(fa, fb) ≤ 2 0 ≤ d(fa, fb) ≤ 1 0 ≤ d(fa, fb) ≤
√
2

Fig. 4. Empirical distance distributions of different training samples in (b) of Fig. 3
using different distance measures. Wx ×Wy = 17× 17, |N| = 16, |A| = 1.

Wx ×Wy = 11× 11 Wx ×Wy = 17× 17 Wx ×Wy = 25× 25

Fig. 5. Results with different size of moving window Wx ×Wy for “field” (top row)
and “industrial area” (bottom row) using χ• -distance measure |N| = 16.

mogeneous “residential area” are very good, except for a little border problem
for “vegetation” because of its too small training area. For the inhomogeneous
“industrial area”, it still can get reasonably good performance, but some homoge-
neous sub-regions such as the large area roofs which exist in the training sample
cannot be detected, the reason is that the CCH for the chosen clique family
from the whole training sample has not reflect the one over these homogeneous
sub-regions. Some roads are detected both for ‘residential area” and “industrial
area” because similar road information exists in both training samples.

Our experiments show that more colours and large number of characteristic
families cannot significantly improve the performance. Generally the suitable
range of the colours number N from the texture analysis viewpoint can be 16 ≤
N ≤ 32.

Figure 5 shows the detecting results with different size of moving window
Wx ×Wy using χ2-distance measure. For homogeneous textures such as “field”,
the results vary insignificantly with the different size of moving window within
this range, and the border problem can be worse under the large size of moving
window; however, the bigger size can get better performance for inhomogeneous
textures such as “industrial area”.
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In total, the proposed algorithm effectively detects a given colour texture on
an arbitrary background.
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Abstract. The class imbalance problem naturally occurs in some clas-
sification problems where the amount of training samples available for
one class may be much less than that of another. In order to deal with
this problem, random sampling based methods are generally used. This
paper proposes a clustering based sampling technique to select a sub-
set from the majority class involving much larger amount of training
data. The proposed approach is verified in designing a post-classifier us-
ing AdaBoost to improve the speaker verification decisions. Experiments
conducted on NIST99 speaker verification corpus have shown that in gen-
eral, the proposed sampling technique provides better equal error rates
(EER) than random sampling.

1 Introduction

Class imbalance where the training data available for some pattern classes is
much less than that of the others, naturally occurs in pattern classification
problems such as speaker or face verification. Consider a speaker verification
experiment where a post-classifier is to be applied on the verification output
scores for optimal decision making [1]. In obtaining the training data for the
post-classifier, target tests where the tested identity is the same as the claimed
is limited to the number of speakers Q, whereas Q×(Q−1) impostor tests where
the tested identity is different than that of the tested can be obtained. It should
be noted that the imbalance increases in proportion to the number of identities
considered in the verification experiment.

A generally accepted fact which is also observed in other research domains
such as text classification is that the developed classifiers may provide much less
accuracy for the minority classes having much less amount of training data [2].
Several explanations are already available in the literature. For instance, in
Ref. [3] it is argued that this is mainly due to the fact that the a priori proba-
bilities bias the learning procedure in favor of the majority class. Also, due to
the insufficiency of the training data available, the minority class models may
not be accurate enough.

There are several approaches proposed to deal with the imbalance problem.
For instance, over-sampling the minority class to make its training data set
cardinality same as the majority class or under-sampling the majority class. In

A. Fred et al. (Eds.): SSPR&SPR 2004, LNCS 3138, pp. 698–706, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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general, over-sampling is implemented by inserting replicas of the available data
points and under-sampling is implemented by taking into account a random
subset of the majority class. These techniques have some disadvantages. In the
case of over-sampling, the computational load is increased and overtraining may
occur due to the replicated samples. Under-sampling does not take into account
all available training data which corresponds to loss of available information.
Moreover, it is not guarantied that the subset of data includes sufficient amount
of critical samples close in the regions where classes overlap. A common drawback
of these techniques is that the best test accuracy is not guaranteed for cardinally
equal training sets since the class probabilities are highly likely to be different
during test phase leading to a larger number of test samples from the majority
class. Moreover, a priori probability information is lost after sampling. In fact,
using more majority samples than minority during training is shown to provide
better test accuracies.

AdaBoost algorithm is an iterative multiple classifier system development
tool which is shown to provide improved classification accuracies for many dif-
ferent data sets compared to the best individual classifier. In each iteration, a
new classifier is trained on a subset of the training data where the weight of each
training sample is taken into account in this process. In fact, this sample selec-
tion mechanism corresponds to the simultaneous application of under-sampling
and over-sampling.

In this paper, the performance of the AdaBoost algorithm in the class imbal-
ance case is investigated. Having observed its poor performance, under-sampling
and over-sampling techniques are applied and a better performance is achieved.
The use of k-means clustering based centroids in the training set of the Ad-
aBoost algorithm is proposed as alternative under-sampling technique. In the
proposed approach, the AdaBoost algorithm is also modified so as to take into
account the class a priori probabilities. Each centroid is used as a representative
of its neighborhood where the misclassification of one centroid is considered as
more costly than another if the number of the training samples in that cluster is
more. Experiments on speaker verification which is basically a 2-class classifica-
tion problem have proven the effectiveness of the proposed approach compared
to the random under-sampling.

2 AdaBoost in Class Imbalance

The original AdaBoost (Adaptive Boosting) algorithm is an ensemble creation
technique which was introduced in [4]. The sequential structure of the algorithm
allows to create new classifiers which are more effective on the training samples
that the current ensemble has a poor performance. In order to achieve this,
weighting is applied on the training samples where a training sample with a
higher weight has a larger probability of being used in the training of the next
classifier. The algorithm summarized in Figure 1. dm(n) denotes the weight of
the nth training sample in S = {(xn, yn)}, n = 1, . . . , N initialized to 1/N
and C denotes the classifier ensemble where Cm is the classifier obtained at the
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mth iteration. At the end of each iteration, the weights of the samples that are
correctly classified (misclassified) by the new classifier are decreased (increased).
Increasing the weight of a misclassified sample corresponds to increasing the
probability of its inclusion in the training set of the next classifier, probably
more than once if its weight is high enough.

1. for m = 1, ..., M
1.1 Build classifier Cm using sample set Sm from S using distribution dm.
1.2 Compute the weighted error using εm =

∑N
n• • dm(n)(1 − qn,m) where

qn,m = 1 if xn is correctly classified by Cm and zero otherwise.
1.3 Compute αm = •

• ln(
•−εm
εm

), εm ∈ (0, 0.5) and update the weights using,

dm• • (n) =
dm(n)

Zm

{
e−αm if Cm(xn) = yn

eαm if Cm(xn) �= yn

where Zm is a normalization factor so that dm• • is a distribution.
2. The joint output of the classifier ensemble is computed using

C(x) =
M∑

m• •

αmCm(x).

Fig. 1. The AdaBoost algorithm.

In order to evaluate the AdaBoost algorithm in class imbalance case, exper-
iments are conducted on the “phoneme” data set from the ELENA database
which involves 3818 and 1586 samples respectively for the first class, w0 and
second class, w1. 2500 and 100 samples are used for training providing an im-
balance ratio of 25 : 1. 1300 samples from each class are used for testing. In the
under-sampling case, 100 training samples are selected from w0 to be considered
for model training whereas in the over-sampling case, the training samples of
w1 are replicated for 24 times so that both classes have the same amount of
training data. The experiments are repeated for 10 times and the results are av-
eraged. A quadratic discriminant classifier (QDC) from the PRTOOLS toolbox
for MATLAB is used as the base classifier [5].

Figure 2 illustrates the training error achieved as a function of the classifiers
in the ensemble. As seen in the figure, the performance on the training data
in the case of imbalanced classes is much better than the sampling based ap-
proaches. However, it is evident from Figure 3 that this is mainly due to training
inaccurate models that almost always predict the majority class. The poor test
performance of AdaBoost indicates that the algorithm is not well suited for im-
balanced data sets. In other words, the inherently available sample weight based
under-sampling and over-sampling mechanism in AdaBoost may not be helpful.
Moreover, the test performance achieved by the sampling techniques provide
their efficiency also for the AdaBoost algorithm where the under-sampling per-
formance is slightly better than over-sampling.
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Fig. 2. Training error for different number of base classifiers.
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Fig. 3. Test error for different number of base classifiers.

3 Proposed Approach

LetNt andNi denote the number of training samples fromminority and majority
classes respectively where Ni >> Nt. Let μk, k = 1, . . . , Nt denote the centroids
obtained by applying the k-means clustering algorithm to the training samples
from the majority class so that the same number of training samples as in the
minority class is obtained. Assume that ck denote the number of training samples
which are closest to μk where

∑Nt
k=1 ck = Ni and cavg is the average number of

training samples in the clusters. The selection of Nt centroids from the majority
training data set balances the training data such that the same number of data
points are used for both the minority and majority classes. The use of centroids
instead of a random subset as in under-sampling approach has some advantages.
For instance, the selection of samples which are very close to each other and have
similar classification difficulties is avoided. Also, different costs can be associated
with each misclassification. For instance, the misclassification of a centroid with
a large number of training data can be considered to have a high cost. Having
computed the centroids, the training data, S involving the Nt centroids from the
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majority class and all Nt training data from the minority are considered as the
training set, S = {(xn, yn)}, n = 1, . . . , 2Nt.

There are some drawbacks in applying the AdaBoost algorithm using the
centroids. Firstly, the subset selection mechanism in Step 1 does not take into
account the relative cardinalities of the training sets of minority and majority
classes. Moreover, the cost of misclassifying a highly crowded centroid is not
differentiated from a less crowded one in computing the model error, εm. It should
be noted that the term “cost” does not denote the relative importance of correct
classification among different classes as used in various cost sensitive boosting
algorithms [6]. Instead, it is assumed that a misclassified centroid corresponds to
the misclassification of all the majority training vectors closest to it and hence,
the term “cost” stands for the contribution to εm by a misclassified centroid.

In order to avoid the problems specified above, a balancing based AdaBoost
algorithm (AdaBoost-B) is proposed as illustrated in Figure 4. The proposed
algorithm is based on the SSTBoost algorithm [7]. However, as stated above,
the definition of cost and error are not based on relative importance of correct
classification among different classes as in SSTBoost. It should be noted that the
weight update in AdaBoost-B algorithm is the same as AdaBoost when costn =
1, ∀n. Also, different orders of scaling on the majority class are applied depending
on the number of training vectors belonging to the centroids. The weights of the
misclassified centroids that are more crowded are increased more than those of
less crowded and the weights of the correctly classified centroids that are more
crowded are decreased less than those of less crowded. The computation of the
weighted error is also modified so as to take into account the fact that each
centroid is a representative for a cluster of training data. The contribution to
the weighted error by all vectors in a given cluster μn is proportional to the
number of samples in that cluster. Hence, a weighted distribution should be
computed as wm(n) = cn × dm(n)/γm to take into account the contribution
to the error by all available majority class samples. As a matter of fact, the a
priori probabilities are incorporated in the classifier creation which is lost in the
under-sampling and over-sampling cases. The scaling factor γm is used to make
the scaled weights a valid distribution and cn = 1 for the minority class.

For the minority class, costn = 1, meaning that the standard weighting used
in the AdaBoost algorithm is applied where different costs are not associated
with correct classification or misclassification.

The performance evaluation of identity verification systems is usually based
on the Receiver Operating Characteristic (ROC). The cost of misclassification
for different classes determine the operating point on the curve which is generally
set using a threshold on the output scores. In summary, the k-means clustering
based under-sampling approach helps to select a subset of training samples which
represent the underlying distribution more accurately than the random selection
approach. Moreover, information about the dense and sparse regions in the input
space are included in the iterations so that misclassified centroids corresponding
to sparse regions are defined as less costly than those representing the dense
regions.
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- Define costn =

{
1 if xn ∈ minority
cn
cavg

if xn ∈ majority

1. for m = 1, ..., M
1.1 Build classifier Cm using sample set Sm from S using distribution Wm.
1.2 Compute γm =

∑•Nt
n• • dm(n)cn where cn is selected as 1 for the minority

class.
1.3 Compute the weighted error using εm =

∑•Nt
n• • (

cn
γm
)dm(n)(1−qn,m) where

qn,m = 1 if xn is correctly classified by Cm and zero otherwise.
1.4 Compute αm = •

• ln(
•−εm
εm

), εm ∈ (0, 0.5) and update the weights using,

dm• • (n) =
dm(n)

Zm

{
e−αm• •−costn• if Cm(xn) = yn

eαmcostn if Cm(xn) �= yn

where Zm is a normalization factor so that dm• • is a distribution.
2. The joint output of the classifier ensemble is computed using

C(x) =
M∑

m• •

αmCm(x).

Fig. 4. The balancing based AdaBoost algorithm, AdaBoost-B.

4 Speaker Verification and Experimental Setup

In Speaker Verification (SV ), the aim is to decide whether the tested speech
utterance belongs to the claimed identity or it is an impostor [8]. In the state-
of-the-art SV systems, the output is composed of two likelihood scores where
the decision is based on the likelihood ratio obtained as the difference of the log
likelihoods of the outputs,

LR = L(X |λi)− L(X |λB) (1)

where λi denotes the claimant model, λB denotes the reference model and X de-
notes the tested utterance. The decision to accept or reject is based on comparing
the likelihood ratio to a threshold, Θ such that

LR ≥ Θ =⇒ target speaker (2)
LR < Θ =⇒ impostor (3)

Universal Background Models (UBM) are generally used as the reference models
where each UBM is a Gaussian Mixture Model (GMM) having a large number
of mixtures trained to represent speaker-independent distribution of the feature
vectors [9]. The claimant models, λi are also GMMs which are trained using
Bayesian adaptation from the UBM. The short-time spectral information ex-
tracted from the speech utterances, Mel-frequency cepstral coefficients (MFCC)
are used as the feature vectors. Sixteen MFCCs and their Delta’s [8] are com-
puted in every 80 samples for the spectral representation of each Hamming
windowed speech frame of length 160 samples.
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A subset of the corpus is excluded from verification tests and is used for
training the reference model. Approximately one hour of speech is used to train
a UBM for male and another one hour of speech for training a female UBM.
Each UBM involves 1024 mixtures. Then, these UBMs are combined to obtain
a single 2048 mixture joint UBM to be used as a reference model. Excluding
the speakers used for UBM training, 396 speakers (245 female and 151 male) are
considered during the verification experiments. The training data of each speaker
is split into 6 equal parts for 6-fold cross validation to obtain the training data
for the multiple classifier based decision boundary. During the cross-validation,
the speech segment which is not included in the model training and kept outside
for validating the models had impostor attacks on all the other speakers. During
the testing phase, non-overlapping speech segments of length 10s are used. The
target tests and impostor attacks are performed using the standard setup defined
for this corpus.

The output scores corresponding to the tested speaker and the joint UBM are
the treated as the inputs for the classifier ensemble to be created using AdaBoost.
The number of training and test samples for the minority class (target tests) and
the majority class (impostor attacks) are given in Table 1. Due to 396 speakers
involved in the SV experiment, the ratio of impostor to target training samples
is high as 395 : 1. This ratio represents a rather high imbalance ratio. However,
it naturally occurs in practice for SV problem.

Table 1. The number of training and test samples for the minority and the majority
classes.

class number of training samples number of test samples

majority 938520 22071
minority 2376 1479

5 Results

In the experiments, two independent multiple classifier systems are implemented.
The first one, Ar corresponds to the application of the original AdaBoost algo-
rithm on a random subset of the majority class which involves the same number
of training samples as the minority class. The second system, ABc corresponds
to the use of cluster centroids of the majority class equal to the number of mi-
nority samples and the AdaBoost-B algorithm. Using Ar, the performance of
AdaBoost algorithm in improving the verification decision for SV systems is
investigated. Using ABc, it is aimed to examine whether alternative sampling
techniques can improve the verification accuracy or not. Two different versions
of the boosting algorithm are considered, aggressive and conservative. In [10],
the given form of the boosting algorithm in Figure 1 is referred as Aggressive
boosting since the weights of both correctly and incorrectly classified samples
are modified. Alternatively, in Conservative boosting, either the weights of mis-
classified samples are increased or the weights of correctly classified samples are
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decreased. In the conservative implementations in this study, only the weights of
correctly classified samples are updated in both Ar and ABc. The over-sampling
approach is not considered due to the heavily increased computational load after
over-sampling in our case.

Two different base classifiers are considered, namely quadratic discriminant
classifier (QDC) and an MLP neural network consisting of one hidden layer
with 10 neurons trained for 300 iterations using fast backpropagation algorithm
(NNET). The experiments are conducted for 10 times and the results are av-
eraged. In the experiments, the total number of classifiers in each ensemble is
selected as 20.

The Equal Error Rate (EER) provided by the baseline SV system based on a
linear Bayes decision boundary is 15.28%. The EER’s obtained using AdaBoost
are presented in Table 2. As seen in the table, both of the systems considered
in this study provide significant improvements in the verification accuracy. ABc
provides better accuracies in both conservative and aggressive types of the boost-
ing for the QDC type of base classifier. ABc provides better accuracy also in the
conservative boosting of the NNET classifiers. However, the aggressive boosting
of NNET classifiers in Ar yields a better performance than ABc.

There are some points that should be emphasized. Firstly, the imbalance ratio
may be so large that, irrespective of the problems that may occur during the
learning process, training an ensemble of classifiers may be infeasible from the
computational point of view. Secondly, under-sampling based ensemble creation
is observed to provide significant improvements. Moreover, taking into account
the distribution of the impostor scores during sampling is valuable for further
improvement. In fact, we mainly observe that the clustering based sampling and
cluster dependent scaling of the training samples provide better accuracies than
random selection in majority of the cases.

Table 2. Experimental results for two different base classifiers (in %).

base classifier: QDC base classifier: NNET
MCS Conservative Aggressive Conservative Aggressive

Ar 13.87 14.00 13.46 13.33
ABc 13.72 13.86 13.39 13.40

6 Conclusions

In this study, the class imbalance problem is addressed and it is observed that the
under-sampling approach is a simple but effective method where the AdaBoost
algorithm based multiple classifier approach trained using the under-sampled
training data provided significant improvements. The use of k-means clustering
based centroids in the training set of the AdaBoost algorithm is proposed as an
alternative under-sampling technique. In the proposed approach, the AdaBoost
algorithm is also modified so as to take into account the class a priori proba-
bilities. Each centroid is used as a representative of its neighborhood where the
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misclassification of one centroid is considered as more costly than another if the
number of the training samples in that cluster are more. Experimental results
have shown that the proposed approach may be effective in majority of the cases.
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Abstract. In linear discriminant (LD) analysis high sample size/feature ratio is 
desirable. The linear programming procedure (LP) for LD identification handles 
the curse of dimensionality through simultaneous minimization of the L1 norm 
of the classification errors and the LD weights. The sparseness of the solution – 
the fraction of features retained - can be controlled by a parameter in the objec-
tive function. By qualitatively analyzing the objective function and the con-
straints of the problem, we show why sparseness arises. In a sparse solution, 
large values of the LD weight vector reveal those individual features most im-
portant for the decision boundary.  

1   Introduction 

In a high-dimensionality / small sample size scenario, many linear classification rules 
are possible. When the sample to feature ratio (SFR) is low, we face the problem of 
overfitting - many perfect classification rules for the training data and poor generali-
zation on the test data.  Achieving the proper ratio between number of features and 
available sample size is of great interest [1],[17]. Conventional dimensionality reduc-
tion techniques [2], [3] are not very useful if retaining the original feature positions is 
important. For high-dimensional situations, methods producing sparse solutions are in 
demand. Sparse means that only a few solution coefficients have large values. The 
linear programming (LP) technique of identifying a linear discriminant function be-
longs to the category of methods producing sparse solutions. Its usefulness in feature 
selection has been demonstrated [4]. There are case studies showing the potential of 
the technique in microarray analysis [5] and in face recognition [6]. This LP tech-
nique is a variant of linear support vector machine (SVM), the only difference being 
in the objective function. Selecting the value of a parameter in the objective function 
will force sparseness on the linear discriminant solutions of LP. The sparseness of the 
solution depends on the geometrical configuration of the data points. Although there 
exist studies on SVM via linear programming [8] and [7] there is a lack of systematic 
analysis on how the sparse solution is obtained, and what factors govern the sparse-
ness. A deeper insight is also missing concerning the characteristics properties of the 
features the sparse solution identifies. Our analysis concerns the objective function of 
the LP formulation for linear discriminant and constraints imposed by the dataset. In 
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the following, variables denoting vectors will be bold. We consider a 2-class classifi-
cation problem. Our dataset consists of the vectors Xi ∈x having compo-

nents ],...,,[ 21 p
iiii xxx=x , labeled by { }1,1 −+∈iy , where

21,...,1 NNi += are the 

number of samples in the classes and p  is data dimensionality. Our problem is to 

find a linear discriminant function classifying the samples into one of the two classes 
ω1, ω2: 
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We may formulate this problem as a system of linear equations: 

yXw = . (2) 

If there are more equations than unknowns, then (2) represents a system of over de-
termined equations. We may obtain the solution for the weight vector by least squares 
or by minimizing the total absolute error [10]. When there are more unknowns (fea-
tures) than equations, the system (2) is underdetermined and has many solutions.  

During the last decade, SVM or maximal margin classifiers were used extensively. 
This learning algorithm is not parametric and implements an approximation of the 
unknown functional relationship between training data and class label/target. The 
unknown discriminant weight vector is found by optimizing a functional derived in 
learning theory [11], [12]:   

LpLp
CGJ ww **)( += , (3) 

where Lp denotes the p-norm, w is the vector of the weights of the linear discriminant 

to be found, is the vector of errors between the actual output and the desired output:  

yXw −= . The choice of norm and the values of the constants in (3) span a range of 

criteria for regression and classification problems [12], [13] and [14]. Different crite-
ria implement different methods to get the solution. Some instances of the criterion 
function with different choices of norm and parameter values are summarized in Ta-
ble 1. The criterion for LD identification by the linear programming technique pro-
ducing sparse solution is: 

11
*)(

LL
CJ ww += . (4) 

Two terms are minimized: the total absolute error and the sum of the components of 
the linear discriminant. The constraints are the same as for SVM in the linearly not 
separable case, and are given by (5). For some values C > Cmax, we get the maximal 
margin classifier, identical to linear SVM.  If the value of C is in the interval 0 <C < 
Cmax, then we get a sparse solution for the weight vector. For different datasets, the 
value of Cmax is different. Our goal is to show how C influences the objective function 
and why small values of C lead to sparse solutions. 
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Table 1. Criteria and solution methods spanned by different norms and values of the parame-
ters in the objective function (3). When G>0  the function (3) is studied in [16]. 

Values of the parameters  
Norm G = 1, C >  Cmax  G= 0, C = 1 G = 1, 0 < C < Cmax 

L1 SVM, Linear 
programming 
method 

Minimization of  

yXw − . 

Least absolute error problem, 
usually solved by LP method. 

Sparse solutions for linear discrimi-
nant function. Implements SVM by 
Linear programming method. The 
value of C, controlling sparseness, 
depends on dataset configuration. C 
is the upper bound on variables in 
the dual problem. 

L2 
SVM, Quadratic 
programming 
method 

Minimization of  

( ) ( )yXwyXw T −− . 

Least Squares problem.  

Sparse solutions for linear discrimi-
nant function. Implements SVM by 
Quadratic programming method. C 
is the upper bound of Lagrange 
multipliers. 

2   Analysis of the Constraints and Objective Function 

2.1   Formulation of the Problem for the General Linear Program Solver 

The optimal solution minimizing (4) is usually obtained by using general linear pro-
gram solvers [8]. SVM imposes the constraints onto the separating hyperplane. It has 
to be at the desired distance from the training points and have maximal margin with 
respect to vectors of the opposite classes [9]: 

( ) 210
1

1 ,...,1,0,1... NNiwxwxwy ii
p
ipii +=≥−≥+++ ξξ . (5) 

The inequalities in (5) define the region of feasible solutions for (4). For an arbitrary 

hyper plane, the actual distance of the points ix from it is: 
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w
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d
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i
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The desired distance imposed by the constraints is not less than Δ : 

2

1
w

=Δ . (7) 

The quantities iξ in (5) are proportional to the differences between the desired and 

actual distances: 

ii
i dy−Δ=

2
w
ξ

. (8) 

The value of i shows the position of the data point with respect to the separating 

hyperplane: i = 0 means that the data point is exactly at distance Δ from the sepa-
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rating hyperplane, i < 0 means that the data point is correctly classified, i > 0 

means that the data point is misclassified or closer to the hyper plane than Δ . Mini-
mizing the second term in (4) means minimizing the empirical risk/classification 
errors. The constraint i % 0 in (5) restricts the feasible region of the weights of linear 
discriminant vector w to the region where classification errors occur or where the 
data point is closer than the desired distance. In order to present the minimization 
problem in a form suitable for a general linear program solver, the variables in the 
objective function should be positive. Thus, each weight component variable is mod-
eled as a difference of two non-negative variables, as is common in linear program-
ming [15], page 32: 

jjj vuw −= , (9) 

and the absolute value of the weight is: 

jjj vuw +=|| . (10) 

The pair 
jj vu , satisfying (9) and (10) is unique. Only three choices are possible 

simultaneously satisfying (9) and (10): 1) 00 == jj vu , 2) 00 ≠= jj vu  and 

3) 00 =≠ jj vu . The constraints (5) now are: 
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and 

21,,...,1,,...,0,0,0,0 NNNNiPjvu ijj +===≥≥≥ ξ . (12) 

The objective function (4) is transformed to: 
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We need to find: 

)(minarg)( v,u,,v,u *** J= . (14) 

One basic feasible solution of (13) subject to (11) and (12) is 10,v0,u ===  not 

useful for classification. In (13) the empirical risk is minimized, thus only non-
negative i are considered and the modulus of i in (4) is equivalent to a positive i 

in (13). If the exact objective function (4) is minimized, then each i should be mod-
eled by two positive variables as were the components of linear discriminant w  in 
(9) and (10). More details on the SVM formulations with different norms can be 
found in [7]. The slacks in (11) are decoupled from the weights of the linear discrimi-
nant, although, strictly speaking, slacks and weights depend on each other.  
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2.2   What Is the Origin of  the Sparseness? 

The sparseness of the optimal solutions (13) subject to (11) and (12) depends on the 
value of C. In available SVM software, this parameter is set to the default value, or is 
determined by cross validation [16]. To discover the origin of sparseness, we analyze 
qualitatively the dependence of the shape of the objective function (4) on the parame-
ter C. With real instances of the weight vector and a given set of data points, the slack 
variables equal to the deviations from the target: 

( )0
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1 ...1 wxwxwy p
ipiii +++−=ξ . (15) 

Substituting (15) directly into (4), we express (4) as a function: 
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The function (16) has two parts: 

)(*)()( 00 wACRwJ w,ww, += , (17) 

R is called a regularizer and A is the empirical risk or penalty and loss in [16]. The 
objective function (16) is piecewise linear. Convex piecewise linear functions of the 
type (16) are analyzed in depth in [15]. In a constrained optimization problem, the 
optimal solutions for the objective function lie in the feasible region defined by the 
constraints. Here this region is fixed and determined by the data points as defined by 
(5). The objective function is controlled by the values of C leading to the different 
optimal solutions. When C is large, the term A dominates in the objective function. 
When C is small, the term R dominates in the objective function. When C is ap-
proaching zero, the objective function becomes flat and balanced. The minimum 
point of function (16) is forced to approach the zero origin point by small C. This 
narrows the set of possible optimal solutions to the points of feasible region lying 
near the origin. We illustrate this statement graphically by using a one-dimensional 
example. It is depicted in Figure 1. In higher dimensions, visualization of the con-
cepts becomes intractable. Let the data consist of three points: (x1=0.5, y1=1), (x2=           

-2, y2=-1) and (x3=5, y3=-1). Let 00 =w  in the example. The linear discriminant 

w  in the example is a scalar. The function (16) with these values is: 

|)51|215.01()( wwwCwwJ ++−+−+= . (18) 

It is a sum of convex functions and is convex itself. The coefficients 0.5, 2 and 5 
can be interpreted as the influence of the data on the objective function. Higher values 
of the data-dependent coefficients increase the slopes of the components of the objec-
tive function and dominate the total sum. The constraints are:  

.0,51
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w
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The functions e1(w)=1-0.5w, e2(w)=1-2w and e3(w)=1+5w for a given dataset repre-
sent the functional relationship (8) for all values of  linear discriminant w . The inter-
val of w  values, satisfying all (19) constraints (feasible region, which does not 
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change) is [ ]5.02.0−∈w . However the shape of the objective function is deter-
mined by C. In Fig.1 we illustrate the difference of the objective functions J1(w), 
J2(w) and J3(w) given in (18) corresponding to different values of C: C=0.2, C=1.5 
and C=5. Function J1(w) attains its minimum at the point 0=w  ( sparse solution), 
which is forced by the C=0.2.  

 

 

Fig. 1. The influence of the parameter C on the objective function. Solid lines represent the 
objective functions J1(w), J2(w) and J3(w) of (18)  for different values of C: C=0.2, C=1.5 and 
C=5. The feasible region is shown by dotted lines. The functions e1(w), e2(w) and e3(w) are 
represented by dashed lines.  

The simple one-dimensional example illustrates the effect of small values of C on 
the objective function of the form (4). In the high-dimensional case, many data points 
form a complicated convex surface for the feasible region. The objective function of 
form (4) is a superposition of hyperplanes defined by constraints plus a regularization 
term. When C approaches zero, the objective function is flattened. The minimum 
value of this function is forced to lie near the coordinate origin. Since all variables in 
the minimization problem (13) subject to (11) and (12) are constrained to be non-
negative, the feasible region is restricted to the positive half of the high-dimensional 
space where minimization takes place. For C approaching zero, the optimal solutions 
of (13) will be at the points where the hyperplane of the objective function encounters 
the borders of the positive half of coordinate space. The level of sparseness depends 
on the dataset, determining the orientations of the constraints. 

If we take the expression of i in (15) and substitute it into (13), then express the 
components of the weight vector w  through u and v using (9) and (10) and rear-
range the terms, we express (13) as a linear combination of the components of the 
vectors u and v : 
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is the data-dependent term. In expression (20) coefficients (1-Ckj) , (1+Ckj)  j =1…p, 
represent the coordinates of the normal vector of the hyper plane of the objective 
function (20) which is equivalent to (13). They determine the direction in which the 
function decreases. For the positive coordinates of a normal vector, the decreasing 
direction of the objective function hyperplane is towards the origin. As C vanishes, 
more coefficients become positive, depending on the term (21). C should be 

||/1 jkC <  in order to set the corresponding normal coefficient positive. If all normal 

coefficients are positive, the optimal minimum value of (20) is zero 0v0,u == . 
The analysis of (20) reveals how sparse solutions evolve and the type of influence the 
data has on the solutions. Noting that the empirical mean of the observations is: 
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For (21) we have: 

21 ˆˆ 21
ωω
jjj mNmNk −= . (23) 

The data term kj is the difference between the weighted centroids of the two classes. 
(20) and (23) show that the last retained non-zero component of the sparse solution 
corresponds to the feature that has the largest distance between the centroids of the 
two classes.  

3   Classification Example 

We illustrate the geometrical property of the sparse solution induced by small C on a 
simple artificial example of linearly separable data. In order to compare with other 
methods, we present several decision boundaries obtained by LP with different values 
of C and linear SVM, least squares presented in Fig 2. Sparse solutions of the weight 
vector have zero components. The interpretation of zero components is that they iden-
tify unimportant features. “Unimportance” means that individual features, 
corresponding to zero components of the linear discriminant, do not contribute to the 
decision boundary. The geometrical property of unimportant features is that their 
centroids for the two classes are closer than those of the important features.  

4   Conclusions 

We presented the analysis of a particular example of the objective function used in the 
LP method for identification of a linear discriminant. Our analysis is qualitative, aim-
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ing at a better understanding of the relationships between data, constraints and shape 
of the objective function. We show that we can control the sparseness of the solution 
by the parameter C. Small values of C induce sparseness, making the objective func-
tion flat and moving its extreme points towards zero. The solutions of the weight 
vector are affected by the changes in the objective function. The practical effect is 
that for individual features, with centroids for the two classes close (in the Euclidean 
sense),  the corresponding components of the weight vector are very small. In the high 
dimension/small sample scenario, the method is useful for finding subsets of individ-
ual features that contribute to the class separation.  However, the value of the sparse-
ness-controlling parameter C for different sets must be identified experimentally. We 
are currently investigating the impact of the parameter C on the solution of the L1 
norm classification problem in real life applications of high-dimensional biomedical 
spectra. 
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Abstract. The idea of using the Branch & Bound search for optimal
feature selection has been recently refined by introducing additional pre-
dicting heuristics that is able to considerably accelerate the search pro-
cess while keeping the optimality of results unaffected. The heuristics is
used most extensively in the so-called Fast Branch & Bound algorithm,
where it replaces many slow criterion function computations by means
of fast predictions. In this paper we investigate alternative prediction
mechanisms. The alternatives are shown potentially useful for simplifi-
cation and speed-up of the algorithm. We demonstrate the robustness of
the prediction mechanism concept on real data experiments.

Keywords: subset search, feature selection, search tree, optimal search,
subset selection, dimensionality reduction.

1 Introduction

The problem of optimal feature selection (or more generally of subset selection) is
difficult especially because of its time complexity. Any known optimal search al-
gorithm has an exponential nature. The only alternative to the exhaustive search
is the Branch & Bound (B&B) algorithm [5, 2] and ancestor algorithms based on
a similar principle. Two of the recent algorithm versions utilize a concept of pre-
diction mechanism that enables considerable acceleration of the search process
without affecting the optimality of results. The Branch & Bound with Partial
Prediction (BBPP) [7] uses a prediction mechanism to avoid many criterion
evaluations that are unavoidable in older algorithm versions for finding efficient
ordering of features inside the search tree. The Fast Branch & Bound (FBB)
[6] extends the prediction mechanism to enable bypassing of non-prospective
branch sections. The speed-up of BBPP and FBB over older algorithms depends
strongly on the efficacy of the underlying prediction mechanisms. In this paper
we define and investigate alternative prediction mechanisms in addition to the
original one. We show that alternative mechanisms may further improve the
FBB speed and also simplify its implementation.

A. Fred et al. (Eds.): SSPR&SPR 2004, LNCS 3138, pp. 716–724, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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1.1 Preliminaries

All the algorithms addressed in this paper require the criterion function fulfilling
the monotonicity condition. Consider a problem od selecting d features from
an initial set of D measurements using objective function J as a criterion of
subset effectiveness. The Branch & Bound approach aims to solve this search
problem by making use of the monotonicity property of certain feature selection
criterion function. Let χ̄j be the set of features obtained by removing j features
y1, y2, · · · , yj from the set Y of all D features, i.e.

χ̄j = {ξi|ξi ∈ Y, 1 ≤ i ≤ D; ξi �= yk, ∀k}

The monotonicity condition assumes that for feature subsets χ̄1, χ̄2, · · · , χ̄j ,
where

χ̄1 ⊃ χ̄2 ⊃ · · · ⊃ χ̄j

the criterion function J fulfills

J(χ̄1) ≥ J(χ̄2) ≥ · · · ≥ J(χ̄j). (1)

Each B&B algorithm constructs a search tree where each node represents
some set of “candidates”. The root represents the set of all D features and leafs
represent target subsets of d features. While traversing the tree down to leafs the
algorithm successively removes single features from the current “candidate”set
(χ̄k in the k-th level) and evaluates the criterion value. In leafs the information
about both the currently best subset X and the ’bound’ X∗ = J(X ) is updated.
Anytime the criterion value in some internal node is found to be lower than the
current bound, due to the condition (1) the whole sub-tree may be cut-off and
many computations may be omitted. For details see [1, 2, 5].

Several improvements of this scheme are known. The “Improved” B&B al-
gorithm [2] combined with the “minimum solution tree” [9] concept can be con-
sidered the fastest non-predicting algorithm. This algorithm (to be referred as
IBB) improves the search speed by optimising the tree topology and bypassing
redundant computations in paths leading to leafs. The Fast Branch & Bound
includes both of these improvements and incoroporates additional mechanisms
to further reduce the impact of some of the principal B&B drawbacks [6] what
makes it approximately 2 to 20 times faster than IBB in feature selection tasks,
depending on data and criterion properties. As all optimal algorithms yield equal
results at a cost of (in principle) exponential computational time, speed becomes
the most important property to compare. It should be noted, that releasing the
rigor of result optimality in sub-optimal algorithms is the only way to achieve
fundamentally higher computational speed of polynomial nature.

2 Fast Branch & Bound

Let the criterion value decrease be the difference between the criterion value for
the current feature subset and the value after removal of one feature. The FBB
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uses criterion value decreases estimates for future predictions of the criterion
values. Prediction is used only in non-leaf nodes and can not trigger a node cut-
off. If a predicted criterion value remains significantly higher than the current
bound, it may be expected that even the real value would not be lower and
therefore the corresponding sub-tree could not be cut-off. In this situation the
FBB proceeds to the consecutive tree level. But, if the predicted value drops
below the bound, the actual criterion value must be computed to evaluate the
cut-off chance. Sub-trees may be cut-off only if true criterion values prove to be
lower than the current bound, what preserves the optimality of the final result.
Note that the only impact of possibly inaccurate predictions is prolonging some
branches. However, this drawback is usually strongly outweighed by the overall
criterion computation savings.

Fig. 1. Illustration of the prediction mechanism in Fast Branch & Bound for a problem
of selecting d = 2 features out of D = 6 to maximise a synthetic criterion function.

See Fig. 1 for an illustration of the search process. The Figure shows initial
stages of the search process on a synthetic problem where d = 2, D = 6. The
prediction mechanism learns whenever two subsequent criterion values are com-
puted (here for simplicity Ai = J(χ̄)−J(χ̄\{i}) for i = 4, 3, 2, 1, 5) and later uses
this information to replace criterion evaluation by a simple subtraction (in white
nodes J(χ̄ \ {i}) ≈ J(χ̄)−Ai). The predicted values, being only approximations
of the true criterion values, do not suffice to cut-off sub-trees and must be veri-
fied by true criterion evaluation whenever tree cutting seems possible (see nodes
representing subsets 1,2,6 and 1,3,6) to preserve the optimality of the results.

2.1 Fast Branch & Bound with the Default Prediction Mechanism

The FBB default prediction mechanism is based on averaging feature contribu-
tions individually for each feature, independently on current tree level k. Aver-
ages are kept in ’contribution’ vector A = [A1, A2, . . . , AD]T, while the number
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of averaged values is stored in ’counter’ vector S = [S1, S2, . . . , SD]T. Both vec-
tors are initially zeroed. Whenever FBB removes some feature yi from the current
“candidate” subset and computes the corresponding true criterion value J(χ̄k \
{yi}) at k-th tree level, and if also the predecessor value J(χ̄k) ≡ J(χ̄k−1 \ {yj})
(after previous removal of some feature yj) had been computed (as indicated by
Tk−1,yj =“C”), the prediction mechanism vectors are updated as follows:

Ayi =
Ayi · Syi + Jk−1,yj − J(χ̄k \ {yi})

Syi + 1
, Syi = Syi + 1 (2)

For the formal FBB description we shall use the notion adopted from [1]:
χ̄k = {ξj | j = 1, 2, · · · , D − k} – current “candidate” set at k-th tree level,
qk – number of current node descendants (in consecutive tree level),
Qk = {Qk,1, Qk,2, . . . , Qk,qk} – ordered set of features assigned to edges

leading to current node descendants (note that “candidate” subsets χ̄k+1 are
fully determined by features Qk,i for i = 1, · · · qk),

Jk = [Jk,1, Jk,2, . . . , Jk,qk ]
T – vector of criterion values corresponding to

current node descendants in consecutive tree level (Jk,i = J(χ̄k \ {Qk,i}) for
i = 1, · · · , qk),

Ψ = {ψj | j = 1, 2, · · · , r} – control set of r features being currently avail-
able for search-tree construction, i.e. for building the set Qk; set Ψ serves for
maintaining the search tree topology,

X = {xj | j = 1, 2, · · · , d} – current best feature subset,
X∗ – current bound (crit. value corresponding to X ).
δ ≥ 1 – minimum number of evaluations, by default= 1,
γ ≥ 0 – optimism, by default= 1,
Tk = [Tk,1, Tk,2, . . . , Tk,qk ]

T, Tk,i ∈ {“C”,“P”} for i = 1, · · · , qk – criterion
value type vector (records the type of Jk,i values–computed or predicted),

V = [v1, v2, . . . , vqk ]
T – temporary sort vector,

Remark: values qj , sets Qj and vectors Jj , Tj are to be stored for all j = 0, · · · , k
to allow backtracking.

The Fast Branch & Bound Algorithm
Initialization: k = 0, χ̄0 = Y , Ψ = Y , r = D, δ = 1, γ = 1, X∗ = −∞.
STEP 1: Select descendants of the current node to form the consecutive tree
level: First set their number qk = r − (D − d − k − 1). Construct Qk, Jk and
Tk as follows: for every feature ψj ∈ Ψ, j = 1, · · · , r if k + 1 < D − d (nodes
are not leafs) and Sψj > δ (prediction allowed), then vj = Jk−1,qk−1 − Aψj ,
i.e., predict by subtracting the appropriate prediction value based on ψj feature
from the criterion value obtained in the parent node, else (nodes are leafs or
prediction not allowed) the value must be computed, i.e., vj = J(χ̄k \ {ψj}).
After obtaining all vj values, sort them in the ascending order, i.e.,

vj1 ≤ vj2 ≤ · · · ≤ vjr

and for all i = 1, · · · , qk:
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set Qk,i = ψji and
if vji records a computed value, then set Jk,i = vji and Tk,i =“C”
else set Jk,i = Jk−1,qk−1 − γ · Aψji

and Tk,i =“P”.
To avoid duplicate testing set Ψ = Ψ \ Qk and r = r − qk.
STEP 2: Test the right-most descendant node (connected by the Qk,qk -edge):
if qk = 0, then all descendants were tested and go to Step 4 (backtracking). If
Tk,qk =“P” and Jk,qk < X∗, then compute the true value Jk,qk = J(χ̄k \{Qk,qk})
and mark Tk,qk =“C”. If Tk,qk =“C” and Jk,qk < X∗, then go to Step 3, else
let χ̄k+1 = χ̄k \ {Qk,qk}. If k + 1 = D − d, then a leaf has been reached and go
to Step 5, else go to next level: let k = k + 1 and go to Step 1.
STEP 3: Descendant node connected by the Qk,qk -edge (and its sub-tree) may be
cut-off: return feature Qk,qk to the set of features available for tree construction,
i.e. let Ψ = Ψ ∪ {Qk,qk} and r = r + 1, Qk = Qk \ {Qk,qk} and qk = qk − 1 and
continue with its left neighbour; go to Step 2.
STEP 4: Backtracking: Let k = k − 1. If k = −1, then the complete tree had
been searched through; stop the algorithm, else return feature Qk,qk to the set
of “candidates”: let χ̄k = χ̄k+1 ∪ {Qk,qk} and go to Step 3.
STEP 5: Update the bound value: Let X∗ = Jk,qk . Store the currently best
subset X = χ̄k+1 and go to Step 2.

3 Prediction Mechanisms

Here we define a set of alternative prediction mechanisms. Technically we change
only the Ayi estimation, i.e. formula (2). The estimation takes place under the
same conditions as described in the preceeding section. The use of the alternative
Ayi values inside FBB instead of the default is principally the same, taking place
in STEP 1 only. For a list of defined mechanisms see Table 1.

The simplest last-value mechanism directly re-uses only the last computed
contribution value. It is based on assumption that feature behaviour does not
change too dramatically in local context.

The level-based averaging predictor should reduce the impact of criterion
value decrease estimation errors with criterion functions yielding values strongly
dependent on feature set size. As the estimation takes place separately for each
tree level, this predictor may become compromised by the delay of prediction
start and by the relatively lower number of true values available for learning
when compared to the default, global averaging predictor.

The maximising and minimising predictors are likely to be outperformed by
the others as they obviously yield biased predictions. Their purpose is to test the
FBB vulnerability to “optimistic” (in case of minimising) and “pessimistic” (in
case of maximising) errors caused by the predictor. The AMax

yi and AMin
yi values

are expected here to cause similar effect as setting the optimism parameter γ
either > 1 or < 1. In case of too pessimistic behaviour the accelerating effect
of prediction mechanism on the FBB algorithm as a whole deteriorates, but the
maximum number of search tree nodes remains equal to that of the IBB. In case
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Table 1. List of considered prediction mechanisms.

Description Definition Comment

averaging formula (2) Default.

last-value AL
yi = Jk−• ,yj − J(χ̄k \ {yi}) Uses only the last value.

maximising Let AMax
yi

= Jk−• ,yj −J(χ̄k \{yi}) only
if AMax

yi < Jk−• ,yj − J(χ̄k \ {yi})
Uses the maximum value
obtained so-far.

minimising Let AMin
yi = Jk−• ,yj −J(χ̄k \{yi}) only

if AMin
yi > Jk−• ,yj − J(χ̄k \ {yi})

Uses the minimum value
obtained so-far.

(max+min)/2 AMid
yi = (AMax

yi + AMin
yi )/2 “Middle” value.

level-based averag-
ing

ALev
yi,k

=
ALev
yi,k

·Syi • Jk−1,yj−J• •χk\{yi}•
Syi • •

Same as default, but sepa-
rately for each subset size.

individual AInd
yi = J({yi}) Constant predictor.

reverse individual ARev
yi = J(Y )− J(Y \ {yi}) Constant predictor.

of too optimistic behaviour the FBB algorithm can unwantedly track the tree
branches deeper than IBB what could result in worse performance loss then in
the pessimistic case (for details see [6]). The (max+min)/2 value is used as an
alternative predictor as well.

The individual value predictor uses constant individual criterion values for
each feature. It is defined to demonstrate the fact that individual feature eval-
uation often is not sufficient to estimate the value of feature sets. The reverse
individual predictor analogously uses only the constant individual feature con-
tributions with respect to the full set Y .

4 Experiments

The different predictors in the FBB algorithm were tested on a number of dif-
ferent data sets. Here we show results computed on 2-class mammogram Wis-
consin Diagnostic Breast Center (WDBC) data (30 features, 357 benign and 212
malignant samples) and WAVEFORM data (40 features of which 19 represent
noise, 1692 class 1 and 1653 class 2 samples) obtained via the UCI repository
(ftp.ics.uci.edu)and 2-class SPEECH data originating at British Telecom (15 fea-
tures, 682 word “yes” and 736 word “no” samples). We used the Bhattacharyya,
Divergence and Patrick-Fischer distances. The Patrick-Fischer distance is con-
sidered difficult for use in B&B because of its strong dependence on evaluated
set size. We used Pentium4-2,6Ghz CPU for all tests. As all the algorithms are
optimal, they yield identical subsets identified by the same maximum criterion
value. The only important difference between considered algorithms is therefore
in computational time or in number of true criterion evaluations. Due to limited
space we present only the graphs of computational time. It should be only noted,
that practically all experiments proved a straightforward dependence between
the number of criterion evaluations and overall time. However, it is difficult to de-
scribe this dependence precisely as the number of evaluations does not depend on
criterion computational complexity while the overall computational time does.
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Fig. 2. FBB prediction efficiency – Bhattacharyya distance, WDBC data.

The results in Figures 2,3 and 4 show that the default averaging mechanism
in FBB remains the best choice for general purpose. It markedly outperforms
the referential IBB in all cases. Figures 2 and 3 show unexpectedly good perfor-
mance of the simplest last-value predictor that becomes the fastest one in isolated
cases. However, it becomes totally compromised in combination with the Patrick-
Fischer criterion (Fig. 4). This illustrates the limits of using local information for
generalization depending on criterion properties. The level-based averaging pre-
dictor performs comparably to the default averaging. It performs slightly worse
in easier cases (Figs. 2,3) and slightly better in the difficult case (Fig. 4). It can
be expected that the overall level-based averaging performance would improve
with increasing problem sizes where more data becomes available for learning.
A better than expected performance is observed for the (max+min)/2 predictor
that proves to be sufficiently good in simpler cases and excellent in the difficult
case. It becomes a meaningful alternative to the default averaging, showing a
good generalization ability.

The performance of the maximising predictor in Figs. 2 and 3 is noticeably
worse than that of the default averaging but better in Fig. 4. This is the result
of the invoked “pessimistic” algorithm behaviour, which slows-down the search
in easy cases but helps to reduce the negative effect of “optimistic” errors if the
learning process is compromised by noise in data or criterion properties. Similar
or worse behaviour can be observed for the reverse individual predictor. The
minimising and individual value predictors are shown to have a strongly nega-
tive impact on FBB performance. In case of the minimising predictor it confirms
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Fig. 3. FBB prediction efficiency – Divergence, WAVEFORM data.

the assumption that “optimistic” algorithm bahaviour (tracking branches deeper
than necessary) can strongly deteriorate the FBB performance. The weak indi-
vidual value predictor performance confirms that individual feature importance
does not represent well its importance with respect to other features in a set.
Remark: A more detailed study of additional aspects affecting the general B&B
performance can be found in [8].

5 Conclusion

We have discussed in detail the recent Fast Branch & Bound optimal feature
selection algorithm with respect to its core concept of prediction mechanism.
Alternative predictors have been defined and investigated. The original averag-
ing prediction mechanism has been verified to be the good option for general
purpose. However, the simple last-value predictor shows to perform equally well
for some criteria while being simpler to implement and requiring less compu-
tational overhead. The level-based averaging predictor is to be recommended
especially for high-dimensional tasks and/or criteria where the feature contribu-
tions are known to be subset-size dependent. The (max+min)/2 predictor has
proved to be worth consideration as an alternative for general purpose. Regard-
less the differences between these prediction mechanisms the performance of the
respective FBB algorithm versions is generally better than that of the older op-
timal search algorithms like the Improved Branch & Bound. This demonstrates
the robustness of the prediction mechanism concept as such.
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Fig. 4. FBB prediction efficiency – Patrick-Fischer distance, SPEECH data.
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Abstract. The integrated approach is a classifier established on statistical esti-
mator and artificial neural network. This consists of preliminary data whitening 
transformation which provides good starting weight vector, and fast training of 
single layer perceptron (SLP). If sample size is extremely small in comparison 
with dimensionality, this approach could be ineffective. In the present paper, we 
consider joint utilization of structures and conventional regularization techniques 
of sample covariance matrices in order to improve recognition performance in 
very difficult case where dimensionality and sample size do not differ essentially. 
The techniques considered reduce a number of parameters estimated from 
training set. We applied our methodology to handwritten Japanese character 
recognition and found that combination of the integrated approach, conventional 
regularization and various structurization methods of covariance matrix outper-
form other methods including optimized Regularized Discriminant Analysis 
(RDA). 

1   Introduction 

One of characteristic elements of modern pattern classification tasks is extremely large 
number of features that are of the similar origin. An example is classification of 
handwritten Japanese characters. Since the features are mutually correlated, one cannot 
ignore the correlations for designing the pattern classification algorithm. To reduce 
complexity/sample size problems, one needs to structurize covariance matrix (CM), i.e. 
describe it by small number of parameters. Two decades ago such approach has been 
used for classification of time series [1, 2], 2D remote sensing image classification 
[3-7]. Structurization approach has been utilized also in recognition of handwritten 
Japanese characters, too. 

In many real world problems, distributions density functions of single features have 
clear deviation from Gaussian law. Promising way to solve such pattern recognition 
tasks is utilization of artificial neural networks based methods which do not require 
assumptions about type of distribution density functions of input features. In case of 
successful training, often one obtains good results. There are two main difficulties to 
apply such methods. First, results obtained depend on initial conditions (weight vector). 
Secondly, if input features are highly correlated, in high-dimensional situations the data 
becomes almost singular. This makes training become very slow. 
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A way to diminish the perceptron initialization problem and singularity of the data is 
the integrated approach of statistical and neural networks based methods [8-10]. In-
stead of using statistical estimate of CM to design the statistical classifier (denoted by 
CLs), we use CM for data whitening transformation. In subsequent training of SLP, this 
strategy leads classifier CLs just after the first bach-mode training with zero valued 
initial weight in the transformed feature space. 

If the assumption of structure of the CM is truth and sample size/complexity rela-
tionship is sufficiently high, we have a good start to train the perceptron further. Good 
initialization leads to high-quality result if one stops training in a right moment [11]. 
Moreover, data whitening speeds up training process. 

The integrated approach has been derived with the assumption that CM’s of both 
classes are the same. This approach could be ineffective because of unequal CM’s. It 
also could be ineffective when the assumptions of the structures of the CM are far from 
reality, due to use of wrong covariance structures or use of unreliable estimates which 
are calculated from small samples for the dimensionality. To improve effectiveness of 
the integrated approach, one can introduce additional regularization of the CM. An 
objective of the present paper is to investigate joint application of the CM regulariza-
tion, standard and special CM structures designed for 2D spatial image recognition to 
the integrated approach for discrimination of handwritten characters. We performed 
experiments with similar pairs of Japanese characters (Fig. 1), however, our method-
ology is not application specific. 

 

Fig. 1. Fourteen pairs of similar Japanese characters. 

The standard CM structures are widely used structures, and the special ones are 
prepared with taking into account nature of feature vectors of 2D images: distant pixels 
in the 2D image have less important correlations. The covariance matrices of similar 
classes are expected to be similar as well as the postulated correlations structures be 
truthful. We performed our investigation of 2 class discrimination in very difficult 
condition where the number of sum of sample sizes, n=N1+N2, and dimensionality, p, 
are approximately equal. Ni is training sample size of class i. 

2   Integrated Approach of Statistical Estimators 
and Artificial Neural Networks 

2.1   Standard Fisher Linear Discriminant Function 

The standard Fisher linear discriminant function is the most important rule to classify 
two categories, and offered the opportunity to give birth to the integrated approach. 
Suppose both pattern classes share a common covariance matrix. Denote the pooled 

sample covariance matrix by S and the sample mean vectors of two classes by (1)x and 
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( 2) .x  Then, allocation of a p-variate vector 1( , , )T

px x= �x  is performed according to 

a sign of discriminant function (DF) 

( ) ( )( ) ( )(1) (2) 1 (1) (2)1

2

T

g −= − + −Sx x x x x x . (1) 

Instead of S, a “better” (simplified) estimate of the covariance matrix (say SS ) could 
convert DF (1) into (another) statistical classifier CLs with possibly enhanced small 
sample properties. 

2.2   Integrated Approach 

In the integrated approach, the learning process consists of two stages: data whitening 
transformation by statistically estimated CM, and subsequent learning of SLP. Rec-
ognition is performed with trained SLP in transformed space. 

Preliminarily, all the samples (including test ones) are moved so that the mean of the 

training set becomes at the origin of the coordinate (i.e., (1) ( 2)
0+ =x x ). 

Data Whitening Transformation 
Let and be the eigenvalues matrix and eigenvectors matrix of sample estimate of 
simplified covariance matrix SS , i.e., S .T=S  All the test and training samples 

are transformed by 
1

2 T−=y x . This transformation makes zero valued weights be 
good initial ones for subsequent learning of SLP. 

Learning of SLP 
Let the initial weight be zero vector. Then, the perceptron is trained by gradient descent 
method. After the first batch iteration, we obtain discriminant func-

tion ( ) ( )( ) ( )(1) (2) (1) (2)1
2 E ,

T
g k= − + −y y y y y y  where (1)y and ( 2)y are the sample 

mean vectors in the transformed space, and Ek  is a scalar constant. This DF is equal to 

transformed DF (1), i.e. ( ) ( )( ) ( )(1) (2) (1) (2)1
2 .

T
g = − + −y y y y y y  The data whiten-

ing transformation gives good initial weights for training of SLP as long as the both 
classes share common CM and the distributions are well-estimated. For more details, 
see book [10]. Theoretically and practically, in subsequent training, SLP outperforms 
Fisher classifier if samples are non-Gaussian. 

3   Structurized and Regularized Estimates of Covariance Matrix 

In our research work, nine kinds of covariance matrix models are used (Fig. 4). First of 
all, three models without clear structurization of CM were considered. They are statis-
tical estimators rather than structurization methods. Model FULL use regularized 
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pooled CM FULL .=S S  In model FULL, we consider all p(p-1)/2 correlations 

(off-diagonal elements of CM). Model NO uses identity matrix. Note all CM models in 
this section become NO when 0 1.λ =  Model SQDF is a method which bases statistical 
classifier SQDF [12]. Unlike to other models, class-dependent CM’s are separately 
calculated and then pooled. Small eigenvalues of each CM are replaced by a constant. 
The constant is estimated by the maximum likelihood estimation. Here, the number of 
eigenvalues which are not constant is 5. 

Based on the assumption that most correlations between distant pixels are low, three 
types of fixed structure models specialized for feature vectors of 2D image were used 
(see the description for the feature vector at the very beginning of Section 4). The fixed 
structure models used block-diagonal CM: 49B4 has 49 independent 4× 4 blocks, 4B49 
has 4 blocks of size 49×49, and 4B&49B covers both regions of 49B4 and 4B49. 
Because both 49B4 and 4B49 are rather restrictive ones, less restrictive and more 
sophisticated model, 4B&49B, is designed. 

In addition to fixed structure models, we investigated three adaptive structured 
models. As a “dumb” model, we employ LARG, where much smaller correlations of 
CM are ignored so that the CM becomes close to diagonal. The second one is standard 
first-order tree dependence model TREE1 [8, 9]. Here, it is postulated that each feature 

depends only on one other feature. Therefore, an inverse of the matrix , ( ) 1
TREE1

−S , 

however, has 2p-1 non-zero elements. In general case, however, the inverse of 
non-structurized CM has p×p non-zero elements. In the previous research studies [9], 
most often this model appeared as a best one in moderate sample size situations. The 
last one is EBD which block-diagonalizes CM after exchanging elements of the matrix 
in order that sub-covariance matrices contain larger elements [13]. 14 is used for the 
number of sub-matrices. 

In the earlier stage of the investigation, we also considered scaled rotation regu-
larization [10, 14]. In experiments with 196-dimensional data and relatively small 
learning sets (100 samples), this regularization method was too complex and ineffec-
tive. 

If the number of training samples is too small, stucturized estimate of CM, S,S  is 
unreliable. For more reliable estimation, we are obliged to introduce additional regu-
larization, i.e. S&RDA S(1 ) ,λ λ= − +S S I  where λ is a parameter for regularization. 

If 0,λ = we have no regularization. If 1,λ = we have no structurization (case NO). 
Intermediate values of parameter λ could improve accuracy of determination of the 
weight vector obtained after the first batch iteration. Because good initial weight vector 
leads good result if training would be stopped in a right moment, proper additional 
regularization should assist in reducing generalization error. 

Note, if regularization is applied to conventional sample estimate of CM (in case of 
FULL), in dependence on number of iterations we have RDA ( RDA (1 ) ,λ λ= − +S S I ) 

with different λ (e.g., see Eq.(4.9) in [10]). RDA is known as one of the best classifi-
cation methods in statistical pattern recognition. 
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4   Experiments 

In the experiments, 196-dimensional directional element feature [15] was used to 
represent handwritten Japanese characters in database ETL9B. Preliminary to ex-
tracting the feature vector, a character image was normalized nonlinearly [16] to fit in a 
64×64 box. Then, skeleton were extracted, and line segments of vertical, horizontal and 
slanted at ±45 degrees were extracted. An image is divided into 49 sub-areas of 16×16 
dots (see Fig.3). Sum of each segment in a region is an element of feature vector. 

 

Fig. 2. 49 sub-areas of feature vector. 

Our purpose is to investigate potential possibilities of each of pattern classification 
method (strategy) in very difficult case where training set size n=N1+N2& p. Therefore, 
for 196-dimensional feature vector, we considered N = N1= N2 = 30, 50, 100, 150. This 
is a really critical situation of small sample/high dimensionality problem. In each 
experiment, we used test sets to find optimal regularization parameter which achieves 
minimum error rate. Each time we permuted 200 vectors in each pattern class. In each 
category, N samples were selected for training and remaining 200-N ones were for 
testing. 

Preliminary experiments demonstrated that test error estimates depend on value 

λ notably. Optimal values of λ depend on CM structurization method, training set 
size and also on random split of data into training and test sets. In Fig. 3a, we present 
typical histogram of distribution in 250 experiments for model Tree1. In Fig. 3b, we 
have generalization errors as function of λ  for five CM structurization methods (RDA, 
FULL, 4B&49B and Tree1) calculated from 250 experiments. 

We analysed bivariate distributions of optimal values in Fig.3a. We found there is no 
or very small correlations between two distinct CM models considered. This means for 
each CM structurization model, one needs utilize its own (best) value of λ . Accord-
ingly, optimal λ  is CM structurization method dependent. For this reason, for each pair 
and CM structurization method for all handwritten character pairs in Fig.1 (named as A 
to N from upper left pair), we performed ten preliminary experiments to evaluate 
approximately a fixed value of optimal λ  to be used in the main experiments. 

Average results obtained in 100 experiments for character pairs are presented in 
Table 1. We see that joint utilization of prior information in form of postulated structure 
and additional regularization of CM are useful even when parameter λ is determined 
approximately. We found that there is no single CM structure best for all handprinted 
character pairs. Most often, fixed structure models such as 49B4, 4B49 and 4B&49B 
were the best. In several cases, statistical structure models such as Tree1 and SQDF 
outperformed the fixed structure models. 
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Experiments with different training set sizes are shown in Table 2. This also con-
firmed usefulness of joint utilization of the CM structurization and regularization. The 
generalization error decreases uniformly with training set size N. The best two CM 
structurization models do not change with an increase in training set size. 

A 0.1955 0.9974 0.9514 0.9974 1 1.0051 0.9949 0.9923 0.9974 1.0691 
B 0.1475 1.0034 0.9695 0.9864 0.9966 0.9831 1.0102 0.9322 1.0034 1.0508 
C 0.0900 1.0056 1 0.9944 1 1 0.9944 0.9889 1.0056 1.1556 
D 0.1405 0.9929 1.0036 0.9893 0.9893 0.9893 1.0071 1.0036 0.9929 1.0747 
E 0.1465 1.0034 1.0137 1 1.0102 1.0068 1.0171 1.0068 0.9863 1.0819 
F 0.0410 1.0366 0.9390 1.0244 0.9634 0.9756 0.9634 0.9756 1.0122 1.0854 
G 0.0690 1.0290 0.9783 1.0290 1 1.0072 1.0145 1 1.0217 1.0217 
H 0.0810 1.0556 1.0309 1.0556 0.9506 0.9815 1.0556 0.9753 1.0617 1.0864 
I 0.1515 1.0033 1.0033 0.9967 0.8515 0.8746 0.967 0.9703 0.9934 1.0627 
J 0.0725 1.0138 0.9862 0.9034 0.9862 0.9241 0.9724 1.0069 1.0138 1.0828 
K 0.0950 0.9895 0.9842 0.9368 0.9579 0.9211 0.9211 0.9158 0.9632 1.0368 
L 0.0785 1.0191 0.9554 1.0191 1.0127 1.0127 1.0255 1.0127 0.9873 1.1274 
M 0.0640 1.0391 1.0156 1.0078 0.9531 0.9531 0.8828 0.7891 1.0313 1.1172 
N 0.0450 1.0111 0.9889 0.9778 1 1 1.0111 1.0111 0.9889 1.0667 

Mean 0.1012 1.0143 0.9871 0.9942 0.9765 0.9739 0.9884 0.9700 1.0042 1.0799 

Table 2. Average generalization errors for different training set sizes, N, and diverse CM 
structurization methods (Pair M). 

N FULL NO SQDF 49B4 4B49 4B&49B LARG TREE1 EBD RDA 
30 0.1151 0.1145 0.1146 0.1118 0.1089 0.1052 0.1116 0.0965 0.1145 0.1250 
50 0.0895 0.0902 0.0914 0.0883 0.0846 0.0820 0.0865 0.0769 0.0904 0.0980 
100 0.0624 0.0646 0.0658 0.0633 0.0595 0.0582 0.0614 0.0565 0.0648 0.0691 
150 0.0537 0.0543 0.0549 0.0515 0.0491 0.0487 0.0490 0.0452 0.0550 0.0608 

Fig. 3. Optimal λ and generalization errors (Pair M, N=100, in 250 experiments): (a) distribution 
of optimal regularization parameter λ  for model Tree1, and (b) generalization errors as func-
tions of λ  for RDA, FULL, 4B&49B and Tree1. 

Table 1. Average generalization errors for different character pairs of FULL, and relative ratios 
of generalization error of each method to generalization error of FULL (right 9 columns). The 
very last rows in the table are average values of the column. 

Pair FULL NO SQDF 49B4 4B49 4B&49B LARG TREE1 EBD RDA 
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(a) Distribution of optimal λ        (b) Generalization errors as function of λ 



Structures of Covariance Matrix in Handwritten Character Recognition      731 

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

    20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

 
(a) FULL                            (b) SQDF 
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(c) 49B4                             (d) 4B49 

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

    20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

 
(e) 4B&49B                         (f) LARG 
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(g) TREE1                            (h)EBD 

Fig. 4. Elements of structurized covariance matrices except model NO. Darker pixel stands for 
larger absolute value. 
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5   Concluding Remarks 

In the current paper, we considered performance of the integrated approach of statis-
tical estimators and neural networks. The main purpose is to investigate potential 
possibilities of this approach combined with various strategies under very difficult 
condition where the number of sum of training vectors is almost dimensionality. We 
used similar pairs of handwritten Japanese characters. This aggravates more difficult 
situation. 

The strategies we used were 1) utilization of prior information in form of postulated 
structure of covariance matrix; 2) regularization of CM; 3) solution of the perceptron is 
regularized by early stopping before a minimum of the cost function. As prior infor-
mation, nine kinds of structurization methods (models) were used. They also could be 
grouped as statistical models, fixed structure ones and adaptive structure ones. Fixed 
structure models are designed for feature vector of 2D spatial image. Regularization of 
CM directly improves data transformation which gives initialization of the perceptron. 
The number of learning steps of SLP decides complexity of pattern classification 
algorithm, too. 

In experiments, utilization of structure models allowed us to reduce generalization 
error for most of the character pairs. For all 14 character pairs considered, error of “the 
best method” was on average 1.15 times smaller in comparison with the optimized 
regularized discriminant analysis. It was 1.05 times smaller than that of SLP with 
regularized maximum likelihood covariance matrix (model FULL) utilized for pre-
liminary data transformation. Results of our research pointed out that joint utilization of 
structurization and conventional regularization of CM has a potential to improve effi-
cacy of the integrated approach in designing pattern classifiers. The experiments show 
no structure is the best for all pairs. Therefore, the best structure and regularization 
parameter have to be selected for each pair and sample size respectively. 

All three regularization techniques are acting simultaneously in the same directions. 
Thus, each of them can influence (reduce) effectiveness of other two. The effects of 
CM structures were also aggravated by the fact that most of distributions of the input 
features are highly asymmetric or bimodal, i.e. assumptions about Gaussian distribu-
tions were violated markedly [17]. In future research, the effects of factors aggravating 
positive effects have to be considered in detail. Practical techniques to select proper 
values of regularization parameters and optimal iteration should be developed. 
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Abstract. In the field of pattern recognition, the design of an efficient decoding 
algorithm is critical for statistical machine translation. The most common statis-
tical machine translation decoding algorithms use the concept of partial hy-
pothesis. Typically, a partial hypothesis is composed by a subset of source posi-
tions, which indicates the words that have been translated in this hypothesis, 
and a prefix of the target sentence. Thus, the target sentence is generated from 
left to right obtaining source words in an arbitrary order. We present a new ap-
proach, where the source sentence is translated from left to right and the possi-
ble word reordering is performed at the target prefix. We implemented this ap-
proach using a multi-stack decoding technique for a phrase-based model, and 
compared it with both a conventional approach and a monotone approach. Our 
experiments show how the new approach can significantly reduce the search 
time without increasing the search errors. 

1   Introduction 

Statistical methods have proven to be valuable in tasks such as automatic speech 
recognition, and they present a new opportunity for automatic translation. The goal of 
statistical machine translation is to translate a given source language sentence 

f= ||
1

ff =f1...f|f| to a target sentence e= ||
1
ee =e1...e|e|. The pattern recognition methodology 

most commonly used [2] is based on the definition of a function Pr(e|f) that returns 
the probability of translating a given source sentence f into a target sentence e. Once 
this function is estimated, the problem can be formulated as the search for a sentence 
e that maximizes the probability Pr(e|f) for a given f. Using Bayes’ theorem, we can 
decompose the initial function in the language model and the inverse translation 
model: 

))|Pr()(Pr(maxarg efee’
e

=  (1) 

Nearly all statistical translation models try to establish the correspondence between 
source and target words by introducing the hidden variable of alignment [2]. Once the 
concept of alignment is formalized (see section 3 for a description), we introduce the 
variable of alignment, a, into the previous equation in order to obtain the sum of all 
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possible alignments between e and f. However, the search is usually performed using 
the so-called maximum approximation [8]: 

( ))|Pr(max)Pr(maxarg)|Pr()Pr(maxarg’ eaf,eeaf,ee
aeae

≈⎟⎟⎠

⎞
⎜⎜⎝

⎛
= ∑  (2) 

There are different approaches to define the concept of alignment. The most com-
mon approaches are the single-word-based alignment models. Models of this kind 
assume that an input word is generated by only one output word [1][2]. This assump-
tion does not correspond to the nature of natural language.   

One initiative for overcoming the above-mentioned restriction is known as the 
template-based approach [7]. In this approach, an entire group of adjacent words in 
the source sentence may be aligned with an entire group of adjacent target words. A 
template establishes the reordering between two sequences of word classes. However, 
the lexical model continues to be based on word-to-word correspondence. 

Recently, a simple alternative to these models has been proposed, the phrase-based 
(PB) approach [5][10][13]. That is commented in the section 3. 

2   Decoding Algorithms 

In this section, we describe the most common statistical decoding algorithms. With 
the exception of the greedy algorithm [4], the rest of them use the concept of partial 
translation hypothesis to perform the search [1][8][12]. In a partial translation hy-
pothesis, some of the source words have been used to generate a target prefix. Each 
hypothesis is scored according to the translation and language model. The most typi-
cal partial hypothesis comprises: 

• w⊂{1..|f|}: The coverage set indicates the positions of the source sentence that 
has been translated by this hypothesis. 

• lke1 : The target prefix, where lk is the prefix length. 
• g: The score of the partial hypothesis. 

The translation procedure can be described as follows: The system maintains a 
large set of hypotheses, each of which has a corresponding translation score. This set 
starts with an initial empty hypothesis. The system selects one partial hypothesis to 
extend. The extension consists of selecting one or more untranslated words in the 
source sentence and also selecting one or more target words that are attached to the 
existing output prefix. In the new hypothesis, the source words are marked as trans-
lated and the probability cost of the hypothesis is updated. The extension of a partial 
hypothesis can generate hundreds of new partial hypotheses. The output of the search 
is the hypothesis that has the highest score and no untranslated source words (final 
hypothesis). 

The strategies for selecting one partial hypothesis to be extended can be grouped 
into three types: If the best-first search is used, the A* algorithm is obtained; if the 
deep-first search is used, the multi-stack decoding algorithm is obtained. If the 
breadth-first search is used, the dynamic-programming algorithm is obtained. 
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2.1   A* Algorithm 

The A* algorithm [4][8][12] is also known as the stack-decoding algorithm. All 
search hypotheses are managed in a priority queue (stack) ordered by their scores. 
This algorithm has one main drawback: short hypotheses have higher scores, there-
fore, the algorithm has a tendency to expand the short hypotheses first and the search 
is very slow. To solve this problem, we need to introduce the heuristic function 
[8][12]. This function estimates the probability of completing a partial hypothesis.  

2.2   Multi-stack Decoding Algorithm 

This algorithm, which was proposed in [1], tries to solve the problem of the previous 
algorithm by using a different approach. It uses a different stack to store the hypothe-
sis depending on which words in the source sentence have been translated (the cover-
age set). Therefore, we may need up to a total of 2|f| stacks. This procedure allows us 
to force the expansion of hypotheses with a different degree of completion. In each 
iteration, the algorithm covers all stacks with some hypotheses and extends the best 
one for each. After the first iteration, there is at least one final hypothesis. [1] pro-
poses using the best final hypothesis, after each iteration, to establish a pruning crite-
rion in order to erase the partial hypotheses that cannot improve the best final hy-
pothesis.  

2.3   Dynamic-Programming Algorithm 

In this algorithm, the partial hypotheses are stored in the nodes of a search graph. 
This graph is explored in a breadth-first manner, that is, when a hypothesis is ex-
tended, all their predecessors1 have also been extended. 

The search space can be very large, so some authors make simplifying assump-
tions about the search space. [3] and [6] propose algorithms for IBM model 2, and [9] 
proposes algorithms for a monotone model. However, the most frequent strategy for 
making dynamic-programming feasible is beam search [9][13]. Beam search is based 
on histogram pruning, that is, in each node of graph, we extend only the H better 
hypotheses.  

3   The Phrase-Based Model 

In this approach the probability of a sequence of words in a source sentence being 
translated to another sequence of words in the target sentence is explicitly learnt. To 

define the PB model, we segment the source sentence f into K phrases ( K
1f

~
) and the 

target sentence e into K phrases ( K
1e~ ). A uniform probability distribution over all 

possible segmentation is assumed (α(e)). 

                                                           
1  h’ is a predecessor of h if the words translated by h’ are a subset of  the words translated 

by h.  
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If we assume a monotone alignment, that is, the target phrase in position k is pro-
duced only by the source phrase in the same position [10], we can write:  

∏
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Where the parameter p( f
~

| e~ ) estimates the probability that the phrase, e~ , be 

translated to the phrase f
~

. These are the only parameters of this model. A phrase can 

be comprised by a single word. Thus, the conventional, word-to-word statistical dic-
tionary is included.  

If we permit the reordering of the target phrases, a hidden phrase level alignment 
variable, a~ , is introduced. In this case, we assume that the target phrase in position k 
is produced only by the source phrase in position ka~ .    
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~ 1

~ )
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K
1 k
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For the distortion model, we assume a first-order alignment that depends only on 
the distance of the two phases [7]: 

4   Monotone Algorithm 

In this section, we present a search algorithm for the monotone PB model (equation 
4) based on multi-stack decoding. This algorithm is similar to the one in [1] but takes 
advantage of the sequentiality of the model. We define a hypothesis search as the 

triple (mk, lke1 , g), where mk is the length of the source prefix we are translating in 

the hypothesis (that is mkf1 ). The sequence of lk words lke1  is the target prefix that 

has been generated. And g is the score of the hypothesis.  
Following the multi-stack decoding approach, hypotheses are stored in different 

priority queues according to their value of mk. This results in the following algorithm: 
 

Create priority queues from Q0 to Q|f|  
Initialize Q0 with the empty hypothesis (mk=0, lk=0, g=1) 
Repeat max_expan times or until no more hypotheses to extend 
  For each queue from Q0 to Q|f|-1: 
    Pop the hypothesis with the highest score; h=(mk, lke1 , g)  
    For | f

~
|=1 to |f|-mk  

      f
~

= |
~

|
1

fmk
mkf +

+  
      For each e~  with p( f

~
| e~ )>0 

        Push in Qmk+| f
~

| the hypothesis: 
          (mk+| f

~
|, lke1 e~ , g·Pr( e~ | lke1 )·p( f

~
| e~ )) 

The hypothesis of Q|f| with the highest score is the output 

Fig. 1. Multi-stack decoding monotone algorithm for PB model. 
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The hypothesis extension consists of: selecting a phrase f
~

 from the source sen-

tence, starting with the last word translated and with any length; selectng e~ , a possi-

ble translation of f
~

; and appending it to the target prefix. 

The parameter max_expan limits the number of iterations of the algorithm. A typi-
cal value used is 10; results do not improve with greater values. The introduction of 
this parameter permits a very fast search. We can translate several hundred words in a 
second. 

To improve the translation speed, pruning criteria is introduced to erase hypotheses 
with a low probability of becoming the best output. [1] proposes using a threshold by 
stack, which is calculated from the best final hypothesis up to that point. In our im-
plementation, we use a very simple solution. If a hypothesis has a score that is higher 
than the best output, the hypothesis is discarded. The same pruning criterion is used 
in the two algorithms described below. 

5   Source Word Reordering Algorithm 

The monotone algorithm does not permit the reordering of the target phrases. In this 
section, we present a search algorithm for the nonmonotone model (equation 5). This 
algorithm is similar to the one described in [1].  

We define a hypothesis search as the triple (w, lke1 , g), where w⊂{1..|f|} is the cov-

erage set that defines which positions of source words have been translated; lke1  is the 

target prefix that has been generated; and g is the score of the hypothesis. A similar 
definition of a hypothesis search can be found in [1][12][13]. 

For a better comparison of hypotheses, [1] proposes storing each hypothesis in dif-
ferent priority queues according to their value of w. The number of possible queues 
can be very high (2|f|); thus, the queues are created on demand. Here is the algorithm: 

 
Initialize Q∅ with the null hypothesis (w=∅, lk=0, g=1) 
Repeat max_expan times or until no more hypotheses to expand 
     For each queue in order of index cardinality 
    Pop the highest scored hypothesis; h=(w, lke1 , g)  
    For | f

~
|=1 to |f|  

      Let jinit= minn=1..|f| (n ∉w) 
   For j= jinit to jinit+win_search-1 with w ∩ {j,.., j+| f

~
|-1}=∅ 

          f
~

= 1|
~

| −+ fj
jf  

          For each e~  with p( f
~

| e~ )>0 
            Push in Qw ∪ {j,…, j+| f

~
|-1} the hypothesis: 

      (w ∪{j,…, j+| f
~

|-1}, lke1 e~ , g·Pr( e~ | lke1 )·p( f
~

| e~ )) 
The hypothesis of Q{1,..,|f|} with the highest score is the out-
put 

Fig. 2. Multi-stack decoding source word reordering algorithm for PB model. 
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The principal difference of this algorithm with the monotone algorithm is the hy-

pothesis extension. Now, the source phrase f
~

 can be selected starting at any position 

j, with the restriction of the words of f
~

 which have not been translated in the hy-

pothesis to be extended (w ∩ {j,.., j+| f
~

|-1}=∅). This algorithm uses an additional 

restriction proposed in [1]. The initial source position j is selected only through the 
first win_search positions, beginning at the first nontranslated word. 

This algorithm is much slower than the monotone algorithm. First, it introduces an 
additional order of magnitude selecting the position of the input phrase. Second, it 
extends a hypothesis from each stack created. Afterwards, there are |f| stacks and 
there can be now reach up to 2|f|. 

6   Target Word Reordering Algorithm 

In order to improve the search time, we propose an algorithm that has a structure that 
is similar to the monotone algorithm. We take the words of f from left to right, and 
we introduce a possible word reordering at the output prefix. 

Similar to the monotone algorithm, we define a hypothesis search as the triple (mk, 
lke1 , g). This hypothesis indicates that the source prefix mkf1  has been translated by 

the target prefix lke1  with a score of g. Different to the previous case, we can intro-

duce the special token <nul> at the output prefix. The meaning of this token is that in 
a future expansion, the token <nul> must be replaced by a sequence of words. See 
Figure 3 for an example. In principle, a hypothesis could include an arbitrary number 
of <nul> tokens; however, in our implementation, we allow only one. Therefore, we 
can distinguish between two classes of hypotheses. A hypothesis is closed if it does 
not contain the token <nul>, and it is open if it contains this token. In the latter case, 

if <nul> token is at position i, we can represent the target prefix as 1
1

−ie <nul> lk
ie 1+ .  

(0, “”, 1)  (1, “el”, g1)  (2, “el <nul> de configuración”, g2)  (3, “el programa de 

configuración”, g3) 

Fig. 3. Example of a sequence of hypotheses that permits translating the Spanish sentence ‘el 
programa de configuración’ from the English sentence ‘the configuration program’. 

The hypothesis extension begins selecting f
~

, starting at the position mk+1 of f. 

Then, e~  is selected as a possible translation of f
~

. If the hypothesis to be extended is 

closed, two new hypotheses are created; one is created by putting e~  at the right of 
the target prefix, and the other is created by putting <nul> e~  at the right of the target 
prefix. If the hypothesis is open, four new hypotheses are created; one that closes the 
hypothesis, replacing the token <nul> by e~ ,  and three that keep the new hypotheses 
open, putting e~  at the left or right of <nul>, or putting e~  at right of the target prefix.  
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This algorithm uses a different approach to calculate the distortion probability. A 
similar approach for the previous algorithm is not possible. When we open a hypothe-
sis, we do not know the final position that a phrase will take. Thus, we have a differ-
ent parameter distortion for each type of extension. If the hypothesis is closed, we use 
de probabilities pm to keep it closed and 1-pm to open it.  If the hypothesis is open, we 

have four different extension types with the probabilities pc, pi, pd and 1-pc-pi-pd. 

Another problem we need to solve is the evaluation of the language model in the 
partial hypotheses. In the two other algorithms, the target prefix is created from left to 
right, so we can easily use an n-gram model. In this algorithm, if we have an open 
hypothesis, we cannot calculate the language model contribution of the right part of 
the prefix after the <nul> token, since we do not know which words will be replaced 
by <nul>. To solve this problem, we compute an estimation of the language model 
contribution. It consists of assigning the probability of its unigram to the word at the 
right of <nul>. We assign the probability of the bigram to the next word, etc. When a 
hypothesis is closed, this estimation is replaced by the true language model contribu-
tion. 

Create priority queues from Q0 to Q|f|  
Initialize Q0 with the null hypothesis (mk=0, lk=0, g=1) 
Repeat max_expan times or until no more hypotheses to extend 
    For each queue from Q0 to Q|f|-1 
        Pop the hypothesis with the highest score; h=(mk, lke1 , g)  
        For | f

~
|=1 to |f|-mk  

            f
~

= |
~

|
1

fmk
mkf +

+  
            For each e~  with p( f

~
| e~ )>0 

                Push in Qmk+| f
~

| the hypotheses: 
                if h is closed: 
                     (mk+| f

~
|, lke1 e~ , g·Pr( e~ | lke1 )·p( f

~
| e~ )·pm) 

                     (mk+| f
~

|, lke1 <nul> e~ , g·Pr( e~ |<nul>)·p( f
~

| e~ )(1- pm)) 
                if h is open:   
                     (mk+| f

~
|, lke1 e~ , g·Pr( e~ |<nul> lk

ie 1+ )·p( f
~

| e~ )(1-pc-pi-pd)) 
                     (mk+| f

~
|, 1

1
−ie e~ lk

ie 1+ ,  g·Pr( e~ lk
ie 1+ | 1

1
−ie )·p( f

~
| e~ )/Pr( lk

ie 1+ |<nul>)· pc) 
                     (mk+| f

~
|, 1

1
−ie e~ <nul> lk

ie 1+ ,  g·Pr( e~ | 1
1

−ie )·p( f
~

| e~ )·pi) 
                     (mk+| f

~
|, 1

1
−ie <nul> e~ lk

ie 1+ ,g·Pr( e~ lk
ie 1+ |<nul>)·p( f

~
| e~ )/Pr( lk

ie 1+ |<nul>)·pd) 
Closed hypothesis of Q|f| with highest score is the output 

Fig. 4. Multi-stack decoding target word reordering algorithm for the PB model. 

7   Experimental Results 

In order to compare the three decoding algorithms introduced above, several experi-
ments were carried out. We use the Hansards task which consists of proceedings of 
the Canadian parliament. The training corpus consists of 50,000 sentences (2.1 mil-
lion French and 1.9 million English words). The vocabulary size is 29,479 for French 
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and 37,554 for English. With this corpus we train a phrase-based model [11] using a 
maximum length of phrase of 4 words. We obtain 916,414 parameters in this model. 
We used a test comprised of 240 bilingual sentences, uniformly distributed across the 
source lengths 5, 10, 15, …, 60. We use two criteria to evaluate the algorithms, the 
translation accuracy, measured in word error rate, (WER)[8][9] and the translation 
speed, measured in words per second.  

Table 1 shows the effect max_expand parameter in the three algorithms. Monotone 
algorithm obtains a WER a little worst than nonmonotone algorithms. In other tasks, 
such as a reduced domain task or a task between Romanic languages, it obtains the 
same results as nonmonotone algorithms. With respect the search speed, the mono-
tone algorithm is very fast. It obtains the best results with a value of max_expand=8. 
For this value, it can translate 37 words per second. Source word reordering (SWR) 
algorithm obtains somewhat better results than monotone algorithm. To obtain this 
improvement, it needs a high value of max_expand and it is very slow. We cannot use 
this algorithm in real time tasks. Target word reordering (TWR) algorithm obtains 
similar results to the SWR algorithm. However, it is faster. It obtain the best results 
with a value of max_expant=32. For this value, it can translate 4.2 words per second. 

Table 1. Effect of max_expand parameter on WER and translation speed for the three decoders 
(win_search=6). 

max_expand 1 2 4 8 16 32 64 
WER 74.49 74.54 74.46 74.46 74.40 74.39 74.40 

monotone 
word/sec. 268 142 73.0 37.2 18.8 8.5 3.1 
WER 74.60 74.45 74.41 74.35 74.38 74.13 - source word  

reordering word/sec. 2.2 1.0 0.49 0.23 0.11 0.05 - 
WER 74.49 74.54 74.39 74.40 74.31 74.12 74.14 target word  

reordering word/sec. 160 80.3 39.3 19.3 8.6 4.2 2.2 

Table 2 shows the effect of sentence length on the three decoding algorithms. Usu-
ally, sort sentences are better translated than long sentences; however, the difference 
is small. Except for sentences with 5 words, the translation speed is independent of 
the sentence length in monotone and TWR algorithms. However, in SWR algorithm, 
the translation speed decreases with the sentence length in sentences with less than 25 
words. 

Table 2. Effect of sentence length on WER and translation speed for the three decoders 
(max_expand=20, win_search=6). 

Sentence length 5 10 15 20 25 30 35 40 45 50 55 60 
WER 63.0 69.5 79.9 75.2 79.8 76.2 71.9 74.9 72.0 69.9 74.9 75.8 

monotone 
word/sec. 31.7 13.9 15.5 14.0 15.7 12.8 14.3 14.7 14.5 14.5 14.5 14.3 
WER 63.0 73.1 78.7 72.8 79.1 75.0 71.7 74.8 71.2 69.3 73.9 74.5 source 

word  
reordering 

word/sec. 1.2 0.31 0.17 0.12 0.14 0.11 0.12 0.13 0.12 0.12 0.11 0.13 

WER 62.0 68.5 79.0 74.0 79.2 75.0 71.9 74.6 71.0 69.3 73.6 74.9 target word  
reordering word/sec. 11.2 6.4 7.5 6.8 7.7 6.4 7.2 7.4 7.8 7.5 7.2 7.5 
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8   Conclusions 

In this paper, we have described three search algorithms based on multi-stack decod-
ing techniques. We have used them with the phrase-based model [10][13], and we 
think these algorithms can be easily adapted to other models like template-based [7] 
or IBM models [1][2]. 

In our experiments, monotone search obtained results in WER that were compara-
ble to non monotone search. However, it is much faster. We obtain similar results in 
other tasks and in other models (like template-based) which are not reported in this 
paper [11]. For nonmonotone search, we have proposed a new approach, where the 
source sentence is translated from left to right and the word reordering is computed at 
the target prefix. We have compared it with the conventional approach. The experi-
ments show that for similar search results the new approach is faster and requires less 
memory for stacks. 

In the future, we are interested in applying the dynamic-programming technique to 
these algorithms, and comparing them with the stack-decoding technique. We are also 
interested in using these algorithms with other models, such as the IBM models.   
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Classifier Design for Population and Sensor Drift
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Abstract. The basic assumption in classifier design is that the distri-
bution from which the design sample is selected is the same as the dis-
tribution from which future objects will arise: i.e., that the training set
is representative of the operating conditions. In many applications, this
assumption is not valid. In this paper, we discuss sources of variation
and possible approaches to handling it. We then focus on a problem in
radar target recognition in which the operating sensor differs from the
sensor used to gather the training data. For situations where the phys-
ical and processing models for the sensors are known, a solution based
on Bayesian image restoration is proposed.

Keywords: classification; generalisation; sensor drift; population drift;
Bayesian inference; target recognition.

1 Introduction

In classifier design, we often have a design or training set that is used to train
a classifier; a validation set (used as part of the training process) for model
selection or termination of an iterative learning rule; and an independent test
set, which is used to measure the generalisation performance of the classifier:
the ability of the classifier to generalise to future objects. These datasets are
often gathered as part of the same trial and it is common that they are, in fact,
different partitions of the same dataset.

In many practical situations, the operating conditions may differ from those
prevailing at the time of the test data collection, particularly in a sensor data
analysis problem. For example, sensor characteristics may drift with time or
environmental conditions may change. These effects result in changes to the
distributions from which patterns are drawn. This is referred to as population
drift [4].

The circumstances and degree of population drift vary from problem to prob-
lem. This presents a difficulty for classifier performance evaluation since the test
set may not be representative of the operating conditions and thus the general-
isation performance quoted on the test set may be overly optimistic.

Designing classifiers to accommodate population drift is problem specific. In
Section 2 we review some of the causes of population drift and the approaches
that can be taken to mitigate against distributional changes. In section 3, a
generic Bayesian approach is described and in section 4, this is applied in a
target recognition example in which the probability densities of interest can be
calculated using knowledge of the properties of the imaging radars.

A. Fred et al. (Eds.): SSPR&SPR 2004, LNCS 3138, pp. 744–752, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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2 Population Drift

2.1 Sensor Drift

Pattern recognition techniques need to be developed for drifting sensors. An ex-
ample is an electronic nose, a device that contains a number of different individ-
ual sensors whose response characteristics depend on the chemical odour present.
These have applications in quality control, bioprocess monitoring and defence.
All chemical sensors are affected by drift, stability problems and memory effects.
Data processing techniques are required to handle these effects autonomously.
This may be simple preprocessing to remove shifts in zero points of responses,
and changes in sensitivity handled by a gain control, but there may be more
complex effects.

2.2 Changes in Object Characteristics

In medical applications there may be drift in the patient population (changes in
patient characteristics) over time. Population drift also occurs in speech recog-
nition when a new speaker is presented. There are various approaches including
analysing a standard input from a new speaker and using this to modify stored
prototypes. In credit scoring, the behaviour of borrowers is influenced by short-
term pressures (for example, Budget announcements by the Chancellor of the
Exchequer) and classification rules will need to be changed quite frequently [5].

In radar target recognition, classifiers need to be robust to changes in vehicle
equipment fit which can give rise to large changes in the radar reflectivity [1].
Within a Bayesian density estimation framework for classification, one approach
is to introduce hyperpriors to model target variability. In condition monitoring,
the healthy state of an engine will change with time. In object recognition in
images, it is important that the classifier has some invariance to object pose
(translational/rotational invariance).

In each of the examples above, it is an advantage if the classification method
can be dynamically updated and does not need to be re-computed from scratch
(using new sets of training data) as the conditions change.

2.3 Environmental Changes

The training conditions may only approximate the expected operating condi-
tions and a trained classifier will need some modification [6]. The signal-to-noise
ratio of the operating conditions may be different from the (controlled) train-
ing conditions and may possibly be unknown. In order to derive a classifier for
noisier operating conditions, several approaches may be adopted including noise
injection in the training set and modifying the training procedure to minimise
a cost function appropriate for the expected operating conditions [8]. Errors-in-
variables models are relevant here.

In target recognition, the ambient light conditions may change. The environ-
mental conditions, for example the clutter in which the target is embedded, will
differ from the training conditions. Sea clutter is time-varying.
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2.4 Sensor Change

For various reasons, it may not be possible to gather sufficient information with
the operating sensor to train a classifier: it might be too expensive or too danger-
ous. However, measurements can be made in more controlled conditions using a
different sensor and a classifier can be designed using this set of measurements. In
this type of problem, a classifier needs to be designed using sensor-independent
features or a means of translating operating sensor data to the training domain
must be developed. This is discussed further in section 3.

2.5 Variable Priors

Prior probabilities of class membership are likely to change with time. Thus, al-
though class conditional densities do not change, decision boundaries are altered
due to varying priors. This requires high-level modelling, but often there is little
data available to model the dependencies and Bayesian networks are constructed
using expert opinion [2].

Costs of misclassification are also variable and unknown. The consequence
is that the optimisation criterion used in training (for example, minimum cost)
may be inappropriate for the operating conditions.

2.6 Conclusions

Uncertainties between training and operating conditions mean that there is a
limit beyond which it is not worth pushing the development of a classification
rule [4]. In some cases, population drift is amenable to treatment, but this is
problem dependent.

3 Joint Density Modelling

3.1 Introduction

Let us denote measurements in the training conditions by the variable x and
measurements in the operating conditions by the variable z. Assuming a prob-
abilistic relationship between the measurements of an object in the operating
conditions and the measurements of the (same) object that would have been
obtained in the training conditions (denoted by p(x|z)), inference proceeds by
considering expectations of functions g(x) of x, conditional on the measure-
ments z:

E[g(x)|z] =
∫
x

g(x)p(x|z)dx (1)

There are a number of special cases.
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Classification. Suppose that we have designed a classifier using a design set
D = {xi, i = 1. . . . , N} of samples gathered under the training conditions. De-
note the class posterior probabilities estimated by the classifier for a measure-
ment x by p(C = j|x,D), j = 1, . . . , J . Setting gj(x) = p(C = j|x,D), for
j = 1, . . . , J and substituting into (1) gives

E[p(C = j|x,D)|z] =
∫
x

p(C = j|x,D)p(x|z)dx (2)

These expectations provide an estimate of the posterior class probabilities for
the z data, based on a classifier trained using x data.

Regression. Another special case is if g(x) is a regression function. The training
set consists of {(xi, θi), i = 1, . . . , N} and a regression function is constructed
to provide an estimate of θ given x. Conditioned on a value z, we have (with
g(x) = E[θ|x])

E [E[θ|x]|z] =
∫

E[θ|x]p(x|z)dx (3)

The expectations in (3) provide an estimate of θ for the z data, based upon a
regression function designed using x data.

3.2 The Conditional Density, p(x|z)
Specification of the conditional density, p(x|z) may be done in a number of
ways. There may be prior knowledge of the form of the discrepancy; we have a
physical model that characterises the difference between training and operating
conditions. An example is a point scatterer model of a target in a radar target
classification problem or a facet model of an object which we can use to simu-
late the image of the object under different illumination. The key to dealing with
both of these examples is to first invert the operational data z to an underlying
representation σ (e.g. the point scatterer model), and to then convert the un-
derlying representation to measurements consistent with the training conditions
(e.g. the different illumination).

4 Radar Target Classification Example

4.1 Introduction

The remainder of this paper concentrates on the development of procedures that
enable a classifier designed using data gathered from one sensor to be applied
to data gathered from a different sensor (provided that appropriate sensor mea-
surement models are available). A motivating application is to use automatic
target recognition (ATR) systems trained on readily available ground-based In-
verse Synthetic Aperture Radar (ISAR) data to classify objects imaged by an
airborne Doppler Beam Sharpened (DBS) radar seeker. It is intended that this
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will be done by inverting each operational DBS image to an underlying radar
cross section (RCS). A Bayesian image restoration (inverse model based) ap-
proach, which estimates the distribution of the underlying RCS, is proposed for
this task. Given the distribution of the RCS we can then use the ISAR sensor
measurement model to obtain the distribution of the ISAR image given the DBS
image. ISAR images sampled from this model generated distribution can then be
classified by an ATR system trained using ISAR data, thus providing the clas-
sification for the operational DBS image. The advantage to such a procedure is
that it is easier to collect ISAR training data (by imaging targets on turntables)
than it is to collect DBS data. Throughout the paper the DBS data is referred
to as the z sensor data, and the ISAR data as the x sensor data.

4.2 Inverting the Data from the Operational Sensor

The Bayesian framework used to model the operational (z) sensor data mea-
surement process is illustrated by the model in Fig. 1.

��
	


��
	


θ σ

��
	


z

�
�
�
���

�
�
�
���

physical and processing model

Fig. 1. Sensor model for z sensor data.

We assume that a physical and processing model is available that transforms
the underlying RCS σ to a set of sensor measurements z. The model depends on
parameters θ, which may be unknown. The parameters θ will contain information
on the sensor characteristics (beam shape, pulse width etc) and sensor platform
dynamics (e.g. for an airborne sensor the speed, acceleration, roll).

Using Bayes’ theorem, along with Fig. 1, the posterior distribution is:

p(σ, θ|z) ∝ p(z|σ, θ)p(σ)p(θ). (4)

Integrating over the parameters of the sensor measurement model produces the
marginal posterior distribution p(σ|z). The components of the posterior distri-
bution are the prior distribution for the RCS, p(σ), the prior distribution for θ,
p(θ), and the conditional distribution for the sensor data given the measurement
model parameters and the RCS, p(z|σ, θ). These distributions are examined in
more detail below.

The form of the prior distribution for σ will depend on the representation
of σ. For our example, σ is represented as a two-dimensional grid of values,
σ = {σi,j , 1 ≤ i, j ≤ d}, where d × d is the dimensionality of the grid. The prior
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distribution for σ is taken to be multivariate Gaussian (having concatenated the
rows of the grid into a single vector), although this would not be appropriate
in many situations. Ideally, the prior distribution should reflect the RCS grids
that would be expected for the range of targets to be identified (i.e. determined
using expert knowledge).

A prior distribution p(θ) is required for the imaging model parameters θ.
This will depend on the exact form of θ, which is determined by the physical
model transforming the RCS to the sensor measurements. In many cases each
of the variables that comprise θ (e.g. pulse width) will be known to within a
tolerance, so independent Gaussian distributions would be appropriate.

The form of the conditional distribution p(z|σ, θ) depends on the physi-
cal and processing model for the sensor data generation and the noise in that
physical model. Typically, the model will be assumed to consist of a (known)
deterministic function of σ and θ, together with additive noise. For our example,
the operational sensor measurement process is taken to consist of the application
of a 3× 3 point spread function (PSF) to the underlying RCS grid, followed by
the addition of independent Gaussian noise to each pixel (although the presented
Bayesian algorithm would be unchanged by the addition of multivariate Gaus-
sian noise on the whole image). Edge effects from the application of the PSF are
dealt with by adding a temporary boundary layer of zeros to the RCS grid. The
additive noise for each pixel is drawn independently from a zero mean Gaussian
distribution, N(0, ψ2z). The variable θ is therefore given by the noise variance ψ2z
and the matrix psfz defining the PSF. The documented example assumes that
the elements of θ are known (and correct), corresponding to a point mass prior
distribution for p(θ). The resulting sensor measurement distribution is:

p(z|σ, θ) =
d∏

i=1

d∏
j=1

N(zi,j ; psf(σ, psfz)i,j , ψ2z) (5)

where z = {zi,j, 1 ≤ i, j,≤ d} are the pixels of the measurement z, and the
(i, j)-th element of the image created by applying the point spread matrix psf
to the RCS grid σ is represented by psf(σ, psf)i,j .

It turns out that for the example in this paper, the distribution p(σ|z) can be
expressed analytically as a multivariate Gaussian distribution. This would not be
the case for the majority of sensor measurement models and prior distributions.
Indeed, calculation of the normalisation constant for the posterior distribution is
usually not tractable, and for most physical and processing models, statistics of
interest (such as the mean and covariance) will not be available analytically. In
such cases, rather than making simplifications to allow analytic inference on the
posterior distribution, a full Bayesian approach to the problem is maintained by
drawing samples from the posterior. All inferences can then be made through
consideration of these samples. In most circumstances it will not be possible to
sample directly from the posterior distribution, in which case a Markov chain
Monte Carlo (MCMC) algorithm [3, 7] is used.
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4.3 The Conditional Density p(x|z)
The density p(x|z) used in the equations of Section 3 can be expressed as:

p(x|z) =
∫
σ

p(x,σ|z) dσ =
∫
σ

p(x|σ)p(σ|z) dσ (6)

The density p(x|σ) represents the physical and processing model for the
training sensor measurements, under the assumption that the imaging model
parameters are known. For our example, the same measurement process as for
the operational sensor is used (see (5)), but with a different matrix psfx defining
the PSF, and a potentially different additive noise variance ψ2x.

For our documented example, the density p(x|z) in (6) turns out to be
multivariate Gaussian. Thus, samples can be drawn easily from this distribu-
tion and used to approximate the expectations of Section 3. Given samples
{x(s), s = 1, . . . , N} from p(x|z), the posterior classification probabilities de-
fined in (2) become:

E[p(C = j|x, D)|z] ≈ 1
N

N∑
s=1

p(C = j|x(s), D) (7)

More complicated operational and training sensor measurement models and
prior distributions require the use of MCMC samples from p(σ, θ|z). In particu-
lar, we can sample from p(x|z) by passing the RCS samples through the physical
and processing model for sensor data x (i.e. by sampling from p(x|σ) for each
MCMC sample for σ).

4.4 Description of Experiment

A two class problem has been used to illustrate the approach, with the targets
defined on underlying d × d RCS grids, where d = 5. The PSF matrices for the
sensors were taken to be:

psfz =

⎛⎝0.3 0.3 0.30.3 1.0 0.3
0.3 0.3 0.3

⎞⎠ psfx =

⎛⎝0.1 0.1 0.10.1 1.0 0.1
0.1 0.1 0.1

⎞⎠ (8)

The different PSF widths mimic the effects of different sensor resolutions, with
the data from the operational sensor being more distorted than that from the
training sensor. The standard deviations of the additive noise applied to the
sensor data were ψx = ψz = 0.1.

The sensor data were created by generating underlying RCS grids and then
simulating the sensor measurement processes. The RCS grids were generated by
sampling from multivariate Gaussian distributions (after concatenation of the
rows of the grid). For both classes, the Gaussian covariance matrix was diagonal,
with the same standard deviation ψσ = 0.5 across all components. The means
were dependent on the class and are displayed graphically in Fig. 2.
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Fig. 2. Mean values for the target RCS grids (class 0 to the left, class 1 to the right).
Dark pixels correspond to value 0, light pixels to value 1.

A multivariate Gaussian classifier (outputting posterior class probabilities)
was selected for the x sensor data classifier. The classifier was trained by generat-
ing ntr = 100 x sensor data measurements from each class. The test/operational
data were obtained by generating nte = 1000 z sensor data measurements from
each class. Thus, the test data came from a different sensor to that used in the
design phase of the classifier.

Within the Bayesian algorithm, the mean of the Gaussian prior distribution
for σ was set to be zero around the outer layer, and 0.5 within the central 3× 3
grid. The covariance matrix was set to be diagonal with the standard deviations
for each grid location set to ςσ = 0.5. We note that the prior distribution incor-
porates expert knowledge that the values in the outer layer of the RCS grid (for
both targets) are likely to be smaller than the inner values.

For each test data z measurement, 500 samples were drawn from the distri-
bution p(x|z), and used in (7). Class decisions were made by selecting the class
with the maximum expected posterior class probability.

4.5 Experimental Results

To assess the performance of the Bayesian approach, three additional sets of
classification results have been obtained (all based on Gaussian classifiers).

C1) A classifier applied directly to the z sensor data. ntr = 100 z sensor data
measurements from each class were made available for training.

C2) A classifier applied directly to the x sensor data. Test data for the x sensor
measurements were made available.

C3) The classifier for the x sensor data applied directly to the z sensor data.

Classifiers C1 and C2 rely on data that is not available under the proposed
scenario, so provide an indication of the the performance that could be expected
in idealised situations, rather than a baseline performance.

Figure 3 displays the classification rates obtained for the Bayesian approach
and the three additional classifiers. The poorer performance of classifier C3 rel-
ative to the other classifiers indicates that, if ignored, the change in sensor be-
tween operational and training conditions does (as would be expected) reduce
the classifier performance. There is little to choose between classifiers C1, C2 and
the Bayesian approach, indicating that (given appropriate sensor measurement
models) we have provided a mechanism for dealing with situations where the
operating sensor differs from the sensor used to gather the training data.
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Fig. 3. Classification rates. From left to right, within each set of bars, the results are for
the Bayesian image restoration based approach, classifiers C1, C2 and C3 respectively.

5 Conclusions

The basic assumption in classifier design is that the distribution from which the
design sample is selected is the same as the distribution from which future objects
will arise. This paper examines the validity of that assumption and considers a
problem in radar target recognition in which the operating sensor differs from
the sensor used to gather the training data. A Bayesian image restoration based
solution is proposed for situations where the physical and processing models for
the sensors are known. The approach is illustrated on a simplified problem.
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Abstract. An established technique to face a multiclass categorization problem 
is to reduce it into a set of two-class problems. To this aim, the main decompo-
sition schemes employed are one vs. one, one vs. all and Error Correcting Out-
put Coding. A point not yet considered in the research is how to apply these 
methods to a cost-sensitive classification that represents a significant aspect in 
many real problems. In this paper we propose a novel method which, starting 
from the cost matrix for the multi-class problem and from the code matrix em-
ployed, extracts a cost matrix for each of the binary subproblems induced by the 
coding matrix. In this way, it is possible to tune the single two-class classifier 
according to the cost matrix obtained and achieve an output from all the di-
chotomizers which takes into account the requirements of the original 
multi-class cost matrix. To evaluate the effectiveness of the method, a large 
number of tests has been performed on real data sets. The experiments results 
have shown a significant improvement in terms of classification cost, specially 
when using the ECOC scheme. 

1   Introduction 

A diffused technique to face a classification problem with many possible classes is to 
decompose the original problem into a set of two-class problems. The rationale of this 
approach rely on the stronger theoretical roots and better comprehension characteriz-
ing two class classifiers (dichotomizers) such as Perceptrons or Support Vector Ma-
chines. Moreover, with this method it becomes possible to employ in multi class 
problems some dichotomizers which are very effective in two-class problems but are 
not capable to directly perform multi-class classification. To this aim, the main de-
composition schemes employed are one vs. one, one vs. all and Error Correcting 
Output Coding. However, a point not yet considered is how to devise a decomposi-
tion scheme for cost-sensitive classification. This is a significant point in many real 
problems such as automated disease diagnosis, currency recognition, speaker identifi-
cation, and fraud detection in which different classification errors frequently have 
consequences of very different gravity. For this reason, the classification systems 
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used in such situations must take into account the different costs and benefits (col-
lected in a cost matrix) which the different decisions can provide and thus should be 
tuned accordingly. In mult-class classifiers, such task is usually accomplished by 
modifying the learning algorithm used during the training phase of the classifier or by 
tuning the classifier after the learning phase. 

In this paper we propose a cost-sensitive paradigm for multiclass to binary decom-
position schemes. Starting from the cost matrix for the multi-class problem and from 
the code matrix employed, a cost matrix is derived for each of the binary problems 
induced by the columns of the code matrix. In this way it is possible to tune the single 
dichotomizer according to the cost matrix obtained and achieve an output from the 
dichotomizers which takes into account the requirements of the original multi-class 
cost matrix. 

In the rest of the paper we describe, after a short description of the main decompo-
sition schemes, how to decompose the original multi-class cost matrix in more 
two-class cost matrices. A conclusive section describes the results obtained from 
experiments performed on real data set. 

2   Output Coding for Multi-class Problems 

In order to introduce the main decomposition methods, let us consider a problem with 
n classes to be reduced to a set of L binary problems. For each problem, we employ a 
dichotomizer, i.e. a classifier able to discriminate between two mutually exclusive 
classes that can be generically called Positive (P) class (labelled by +1) and Negative 
(N) class (labelled by -1). 

The most immediate approach is to create one binary problem for each class i, in 
which all samples labelled i are considered positive samples while all other samples 
are considered negative. Such method is frequently defined one vs. all (OVA) and 
involves the definition of L = n binary problems. Another approach, suggested by 
Hastie and Tibshirani [1], is to define as many binary problems as the possible pairs 
of different classes. For a given pair of distinct classes {i, j}, the corresponding bi-
nary problem considers positive the samples belonging to i and negative the samples 
belonging to j; all other samples are ignored. This is the one vs. one (OVO) approach; 
in this case, we have to define L = 2/)1( −nn  binary problems. 

A further technique that has emerged for its good generalization capabilities is the 
Error Correcting Output Coding (ECOC), introduced by Dietterich and Bakiri in [2], 
which is based on a n×L coding matrix M = {Mhk}, where Mhk  = ±1. Each row of M 

corresponds to a bit string, called codeword, that represents a class label, while each 
column corresponds to a binary problem. Usually, it is chosen L > n, so as to make 
the Hamming distance between every pair of strings as large as possible. In this way, 
if dm is the minimum Hamming distance between any pair of codewords, the code is 

able to correct at least ⎣ ⎦2/)1( −md  single bit errors. 
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The coding matrix can be used to model also the OVA approach: this kind of de-
composition, in fact, is represented by a square coding matrix M in which Mkk = +1 

and Mhk = -1 ∀ h ≠ k. Moreover, we can generalize the coding matrix as suggested in 

[3] and assume that Mhk can be also 0, thus indicating that the k-th binary problem 

does not consider samples of the class h. In this way, the OVO approach can be rep-
resented by a 2/)1( −× nnn coding matrix. In such case, if we suppose that the k-th 

dichotomizer must decide between class i and class j, we will have Mik = +1, Mjk = -1 

(or vice versa) and Mhk = 0, ∀ h ≠ i,j. 

It is worth noting that both OVA and OVO decomposition schemes do not provide 
the same robustness given by the ECOC to errors made by the dichotomizers. In fact, 
while the ECOC matrix is built so as to guarantee a large value of distance between 
different codewords, the OVA scheme entails a fixed distance of 2 between different 
codewords. The situation is even worse for the OVO scheme for which the distance 
between distinct codewords is unitary because the 0 values in the matrix act as don’t 
care and thus are not considered in the evaluation of the distance. 

Once the coding matrix has been defined and the dichotomizers have been trained, 
to classify a new sample x, a vector of binary decisions is computed by applying each 
of the learned dichotomizers to x; to decode the resulting vector, i.e. to pass from the 
binary to the multi-class problem, the most common approach consists in evaluating 
the Hamming distances between the vector and the codewords of the matrix and 
choose for the nearest code word, i.e. for the minimum Hamming distance. Other 
decoding rules have been proposed which are based on a Least Squares approach [4] 
or on the loss function employed in the training algorithm of the dichotomizer [3], but 
we will not consider them in this paper. 

3   Evaluating the Binary Costs from the Multi-class Costs 

Before analyzing cost-sensitive classification in the multi-class case, it is convenient 
to focus preliminarily on the two-class problem. In this case, a sample can be as-
signed to one of two mutually exclusive classes that we have defined n the previous 
section as Positive class and Negative class. The set of samples classified as “posi-
tive” by the dichotomizer will contain some actually-positive samples correctly clas-
sified and some actually-negative samples incorrectly classified. Hence, two appro-
priate performance figures are given by the True Positive Rate (TPR), i.e. the fraction 
of actually-positive cases correctly classified, and by the False Positive Rate (FPR), 
given by the fraction of actually-negative cases incorrectly classified as “positive”. In 
a similar way, it is possible to evaluate the True Negative Rate (TNR) and the False 
Negative Rate (FNR). It is worth noting that only two indices are actually necessary 
because the following relations hold: 

FNR=1-TPR    TNR=1-FPR . (1) 

In cost sensitive applications, every decision taken by the classifier involves a cost 
which estimates the penalty (benefit) produced by an error (by a correct decision). In 
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many applications the two kinds of error (false positive and false negative) are not 
equally costly as well as the value of the benefit obtained can depend on the class of 
the sample correctly identified. Hence, we have to consider a cost matrix similar to 
the one described in table 1. It is worth noting that, while CFN (Cost  for a False 
Negative) and CFP (Cost for a False Positive) have positive values, CTP (Cost for a 
True Positive) and CTN (Cost for a True Negative) are negative costs since they actu-
ally represent a benefit. 

Table 1. Cost matrix for a two class problem. 

      True class 
 N P 

N CTN CFN Predicted 
Class P CFP CTP 

With such assumptions an estimate of the effectiveness of a dichotomizer working 
in a cost sensitive application can be given by the expected classification cost (EC) 
defined as: 

TNRCTNNpTPRCTPPp

FPRCFPNpFNRCFNPpEC

⋅⋅+⋅⋅
+⋅⋅+⋅⋅=

)()(

)()(  (2) 

where p(P) and p(N) are the a priori probabilities of the positive and negative classes. 
It is easy to show [5] that the cost matrix in table 1 is equivalent to the cost matrix 

in table 2 which depends only on the cost ratio 
CTNCFP

CTPCFN

−
−=ρ . 

Table 2. Cost matrix for a two class problem. 

 True class 

 N P 

N 0 
CTNCFP

CTPCFN

−
−  

Predicted 
Class 

P 1 0 

As a consequence, the expressions of the expected cost changes in: 

ρ⋅⋅+⋅= FNRPpFPRNpEC )()(  (3) 

Let us now consider a multi class problem with n classes to be reduced to L binary 
problems by using a n×L coding matrix M={Mhk} where Mh* is the codeword for the 

class h and Mhk is the label assumed by a sample belonging to the class h in the binary 

problem induced by the k-th column. Moreover, let us assume that the costs of the 
multi-class problems are described by a n×n cost matrix C = {Cij} where Cij > 0 

represents the cost produced by assigning to the class j a sample actually belonging to 
the class i; the cost for a correct classification is null, i.e. Cii = 0  ∀i.  
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Let us define N(k) = {h | Mhk = -1} the set of classes labelled with -1 and 

P(k) = {h | Mhk = +1} the set of classes labelled with +1 in the k-th binary problem. In 

an analogous way, let us call )(k
FPC  and )(k

FNC  the cost produced in the operative phase 

by the dichotomizer trained on the k-th problem when it erroneously assigns to P(k) a 
sample belonging to N(k) and vice versa. 

To establish the values of )(k
FPC  and )(k

FNC , let us consider which are the conse-

quences on the multi-class problem of an error made by the k-th dichotomizer. A 
false positive error moves one unit away from the true codewords containing a -1 in 
the k-th position toward the erroneous codewords containing a +1 in the same posi-
tion. In particular, if r and s are two classes such that r ∈ N(k) and s ∈ P(k), a false 
positive error made by the k-th dichotomizer on a sample belonging to r will move 
one unit from the correct codeword of r, Mr*, toward the codeword of s, Ms*. Let us 

call d(Mr*,Ms*) the Hamming distance existing between Mr* and Ms*; if there were 

errors also on the other d(Mr*,Ms*) bits in which the two codewords differ, an error 

(with a cost equal to Crs) would be generated in the multi-class problem. The contri-

bution to such error given by the false positive produced by the k-th dichotomizer can 

be hence estimated as 
),(d

1

** sr MM
; as a consequence, the cost of the false positive 

related to the possible misclassification between r and s can be estimated as 

),(d ** sr

rs

MM

C . 

Actually, the false positive moves the Mr* toward all the codewords belonging to 

P(k) and thus the cost related to all the possible misclassifications involving the class r 
can be estimated as:  

∑
∈ )( ),(d **kPs sr

rs

MM

C  (4) 

Eventually, we have to extend such evaluation to all the classes belonging to N(k). 
The conclusion is that the cost for a false positive made by the k-th dichotomizer is 
related to the risk of misclassifying one of the classes belonging to N(k) with one from 
P(k) and an estimate of its value is: 

∑ ∑
∈ ∈

=
)( )( ),(d **

)(

k kNr Ps sr

rsk
FP MM

C
C  (5) 

Likewise, it is possible to estimate the cost for a false negative made by the k-th 
dichotomizer since it is related to the risk of misclassifying one of the classes belong-
ing to P(k) with one from N(k): 

∑ ∑
∈ ∈

=
)( )( ),(d **

)(

k kPu Nv vu

uvk
FN MM

C
C  (6) 

In this way, we can define for the k-th dichotomizer a cost matrix similar to the 
one shown in table 2 with cost ratio: 
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∑ ∑

∑ ∑

∈ ∈
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Pu Nv vu

uv

k
ECOC

MM

C
MM

C

ρ  
(7) 

It is easy to see that the conditions for a realistic cost matrix (i.e. 0 < ρ(k) < +∞) are 
satisfied since Cij > 0 ∀ i ≠ j and d(Mr*,Ms*) ≠ 0 ∀r ≠ s. 

Taking into account the generalized form of the coding matrix introduced in [3], 
eq. (7) is valid for each of the decomposition methods previously described. However 
it takes simpler expressions when a OVA or a OVO method is used. In the first case 
the expressions for )(k

FPC  and )(k
FNC  become: 

∑∑
≠≠

==
kr

rk
kr kr

rkk
FP C

MM

C
C

2

1

),(d **

)(               ∑∑
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kv

kv
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1
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while the corresponding cost ratio is: 

∑
∑

≠

≠=

kr
rk

kv
kv

k
OVA C

C
)(ρ  (9) 

In the same way, it is possible to obtain the expressions of the costs for the binary 
problems induced by the OVO decomposition scheme. Let us suppose, without loss 
of generalization, that Mik = +1, Mjk = -1 and Mhk = 0, ∀ h ≠ i,j, i.e. that the k-th di-

chotomizer must decide between class i and class j, with P(k) = {i} and N(k) = {j}. 
Taking into account that d(Mi*,Mj*) = 1 ∀ i ≠ j, the corresponding costs are: 

ji
ij

jik
FP C

MM

C
C ==

),(d **

)(                                       
ij

ji

ijk
FN C

MM

C
C ==

),(d **

)(  (10) 

while the cost ratio is: 

ji

ijk
OVO C

C
=)(ρ  (11) 

4   Experimental Results 

To evaluate the effectiveness of the proposed approach we have made several ex-
periments on different data sets and compared the classification costs obtained with 
the different decomposition schemes. To this aim, a comparison technique has been 
devised to assure that the outcomes obtained were statistically significant. 

The data sets used are publicly available at the UCI Machine Learning Reposi-
tory [6]; all of them have numerical input features and a variable number of classes. 
The features were previously rescaled so as to have zero mean and unit standard de-
viation. More details of data sets are given in table 3. The table provides also the type 
of ECOC coding matrix used for each data set. We choose an exhaustive code [2] for 
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the sets that have a number of classes lower than 8 and a BCH code [2] for those 
having a number of classes greater or equal to 8. In particular, for Vowel set we 
adopted ECOC codes 15-11 available at http://web.engr.oregonstate.edu/~tgd. 

Table 3. Data sets and coding matrices used in the experiments. 

data Set classes feat. samples train. 
set 

test 
set 

valid. 
set 

ECOC 
matrices 

ECOC 
length 

Ann-thyroid 3 21 7200 5040 1080 1080 Exhaustive 3 
Dermatology. 6 34 358 252 54 52 Exhaustive 31 

Glass 6 9 214 149 32 33 Exhaustive 31 
Sat Image 6 36 6435 4505 965 965 Exhaustive 31 

Segmentation 7 18 2310 1617 350 343 Exhaustive 63 
Optdigits 10 62 5620 3935 844 841 BCH 31-21 31 
Pendigits 10 16 10992 7696 1647 1649 BCH 31-21 31 

Vowel 11 10 990 693 154 143 Diett 15-11 15 

 
The dichotomizer employed is a Support Vector Machine with a RBF kernel; it has 

been implemented by SVMlight tool [7] available at http://svmlight.joachims.org. In 
order to build dichotomizers tuned on the cost matrices determined according the 
method described in Section 3, we have adopted a post-learning scheme [5] which 
evaluates a threshold t to be imposed on the output of the SVM, so as to attribute the 
sample to be classified to the class N if the SVM output is less than t and to the class 
P otherwise. The threshold is chosen so as to minimize the expected classification 
cost on a validation set. 

We have compared each other the different results obtained with the decomposi-
tion schemes previously described. In particular, we have considered both standard 
versions of the ECOC (E-N), of the OVA (A-N) and of the OVO (O-N) which use 
dichotomizers without any cost-sensitive tuning and the corresponding cost-sensitive 
versions (E-C, A-C, O-C), where the dichotomizers are tuned according to the cost 
matrices built as seen in Section 3.  

To avoid any bias in the comparison, 12 runs of a multiple hold-out procedure 
were performed on all data sets. In each run, the data set was split in three subsets: a 
training set (containing 70% of the samples of each class), a validation set and a test 
set (each containing 15% of the samples of each class); the final size of each of these 
sets is given in table 3. The validation set is used to evaluate the optimal threshold for 
the cost-sensitive tuning, while it is considered as part of the training set for the not 
cost-sensitive tuned dichotomizers.  

The classification costs to be compared were evaluated on the test set, thus obtain-
ing, for a given data set, 12 different values for each of the costs required. To estab-
lish a statistically significant comparison among all the decomposition schemes (both 
standard and cost-sensitive), we have used the Tukey’s method [8] that tests all pos-
sible pairwise differences of means of distinct populations and determines if each 
difference is significantly lower than, higher than or undistinguishable from 0. All the 
results are provided with a level of significance equal to 0.05. To obtain a result unbi-
ased with respect to the particular cost values, we apply the approach proposed in [9]: 
a hundred of different cost matrices have been used whose elements were randomly 
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generated according to a uniform distribution over the range [1,10]. For each cost 
matrix, the test before described has been repeated. 

In tables 4-11 the results of the comparisons performed are presented. We have a 
table in which the element T(p,q) on row p and column q indicates the number of runs 
(out of 100) for which the p-th scheme has produced a cost higher than the q-th 
scheme. For example, the element T(2,4) indicates the number of runs in which the 
A-N scheme gives a classification cost higher than the E-C scheme, while the sym-
metrical element T(4,2) reports the number of runs in which the E-C gives a higher 
cost. The number of runs in which the p-th and the q-th schemes provide costs not 
significantly different is given by 100-T(p,q)-T(q,p). 

Table 4. Results for ANN Thyroid data set. Table 5. Results for Dermatology data set. 

 E-N A-N O-N E-C A-C O-C  E-N A-N O-N E-C A-C O-C 
E-N 0 0 0 100 100 100 E-N 0 0 0 100 100 96 
A-N 0 0 0 100 100 100 A-N 0 0 0 100 100 96 
O-N 0 0 0 100 100 100 O-N 0 0 0 100 100 97 
E-C 0 0 0 0 0 26 E-C 0 0 0 0 0 8 
A-C 0 0 0 0 0 27 A-C 0 0 0 52 0 40 
O-C 0 0 0 0 0 0 

 

O-C 0 0 0 30 8 0 

Table 6. Results for Glass data set. Table 7. Results for Satimage data set. 

 E-N A-N O-N E-C A-C O-C  E-N A-N O-N E-C A-C O-C 
E-N 0 5 0 68 37 62 E-N 0 0 0 60 30 85 
A-N 0 0 0 63 17 50 A-N 0 0 0 60 30 85 
O-N 28 57 0 84 60 77 O-N 0 0 0 69 33 90 
E-C 0 0 0 0 0 0 E-C 2 2 0 0 2 54 
A-C 10 6 6 45 0 37 A-C 30 30 29 51 0 77 
O-C 0 0 0 0 1 0 

 

O-C 0 0 0 1 1 0 

Table 8. Results for Segmentation data set. Table 9. Results for OptdiEgits data set. 

 E-N A-N O-N E-C A-C O-C  E-N A-N O-N E-C A-C O-C 
E-N 0 7 22 80 34 0 E-N 0 27 21 91 72 84 
A-N 65 0 67 92 78 64 A-N 28 0 3 98 86 93 
O-N 33 9 0 69 35 21 O-N 31 9 0 98 87 97 
E-C 0 0 0 0 8 0 E-C 0 0 0 0 0 0 
A-C 31 0 29 58 0 25 A-C 2 0 0 47 0 39 
O-C 5 8 21 85 32 0 

 

O-C 0 0 0 0 3 0 

Table 10. Results for Pendigits data set. Table 11. Results for Vowel data set. 

 E-N A-N O-N E-C A-C O-C  E-N A-N O-N E-C A-C O-C 
E-N 0 15 0 44 16 37 E-N 0 13 10 19 13 8 
A-N 63 0 58 70 0 59 A-N 60 0 43 63 0 36 
O-N 3 17 0 49 18 40 O-N 41 9 0 23 9 2 
E-C 12 8 6 0 7 3 E-C 30 13 0 0 13 0 
A-C 61 0 56 66 0 56 A-C 60 0 45 64 0 36 
O-C 35 13 30 41 15 0 

 

O-C 58 28 32 54 27 0 
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It is worth noting that each table can be divided in four quadrants (evidenced by 
thick lines), each corresponding to a distinct kind of comparison: in particular, the top 
right (bottom left) quadrant reports the number of runs in which a cost-sensitive 
scheme works better (worse) than a non cost-sensitive scheme, while the top left 
(bottom right) quadrant contains the results of comparisons among the non 
cost-sensitive (cost-sensitive) schemes. 

Let us firstly compare the cost-sensitive and non cost-sensitive versions of the de-
composition schemes. We can note that cost-sensitive ECOC gives always better 
results than its non cost-sensitive counterpart except for Vowel data set. A similar 
behavior is shown by the OVA scheme, even though there are four cases (Glass, 
Satimage, Pendigits and Vowel) in which the two versions of the scheme are equiva-
lent and by the OVO scheme that is equivalent to the standard version on Segmenta-
tion and Pendigits while performs significantly worse on Vowel data set.  

If we focus only on cost-sensitive schemes, it is evident the superiority of the 
ECOC scheme with respect to OVA in all the cases except the ANN-Thyroid set, 
where the two schemes are equivalent.  On the other side, the comparison between 
ECOC and OVO shows that the first scheme is better in half of the considered sets, 
while OVO outperforms ECOC in the ANN-Thyroid and Satimage sets. ECOC and 
OVO  appear to be equivalent in Glass and Optdigits sets.   

In summary, the experiments show that the proposed method achieves an im-
provement in terms of classification cost in cost-sensitive applications. This is spe-
cially true when using an ECOC decomposition scheme, which exploits its major 
robustness with respect to OVA and OVO schemes. 
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Abstract. A common assumption made in the field of Pattern Recog-
nition is that the priors inherent to the class distributions in the training
set are representative of the true class distributions. However this as-
sumption does not always hold, since the true class-distributions may be
different, and in fact may vary significantly. The implication of this is
that the effect on cost for a given classifier may be worse than expected.
In this paper we address this issue, discussing a theoretical framework
and methodology to assess the effect on cost for a classifier in imbalanced
conditions. The methodology can be applied to many different types of
costs. Some artificial experiments show how the methodology can be
used to assess and compare classifiers. It is observed that classifiers that
model the underlying distributions well are more resilient to changes in
the true class distribution than weaker classifiers.

1 Introduction

Many typical discrimination problems can be expressed as a target versus non-
target class problem, where the emphasis of the problem is to recover target
examples amongst outlier or non-target ones. ROC analysis is often used to eval-
uate a classifier [9], depicting the operating characteristic in terms of the fraction
of target examples recovered (True Positive rate or TPr), traded off against the
fraction of non-target examples classified as target (False Positive rate or FPr).
The ROC curve is a useful tool to optimise the trade-off between TPr and FPr.
A loss matrix is often applied to these types of problems in an attempt to specify
decision boundaries well suited to the problem, as discussed in [2], and [1]. Both
TPr and FPr are invariant to changes in the class distributions [10].

TPr and FPr are not always the only costs used in assessing classifier per-
formance. Some applications are assessed with other cost measurements, typical
ones including accuracy, purity/precision, and recall, discussed in [6], and [8].
An example of this could be in automatic detection of tumours in images, where
a human expert is required to make a final decision on all images flagged by the
classifier as target (called the Positive fraction or POSfrac). In this applica-
tion we could expect the number of target images (images actually depicting a
tumour) to be less abundant than non-target images, and consequently the recog-
nition system would be expected to minimise the amount of manual inspection

A. Fred et al. (Eds.): SSPR&SPR 2004, LNCS 3138, pp. 762–770, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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Fig. 1. Scatter diagrams to illustrate the example for balanced training conditions (left
plot), but where the true class distribution is imbalanced (a prior of •

• • with respect
to the target class simulating a real class distribution), shown in the right plot. Data
is generated by the Highleyman distribution as in [4], proposed in [7].

required by the expert post-classification. A high POSfrac would result in an
inefficient automatic system, resulting in a high manual cost. Cost-based mea-
surements such as POSfrac and purity are dependent on true class distributions
(as opposed to TPr and FPr) [5]. In some cases the actual distributions may
be impossible to estimate or predict, implying that these costs may vary. It has
been found that when non-target classes outnumber target classes, the effect
on the costs of interest may be worse than expected [11], [8]. An example of
this is shown in Figure 1 – here a balanced dataset is used for training (equal
priors), but the right plot depicts the situation that arises when the true class
distribution differs. Here the absolute number of non-target examples misclassi-
fied as target becomes comparable to the number of target examples correctly
classified.

In this paper we discuss the evaluation with respect to cost of two-class dis-
crimination problems between target and non-target classes in which the true
class distribution is imbalanced and may vary (i.e. the abundance of examples
for the two classes differ, called skewing). This is an important practical question
that often arises, discussed and demonstrated here using synthetic examples in
which the costs can easily be understood and compared. The objective is to for-
mulate a procedure for evaluating classification problems of this nature. We show
that in some situations where the true class distribution is extremely skewed in
favour of the non-target class, the costs measurements could degrade consider-
ably. As an example of how the proposed rationale can be applied, we choose
two costs that are important to many applications, namely TPr and POSfrac.
Their relation is computed in conjunction with the ROC curve. These POSfrac
representations can be used to quickly, intuitively, and fairly, assess the outcome
of the classifier for a given class distribution, or for a range of hypothetical class
distributions (if it is unknown or varying). In a similar way, Purity or another
cost measure could be used as part of the assessment procedure.

This paper is organised as follows: Section 2 introduces a theoretical frame-
work, and shows how a classifier for the target versus non-target problem can
be evaluated, discussing the construction of operating characteristics for the
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Fig. 2. A representation of the classification scheme discussed in this paper, showing
a 2-class problem between a target and non-target class.

two costs emphasised here, namely TPr and POSfrac. Section 3 consists of a
discussion of the effect that skewed class-priors can have on the costs. A few
experiments are performed in section 4 to illustrate the concepts discussed in
the paper, showing direct application of the proposed methodology. Conclusions
are given in section 5.

2 Classifier Evaluation between Two Classes

2.1 Notation and Problem Formulation

Consider the representation of a typical classification problem in Figure 2. Here
it can be seen that a trained classifier analyses each incoming example, and
labels each one as either positive (POS) or negative (NEG).

After classifying objects, four different object classifications can be distin-
guished (see Table 1). Data samples labeled by the tested classifier as target
(the POSfrac) fall into two categories: true positives TP (true targets) and
false positives FP (true non-targets). Corresponding true positive and false pos-
itive ratios TPr and FPr are computed by normalising TP and FP by the total
amount of true targets Nt and non-targets Nn respectively.

Table 1. Defining a confusion matrix.

estimated labels
target non-target

true labels target TP FN
non-target FP TN

Data samples labeled by the classifier as non-target also fall in two categories,
namely true negatives TN and false negatives FN . Note that TNr = 1 − FPr,
and FNr = 1 − TPr. The examples labeled by the classifier as target are de-
noted POS, and those classified as non-target are denoted NEG. The fraction of
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objects which are positively labeled is the ‘Positive Fraction’, POSfrac, defined
in equation 1.

POSfrac =
POS

N
=

POS

POS +NEG
(1)

where N is the total number of objects in the test set. The fraction of ex-
amples in the POS output of the classifier that are really target is called the
purity/precision of the classifier, defined as Purity = TP

POS . TPr can be written
as (TPr = TP

TP+FN ), and is equivalent to Recall. A TPr of 90% implies that 90%
of all the target objects will be classified positive by the classifier (classified in
the left branch in Figure 2). The POSfrac tends to increase with TPr for over-
lapping problems, indicating a fundamental trade-off between the costs. If P (Ct)
is very low it would be expected that the POSfrac will be very small. However
it will be shown in the experiments that this is not always the case – overlapping
classes and weak classifiers can result in a very undesirable POSfrac, depending
on the operating condition.

2.2 ROC Analysis and POSfrac Analysis

Given a two class problem (target vs non-target), a trained density-based clas-
sifier and a test set, the ROC curve is computed as follows: the trained classifier
is applied to the test set and the aposteriori probability is estimated for each
data sample. Then, a set of thresholds Θ is applied to this probability estimate
and corresponding data labelings are generated (this can be conceptualised as
shifting the position of the decision boundary of a classifier across all possibil-
ities). The confusion matrix is computed between each estimated set of labels
and the true test-set labeling. The ROC curve now plots the TPr as a function
of the FPr (see the left plot in Figure 3).

Note that the ROC curve is completely insensitive to the class priors, de-
pending only on the class conditional probabilities. When the prior of one of the
classes is increased (and therefore the probability of the other class is decreased),
both the TPr and the FPr stay exactly the same (for a fixed classifier), although
the absolute number of target and non-target objects change. Costs dependent
on class distribution such as POSfrac are considered, the ROC curve alone is
not sufficient to assess performance.

In order to compute the corresponding POSfrac operating characteristic for
the classifier, the same set of thresholds Θ are used. Equation 1 can be written
as equation 2, which can then be posed in terms of the ROC thresholds as in
equation 3.

POSfrac =
TP + FP

N
=

TP + FP

TP + FP + FN + TN
=

TPrNt + FPrNn

N
(2)

POSfrac(Θ) =
TPr(Θ)Nt + FPr(Θ)Nn

N
(3)

Similarly the Purity cost can be derived as in Equation 4.

Purity(Θ) =
TP (Θ)

TP (Θ) + FP (Θ)
=

TPr(Θ)Nt

TPr(Θ)Nt + FPr(Θ)Nn
(4)
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Fig. 3. ROC and POSfrac plots for a linear discriminant classifier applied to High-
leyman data, where P (Ct) = 0.1. Plots are made with respect to the target class.

3 The Effect of Class Imbalance on Classifier Performance

POSfrac and Purity are two costs that are dependent on the skewness (im-
balance) of the true class distribution. Define the true prior probability for the
target class as P (Ct), and for the non-target class as P (Cn). Equations 3 and 4
can be written in terms of prior probabilities as shown in equations 5 and 6 re-
spectively. Note that P (Ct) = Nt

N , P (Cn) = Nn
N , and P (Cn)

P (Ct)
= Nn

Nt
= skewratio.

POSfrac(Θ) =
TPr(Θ)Nt

N
+

FPr(Θ)Nn

N
= P (Ct)TPr(Θ)+P (Cn)FPr(Θ) (5)

Purity(Θ) =
TPr(Θ)

TPr(Θ) +
P (Cn)
P (Ct)

FPr(Θ)
(6)

Interestingly it is clear from equation 5 that the POSfrac tends to FPr as the
skew ratio increases, and thus for extremely low P (Ct) the ROC representation
could be used alone in depicting the trade-off between costs. Now given an actual
class-distribution and an operating condition, the POSfrac and Purity can be
calculated. For example, the corresponding ROC and POSfrac curves for the
example in Figure 1 is shown in Figure 3 for a linear discriminant classifier.
Here P (Ct) = 0.1. It can be seen that for this condition, a TPr of 80% would
result in a POSfrac of just under 30%. However, it could be that the exact class
distribution is not known, and in fact sometimes the class distribution can vary
from very small to extremely high levels. In these cases it can still be possible
to evaluate and compare classifiers by investigating the operating characteristics
across a range of priors in implementation. For example in the overlapping class
problem in Figure 1, if the actual class distribution is completely unknown, it
could be of value to investigate the TPr and POSfrac operating characteristic
for a range of operating conditions. In Figure 4 the operating characteristic is
shown for P (Ct) = 0.5, 0.1, and 0.001. The results for the linear classifier are
shown in the left plot (the ROC plot remains constant as in the left plot of
Figure 3). The right plot then shows the operating characteristic for a quadratic
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Fig. 4. POSfrac plots for a linear discriminant (left plot) and quadratic discriminant
(right plot) classifier applied to Highleyman data, where P (Ct) = 0.5, 0.1, and 0.001.
The values on each curve represent different true class distributions.

classifier under the same conditions. It is clear that this classifier is much more
resilient to changes in the true class distribution. Clearly as the linear classifier
reaches a TPr of 75% for a POSfrac of 0.1, the quadratic classifier is substan-
tially better at over 90%. Considering the case at which the classifiers are set
to operate at a TPr of 80%, a balanced dataset results in a POSfrac of 54.9%,
and a Purity of 77.9% for the linear classifier. These may be acceptable results.
However when the class distribution changes such that P (Ct) = 0.01 (1 example
in 100 is a target) the results become much worse. Whereas it could be expected
that the POSfrac should also drop by two orders of magnitude since the priors
did so, for the linear classifier the POSfrac only dropped to 24.8%. Conversely
the quadratic classifier shows much better performance and resilience to changes
of the true class distribution (in this case).

The simple example discussed shows that even if the true class distribution
is unknown (or varies), two classifiers can still be compared to an extent. This
becomes more useful when the underlying structure of the data is unknown and
the choice of classifier less obvious. One example of this type of problem is in the
field of geological exploration where the prior probabilities of different minerals
change geographically, and often only a range of true class distributions is known.

4 Experiments

A number of experiments on artificial data are carried out in order to illustrate
the effect (and indeed severity) that skewed data can have on costs in a number
of situations. Four different classifiers are implemented for each data set, trained
using a 30-fold cross-validation procedure. Each classifier is trained with equal
training priors. For each classifier an ROC plot is generated such as in Figure 3,
as well as the TPr versus POSfrac relation for the same thresholds as the ROC
plot, generated for the following class distributions (as in Figure 4): P (Ct) =
0.5, 0.1, and 0.001. Thus each classifier is assessed from the case of balanced
class distribution, to cases where the sampling is extremely skewed. In order to
easily compare results a case study is performed for each classifier to estimate
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Fig. 5. Scatter diagrams of the 2-class experiments (the Highleyman plot is shown in
Figure 1).

the effect on cost when the TPr operating condition is fixed at 80% (in the
same way POSfrac or Purity could be used as the independent variable as
the specification for the classifier). This allows each classifier to be compared
easily, but still keeping cognisant that the results are for a specific operating
condition only1. Note here that the objective of the classifier is to maintain
the specified TPr, and at the same time minimise the POSfrac (and in some
cases it could be more important to maximise Purity, but they are inversely
dependent, i.e. a low POSfrac results in a high Purity, since it can be shown
that POSfrac = TP

N
1

Purity).
The following classifiers are trained and evaluated for each data set: Lin-

ear Discriminant (LDC), Quadratic Discriminant (QDC), Mixture of Gaussian
(GAUSSM), trained using the standard Expectation-Maximisation procedure,
and the Parzen Classifier, as in [3] where the width parameter is optimised by
maximising the log-likelihood with a leave-one-out procedure. The classifiers
range from low to high complexity, the complex ones hypothetically capable
of handling more difficult discrimination problems. These are all density-based
classifiers, capable of utilising prior-probabilities directly, and can be compared
fairly. The datasets are illustrated in Figure 5, corresponding to the following
experiments, where 1500 examples are generated for each class: TwoGaussians
with two overlapping homogenous Gaussian classes with equal covariance ma-
trices and a high Bayes error is high at around 15.3%; Highleyman consisting
of two overlapping Gaussian classes with different covariance matrices according
to the Highleyman distribution (as in the prtools toolbox [4]); Multimodal, a
multi-modal dataset with two modes corresponding to the first class, and three
to the second; Lithuanian where two rather irregular classes overlap. All are
computed under the prtools library [4].

4.1 Results of Experiments

For conciseness only the case study results are presented, showing the effect on
POSfrac cost for a single operating point, across a number of different class
distributions. However the ROC and POSfrac representations for the linear
classifier in the Highleyman experiment have been shown before in the left plots

• A different operating point could for example be in favour of a different classifier.
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Table 2. POSfrac results (with standard deviations shown) for the four data sets,
where the classifiers are fixed to operate to recover 80% of target examples. Results
are shown for three different class distributions.

Experiment P(Ct) LDC QDC MOGC PARZEN

TwoGaussians 0.5 46.08 ± 0.51% 45.99 ± 0.50% 47.86 ± 0.77% 45.58 ± 0.54%
0.1 18.94 ± 0.92% 18.78 ± 0.90% 22.14 ± 1.38% 18.05 ± 0.98%
0.001 12.22 ± 1.02% 12.05 ± 1.00% 15.78 ± 1.53% 11.24 ± 1.08%

Highleyman 0.5 52.14 ± 1.23% 40.00 ± 0.00% 40.00 ± 0.00% 40.00 ± 0.00%
0.1 29.85 ± 2.22% 8.00± 0.00% 8.00 ± 0.00% 8.00± 0.00%
0.001 24.33 ± 2.46% 0.08± 0.00% 0.08 ± 0.00% 0.08± 0.00%

Multimodal 0.5 69.00 ± 1.06% 50.25 ± 0.94% 41.20 ± 0.22% 40.93 ± 0.21%
0.1 60.21 ± 1.90% 26.46 ± 1.68% 10.15 ± 0.40% 9.68± 0.38%
0.001 58.03 ± 2.11% 20.57 ± 1.87% 2.47 ± 0.45% 1.94± 0.42%

Lithuanian 0.5 46.81 ± 0.81% 42.10 ± 0.33% 40.16 ± 0.04% 40.06 ± 0.04%
0.1 20.26 ± 1.45% 11.77 ± 0.59% 8.28 ± 0.07% 8.11± 0.07%
0.001 13.68 ± 1.61% 4.27± 0.65% 0.39 ± 0.08% 0.21± 0.08%

of Figures 3 and 4 respectively. Table 2 shows the POSfrac results for the three
different class distributions for the chosen operating point. In the TwoGaussians
all the classifiers show an extreme effect on cost as the skewness is increased.
The POSfrac remains above 10% even when the distribution is such that only
one example in a thousand are target. Here the overlap between the classes does
not allow for any improvement (a high Bayes error). In the Highleyman experi-
ment it can be seen that only the linear classifier is severely affected by different
class distributions for the given operating condition. This experiment suggests
that an inappropriate or weak classifier can be disastrous in extreme prior con-
ditions, even though it may have seemed acceptable in training (classifiers are
often trained assuming balanced conditions). The Multimodal experiment pre-
sented a multimodal overlapping problem, and as expected the more complex
classifiers fared better. Whereas the linear and quadratic classifiers showed a
POSfrac of over 20% with extreme priors, the mixture-model and parzen clas-
sifiers performed a lot better. Similar results were obtained in the Lithuanian
experiment.

5 Conclusion

This paper discussed the effect of imbalanced class distributions on cost, con-
centrating on 2-class problems between a class of interest called a target class,
and a less interesting non-target class. A methodology was proposed in order to
compare classifiers with respect to cost under conditions in which training con-
ditions are fixed (often balanced), and true class distributions are imbalanced or
varying.

It was shown that even though costs such as the true and false positive rates
are independent of the true class distributions, other important costs such as
POSfrac and Purity are dependent on it. Thus for these types of problems we
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proposed that in addition to traditional ROC analysis, a similar analysis of the
other costs should be made simultaneously, evaluating the effect of a changing
class distribution.

Following some simple experiments, it was observed that in some cases,
classifiers that appeared to perform well on balanced class distribution data
failed completely in imbalanced conditions. Conversely some classifiers showed
resilience to the imbalance, even when extreme conditions were imposed. Thus
we conclude that especially in cases in which the underlying data structure is
complex or unknown, an analysis of the effect of varying and imbalanced class
distributions should be included when comparing and evaluating classifiers.
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Abstract. In this paper, we investigate the usefulness of the reject op-
tion in text categorisation systems. The reject option is introduced by
allowing a text classifier to withhold the decision of assigning or not
a document to any subset of categories, for which the decision is con-
sidered not sufficiently reliable. To automatically handle rejections, a
two-stage classifier architecture is used, in which documents rejected at
the first stage are automatically classified at the second stage, so that no
rejections eventually remain. The performance improvement achievable
by using the reject option is assessed on a real text categorisation task,
using the well known Reuters data set.

1 Introduction

Text categorisation (TC) systems are key components of many applications of
document managing, like document retrieval, routing, and filtering. With the
increased availability of documents in digital form over the last decade, and the
consequent need of automatic document management systems, TC has become
an active research topic in the machine learning field. TC can be viewed as a
classification task, in which a document in natural language must be labeled as
belonging or not to thematic categories from a predefined set, on the basis of
its content [10]. Accordingly, in recent years, several researches investigated the
use of statistical pattern recognition techniques applied to TC (a comprehensive
review is given in [10]). In particular, different kinds of classification techniques
have been evaluated and compared, like neural networks, k-nearest neighbors,
support vector machines, näıve Bayes, and multiple classifier systems [5, 12, 6,
9], as well as feature extraction and selection techniques [11].

In this work, we focus on the reject option, which is a technique used to im-
prove classification reliability in pattern recognition systems. The reject option
has been formalised in the context of statistical pattern recognition, under the
minimum risk theory, in [1, 2]. It consists in withholding the automatic classifi-
cation of a pattern, if the decision is considered not sufficiently reliable. Rejected
patterns must then be handled by a different classifier, or by a human operator.
This requires to find a trade-off between the achievable reduction of the cost
due to classification errors, and the cost of handling rejections (costs are obvi-
ously application-dependent). Although the reject option turns out to be very
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useful in many pattern recognition systems, its use in TC systems has not been
considered in the literature so far.

In a previous work, summarised in Sect. 3, we investigated how the reject
option can be implemented in a TC system, and whether it can improve its relia-
bility [3]. We implemented the reject option by allowing a text classifier to reject
any subset of category assignments, for a given document. Using three different
kind of classifiers (neural networks, k-nearest neighbors and support vector ma-
chines), we experimentally observed remarkable performance improvements, at
the expense of small rates of rejected assignments. However, the rejected cate-
gory assignments turned out to be spread across a large fraction of documents,
making it impractical to handle them manually.

In this paper, we investigate whether the documents with rejected category
assignments can be automatically handled. To this aim, we implement a two-
stage classifier, based on the multi-stage architecture defined in [8] for pattern
recognition systems. In our classifier, described in Sect. 4, documents can be
either classified or rejected at the first stage. All the documents rejected at the
first stage are then classified at the second stage, so that no rejections eventually
remain. The effectiveness of this approach is evaluated by preliminary experi-
ments carried out on the well known Reuters data set. The experimental results
are presented in Sect. 5.

2 Text Categorisation

In TC systems, a document is typically represented as a vector of weights
d = (w1, . . . , wT ), where each wk is associated to one of the T words that oc-
cur in training documents (bag of words approach). Weights can be computed
in several ways, and are usually related to the frequency of the corresponding
words, both in the document and in the whole training set [10]. While traditional
classification problems are single-label, TC is a multi-label problem, i.e. each doc-
ument can belong to any subset of C predefined categories c1, . . . , cC . Given an
input document d, a text classifier usually provides a score si for each category
ci, denoting the likelihood that d belongs to ci. Several strategies can then be
used to decide which categories d should be assigned to, given the scores. One
of the most used strategies consists in determining a threshold τi for each ci,
after the training phase of the classifier, using a separate validation set. In the
classification phase, each score is compared with the corresponding threshold:
if si ≥ τi (si < τi), then d is labeled as (not) belonging to ci [13, 10]. For in-
stance, if neural networks are used as base classifiers, C output units can be
used, each one related to one category, and their output values are taken as the
scores si. Instead, the k-nearest neighbors (k-NN) classifier is implemented by
first retrieving the k training documents most similar to an input document d.
The similarity between two documents d and d′ is computed using the cosine
measure dT·d′

‖d‖·‖d′‖ . Then, the score si for each category ci is computed as the sum
of the similarity measures between d and the training documents belonging to
ci, among the k nearest neighbors of d [10].
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The performance measures used in TC are based on precision and recall,
derived from the field of information retrieval. Precision πi, for the i-th category,
is defined as the fraction of documents that belong to ci, among the ones that are
assigned to ci by the classifier. Recall ρi is defined as the fraction of documents
that are correctly assigned by the classifier to ci, among the ones that belong
to ci. Denoting with TPi (True Positive) and FPi (False Positive) the number
of documents, out of a given set, correctly and erroneously labeled as belonging
to ci by the classifier, and with FNi (False Negative) the number of documents
erroneously labeled as not belonging to ci, we have:

πi =
TPi

TPi + FPi
, ρi =

TPi

TPi + FNi
. (1)

A global performance measure over all categories can be obtained either by
micro- or macro-averaging the above category-related values, depending on ap-
plication requirements. Micro- and macro-averaged values are defined respec-
tively as follows:

πμ =
∑C

i=1 TPi∑C
i=1 (TPi + FPi)

, ρμ =
∑C

i=1 TPi∑C
i=1 (TPi + FNi)

, (2)

πM =
1
C

C∑
i=1

πi, ρM =
1
C

C∑
i=1

ρi . (3)

The values of precision and recall lie in the range [0, 1], and are not independent
on each other: by using different classifier parameters (for instance, different
thresholds τi) higher values of precision can be achieved at the expense of a lower
recall, and vice-versa. Often, the combined measure F1 is used, defined as the
harmonic mean of precision and recall: Fμ

1 = 2πμρμ

πμ+ρμ , FM1 = 1
C

∑C
i=1

2πMi ρMi
πMi +ρ

M
i
.

Also the F1 measure takes on values in the range [0, 1].

3 Text Categorisation with Reject Option

For single-label classification problems, the meaning of rejecting a pattern is usu-
ally to withhold automatically deciding the class to which it should be assigned
[1, 2, 8]. The human operator (or the classifier) that handles rejections has thus
to decide among the whole set of classes. A slightly different approach was used
in [4]: a pattern can be automatically labeled as not belonging to any subset
of classes, while it is rejected only by the remaining classes. Accordingly, the
final decision should be taken among the latter classes only. Anyway, a rejected
pattern must be assigned to only one class. To the best of our knowledge, the
concept of rejecton has not been extended so far to multi-label problems.

Taking into account that multi-label TC problems involving C categories
are usually viewed as C independent two-class problems (each one consisting in
deciding whether a document should be assigned or not to the corresponding
category), in [3] we proposed to implement the reject option as follows: given a
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document d, a text classifier can automatically label d as belonging or not to
any subset of the C categories, while it rejects d from the remaining categories,
i.e. no decision is taken about these latter categories. Using the decision strategy
without reject option, based on category-related thresholds τi (see Sect. 2), we
experimentally found that the distribution of the scores si corresponding to
incorrect category assignments, was peaked around the threshold τi. In other
words, for any given category ci, lower values of |si−τi| correspond to less reliable
decisions. Accordingly, to implement the reject option as described above, we
used two threshold values for each category ci, τLi and τHi (with τLi ≤ τHi), and
the following decision strategy:

if si ≤ τLi , then d is labeled as not belonging to ci;
if τLi < si < τHi , then d is rejected from category ci;
if si ≥ τHi , then d is labeled as belonging to ci.

(4)

As the thresholds τi for the case without reject option, also the thresholds
τLi , τHi , i = 1, . . . , C, should be computed after the training phase of the classi-
fier, on a separate validation set, by maximising the chosen performance mea-
sure. However, defining a performance measure for a TC problem with reject
option is not straightforward. The measure typically used in statistical pattern
recognition is the expected value (named expected risk), of the classification cost
of a pattern, for a given decision rule. Different costs are defined for correctly
classified patterns and for misclassified ones. When the reject option is used, it
is straightforward to take into account the costs of rejections in the definition
of the expected risk. In this case, it turns out that minimising the expected
risk is equivalent to finding the best trade-off between the misclassification and
rejection rates, depending on the corresponding costs [1, 2]. Instead, for TC prob-
lems, the precision and recall measures are not based on classification costs. It
is thus not straightforward to generalise them to take into account the costs of
rejections. Moreover, even defining the cost of rejections is not easy, since they
are strongly application-dependent: in general, the cost for manually handling
a document with some rejected category assignments could depend both on the
time required by a person to read that document, and on the number of rejected
assignments.

Nevertheless, when the reject option in a TC system is implemented as de-
scribed above, it still makes sense to evaluate the performance through the same
measures used without reject option, based on precision and recall, provided
that the rejected category assignments are not taken into account when com-
puting TPi, FPi and FNi in (1) and (2). Such measure should be considered
together with a measure related to the cost of documents with rejected assign-
ments. Given the above difficulties in defining the cost of rejections, in [3] we
chose to consider simply the rate of rejected decisions, i.e. the percentage of re-
jected category assignments over all test documents,1 which will be denoted in
the following as the “reject rate”.
• Given D documents and C categories, the total number of category assignments is
D · C.
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In [3], we experimentally evaluated the effectiveness of such implementation
of the reject option, on the well known Reuters data set. We used neural net-
works, k-nearest neighbors and support vector machines as base classifiers. We
considered all the main performance measures, i.e. the precision-recall curve
and the F1 measure, both micro- and macro-averaged. The C pairs of threshold
values τLi , τHi , i = 1, . . . , C, were computed by maximising the considered per-
formance measure, while keeping the reject rate below a predefined value. Values
of the reject rate in the range [0, 0.15] were considered. For all the classifiers and
all the performance measures considered, we found remarkable performance im-
provements, at the expense of small values of the reject rate. For instance, using
the neural network classifier, the values of FM1 increased from 0.39 to 0.47, as the
reject rate increased from 0 to 0.03 (i.e. up to 3% of the total category assign-
ments were rejected for test documents), while Fμ

1 increased from 0.83 to 0.94,
as the reject rate increased from 0 to 0.04. However, the analysis of these results
showed that such performance improvements were always achieved by rejecting
a small number of category assignments from a large fraction of documents. In
particular, for most documents (50% to 75% of all test documents, depending
on the reject rate) only one category assignment was rejected. Moreover, the
number of documents with n rejected assignments decreased for increasing n.
This could be a serious problem from the practical viewpoint, if documents with
rejected assignments are manually handled, and if the cost of handling them de-
pends mainly on the time required by a person to read a document, rather than
on the number of rejected assignments. In this case, handling a single document
rejected from ten categories could be much faster than handling ten documents,
each rejected from one category, even if the number of rejected assignments is the
same. It is worth noting that TC tasks involve usually several dozen categories
(in the version of the Reuters data set we used, C = 90).

In conclusion, although we found that the reject option can lead to remark-
able performance improvements at the expense of a small percentage of rejected
category assignments, it turned out that such rejections are spread across a large
fraction of documents: handling them manually is thus likely to be impractical
for real applications. A possible solution to this problem is to automatically
handle the documents with rejected category assignments, through the use of a
second-stage classifier. This approach is investigated in the rest of this paper.

4 A Two-Stage Classifier with Reject Option

For pattern recognition applications in which a rejection is not acceptable as a
final result, a multi-stage classifier architecture was proposed in [8] to automati-
cally treating the rejects. At all stages, but the last one, a pattern can be either
classified or rejected. Rejected patterns are fed into the next stage. At the final
stage, a decision is taken in any case, so that no rejections eventually remain.
The rationale is that each stage should use more informative, and thus more
costly measurements than the previous stage. An interesting implementation of
such approach has been recently proposed in [7]: a “global” and fast neural net-
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work classifier is used at the first stage, followed by a “local” and slower nearest
neighbor classifier at the second stage. To speed up the response time of the
second stage, it is trained on a subset of the training patterns of the first stage.
More precisely, only patterns rejected at the first stage (possibly using a nar-
rower rejection criterion) are used. Moreover, when a test pattern is rejected at
the first stage, the second stage decides only among the top-h ranking classes
returned by the first stage, using only the training patterns belonging to such
classes. In this work, we chose to investigate the two-stage approach proposed
in [7], after modifying it to fit the characteristics of a multi-label problem. This
approach was implemented as follows.

Let C denotes the set of all categories {c1, . . . , cC}, and T′ the training set
of the first stage classifier. The decision thresholds, that in the following will be
denoted as τ ′Li , τ

′
Hi

, i = 1, . . . , C, are computed using a separate validation set
V′, by maximising the chosen performance measure, while keeping the reject rate
below a predefined value r′, and also enforcing that the fraction of documents
rejected from each category does not exceed r′. The algorithms we used are
described in [3]. In the classification phase, each document is classified according
to decision rule (4), using the scores s′i provided by the first stage classifier, and
the thresholds τ ′Li , τ

′
Hi
. For rejected categories, the final decision is taken by the

second stage, that we implemented as a modified k-NN classifier.
The training set of the second stage classifier is T′′ =

⋃C
i=1 T

′′
i , where T

′′
i

is the subset of documents of T′, for which the decision for category ci was
rejected at the first stage, using a narrower rejection criterion, i.e. using a new
set of thresholds τ ′′Li , τ

′′
Hi
, such that τ ′′Li ≤ τ ′Li , and τ ′′Hi ≥ τ ′Hi , i = 1, . . . , C. Such

thresholds are computed starting from the values of τ ′Li , τ
′
Hi
, and imposing that

exactly a fraction r′′ ≥ r′ of documents of T′ are rejected from each category,
at the first stage. In other words, we require that |T′′i | = r′′ · |T′|. Note that,
in general, T′′i ∩ T′′j �= ∅, since a document can be rejected from more than
one category. The validation set V′′ of the second stage is obtained from V′

analogously.
Now, let CR(d) ⊆ C denotes the set of categories for which the decision has

been rejected at the first stage, for a given test document d. For each category
ci ∈ CR(d), the final decision is taken at the second stage by first computing a
score s′′i , and then comparing it with a single threshold τ ′′i : if s

′′
i ≥ τ ′′i (s

′′
i < τ ′′i ),

then d is labeled as (not) belonging to ci. The score si is computed as follows. Let
T′′i (d) denotes the documents that belong to category ci, among the k documents
of T′′i nearest to d, according to the cosine similarity measure described in Sect.
2. The score s′′i for d is computed as the sum of the similarity measures between
d and all the documents in T′′i (d). The thresholds τ ′′i , i = 1, . . . , C, are computed
on the validation set V′′, by maximising the same performance measure used at
the first stage. We point out that this is a modified version of the k-NN classifier
described in Sect. 2: indeed, the score for each category is computed using a
different subset of the training set, instead of using the whole training set.

It is worth noting that this approach does not require to modify the perfor-
mance measures based on precision and recall, to take into account the cost of
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rejections, since rejections are automatically handled. Instead, it could be nec-
essary to find a trade-off between the achievable performance improvement, and
the increased computational complexity of the two-stage architecture. This issue
is discussed in the next section.

5 Experimental Results

In this section, we present the results of a first set of experiments aimed at
evaluating whether the performance of a TC system can be improved using the
two-stage classifier with reject option described in Sect. 4. The experiments have
been carried out on the Reuters-21578 data set (“Mod-Apté” version), a stan-
dard benchmark for TC systems [10]. This data set consists of newswire stories
classified under categories related to economics. After discarding unlabeled doc-
uments, and retaining only categories with at least one document both in the
training set and in the test set, we obtained 7,769 training documents and 3,019
test documents belonging to C = 90 categories, with a vocabulary (extracted
from the training set) of T = 16,635 words, after stemming and stop-word re-
moval. We represented each document using the bag of words approach. The
weights were computed using the well known TF-IDF strategy [10]. The 75%
of documents of the original training set, randomly extracted, were used as the
training set for the first stage classifier, T′, while the remaining documents were
used as validation set V′. Feature selection was performed on the training set,
using the Information Gain criterion [10]. For these experiments, we used two
different classifiers at the first stage: a multi-layer perceptron neural network
(MLP), and a Näıve Bayes classifier (NB). For the MLP classifier, we used a
number of input units equal to the number of document weights, and one output
unit for each category. The MLP was trained with the standard back-propagation
algorithm. The number of hidden neurons and of features (weights) was deter-
mined using the validation set, and was set respectively to 50 and 1,000. For the
NB classifier, the number of features was set to 250. For the k-NN classifier at
the second stage, we used 2,500 features, and a value of k equal to 10.

In Table 1 we report the first results obtained using the micro- and macro-
averaged F1 performance measures. The reported values of F1 refer to the test
set, and are average values over ten runs of the experiments, carried out using
ten randomly generated training sets T′. We considered two values of the reject
rate r′, 0.05 and 0.10, and three different values of r′′ (see Table 1), to evaluate
the effect of different sizes of the training and validation sets at the second stage.
The first row of Table 1, shows the F1 values obtained by the first stage classifier
without the reject option (r′ = r′′ = 0). The results obtained using the MLP and
NB classifier at the first stage are reported respectively in columns “MLP+k-
NN”, and “NB+k-NN”. For comparison, we also show the results achieved using
a standard k-NN classifier at the second stage, trained using the same training set
of the MLP at first stage (“MLP+k-NN*”), and a single standard k-NN classifier
without the reject option (“k-NN”). For the two-stage classifier implemented as
described in Sect. 4, the use of the reject option lead to an increase of the
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Table 1. Average test set micro- and macro-averaged F• values, obtained by two-stage
classifiers with reject option (columns “MLP+k-NN”, “MLP+k-NN*” and “NB+k-
NN”), and by a standard k-NN classifier without reject option (column “k-NN”). The
reject rate on the test set (r′) is reported in the first column.

reject rates k-NN MLP+k-NN MLP+k-NN* NB+k-NN

r′ r′′ Fμ
• F •

• Fμ
• F •

• Fμ
• F •

• Fμ
• F •

•

0 0 0.820 0.532 0.846 0.447 0.843 0.395 0.700 0.214
0.05 0.05 0.842 0.468 0.822 0.445 0.722 0.195
0.05 0.10 0.853 0.474 0.824 0.450 0.752 0.355
0.05 0.15 0.856 0.474 0.819 0.450 0.753 0.356
0.10 0.10 0.848 0.474 0.824 0.462 0.738 0.345
0.10 0.15 0.853 0.479 0.821 0.463 0.786 0.430
0.10 0.20 0.854 0.481 0.816 0.463 0.825 0.456

micro-averaged F1 from 0.846 to 0.854 (using an MLP at the first stage), and
from 0.700 to 0.825 (NB at the first stage). The macro-averaged F1 increased
from from 0.447 to 0.481 (MLP), and from 0.214 to 0.456 (NB). In particular,
although the performance of the NB classifier without the reject option was quite
poor when using the micro-averaged F1, the reject option lead to a percentage
improvement greater than 200%.

As one can expect, for the same value of the reject rate r′, higher improve-
ments are achieved using a larger training set at the second stage (i.e., higher
values of r′′). In particular, for small values of r′′, the values of F1 can decrease
with respect to the case without reject option. This can be due to the small size
of the training and validation sets of the second stage.

It is interesting to note that, in some cases, the two-stage classifier with
the reject option outperformed the standard k-NN classifier without the reject
option. This happened for the micro-averaged F1, when a MLP was used at the
first stage, and also for the NB classifier, but only for the highest values of r′

and r′′. Moreover, using a standard k-NN classifier at the second stage, with
the same training set of the first stage (“MLP+k-NN*”), always lead to a worse
performance than that achieved implementing the second stage as in Sect. 4
(“MLP+k-NN”).

Finally, we point out that the performance obtained using the two-stage
classifier, on the whole test set, was worse than that achieved by the first stage
on only the accepted category assignments. For instance, for the MLP classifier at
the first stage, such improvement was about 0.08 for both the micro- and macro-
averaged F1, for a reject rate r′ = 0.10. This is not surprising, since, obviously,
not all rejected category assignments are turned into correct assignments by the
second stage classifier, as they could, in principle, if rejections were manually
handled.

The above preliminary results show that the use of the reject option can
improve the reliability of a TC system, even when rejections are automatically
handled by a second stage classifier. These results indicate that higher improve-
ments can be achieved by using higher reject rates r′ at the first stage, and larger
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sizes of the training set of the second-stage classifier. In particular, it should be
noted that the increase in computational complexity, due to the use of a larger
training set for the k-NN classifier at the second stage, can be limited by the fact
that most documents are rejected by only one category, as we experimentally
observed.
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Abstract. The work is devoted to a problem of statistical robustness of deciding 
functions, or risk estimation. By risk we mean some measure of decision func-
tion prediction quality, for example, an error probability. For the case of dis-
crete “independent” variable the dependence of average risk on empirical risk 
for the “worst” distribution (“strategies of nature”) is obtained. The result gives 
exact value of empirical risk bias that allows evaluating an accuracy of Vapnik–
Chervonenkis risk estimations. To find a distribution providing maximum of 
empirical risk bias one need to solve an optimization problem on function 
space. The problem being very complicate in general case appears to be solv-
able when the “independent” feature is a space of isolated points. The space has 
low practical use but it allows scaling well-known estimations by Vapnik and 
Chervonenkis. Such scaling appears to be available for linear decision func-
tions. 

1   Introduction 

There is well known fact that decision function quality being evaluated by the training 
sample appears much better than its real quality. To get true risk estimation in data 
mining one uses a testing sample or moving test. But these methods have some disad-
vantages. The first one decreases a volume of sample available for building a decision 
function. The second one takes extra computational resources and is unable to esti-
mate risk dispersion. 

So one need a method that allows estimating a risk by training sample directly, i. e. 
by an empirical risk. This requires estimating first an empirical risk bias. 

The problem was solved by Vapnik and Chervonenkis [1]. They introduced a con-
cept of capacity (growth function) of a decision rules set. This approach is quite pow-
erful, but provides pessimistic decision quality estimations. Obtained bias estimation 
is very rough, because of performed by authors replacement of a probability of a sum 
of compatible events by the sum of its probabilities. 

The goal of this paper is to evaluate an accuracy of these estimations. We shall find 
out how far they are off by considering a case of discrete feature that allows obtaining 
an exact value of empirical risk bias. 
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2   Problem Definition 

Let X – an “independent” variable values space, Y – a goal space of forecasting val-
ues, and C – a set of probabilistic measures on YXD ×= . A measure Cc ∈  will be 

[ ]DPc . The set C contains all the measures for those a conditional measure [ ]xYPc  

exists Xx ∈∀ . 
Hereinafter square parentheses will hold a set on which -algebra of subsets the 

measure assigned, but parentheses — the measure of the set (probability of event). 
A deciding function is a correspondence YXf →: . 
For the determination of deciding functions quality we need to assign a function of 

losses: [ )∞→ ,0: 2YL . 
By a risk we shall understand an average loss: 

( ) ( )( ) [ ]∫= DdPxfyLfcR c,, . 

Another form is: 
( ) ( ) [ ]XdPfcRfcR cx∫= ,, , where ( ) ( )( ) [ ]∫= xYdPxfyLfcR cx ,, . 

For building a deciding function there is a random independent sample  

( ){ }NiDyxv ii
c ,1, =∈=  from distribution [ ]DPc  used. 

An empirical risk will mean a sample risk estimation: ( ) ( )( )∑
=

=
N

i

ii
N

xfyLfvR
1

1 ,,
~

. 

For the all practically used algorithms building deciding functions an empirical risk 
appears a biased risk estimation, being always lowered, as far as algorithms minimize 
an empirical risk. 

So, estimating this bias is actual. 
Enter indications: 

( ) ( )vQfcERQcF ,,, = ,      ( ) ( )vQfcREQcF ,,
~

,
~ = . 

Here { } { }fvQ →:  is an algorithm building deciding functions, and vQf ,  – a de-

ciding function built on the sample v by algorithm Q. 
Expectation is calculated over the all samples of volume N. 
Introduce an extreme bias function: 

( ) ( ) 000
~~ˆ~
FFFFS QQ −= , (1) 

where ( )
( )

( )QcFFF
FQcFc

Q ,sup
~ˆ

0
~

,
~

:
0

=
= . 

One of the results of this work consists in finding the dependency ( )0
~
FSQ  for the 

multinomial case when X is discrete and Q minimizes an empirical risk in each 
Xx ∈ . 
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3   Discrete Case 

Let X be discrete, i. e. X = {1,…,n}. 

Then ( ) ( )( )∑
=

=
n

x
xxx xfRpfcR

1
,, ξ , where ( ) ( )( ) [ ]∫= xYdPxfyLvR cvxxx x

,,ξ  – a 

conditional risk in the point x, ( )xPp cx = , xξ  – a short indication of conditional 

measure [ ]xYPc , ( ){ }xxvyxv iii
x =∈= , , ( )xf

xv  – a decision built on sub-

sample vx. 

Let the deciding function minimize an empirical risk: ( ) ( )x
Yy

v vyLxf ,
~

minarg*

∈
= , 

( ) ( )∑=
xv

i

x
x yyL

v
vyL ,

1
,

~
. 

Determine values which average risks depend on: 

( ) ( ) ( )∑
=

==
n

x
xxxv pFfcERQcF

1

* ,,, ξ , where ( ) ( )( )xfERppF
xvxxxxxx

*,, ξξ = . 

Similarly: 

( ) ( ) ( )∑
=

==
n

x
xxxvN

pFfvLEQcF
1

*1 ,
~

,
~

,
~ ξ , where ( ) ( )( )xfvLEpF

xvxxxxx
*,

~
, =ξ . 

Introduce the function 

( )
( )

( )xxx
FpF

xxx pFFpF

xxxxx

ξ
ξξ

,sup
~

,ˆ
0~

,
~

:

0

=
= . 

Now 

( ) ( )∑
=

=
n

x
xxxQ FpFFF

1

0
0

~
,ˆmax

~ˆ , (2) 

where maximum is taken over the all xp  and 0~
xF , nx ,1=  with restrictions: 0≥xp , 

0
~0 ≥xF , 1

1
=∑

=

n

x
xp , 0

1

0 ~~
RF

n

x
x =∑

=
. 

Initial extreme problem is rather simplified, being split into two parts: finding 

( )0~
,ˆ

xxx FpF  and finding the maximum of function on the simple area of Euclid space. 

Function ( )0~
,ˆ

xxx FpF  may be easily approximated by calculation on a grid. 
However it is impossible to solve a problem (2) directly by digital methods, be-

cause the dimensionality of space on that the maximization is performed is 2n where 
n may be great (twenty and the more). 

4   Deciding the Extreme Problem 

Let’s reformulate a problem (2) in abstract indications: 
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( )
xz

n

x

xz max
1

→Φ∑
=

, (3) 

( )x
m

xx zzz ,...,1= , 0≥x
jz , 1

1
=∑

=

n

x

x
jz , mj ,1= . 

In (2) Φ  corresponds to xF̂ , m = 2, x
x pz =1 , 

0

0

~

~

2 F

Fx xz = . 

Suppose a space of values of vector xz  to be made discrete: { }lx ttz ,...,1∈ . 
Then problem (3) now may be put in the equivalent form: 

( )
i

l

i

iit
κ

κ max
1

→Φ∑
=

, (4) 

0≥iκ , 1
1

=∑
=

l

i

ii
jt κ , mj ,1= , 1

1
=∑

=

l

i

iκ , where { }l
l

i ,0=∈ νκ ν . 

Solve a problem without the last restriction on iκ . 
This is a linear programming problem with a decision in a vertex of values area. 

This means that only m+1 of iκ -s may be nonzero. 

Now it is easy to show that the effect of discreteness iκ  restriction has an influence 

like 
l
m  and one may neglect it. 

As far as the conclusion on the number of nonzero iκ -s does not depend on the 

step of sampling a space of vector xz  values, the result may be propagated to the 
initial problem. 
Theorem 1. Decision of problem (3) includes not more then m+1 different vectors. 

Thereby the dimensionality of space on which maximizing is performed decreases 
to m (m + 1). 

Applying to the problem (2) this comprises 6, and problem may be easily solved 
numerically. 

5   Results 

Offered method allows finding a dependency ( )0
~
FSQ  by any parameters n and N. 

However there is the most illustrative and suitable for the comparison with other 

approaches the asymptotic case: 
n
N = M = const, ∞→N , ∞→n . 

This asymptotic approximation is wholly acceptable already by n = 10, herewith it 
has only one input parameter M. 

For illustrations consider a problem of categorization (two classes). 

The loss function is: ( )
⎩
⎨
⎧

′≠
′=

=′
yy

yy
yyL

,1

,0
, . 
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Now we are to calculate an accuracy of Vapnik–Chervonenkis evaluations for the 
considered case of discrete X, as far as we have found an exact dependency of average 
risk on the empirical risk for the “worst” strategy of nature. 
 

 

Fig. 1. The exact dependency of supreme risk bias on empirical risk and its estimations are 
shown by different M. Solid line shows difference between expected misclassification error and 
empirical risk, the difference maximized over the all distributions providing expected empirical 

risk 0
~
F . 

For ( )0
~
FS  in [1] there is reported an estimation ( ) τ=′ 0

~
FSV , as well as an im-

proved estimation: ( ) ⎟
⎟

⎠

⎞
⎜
⎜

⎝

⎛
++=′

2
02

0

~
2

11
~

τ
τ F

FSV , where  asymptotically tends to 

M ′2

2ln
, ( )MeMM −−=′ 1 . 

On figure 1 for the case of two classes by different M there are drawn the depend-

ency ( )0
~
FS  and its estimation ( )0

~
FSV . Plots demonstrate significant greatness of the 

last. Note that the accuracy of Vapnik–Chervonenkis estimation falls since the sample 
size (parameter M) decreases. 

By M ' 1 the “worst” distribution (that provides maximal bias) is uniform on X and 
the results obtained is consistent with results for multinomial case reported in [2] 
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(table 3.7). By M > 1 and restricted 0
~
F  the “worst” distribution is not uniform on X 

and this fact is new. 
The third line on graphs (straight) presents a variant of dependency obtained by 

Byesian approach, based on assuming the uniform distribution on strategies of nature 
[3,5]. 

In work [5] there is reported the result: ( )
2

~
21~ 0

0 +
−=

M

F
FSB . 

It may be a surprised fact that ( )0
~
FS  on the significant interval appears to be 

greatly less than ( )0
~
FSB , though Byesian approach implies an averaging by the all 

nature strategies of nature, but our approach — the choice of the worst c. 

6   Linear Decision Functions 

Let us compare risk bias values obtained for discrete case with bias for linear decision 
functions. 

For simplifying there was considered uniform distribution on features for both 
classes. For such c misclassification probability equals to 0.5 for every decision func-
tion, but empirical risk appears to be much lower. 

We can evaluate an accuracy of Vapnik-Chervonenkis risk estimations for the case 
of discrete X, as far as we know an exact dependency of average risk on the empirical 
risk for the “worst” strategy of nature (distribution). 

On fig. 2 for the case of two classes and discrete X there are drawn the dependency  

( ) ( )UcFMS
~

5.0 −=  and its estimation ( )
MV MS ′=

2
2ln  by Vapnik and Chervonen-

kis. Here ( )UcF
~

 – expected empirical risk by uniform distribution; 
n
N = M = const, 

∞→N , ∞→n ; ( )MeMM −−=′ 1  is sample size divided by VC-capacity of deci-

sion functions class in discrete case. Note that the uniform distribution on D provides 

maximum of empirical risk bias since we put no restrictions on 0
~
F . 

 

 

Fig. 2. Risk bias and VC–estimation. Discrete case, ER = 0.5. 
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Fig. 3. Risk biases for multinomial and linear decision functions. 

Graphics demonstrate significant greatness of 
Vapnik-Chervonenkis estimation.  

To find a dependence S(M) for linear deciding 
functions in X = [0,1]d a statistical modeling was 
used. By the modeling there was for each combina-
tion of parameters a hundred of samples drawn 
from uniform distribution on D, for each sample the 
best linear classifier built by exhaustive search. 

A table shows the result of modeling. Here d – 
features space X dimensionality, N – sample size, 

C2log

N
M =′  – sample size divided by VC-capacity 

of linear functions class (C is a total number of 
possible decision assignments to sample points by 
using linear decision functions), S – risk bias. 

The same results are shown (by markers) on 
fig. 3 in comparison with S(M’) for discrete case 
(solid line). 

Obtained results show that bias dependence on 
M’ for linear functions is close to dependence for 
discrete (multinomial) case. 

7   Conclusion 

For the considered case of a discrete feature the 
exact maximum of empirical risk bias have been 
obtained. The comparison conducted shows that 
risk estimations by Vapnik and Chervonenkis may 
increase an expected risk up to several times from 
its true maximum. This means that these estima-
tions may be essentially improved. 
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Obtained improvement is applyable also for continuous space, e.g. linear decision 
functions. 

Practical use of the result consists in that one can apply obtained scaling of VC-
estimations to real tasks. The results obtained for multinomial case may be propagated 
on continuous one by using VC-capacity of decision function class instead of n. 

The work is supported by RFBR, grant 04-01-00858-a. 
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Abstract. Proximity-based classifiers such as RBF-networks and
nearest-neighbour classifiers are notoriously sensitive to the metric used
to determine distance between samples. In this paper a method for learn-
ing such a metric from training data is presented. This algorithm is a
generalization of the so called Variable-Kernel Similarity Metric (VSM)
Learning, originally proposed by Lowe and is therefore known as Gener-
alized Variable-Kernel Similarity Metric (GVSM) learning. Experimental
results show GVSM to be superior to VSM for extremely noisy or cross-
correlated data.

1 Introduction

In a classification problem, we are given T training observations belonging to I
distinct classes. Each training observation consists of a D-dimensional feature
vector xt = (xt1, . . . , xtD) ∈ R

d and the known class label Lt, t = 1, . . . , T .
The goal is to predict the class label of a previously unseen query x0. The K
Nearest neighbour classification method is a simple and appealing approach to
this problem: it finds the K nearest neighbours of x0 in the training set and then
predicts the class label of x0 as the one that occurs most frequently in the K
neighbours. Nearest neighbour classifiers allow rapid incremental learning from
new instances and controlled removal of outdated or invalid training samples.
Also, they are much easier to interpret than neural networks. Unfortunately their
generalization performance is often inferior to competing methods [1].

As Lowe [1] has pointed out, the performance of these methods is highly
dependent on the similarity metric that is used to select the neighbours. One
example of a situation where an appropriate metric is important is the case where
one or more of the features are irrelevant. Such a case is depicted in fig.1. Based
on this Lowe [1] proceeded to develop a technique known as Variable Similarity
Metric (VSM) learning to automatically scale the features appropriately and
demonstrated that the generalization performance of this technique is state of the

A. Fred et al. (Eds.): SSPR&SPR 2004, LNCS 3138, pp. 788–796, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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Fig. 1.VSM learns a metric that accentuates differences along the x axis and suppresses
those along the y axis. The arrows represent the kind of metric that VSM will typically
learn for this case. (Classes are widely separated for illustrative purposes.)

art. VSM learning can be run as a black box with no problem-specific parameters
to be set by the user.

It was found that while VSM learning performs well for cases where the input
features are uncorrelated, simple feature scaling is not powerful enough once the
noise added to different features becomes cross-correlated (as depicted in fig. 2).
One can reasonably expect that this will be the case in many pattern recognition
applications, since all the features are derived from the same original input.

The solution proposed here is a generalized form of VSM learning (GVSM).
GVSM optimizes more parameters in order to obtain a metric, the principal axes
of which are not necessarily aligned with the coordinate axes. Unfortunately, as
always, more degrees of freedom implies more vulnerability to overfitting.

In Section 2 we introduce the notation used for the remainder of the paper,
while in Section 3 the equations governing K-nearest neighbour classification is
discussed in more detail. In order to optimize the metric used, we need a mea-
sure of the performance of a metric and the partial derivatives of this measure
with respect to the variables to be optimized, these are introduced in Section 4.
Nearest neighbour methods are often perceived as more computationally expen-
sive than competing methods, and for this reason Section 5 discusses some of
the speed-up techniques that can fruitfully be applied. Section 6 reports some
results obtained when GVSM was compared to VSM on synthetic data. We dis-
cuss the alternative interpretation of GVSM as a transform design method in
Section 7 and our conclusions and suggestions for future research appear in the
last section.
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Fig. 2. VSM is unable to learn an appropriate distance measure for cases where the
noise affecting different features is correlated. The arrows represent the kind of metric
that GVSM will typically learn for this case.

2 Preliminaries

For the rest of the paper sti will denote the known probability (i.e. 1 or 0) that
sample number t ∈ 1, 2, . . . , T falls in class i ∈ 1, 2, . . . , I and pti will denote the
estimated probability that sample number t falls in class i based on the training
set excluding sample t. Similarly stki will denote the known probability that the
k-th nearest neighbour of sample number t from the training set falls in class i.
xt and ctk will denote the feature vectors of the t-th sample and its k-th nearest
neighbour respectively.

3 K-Nearest Neighbour Classification and VSM

The K-nearest neighbour technique uses the following expression to determine
the probability that a sample belongs to class i

pi =
∑K

k=1 nkski∑K
k=1 nk

.

In the most basic form of the method all nk coefficients are set to 1 and it becomes
a simple vote. A slightly more sophisticated method attaches more importance
to closer neighbours by determining the weight ntk assigned to each neighbour
using a kernel centered at xt. In this case we will use a Gaussian kernel,

nk = e−
d2
k

2σ2 .
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The width of this kernel is determined by σ. If σ is too small, the truly nearest
neighbour will dominate the decision and generalization will be poor. If it is
too large, the method will fail to capture significant changes in the output. In
general σ may be chosen smaller, the more densely the data is sampled. Since the
density of data varies over the input space, fixed values of σ will not normally
perform well. In order to make the width of the window vary with the density
of available training samples, σ is set to some multiple of the average distance
to the M nearest neighbours. It is better if only a fraction (e.g. M = K

2 ) of the
nearest neighbours are used so the kernel becomes small even when only a few
neighbours are close to the input. Sigma is therefore given by

σ =
r

M

M∑
m=1

dk

where r can be fixed or determined using an optimization routine. The differ-
ence between VSM and GVSM lies in a single equation. While VSM uses the
expression

d2k =
D∑
d=1

w2d(xd − ckd)2

to define the distance between a sample x and its k-th nearest neighbour ck,
GVSM uses the more general matrix norm

d2k = (x − ck)TA(x − ck) (1)

where A is a positive definite symmetric matrix. For the case where A is a
diagonal matrix, this is exactly equivalent to VSM.

4 GVSM Optimization

The first complication that arises when attempting to optimize a matrix norm is
the fact that the matrix must be constrained to be symmetric positive definite.
A necessary condition for a matrix A to be a symmetric positive definite matrix,
is that it can be expressed as A = LTL where L is upper triangular with positive
diagonal elements. A sufficient condition for A to be symmetric positive definite,
is that it can be written as A = LTL where L can be any non-singular matrix.
Therefore if and only if L is a non-singular upper triangular matrix will A = LTL
be positive definite.

Expressing L as

L =

⎡⎢⎢⎢⎢⎢⎣
L11 L12 L13 . . . L1d
0 L22 L23 . . . L2d
0 0 L33 . . . L3d
...

...
...

. . .
...

0 0 0 . . . Ldd

⎤⎥⎥⎥⎥⎥⎦
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allows us to optimize the various elements Luv assured in the knowledge that
A will be a symmetric positive definite matrix and that all symmetric posi-
tive definite matrices can be obtained in this way. Although VSM learning uses
conjugate-gradient descent to minimize the cross validation error over the train-
ing set we have only implemented a gradient descent method with a primitive
form of line search for use with GVSM. However, convergence is still attained
within a reasonable time for most problems.

The cross validation error is defined as

E =
∑
t

∑
i

(sti − pti)2.

The derivative of this error can be computed with respect to each of the param-
eters to be optimized to obtain

∂E

∂Luv
= −2

∑
t

∑
i

(sti − pti)
∂pti
∂Luv

where
∂pti
∂Luv

=
∑

k(stki − pti)∂ntk/∂Luv∑
k ntk

and
∂ntk

∂Luv
=

ntk

2σ2

(
d2tkr

Mσ

M∑
m=1

1
dtm

∂d2tm
∂Luv

− ∂d2tk
∂Luv

)
, (2)

∂d2tk
∂Luv

=
∑
o

∑
p

(xto − ctko)(xtp − ctkp)
∂Aop

∂Luv
,

∂Aop

∂Luv
=

⎧⎪⎪⎨⎪⎪⎩
2Luv if o = p = v
Luo if o �= p = v
Lup if p �= o = v
0 if p �= o �= v

.

In order to optimize the parameter r we simply use the derivative of ntk with
respect to r, namely

∂ntk

∂r
=

ntkd
2
tk

rσ2

instead of equation 3. For a d-dimensional input space GVSM optimizes d(d+1)
2 +

1 parameters as opposed to the d + 1 parameters optimized by VSM, which
implies more power to select an appropriate metric, but also more potential for
overfitting the data set. Thus VSM would be more appropriate if the size of the
data set is small relative to the dimensionality of the input. On the other hand
GVSM optimizes very few parameters compared to an equivalent neural net,
which seems to indicate that the overtraining problem should not be excessive.
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5 Improving Run-Time Performance

Nearest neighbour methods are sometimes criticized for slow run-time perfor-
mance. However, with the correct optimizations nearest neighbour methods can
actually outperform other algorithms. For example we can use the distributive
law to expand our expression for distance

d2k = (x − ck)TA(x − ck)

to
d2k = xTAx − 2xTAck + ck

TAck.

The last term in this expansion is a constant that can be calculated at design-
time for each exemplar in the database. The first term is a constant that will be
the same for all candidate neighbours and can thus be calculated once off and
added to all candidates. However, we can save computation by only calculating
the pseudo-distance

d̃2k = −2xTAck + ck
TAck,

then selecting the K nearest neighbours based on pseudo-distance and adding
the xTAx term to each of these to obtain the true distances to the nearest
neighbours. Since K is typically much smaller than the number of exemplars
this saves a lot of addition. If we calculate the training vectors in the database
as follows

c̃k =
[
−2cTkA cTk Ack

]
,

and concatenate them all into a database matrix

C =

⎡⎢⎢⎢⎣
c̃1
c̃2
...
c̃T

⎤⎥⎥⎥⎦ ,

we may calculate the pseudo distance between the query vector and each of the
samples in the database by the simple operation of augmenting the query vector

x̃ =
[
x1 x2 . . . xD 1

]T
,

and performing the matrix multiplication

d̃j = Cx̃.

For problems with very large databases this matrix multiplication may take too
long. In such cases the k-d tree algorithm [4,5] may be used to obtain further
speedup. However, the performance gain of this algorithm diminishes with in-
creasing dimensionality of the input. Large databases with high dimensionality
may require the use of approximate methods such as Best Bin First [6]. Using
one or more of these speedup techniques very often results in better run-time
performance than competing methods.
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6 Simulation Results

The GVSM algorithm was compared to VSM on the synthetic data set originally
used by Lowe in [1] to demonstrate the working of VSM learning. The task is to
solve a noisy XOR problem in which the first two real-valued inputs are randomly
assigned values of 0 or 1 and the binary output class is determined by the XOR-
function of these inputs. Noise was added to these 2 inputs drawn from a normal
distribution with standard deviation of 0.3. The cross-correlation between the
noise signals added to these two inputs α is the parameter against which we plot
our results and varies from 0 to 0.95. The next two inputs were assigned the
same initial 0 or 1 values as the first two, but with noise with standard deviation
of 0.5 also correlated according to α. Finally another 4 inputs were added that
had zero mean values with a standard deviation of 2.

The training set consisted of 100 samples and the test set of 1000 samples.
The presence of irrelevant features as well as less-important features makes this
a very difficult task for classical nearest-neighbour classifiers to solve. As can
be seen from fig. 3 both VSM and GVSM fare very well with GVSM gaining a
slight edge as the correlation increases.

An interesting result is that as the noise levels increase, GVSM becomes
superior to VSM even for data in which the noise is not correlated. This result
is shown in fig. 4 and was obtained by adding noise with a standard deviation
of 0.55 and 0.7 respectively to the first two pairs of inputs.
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Fig. 3. VSM, GVSM and untrained nearest-neighbour generalization performance on
the synthetic data set plotted against the amount of correlation in the noise. Standard
deviations of 0.3 and 0.5 were used.
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Fig. 4. VSM, GVSM and untrained nearest-neighbour generalization performance on
the synthetic data set plotted against the amount of correlation in the noise. Standard
deviations of 0.5 and 0.7 were used.

7 Conclusion and Future Directions

A generalized method for learning a metric suitable for use with proximity-based
classifiers was presented. The superior performance of GVSM-learning on the
synthetic XOR data set for increasing correlation seems to suggest that GVSM-
learning can be a valuable tool to improve the generalization performance of
proximity based classifiers. However, to justify the use of GVSM on any data set
one must first verify that the conditions that GVSM was designed to exploit do
indeed occur in the data.

While GVSM consistently obtains better training performance than VSM
the drop from training to test performance is also much bigger. This indicates
that the poor test performance is due to overtraining, but why the overtraining
penalty on GVSM should be so much larger than that experienced by a neural net
with the same amount of parameters is not clear. Another promising approach
that is currently being investigated is the use of VSM or GVSM to learn different
norms for the different classes in a problem.
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Abstract. In pattern recognition problems where the decision making
is based on a measure of similarity, the choice of an appropriate distance
metric significantly influences the performance and speed of the decision
making process. We develop a novel metric which is an approximation
of the successful Gradient Direction (GD) metric. The proposed metric
is evaluated on a face authentication problem using the Banca database.
It outperforms the standard benchmark, the normalised correlation. Al-
though it is not as powerful as GD metric, it is ten times faster.

1 Introduction

In certain pattern recognition applications the training sets are notoriously small.
A typical example is biometric person recognition where only a few training data
points are available for each individual. An extreme case of the small sample
set situation arises in image and video database retrieval, where only a single
exemplar is available to define the class of objects of interest.

The usual approach to such problems is to base the decision making on some
form of similarity measure, or scoring function, which relates unknown patterns
to the query object template. If the degree of similarity exceeds a prespecified
threshold, the unknown pattern is accepted to be the same as the query object.
Otherwise it is rejected. The similarity concept can also be used in recognition
scenarios where the unknown pattern would be associated with that class, the
template of which is the most similar to the observed data.

The similarity score is computed in a suitable feature space. Commonly,
similarity would be quantised in terms of a distance function, on the grounds
that similar patterns will lie physically close to each other. Thus smaller the
distance, the greater the similarity of two entities. The role of the feature space
in similarity measurement is multifold. First of all the feature space is selected so
as to maximise the discriminatory information content of the data projected into
the feature space and to remove any redundancy. However, additional benefits
sought after from mapping the original pattern data into a feature space is to
simplify the similarity measure deployed for decision making. A classical example
of this is the use of the Euclidean distance metric in Linear Discriminant Analysis
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(LDA) feature spaces as the within class covariance matrix in the LDA space
becomes an identity matrix and such metric becomes theoretically optimal.

Recently we have shown that in some applications, namely personal identity
verification based on face biometrics, other scoring functions perform better,
even in the LDA space, than the Euclidean distance. One of the examples is
the normalised correlation, but the most promising scoring function appears
to be the Gradient Direction metric [3]. This has been further generalised in
[6]. The main problem with the Gradient Direction metric is its computational
complexity.

In this paper we develop an approximation to the Gradient Direction metric
which is defined as the difference between the mean (template) of the claimed
identity and the local mean of other identities representing the anti-class (impos-
tors). Although not as powerful as the Gradient Direction method, we show that
this approximate Gradient Direction metric gives good performance, in compar-
ison with normalised correlation and is significantly simpler to implement than
the Gradient Direction metric method.

The paper is organised as follows. In the next section the Gradient Direction
metric is reviewed and its approximation is introduced. The experimental set up
adopted for the study is detailed in Section 3. The results of experiments are
presented in Section 4. A discussion of the results as well as the main conclusions
can be found in Section 5.

2 Computationally Efficient Gradient Direction Metric

In a face verification system, a matching scheme measures the similarity or dis-
tance of the test sample, x to the template of the claimed identity, μi. Note that
x and μi are the projection of the test sample and class mean into the feature
space respectively. As the simplest solution, a matching score, s for the probe
and the ith client mean can be defined as the Euclidean distance between the
two vectors, i.e.

sE =
√
(x − μi)T (x− μi) (1)

In [3], it has been demonstrated that a matching score based on Normalised
Correlation (NC) is more efficient. The measure is defined as

sN =
||xTμi||√
xTxμT

i μi

(2)

Note that the NC is a similarity measure not a distance metric. The normalised
correlation projects the probe vector onto the mean vector of the claimed client
identity, emanating from the origin. It effectively uses just one dimensional space
onto which the test data is projected. The magnitude of projection is normalised
by the length of the mean and probe vectors. The normalised correlation tessel-
lates the probe space into hyper cones or hyper frustums with the axes passing
through the origin. It is apparent that the normalised correlation score will be
insensitive to probe movements in the radial direction defined by the class mean.
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Fig. 1. Metrics for matching score definition.

However, the score will drop in value if the probe moves away from this direction
angularly. A threshold on the normalised correlation then defines the acceptance
region for each client.

Notwithstanding the improvements afforded by the normalised correlation,
one can still voice some misgivings. The main drawback of the normalised corre-
lation is that the axes of symmetry of the client acceptance cells are constrained
to pass the origin. Inspecting Figure 1-a, this score will not produce the most
effective separation of client i from potential imposter j.

In [3] an innovate metric called the Gradient Direction metric (GD) has been
proposed. In this method the distance between a probe image x and the i-th
client mean vector μi is measured along the direction of the gradient of the i-th
class aposteriori probability function P (i|x). A mixture of Gaussian distributions
with the identity covariance matrix has been assumed as the density function
of the classes. Note that, this is the same direction along which one should
measure distances when using the nearest neighbour decision rule [7]. However
the motivation for projecting data on the gradient direction in the case of the
nearest neighbour rule is completely different from the above argument for the
nearest mean rule used here and we shall therefore not pursue this analogy any
further. A conceptually similar direction has been adopted in the nearest feature
line method proposed by Li et al. [4].

In [6], we revisited the theory of the Gradient Direction metric and proposed
a Generalised Gradient Direction metric. We demonstrated that applying GD
metric using either a general covariance matrix derived from the training data
or an isotropic covariance matrix with a variance of the order of the variation of
the image data in the feature space is even more efficient than the NC scoring
function. The proposed optimal matching score has been defined as

sO =
||(x− μi)

T∇OP (i|x)||
||∇OP (i|x)|| (3)

where ∇OP (i|x) refers to the gradient direction. In the generalised form of the
GD metric, the optimal direction would be [6]

∇GP (i|x) = Σ−1
m∑

j = 1
j �= i

p(x|j)(μj − μi) (4)
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where p(x|j) is the j-th client measurement distribution. Considering an isotropic
structure for the covariance matrix, i.e. Σ = σI, equation 4 can be simplified as:

∇IP (i|x) =
m∑

j = 1
j �= i

p(x|j)(μj − μi) (5)

Note that as the length of the gradient vector will have to be normalised anyway
the constant on the rhs of the equation can be ignored, however the magnitude
of the σ will affect the direction through the values of p(x|j). Figure 1-b and 1-c
illustrate the geometric differences between these scoring functions. The main
drawback of the GD metric is that the method is computationally more expensive
than NC function which is a consequence of dependency of the gradient direction
on the test data.

Now suppose that the density function p(x|j) of each impostor was very flat
(i.e. a large standard deviation). Then the weight factor in (5) defined by the
density would effectively be constant and the gradient direction would lose its
dependence on the observed probe image. In this case, the optimal direction of
projection would be

∇P (i|x) =
m∑

j = 1
j �= i

(μj − μi) (6)

which can be expressed as

∇P (i|x) = μ− μi (7)

where μ is the global mean. If the global mean is zero, then the gradient direction
is simply defined by the i-th client mean. In the other extreme case, when the
standard deviation is very small and the gradient vector is completely dominated
by the nearest imposter, the direction of projection will be defined completely
by the difference of the i-th client mean and the mean of the nearest imposter.

In practice, none of the above assumptions about the standard deviation is
realistic. A reasonable compromise is to consider a small number of the closest
neighbours to the claimed identity template to define the Approximate Gradient
Direction (AGD) metric as

∇AP (i|x) ∼=
L∑

j = 1
j �= i and j ∈ NL

μi

(μj − μi) =
1
L

∑
j∈NLμi

μj − μi = μL − μi (8)

where NL
μi
refers to the set of L such neighbouring templates.

The main advantage of the above formulation is that the direction does not
depend on the value of the test sample, x. It will highly speed up the score
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evaluation process as the gradient direction for each client can be calculated in
advance. In the next section the Normalised Correlation and Gradient Direction
scores will be compared experimentally on the BANCA database [1].

3 Experimental Design

In this section the face verification experiments carried out on images of the
BANCA database are described. The BANCA database is briefly introduced
first. The main specifications of the experimental setup are then presented.

3.1 BANCA Database

The BANCA database has been designed in order to test multi-modal iden-
tity verification systems deploying different cameras in different scenarios (Con-
trolled, Degraded and Adverse). The database has been recorded in several lan-
guages in different countries. Our experiments were performed on the English
section of the database. Each section contains 52 subjects (26 males and 26
females). Experiments can be performed on each group separately.

Each subject participated to 12 recording sessions in different conditions and
with different cameras. Sessions 1-4 contain data under Controlled conditions
while sessions 5-8 and 9-12 contain Degraded and Adverse scenarios respectively.
Figure 2 shows a few examples of the face data. Each session contains two record-
ings per subject, a true client access and an informed imposter attack. For the
face image database, 5 frontal face images have been extracted from each video
recording, which are supposed to be used as client images and 5 impostor ones.
In order to create more independent experiments, images in each session have
been divided into two groups of 26 subjects (13 males and 13 females). Thus,
considering the subjects’ gender, each session can be divided into 4 groups.

In the BANCA protocol, 7 different distinct experimental configurations have
been specified, namely, Matched Controlled (MC), Matched Degraded (MD),
Matched Adverse (MA), Unmatched Degraded (UD), Unmatched Adverse (UA),
Pooled test (P) and Grand test (G). Table 1 describes the usage of the different
sessions in each configuration. “T” refers to the client training while “C” and
“I” depict client and impostor test sessions respectively. As we mentioned, 4
groups of data can be considered in each session. The decision function can be
trained using only 5 client images per person from the same group and all client
images from the other groups. More details about the database and experimental
protocols can be found in [1].

3.2 Experimental Setup

The original resolution of the image data is 720×576. The experiments were per-
formed with a relatively low resolution face images, namely 64× 49. The results
reported in this article have been obtained by applying a geometric face regis-
tration based on manually annotated eyes positions. Histogram equalisation was
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Examples of the database
images. a,d: Controlled, b,e: Degraded
and c,f: Adverse scenarios.

Table 1. The usage of the different sessions
in the BANCA experimental protocols.

1 2 3 4 5 6 7 8 9 10 11 12

MC TI CI CI CI

MD TI CI CI CI

MA TI CI CI CI

UD T I CI CI CI

UA T I CI CI CI

P TI CI CI CI I CI CI CI I CI CI CI

G TI CI CI CI TI CI CI CI TI CI CI CI

used to normalise the registered face photometrically. Linear Discriminant Anal-
ysis (LDA) is used for the feature extraction. The XM2VTS database [5] was
used for calculating the LDA projection matrix. The thresholds in the decision
making system have been determined based on the Equal Error Rate criterion,
i.e. where the false rejection rate (FRR) is equal to the false acceptance rate
(FAR). The thresholds are set either globally (GT) or using the client specific
thresholding (CST) technique [2]. As we mentioned earlier, in the training ses-
sions of the BANCA database 5 client images per person are available. In the
case of global thresholding method, all these images are used for training of the
clients template. The other group data is then used to set the threshold. While
using the client specific thresholding strategy, only two images are used for the
template training and the other three along with the other group data are used
to determine the thresholds. Moreover, in order to increase the number of data
used for training and to take the errors of the geometric normalisation into ac-
count, 24 additional face images per each image are generated by perturbing the
location of the eyes position around the annotated positions.

4 Experimental Results and Discussion

The performance of different decision making methods based on the Normalised
Correlation (NC), the Isotropic Gradient Direction (GD) and the Approximate
Gradient Direction (AGD) metrics is experimentally evaluated on the BANCA
database using the configurations discussed in the previous section.

Table 2 contains a summary of the results obtained on the test set using
the NC and GD methods along with the global and client specific thresholding
methods. The values in the table indicate the FAR, FRR and Total Error Rates
(TER), i.e. the sum of false rejection and false acceptance rates. In the GD
experiments, an isotropic structure Σ = σI with σ, of the order of the standard
deviation of the input data (gray level values) was considered for the impostor
distributions. Thus equation 5 is adopted for calculating the gradient directions.

A comparison of the results obtained using the Global and Client Spe-
cific thresholding methods indicates that the CST technique is superior in the
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Table 2. ID verification results on BANCA protocols using Normalised Correlation and
Gradient Direction methods with Global and Client Specific Thresholding techniques.

Global Thresholding Client Specific Thresholding

NC GD NC GD
FAR FRR TER FAR FRR TER FAR FRR TER FAR FRR TER

MC 5.48 8.08 13.56 2.40 5.90 8.30 2.98 5.77 8.75 1.25 3.97 5.22
MD 6.35 7.18 13.53 8.36 9.61 17.97 4.14 8.20 12.34 1.25 7.05 8.30

MA 8.94 9.36 18.30 7.40 7.82 15.22 5.96 10.00 15.96 1.35 6.53 7.88

UD 13.65 13.72 27.37 13.94 15.26 29.2 1.92 32.95 34.87 1.34 40.64 41.98
UA 20.19 21.92 42.12 16.06 16.15 32.21 1.82 42.44 44.26 0.96 47.95 48.91

P 14.01 14.23 28.24 11.57 10.64 22.21 2.18 31.45 33.63 0.99 32.48 33.47

G 4.84 4.61 9.45 2.18 3.33 5.51 8.20 3.33 11.54 2.02 1.58 3.60

matched scenario while the GT method gives a better performance on the un-
matched protocols. The reason is that, as we mentioned earlier, images in each
session have been divided into two groups of 26 subjects. In the GT method, the
global threshold of each test group is calculated using the other group of test
data. It means that the evaluation and test data have always the same image
quality. In the case of the CST technique, we need to have available the client and
impostor scores of each client individually. Thus we divided the training images
into two subsets, client template training and client scores evaluation images.
The impostor scores are then calculated using the other group of the test data
(the group which the client does not belong to). It means that in the threshold
evaluation of the unmatched experiments, images with different quality are used
for calculating the client and impostors scores, while in the test stage all probe
images (clients and impostors) have the same quality as the ones which are used
for the impostor scores evaluation. Note that P protocol which is a collection
of the MC, UD and UA protocols can mainly be considered as an unmatched
protocol while the G protocol which involves data from different scenarios for
both training and test can be seen as a matched protocol.

These results demonstrate clearly that, overall, the best performance is
achieved using the Gradient Direction metric.

In the next step, the performance of the Approximate Gradient Direction
metric was investigated. The neighbourhood size, L is the most important pa-
rameter in the AGD metric. Figure 3 presents the plots of the TER (Total Error
Rate) versus the neighbourhood size for the evaluation and test data of differ-
ent BANCA protocols. Based on the above argument about the thresholding
techniques, these results were obtained with the CST method in the case of the
matched protocols and GT method in the unmatched cases.

These plots show that by increasing the neighbourhood size the TER first
rapidly decreases. Then, for larger values of L, the TER remains relatively con-
stant or increases gradually. From these plots, one can also see that the behaviour
of TER versus L in the evaluation and test stages is almost consistent. Therefore,
the proper neighbourhood size can be found in the evaluation step by looking for
the point after which the performance of the system is not significantly improved
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Fig. 3. The performance of the AGD metric versus the neighbourhood size for different
BANCA protocols.

by increasing the neighbourhood size. Table 3 contains the results obtained using
the proposed AGD method. For the sake of simplicity of comparison, the similar
results using the isotropic GD method have also been reported in the table.

These results demonstrate that in the unmatched scenarios, the performance
using the AGD method is comparable with the GD technique. However, in the
matched scenarios the GD results are better. As mentioned earlier, the main
advantage of the AGD method as compared to the GD method is its computa-
tional simplicity. The average verification time using the GD metric is around
0.04 CPU units while using the AGD metric it decreases to 0.006 CPU units.

Table 3. Verification results using the AGD and GD methods with global and client
specific thresholding methods for unmatched and matched scenarios respectively.

Approximate GD GD
FAR FRR TER FAR FRR TER

MC 2.212 3.205 5.417 1.25 3.97 5.22

MD 3.462 10.13 13.59 1.25 7.05 8.30

MA 4.904 9.103 14.01 1.35 6.53 7.88

UD 15.48 14.62 30.1 13.94 15.26 29.2

UA 16.35 15.77 32.12 16.06 16.15 32.21

P 12.5 12.61 25.1 11.57 10.64 22.211

G 6.923 4.274 11.2 2.02 1.58 3.60
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A comparison of the results obtained using the NC and AGD methods also shows
that overall the AGD method is superior, while the computational complexity
of the methods (in the test mode) is similar.

5 Conclusions

A novel metric which is an approximation of the successful Gradient Direction
metric was developed. The performance of face authentication systems in the
LDA space using the proposed metric was experimentally compared with the
original Gradient Direction (GD) and Normalised Correlation (NC) metrics.
The results suggest that the Approximate GD metric outperforms the standard
benchmark, the normalised correlation. Although it is not as powerful as GD
metric, it is ten times faster.
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Abstract. The problem of imbalanced training sets in supervised pattern recog-
nition methods is receiving growing attention. Imbalanced training sample 
means that one class is represented by a large number of examples while the 
other is represented by only a few. It has been observed that this situation, 
which arises in several practical domains, may produce an important deteriora-
tion of the classification accuracy, in particular with patterns belonging to the 
less represented classes. In this paper we present a study concerning the relative 
merits of several re-sizing techniques for handling the imbalance issue. We as-
sess also the convenience of combining some of these techniques. 

1   Introduction 

Design of supervised pattern recognition methods is usually based on a training sam-
ple (TS): a collection of examples previously analyzed by a human expert. There is a 
considerable amount of recent research on how to build “good” classifiers when the 
class distribution of the data in the TS is imbalanced. A TS is said to be imbalanced 
when one of the classes (the minority one) is heavily under-represented in comparison 
to the other (the majority) class. This issue is particularly important in those applica-
tions where it is costly to misclassify minority-class examples. For simplicity, and 
consistently with the common practice [8,13], only two-class problems are here con-
sidered. High imbalance occurs in real-world domains where the decision system is 
aimed to detect a rare but important case, such as fraudulent telephone calls [10], oil 
spills in satellite images of the sea surface [14], an infrequent disease [20], or text 
categorization [15]. 

Basic methods for reducing class imbalance in the TS can be sorted in 3 groups 
[12]: 

a) Over-sampling (replicates examples in) the minority-class 
b) Under-sampling (eliminates examples in) the majority class 
c) Internally biasing the discrimination based process so as to compensate for the 

class imbalance [8,14] 
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As pointed out by many authors, overall accuracy is not the best criterion to assess 
the classifier’s performance in imbalanced domains. For instance, in the thyroid data 
set used in [1], only 5% of the patterns belong to the minority class. In such a situa-
tion, labeling all new patterns as members of the majority class would give an accu-
racy of 95%.  Obviously, this kind of system would be useless. Consequently, other 
criteria have been proposed. One of the most widely accepted criterion is the geomet-
ric mean, g= (a+ . a-)1/2, where a+ is the accuracy on cases from the minority class and 
a- is the accuracy on cases from the majority one [13]. This measure tries to maximize 
the accuracy on each of the two classes while keeping these accuracies balanced. 

In previous studies [3-5], we have provided results of several techniques address-
ing the class imbalance problem. We have focused on under-sampling the majority 
class and also on internally biasing the discrimination process, as well as on combina-
tions of both approaches. In the present paper, we present an experimental compari-
son of our results with those obtained with one method for over-sampling the minority 
class [6]. Our purpose is to illustrate the relative benefits of both basic techniques and 
to draw some conclusions about those situations in which one of them could be more 
useful than the other. We also present experimental results obtained with a combina-
tion of both resizing approaches. The experiments have been done with five real data-
sets using the Nearest Neighbor (NN) rule for classification and the geometric mean 
as the performance measure. 

The NN rule is one of the oldest and better-known algorithms for performing su-
pervised nonparametric classification. The entire TS is stored in the computer mem-
ory. To classify a new pattern, its distance to each one of the stored training patterns 
is computed. The new pattern is then assigned to the class represented by its nearest 
neighboring training pattern.  Performance of NN rule, as with any nonparametric 
method, is extremely sensitive to incorrectness or imperfections in the TS. Neverthe-
less, the NN rule is very popular because of: a) conceptual simplicity, b) easy imple-
mentation, c) known error rate bounds, and d) potentiality to compete favorably in 
accuracy with other classification methods in real data applications. 

2   Related Works 

The two basic methods for resizing the TS cause the class distribution to become 
more balanced. Nevertheless, both strategies have shown important drawbacks. Under 
sampling may throw out potentially useful data, while over sampling increases the TS 
size and hence the time to train a classifier. In the last years, research has focused on 
improving these basic methods. Kubat and Matwin [13] proposed an under sampling 
technique that is aimed at removing those majority prototypes that are “redundant” or 
that “border” the minority instances. They assume that these bordering cases are noisy 
examples. However, they do not use any of the well-known techniques for cleaning 
the TS. 

Chawla et al. [6] proposed a technique for over sampling the minority class and, 
instead of merely replicating prototypes of the minority class, they form new minority 
instances by interpolating between several minority examples that lie close together. 

Pazzani et al. [16] take a slightly different approach when learning from an imbal-
anced TS by assigning different weights to prototypes of the different classes. On the 
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other hand, Ezawa et al. [9] bias the classifier in favour of certain attribute relation-
ships. Kubat et al. [14] use some counter-examples to bias the recognition process. 

In an earlier study [3], we provided preliminary results of several techniques ad-
dressing the class imbalance problem. In that work, we focused on under sampling the 
majority class by using several editing and pruning techniques, conveniently adapted 
to the imbalance case. We proposed also a mechanism for internally biasing the dis-
crimination-based process, and we evaluated the combination of this biasing mecha-
nism with some under sampling methods. In [4], we have extended this idea with a 
modification of the Wilson’s Editing [19] technique. This modification, that biases the 
editing procedure, allows a better and higher decrease in the number of prototypes of 
the majority class. We have also explored [5] the convenience of designing a multiple 
classification system for working in imbalanced situations. Instead of using a single 
classifier, an ensemble has been implemented. The idea is to train each one of the 
individual components of the ensemble with a balanced TS. In order to achieve this, 
as many training sub-samples as required to get balanced subsets are generated. The 
number of sub-samples is determined by the difference between the amount of proto-
types from the majority class and that of the minority class. 

3   Techniques to Be Evaluated 

The main purpose of the present paper is to experimentally compare several tech-
niques for handling the imbalance situation. Some of these techniques, corresponding 
to the under sampling and biasing approaches, have already shown important in-
creases in the g value obtained in classification tasks. The experiments to be reported 
below, include now an over sampling method. All these techniques are explained 
hereafter. 

3.1   Under Sampling Approach 

As already explained in Section 2, we have experimented with several methods [3] 
aimed at reducing the size of the majority class. Out of concern for the possibility of 
eliminating useful information, we have employed well-known editing algorithms, in 
particular the already classical Wilson’s proposal [19]. One of the contributions of [3] 
has been the application of this editing technique only to the majority class. 

Wilson’s Editing. Wilson’s Editing corresponds to the first proposal to edit the NN 
rule. In a few words, it consists of applying the k-NN classifier to estimate the class 
label of all prototypes in the TS and discard those samples whose class label does not 
agree with the class associated with the largest number of the k neighbors. 

Weighted Editing. Despite the important obtained results, it was observed in [3] that 
the editing technique did not produce significant reductions in the size of the majority 
class. Accordingly, the imbalance in the training sample is not diminished in an im-
portant way.  

It is worthy to remember that Wilson’s technique consists essentially in a sort of 
classification system. The corresponding procedure works by applying the k-NN clas-
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sifier to estimate the class label of all prototypes in the TS, as explained above. Of 
course, this k-NN classifier is also affected by the imbalance issue. When applied to 
prototypes of the majority class, the imbalance in the TS will cause a tendency to find 
most of their k nearest neighbors into that majority class. Consequently, only a few of 
the majority class prototypes will be removed. This means that the majority class is 
not completely cleaned of atypical cases and also that the balance in the TS is far 
from being reached. 

To cope with this difficulty, in [4] we introduced the employment of the weighted 
distance below mentioned, not only in the classification phase but also in editing the 
majority class in the TS. That is, we apply the Editing algorithm, but using the 
weighted distance instead of the Euclidean metric. In that way, the already explained 
tendency has been overturned. 

A Pruning Technique: The Modified Selective Subset. The NN rule generalizes 
accurately for many real applications. However, since it must store all the available 
training patterns and search through all of them to identify a new pattern, it has large 
memory requirements and works slowly in the classification phase. Many proposals 
have been done to reduce the TS size, while trying to maintain accuracy rate in the 
classification phase of the NN rule. Hart’s [11] idea of a consistent subset has become 
a milestone in this research line. But his algorithm to obtain this consistent subset 
suffers for several well-known drawbacks. That has stimulated a sequel of new algo-
rithms attempting to remedy these faults. Particularly remarkable is the approach of 
Ritter et al. [17] with a clear and precise formulation of the desired goals and of the 
way to reach them (the Selective Subset).  

According to Hart’s statement, the Condensed Subset (CS) is a subset S of the TS 
such that every member of TS is closer to a member of S of the same class than to a 
member of S of a different class. Ritter et al. have changed this concept in their Selec-
tive Subset (SS) by defining it as that subset S such that every member of TS must be 
closer to a member of S of the same class than to a member of TS (instead of S) of a 
different class. Their purpose is to eliminate the order-dependence of the building 
algorithm. Instead of using a greedy algorithm, Ritter et al. use a kind of branch and 
bound algorithm that implicitly considers every solution.  In fact, they define the SS 
as the smallest subset containing at least a related prototype for each of the original 
ones. In this context, related means that it is able to correctly classify the correspond-
ing prototype. As Ritter et al. have recognized, their algorithm does not necessarily 
conduct to a unique solution. Moreover, although they stated the importance of select-
ing “samples near the decision boundaries”, this requisite is not included in the crite-
ria serving as a basis for their SS.  

As obtaining a more accurate decision boundary is more important that achieving 
true minimality, the SS procedure has been modified in two main ways. First, the 
minimality criterion has been partially substituted by an explicit boundary proximity 
criterion. And second, the procedure has been converted into a greedy algorithm that 
ends scanning the TS only twice. This Modified Selective Subset (MSS [2]) turns out 
to be much simpler and usually obtains subsets with improved quality boundaries and 
with slightly larger sizes than the corresponding SS solutions. 

In [3], we have discussed the usefulness of the MSS technique for handling the im-
balanced situation. Here, this pruning algorithm in included only for reducing the TS 
size after it has been considerable increased by the over sampling method. 
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3.2   Biasing Mechanism 

For internally biasing the discrimination procedure, we proposed in [3] a weighted 
distance function to be used in the classification phase. Let dE(·) be the Euclidean 

metric, and let Y be a new pattern to be classified. Let x0 be a training prototype from 

class i, let Ni be the number of prototypes from class i, let N be the TS size, and let m 
be the dimensionality of the feature space. Then, the weighted distance measure is 
defined as: 

dW(Y,x0) = (Ni/N)1/m· dE(Y,x0) (1) 

The basic idea behind this weighted distance is to compensate for the imbalance in 
the TS without actually altering the class distribution. Thus, weights are assigned, 
unlike in the usual weighted k-NN rule [7], to the respective classes and not to the 
individual prototypes. In such a way, since the weighting factor is greater for the ma-
jority class than for the minority one, the distance to positive minority class proto-
types becomes much lower than the distance to prototypes of the majority class. This 
produces a tendency for the new patterns to find their nearest neighbor among the 
prototypes of the minority class. 

3.3   Over Sampling Approach 

Most of the proposed techniques for increasing the size of the minority class merely 
replicate some of the minority class prototypes. Inclusion of exact copies of some 
minority class examples means to raise the requirement in computational resources. 
Moreover, with this procedure, overfitting is likely to occur, particularly in some 
learning models like the decision trees [17]. To avoid the overfitting problem, Chawla 
et al. [6] form new minority class prototypes by interpolating between minority class 
prototypes that lie close together. The technique these authors proposed, takes each 
minority class prototype and introduces “synthetic” prototypes along the line joining 
any/all of the minority class nearest neighbors. Depending upon the amount of over 
sampling required, neighbors from the k nearest neighbors are randomly chosen. In 
the experiments they reported, k is set to five. When, for instance, the amount of over 
sampling needed is 200%, only two neighbors from the five nearest neighbors are 
chosen and one prototype is generated in the direction of each of these two neighbors. 
Synthetic prototypes are generated in the following way: take the difference between 
the feature vector (prototype) under consideration and its nearest neighbor. Multiply 
this difference by a random number between 0 and 1, and add it to the feature vector 
under consideration. 

4   Experimental Results 

All these techniques, as well as combinations of some of them, were assessed with 
experiments that were carried out with five datasets. Four of these datasets have been 
taken from the UCI Database Repository (http://www.ics.uci.edu/~mlearn/). The 
Mammography dataset was kindly provided by N. V. Chawla and it was reported in 
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[6] and in [20]. Five-fold cross validation was employed to obtain averaged results of 
the g criterion. To facilitate comparison with other published results, in the Glass 
dataset the problem was transformed for discriminate class 7 against all the other 
classes and in the Vehicle dataset the task was to classify class 1 against all the others. 
Satimage dataset was also mapped to configure a two-class problem: the training 
patterns of classes 1, 2, 3, 5 and 6 were joined to form a unique class and the original 
class 4 was left as the minority one. Phoneme and Mammography are two-class data-
sets. 

Table 1. Mean values of the geometric mean. 

Training sets Phoneme Satimage Glass Vehicle Mammography 
Original TS Euclidean Classif. 73.8 70.9 86.7 55.8 60.2 
Original TS Weighted. Classif. 76.0 75.9 88.2 59.6 75.8 
Under-sampling majority class 
Euclidean Editing & Classif. 74.9 73.0 86.2 64.0 63.9 
Euclid. Edit.+Weighted Classif. 75.7 76.2 87.9 65.8 76.2 
Weighted+Edit.+Euclid. Classif. 75.0 74.5 86.2 65.6 70.0 
Weighted Editing & Classif. 75.3 77.8 87.9 67.2 78.7 
Over-sampling minority class and processing both classes 
Synthetic prototypes 73.6 77.1 88.7 59.7 83.4 
Synthetic &Wilson’s Editing 74.9 78.5 86.4 64.5 86.8 
Synthetic & Modif. Select. Subset 70.3 74.1 88.2 57.1 80.8 
Synthetic & Wilson & MSS 74.8 76.2 85.9 62.7 86.0 

The obtained experimental results are shown in Table 1. This table has three parts. 
In the first one, the results when employing the original TS, both with Euclidean and 
Weighted distance, are included for comparison purposes. In the second part, we 
present the geometric mean values observed when the TS was under sampled through 
Wilson’s Editing and Weighted Editing. Here also, the classification was done twice 
with each edited TS, using the Euclidean and the Weighted distances. In the third part 
of the table, results of the over sampling technique are incorporated. In this case, no 
weighted distance for classification has been employed since balance in the TSs has 
been attained by the over sampling technique. 

Fom the figures in Table 1, it is evident that the over sampling approach can not 
compete, in most of the datasets, with the combination of the Weighted Editing (for 
under sampling) and the Weighted classification (the biasing mechanism). The differ-
ence in the Glass dataset (88.7 vs. 87.9) was not statistically significant. The only 
exception is the Mammography dataset, where results obtained after over sampling 
excelled to those of all the other evaluated techniques. 

The explanation for these, somehow contradictory, results is to be found in the 
amount of imbalance present in each dataset (see Table 2). When the imbalance in the 
TS is not very big (say, a majority/minority ratio less than 10), then the under sam-
pling techniques, particularly the Weighted Editing, can be useful in reducing enough 
the imbalance as to produce an important enhancement in the performance of the 
classifier. However, when this ratio is greater, the degree of balance achieved is not 
satisfactory. With the employed under sampling techniques, we are very careful in not 
throwing away potentially useful information. Accordingly, not many majority class 
prototypes are removed. With greater ratios, it is much better to employ the over sam-
pling technique, even at the cost of a considerable increase in the total TS size. 
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Table 2. Imbalance present in each training dataset (majority/minority ratio). 

Training sets Phoneme Satimage Glass Vehicle Mammography 
Original TS  2.41 9.29 6.25 2.99 44.12 
After under-sampling majority class 
Euclidean Editing 2.27 8.94 6.13 2.44 43.99 
Weighted Editing 2.15 8.64 6.02 2.31 43.03 
Over-sampling minority class and processing both classes 
Synthetic prototypes 1.20 1.03 1.04 1.49 1.01 
Synthetic &Wilson’s Editing 1.18 0.94 1.03 1.31 1.04 
Synthetic & Modif. Select. Subset 1.01 1.49 1.42 1.42 2.12 
Synthetic & Wilson & MSS 0.93 1.35 0.94 1.24 1.00 

Table 3. Size of the TSs (Original and after application of the under and over sampling). 

Training sets Phoneme Satimage Glass Vehicle Mammography 
Original TS  4322 5147 174 678 10062 
After under-sampling majority class 
Euclidean Editing 4150.8 4971.6 171.2 584.8 10032.9 
Weighted Editing 3997.8 4820.6 168.6 562.0 9818.5 
Over-sampling minority class and processing both classes 
Synthetic prototypes 5590 9147 294 848 19572 
Synthetic &Wilson’s Editing 5185.2 8706.0 285.0 686.8 17725.3 
Synthetic & Modif. Select. Subset 1201.2 1322.8 27.6 321.2 6931.9 
Synthetic & Wilson & MSS 756.0 906.4 18.6 176.2 1599.5 

This concern for the huge increase in the TS size produced by over sampling (al-
most twice the number of original prototypes), has been the motivation for exploring 
the convenience of applying preprocessing techniques after the formation of new 
minority class prototypes (see Table 3). As usual, the combined employment of Wil-
son’s Editing and the pruning technique, MSS, has yielded a considerable decrease in 
the TS size and, in general, a classification performance better than before their appli-
cation. Thus, another recommendation: in those cases where over sampling the TS is a 
must, it is convenient, afterwards, to try to clean the TS and to reduce its size. 

5   Concluding Remarks 

In many real-world applications, supervised pattern recognition methods have to cope 
with highly imbalanced TSs. Traditional learning systems such as the NN rule can be 
misled when applied to such practical problems. This effect can become softer by 
using procedures to resize (under sampling or over sampling) the TS. In the present 
paper we have assessed the relative merits of these two approaches for re-sampling 
the TS. Our results indicate that, when the imbalance is not very severe, techniques 
for appropriately under sampling the majority class are the best option. Only when the 
majority/minority ratio is very high it is required to over sampling the minority class. 
Convenience of using combinations of some techniques is also established. In particu-
lar, this combination is remarkable in those cases where over sampling is unavoid-
able. In these situations, cleaning of the TS and reduction of its size, after the over 
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sampling is done, allows for a considerable decrease in the computational burden of 
the NN rule and for an increase in the classification performance of the system. 

The present report is part of a more extensive research we are conducting to ex-
plore all the issues linked to the imbalanced TSs. At present, we are studying the 
convenience of applying genetic algorithms to reach a better balance among classes. 
We are also experimenting in situations with more than two classes, as well as doing 
some research about the convenience of using these procedures to obtain a better 
performance with other classifiers, such as the neural networks models. 
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Abstract. Previous Bayesian classification has a problem because of reflecting 
semantic relation accurately in expressing characteristic of web pages. To re-
solve this problem, this paper proposes automatic preference mining through 
learning user profile with extracted information. Apriori algorithm extracts 
characteristic of web pages in form of association words that reflects semantic 
relation and it mines association words from learning the ontological user pro-
file. Our prototype personalized movie recommender system, WebBot, extracts 
information about movies from web pages to recommend titles based on train-
ing movie set supplied by an individual user. The proposed method was tested 
in database that users estimated the preference about web pages, and certified 
that was more efficient than existent methods. 

1   Introduction 

Recommender systems using information filtering accumulates a database of users 
preferences, and then uses them to make personalized recommendations for items 
such as books, music, clothing, and movies. The user’s preference can be either ex-
plicit ratings or implicit usage history. Information filtering can help E-commerce in 
converting web surfers into buyers by personalization of the web interface. It can also 
improve cross-sell by suggesting other items the user might be interested. In a real 
world where an E-commerce recommender system’s competitors are only a one click, 
gaining users loyalty is an essential business strategy. Recommender system using 
information filtering has been very successful in both practice and research. How-
ever, there still remain important research issues in overcoming two fundamental 
challenges for information filtering [5]. The first challenge is to improve the scalabil-
ity of the information filtering algorithms. Existing information filtering algorithms 
can deal with thousands of users within a reasonable time, but the demand of modern 
E-Commerce system is to handle tens of millions of users. The second challenge is to 
improve the quality of the recommendations. Users need recommendations they can 
trust to help them find items they will like. If a user trusts a recommender system, 



816      Kyung-Yong Jung, Kee-Wook Rim, and Jung-Hyun Lee 

purchases an item, but finds out he does not like the item, the user will be unlikely to 
use the recommender system again [18]. In this paper, we present automatic prefer-
ence mining through learning the ontological user profile with extracted information 
to improve the scalability and the quality of the personalized movie recommender 
system [7]. Users provide actual 1-6 ratings for a selected training movies set; the 
system then learns an ontological user profile using Naïve Bayesian algorithm and 
produces a ranked list of the most recommended additional titles [6,10]. 

2   Extracted Information Based on Association Word Knowledge 

We have been exploring the personalized movie recommender system by applying 
automated text categorization methods to semi-structured text extracted from the web 
pages [14]. Our current prototype system, WebBot: Web Robot Agent [6,7], uses a 
database of movie content information extracted from web pages at Internet Movie 
Database. Therefore, the personalized movie recommender system’s content informa-
tion about titles consists of textual meta-data rather than the actual text of the web 
pages. An IMDb subject search is performed to obtain a list of movie-description 
URLs of broadly relevant titles. WebBot then downloads each of these pages and 
uses a pattern-based information extraction system to extract the data about each title. 
Information extraction is the task of locating specific information from web pages, 
thereby getting useful structured related data from unstructured text. Specifically, it 
involves finding a set of sub-strings from the web pages, for each of a set of slots. 

2.1   Building a Database with Extracting Information 

A WebBot follows the IMDb link provided for every movie in the EachMovie dataset 
[9] and collects information from the various links off the main URL. We represent 
the content information of all movies as a set of slots. Each slot is represented as a 
bag of association words. This content information, after suitable preprocessing such 
as elimination of stop word etc., is collected into a vector of bag of association words, 
one bag for each feature describing the movie. IMDb produces the information about 
related directors and movie titles using information filtering: however, WebBot treats 
them as additional content information about the movie. Since the layout of IMDb’s 
automatically generated web pages is so regular. A moderately simple extraction 
system is sufficient. The text in each slot is then processed into an unordered bag of 
words and all movies represented as a vector of bags of association words [6]. 

2.2   Expression of Web Pages Characteristics 

To express the characteristics of web pages as either a bag-of-words or a bag-of asso-
ciation-words [1], it is a necessary preprocess the web pages by analyzing its mor-
phology. The system used in the morphological analysis is identical to the focused 
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intelligent information retrieval system [17]. The Apriori algorithm [1] is used to 
mine related data from the words extracted from morphological analysis. The associ-
ated word mining algorithm, Apriori is used to find the associative rules of items out 
of the set of transactions. The mimed data, or the set of associated words from each 
web page, are represented as a related-word vector model. As a result, the web page 
{dj} is represented as Equation (1) in the form of a related-word vector model. 

{dj}={(w11&w12…&w1(r-1)�w1r),(w21&w22…&w2(r-1)�w2r),…, 
(wk1&wk2…&wk(r-1)�wkr),...,(wp1&wp2…&wp(r-1)=>wpr)}j   (j=1,2,…,m) 

(1) 

(wk1&wk2…&wk(r-1)) is antecedent of association word (wk1&wk2…&wk(r-1)�wkr) and  
wkr is consequent of association word (wk1&wk2…&wk(r-1)�wkr). Here, each of 
{wk1,wk2,…,wk(r-1),wkr} in (wk1&wk2…&wk(r-1)�wkr) represents a word for composing 
association word. “p” represents the number of association words in a web page. “r” 
represents the number of words in an association word. The “&” shows that the 
words on each side are related. For the good results in extracting related words, the 
dataset must have a confidence of over 85 and a support of less than 25 [6]. 

2.3   Generating the Ontological User Profile 

The association word mining is used to extract features from web pages. Most users 
have a habit of searching similar or same web pages. We generate an ontological user 
profile by extracting features from web pages user accesses continuously. Content-
based filtering generates new user profiles by receiving relevance feedback on web 
pages that users access after receiving recommendations to the web pages. Related 
words gathered by relevance feedback on web pages the user has visited are stored in 
the user profile. The related words stored in the user profile, related words show a 
high frequency is given more weight. The weight means the ratio of each association 
word to all association words, which are extracted form web pages that user accesses. 
If wUPa is a user profile with weight given to related words, then wUPa can be ex-
pressed as Equation (2). 

},...,,{ 1211 tta AWwAWwAWwwUP ⋅⋅⋅=  (2) 

In Equation (2), {w1, w2,…, wt} is a weight vector that shows the weight of the related 
word, and t is the total number of related words within the ontological user profile. 
The ontological user profile is generated based on the web page features extracted 
from user’s preference rating. The preference of association words expressed in fea-
tures is indicated various values according to the weight. 

3   Automatic Preferences Mining through Learning User Profile 

Previous studies of automatic learning of profile include use of probability [4,8], use 
of statistics [13] and use of vector similarity [7,8]. Among them, learning user profile 
through Bayesian probability is effective method [10,15]. Since learning the onto-
logical user profile through use of simple Naïve Bayesian classifier extracts all word 
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appeared in web pages, it is hard to reflect characteristic of web pages accurately. 
Mistaken learning user profile caused by this reduces accuracy of classification. Be-
cause of this, Bayesian classification method [11] that uses TF·IDF to make it more 
accurate was suggested. The suggested method extracts characteristic of web pages 
through use of TF·IDF from web pages [10]. It also gives weight to characteristic 
extracted from web pages and so mistaken classification caused by noises is reduced 
more than simple Naïve Bayesian classifier. However, since characteristic of ex-
tracted web pages does not reflect semantic relation, it could not resolve the problem 
of mistaken classification caused by ambiguity of words [6]. To resolve this problem, 
this paper suggests automatic preference mining through learning user profile with 
extracted information. In suggested method, Apriori algorithm [1] extracts character-
istic of web pages in the form of association words that reflects semantic relation 
between words. 

3.1   Learning a User Profile Using Naïve Bayesian Classifier 

The learner currently employed by WebBot [6,7] is a bag of association words Naïve 
Bayesian classifier [10] extended to handle a vector of bags rather than a single bag. 
WebBot does not attempt to predict the extract numerical rating of a movie title, but 
rather just a total ordering or ranking of titles in order of preference [14,15,16]. 

We use a multinomial text model, in which a web page is modeled as an ordered 
sequence of ordered sequence of word events drawn from the same vocabulary, V. 
The Naïve Bayesian assumption states that the probability of each word is dependent 
on the web page classes but independent of the word’s context and position. For each 
class cj, and word, wk�V, the probability, P(cj) and P(wk|cj) must be estimated from 
the training data. Then the posterior probability of each class given a web page, D, is 
computed using Bayes rule by Equation (3). 

∏
=

=
||

1

)|(
)(

)(
)|(

D

i
ji

j
j caP

DP

cP
Dcp  (3) 

Where ai is the ith word in the web page, and |D| is the length of the page in words. 
Since for any given page, the prior P(D) is a constant, this factor can be ignored if all 
that is desired is a rating rather than a probability estimate. A ranking is produced by 
sorting pages by their odds ratio, P(c1|D)/P(c0|D), where c1 represents the positive 
class and c0 represents the negative class. A movie is classified as positive if the odds 
are greater than 1, and negative otherwise. In case, since movies are represented as a 
vector of “web pages”, dm, one for each slot sm, the probability of each word given the 
category and the slot P(wk|cj, sm), must be estimated and the posterior category prob-
ability for a film, F, computed using Equation (4). 
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Where S is the number of slots and am,i is the ith word in the mth slot. The class with 
the highest probability determines the predicted rating. The Laplace smoothing [10] 
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is used to avoid zero probability estimates for words that do not appear in the limited 
training movie set. Finally, calculation with logarithms of probabilities is used to 
avoid underflow. 

Naïve Bayesian classifier through use of TF·IDF [13] makes morphological analy-
sis of document to extract characteristic of web pages and extracts only nouns from 
its outcome. TF·IDF of all extracted nouns can be obtained through Equation (5). 

]1[ 2 +⋅=
DF

n
LogfW nknk

 (5) 

In Equation (5), fnk is relative frequency of word nk against all words within all web 
pages and n is the number of web pages and DF is the number of learning web pages 
where word nk appeared. If characteristic of web pages is {a1,a2,…,ai,…,aD}, Naïve Bayes-
ian classifier classifies web pages into one class among {c1,c2,…,ci,…,cj}. Equation (6) is 
used to give probability of association word (wk1&wk2…&wk(r-1)�wkr) within cj,sm is 
expressed as p((wk1&wk2…&wk(r-1))�wkr)|cj,sm). If an association word appears n times 
in a movie Fe, it is counted as occurring ae1n times in a positive movie and ae0n times 
in a negative movie. The parameters are estimated as Equation (6). 

∑ ∑
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=− ⋅⋅=→…
N
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1)1(1)-k(rk2k1 )||/(),|)w&w&(w(  (6) 

Where nkem is the count of the number of times word wk, appears in movie Fe, in slot 
sm, and denotes the total weighted length of web pages in category cj and slot sm. 

3.2   Automatic Preferences Mining for Recommendations 

To produce recommendations, WebBot [6,7] learns the ontological user profile, pre-
dicts the ratings for the un-rated movies, and finally ranks the movies by their ratings. 
Current WebBot uses one of the three methods to learn an ontological user profile. 
The first method is a binary Naïve Bayesian classifier. It treats movies rated 1-3 as 
negative instances, and those rated 4-6 as positive instances. The scores are ranked 
based on the natural log of the posterior odds of positive. A second method treats the 
6 ratings as 6 distinct categories [8,14,15]. When predicting for a target movie, the 
personalized movie recommender system computes the posterior probability of each 
category given the target movie. Then the predicted rating of the posterior probability 
distribution for the categories is computed and used as the predicted ratings by Equa-
tion (7). Here, P(i) is the posterior probability for category i. 

∑ =
⋅= 6

1
)(

i
iPiscorepredicted  (7) 

We use the predicted ratings rather than choosing the most probable category to better 
represent the continuity of the ratings. When using the 6-category classifier to predict 
a binary category, we classify all movies as positive category or negative category. 
The final method is used a weighted binary classifier that maps the user’s actual 1-6 
rating into a weight value. As with relevance feedback in information retrieval, this 
cycle can be repeated several times to recommend the good results [2,10,13,15]. 
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4   Performance Evaluations 

We use the user-movie ratings data provided by the EachMovie dataset and the movie 
details from the Internet Movie Database (www.imdb.com). We represent the content 
information of every movie as a set of slots. Each slot is represented as a bag of asso-
ciation words. The slots we use for the EachMovie dataset [9] are: movie title, cast, 
director, newsgroup reviews, genre, plot, summary, plot keywords, user comments, 
external reviews, and award. The reduced dataset has 299,997 ratings for 1,289 mov-
ies for which content information was available from IMDb. To evaluate various 
approaches of information filtering, we divided the rating dataset in test-set and train-
ing-set. To observe performance given varying amounts of training movie set, learn-
ing curves were generated by checking the recommender system after training on 
increasing subsets of the overall training data. A number of metrics were used to 
performance measures, mean absolute error (MAE) and rank scoring measure (RSM), 
both suggested by [3], F-measure are used to gauge performance. It is important to 
evaluate accuracy and recall in conjunction. To quantify this with single measure, we 
use F-measure in Equation (8), which is a weighted combination of accuracy and 
recall [6,8,10]. P indicates accuracy and R means recall and in that case, the higher F-
measure the better classification. Beta indicates relative weight of recall against accu-
racy and if it is 1.0, weight of accuracy and recall is the same. “a” is the number of 
web pages, which appear in both classes. “b” is the number of web pages, which 
appear in class categorized by first method but not in class categorized by second 
method. “c” is the number of web pages, which appear in class categorized by second 
method but not in class categorized by first method. In this experiment, beta was 
designed as 1 to analysis the results of classification, and different results of F-
measure according to change in value of beta from 0.5 to 1.4 were observed [6,7]. 
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Fig. 1 shows the result of MAE, RSM at varying the training movie set. For current 
experiments, this paper compares the following methods: a simple binary classifier, a 
6-ratings classifier, and a weighed binary classifier. 

We expected that the binary classifier would perform better on classification accu-
racy on the MAE, RSM since it is specifically designed for that task. Since users will 
often be willing to rate a small number of the training movie set, getting enough rat-
ings to produce good performance from the 6-ratings classifier could often be imprac-
tical. However, as the weighted binary classifier performs comparable to the binary 
classifier, this proposes that the weighted binary classifier may be the good [15]. 

For evaluation, this paper uses all of the following methods: the proposed method 
using learning user profile with extracted information (LUP_EI), the collaborative 
filtering method using the Pearson correlation coefficient (P_Corr) [3], the recom-
mendation method using only the content-based filtering (Content) [4], and naïve 
combined approach (N_Com) [16]. The naïve combined approach takes the average 
of the ratings generated by collaborative filtering and content-based filtering. These 
methods are compared by varying the number of clustered users. Also, the proposed 
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method (LUP_EI) was compared with the previous methods that use both collabora-
tive filtering and content-based filtering by changing the number of user evaluations 
on items. The previous methods include the Pazzani method [12], Lee method [8], 
and Good method [5] using user profile. 

Fig. 2 shows the MAE and RSM of LUP_EI, P_Corr, Content, and N_Com. Fig. 2, 
as the number of users increases, the performance of the LUP_IE, and the N_Com 
also increases, whereas P_Corr and Content show no notable change in performance. 
In terms of accuracy of prediction, it is evident that method LUP_EI is more superior 
to others. Fig. 3 shows the prediction speed of LUP_EI, Pazzani method, Lee method, 
and Good method when the number of user’s evaluations is increased. Fig. 4 shows 
the result of F-measure at varying with change for with Beta. Fig. 3 indicates speed of 
prediction at nth rating about 1,892 movies. LUP_EI is the fastest 8.71sec followed 
by 10.84sec of Pazzani method, 14.7sec of Lee method, and 13.2sec of Good method. 
In terms of speed, LUP_EI and Pazzani are excellent in comparison with others and 
remainder records similar speed. Fig. 4 indicates analyzed performance of F-measure 
according to change of beta value from 0.5 to 1.4. LUP_EI represents a rising curve 
as beta value increases and so it records better performance in terms of accuracy than 
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Fig. 1. MAE,    RSM at varying the training movie set. 
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recall. But in Pazzani method and Good method, change of beta value hardly affects 
F-measure value and so it has similar level of performance in terms of recall and 
accuracy. However, in Lee method, it has a bit higher performance in terms of recall 
than accuracy. On average, if beta is 1.0, LUP_EI has 1.31% higher performance than 
Pazzani method and 2.13% Good method and 4.79% Lee method. 

5   Conclusions 

Recommender systems improve access to relevant products and information by mak-
ing personalized suggestions based on previous movies of a user’s likes and dislikes. 
We have proposed automatic preference mining through learning user profile with 
Naïve Bayesian algorithm to efficiently handle set-valued features. And then informa-
tion about movies extracted from web pages to recommend movie titles based on 
training movies supplied by an individual user. The suggested method has two advan-
tages. First, it has refined association words so that Naïve Bayesian classifier effects 
accurate and speedy classification of web pages. Second, it removes confusion in 
meaning by expressing characteristic of web pages. As a result, the automatic prefer-
ence mining through learning user profile with extracted information has 1.31% 
higher performance than Pazzani method and 2.13% higher than Good method and 
4.79% than Lee method. The proposed method was compared with the existent meth-
ods rating preference automatically in recommender systems, and the existent meth-
ods for information filtering, which the naïve combined method. The proposed 
method shows higher performance than existent method in both comparisons. Our 
approach could provide a useful service to customers overwhelmed by the abundance 
of choice presented by the world. 
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Abstract. It has been argued that Bayesian learning can be used to filter unso-
licited junk e-mail ("spam") and outperform other anti-spam methods, e.g., the 
heuristics approaches. We develop a Bayesian learning system, and conduct a 
computational study on a corpus of 10,000 emails to evaluate its performance 
and robustness, particularly the performances with different training-corpus 
sizes and multi-grams. Based on the computational results, we conclude that the 
Bayesian anti-spam approach is promising in anti-spam management as com-
pared with other methods at the client side, and may need additional work to be 
viable at the corporate level in practice. 

1   Introduction 

As information technology fast advances forward, unsolicited commercial e-mail 
("spam") has become an ever-increasing problem. The statistics has shown that 10.4 
million spam emails are sent every minute worldwide, and the spam has at least                  
quadrupled in the past two years. The problems caused by unsolicited commercial                  
e-mail ("spam") go well beyond the annoyance spam causes to the public. These 
problems include the fraudulent and deceptive content of most spam messages, the 
sheer volume of spam being sent across the Internet, and the security issues raised 
because spam can be used to disrupt service or as a vehicle for sending viruses [1]. A 
recent Gartner Group survey revealed that 34% of business email is useless. The 
same study also revealed that employees spend an average of 49 minutes a day man-
aging email. 

President George W. Bush signed a landmark anti-spam bill into law in December 
2003 that became effective Jan. 1, 2004, setting into motion the first national stan-
dards for sending bulk unsolicited commercial e-mail (UCE). Pre-empting many 
tougher state anti-spam laws, the Can Spam Act aims to curb the most egregious 
practices of spammers by targeting e-mail with falsified headers, but allows e-
marketers to send UCE as long as the message contains an opt-out mechanism, a 
functioning return e-mail address, a valid subject line indicating the e-mail is an ad-
vertisement and the legitimate physical address of the mailer. However, some critics 
say that it legitimizes spam by allowing sending unsolicited commercial email as long 
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as it has an opt-out mechanism, a functioning return e-mail address, a valid subject 
line indicating the email is an advertisement and the legitimate physical address of the 
mailer. Therefore, improved technological tools will be an essential part of any solu-
tion as well. Currently there are three major types of anti-spam approaches, 1) source-
based approach of managing sender identity, e.g., Black lists, White lists, Real Time 
Black lists (RBL), Reverse DNS Lookups. Source-based approaches are perhaps most 
effective in levering system resources but they are likely to yield poor overall hit rate. 
2) Rule-based content analysis, e.g., pattern matching, spam definitions, heuristics, 
and the approaches of this kind often use scoring techniques. However, rule-based 
approaches tend to go stale as spammers move on to new tricks. Keeping rule-based 
up-to-date and effective requires a great amount of human resources to come up with 
new rules. Rule-based is generally considered more accurate than source-based ap-
proaches. In this category, the heuristics approach applies multiple detection tests to 
provide greater confidence in identifying spam messages [2]. 3) Bayesian learning, a 
type of statistical approach to identify spam based on their characteristics that have 
been learned from existing emails categorized by users and then apply the knowledge 
to new incoming emails. Bayesian analysis has been considered most accurate ap-
proach, especially at the client side, to effectively tackle fast-changing spam. But the 
Bayesian approach consumes heavy computation.  

As we emphasize on accuracy than cost, Bayesian analysis became the major focus 
of this paper, in comparison to the heuristics approach. In this paper, we will first 
describe naïve Bayesian learning in section 2, and our learning system, followed by 
our computational study, including experiment design and the computational results; 
and section 4 provide concluding remarks and some future work. 

2   Bayesian Learning 

Naïve Bayesian learning is the optimal classification method of supervised learning if 
the values of the attributes of an example are independent given the class of the ex-
ample [3]. On many real-world example datasets Bayesian learning gives better test 
set accuracy than any other known method, including backpropagation [7] and C4.5 
decision trees [6].  

Let A1 through Ak be attributes with discrete values used to predict a discrete class 
C. Given an example with observed attribute values a1 through ak, the optimal predic-
tion is class value c such that )...  ( 11 kk aAaAcCP =∩∩== is maximal. By 

Bayes’ rule this probability equals  
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The background probability or base rate )( cCP = can be estimated from training 

data easily. The example probability )...  ( 11 kk aAaAcCP =∩∩== is irrelevant 

for decision-making since it is the same for each class value c. Learning is therefore 
reduced to the problem of estimating ) ...( 11 cCaAaAP kk ==∩∩= from training 
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examples. Using Bayes’ rule again, this class-conditional probability can be written 
as 

). ...(),... ( 222211 cCaAaAPcCaAaAaAP kkkk ==∩∩=⋅==∩∩==  

Recursively, the second factor above can be written as 

) ...(),... ( 333322 cCaAaAPcCaAaAaAP kkkk ==∩∩=⋅==∩∩==  

and so on. Now suppose we assume for each Ai that its outcome is independent of the 
outcome of all other Aj, given C. Formally, we assume that 

) (),... ( 112211 cCaAPcCaAaAaAP kk =====∩∩==  

and so on for A2 through Ak . Then  ) ...( 11 cCaAaAP kk ==∩∩= equals 

) ()... () ( 2211 cCaAPcCaAPcCaAP kk ====⋅==  

Now each factor in the product above can be estimated from training data: 
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It can be shown that the above equation gives “maximum likelihood” probability 
estimates, i.e. probability parameter values that maximize the probability of the train-
ing examples. The above induction algorithm is called naïve Bayesian learning [4]. 

3   Computational Experiments 

3.1   Experimental Design 

We build our Bayesian learning system based on the above induction algorithm, i.e., 
the naive Bayesian learning.  Our Bayesian learning system is developed to take the 
whole message into account. Each email is treated as a data record, and the score of 
the email is collectively determined by the spam characteristics of each and every 
word in the email. Specifically, the Bayesian learning system not only recognizes 
keywords that identify spam, but can also recognize words that denote valid mail. For 
example: not every email that contains the word "free" and "cash" is spam. Our learn-
ing system would be able to recognize the name of the business contact that sent the 
message and thus classify the message as legitimate, and therefore, allows words to 
"balance" each other. Our learning system also inherits Bayesian’s self-adaptation to 
evolve itself by constantly learning from new spam and new valid outbound mails. 
For example, when spammers started using "f-r-e-e" instead of "free" they succeeded 
in evading keyword checking until "f-r-e-e" was also included in the keyword data-
base. But our Bayesian learning system is able to automatically notice such tactics; in 
fact if the word "f-r-e-e" is found, it is an even better spam indicator. In addition, an 
initial training database of emails is formed based on inbound emails for our Bayesian 
learning system and the database is then updated based on the training results. The 
Bayesian learning will continuously learn the characteristics from the inbound emails 
and apply the learning to categorize the prospective emails.  
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We designed and developed our semantic Bayesian learning system to filter spam 
(junk and unsolicited commercial emails) from hams (the legitimate emails). Our 
experiments are intended to test the performance and robustness of our Bayesian 
approach as compared with some anti-spam heuristics scoring approach. We have 
collected about 10,000 emails to obtain unbiased results. In general, the resampling 
techniques provide reliable estimates of the true error rate, because nearly all the data 
points used for training, and all data points are used for testing, and the Bayesian 
classifier can therefore be reapplied to all data points.  In our experiments, we use 
resampling techniques, i.e., repeated train-and-test partitions, to estimate the classifi-
cation error rate. In particular, we use 10-fold cross-validation to make our results 
less prone to random variation and to further compare statistically across different 
anti-spam approaches [5]. 

3.2   Computational Results 

In our experiments, we apply both rule-based heuristics approach and our Bayesian 
learning system on a corpus of the 10,000 emails. The overall distribution of spam 
and ham obtained from the heuristics approach given in Fig.1 indicates a non-trivial 
set separation of ham and spam for the heuristics approach. The modes of spam and 
ham in Fig.1 are mainly located in the middle of the scoring spectrum with tails of 
both “clearly” identified spam and ham extended to both ends. On the contrary, 
Bayesian learning system provides a desired “clear-cut” set separation of ham from 
spam (as given in Fig.2). The modes of spam and ham are located far apart at the 
ends of the entire spectrum of spam scores for all emails, while there are some over-
laps (or the area with uncertain emails based on their spam scores) in the middle of 
the spectrum. Ideally, every email should be correctly classified with no uncertainty 
and there is no false positive and false negative, and then there would be no overlaps 
in the middle of the spectrum. Nevertheless, the distribution of spam/ham scores 
obtained by the Bayesian approach (as in Fig.2) apparently looks more promising in 
practice than that by the heuristics approach (as in Fig. 1). 
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Fig. 1. Overall spam (the solid line) and ham (the dotted line) distribution obtained by the 
heuristics approach. The horizontal axis is the spectrum of spam scores for all emails, and the 
vertical axis is the frequency of emails by spam scores. 
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Anti-spam approaches such as Bayesian learning require some level of training, 
and almost all anti-spam filtering systems use unigrams (a single 1-word approach) to 
filter spam. However, the English language becomes more “structured” if we use 
bigrams and trigrams. Therefore, we study the performance of multi-grams, i.e., n-
word approaches (n = 1,2,3) combined with the training sets of different sizes in our 
experiments. As given in Table 1, the heuristics approach provides good error esti-
mates with average classification accuracy above 93%, FP (false positive) and FN 
(false negative) about 10.5% and 2.5%, respectively. In particular, 1000 training size 
provides the best performance for all training sizes. It indicates that a better quality 
training set with reasonable size would be more sufficient and effective than a less 
quality but larger training set, i.e., “garbage in, garbage out”. On the other hand, 
multi-grams, trigrams and bigrams in our experiments have not demonstrated statisti-
cal significance in their performances over unigrams. 
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Fig. 2. Overall spam (the solid line) and ham (the dotted line) distribution obtained by our 
Bayesian learning approach. The horizontal axis is the spectrum of spam scores for all emails, 
and the vertical axis is the frequency of emails by spam scores. 

Bayesian learning has demonstrated significantly better performances in all regards 
as given in Table 2 than the heuristics approach. The classification accuracy and FP 
by the Bayesian learning are on average 97% and 2%, respectively. We then con-
ducted paired difference t-test, and the p-values of paired difference t-tests of overall 
classification accuracy for different combinations are given in Table 3 and Table 4. 
As shown, the computational results from both the heuristics approaches and our 
Bayesian approach also find no statistical significance among different training sizes. 
However, the performance of accuracy for n-word approaches has shown some im-
provements from unigrams and bigrams, to trigrams. As shown, multi-grams outper-
form unigrams for training size of 1000, but show no significance statistically for 
other training sizes. Although the experiments here may not be conclusive statisti-
cally, the results strongly indicate again that applying Bayesian unigram learning with 
a good quality training set with reasonable size should be sufficiently effective in 
anti-spam management at the client side. 



A Computational Study of Naïve Bayesian Learning in Anti-spam Management      829 

Table 1. Computational results of classification accuracy, false positive (FP), and false nega-
tive (FN) obtained by the heuristics approach (an experiment with 1000 training set using 1-
word approach is denoted by 1000 1-word). 

Accuracy FP FN
1000-1w ord 94.06% 7.99% 3.90%
1000-2w ord 94.91% 6.79% 3.40%
1000-3w ord 97.50% 2.20% 2.80%
2000-1w ord 92.85% 12.59% 1.70%
2000-2w ord 92.68% 13.24% 1.40%
2000-3w ord 92.85% 12.64% 1.65%
3000-1w ord 92.93% 12.46% 2.13%
3000-2w ord 92.56% 13.37% 2.00%
3000-3w ord 92.91% 12.54% 2.10%

Mean 93.69% 10.43% 2.34%
StdErr 0.005 0.012 0.003  

Table 2. Computational results, classification accuracy, false positive (FP), and false negative 
(FN) obtained by our Bayesian approach. 

Accuracy FP FN
1000-1w ord 96.80% 1.80% 4.60%
1000-2w ord 97.75% 1.70% 2.80%
1000-3w ord 98.75% 0.90% 1.60%
2000-1w ord 96.78% 1.75% 4.70%
2000-2w ord 96.85% 2.10% 4.20%
2000-3w ord 96.90% 2.10% 4.10%
3000-1w ord 96.19% 2.87% 4.67%
3000-2w ord 96.37% 3.02% 4.20%
3000-3w ord 96.37% 2.94% 4.27%

Mean 96.97% 2.13% 3.90%

StdErr 0.003 0.002 0.003  

Table 3. p-values of paired difference t-test of overall classification accuracy obtained by the 
heuristics approach (the results are computed based on row methods over column methods, and 
1000-1word is denoted by 1k-1w). 

vs. 1K-1w 1K-2w 1K-3w 2k-1w 2k-2w 2k-3w 3k-1w 3k-2w 3k-3w
1K-1w 0.0942 0.0006 0.0199 0.0120 0.0191 0.0074 0.0023 0.0055
1K-2w 0.0942 0.0002 0.0026 0.0008 0.0023 0.0016 0.0005 0.0009
1K-3w 0.0006 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2k-1w 0.0199 0.0026 0.0000 0.1044 0.5000 0.3845 0.1010 0.4128
2k-2w 0.0120 0.0008 0.0000 0.1044 0.1207 0.1735 0.3184 0.1843
2k-3w 0.0191 0.0023 0.0000 0.5000 0.1207 0.3860 0.1451 0.4101
3k-1w 0.0074 0.0016 0.0000 0.3845 0.1735 0.3860 0.0078 0.4158
3k-2w 0.0023 0.0005 0.0000 0.1010 0.3184 0.1451 0.0078 0.0126
3k-3w 0.0055 0.0009 0.0000 0.4128 0.1843 0.4101 0.4158 0.0126  
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Table 4. p-values of paired difference t-test of overall classification accuracy obtained by the 
Bayesian approach (the results are computed based on row methods over column methods, and 
1000-1word is denoted by 1k-1w). 

vs. 1K-1w 1K-2w 1K-3w 2k-1w 2k-2w 2k-3w 3k-1w 3k-2w 3k-3w
1K-1w 0.0137 0.0000 0.4734 0.4486 0.3917 0.0488 0.0825 0.1084
1K-2w 0.0137 0.0058 0.0319 0.0346 0.0455 0.0027 0.0021 0.0046
1K-3w 0.0000 0.0058 0.0003 0.0004 0.0004 0.0000 0.0000 0.0000
2k-1w 0.4734 0.0319 0.0003 0.2796 0.1357 0.0246 0.1089 0.1029
2k-2w 0.4486 0.0346 0.0004 0.2796 0.2950 0.0103 0.0525 0.0480
2k-3w 0.3917 0.0455 0.0004 0.1357 0.2950 0.0057 0.0437 0.0399
3k-1w 0.0488 0.0027 0.0000 0.0246 0.0103 0.0057 0.0934 0.0534
3k-2w 0.0825 0.0021 0.0000 0.1089 0.0525 0.0437 0.0934 0.4997
3k-3w 0.1084 0.0046 0.0000 0.1029 0.0480 0.0399 0.0534 0.4997

 

4   Concluding Remarks 

Fighting spam is not a trivial undertaking, especially at the server side or corporate 
level. For example, the judgment on spam/ham is highly individual, and the unsolic-
ited commercial emails that one recipient would accept/reject could be significantly 
different from another recipient based on the recipients’ interests. As shown in our 
experiments, the Bayesian learning approach is advantageous as compared to other 
heuristics approaches, but it works best at client side. In addition, consumes signifi-
cantly more computational resources, and another major concern resides in maintain-
ing a good database for continuous training.  As shown in the study, multi-grams look 
appealing but need more study for its significance. In our future work, we will re-
search the robustness of implemented at gateway level for corporations and ways to 
improve the performance of our Bayesian learning.  
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Abstract. A new non-linear minimum norm template matching tech-
nique is introduced. Similar to the theory of Support Vector Machines the
proposed framework is also based on Reproducing Kernel Hilbert Space
principles. Promising results when applied to aerial image matching are
reported and future work is highlighted.

1 Introduction

In this paper the problem of finding the location of a known reference image,
or template, in a larger input image is addressed. Finding the location of the
reference image can be done by searching through the input image using the
normalized cross correlation as a similarity measure [1]. As the normalized cross
correlation technique won’t work when our reference image is rotated or scaled,
several modifications were proposed. The Fourier and Mellin transforms can be
combined [2], multiple templates can be used, or the reference and sub-images
can be described in terms of invariant moments and then the correlations involv-
ing these moments can be used as a similarity measure [3]. As shown by Ueno-
hara and Kanade [4] the multiple template approach can be made more efficient
by implementing a dual decomposition using the Fourier and Karhunen-Loéve
transforms. Ben-Arie and Rao [5] [6], on the other hand proposed non-orthogonal
image expansions where the search area is represented by basis functions that
are effectively the template translated to different positions.

The technique proposed in this paper is also based on the idea of having
multiple templates, but differs from other popular methods in the way the tem-
plates are selected. Another differentiating factor is that it is non-linear, with
the linear case as a special instance of the proposed framework.

2 Non-linear Template Matching Framework

Similar to the theory of Support Vector Machines (SVMs) our framework is also
based on Reproducing Kernel Hilbert Space (RKHS) principles, in particular
on the idea of an RKHS interpolator. For a more general discussion on RKHS
interpolators, the reader is referred to [7], [8], [9], [10] and [11]. The following
theorem, stated by Zyla and De Figueiredo [12] for Bochner spaces, but adapted
here for our purposes, is the core of our methodology:

A. Fred et al. (Eds.): SSPR&SPR 2004, LNCS 3138, pp. 831–839, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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Theorem 1. [12] Given that an input-output map F̃ to be identified belongs to
Hn, an RKHS, and assuming that we are provided with a set of test input-output
pairs

{(xi ∈ RN , yi)}mi=1 (1)

where xi, i = 1, . . . ,m, are linearly independent elements of RN , the problem
has a unique minimum norm solution expressed by

F̃ (x) =
m∑
i=1

Ci K(xi,x) (2)

where K(xi, ·) is a reproducing kernel of the space Hn. The coefficients Ci are
given by the expression

C = G−1y (3)

where

C := (C1, ..., Cm)T ,

y := (y1, ..., ym)T

and the Gram matrix, G, is given by

G := (Gij)

where
Gij := K(xi,xj), i, j = 1, . . . ,m.

Theorem 1 will now be used for the derivation of our template matching
scheme. To apply theorem 1 to template matching five factors need to be con-
sidered namely, defining the test input-output pairs, choosing a suitable kernel,
calculating the interpolator coefficients, deriving a minimum norm template and
implementing the matching process. From theorem 1 it is clear that once the
test input-output pairs are defined and an appropriate kernel chosen, the in-
terpolator constraints are obtained by simply inverting a Gram matrix. Refer
to Luenberger [13] for conditions under which the Gram matrix is invertible. If
the Gram matrix is found to be ill-conditioned or badly scaled one can resort
to the pseudo-inverse. In the approach followed by De Figueiredo and Zyla [7]
[12], every reproducing kernel K(xi, ·) is associated with a specific norm on Hn.
It is important to note that because of this relationship only knowledge of the
reproducing kernel is required when applying theorem 1. Refer to [14] to see how
theorem 1 relates to the well-known representer’s theorem.

The definition of the test input-output pairs is discussed in section 2.1, ex-
amples of suitable kernels are given in section 2.2, the derivation of minimum
norm templates are discussed in section 2.3 and the matching process is detailed
in section 2.4.

In short we will infer a Minimum Norm Template (MNT) based on Eq. 2 us-
ing k Desirable Image Templates (DITs) andm−k Undesirable Image Templates
(UITs) where m ≥ k, as input-output pairs. For the application considered in
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this paper the DITs will be rotated and scaled versions of the region of interest
as shown in figures 1 to 4, i.e. instances of the entity we want to find in a complex
image. The UITs will be instances of objects or backgrounds we don’t want to
recognize as our region of interest such as undesirable complex backgrounds as
shown in figure 5. For simplicity it will be assumed that the DITs and UITs are
square, have equal dimension and are represented by Xi ∈ RN×N .

2.1 Test Input-Output Pairs {(xi ∈ RN , yi)}mi=1
For the DITs (i.e. i ≤ k) the yi values in Eq. 1 are normally chosen equal to
some positive value, say γ. The rest of the yi values for the UITs are normally
set to α, where α is zero or −γ. Each xi is simply set equal to vec (Xi) ∈ R

N

where vec (·) is the matrix vectorization operator and N = N
2
.

2.2 Examples of Reproducing Kernels K(x, z)

Although the theory is general enough to allow other reproducing kernels we will
only focus on three types of kernels, namely the linear kernel

K(x, z) = xT z, (4)

the polynomial kernel,

K(x, z) =
(
1 + xT z

)d
, d ≥ 1, (5)

and the polynomial kernel without cross terms

K(x, z) =

⎛⎝1 + d∑
β=1

(
xβ1 z

β
1 + xβ2 z

β
2 , ..., x

β
NzβN

)⎞⎠ , d ≥ 1. (6)

2.3 The Minimum Norm Template

Once the interpolator coefficients are obtained an MNT can be inferred. When
using the linear kernel it is easy to show that the MNT has the form

x̃ =
m∑
i=1

Cixi (7)

and that K(x̃, · ) will satisfy

K(x̃,xi ) =
{

γ for i = 1, ..., k
α for i > k

.

When the DITs and UITs are linearly separable, the suitability of using
devec(x̃) ∈ R

N̄×N̄ as an object template is obvious. Here devec denotes the
inverse of vec.
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Fig. 1. Original image.

Fig. 2. Example of rotated (-24 degrees) and scaled (factor 20) input image.

Fig. 3. Image template: Region searched for in input image.
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Fig. 4. Example of 16 Desirable Image Templates (DITs).

Fig. 5. Example of 9 Undesirable Image Templates (UITs).

When our input training pairs are not linearly separable we will resort to
polynomial kernels. First consider the kernel given by Eq. 5. For simplicity we
will consider the case where d = 2. By using similar arguments as for the linear
kernel case it can be shown that

x̃ =
m∑
i=1

Cix̄i, (8)

where x̄i =
[[
1 xTi

]
⊗

[
1 xTi

]]T and ⊗ denotes the Kronecker Tensor Product.
Similar to the linear case,

x̃T x̄i =
{

γ for i = 1, ..., k
α for i > k

.
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These results can be readily extended for cases where d > 2. When d = 3 for
example we have

x̃ =
m∑
i=1

Ci

[[
1 xTi

]
⊗

[
1 xTi

]
⊗

[
1 xTi

]]T
.

The polynomial kernel without cross terms given by Eq. 6 can be seen as a
compromise between the linear kernel and the polynomial kernel given by Eq.
5. The Minimum Norm Template (MNT) for this case can be expressed as a
concatenated vector given by

x̃ =

[
m∑
i=1

Ci,

m∑
i=1

Cix1i ,
m∑
i=1

Cix2i , ...,
m∑
i=1

Cixdi

]T
(9)

where xdi denotes that every element of x
T
i is raised to the power d. Once again

x̃T x̄i =
{

γ for i = 1, ..., k
α for i > k

,

where x̄i := [1x1i x
2
i ...x

d
i ].

2.4 The Matching Process

In summary the kernel-based template matching process involves the following
steps:

1. Calculate x̃, the MNT, offline using the DITs and the UITs.
2. Once the MNT x̃ has been obtained, x̃T x̄kl which serves as our similar-
ity measure, is calculated for all (or selected) portions over an area of in-
terest in the input image. When for example the polynomial kernel with-
out cross terms is used, then from the previous section we have x̄kl :=
[1 vecX1kl vecX

2
kl...vecX

d
kl]. Here Xkl ∈ RN×N , an N × N region centered

at position (k, l) in the K × L input image and vecXd denotes that every
element of (vecX)T is raised to the power d. It is assumed that K,L > N.

3. Position (k, l) in the input image where the value for x̃T x̄kl is a maximum
is taken as the location of the object or region to be identified.

The template matching method presented here differs from conventional
SVM classification strategies mainly in two aspects: 1) Kernel evaluations are
only performed to calculate the MNT. Once the MNT is calculated no further
kernel evaluations are required during the execution of the matching process. 2)
The interpolator coefficients used to construct the MNT are obtained by simply
inverting a Gram matrix. Complex optimization methods are not required.
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2.5 Efficient Implementation

If the linear kernel is used the matching process is equivalent to 2D filtering,
where the 2D filter coefficients are given by X̃ = devec (x̃) . By using the fact
that discrete convolution in the spatial domain is equivalent to point-wise multi-
plication of discrete Fourier spectra in the frequency domain, the cost of search-
ing for a match in an area of interest can be reduced by calculating two Fast
Fourier Transforms (FFTs), performing a point-wise multiplication, and calcu-
lating the Inverse FFT (IFFT) of the result. It is assumed that sufficient zero
padding is added to implement linear and not circular convolution. When using
the polynomial kernel given by Eq. 5, a single-pass FFT technique is not feasible
in general as 2D non-linear filtering is performed. However even when using the
polynomial kernel, (

m∑
i=1

Ci

(
1 + xTi xk,l

)d)
,

sequential or parallel FFT processing can still be used to process the inner terms
xTi xk,l. When m, that is dependent on the number of DITs and UITs, is large,
say > 10 which will usually be the case, all xi associated with a near zero Ci

can be ignored to save complexity. Alternatively a more optimal SVM approach
can be followed to only obtain those xi labelled as support vectors.

Most of the computational difficulties associated with the kernel given by Eq.
5 can be overcome by implementing the kernel given by Eq. 6. What is important
to note in this case is that fast frequency domain algorithms developed for the
linear template matching case can be adapted for use with the kernel given by
Eq.6 by calculating d sub-templates and executing the linear algorithm d times.
Since d is normally chosen as a small value, say 3 or 4, the computational load
will still be manageable for most cases. However, performance versus complexity
will in the end be dictated by the application.

3 Simulation Results

To test our kernel-based approach, figure 1 (400 × 400 pixels) was used as
a reference image. The objective was to locate the (121 × 121 pixel) region
depicted by figure 3, in figures such as figure 2. Here figure 2 is a rotated and
scaled version of figure 3.

Thirty-three DITs were constructed by first rotating the reference template,
i.e. figure 3, through -20 -16 -8 -4, 4, 8, 12, 16 and 20 degrees to obtain 9
additional templates. Each rotated template as well as the original template was
then scaled by factors 26 and 52 to produce another additional 20 templates.
A scale factor of 26 implies that a 26 pixel wide border was removed from the
original template after which the cropped template was again made the same
size as the original template using bilinear interpolation. Sixteen of the 30 DITs
are shown in figure 4.

Sixteen UITs were obtained by extracting 121 × 121 pixel regions around
the neighborhood of the zero rotated and scaled DIT and elsewhere from the
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reference image. Nine of the UITs are depicted in figure 5. The DITs and UITs
were then used as described in section 2.4.

To test the performance of the different kernels, a series of input images was
generated by first rotating the reference image by -21, -15, -9, -3, 3, 9, 15 and 21
degrees, and then scaling by factors 0, 8, 16, 24, 32, 40 and 48. For each input
image the Euclidean distance (measured in pixels) from the midpoint of region
with highest match, to the midpoint of the true location of the region searched
for, was calculated. Note that the rotation and scale factors used to produce the
input images do not correspond the rotation and scale factors used to generate
the DITs. The results of the experiment for the linear kernel is reported in
table 1. Note that ordinary normalized cross correlation is only of value when no
rotation or scaling is involved. Both the polynomial kernel given by Eq. 5 with
d = 2 and Eq. 6 with d = 3 yielded improved results. If a distance of more than
10 pixels is taken as a mismatch, then the results obtained using the polynomial
kernel without cross terms reported in table 2 show that there is much to gain
by using non-linear kernels.

Table 1. Euclidean distance measured in pixels from midpoint of region with highest
match to midpoint of true region using the linear kernel.

Rotation and Scale −21• −15• −9• −3• 3• 9• 15• 21•
0 117 0 0 0 0 11 115 124

8 114 1 1 1 0 10 9 126

16 119 2 1 5 0 9 10 56

24 8 2 1 0 0 31 80 57

32 1 1 1 1 0 1 1 1

40 1 1 1 2 1 1 0 1

48 2 1 1 2 1 1 1 1

Table 2. Euclidean distance measured in pixels from midpoint of region with highest
match to midpoint of true region using the polynomial kernel without cross terms.

Rotation and Scale −21• −15• −9• −3• 3• 9• 15• 21•
0 2 0 0 0 0 0 0 0

8 2 1 1 1 1 1 1 1

16 1 2 1 2 9 9 9 7

24 2 2 1 2 9 9 9 1

32 1 1 1 2 8 1 1 1

40 1 1 1 2 1 1 1 1

48 10 1 2 2 1 1 1 1

4 Conclusion

A novel (non-linear) template matching technique was presented. The proposed
framework, based on the derivation of an MNT using interpolator coefficients,
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DITs and UITs, shows promising results. An efficient implementation strategy
using the FFT and IFFT was highlighted. Future work will focus on the im-
provement of robustness and real-time implementation issues.
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Abstract. In this paper, we investigate and analyze the weight distribution of 
feedforward two-layer neural networks in order to understand and improve the 
time-consuming training process of neural networks. Generally, it takes a long 
time to train neural networks. However, when a new problem is presented, neu-
ral networks have to be trained again without any benefit from previous train-
ing. In order to address this problem, we view training process as finding a so-
lution weight point in a weight space and analyze the distribution of solution 
weight points in the weight space. Then, we propose a weight initialization 
method that uses the information on the distribution of the solution weight 
points. Experimental results show that the proposed weight initialization 
method provides a better performance than the conventional method that uses a 
random generator in terms of convergence speed. 

1   Introduction 

Neural networks have been successfully applied in various fields such as pattern 
recognition, signal processing, and dynamic modeling. The increasing popularity of 
neural networks is partly due to their ability to learn and generalize. In particular, 
neural networks make no prior assumptions about the statistics of input data and can 
construct complex decision boundaries. The decision boundaries of a neural network 
are determined by a set of weights and the set of weights can be arranged as a vector, 
which can be represented as a weight point in the weight space that is defined by the 
weights. From this perspective, training process of neural networks may be viewed as 
finding a weight point that is optimal for a given problem (Fig. 1). We call such a 
weight point a solution weight point for a given problem. In practice, the solution 
weight point may not be unique. In other words, a weight point in the vicinity of the 
solution weight point may provide an equivalent performance and such weight points 
may form a region, which will be called a solution region in this paper (Fig. 1). 
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Yonsei University (KOSEF). 
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If the neural network is trained with a different initial weight point, the resulting 
weight point can be quite different, though the outputs of the neural network are simi-
lar. The behavior of neural networks that produce similar outputs with very different 
sets of weights leads us to suspect that there may exist several solution regions for a 
given problem. From this perspective, we explore the possibility to speed up the 
training process of neural networks by utilizing the information on the distribution of 
solution regions in the weight space, assuming that such information is available. In 
other words, by analyzing and accumulating the information on the distribution of 
solution regions in weight space for various problems, we may initialize neural net-
works more effectively for a new problem. 

 

L-dimensional
weight space

initial weight point

solution regions
solution weight point

 

Fig. 1. Solution weight point and solution regions in the weight space. 

Efficient weight initialization is one of the most important factors for fast conver-
gence and generalization, and many authors have proposed various weight initializa-
tion methods. The simplest and most widely used weight initialization method is a 
random initialization assuming some probability distributions and some researchers 
proposed several modified methods to determine the best initialization interval [1-2]. 
Another initialization approach is to incorporate the known prior knowledge into 
weight initialization [3]. Generally, it has been shown that the weight initialization is 
a factor that may influence generalization results. Also, an analysis of the weight 
distribution may provide a way to reduce the complexity of neural networks [4]. 
However, the weight distribution in a trained neural network is not well understood, 
which is due to a strong problem dependency for the weight distribution [5]. In this 
paper, we analyze the distribution of solution regions for two-pattern class classifica-
tion problems. From this analysis, we present a new insight into the weight distribu-
tion and propose a new weight initialization method that uses the information on the 
weight distribution. 

2   Feedforward Neural Networks and Terminologies 

We will briefly discuss the structure of feedforward neural networks that will be used 
in the experiments. A typical neural network has an input layer, a number of hidden 
layers, and an output layer. It may also include bias terms. Fig. 2 shows an example 
of two-layer feedforward neural networks with two outputs. In Fig. 2, let 
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bias vector is given by TbbB ),( 21= . Without loss of generality, we can set 
121 == bb . Then we may include the bias term in the input layer as follows: 
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ijw ,  is the weight between input neuron i and hidden neuron j and oh
jkw ,  is the 

weight between hidden neuron j and output neuron k. All the elements of 1W  and 2W  

can be arranged as a weight vector W . In other words, 
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where L=((M+1)K+2(K+1)). Then, we may view the weight vector W  as a weight 
point in an L-dimensional weight space that is defined by all the weights in the neural 
network. From this perspective, training a neural network may be viewed as finding a 
weight point that produces a desirable sequence of output vectors for a given se-
quence of input vectors. In this paper, such a weight point will be called a solution 
weight point. The solution weight point is located within the solution region, where 
the set of solution weight points is distributed densely in the weight space [6]. 
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Fig. 2. An example of two-layer feedforward neural networks (two-pattern classes). 

3   Weight Distribution in the Weight Space 

Even for a simple neural network, the number of weights can be large. In order to 
make the computation manageable, we chose a neural network that has 2 input neu-
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rons, 3 hidden neurons, 2 output neurons, and 2 bias terms. The total number of 
weights of the neural network is 17 and the training process is equivalent to finding a 
solution weight point in a 17-dimensional weight space. The backpropagation algo-
rithm is used for training and the decision rule is to select the class corresponding to 
the output neuron with the largest output [7]. 

In the following experiment, tests are conducted using generated data whose statis-
tics are estimated from real remotely-sensed data collected from the field spectrome-
ter system (FSS) assuming Gaussian distribution [8]. The 50 pairs of two classes were 
selected randomly from Table 1 and feature selection is applied to the original 60-
dimensional data, producing a 2-dimensional input vector. Each input is preprocessed 
so that its mean value is zero and the inputs are scaled so that they are in the range of 
–2 to 2. For each two-pattern classification problem, the network was trained with 
1000 different initial weight points until the difference between the classification 
error and the Bayes’ error is smaller than 2%, resulting in 1000 solution weight 
points. The Bayes’ error is estimated using the Gaussian ML classifier. In this paper, 
we will call the set of solution weight points for each problem a solution set. 

Table 1. Description of the multi-temporal 15 classes. 

Class # Date Species No. of samples 
1 770508 Winter Wheat 691 
2 780515 Spring Wheat 474 
3 771026 Winter Wheat 393 
4 771018 Spring Wheat 313 
5 780921 Winter Wheat 292 
6 780816 Native Grass Pas 212 
7 780726 Summer Fallow 200 
8 780709 Summer Fallow 190 
9 780921 Oats 182 
10 780816 Oats 165 
11 771018 Oats 161 
12 770626 Grain Sorghum 157 
13 780515 Summer Fallow 150 
14 770920 Spring Wheat 129 
15 780602 Barley 112 

3.1   Eigenvalues and Determinant of Covariance Matrix of the Solution Set 

In order to analyze the distribution of the solution sets, we investigate the eigenvalues 
and determinant of the covariance matrix estimated from the solution sets. Table 2 
shows the largest ten eigenvalues (ordered by size) of the covariance matrix estimated 
from the 50 solution sets (1,000 solution weight points per set, a total of 50,000 solu-
tion weight points), as well as the proportions and accumulations of the eigenvalues. 
As can be seen in Table 2, the largest six eigenvalues account for more than 90% of 
the total energy. In particular, the largest three eigenvalues are dominant and the rest 
are small in value. It appears that most variations of solution weight points in weight 
space occur along a few eigenvectors corresponding to the largest eigenvalues and 
there is little variation along the other eigenvectors. This indicates that, assuming a 
normal distribution, the data will be distributed in the shape of an elongated hyperel-
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lipsoid with its center at the mean of the solution sets. The principal axes of this hy-
perellipsoid are given by the eigenvectors of the covariance matrix of the solution sets 
and the energies contained in these axes are proportional to the corresponding eigen-
values. Fig. 3(a) shows the distribution of the 50 solution sets projected onto the 3 
dimensional space spanned by the three eigenvectors corresponding to the largest 
eigenvalues of the covariance matrix. It can be observed that solution weight points 
seem to form a single cluster with a dense spot in the center and are distributed 
closely around the center of the cluster. In addition, as there are little differences 
among the largest three eigenvalues in Table 2, it seems that the solution weight 
points are distributed in the shape of a sphere instead of an ellipsoid in the 3 dimen-
sional space spanned by the three eigenvectors corresponding to the largest eigenval-
ues. Fig. 3(b) shows the histogram of the individual weight values of all the 50 solu-
tion sets and the histogram is compared with a normal distribution. The mean and the 
variance are 0.105 and 25.2, respectively. From Fig. 3(b), the weight values do not 
seem to be normally distributed, though quite often they are assumed to have a nor-
mal distribution [5]. 

Table 2. Eigenvalues of covariance matrix of 50 solution sets. 

 1 2 3 4 5 6 7 8 9 10 
Eigenvalue 114.8 113.8 108.2 17.4 17.1 16.2 12.3 12.3 11.6 2.9 

Proportion (%) 26.9 26.7 25.3 4.0 4.0 3.8 2.9 2.9 2.7 0.7 

Accumulation (%) 26.9 53.6 78.9 82.9 86.9 90.7 93.6 96.5 99.2 99.9 
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Fig. 3. (a) Three dimensional projection map of the 50 solution sets. (b) histogram of weights 
and the corresponding normal distribution for the 50 solution sets. 

Fig. 4 shows the determinants of the covariance matrices for each of the 50 solu-
tion sets. The determinant of a covariance matrix is equal to the product of all eigen-
values and the determinant of a covariance matrix provides the information about the 
actual volume where the data are distributed. From Fig. 4, it can be said that there are 
significant differences among the solution sets, indicating that there are significant 
differences in the actual volumes where the solution sets are distributed. 
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Fig. 4. Determinants of the 50 solution sets. 

3.2   Distribution of Solution Region in the Weight Space 

A solution set (the set of solution weight points for each problem) is not homogene-
ous in the sense that the weight points inside the volume containing the solution set 
do not provide the same classification accuracy. Thus, we need to find homogeneous 
subsets of a solution set in order to analyze the distribution of solution regions. In 
order to find homogeneous subsets inside a solution set, we applied clustering to each 
solution set using the Euclidean distance. It is noted that by rearranging the hidden 
neurons and corresponding weights, we can produce 6 different configurations of 
neural networks that produce the exactly same output. This indicates that there exist 6 
equivalent weight points in the 17 dimensional weight space for the neural network (2 
input neurons, 3 hidden neurons, 2 output neurons, and 2 bias terms). The number of 
equivalent weight points corresponds to the factorial of the number of hidden neu-
rons. In the analysis of the weight distribution, these equivalent weight points should 
be treated as the same point, though their locations are different in the weight space. 
In order to assign equivalent weight points to the same point, we compared the 3 
weight values between the bias term in the input layer and the hidden neurons, and 
rearranged the hidden neurons and corresponding weights such that 321 www ≥≥ , 

where iw  is the weight value between the bias term in the input layer and the i -th 

hidden neuron. After this rearrangement of the hidden neurons and corresponding 
weights, clustering was applied. The resulting subsets are homogeneous in the sense 
that if we choose any weight point from the volume that contains a subset, the point 
provides the maximum classification accuracy without training. In this paper, we will 
call the homogeneous subset a homogeneous solution region. Clustering results show 
that there exist a number of homogeneous solution regions in a solution set and also 
there is a large variation among the numbers of homogeneous solution regions of the 
solution sets.  

Since clustering was applied to just 1000 solution weight points, the resulting clus-
ters may not be an accurate estimation of the distribution of solution regions. In the 
next step, we expand each homogeneous solution region to find the maximum vol-
ume such that any weight point within the volume provides the maximum classifica-
tion accuracy. In other words, by expanding a homogeneous solution region, we try 
to find the maximum volume that contains the homogeneous solution region.  

We propose the following expansion procedure for expanding a homogeneous so-
lution region. First, we try to expand a homogeneous solution region along the eigen-
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vector corresponding to the smallest eigenvalue of the covariance matrix estimated 
from a homogeneous solution region. After doubling the smallest eigenvalue, 1000 
weight points are generated assuming the Gaussian distribution for the homogeneous 
solution region with the increased eigenvalue. Then, we compute the classification 
accuracy for the generated weight points. If the number of the generated weight 
points whose classification accuracy is within 2% of the maximum classification 
accuracy is greater than 995, which corresponds to 99.5% of the total generated 
points, we determine that the expansion is valid and the modified eigenvalue is re-
tained. Otherwise, the original eigenvalue is retained. The same procedure is repeated 
for the rest of the eigenvalues in increasing order. Finally, 1000 weight points are 
generated with all the updated eigenvalues and only weight points whose classifica-
tion accuracy is within 2% of the maximum classification accuracy are retained. From 
the new weight points, the mean vector and covariance matrix are estimated. This 
whole procedure is repeated until the eigenvalues cannot be increased any more. 

After the expansion procedure, the volume of a homogeneous solution region in-
creases substantially. Table 3 shows the largest seven eigenvalues of the homogene-
ous solution region after the expansion procedure. In this case, the volume of the 
homogeneous solution region increased about 10124 times. And most solution weight 
points are distributed in a few major components, indicating that there are high corre-
lations between adjacent weight values. Table 3 also shows corresponding angles 
between the eigenvectors before expansion and the corresponding eigenvectors after 
expansion. The large angles indicate that the shape of the homogeneous solution 
region also changed substantially.  

Table 3. Eigenvalues of the homogeneous solution region and angles between eigenvectors 
after expansion procedure. 

 1 2 3 4 5 6 
Eigenvalue 36.7 11.6 3.0 0.8 0.3 0.1 

Proportion (%) 69.8 22.2 5.6 1.5 0.7 0.2 

Accumulation (%) 69.8 92.0 97.6 99.1 99.8 99.9 

Angles between eigenvectors (degree) 8 74 104 78 77 43 

4   Weight Initialization Using the Distribution of Solution Regions 

Now we explore the possibility to initialize feedforward neural networks with prior 
knowledge that was obtained by investigating the distribution of solution regions in 
the weight space. In other words, we wish to use the information on the weight distri-
bution to provide a good initial weight point. 

In the previous analysis, we obtained 2581 homogeneous solution regions for the 
50 pattern classification problems. We computed the mean vector and the covariance 
matrix of each homogeneous solution region. From these statistics, we generated 300 
weight points for each homogeneous solution region assuming the Gaussian distribu-
tion. Thus, the total number of solution weight points is 774,300, to which we applied 
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K-means clustering in order to divide the solution weight points into 100 clusters 
whose mean vectors may be used as initial weight points for a new problem. 

In order to examine whether this information of weight distribution is useful for 
selecting a good initial weight point, we initialized the neural network with the cluster 
means for 780 new classification problems that were not used to obtain the 100 clus-
ters. The new classification problems consist of 780 pairs of two classes from the 
combination of 40 classes. Fig. 5(a) shows the distribution of the 40 classes and Fig. 
5(b) shows the distribution of the 15 classes shown in Table 1. 

 
           (a)     (b) 

  

Fig. 5. (a) Distribution of 40 classes used for the 780 two-class problems, (b) distribution of 15 
classes described in Table 1. 

The mean vectors of the 100 clusters were used as initial weight points and then 
we selected the weight point that provides the best classification accuracy. The classi-
fication accuracy was estimated using 25 randomly selected samples from 500 train-
ing samples of each class, which correspond to 5% of the total training samples. 
Thus, the extra computation time is relatively minor. Random initialization assuming 
a uniform distribution over the interval from –0.5 to 0.5 was also tested to compare 
the performance of the proposed initialization method. 

Table 4 shows the differences between the classification accuracies that were ob-
tained using the mean vectors of the clusters as initial weights and the classification 
accuracies that were obtained using random initialization for the 780 new problems. 
The classification accuracies were obtained without any training. In 82.2% of the 780 
problems, the proposed initialization method achieves higher classification accuracy 
than the random initialization method. It appears that the solution regions retain some 
useful information to solve new problems.  

Fig. 6 shows the average classification accuracies of the 780 problems. As can be 
seen, the proposed method significantly outperforms the random weight initialization. 
After one iteration, the average classification accuracy obtained using the mean vec-
tors of the clusters as initial weights was 81.58% for training data. On the other hand, 
the average classification accuracy obtained using randomly selected initial weights 
was 71.82%. The experiments show that the knowledge on the solution distribution 
can provide helpful information for a new problem. However, for a few problems, 
using the mean vectors of the clusters as initial weights was ineffective. 
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Table 4. The classification accuracy differences between the initial weights selected from 
cluster means and the random initial weights without any training. 

Difference (D) No. of problems Proportion (%) Accumulation (%) 
D≥30% 24 3.08 3.08 

30%>D≥20% 103 13.21 16.28 
20%>D≥10% 227 29.10 45.38 
10%>D>0% 311 39.87 82.18 
0%>D≥-5% 92 11.79 97.05 

-5%>D≥-10% 20 2.56 99.62 
-10%>D≥-15% 3 0.38 100.00 
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Fig. 6. Performance comparison between the proposed initialization using the information on 
the solution distribution and the random initialization (averages of the 780 experiments). (a) 
training data, (b) test data. 

5   Conclusion 

In this paper, by analyzing weight distribution of neural networks, we explored the 
possibility to speed up training process. First, we obtained 50,000 solution weight 
points for 50 two-pattern-class classification problems and found a number of homo-
geneous solution regions in the weight space by applying clustering to the solution 
weight points. Then, the homogeneous solution regions were expanded in order to 
obtain the maximum volume for each homogeneous solution region. By analyzing 
distribution of the homogeneous solution regions, we found that most weights are 
distributed along a few major directions, indicating that there are very high correla-
tions between weight values of the homogeneous solution regions. Finally, we ex-
plored the possibility to use this prior information on the distribution of weights for 
efficient weight initialization. Experimental results indicate that the weight analysis 
may provide useful information on selecting initial weights. As the knowledge on the 
weight distribution accumulates, it would be possible to select good initial weights for 
a new problem. 
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Abstract. Class imbalance is a widespread problem in many classifica-
tion tasks such as medical diagnosis and text categorization. To over-
come this problem, we investigate one-class SVMs which can be trained
to differentiate two classes on the basis of examples from a single class.
We propose an improvement of one-class SVMs via a conformal ker-
nel transformation as described in the context of binary SVM classi-
fiers by [2, 3]. We tested this improved one-class SVM on a health care
problem that involves discriminating 11% nosocomially infected patients
from 89% non infected patients. The results obtained are encouraging:
compared with three other SVM-based approaches to coping with class
imbalance, one-class SVMs achieved the highest sensitivity recorded so
far on the nosocomial infection dataset. However, the price to pay is a
concomitant decrease specificity, and it is for domain experts to decide
the proportion of false positive cases they are willing to accept in order
to ensure treatment of all infected patients.

1 The Imbalanced Data Problem

Data imbalance is a crucial problem in applications where the goal is to maximize
recognition of the minority class, as is typically the case in medical diagnosis.
The issue of class imbalance has been actively investigated and remains widely
open; it is handled in a number of ways [14], including: oversampling the minority
class, building cost-sensitive classifiers [10] that assign higher cost to misclassi-
fications of the minority class, stratified sampling on the training instances to
balance the class distribution [15] and rule-based methods that attempt to learn
high confidence rules for the minority class [1]. In this paper we investigate an-
other way of biasing the inductive process to boost sensitivity (i.e., capacity to
recognize positives). This approach, based on one-class support vector machines
(SVMs) with a conformal kernel, is described in Section 2 and its application to
nosocomial infection detection is discussed in Section 3. Experiments conducted
to assess this approach as well as results are described in Section 4.

A. Fred et al. (Eds.): SSPR&SPR 2004, LNCS 3138, pp. 850–858, 2004.
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2 Using Conformal Kernels in One-Class SVMs

2.1 One-Class Classification

While the majority of classification problems consist in discriminating between
two or more classes, some other problems are best formulated as one-class or
novelty detection problems. In a probabilistic sense, one-class classification is
equivalent to deciding whether an unknown case has been produced by the dis-
tribution underlying the training set of normal cases. In one-class classification
the classifier is trained exclusively on cases from the majority class and never
sees those from the minority class. It must estimate the boundary that separates
two classes and minimize misclassification based only on data lying on one side
of it.

The one-class approach is particularly attractive in situations where cases
from one class are expensive or difficult to obtain for model construction (i.e.
imbalanced datasets). The most straigthforward method for detecting novel or
abnormal cases is to estimate the density of the training data and to set a
threshold on this density [4, 17]. However, it is much simpler to model the support
of a data distribution, i.e., to create a binary-valued function which is positive in
those regions of input space containing most of the data and negative elsewhere;
the following section describes this approach.

2.2 One-Class Support Vector Machines

Support vector machines [18, 8] are learning machines based on the Structural
Risk Minimization principle (SRM) from statistical learning theory. They were
originally introduced to solve the two-class pattern recognition problem. An
adaptation of the SVM methodology in order to handle classification problems
using data from only one class has been proposed by [16]. This adapted method,
termed one-class SVM, identifies “abnormal” cases amongst the known cases and
assumes them to belong to the complement of the “normal” cases. Schölkopf et
al. formulate the one-class SVM approach as follows:
Consider a training set X = {xi}, i = 1, . . . , n, xi ∈ Rd, and suppose its in-
stances are distributed according to some unknown underlying probability dis-
tribution P. We want to know if a test example x is distributed according to P
or not. This can be done by determining a region R of the input space X such
that the probability that a test point drawn from P lies outside of R is bounded
by some a priori specified value ν ∈ (0, 1). This problem is solved by estimating
a decision function f which is positive on R and negative elsewhere.

f(x) > 0 if x ∈ R and f(x) < 0 if x ∈ R (1)

A non linear function Φ : X → F maps vector x from the input vector space
X endowed with an inner product to a Hilbert space F termed feature space.
In this new space, the training vectors follow an underlying distribution P’,
and the problem is to determine a region R’ of F that captures most of this
probability mass distribution. In other words the region R’ corresponds to the
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part of the feature space where most of the data vectors lie. To separate as many
as possible of the mapped vectors from the origin in feature space F we construct
a hyperplane H(w, ρ) in a feature space F defined by

H(w, ρ) : 〈x, Φ(x)〉 − ρ (2)

with w the weight vector and ρ the offset, as illustrated in Fig 1.

R=1

c

Fig. 1. Schematic 2D overview of a one-class SVM classifier with an RBF kernel. In
the feature space, the vectors are located on a hypersphere. The hyperplane H(w, ρ)
separates the training vectors from the rest of the surface of the hypersphere.

The maximum margin from the origin is found by solving the following
quadratic optimization problem.

Minimize
1
2
〈w,w〉 − 1

νn

n∑
i=1

ξi (3)

subject to 〈w, Φ(w)〉 ≥ ρ − ξi, ∀i ξi ≥ 0 (4)

where ξi are so-called slack variables that penalize the objective function but
allow some of the points to be on the wrong side of the hyperplane, i.e. located
between the origin and H(w, ρ) as depicted in Fig.1. ν ∈ (0, 1) is a parameter
that controls the trade off between maximizing the distance from the origin and
containing most of the data in the region created by the hyperplane. It is proved
in [16] that ν is an upper bound on the fraction of outliers i.e. training errors,
and also a lower bound on the fraction of support vectors.

Let (α1, α2, . . . , αn) be n non negative Lagrange multipliers associated with
the constraints, the solution to the problem is equivalent to the solution of the
Wolfe dual [11] problem:
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Maximize
1
2
αiαj〈Φ(xi), Φ(xi)〉 (5)

subject to 0 ≤ αi ≤
1
νn

,

n∑
i=1

αi = 1 (6)

the solution for w is
∑n

i=1 Φ(xi) where 0 ≤ αi ≤ 1
νn and the corresponding

decision function is :

f(xj) = sgn

(
n∑

i=1

αi〈Φ(xi), Φ(xj)〉 − ρ

)
(7)

All training data vectors xi for which f(xi) ≤ 0 are called support vectors
(SVs); these are the only vectors for which αi �= 0. SVs are divided in two sets
: the margin SVs, for which f(xi) = 0, and the non-margin SVs, for which
f(xi) < 0. Notice that in (5) only inner products between data are considered;
for certain particular maps F , there is no need to actually compute Φ(xi) and
Φ(xj); the inner product can be derived directly from xi and xj by means of the
so-called ”kernel trick”. A kernel K is a symmetric function that fulfills Mercer’s
[18, 9] conditions. The main property of functions satisfying these conditions is
that they implicitly define a mapping from X to a Hilbert space F such that

K(xi,xj) = 〈Φ(xi), Φ(xj)〉 (8)

and thus can be used in algorithms using inner products. Accordingly, the hyper-
plane (2) in feature space F becomes a non linear function in the input space X .

f(x) = sgn(
n∑
i=1

αiK(xi,x)− ρ) (9)

There are many admissible choices for the kernel function K(xi,xj). The most
widely used in one-class SVMs is the Gaussian Radial Basis Function RBF kernel:

K(xi,xj) = exp−‖xi−xj‖
2/2σ2 (10)

where σ is a parameter which controls the width of the kernel function around
xi. Since 〈Φ(xi), Φ(xi)〉 = K(xi,xi) = exp0 = 1 with an RBF kernel, the train-
ing data in F lie on a region on the surface of a hypersphere centered at the
origin of X with radius 1 as depicted in Fig. 1. Finally one has the decision
function of Eq. (9) with ρ =

∑n
i=1 αiK(xi,xj) for any xj such that αi satisfies

0 < αj < 1
νn which defines the contour of the region R in input space by cutting

the hypersurface defined by the weighted addition of SVM kernels at a given
altitude ρ.

2.3 Accuracy Improvement

The accuracy of the one-class classifier can be improved by enhancing the res-
olution in the support vector region boundaries. One way to reach this goal is
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via a conformal transformation1 of the kernel. This approach has been described
in the context of binary SVMs classifier by [2, 3], but the basic principle is also
applicable to the one-class SVM. From a geometrical point of view the mapped
data lie on a surface S in F with the same dimensionality as the input space
X [6]. In the case of an RBF kernel function, the associated surface S in F can
be considered as a Riemannian manifold [5] and a Riemannian metric thereby
induced and expressed in the closed form in terms of the kernel [6, 2, 3]. A Rie-
mannian metric, also called tensor, is a function which computes the intrinsic
distance measured along the surface S itself between any two points lying on it.
Its components can be viewed as multiplication factors which must be placed in
front of the differential displacements dxi in X to compute the distance ds of an
element dz in F in a generalized Pythagorean theorem,

ds2 =
∑
i,j

gijdxidxj (11)

where gij is the induced metric, and the surface S is parametrized by the xi.
Let x be a point in X and z it corresponding mapping by Φ in F . Letting dx
represent a small but finite displacement, we have

ds2 = ‖dz‖2 = ‖Φ(x+ dx)− Φ(x)‖2

= K(x+ dx,x+ dx) − 2K(x,x+ dx) +K(x,x)

=
∑
i,j

(
∂2K(x,y)
∂xi∂yj

)
y=x

dxidxj

From Eq. 11 we see that the Riemannian metric induced on S can be defined as

gij =
(

∂2K(x, z)
∂xi∂yj

)
y=x

(12)

Note how a local area around x in X is magnified in F under the mapping Φ(x).
The principle of conformal mapping is to increase the metric gij(x) around the
boundary and to reduce it everywhere else. To do this the non linear mapping
Φ is modified in such a way that gij(x) is enlarged around the boundary. This
can be done by introducing a conformal transformation of the kernel [2, 3],

K̃(x,y) = c(x)c(y)K(x,y) (13)

where c(x) is a defined positive function. The modified kernel satisfies the Mercer
positivity condition [9]. From Eq. 12, we obtain the new Riemannian metric g̃ij

g̃ij = c(x)2gij(x) + ci(x)cj(x) + 2ci(x)c(x)Ki(x,x) (14)

where Ki(x,x) = ∂K(x,y)/∂xi|x=y and ci(x) = ∂c(x)/∂xi. For the Gaussian
RBF kernel the last term is zero.
• A transformation that preserves the magnitude and orientation of the angle between
any two curves intersecting at a given point is conformal at that point. A transfor-
mation is called conformal in a domain D if it is conformal at every point in D.



One-Class Support Vector Machines with a Conformal Kernel 855

To expand the spatial resolution in the margin of a support vector c(x) should
be chosen in a way such that the metric g̃ij(x) has greater values around the
decision boundary. However, in practice, we do not know where the boundary
is, so an initial estimate is done by prior training of one-class SVMs.
A possible conformal transformal transformation c(x) is

c(x) =
∑
i∈ŜV

α̂ie
−‖x−x̂i‖2

2τ2 (15)

where ŜV is the set of margin support vectors, α̂i is a positive number repre-
senting the contribution of the ith support vector, xi is the ith support vector
and τ is a free parameter; .̂ refers to a one-class SVM previously trained on the
same dataset.

3 Application to Nosocomial Infection Detection

We tested the performance of one-class SVMs with a conformal kernel on a
medical problem, the detection of nosomial infections. A nosocomial infection
(from the Greek word nosokomeion for hospital) is an infection that develops
during hospitalization whereas it was not present nor incubating at the time
of the admission. Usually, a disease is considered a nosocomial infection if it
develops 48 hours after admission.

The University Hospital of Geneva (HUG) has been performing yearly preva-
lence studies to detect and monitor nosocomial infections since 1994 [13]. Their
methodology is as follows: the investigators visit every ward of the HUG over a
period of approximately three weeks. All patients hospitalized for 48 hours or
more at the time of the study are included. Medical records, kardex, X-ray and
microbiology reports are reviewed, and additional information is eventually ob-
tained by interviewing nurses or physicians in charge. Collected variables include
demographic characteristics, admission date, admission diagnosis, comorbidities,
McCabe score, type of admission, provenance, hospitalization ward, functional
status, previous surgery, previous intensive care unit (ICU) stay, exposure to an-
tibiotics, antacid and immunosuppressive drugs and invasive devices, laboratory
values, temperature, date and site of infection, fulfilled criteria for infection.

The resulting dataset consisted of 688 patient records and 83 variables. With
the help of hospital experts on nosocomial infections, we filtered out spurious
records as well as irrelevant and redundant variables, reducing the data to 683
cases and 49 variables. The major difficulty inherent in the data (as in many
medical diagnostic applications) is the highly skewed class distribution. Out of
683 patients, only 75 (11% of the total) were infected and 608 were not. This
application was thus an excellent testbed for assessing the efficacy of one-class
SVMs with a conformal kernel in the presence of data imbalance.
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4 Experimentation

4.1 Evaluation Strategy

The experimental goal was to assess the impact of a conformal kernel on the
the ability of one-class SVMs to cope with imbalanced datasets. To train one-
class SVM classifiers we used an RBF kernel (Eq. (10)) and experimented with
different values for the parameters ν and σ. Generalization error was estimated
using 5-fold cross-validation (10-fold cross-validation would have resulted in an
extremely small number of infected test cases per fold). The complete dataset
was randomly partitioned into five subsets. On each iteration, one subset (com-
prising 20% of the data samples) was held out as a test set and the remaining
four (80% of the data) were concatenated into a training set. The training sets
consisted only of non infected patients whereas the test sets contained both
infected and non infected patients according to the original class distribution.
Error rates estimated on the test sets were then averaged over the five iterations.
The following strategy was followed for conformal mapping:

1. Train one-class SVM with the primary RBF kernel K to get the SVs. Then
change the kernel K according to Eq. 13,15.

2. Train one-class SVM with the modified kernel K̃.
3. Apply the above two steps (1. and 2.) until the best performances is attained.

For Eq. 15 we took τ = σ/
√

n which is the optimal value reported in [3].

4.2 Results

Table 1 summarizes performance results for one-class SVMs. It shows the best
results obtained by training classifiers using different parameter configurations
on non infected cases only. The last three columns show results based on three
performance metrics. Accuracy is the percentage of correctly classified cases,
sensitivity is the number of true positives over all positive cases, while specificity
is the number of true negatives over all negative cases. Clearly, for both RBF and
conformal kernels, highest sensitivity is attained when σ is very small: the system

Table 1. Performance of one-class SVMs for different parameter settings using (1) an
RBF Gaussian kernel and (2) a conformal kernel.

One-class SVM ν σ Accuracy % Sensitivity % Specificity %

0.05 10−• 74.6 92.6 43.73
0.05 0.10 75.49 80.60 65.60

RBF kernel 0.2 10−• 75.69 79.28 68.27
0.2 0.10 74.36 74.67 72.27

0.05 10−• 75.6 93.4 43.15
0.05 0.1 76.65 82.35 64.1

Conformal kernel 0.2 10−• 77.3 81.1 69.7
0.2 0.06 76.25 79.1 69.2
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Table 2. Best performance of four SVM-based approaches to class imbalance.

SVM Classifier Accuracy Sensitivity Specificity

Binary with symm. margin 89.6% 50.6% 94.4%
Binary with asymm. margin 74.4% 92% 72.2%
One-class with RBF kernel 74.6% 92.6% 43.73%
One-class with conformal kernel 75.6% 93.4% 43.15%

puts a Gaussian of narrow width around each data point and hence most of the
infected test cases are correctly recognized as abnormal. The price is that many
non infected cases are equally labelled abnormal, thus yielding low specificity.
Larger values of σ in the RBF kernel are required to achieve tight approximations
for the region R (non infected patients). Therefore the kernel parameter σ is
crucial in determining the balance between normality and abnormality as there
is no explicit penalty for false positive in one-class classification, contrary to the
two class formulation [7]. Since the goal of this study is to identify infected cases,
the solution retained is that which achieves maximal sensitivity.

In a previous study on the same nosocomial dataset [7], we investigated a
support vector algorithm in which asymmetrical margins are tuned to improve
recognition of rare positive cases. Table 2 compares the best performance mea-
sures obtained in previous and the latest experiments. Classical binary SVMs
with a symmetrical margin attain a baseline sensitivity 50.6%; with the use
of asymmetrical margins, sensitivity jumps to 92%. This is further improved
by one-class SVMs with an RBF kernel (92.6%) and with a conformal kernel
(93.4%). Note however that this progress in sensitivity comes at the cost of a
corresponding decrease in specificity.

5 Conclusion and Future Work

We proposed one-class SVMs with a conformal kernel as a novel way of handling
class imbalance in classification tasks. We showed that this approach achieves
higher sensitivity than all SVM models previously applied to this problem. How-
ever, the price paid in terms of loss in specificity is quite exhorbitant, and domain
experts must decide if the high recognition rate is worth the cost of treating false
positive cases. From this point of view, asymmetrical-margin SVMs might prove
preferable in that they maintain a more reasonable sensitivity-specificity trade-
off. In the near future, we intend to prospectively validate the classification model
obtained by performing in parallel a standard prevalence survey. Overall we feel
that one-class SVMs with a conformal kernel are a promising approach to the
detection of nosocomial infections and can become a reliable component of an
infection control system.
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Using Umpire Gesture Recognition

Graeme S. Chambers, Svetha Venkatesh, and Geoff A.W. West

Department of Computing, Curtin University of Technology, Perth, Western Australia
{chambegs,svetha,geoff}@cs.curtin.edu.au

Abstract. We present results on an extension to our approach for automatic
sports video annotation. Sports video is augmented with accelerometer data from
wrist bands worn by umpires in the game. We solve the problem of automatic seg-
mentation and robust gesture classification using a hierarchical hidden Markov
model in conjunction with a filler model. The hierarchical model allows us to
consider gestures at different levels of abstraction and the filler model allows us
to handle extraneous umpire movements. Results are presented for labeling video
for a game of Cricket.

1 Introduction

Content characterisation and labeling of video sequences have become significant re-
search areas with the goal of automatically describing arbitrary video. Extracting high
level semantics from video data is a difficult problem. To begin annotation, there must
be knowledge of the domain of video to be processed and some limitations imposed on
the types of scenes that can be analysed. Rather than increasingly confining the domain
of video to be processed, we consider the problem on a broader scope by introducing
other sensors. If other sensor data is available, the difficulties associated with image
processing can be avoided. In particular, we have accelerometer sensors in the form of
wrist bands which can be worn by key actors in the video. In sports video, for exam-
ple, umpires in the game can wear the sensors and have their movements recorded and
analysed throughout the game.

Sports officials perform many gestures which are indicative of what is going on in
the game. Their gestures can provide something meaningful about a player, a team, or
the entire game. If the gestures of these officials are able to be recognised, meaningful
information can be derived. We refer to a gesture as an intentional action whereby
part of the body is moved in a predefined way to indicate a specific event. Detecting
these events enables automatic generation of highlights and more importantly, rich,
contextual labeling of video. To solve this problem we need to address the issues of
segmenting continuous gesture data and performing robust gesture classification.

The novelty of the work presented here is the way in which we segment and classify
candidate gestures from the continuous stream. We propose the use of the Hierarchical
Hidden Markov Model (HHMM) in conjunction with a filler model for segmenting and
classifying gestures at differing levels of detail. The HHMM allows us to consider ges-
tures as sequences of sub-gestures, possibly reusing the sub-gesture parts for gestures.

A. Fred et al. (Eds.): SSPR&SPR 2004, LNCS 3138, pp. 859–867, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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The filler model allows us to potentially ignore unknown movements and automatically
segment and classify gestures simultaneously from a continuous stream.

2 Background

The types of gestures we are interested in detecting are intentional movements by offi-
cials which indicate something about the game. In many sports, umpires move to an area
where other officials can see them, perform the gesture that represents the event in the
game, then return to officiating. Obviously these gestures can provide a first level for se-
mantic labeling of the accompanying video. In the area of sports video, several attempts
have been made at meaningful labeling, including specific sports [1, 2] and automatic
generation of highlights [3]. These however, do not provide suitable reusable frame-
works for recognising events in various types of sports. All assume specific knowledge
of the domain and have heuristics for the sport being processed.

Gesture recognition from video sequences has also been limited in scope, primarily
focused on individual gestures in constrained environments. Hand sign language recog-
nition [4] and learning of T’ai Chi movements [5] are two such examples. Attempting
to recognise real world gestures places much more demand on the image segmentation
techniques and generally results in dramatically increased failure rates. Lighting condi-
tions and occlusion are two significant challenges for creating robust image segmenta-
tion methods. Using sensors for gesture recognition has the advantage that movement
information is provided directly.

Gesture recognition using sensors has been studied for some time. Several systems
using complex arrays of devices have been deployed for real world use [6] and oth-
ers restricting themselves to constrained environments for human computer interaction
[7], [8].

In a previous approach [9], we considered the problem of gesture recognition from
a continuous stream, but used a standard hidden Markov model and considered any
region of movement in the stream as a candidate gesture. The approach was unable to
deal with unknown movements and was sensitive to the threshold for gesture duration.
In the following, we describe how these problems were overcome.

3 Hierarchical Modeling of Gestures

Gestures can be considered to exist at multiple levels in a hierarchy, where simple move-
ments are grouped into more complex movements and complex movements are grouped
into ordered sequences. The advantage of hierarchical modeling is this temporal decom-
position of gestures. The classification stage becomes more manageable for increasingly
complex gestures as the dynamics of the gesture are explicitly encoded. Not only does
grouping allow for segmenting a gesture into its subparts, hierarchical modeling allows
new gestures to be learnt on-line by reusing subparts from already known gestures.

In previous work [10], we proposed an extension to the hidden Markov model for
recognising hierarchical gestures. Our extension was applied to recognising Kung–Fu
gestures where each individual move was considered a sub-gesture. The extension was
capable of representing the hierarchy of gestures, however, higher levels in the model
had to be hand crafted. Another recent extension to the hidden Markov model, the
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Fig. 1. “Wide” gesture data with corresponding viterbi path (a) and its HHMM representation (b).

HHMM, has been proposed [11]. The HHMM has a distinct advantage over our pre-
vious approach in that the model parameters can be estimated using a modified Ex-
pectation Maximisation algorithm. New gesture sequences can then be learnt on-line
using the HHMM. For example, Figure 1 shows accelerometer data for the right arm
and the corresponding optimal state path at the top level of the gesture HHMM. The
movement corresponds to a “Wide” umpire gesture from the game of cricket whereby
the umpire lifts both arms to the side until they are horizontal, holds that position for
a short time so other officials can see the movement, then returns the arms back to the
body. The HHMM allows us to explicitly model these three components of the gesture
by considering the complete gesture as a sequence of three parts. The HHMM sub-
trees are trained independently using standard hidden Markov model techniques, then
the parameters are merged into the HHMM structure. Instances of the complete ges-
ture (combined subparts) are then used to train the higher levels of the HHMM. The
Gaussian mixture components at the lowest level are not re-estimated.

Figure 1(b) shows the hierarchy used for the gesture, where the left-most branch
is the raising of the arms, the centre branch is the pause, and the right-most branch
is returning the arms to the body. The optimal (Viterbi) path through the top level in
the HHMM illustrated in the lower portion of Figure 1(a) shows how the HHMM can
automatically segment gestures at different levels. Time 1 through to 192 is recognised
as the “raise arms” portion of the gesture, then from 193 to 422 is recognised as the
“pause” portion of the gesture, then finally at time 423 to 537 is the “return arms”
portion of the gesture.

4 Continuous Gesture Recognition

Any real application of gesture recognition has to be able to deal with segmenting ges-
tures from a continuous stream, then classifying these candidate gestures to give an ap-
propriate label. This process is similar to speech recognition systems whereby spoken
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words are detected and recognised by the system. An approach to detecting unknown
words in speech is applied in our gesture recognition system. A “filler” (or “null”)
model is created, being essentially an average of all other models in the system [12]. In
our case, the model is simply trained on all available gesture classes.

Let P (X |Mi) be the likelihood of the observation sequence given the gesture mod-
els Mi. Let P (X |F ) be the likelihood of the observation sequence given the filler model
F . Then the sequence X is classified as model Mi if

FR =
P (X |Mi)
P (X |F ) ≥ A and (1)

P (X |Mi) > P (X |Mj)(i �= j)

where A is a suitably chosen threshold (1.2 in our case) and FR is the filler ratio. Equa-
tion 1 then provides a way of determining the significance of an observation sequence
based on an appropriately chosen threshold.

4.1 Extraneous Movement

Sports officials are obviously going to perform movements which will not be modeled
by the system. Bending down to tie a shoe lace, for example, gives very little infor-
mation on what is going on in the game. These extra movements should therefore be
identified and potentially ignored. It is quite possible that the likelihood of some un-
known movement will approach the likelihood of known movements, thus there must
be some kind of confidence on how well an observation matches the set of known ges-
tures. Using the filler model allows us to compare different observations relative to each
other and provides us with a measure of confidence on how well a model matches the
observation sequence.

Potentially more than one model will exceed the threshold for the filler model, how-
ever in this work, we simply take the maximum. The difference between the most likely
model and the second most likely model is not taken into account.

4.2 Segmentation

Following our previous approach [9], the gestures are first segmented by using the mag-
nitude of accelerometer data (see Section 5 for details). A Gaussian distribution mod-
eling the magnitude of gravity is used to detect periods of movement over a sliding
window. The likelihood of the Gaussian is used to make a binary decision on whether
the window contains movement. In some cases, when there is little acceleration, spuri-
ous responses to the Gaussian distribution can occur. For example, the sequence 1,1,0,1
(where 1 is movement and 0 is no movement), may result, however this is not con-
sistent labeling since there is a large degree of overlap (48/144). Thus this sequence is
replaced by the sequence 1,1,1,1. Similarly, if the sequence 0,0,1,0 occurs, it is replaced
with the sequence 0,0,0,0. These two filters are ensuring that contiguous regions of data
have consistent labeling over a sliding window. Figure 2 shows an example sequence of
gestures with the corresponding movement decision below.
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Sequence of gestures

20 40 60 80 100 120 140 160 180 200 220

Pause

Identified areas of movment

Fig. 2. Segmentation of gesture data using Gaussian of stationarity.

Once the regions of movement indicating candidate gestures are detected, the re-
gions must be classified. Since many sport umpire gestures contain pauses such as the
cricket example from Figure 1, there needs to be a method for grouping adjacent regions
of identified movement including the pause periods. The problem is that a pause can be
either a valid sub-gesture (as part of a gesture) or a pause between gestures. Our ap-
proach to overcoming this is by using a conservative estimate for the maximum length
of a gesture (10sec) and grouping all detected gestures and pauses in the window. This
window is then iteratively reduced in length removing the last region of movement at
each step. In Figure 2, for example, the first gesture starting after time 50 would have
four candidate regions for grouping (times 69 to 106, 69 to 86, 69 to 79, and 69 to 75).
The algorithm proceeds as follows: for each period of movement ahead in time (up to
10sec) of the start of a candidate gesture, calculate the likelihood of each model for that
region. After all candidate regions have been identified and their corresponding model
likelihoods calculated, they are normalised by the filler ratio. The region and model
corresponding to the maximum of the calculated ratios is considered the gesture for
that region. Using a filler model to compare different length observations for accurately
finding segmentation endpoints is novel and has worked well on our data and example
domain. Without a filler model, different length observations can not be compared ac-
cross models as the HMM likelihood function is non-linear. The segmentation example
referred to in Figure 2 is able to be correctly segmented with our approach.

5 Experimental Results

The architecture of the system is illustrated in Figure 3. As video data is recorded, the
movement of key actors wearing the accelerometer wrist bands is also recorded. The
accelerometer data is analysed then segmented and classified using the segmentation
and classification algorithms described. If a gesture of interest was detected, the video



864 Graeme S. Chambers, Svetha Venkatesh, and Geoff A.W. West

Time stamped
Accelerometer

Data

Video

Time stamped

Recognition

Gesture

Event Annotation

Fig. 3. System Overview.

Table 1. Results for the four controlled sequences.

Known Unknown Recall

Known 40 0 100%
Unknown 2 7 77.8%

Precision 95% 100%

at the time the gesture was performed is then annotated with the event indicated by the
gesture.

Our accelerometers can measure acceleration in 3–D space. They are housed in a
small wrist watch sized enclosure worn in the form of a wrist band. Obviously the
recognition performance of the system could suffer if the band was worn in grossly
different orientations on the wrist, thus we treat the band like a watch, where the face of
the enclosure is in a similar direction each time the band is worn. The implementation
measures acceleration of up to ±2g at 150 samples/second. The feature set used is
standard deviation and root mean square for each of the three directions of acceleration.
Features are calculated using a window size of 48 samples (≈ 300ms) with a 12 sample
overlap. The window size for segmenting regions of movement is 144 samples with a
48 sample overlap.

The cricket umpire gestures we recognise are: Dead Ball – sway both arms in front
of the body, Four – wave the right hand across the body, Last Hour – point to the watch
on the raised left arm and tap it, Leg-Bye – tap the raised right knee, No Ball – extend
right arm to the side, One Short – tap right shoulder with right arm, Out – raise arm in
front of body with index finger extended, Penalty Runs – grasp left shoulder with right
hand, TV Replay – Outline a rectangle with both hands, and Wide – extend both arms
out to the sides of the body.

5.1 Controlled Sequences

To initially test our technique, four sequences containing each gesture and a number
of unknown movements are recorded. In these sequences, the actor intentionally per-
forms a gesture, either known or unknown, then pauses for some random period, then
performs another gesture. In each of the four sequences, each of the 10 known ges-
tures are performed. For the first sequence, one unknown gesture is performed, for the
second sequence, two unknown gestures are performed, then for the third and fourth
sequences, three unknown gestures are performed. The unknown gestures include the



Automatic Labeling of Sports Video Using Umpire Gesture Recognition 865

Table 2. Results for three match segments.

Known Unknown Recall

Known 12 0 100%
Unknown 16 51 76%

Precision 42% 100%

actor scratching their head, picking up pens from a desk, and typing for a short duration
on a computer keyboard. Some of the movements were intentionally performed with
very little time between them to test the performance of the segmentation algorithm.
Figure 2 shows a portion of one such sequence. Table 1 shows the classification results
for the four sequences. The algorithm was able to correctly identify the start and end
regions of all gestures in all sequences and classify all known gestures correctly. Two
unknown movements were incorrectly classified as known movements.

5.2 Cricket

Two 15 minute portions of an Australia versus England test match and one 15 minute
portion of an England versus Pakistan test match were recorded. In all three sequences,
the actor mimicked the umpire and performed both known and unknown movements
to better represent real world data. The unknown movements include actions such as
walking, bending over to pick up something, and passing objects to players. The results
are again shown as a confusion matrix in Table 2. When the gesture is known, the
system performs well, classifying all gestures correctly. The table shows, however, that
unknown gestures are frequently detected as known gestures. A large proportion of
these unknown gestures being incorrectly classified as known gestures can be partially
explained since the umpire consistently does an action which resembles one of the
known gestures.

Typically a cricket umpire stands behind the wickets with their hands behind their
back. When the ball is “in play”, it is common for the umpire to take their hands from
behind their back and start to walk away from the wickets to prevent interfering with
the game play. The “Dead ball” gesture starts in a very similar manner and is frequently
falsely detected as occurring in the sequences. Currently we are looking at reducing this
by using more meaningful criteria than a simple threshold.

5.3 Video Labeling

Table 3 shows the indexing performance for one of the mimicked segments. The table
lists the start (t1g) and end (t2g) times of the known gestures in the ground truth and
the start (t1d) and end (t2d) times detected by the system. The difference in start time
(δt1) and gesture length (δ(t2 − t1)) is also listed. Both the video frame rate and the
size of the overlap in the sliding window for movement detection affect the accuracy
of the system. The video is recorded at 25fps and the size of the appended data to the
sliding window is 48 samples (0.32sec). The table shows that the first three gestures are
detected consistently around 1.2 seconds before the gesture occurred. The final gesture
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Table 3. Gesture Results for a match segment.

Gesture t• g t• g t• d t• d δt• δ(t• − t• )

Wide 90.8 95.6 89.6 94.22 1.2 0.04
Four 96.8 102.56 95.68 100.80 1.2 0.64
Four 319.4 323.36 318.08 323.52 1.3 0.52

Wide 722.8 727.76 717.44 726.08 5.3 3.68

however was detected 5.3 seconds early. The reason the start time of the final gesture
was incorrect is that an unknown movement was performed just before the gesture and
the segmentation algorithm grouped the adjacent regions together considering them as
one complete gesture. This failure of the segmentation algorithm was the only time
it incorrectly identified the regions corresponding to a complete gesture for all tested
sequences.

The results show that the system performs well overall with the exception of han-
dling unknown movements which have similarities to known movements. Detecting
movement is robust, however utilizing the filler ratio requires further investigation for
deciding when a known gesture occurs.

6 Conclusions

We have presented results on our approach toward automatic sports video annotation in
which we solve the problem of automatic segmentation and robust gesture classification
using a hierarchical hidden Markov model in conjunction with a filler model. The hier-
archical model allows us to consider gestures at different levels of abstraction and the
filler model allows us to handle extraneous umpire movements. We have used a variable
sized window to group regions of movement to overcome the problem of recognising
gestures which contain pauses as part of the gesture. Pauses between regions of move-
ment need to be regarded (in some cases) as part of a gesture and in other cases, as
gaps between gestures. The concept of a filler model from speech recognition is used in
our system to aid in detecting unknown movements and classifying them accordingly.
Further work will be in investigating the filler model ratio to provide more insight than
the current approach which is simply a threshold.
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Abstract. In this paper we show the results of a performance com-
parison between two Nearest Neighbour Search Methods: one, proposed
by Arya & Mount, is based on a kd−tree data structure and a Branch
and Bound approximate search algorithm [1], and the other is a search
method based on dimensionality projections, presented by Nene & Nayar
in [5]. A number of experiments have been carried out in order to find
the best choice to work with high dimensional points and large data sets.

1 Introduction

Nearest Neighbour classifiers are widely used in the field of Pattern Recognition.
In this and other areas, fast algorithms are needed that efficiently solve the
nearest neighbour search problem, defined as follows: given a set P of points in a
high dimensional space, construct a data structure that given any query point q
finds the point in P closest to q. This definition involves the notion of a distance
between two points. In our case the Euclidean distance has been used.

This and other problems of the same class (closest pair, diameter, minimum
spanning tree, etc.) have been investigated in the field of computational geom-
etry and many efficient solutions have been found that work reasonably well in
low-dimensionality spaces. As the dimension scales up, however, many methods
experiment serious performance degradation, with space and/or time require-
ments tending to grow very fast in most cases.

One way to alleviate this problem is to allow for approximate solutions rather
than always forcing the search of the exact ones. In fact, some practical applica-
tions show no significant loss of precision when approximate nearest neighbours
instead of the exact ones are used.

Several fast approximate search algorithms have been proposed in the liter-
ature. In this work we have focused on two of them. The first one is based on
a well known data struture: the kd−tree, and an efficient approximate search
algorithm that uses incremental distance calculations and a bound threshold in
the search to save computing time. Previous work with this method, as in [3],
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[2], shows that it is a valid option to cope with the problem of nearest neighbour
in high-dimensional data and large-size databases.

The second solution achieves good average search times thanks to the sim-
plicity of the method and the careful design of a precomputed data structure
composed by a set of ordered lists of pointers. Then, when a search has to be per-
formed, an optimized algorithm proceeds with an iterative list trimming process,
which finally produces a short list of candidate points. A distance computation
is then performed for each of this points and the closest one is the nearest neigh-
bour of the query point [5].

In this work, a comparison of the two methods is carried out. A direct ex-
haustive search method has also been tested as a reference baseline providing us
with an upper bound of the average time required to perform a search.

2 Corpora

Both real and synthetic databases have been used in the experiments presented.
For the real data, the well-known OCR NIST databases have been chosen. Specif-
ically, the upper-letter set of the NIST Special Database 3, which is composed
of 44.951 images, has been used for training, and the NIST Special Database 7,
composed of 11.941 images, has been used for test.

Each original 128x128 pixel binary image has been cropped and rescaled to
a 9x12 pixel grey-level image. Then, a 108 component vector is built by simply
concatenating the rows of an image. Finally, Principal Component Analysis (or
Karhunen-Loeve Transform) is performed to reduce the dimensionality to 30.

Two different kinds of random distributions have been used to generate the
synthetic data sets: normal, with μ = 0.0 and σ = 1.0, and uniform, in the
unit hypercube. In both cases, a set of 50.000 points has been generated for
training and 10.000 points for test. The points, as before, are always represented
by 30-dimensional vectors.

3 Search Methods

As discussed before, the problem of searching the nearest neighbour can be
trivially solved by an exhaustive search in a simple list. However, the potentially
huge size of the prototype set and the high dimensionality of data makes it
extremely inefficient and, therefore, inappropiate for real tasks. Instead of this
naive solution, several sophisticated methods have been developed in order to
achieve approximate searches with very good average search times at the expense
of a little increase of the error rate. On the next sections two of these methods
are reviewed and some interesting propierties are remarked.

3.1 Kd-Tree + ANN

The kd−tree is a widely used data structure. It is a binary tree where each node
represents a region in a k−dimensional space. Each internal node also defines a
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hyper-plane (a linear subspace of dimension k − 1) dividing the region into two
disjoint sub-regions, each inherited by one of its sons. Most of the trees used in
the context of our problem divide the regions accordingly to the points that lay
in them. This way, the hierarchical partition of the space can either be carried
out to the last consequences to obtain, in the leaves, regions with a single point
in them, or can be halted in a previous level so as each leaf node holds b points
in its region. This number of points, b, is commonly referred as the bucket size.

The search of the nearest neighbor of a test point in a kd−tree is performed
starting from the root, which represents the whole space, and choosing at each
node the sub-tree that represents the region of the space containing the test
point. When a leaf is reached, an exhaustive search of the b prototypes residing
in the associated region is performed. But the process is not complete at this
point, since it is possible that among the regions defined by the initial partition,
the one containing the test point does not contain the nearest prototype. If this
happens, the algorithm backtracks as many times as necessary until it is sure to
have checked all the regions that can hold a prototype nearer to the test point
than the nearest one in the original region. The resulting procedure can be seen
as a Branch-and-Bound algorithm.

As stated before, fast approximate nearest neighbors search algorithms allow
for efficient classification without losing significant precision. The notion of ap-
proximate search can be viewed as a slightly modified search where instead of
reporting a point p closest to q, the algorithm is allowed to report the first point
found within a distance (1 + ε) times the distance from q to p.

An algorithm based on these concepts was proposed by Arya & Mount [1].
The algorithm, referred in the article as “Standard k -d Tree Search with Incre-
mental Distance Calculation”, works as follows. At each leaf node visited they
compute the squared distance between the query point and the data point in the
bucket and update the nearest neighbour if this is the closest point seen so far.
At each internal node visited they first recursively search the subtree whose cor-
responding rectangle is closer to the query point. Later, they search the farther
subtree if the distance betweeen the query point and the closest point visited so
far exceeds the distance between the query point and the corresponding rectan-
gle.

We have used it on conventional kd−trees in the experiments. We will refer
to this algorithm as ANN (Approximate Nearest Neighbour).

3.2 Projection Based Search

This method is inspired on the original projection search paradigm [4]. However,
when dealing with high dimensionalities, a naive version of the basic projection
concept is not efficient enough in most cases.

The refined projection search method proposed by Nene & Nayar [5] can be
summarized as follows: first, given a query point q, those prototypes in the first
dimension which fall into the range [q0 − ε, q0 + ε] are selected to constitute the
first candidate list. Then, for the other dimensions, the bounds [qd − ε, qd + ε]
are computed and the candidate list is trimmed according to them. After the
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trimming process has been performed through all the dimensions, only a short
list of prototypes which fall into the hyperrectangle defined by q and ε remains
in the final candidate list. Finally, the distances from the query point to the
prototypes included in the final candidate list are exhaustively computed, and
the nearest prototype are returned.

A description of this method and some guidelines for an efficient implementa-
tion can be found in [5], where taking advantage of a precomputed data structure,
a set of ordered lists, it is possible to perform a nearest neighbour search by only
computing a small number of binary searches and integer comparisons.

The main problem with this method is its high sensivity to an inadequate
estimation of ε. An excessively small value leads to an empty final candidate
list. A large value of ε will produce a large candidate list and, consequently, a
performance degradation.

Another important problem of the technique is related to the metric used
in the candidate list trimming: the algorithm discards points that fall out of a
threshold ε defined by an L∞ distance, but we are searching for the L2 nearest
neighbour, therefore, if the threshold used is too small, the nearest neighbour
can be trimmed and the final candidate list not be empty. Thus, when the
Ecuclidean Distance is used as the metric, the method is in fact an approximate
nearest neighbour search algorithm.

Moreover, the probability of finding other prototypes in an hyperrectangle
that does not include the true nearest neighbour (the volume of the hyper-
rectanlge that is outside an inscribed hypersphere) grows with the space dimen-
sionality.

A further degree of flexibility is possible if we allow the size of the intervals
used to build and trim the lists to vary for the different coordinates, or even
adaptively adjust for each component of each query point. This means that we
can use a different εd for each axis, and change it, if desired, accordingly to the
position of the query point in the space.

In order to evaluate the method, a baseline version has been implemented.
We have assumed no “a priori” knowledge of the data distribution. Then, at
the design phase the variance of every dimension d (σ2d) in the prototype set is
computed and stored into a vector. Then, in the search phase, the interval size
εd for each dimension is simply chosen as εd = C ∗ σ2d.

On the other end of the performance spectrum, an optimistic, ideal version
of the algorithm has also been implemented in order to find the best search times
that could be reached by the projections based search method. The idea con-
sists on providing the algorithm with the ideal parameter setting for each single
search. This has been accomplished by precomputing the difference from the
query point to its true nearest neighbour in each coordinate. The εd associated
to the corresponding projection is then set to that value (potentially different
for each query point and each dimension). This finally produces, for each search,
a candidate list with the minimum possible size including the nearest neighbour.
No other combination of parameters can yield a faster search. Of course, in a real
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application setting, any conceivable (efficient) method to estimate the different
εd will probably result in significantly longer running times.

4 Experiments

A first experiment was aimed at defining a lower bound in the average time
required by the Nene & Nayar approximation. Making use of the precomputed
εd for each test point, the same precision of an exhaustive search was achieved
with a 27.58 times faster average search time.

The conditions of all the experiments were: AMD Athlon Processor at
1200Mhz, 640 Mb of main memory, Linux operating system kernel version 2.4.22
and gcc C compiler, version 3.3.2.

Table 1. Comparison of average execution times with real data (NIST SD3-SD7). An
absolute ideal lower bound is shown for the projections (Nene & Nayar) approximation.

Search Method Avg. Time Error Rate

Exahustive 25.93 ms. 12.13%

kd-tree+ANN (ε=0.0) 9.45 ms. 12.13%

Projections (εd precomputed) 0.94 ms. 12.13%

kd-tree+ANN (ε=2.0) 0.45 ms. 12.32%

As can be seen in Table 1, the projections method does not improve on the
speed up of the kd-tree+ANN if a little precision loss is allowed. Taking into ac-
count that precomputed εd (the absolute best possible value of that parameter
for each dimension) have been used and that they are a key factor in the perfor-
mance of the method, it is clear that unless we have a way to precisely estimate
these parameters, the method will not work better than the kd-tree+ANN.

An experiment has been performed with this approximate method using the
simple parameter specification technique described in the previous section and
modifying the constant C, which took values in {0.5, 1.0, 1.1, 1.2, 1.5, 1.8}

In order to compare the performance of the two algorithms, the results of the
kd-tree+ANN method, with ε taking values in {0, 1, 2, 8, 64, 2048}, are shown in
Figure 1. It can be seen there that for all tested values, kd-tree+ANN always
outperforms Projections. The best possible performance of the Nene & Nayar
method achieved with the precomputed εd for each test point is also plotted
in the graph as a small cross. Its position, very near the kd-tree+ANN curve
suggests that it is very unlikely that a real implementation of the Nene & Nayar
method can be superior in practice to a kd-tree for the task examined.

Another set of experiments have been performed to compare the algorithms
in a more controlled, synthetic, setting. In this case, instead of the classification
error in a Pattern Recognition task, the search performance has been directly
measured, therefore no classification labels have been used for the data. The
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Fig. 1. kd-tree+ANN vs. Projections with real data (NIST SD3-SD7). A baseline ver-
sion of the projections-based method is plotted for different values of the trimming
distance, along with the best possible ideal instance of the method, shown with an
asterisk in the graph. The ANN curve is also plotted for several values of ε.

measure of precision that has been used is the average rank number, computed
as follows: for each query point a sequence of prototypes, sorted from smaller
to larger distances to the point, has been built (using an exhaustive search);
then, the sequence number in that sorted list of the point selected by the ap-
proximate algorithm as the nearest neighbour is the rank number. The average
rank number for the 10.000 test points has been computed for each parameter
setting of the search methods. As it was expected, the results (see Figures 2 & 3)
show again better performance of the kd-tree+ANN method over the Projections
approximation.

Again, the performance of the Nene & Nayar method with ideal parameters
is only moderately better than the approximate kd-tree search, leaving little
space for possible developments in the estimation of εd that improve the baseline
implementation. However, adaptive methods to set the values of εd as a function
of the region of the space where the query point is located can be used to try to
get nearer the ideal performance. In the normally ditributed data-set, however,
the room for improvement is a little larger than in the uniform distribution.
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Fig. 2. kd-tree+ANN vs. Projections with uniformly distributed synthetic data; a rank
number = 1.0 means the same result as an exact search. The curves are plotted for
different values of ε. The ideal parameter setting for the projections method is shown
as an asterisk.

5 Conclusions

In this work, two different methods aimed at solving the problem of efficient
approximate search of Nearest Neighbours have been compared to find out what
is the best option when dealing with high-dimensional and large-sized databases.

As it has been shown in the experiments on classification with real data,
kd-tree+ANN average times for approximate search are not significantly im-
proved by those obtained by the projection based approximation, even in the
best possible (ideal) conditions. For instance, the lower bound found out (with
precomputed values of the best possible εd) for the average time search in the
Projection based approximation (0.95 ms.) is not better than the performance
achieved with approximate search on the kd-tree+ANN, where at the expense of
a little increment on the error rate (from 12.13% to 12.32%) an average search
time of 0.45 ms. can be obtained.

The results with synthetic data, where the search precision has been di-
rectly measured instead of the classification error, confirm that the kd-tree+ANN
method outperforms the Nene & Nayar technique with fixed values of εd, and
that the ideal adaptive setting of these parameters leaves little space for poten-
tially useful improvements in their estimation, although it cannot be ruled out
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Fig. 3. kd-tree+ANN vs. Projections with normaly distributed synthetic data; a rank
number = 1.0 means the same result as an exact search. The curves are plotted for
different values of ε. The ideal parameter setting for the projections method is shown
as an asterisk.

that new methods to find good values of εd, adapted to the query region could
rival the performance of Approximate Nearest Neighbour search in kd-trees.
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Abstract. In the field of computer music, pattern recognition algo-
rithms are very relevant for music information retrieval (MIR). One
challenging task within this area is the automatic recognition of mu-
sical style, that has a number of applications like indexing and select-
ing musical databases. In this paper, the classification of monophonic
melodies of two different musical styles (jazz and classical) represented
symbolically as MIDI files is studied, using different classification meth-
ods: Bayesian classifier and nearest neighbour classifier. From the music
sequences, a number of melodic, harmonic, and rhythmic statistical de-
scriptors are computed and used for style recognition. We present a per-
formance analysis of such algorithms against different description models
and parameters.

Keywords: music information retrieval, Bayesian classifier, nearest
neighbours.

1 Introduction

The computer music research field is an emerging area for pattern recognition
and machine learning techniques to be applied. The content-based organisation,
indexing, and exploration of digital music databases (digital music libraries),
where digitised (MP3), sequenced (MIDI) or structurally represented (XML)
music can be found, is known as music information retrieval (MIR).

One of the problems to be solved in MIR is the modelization of the music
style. The computer could be trained in the user musical taste in order to look
for that kind of music over large musical databases. The same scheme is suitable
to learn stylistic features of composers. Other applications of such a system is
to be used in cooperation with automatic composition algorithms to guide this
process according to a stylistic profile provided by the user.

A number of recent papers explore the capabilities of machine learning meth-
ods to recognise music style. Pampalk et al. [1] use self-organising maps (SOM) to
pose the problem of organising music digital libraries according to sound features
of musical themes, in such a way that similar themes are clustered, performing
a content-based classification of the sounds. Whitman and Flake [2] present a
system based on neural nets and support vector machines, able to classify an
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audio fragment into a given list of sources or artists. Also in [3], the authors
describe a neural system to recognise music types from sound inputs. In the
work by Thom [4] pitch histograms (measured in semitones relative to the tonal
pitch and independent of the octave) are used to describe blues fragments of the
saxophonist Charlie Parker. Also pitch histograms and SOM are used in [5] for
musicological analysis of folk songs.

In a recent work, Cruz et al. [6] show the ability of grammatical inference
methods for modelling musical style. A stochastic grammar for each musical style
is inferred from examples, and those grammars are used to parse and classify
new melodies. The authors also discuss about the encoding schemes that can be
used to achieve the best recognition result. Other approaches like hidden Markov
models [7] or multilayer feedforward neural networks [8] have been used to solve
this problem.

2 Objectives

Our aim is to develop a system able to distinguish musical styles from a symbolic
representation of melodies (digital scores) using shallow structural features, like
melodic, harmonic, and rhythmic statistical descriptors. Our working hypothesis
is that melodies from a same musical genre may share some common features
that permits to assign a musical style to them. We have chosen two music styles,
jazz and classical, as a workbench for our experiments. The initial results have
been encouraging (see [9]) but now we want to explore the method performance
for different classification algorithms, descriptor models, and parameter values.

First, our methodology will be presented, describing the musical data and the
description models and classifiers we have used. Then, the classification results
obtained with each classifier and an analysis of the recognition results against
the different description parameters will be presented. Finally, conclusions and
current and future lines of work are discussed.

3 Methodology

In this section we first present the musical sources from which the experimental
framework has been established. Second, we will go into the details of the descrip-
tion models we have chosen to describe those musical data. Next we will discuss
the free parameters space that sets up the whole experimental framework, and
then the classifier implementation and tuning will be presented.

3.1 Musical Data

MIDI files from jazz and classical music, were collected. Classical melody sam-
ples were taken from works by Mozart, Bach, Schubert, Chopin, Grieg, Vivaldi,
Schumann, Brahms, Beethoven, Dvorak, Haendel, Paganini and Mendehlson.
Jazz music samples were standard tunes from a variety of authors like Charlie
Parker, Duke Ellington, Bill Evans, Miles Davis, etc. The MIDI files are com-
posed of several tracks, one of them being the melody track from which we
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actually extract our data1. The corpus is made up of a total of 110 MIDI files,
45 of them being classical music and 65 being jazz music. This is a somewhat
heterogeneous corpus, not specifically created to fit our purposes but collected
from different sources ranging from web sites to private collections.

The monophonic melodies consist of a sequence of paired events that can be
either note onsets or note endings. The onset event encodes the note pitch, that
can take a value from 0 to 127. Each onset event at time t has its corresponding
ending event at time t+d, being d the note duration. Time intervals between an
ending event and the next onset event are silences.

3.2 Description Model

Instead of using an explicit representation of the melodies, we have chosen a
description model based on statistical descriptors that summarise the content of
the melody in terms of pitches, note durations, silence durations, harmonicity,
etc.

The datasets are vectors of musical descriptors computed from fixed length
segments of the melodies found in the MIDI files (See section 3.4 for a discussion
about how these segments are obtained). Each segment is labelled with the
style of the melody it belongs to. We defined an initial set of descriptors based
on three groups of features that assess the melodic, harmonic and rhythmic
properties of a melody, respectively. Then, from this initial set of descriptors a
selection procedure has been performed based on a per-feature separability test.
This way, some reduced models have been constructed and their classification
ability tested.

The features are computed using a time resolution of Q = 48 pulses per bar2.
The initial model is made up of the following 22 descriptors:

– Overall descriptors:
• Number of notes and number of significant silences (those larger than a
sixteenth note) in the fragment.

– Pitch descriptors:
• Pitch range (The difference in semitones between the highest and the
lowest note in the melody), average pitch, and standard deviation of
pitch (provide information about how the notes are distributed in the
score).

– Note duration descriptors (these descriptors are measured in pulses):
• Minimum, maximum, average, and standard deviation of note durations.

– Significant silence duration descriptors (in pulses):
• Minimum, maximum, average, and standard deviation.

– Interval descriptors (distance in pitch between two consecutive notes):
• Minimum, maximum, average, and standard deviation.

• Without loosing generality, all the melodies are written in the 4/4 meter. They are
monophonic sequencies (at most one note is playing at any given time.)

• This is call quantisation. Q = 48 means that if a bar is composed of 4 times, each
time can be divided, at most, into 12 pulses.
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– Harmonic descriptors:
• Number of non diatonic notes. An indication of frequent excursions out-
side the song key3 or modulations.

• Average degree of non diatonic notes. Describes the kind of excursions.
It is a number between 0 and 4 that indexes the non diatonic notes of
the diatonic scale of the tune key, that can be major or minor key4. It
can take a fractional value.

• Standard deviation of degrees of non diatonic notes. Indicates a higher
variety in the non diatonic notes.

– Rhythmic descriptor: number of syncopations: notes that do not begin at
the rhythm beats but in some places between them (usually in the middle)
and that extend across beats. This is actually an estimation of the number
of syncopations, but is enough for this task. Syncopations are supposed to
appear more frequently in Jazz music than in classical music.

With this set of descriptors, we assume the following hypothesis: melodies of
the same style are closer to each other in the description space than melodies
from different styles. We will test the performance of different classifiers to verify
this hypothesis.

This kind of statistical description of musical content is sometimes referred
to as shallow structure description [10]. It is similar to histogram-based descrip-
tions, like those found in [5], that try to model the distribution of musical events
in a music fragment. Computing the minimum, maximum, mean and standard
deviation from the distribution of musical features like pitches, durations, in-
tervals and non-diatonic notes we reduce the number of features needed (each
histogram may be made up of tens of features). Other authors have also used
some of the descriptors presented here to classify music [11].

3.3 Feature Selection Procedure

The utilised features have been designed according to those used in musicological
studies but there is no theoretical support for them. We have devised a selection
procedure in order to keep those descriptors that actually contribute to make
the classification. The method doesn’t account for possible correlations between
descriptors, but tests the separability provided by each descriptor independently,
and uses this separability to obtain a descriptor ranking. For a detailed discussion
on how descriptors are ranked and selected, see [9].

Four additional description models have been constructed with selected de-
scriptors, as shown in table 1. Each model number denotes the number of de-
scriptors included in that model.

We have chosen four reduced model sizes: 6, 7, 10 and 13 descriptors. The
7-descriptor model includes the best rated descriptors. The 6-descriptor model
• We used the key meta-event present in each MIDI file to compute the harmonic
descriptors. The correctness of its value was verified for each file prior to the feature
extraction process.

• Non diatonic degrees are: 0: �II, 1: �III (�III for minor key), 2: �V, 3: �VI, 4: �VII.
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Table 1. Description models. For each model the descriptors included are shown in
the right column.

Model Descriptors
6 Pitch range, max. interval, dev. note duration,

max. note duration, dev. pitch, avg. note duration
7 +syncopation
10 +avg. pitch, dev. interval, number of notes
13 +number of silences, min. interval, num. non-diatonic notes
22 All the descriptors computed

excludes syncopation from the former model, to test the contribution of the
rhythm descriptor on its own. The other two models include other average rated
descriptors.

3.4 Free Parameter Space

Given a melody track, the statistical descriptors presented above are computed
from fixed length segments of that melody. These segments are extracted defin-
ing a window of size ω. One segment is extracted and the window is shifted δ
measures towards the end of the melody to obtain the next segment to be de-
scribed. Given a melody with m > 0 measures, the number of segments s of size
ω > 0 obtained from that melody is

s =
{

1 if ω ≥ m
1 +

⌈
m−ω
δ

⌉
otherwise (1)

showing that at least one segment is always extracted (ω and s are positive
integers; m and δ may be positive fractional numbers).

Taking ω and δ as free parameters in our methodology, we have setup a
framework where the style classification task is achieved, for different datasets of
segments derived from the particular values for ω and δ. The goal is to investigate
if there is an optimal combination of these parameters that gives the best segment
classification results. The exploration space for this parameters would be referred
as ωδ-space.

ω is the most important parameter in this framework, as it determines the
amount of information available for the descriptor computations. A value around
1 would produce windows with a few notes inside, making statistical descriptors
less reliable. A large value for ω would lead to merge the – probably different –
principal parts of a melody into a single window and also produces datasets with
too few samples for training the classifiers. The value of δ would affect primarily
the number of samples in a dataset. A small δ value combined with somewhat
large values for ω can produce datasets with a large number of samples. The
details about the values we used for these parameters can be found in section 4.

3.5 Classifier Implementation and Tuning

Two different classifiers are used in this paper to automatic style identification.
They are supervised methods: The Bayesian classifier and the nearest neighbour
(NN) classifier [12].
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For the Bayesian classifier, we assume that individual descriptor probabil-
ity distributions for each style are normal, with means and variances estimated
from the training data. This classifier computes the squared Mahalanobis dis-
tance from test samples to the mean vector of each style in order to obtain a
classification criterion.

The NN classifier uses an Euclidean metrics to compute the distance between
the test sample and the training samples. The style label of the nearest training
sample is assigned to the test sample.

4 Experiments and Results

4.1 The ωδ-Space Experiment Framework

The melodic segment classification framework has been defined as follows:

ω = 1, ..., 100 (2)

and, for each ω

δ =
{
1, ..., ω if ω ≤ 50
1, ..., 20 otherwise (3)

The range for δ when ω > 50 has been limited to 20 due to the very few
number of samples obtained with larger δ values for this ω range. This setup let
us with a total of 2275 points in the ωδ-space. We will denote a point in such a
space as 〈w, d〉. A set of experiments have been done for each of these points. An
experiment with each classifier (Bayesian and NN) has been prepared for each of
the five description models discussed in section 3.3, in order to classify melodic
segments. We therefore have 10 different experiments for each ωδ-point, denoted
by (ω, δ, μ, γ) where μ ∈ {6, 7, 10, 13, 22} indicates the description model and
γ ∈ {Bayesian,NN} the classifier used in that experiment.

For obtaining reliable results a scheme based on leave-k-out has been carried
out at the level of the source MIDI files for each of the (ω, δ, μ, γ) experiments.
We want to end up with 10 sub-experiments, that is making k � 10%. The rea-
son behind choosing to separate the files for testing and training rather than first
extracting the segments from the files and then perform the leaving-k-out sepa-
ration is that we want to minimise the probability of having identical segments
in the test and training sets. Intuitively, compelling training samples to come
from different sources (different MIDI files) than test samples would reduce such
a probability to a minimum.

For each sub-experiment 5 jazz style files and 5 classical style files out of
a total number of 110 files are kept for testing. Once they have been chosen,
segments of ω measures are extracted from the melody tracks and test and
training datasets containing μ-size descriptor vectors are constructed.

The segment classification sub-experiments are performed training the γ clas-
sifier with the corresponding training set. Classification tests are done with the
trained classifiers and the success ratio is averaged over all the sub-experiments.
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Thus, for each (ω, δ, μ, γ) experiment, we obtained an average classification suc-
cess rate.

Summarising, 22750 experiments, each consisting of 10 sub-experiments, have
been carried out. The maximum number of segments extracted is 8985 for the ωδ-
point 〈3, 1〉. The maximum is not located at 〈1, 1〉 as expected, due to the fact
that segments not containing at least two notes are discarded. The minimum
number of segments extracted is 119 for 〈100, 20〉, as expected. The average
number of segments in the whole ωδ-space is 775. The average proportion of
jazz segments is 36% of the total number of segments, with a standard deviation
of about 4%. This is a consequence of the classical MIDI files having an average
melody length greater than jazz files, although there are less classical files than
jazz files.

4.2 Classification Results

In Fig. 1 the results in the ωδ-space for the Bayes classifier with the 10-descriptor
model are displayed. Note that recognition percentages range from 76 to 91%,
although the values below 80% concentrate in the low-left corner when the win-
dow width is very small. All the results with ω > 5 are above 82%. The best
results were obtained for ω ≈ 70 and δ ≈ 15 (more than 91%). Although this
behaviour is not exactly the same for the other classifiers and models.

Figure 2 summarizes the behaviour of the Bayes and NN classifiers for the
different values of ω, given a fixed value of δ = 1. Note that the trend is to rise

Fig. 1. Illustration of the recognition percentage in the ωδ space. The best results
(around 91.5 %) are found in the lighter area, with large widths and moderate dis-
placements.
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Fig. 2. Recognition results averaged for the different models against the window width,
with a fixed δ = 1. Bars indicate the deviation obtained for the different experiments.
Only one point every five points is displayed for clarity. (left) Nearest neighbour; (right)
Bayes.

rapidly for small values of ω and then to be more or less stable. The different
experiments for NN have provided higher differences in recognition percentages
than the Bayes classifier. Also, note that NN performs slightly better in average
for large ω values. As for the entire ωδ-space, the NN classifier scored an 83.3%
overall average success rate, while a 76.6% success rate was obtained for the
Bayesian classifier.

5 Conclusions and Future Work

We have shown the ability of two classifiers to map symbolic representations
of melodic segments into a set of musical styles using melodic, harmonic and
rhythmic statistical descriptors. The experiments have been carried out over a
large parameter space defined by the size of melodic segments extracted from
melody tracks of MIDI files of both styles and the displacement between seg-
ments consecutively extracted from the same melodic source. A total of 227500
classification experiments have been performed.

Our main goal in this work has been to establish a framework for musical
style recognition experiments, while concluding an answer for the following two
questions:

1. Which classifier works better for this task?
2. Are there any optimal ω and δ values for style classification?

Answer to the first question is the NN classifier, as seen in previous section,
with an 83.3% overall average succes rate, with a best success rate of 94% for
model 10 and point 〈98, 1〉. Answer to the second question is a somewhat disap-
pointing one. The best results were obtained with very large segment sizes with
the NN classifier, leading us to a new question: Would we achieve even more
better results if we take as samples single descriptor vectors that represent the
whole melodies? This issue must be investigated further with larger corpora.
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New description models and different classifers can be easily incorporated
to this framework, as well as different corpora and the exploration of different
ranges for ω and δ. An extension to the framework is under development, where a
voting scheme for segments will be used to obtain classification results for whole
melodies. Connectionist approaches are also to be tested with the models and
parameters presented here. Finally, different descriptor sets are currently under
study in our search for a good statistical description for musical styles.
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Abstract. A novel algorithm for finding the nearest neighbor was pro-
posed. According to the development of modern technology, the demand
is increasing in large-scale datasets with a large number of samples and
a large number of features. However, almost all sophisticated algorithms
proposed so far are effective only in a small number of features, say,
up to 10. This is because in a high-dimensional space many pairs of
samples share a same distance. Then the naive algorithm outperforms
the others. In this study, we considered to utilize a sequential informa-
tion of distances obtained by the examined training samples. Indeed, a
combinatorial information of examined samples was used as bisectors be-
tween possible pairs of them. With this algorithm, a query is processed
in O(αβnd) for n samples in a d-dimensional space and for α, β < 1, in
expense of a preprocessing time and space in O(n• ). We examined the
performance of the algorithm.

1 Introduction

The k nearest neighbor (k-NN) method (Cover and Hart, 1967) is very popular in
pattern recognition. This method is effective both for estimation of densities and
for classification. However, the method requires a large amount of computation
to calculate the distances of a query sample to all training samples. To reduce
the amount of computation, many methods have been proposed (Hart, 1968;
Gates, 1972; Dasarathy, 1994; Chang and Wu, 1993; Fukunaga and Narenda,
1975), especially for classification (Hart, 1968; Gates, 1972; Dasarathy, 1994).

There are two approaches to reduce the computational cost: one group of
methods aims to reduce the size of the training sample set to be referred in query
stage and another group aims to reduce the number of distance calculations in
query stage by adopting an efficient search procedure. In this paper, we focus
on the latter approach.

A trial to find a (1 + ε) approximate nearest neighbor, Arya et al. (1998)
proposed an algorithm which runs in O(c logn) for answering a query, where c
grows exponentially in d and polynomially in 1/ε. In addition, Kleinberg (1997)

A. Fred et al. (Eds.): SSPR&SPR 2004, LNCS 3138, pp. 885–893, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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proposed two algorithms for the same goal; one runs in O((d log2 d)(d + logn))
in query time and another is said to run linear in d asymptotically. Both are able
to use to find the nearest neighbor with a sufficiently small value of ε. However,
in even these algorithms, it is still unclear if they really runs faster than the
naive algorithm in very high-dimensional cases. This is because we have to set ε
close to zero in the case, and the complexity analysis hides the influence by 1/ε.
So, we propose an algorithm which runs really faster than the naive algorithm
when the distance is measured by Euclidean distance.

2 Key Ideas

The key idea to do search efficiently is to use ultimately a sequential information
obtained so far. After we examined some points (samples) in distance calculation
between them and a query point (sample), we have much information more than
the sum of individual distance evidences. In many algorithms, only the most
critical evidence, the distance to the current candidate of the nearest neighbor,
is used. However, we may use the second and the third candidates as well. In
fact, it is possible to consider a sequence of these points examined up to the
current stage. We will use one of such information. In this study, we focus on
the nearest neighbor, 1-NN, instead of k-NN, but the idea is easily extended to
k-NN cases.

Let us assume that we have examined two points x1 and x2 and have cal-
culated the distances d(x1, q) and d(x2, q), and assume that d(x1, q) < d(x2, q).
What is the information at this time ? Most often used information is that the
true nearest neighbor of q has a distance less than d(x1, q), thus we do not have
to check samples with distance larger than this value. However, information like
“x1 is closer to q than x2” may give us a possibility such as any sample to which
x2 is closer than x1 can omit from the further search. If so, for three points exam-
ined so far, we have three same kinds of information, and

(
4
2

)
= 6 for four points,

and so on. Of course, this is not always true. However, under some condition,
we can make such a decision.

Under which condition can we use such decisions ? Let us explain it in a
two-dimensional case (Fig.1). In Fig.1, x5 is the closest point to a query point
q, that is, x5 is the answer, but has not examined. Four points (x1 − x4) are
already examined, and six perpendicular bisectors between them are drawn.
Here, bisector b13 should be out of consideration. This is because this bisector
separates the answer x5 and q into different regions. With five bisectors, we can
conclude that the closest point to q is in the hatched region. In the following,
we analyze about which bisectors we can use for narrowing the search area.

3 Effective Bisectors

It is easy to determine which bisectors are effective and which are not. Here a
bisector is said to be “effective” when the bisector dose not separate the answer
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Query point

Examined point

Training point

x1

x2
x4

x3

x5
q

b12

b13

Fig. 1. Narrowing by bisectors. Four of eight samples are already examined and five
effective bisectors between these four points are used for narrowing the search area.
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Fig. 2. An effective bisector. Among dis-
tinct regions A, B and C, point y having
an effective bisector must exist in only C.

R
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y
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l

r

Fig. 3. Extended effective region (C). Here,
a solution is assumed in the small ball cen-
tered at q.

point and the query point into different regions separated by the bisector. An
illustrative examples is shown in Fig. 2.

In this figure, two points x and y are already examined (x is closer to q) and
we know distances R = d(x, q) and b = d(y, q). Let us assume that the distance
between x and y, a = d(x, y), is also known. It is enough to search region A for
finding a better candidate than x. So, the effective bisectors should not intersect
A. Then, the necessary and sufficient condition for the bisector between x and
y to be effective is

b2 ≥ R2 + 2Ra.

(Proof)
Let us assume that the perpendicular bisector l of x and y does not pass though
the ball with radius R centered at q. Then following has to be satisfied

a/2 +R cos θ ≥ R

a ≥ 2R(1− cos θ). (1)
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This inequality shows the condition that angle θ has to satisfied. To translate
this angle condition to the distance condition related to b = d(q, y), the following
is derived:

b2 = (R + a cos θ)2 + a2 sin2 θ

= R2 + a2 + 2Ra cos θ
= R2 + 2Ra(a/2R+ cos θ)
≥ R2 + 2Ra

The last inequality is from (1). Q.E.D.
The boundary equation (1) with equality is called “Cardioid” in geometry.

It is noted that region A in Fig. 2 can be ignored because we impose that x
is closer than y. If not, exchange x and y. So the probability that y occurs in
region C is P (C)/P (B + C), where P (X) is the probability of region X . In a
uniform distribution, the probability P (C) is about 0.39 for d = 2 and increases
to 0.5 as d increases. However, P (B) grows with dimensionality up to 1−P (C).
As a result, we may assume that the probability that a new point (y in this
example) generates an effective bisector incorporated with x is 1/2 regardless of
dimensionality.

It should be noted that we cannot narrow the search region directly into
region A, because knowing whether a sample exists in A or not is knowing the
distance between that point and the query point. On the contrary, with a bisector
associated with x and y, it is enough to check to which of x and y that sample is
closer. This is easily done if we know the distance between any pair of training
points. As a result, with preprocessing to calculate the distances of every pair,
we can do this efficiently.

In this study, we extend the condition for effective bisectors to another in the
situation in which we want to find a sample close to q within distance r. Such
a query is interesting itself and is able to extend to find the nearest neighbor
by repeating this query with several values of r = r1, r2, . . . , rt(r1 < r2 < · · · <
rt =∞). As will be described later, this brings a benefit in computation cost. It
is also possible to set the value of r to the distance R of the current candidate
of the nearest neighbor of q in the middle of search. Then, it is guaranteed to
find the nearest neighbor.

In this problem setting, for a solution within r, the condition under which a
bisector b(x, y) is effective in the same setting above is given by

b2 ≥ R2 + 2ra. (2)

This is easy to confirm (Fig. 3). For example, for r = 0, every bisector is effective.
According to a smaller value of r, a larger effective region C is obtained.

3.1 Algorithm

The algorithm is shown in Fig. 4.



A Nearest Neighbor Method Using Bisectors 889

Step 0: (Preprocessing)
n : The number of training samples
q : The query sample
r : The search threshold (user-specific)
t : The possible number of r (user-specific)
s : The number of bisectors (user-specific)
θ[i]←∞ : The termination threshold on xi
xc : The current nearest neighbor sample
R←∞ : The current minimum distance to q
For every pair of xi and xj

Store the distance d(xi, xj) in array d[i, j]
For i = 1 to n

θ[i]← d(xi, x
i
•−NN )/2

where, xi•−NN is the nearest neighbor of xi

Procedure main
Step 1 Repeat the following with r = r• , r• , . . . , rt =∞

r∗ ← r
For i = 1 to n

Step 2 if BallTest is “not passed” then continue with i← i+ 1
Step 3 if BisectorTest is “not passed” then continue with i← i+ 1
Step 4 Calculate distance d(q, xi)
Step 5 Do CreateBisector
Step 6 If d(q, xi) < R, update R← d(q, xi); c← i; r ← min(r,R)
Step 7 if TerminationTest is valid then goto Step 8
Step 8 if R < r∗ then output xc, else go to Step 1

Procedure BallTest
if d[c, i] < R return “passed”, otherwise return “not passed”

Procedure BisectorTest
For the latest s bisectors b(xj , xk) (d(xj , q) < d(xk, q))

if d[i, j] > d[i, k] then return “not passed”
return “passed”

Procedure CreateBisector
x← xc; y ← xi
if d(x, q) > d(y, q) then exchange x↔ y
R← d(q, x);a← d[i, c]; b← d(q, y)
if b• ≥ R• + 2ra then register b(x, y)

Procedure TerminationTest
if d(q, xi) < θ[i] then return “valid” else “not valid”

Fig. 4. Algorithm.

The termination condition (Kudo et el., 2003) is also incorporated in Step 7.
With the termination condition, we may find the solution in the middle of search
and terminate the procedure, but this condition does not work well in high-
dimensional cases.

In this algorithm, 1) a ball test is carried out in O(1) (Step 2), 2) a bisector
test is in O(2s) (Step 3), 3) a distance calculation in O(d) (Step 4), and 4) a
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construction of a new bisector in O(1). Let us assume that a query sample passes
Step 2 in probability α and Step 3 in probability β. Then the expected cost is
O (n ((1− α) + 2sα(1− β) + αβ(d + 1))) � O(αβnd).

4 Effectiveness of Bisectors

We conducted a simple experiment to measure to what degree the proposed
algorithm is efficient. The samples are generated according to a multivariate
Gaussian with a unit covariance and zero mean. The number of samples was
varied as n = 1000, 5000, 10000, 20000 and the dimensionality was varied as
d = 2, 5, 10, 20, 30, 50. The computational costs can be estimated by how often a
query sample passes Step 2 (ball test), Step 3 (bisector test) and Step 4 (distance
calculations). So, we counted the number of samples passed these steps. The
results are shown in Figs. 5 and 6.
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Fig. 5. Relative number of calculations as letting that of the naive algorithm be one.

In Fig. 5, the summand of three curves becomes almost one. If the amount
is less than one, it means that the termination condition happened. From this
figure, we can see
1. The ball test works well in low-dimensional cases, but decreases exponentially
in dimensionality.

2. The bisector test works even up to a moderate size of dimensionality. The
effectiveness decreases also as dimensionality increases, but still useful to re-
duce the number of distance calculations. It looks too low in low-dimensional
cases, but this is because the ball test is carried out before the bisector test.

From Fig. 6, it can be read that the relative distance calculation decreases
as n increases, which means that the order is less than O(nd).
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Fig. 6. Relative number of distance calculations as the number of samples increases.

Table 1. Search time (Pentium4, 2GHz, 2GB Memory,
256KB cache, Linux). Preprocessing time is not included.

Dataset C d n(ntr : nte) Time(ms)
Naive Proposed Ann

sonar 2 60 103 (8:2) 0.008 0.007 0.01
mfeat 10 187 2000 (8:2) 0.475 0.585 0.454
musk 2 166 476 (8:2) 0.047 0.028 0.037
Jap. Char 30 196 6000 (1:1) 11.7 7.07 8.42

Table 2. Probabilities of
passing several steps.

Dataset α β αβ̇

sonar 0.63 0.89 0.56
mfeat 0.84 0.99 0.83
musk 0.31 0.93 0.29
Jap. Char 0.45 0.88 0.40

5 Experiments

We used four real-world datasets of ‘sonar’, ‘mfeat’, ‘musk’ and ‘Japanese Char-
acters.’ The first three are taken from machine learning databases in UCI (UCI
Repository of Machine Learning Databases, 1991). The sample was divided to
the training and testing sample sets by n = ntr + nte as shown in Table 1.
For comparison, ANN (Arya et al. (1998)) was carried out with ε = 0. The pa-
rameter used in the proposed method, t = 3 and ri(i = 1, 3) were determined
experimentally. In addition, s was set to d/2. The results are shown in Tables
1 and 2. From Table 2, we can see that the probability that training samples
pass the ball test, α, is lesser than as expected, but the probability that training
samples pass the bisector test, β, is higher than as expected. The highness of
1 − α can be explained as in these practical problems data form some clusters
from their natures. On the other hand, the lowness of 1 − β shows that many
training samples share almost a same distance to a query point. This is just
the problem that we mentioned first, so, unfortunately, we cannot recognize the
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effectiveness of our way using bisectors. To make clear the reason, we examined
further. Then it turned out that the number of found effective bisectors was very
small, a few percent of the total number of training samples, in contrast to our
analysis (1/2), but once such a bisector was found, then it worked well. More
precisely, only a few bisectors (less than one percent of total number of training
samples, for example, 0.2% in Japanese Character Database) were contributed
the value of β. Therefore, the probability that effective bisectors were found was
not so high, but the found effective bisectors worked very good.

6 Discussion

The question to be answered is that this is faster than the previous many algo-
rithms. It requires a preprocessing time of O(n2) and the same amount of space.
It is obvious that the algorithm needs O(αβnd) in query time that is less than
that of the naive algorithm that needs O(nd), although there is no progress in
the definition of large Oh. So, the question is reduced to that α (the probability
that training samples pass the ball test) and β (the probability that training
samples pass the bisector test) is really less than one even in high dimensional
cases. The answer was partly yes from the presented experiments.

We can know about the time complexity as follows. Let p be the probability
that an effective bisector is found and q be the probability of the area for further
search reduced by the bisector. Then, the time complexity T (n) for examining
n training samples in d dimension can be written as T (n) = d + 2 + pT (qn) +
(1 − p)T (n − 1). Then, we can see that T (n) ≤ O(nd). The equality holds for
qn = n − 1. Therefore, usually the complexity is better than that of the naive
one. To have more precise complexity, we have to take into consideration the
influence by successive bisectors.

One more practical issue is the effectiveness of cache. Recent CPUs are
equipped with some amount of memory cache, so that the memory access to
a sequential data is processed very fast. On the contrary, a random access as the
proposed method does, is very slow compared with such a sequential memory
access. This make less the advantage of the proposed algorithm. However, for
very large datasets, every data should be kept in a disk not in a memory, then
the advantage would be alive.

7 Conclusion

A novel nearest neighbor algorithm was proposed. It utilized a sequence of infor-
mation obtained so far. The experimental results seem to support its efficiency
even in high dimensional cases in which the previous algorithms are not better
than the naive algorithm. The main drawback of O(n2) space would be reduced
by developing the data structure.
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Abstract. This paper deals with supervised document image classifica-
tion. An original distance based strategy allows automatic feature selec-
tion. The computation of a distance between an image to be classified
and a class representative (point of view) allows to estimate a member-
ship function for all classes. The choice of the best point of view performs
the feature selection. This idea is used by an algorithm which iteratively
filters the list of candidate classes. The training phase is performed by
computing the distances between every class. Each iteration of the clas-
sification algorithm computes the distance d between the image to be
classified and the chosen representative. The classes whose distance with
this point of view differs from d are deleted in the list of candidate
classes. This strategy is implemented as a module of A2IA FieldReader
to identify the class of the processed document. Experimental results are
presented and compared with results given by a knn classifier.

1 Introduction

Since a few years, handwritten recognition systems have improved (automatic
zip code, form field or cheque amount reader) leading to commercial applica-
tions. The good reading rates of such systems allow to process less constrained
documents (eg. order forms, invoices). To validate the reading results on such
semi-structured documents, it is necessary to associate a reading model to each
document class. This reading model contains information about the fields of the
document: position, nature (letters, digits, consistency rules, meaning).

Some systems process only a unique kind of document. Others receive an
heterogeneous stream of documents. In that case the system has to identify
the document class (and therefore the corresponding reading model) of a given
document, which means a document class identification module precedes the
reading module. In many systems, the classes to discriminate are known before
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the classification module conception [1] [2]. During the desing it is possible to
determine the most discriminating features by studying the images representing
the classes. On the other hand, systems are now conceived without knowing the
number or the nature of the document classes. Then the classification module has
to automatically determine the best features set for the given set of document
classes during a learning step.

This paper presents a document classification module, which automatically
performs feature selection on any set of document classes. This module is de-
signed to be added to an existing system that reads handwritten fields on doc-
uments from a unique class. This system needs to know the reading model. By
associating a reading model to each document class, the document classification
module allows the system to process an heterogeneous stream of documents.

The system is intended to be sold to final users such as government services
or banks, which are not specialists in document analysis nor classification spe-
cialists. Therefore the module determines reflexively the most discriminating set
of features given a specific problem. If the available features set is not able to
efficiently separate the images of a particular project, new features can be easily
inserted inside the module.

Our strategy simultaneously performs the feature selection for a given prob-
lem and the document classification. It is based on the computation of distance
between documents. In section 2, we remind the context in which the classifica-
tion module is inserted and we expose the constraints attached to a commercial
use. Section 3 introduces the main definitions. It details the notion of document
class, presents the structure of the features used to extract feature sets, and fi-
nally introduces the concept of distance between document images according to
to a feature and its metric. Section 4 details the principles of the classification
process which is presented in section 5 and 6. Section 5 presents the different
steps of the supervised learning phase. Section 6 describes the processes applied
to document image to determine its class. Finally, experimental results are pre-
sented in section 7. These are compared with results given by a knn classifier.

2 Context and Constraints

We remind that the module presented in this article is added to an existing
system that reads handwritten fields of forms from a unique class. The purpose of
the module is to identify the class of the document so that the system can process
documents from multiple classes. Once the document class is determined, the
document is processed as done before by using the associated reading model. This
reading model includes rules (location, nature, syntax, meaning, consistency)
which allow to improve the automatic reading.

The use of the classification module as a part of a commercial product im-
plies to respect some constraints. It must be able to discriminate the class of
a document among a hundred classes, and the processing time has to be lower
than a limit fixed by the final user (1 or 2 seconds per document with a 1GHz
PC). This implies that the processing time is a sub linear function of the classes
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number. The time needed to classify a document among 100 classes must not
be 10 times greater than the time needed to classify a document among 10
classes. On the other hand, final users are not specialists in document analysis.
They do not know how to determine the best parameters for the classification.
The classification module must be able to automatically adapt its parameters to
be as robust as possible on any document set, by evaluating its discrimination
performance.

3 Definitions

This section defines the most important terms used in the description of the clas-
sification module principle. More accurately, the concepts of document classes,
feature, and distance between documents are introduced and detailed.

As mentioned above, we define a document image class as a set of document
images on which the same reading model is applied. In our case, the reading
model is defined by the final user. A document class is then defined because of
the subsequent processing. Two documents are in the same class if the fields
to be read are at the same location even if the images look structurally very
different. On the other hand, two documents which images are very similar can
be in two different classes if, for example, two fields have their location inverted.
For a given problem, two documents from the same class can be in two different
classes in an other problem, if their reading model becomes different.

Notation 1 Document image and document images set
The document image classes set is called ClassSet.
The document images set is called ImageSet. The set of images belonging to
class C is called ImageSetC.

The features used can be numerical, syntactical and/or structural. It is possi-
ble to associate different metrics to each feature. Each metric allows to compute
a distance between two document images.

Definition 1. Feature and Metric
The feature space associated to the feature F is called SpaceF . A metric associ-
ated to F is called MF .

F : ImageSet → SpaceF
MF : SpaceF × SpaceF → [0, 1]

The features set is called FeatureSet. The metric set is called MetricSet.

The metric associated to each feature can be computed with Euclidean, Ham-
ming, Max, Min [3], edition distance, graph distance.

Definition 2. Distance between document images
The distance between document images I1 and I2 according the feature F is
defined by:

DF : ImageSet × ImageSet → [0, 1]
DF (I1, I2) = MF (F (I1), F (I2))
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A distance computed between two documents from the same class is called an
intra-class distance. Otherwise, it is called an inter-class distance. For each metric
MF and for each class C, an image is chosen as representative. This choice is
detailed in section 5.

Notation 2 The image which represents the class C according to MF is called
I∗MF ,C .

The distance between an image I and a class C according to MF is defined
as the distance between I and I∗MF ,C .

Definition 3.
D(MF ,C) : ImageSet → [0, 1]

D(MF ,C)(I) = D(MF ,C)

(
I∗MF ,C , I

)
= MF (F (I∗MF ,C), F (I))

Notation 3 intra-class and inter-class distances
The set of inter-class distances between I∗MF ,C and images from C′ is called
DXMF ,C(C′).
The set of intra-class distances DXMF ,C(C) is called DIMF ,C .

4 Classification Principle

In classical approaches, a document image is represented by a point in a feature
space. Then, classes correspond to clusters. The classification process consists
in finding frontiers between these clusters. Our approach differs from commonly
used classifiers. The feature space is projected in a one dimensional distance
space. A point in this space represents the distance according a metric between
a point of the feature space and a point of view. The representative I∗MF ,C defines
a point of view. Thanks to the metricMF , it is possible to compute the distances
between I∗MF ,C and each other class.

Let Ĩ be the image to classify and C̃ be the class of Ĩ. The computation of
D(MF ,C)(Ĩ) gives the position of Ĩ with respect to C. If we know the relative
position of every class C′ and even if only one distance is computed, we can
estimate the value of the membership function for each class. Indeed, if the
distance between C and C′ differs from the distance between C and Ĩ, the
probability that Ĩ is a member of C′ is low.

More formally, for each class C′, the set of inter-class distances DXMF ,C(C′)
between I∗MF ,C the representative of C according MF and images from the C′

is computed. D(MF ,C)(I) is the distance between the representative of C et Ĩ.
Then, Ĩ might be a member of every class C′′ where D(MF ,C)(I) is close to
DXMF ,C(C

′′).
This is the main idea of our approach. In classical methods, Ĩ is considered

as a member of the nearest class in the feature space. Our approach computes
the distance d between Ĩ and a point of view. Ĩ is then considered as a member
of a class whose distance to the point of view is close to d.
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The classification module has Card(MetricSet) × Card(ClassSet) couples
(MF , C). Each of these can be a point of view. Then the training step of our
module consists in computing the distances between the document images from
the different classes.

The classification of an unknown document consists in selecting a sequence of
couples (MF , C) and exploiting the different classification hypothesis to identify
the real class.

5 Learning

The learning phase is performed for each feature F and each corresponding met-
ric MF . First, a document image from ImageSetC is chosen for each couple
(MF , C) to represent the C class according MF . This is performed by com-
puting the intra-class distances DMF (I, J) , ∀(I, J) ∈ ImageSetC×ImageSetC.
We deduce I∗MF ,C from the intra-class distances. Different choice might be imple-
mented. The representative can be the gravity center, the image which minimize
the greatest intra-class-distance or the image which minimizes the standard de-
viation of the intra-class distances. This choice may be the subject of future
study. Our choice is the image which minimizes the standard deviation.

The second step of the learning phase consists in giving to each class the
knowledge of the distance which separates it from other classes according to each
metric. To do so, we could evaluate the distances between every document image
from a C class and every document image from C′ classes. But to reduce the
training time, only the distances between the class representative of C and every
document image from the other classes are computed. Theses distances allow to
build the sets DXMF ,C(C′) and DIMF ,C of inter and intra-class distances (cf.
notation 3).

Each class has now the knowledge of the distance between its representative
and every image from the other classes according every MF .

Then, a membership function can be defined from the computed learning
data. Indeed, according to each feature, each class has the knowledge of the
distance with the other classes.

So if a document image is represented by a point in the feature space, and
if the projection of this point in the distance space is located in the interval
[min(DXMF ,C(C′)),max(DXMF ,C(C′))], then the image might be a member of
the class C′. On the other hand, the more the point is far of this interval, the
lower is the value of the membership function.

6 Classification

Classification is performed by iteratively filtering the list of candidate classes.
First, for each iteration, a (MF , C) couple is selected. The module selects the

couple for which the ranges of the DXF,C(C′) are the most different for every C′

in the candidate classes. The most informative couple is the one which maximizes
the distances between intervals and which minimizes their intersection. These
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Fig. 1. Choice of the point of view

intervals in the distance space correspond to hyper-rings in the feature space
(see Fig. 1(a), 1(b) and 1(c)). In other words, the couple (MF , C) which gives
the best point of view, if it is the one with the lowest intersection between hyper-
rings. Then, an image represented by a point in the distance space, will belong
to a low number of intervals.

Figures 1(a), 1(b) and 1(c) presents a problem with 3 classes and 1 feature
space. It illustrates the discriminating power of different points of view. Indeed,
if the selected point of view is the center of the class A, there is an intersection
between the ring including the class B and the ring including the class C. This
means that the corresponding intervals in the distance space overlap. The interval
overlap is lower if the selected point of view is the center of class B. There is no
more overlap if the center of class C is chosen. Then each point of the feature
space belongs to one ring at most. This choice can be made in different feature
spaces and with different metrics.

The distance D(MF ,C)(Ĩ) between Ĩ and the selected point of view I∗MF ,C is
then computed with the metric of the selected feature F . This distance com-
putation corresponds to draw a circle in SpaceF centered on the representative
image of the selected class C. All classes which intersect the circle are kept in
the candidate class list because the membership function is equal to 1. Classes
whose membership function value is lower than a threshold are removed from
the list.

This process is repeated until one class or less remains in the candidate list.
The selection of the best point of view correspond to choose the feature space
and the metric with the best discriminating power for the candidate classes. The
iterative process corresponds to determine a path in a dynamically built decision
tree [4]. If no class remains, Ĩ is rejected.

The choice of the best point of view does not take into account the eliminated
classes. However, their representative are still potential points of view.
Candidates ← ClassSet
while Card(Candidates) > 1
choose best couple(F,C)
compute d= D(F,C) (I)
remove far classes in Candidates according to DXF,C

endWhile
if Card(Candidates) > 0
then C=Candidates[0]
else reject I



900 Fabien Carmagnac, Pierre Héroux, and Éric Trupin

7 Experimental Results

The classification module contains 6 features (graphical [2] [5] and structural [1]
[6]). For the presented test, the representative of each couple (MF , C) is chosen
as the image which minimizes the intra-class distance standard-deviation.

The tests have been performed on different bases containing images repre-
senting differents classes of cheque-deposits, forms and air flight coupons. Ex-
perimental results are given in Table 1.

As mentionned in section 2, the classes are defined by the position and the
nature of the handwritten fields to be read. The preprocessing (eg. binarization)
is an other source of variability. On the other hand, users only provide few images
for learning (5 to 10 images per class). Fig. 2 shows examples of images from
two different bases.

The results presented in table 1 have be compared with the ones given by a
knn classifier. In a first experiment, tests have been performed with a classifier

Table 1. Results

#Images #Classes #Iterations Good Reject Confusion
classification rate rate

rate

A 25125 2 1 100% 0% 0%
B 123 8 2 to 4 96% 4% 0%
C 65689 6 2 to 3 92% 4% 4%
D 8770 6 2 to 3 95% 4% 1%
C+D 10000 12 2 to 4 89% 1% 9%

Images of the same class in project A

(a) (b)

Images from 2 different classes in project B

(c) (d)

Fig. 2. Example of images
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for each of the 6 features. Several values of k have been tested (1, 3, 5 and 10)
but it seems that it has a low influence on the results. The results also showed
that some features are well suited for a problem and have a low discriminating
power on an other. Indeed, the best configuration gave a classification rate of
96% on a problem, but the same feature gave classification rate lower than 60%
on an other base.

In a second experiment, all the features have been grouped in a single feature
vector. The results were lower than 40% for every base, the discriminating power
of well suited features being disturbed by others. A feature selection should have
been performed for each base.

This comparison validate the dynamic feature selection of our approach.
Moreover, the knn classifier needs to compute the distance with every point
of the training set whereas our approach only compute a distance per iteration.

8 Conclusion

This article presents an original classification strategy which is applied to docu-
ment image classification. This strategy is implanted as a module of a complete
solution which aims at automatically reading handwritten fields on document
images from multiple classes.

The strategy presents some advantages. First, the classification process is a
sub-linear function of the number of classes. We do not have to compute the
distance with every class representative. This allow to use it in an industrial
context. Moreover, the module is easily configurable. By setting the number or
the proportion of candidate classes to eliminate, a maximum number of iteration
can be set. Lastly, the module architecture allows to add features very easily.
In our system, a feature is only defined by its features space and its distance
computation. Indeed, it is only required to write a function that places an image
in the applied feature space and a distance function returning a real in [0, 1].
So for a particular difficult project with specific constraints, we can easily add
features dedicated to the discrimination of the not easily separable classes.

At each iteration of the classification process, the best feature vector with
the best point of view is dynamically determined.

The main advantage to work in distance spaces, is that it allows to use a large
variety of feature. The processed feature vectors can be very different. There is
no restriction concerning its size and nature. Numeric, syntactic and structural
features can be mixed in the feature set and even in the same feature vector if
a distance can be computed between two vectors.

The learning phase can be incremental. If a new class is added, the previous
computed distance are kept, only the distances with the new documents have to
be evaluated. New features can be added in the same way.

It seems that this strategy can be applied to a large scope of classification
problems with supervised learning.

The strategy presented in this paper is a very preliminary work. The first
results seem to be promising, but they could be improved by further works on
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many aspects (choice of the class representative, dynamic determination of the
best feature vector for the best point of view).

Another future work would be to improve the used feature set. For example,
the better feature vector could be determined to limit the computation com-
plexity. The feature vectors could be combined to build new ones, for example
by using genetic algorithms. We can imagine that the built feature vector would
use features exploiting different zones of the document image. The genetic al-
gorithms would then select the features associated to the most discriminating
zones.
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classifieurs distribués. PhD thesis, Université de Rouen (1998)
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de Fribourg (1995)



Identification of Humans
Using Robust Biometric Features

Byungjun Son, Jung-Ho Ahn, Ji-hyun Park, and Yillbyung Lee

Division of Computer and Information Engineering, Yonsei University
134 Shinchon-dong, Seodaemoon-gu, Seoul 120-749, Korea

{sonjun,jhpark,yblee}@csai.yonsei.ac.kr
{jungho}@cs.yonsei.ac.kr

Abstract. The size of the feature set is normally large in a recogni-
tion system using biometric data, such as Iris, face, fingerprints etc. As
dimensionality reduction is an important problem in pattern recogni-
tion, it is necessary to reduce the dimensionality of the feature space for
efficient biometric identification. In this paper, we present one of the ma-
jor discriminative learning methods, namely, Direct Linear Discriminant
Analysis (DLDA). Also, we specifically apply the multiresolution decom-
position of 2-D discrete wavelet transform to extract the robust feature
set of low dimensionality from the acquired biometric data and to de-
crease the complexity of computation when using DLDA. This method
of features extraction is well suited to describe the shape of the bio-
metric data while allowing the algorithm to be translation and rotation
invariant. The Support Vector Machines (SVM) approach for comparing
the similarity between the similar and different biometric data can be
assessed to have the feature’s discriminative power. In the experiments,
we have showed that that the proposed method for human iris and face
gave a efficient way of representing iris and face patterns.

1 Introduction

The identification of humans for e.g. financial transactions, access control, or
computer access has almost always been conducted by ID numbers, such as a
PIN or a password. The main problem with those numbers is that, let aside the
fact that they sometimes can be cracked quite easily, they can be stolen and
used by and unauthorized person without detection. Biometric identification
systems use personal features of the user itself to check the identity. If, for
example, biometric features stored on a chip card are stolen, they cannot be used,
because the imposter’s biometric features do not match the features stored on
the card. For this reason, the interest in biometric systems has risen very much
lately. Many systems arise using eye, face, fingerprint, or voice features. All of
them have different advantages and disadvantages. But they have the common
disadvantage that the size of the feature set is normally large.

We discuss feature extraction strategies for a class of iris features with very
high dimension. In a recognition system using the biometric features, one may
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try to use large feature set to enhance the recognition performance. However,
the increase in the number of the biometric features has caused other problems.
For example, the recognizer using higher dimension feature set requires more
parameters to characterize the classifier and requires more storage. Thus, it will
increase the complexity of computation and make its real-time implementation
more difficult and costly. A larger amount of data is also needed for training.
To avoid these problems, a number of dimensionality reduction algorithms have
already been proposed to obtain compact feature set.

The feature extraction process needs to be effective so that salient features
that can differentiate between various classes can be extracted [1]. Several meth-
ods like Principal Component Analysis (PCA) [2] [3], transform the input data
so that the features are well separated and classification become easier. Linear
transformations are extensively used because they are easy to compute and an-
alytically tractable. Typically, these transformations involve projecting features
from a high dimensional space to a lower dimensional space where they are well
separated. Linear Discriminant Analysis (LDA) is one such discriminative tech-
nique based on Fisher’s linear discriminant [4]. Linear Discriminant Analysis
(LDA) and Principal Component Analysis (PCA) are two major methods used
to extract new features [4].

In this paper, we deal with basic issues for iris and face recognition. Also, we
use the wavelet and direct discriminant analysis [5] for high-dimensional data
set of iris and face. Most of works on personal identification and verification by
iris patterns have been done in 1990s, and recent noticeable studies among them
include those of [6], [7] and [8]. Daugman and Wildes implemented a whole
system for personal identification or verifications including the configuration
of image acquisition device, whereas the Boles system only focused on the iris
representation and matching algorithm without an image acquisition module.

This paper is organized as follows. Section 2 briefly describes the image pre-
processing which mainly involves the quality check of an image and iris localiza-
tion. In section 3, we overview a multilevel two-dimensional 2D discrete wavelet
transform (DWT) to obtain the feature vector of an iris and face image with lower
dimensionality and more robust features. Also, we describe the DLDA scheme to
linearly transform the subimages of biometric data obtained by wavelet trans-
form to new feature space with higher separability and lower dimensionality.
The same operations of DWT and DLDA are performed in training as well as
testing phases. Section 4 describes feature matching approach based on SVM.
Experimental results and analysis will be stated in section 5, and finally the
conclusions are given in section 6.

2 Image Preprocessing

The images acquired from an image acquisition device always contain not only
the appropriate images but also some inappropriate ones. Therefore, we need
to check the quality of eye image to to determine whether the given images are
appropriate for the subsequent processing or not and then to select the proper
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(a) (b) (c) (d)

Fig. 1. Examples of images with bad quality: (a)the images with the blink (b)the
images whose the pupil part is not located in the middle (c)the images obscured by
eyelids or the shadow of the eyelids (d)the images with severe noises.

ones among them in real time. Some images ascertained as inappropriate ones
are excluded from the next processing.

The images excluded from the subsequent processing include as follows; the
images with the blink (Fig. 1(a)), the images whose the pupil part is not located
in the middle and some parts of the iris area disappear (Fig. 1(b)), the images
obscured by eyelids or the shadow of the eyelids (Fig. 1(c)), and the images with
severe noises like Fig. 1(d). Fig. 1 shows the examples of images with bad quality.

An iris area can be localized from the eye image passed in the quality check
step by separating the part of an image between the inner boundary and outer
boundary. Fig. 2. shows the results of finding the inner boundary, the outer
boundary and the collarette boundary in the eye image and the image of iris
area, where is used in feature extraction, localized by using these boundaries.

(a) (b) (c)

(d)

Fig. 2. (a)Original eye image (b)Image of the inner boundary and outer boundary
(c)Image of the collarette boundary (d)localized iris image.

3 Feature Extraction

Most applications emphasize finding a feature set that produces efficient and
implementable results. If the dimension of features defining a problem is too high,
we must select a robust set of features from an initial set to provide appropriate
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representation. We also must design an appropriate classifier to the selected
features set. We have chosen the DWT and DLDA approach to obtain a robust
and lower dimensional set of features with high discriminating power.

3.1 Wavelet Transform

The hierarchical wavelet functions and its associated scaling functions are to
decompose the original signal or image into different subbands. The decompo-
sition process is recursively applied to the subbands to generate the next level
of the hierarchy. The traditional pyramid-structured wavelet transform decom-
poses a signal into a set of frequency channels that have narrower bandwidths
in the lower frequency region. The DWT was applied for texture classification
and image compression because of its powerful capability for multiresolution
decomposition analysis. The wavelet decomposition technique can be used to
extract the intrinsic features for the recognition of persons by their biometric
data. We employ the multilevel 2D Daubechies wavelet transform to extract the
iris features. Using the wavelet transform, we decompose the image data into four
subimages via the high-pass and low-pass filtering with respect to the column
vectors and the row vectors of array pixels.

Figure 3 shows the process of pyramid-structured wavelet decomposition.

DWT

(a) Iris

DWT

(b) Face

Fig. 3. Example of a 3-level wavelet transform of the iris and face images.

In this paper, we always select low frequency subimage for further decom-
position. The three-level lowest frequency subimage is extracted as the feature
vector. Generally, low frequency components represent the basic figure of an im-
age, which is less sensitive to varying images. These components are the most
informative subimages gearing with the highest discriminating power. The level
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of low frequency subimage chosen to extract the feature vector depends on size
of the image. If the size is smaller then our localized iris image and ORL face, the
one or two-level lowest frequency subimage might be have higher discriminating
power.

3.2 Direct Linear Discriminant Analysis

After extraction of the iris and face feature vector by wavelet transform, the
original iris vector x of 7,200 dimensions is transformed to the feature vector
y of 116 dimensions. Also ORL face vector of 10,304 dimensions is reduced to
168 dimensions. To further reduce the feature dimensionality and enhance the
class discrimination, we apply DLDA to convert the feature vector y into a new
discriminant vector z with lower dimensions then the feature vector y.

Existing LDA methods first use PCA to project the data into lower dimen-
sions, and then use LDA to project the data into an even lower dimension. The
PCA step, however, can remove those components that are useful for discrimina-
tion. The key idea of DLDA method is to discard the null space of between-class
scatter Sb - which contains no useful information - rather than discarding the
null space of Sw , which contains the most discriminative information [5]. Each
scatter is given as follows:

Sb =
J∑
i=1

ni(μi − μ)(μi − μ)T (n × n)

Sw =
J∑
i=1

∑
x∈Ci

(x − μi)(x − μi)T (n × n)

where ni is the number of class i feature vectors, μi is the mean of class i, μ is
the global mean, and J is the number of classes.

The DLDA method is outlined below. We do not need to worry about the
computational difficulty that both scatter matrices are too big to be held in
memory because the dimensionality of input data is properly reduced by wavelet
transform.

First, we diagonalize the Sb matrix by finding a matrix V such that

V TSbV = D

where the columns of V are the eigenvectors of Sb and D is a diagonal matrix
that contains the eigenvalues of Sb in decreasing order. It is necessary to discard
eigenvalues with 0 value and their eigenvectors, as projection directions with a
total scatter of 0 do not carry any discriminative power at all [5].

Let Y be the first m columns of V ( an n × m matrix, n being the feature
space dimensionality),

Y TSbY = Db (m × m)

where Db contains the m non-zero eigenvalues of Sb in decreasing order and the
columns of Y contain the corresponding eigenvectors.
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The next step is to let Z = Y D1/2 such that ZTSbZ = I. Then we diagonalize
the matrix ZTSwZ such that

UT (ZTSwZ)U = Dw (1)

where UTU = I. Dw may contain zeros in its diagonal. We can sort the diagonal
elements of Dw and discard some eigenvalues in the high end, together with the
corresponding eigenvectors.

We compute the LDA matrix as

A = UTZT (2)

Note that A diagonalizes the numerator and denominator in Fisher’s criterion.
Finally, we compute the transformation matrix(2) that takes an n×1 feature

vector and transforms it to an m × 1 feature vector.

xreduced = D
−1/2
b Ax (3)

4 SVM-Based Pattern Matching

We only give here a brief presentation of the basic concepts needed. The reader is
referred to [10] for a list of applications of SVMs. SVMs are based on structural
risk minimization, which is the expectation of the test error for the trained
machine. This risk is represented as R(α), α being the parameters of the trained
machine. Let β be the number of training patterns and 0 ≤ γ ≤ 1. Then, with
probability 1− γ the following bound on the expected risk holds:

R(α) ≤ Remp(α) +

√
h(log(2β/h) + 1)− log(γ/4)

β
(4)

Remp(α) being the empirical risk, which is the mean error on the training set,
and γ is the VC dimension. SVMs try to minimize the second term of (4), for a
fixed empirical risk.

For the linearly separable case, SVM provides the optimal hyperplane that
separates the training patterns. The optimal hyperplane maximizes the sum of
the distances to the closest positive and negative training patterns. This sum is
called margin. In order to weight the cost of missclassification an additional pa-
rameter is introduced. For the non-linear case, the training patterns are mapped
onto a high-dimensional space using a kernel function. In this space the decision
boundary is linear. The most commonly used kernel functions are polynominals,
gaussian, sigmoidal functions.

5 Experimental Results

Eye images were acquired through CCD camera with LED (Light-Emitting
Diode) lamp around lens under indoor light. The size of eye images is pixels
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with 256 grey intensity values, and the size of normalized iris images is 32× 225
pixels. Our data set consists of 1200 eye data acquired from 120 individuals (left
and right eye). The images of the left and right eye were treated differently from
the same person, because they have different patterns. Both males and females
were among the data. The ages of all ranges from the early twenties to mid-
thirties. In case of individuals with glasses, images are captured both removing
their glasses and having their glasses; however, contact lenses remained place.

We also used face images from Olivetti-Oracle Research Lab(ORL) [11]. The
ORL data set consists of 400 frontal faces: 10 tightly cropped images of 40 sub-
jects with variations in poses, illuminations, facial expressions and accessories.
The size of each image is 92× 112 pixels, with 256 grey levels per pixel.

We randomly choose five images per person for training, the other five for
testing. To reduce variation, each experiment is repeated at least 20 times. We
applied LDA, DWT+LDA, DLDA, and DWT+DLDA to a training set. Also, we
evaluated the recognition performances using nearest neighbor(NN) and SVM.

(a) Iris Results (b) Face Results

Fig. 4. Recognition Error Rate vs. Dimension of feature space.

Figure 4 shows the result of recognition error rate vs. dimension of feature
space. The smallest recognition error rate of the LDA approach about the iris
and face data is 6.7% and 21.42% with feature vector consisted of 20 and 25
components, respectively. The DLDA approach about the iris and face achieves
5.11% and 5.35 recognition error rate with feature vector consisted of 70 and 30
components, respectively. The DWT +LDA and DWT +DLDA approach about
the iris achieve 1.96% and 1.24% with 40 and 55 features, respectively. About
face achieve DWT +LDA and DWT +DLDA approach 7.75% and 3.57% with
20 and 35 features, respectively. the From Fig. 4, We can also see the DWT
+DLDA method achieves the smallest recognition error rate. The recognition
error rates of these DLDA methods are almost fixed after the number of features
of iris and face reaches around 20. In addition, recognition rate of the DWT
+DLDA approach about iris and face is 98.24% and 94.72% when the number
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(a) Iris Results (b) Face Results

Fig. 5. DWT+DLDA+NN vs. DWT+DLDA+SVM.

of features is 25 and 15, respectively. It is higher than the best performance of
the other methods and has lower dimension than others. This shows that the
DWT+DLDA approach can achieve better performance although it uses smaller
number of basis vectors than the others.

As compared in Fig. 5, we find that DWT +DLDA +SVM for gaussian
kernel outperforms DWT +DLDA +NN. Such observations are almost consistent
for different numbers of feature set. The best recognition rate of DWT+DLDA
+SVM approach about the iris and face is 99.4% and 97.53 when the number of
features is 55 and 35, respectively.

6 Conclusion

In this paper, we have presented effective methods for the recognition of persons
by their biometric features. We specifically uses the multiresolution decomposi-
tion of 2-D discrete wavelet transform for extracting the robust feature set of
low dimensionality. In addition, the DLDA method is used to obtain the feature
set with higher discriminative power and lower dimensionality. These methods of
feature extraction well suit with iris and face recognition system while allowing
the algorithm to be translation and rotation invariant.

We showed that the DWT+DLDA method outperformed the LDA, DWT
+LDA, and DLDA in terms of classification rate. For the complex data consisting
of many classes in the problem of iris and face recognition, the DWT+DLDA
method can be used for an alternative of LDA. Support vector machines also
has the advantage of efficient testing, and good performance compared to other
linear classifiers. For future works, it is necessary to conduct experiments on a
large number of data so as to verify the efficiency and robustness of our approach.
Other techniques for feature extraction and pattern matching can be handled
from this point of view so as to propose the efficient methods for a reliable human
recognition system.
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Abstract. We present an expression recognition system based on the two-
dimensional structure of affect. The system is capable of identifying the various 
emotions using automated feature extraction. A method for extracting informa-
tion about facial expressions from images is presented in three steps. In the first 
step, Gabor wavelet representation is constructed to provide edge extraction of 
major face components using the average value of the image’s 2-D Gabor 
wavelet coefficient histogram. In the second step, sparse features of facial ex-
pression image are extracted using fuzzy C-means clustering(FCM) algorithm 
on neutral faces. In the third step, features of facial expressions are extracted 
using the Dynamic Linking Model(DLM) on expression images. The result of 
facial expression recognition is compared with dimensional values of internal 
states derived from semantic ratings of words related to emotion by experimen-
tal subjects. The two-dimensional structure of affect recognizes not only six fa-
cial expressions related to six basic emotions (happiness, sadness, surprise, an-
gry, fear, disgust), but also expressions of various internal states.  

1   Introduction 

Face is an important social stimulus in human interactions. Specially, facial expres-
sion plays a major role in human communication. If a computer can understand emo-
tions  from human’s facial expressions, it is possible to help humans in various situa-
tions dynamically.  

Currently, most facial expression recognition systems use the six principle emo-
tions of Ekman [1]. Ekman considers six basic emotions: happiness, surprise, fear, 
anger, disgust, sadness; and categorizes facial expressions with these six basic emo-
tions. Facial action coding system is an analysis of facial muscle actions which make 
facial expressions based on the six basic emotions [2]. Most research on facial ex-
pression recognition includes studies using the basic emotions of Ekman[3, 4, 5, 6, 7], 
therefore these studies have limitations for recognition of natural facial expressions 
which consist of several other emotions and many combinations of emotions. Here 
we describe research extended on the dimension model of internal states for recogniz-
ing not only facial expressions of basic emotions but also expressions of various emo-
tions. 

Previous work on facial expression processing includes studies using representa-
tion based on optical flow from image sequences [3, 8, 9], principle components 
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analysis of single image [9,10], physically based models [11], and wavelets 
transformation[12]. These methods are similar in that they first extract some features 
from the images, then these features are used as inputs into a classification system. 

The first stage detects the edges of major face components, using the average value 
of the image’s 2-D Gabor wavelet coefficient histogram on all the images. Since 
Gabor vectors with neighboring pixels are highly correlated and redundant, it is suffi-
cient to use sparse pixels on a face. The second stage, FCM clustering algorithm is 
used to select sparse pixels from edges of major facial components extracted previ-
ously from a neutral face of each expressor. The third stage is an application of the 
Dynamic Link Architecture [13] and is used here to detect sparse local features on 
expression images from preselected points in the neutral face. Lastly, from a multi-
layer perceptron we recognize the facial expressions based on the two-dimensional 
structure of affect. 

2   Database 

The images used in this study were obtained from the Korean facial expression data-
base for mapping of facial expressions into internal states [14]. This database consists 
of 500 facial expression images of males and females under well controlled lighting 
condition. Expressions were divided into two dimensions(pleasure-displeasure and 
arousal-sleep dimension) according to the study of internal states through the seman-
tic analysis of words related with emotion by Kim et al. [15] using expressive 83 
words.  

These posed pictures may differ from the words of emotion between the posed ex-
pression and named expression since expressors depend strongly on the personal 
subjectivity. We thus picked up 44 internal state expressions being a high agreement 
of posed expression and named expression; and for our experiment used 11 expres-
sions in a set of 44 internal state expressions from each of 6 person. The 11 expres-
sions are happiness, surprise, sadness, disgust, fear, satisfaction, comfort, distress, 
tiredness, worry(including neutral face). A few of these are shown in Fig. 1. Our 
paper shows recognition of facial expressions using 2 dimension. The result of the 
dimension analysis of 44 emotion words related to internal emotion states is shown 
Fig. 2.  

 

Fig. 1. Examples from the facial expression database 
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Fig. 2. The two-dimensional structure of affect 

3   Automatic Feature Extraction 

To extract information of facial expression, we use 287 images of 6 person, each 
image using 640 by 480 pixels included face images almost in the frontal pose. Origi-
nal images have been rescaled and cropped such that the eyes are roughly at the same 
position with a distance of 60 pixels in the final image. In this section, we present the 
process of an automatic feature extraction. The process consists of three steps.  

3.1   Preprocessing with Gabor Wavelets 

For edges of major facial components, an average value of the image’s 2-D Gabor 
wavelet coefficient histogram is used. Each image was convolved with both even and 
odd Gabor kernels in an image ( )I x

�
 around a given pixel ( , )x x y=

�
. The general form 

of two dimensional Gabor wavelets function is given by Daugman [16]. 

)]
2

exp())[exp(
2

exp()(
2

2

22

2

2 σ
σσ

ψ −−⋅−= xki
xkk

x
k

 (1) 

The wave vector k
�

 of length k k≡
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 defines the spatial wavelength and at the 

same time controls the width of the Gaussian window. The parameter σ denotes the 
width of the Gaussian window relative to the wavelength corresponding to k. To 
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detect features of major face components, we use a specific frequency band, a wave 
number, k=0.78, and 5 distinct orientations in 22.5 ° steps between 0 and π, and 
chose σ = π. The complex valued 

k
ψ�  applied to each image combines an even and 

odd part. We use only the magnitudes because they represent local information of an 
image in a smoothly varying way. Let G be the set of Gabor functions to be applied to 
I. G is 1G , 

2G . The computation proceeds as follows: 
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Fig. 3(a) shows the result of the 2-D Gabor coefficients histogram using the mag-
nitudes of Gabor coefficients from an expression image. This means these coeffi-
cients completely capture local facial feature points in special frequency and special 
orientation. Thus, we applied the average value of 2-D Gabor coefficient histogram to 
extract local facial feature points. The average value of Gabor coefficients histogram 
is controlled by optional value ±α since experimental images may be a noise. 
Fig. 3(b) shows the resulting image which applied an optional value to an average 
value of the Gabor coefficients histogram. 

 

  (a)  (b) 

Fig. 3. (a) 2-D Gabor coefficient histogram. (b) Extracted edges of major face components 

3.2   Sparse Feature Points Extraction   
        Using FCM Clustering Algorithm on Neutral Face 

Extracted feature points are similar to edges of major facial components. Since Gabor 
vectors with neighboring pixels are highly correlated and redundant, it is sufficient to 
use sparse pixels on a face. We thus pick out sparse feature points based on the FCM 
clustering algorithm in edges extracted from the 2-D Gabor wavelet coefficient histo-
gram. FCM algorithm applies to neutral facial images that are used as a template to 
extract sparse feature points from edges of major facial components on expression 
images.  

Fuzzy C-means clustering [17] is a data clustering algorithm in which each data 
point belongs to a cluster to a degree specified by a membership grade. The potential-
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ity of fuzzy clustering algorithms can be demonstrated by their application in cluster-
ing tasks which involve a large number of feature vectors of high dimension and a 
large number of clusters. Such an application is the codebook design required in im-
age compression based on vector quantity, regardless of their initialization [18].  

FCM consider the set X formed by N feature vectors from an N dimensional 

Euclidean space, }.{,,...,2,1 N21 x,...,x,xx ==∀ℜ∈ XNin
i The clustering is 

based on the assignment of the feature vector i X∈x  into c clusters, which are repre-
sented by cin

i ,...,2,1, =∀ℜ∈c . The degree of the assignment of the feature vector 

Xi ∈x into various clusters is measured by the membership function ],1,0[∈iju  

which satisfy the properties  

∑
=

=∀=
c

i
jij Nu

1

.,...,1,1  (3) 

Fuzzy C-means algorithm is developed by solving the minimization problem. The 
cost function for FCM is 
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ci is the cluster center of fuzzy group i; || ||ij i jd = −c x  is the Euclidean distance between 

ith cluster center and jth data point ; and m ∈[1< m ,∞] is a weighting exponent. The 
necessary conditions for Equation (4) to reach a minimum are 
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We determined sparse feature points using the following steps: Step1. Initialize the 
membership matrix U with random values between 0 and 1 such that the constraints 
in Equation (3) are satisfied. Step2. Calculate c fuzzy cluster centers 
( , 1,2,....,ic i c= ) using Equation (5). Step3. Compute the cost function according 

to Equation (4), and stop if either it is below a certain tolerance value or its improve-
ment over previous iteration is below a certain threshold. Step4. Compute a new U 
using Equation (6), then go to Step2. Fig. 4(a) shows a result that extracted sparse 
pixel points by FCM algorithm: c=60, m=2.  The number of clusters is decided in the 
range that can reflect the same topological relationship as major face components in 
human vision. 

3.3   Sparse Feature Points Extraction Using DLM on Expression Image 

After extracting the sparse feature points on neutral faces, which are used as a tem-
plate to extract sparse feature points from edges on the expression images extracted 
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previously since each neutral face plays a standard role to decide the degree of ex-
pression change against an expression image.  

To match point to point feature points on an expression face against each feature 
point on a neutral face, it consists of two different domains, which are called the neu-
tral domain (N) and the expression domain (E). The expression domain contain the 
jets of the Gabor transformation we defined in Equation (1) and Equation (2). The 
Gabor jet refers to the set of Gabor magnitudes obtained by sampling the image at the 

point ix
�

 with sampling functions of all sizes (frequencies) and orientations, and 

refers to 
E
iJ

��
. The entire wavelet family  for our study consists of two frequency 

bands, the  wave  number )8/,4/( ππ== kk  using inverse pixels and seven different 

orientations from 0° to 180°, differing in 30° steps. 
The linking procedure is performed under the constraint that the matching points 

found in the expression face have approximately the same topological relations as the 
preselected points in the neutral image. From the assumption, before starting a dy-
namic linking we apply FCM algorithm to edges of major face components on the 
expression images in the expression domain with the same cluster number applied for 
clustering edges of neutral facial image. A coarse-to-fine matching process performed 
to locate facial features on an expression image as follows.  

1. A matching point should be chosen in the neutral face and then computed in the 
Euclidean distance between the preselected point in neutral face and the centroid 

point of each cluster clustered in the expression image in 
NE N E
ij i jx xΔ = −

�� � �
. Thus, 

we expect to speed up mapping feature points between neutral face and expres-
sion face. 

2. After selecting a cluster with the centroid point of a minimum Euclidean dis-
tance in an expression image, again we compute the Euclidean distance between 
all the  points in the cluster selected in an expression image and the preselected 
point in neutral face. Here, we choose the candidate points in the cluster selected 
in an expression image with the minimum Euclidean distance or more the mini-
mum Euclidean distance calculated in the step 1.  

3. Among the candidate points in the cluster selected in an expression image 
should be chosen as a final point. We calculate a distance value between an av-
erage(ε ) of the Gabor transformation’s jets of all the points(n) in the cluster in-

cluding the candidate points in an expression image, ∑
=

=
n

i

E

i
n 1

1
Jε , and the Gabor 

transformation’s jet of each candidate point in an expression image, 
E

iJ . Thus, 
a candidate point with a minimum distance value on the expression image is 
chosen as a final corresponding feature point against a preselected point in the 
neutral face. From the steps 2 and 3, we can reflect the local topology of non-
rigid distortion of the face caused from changing expression. For the resulting 
the algorithm mentioned above see Fig. 4(b). 
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  (a) (b) 

Fig. 4. (a) Sparse pixel points extracted with FCM algorithm on neutral face. (b) Sparse pixel 
points extracted with DLM on expression image 

4   Recognition and Discussion 

The system for facial expression recognition uses a three-layer neural network. The 
first layer is the distance values from each feature point on a neutral face to each 
feature point on an expression face which are normalized by size from 0 to 1. The 
second layer is 240 hidden units and the third layer is two output nodes to recognize 
the two dimensions: pleasure-displeasure and arousal-sleep.  

Training applies error back propagation algorithm which is well known to the pat-
tern recognition field. The activation function of hidden units uses the sigmoid func-
tion. 250 images for training and 37 images excluded from the training set for testing 
are used. The first test verifies with the 250 images trained already. Recognition re-
sult produced by 250 images trained previously showed 100% recognition rates. The 
rating result of facial expressions derived from the semantic rating of emotion words 
by subjects is compared with experimental results of a neural network (NN). The 
similarity of recognition result between human and NN is computed in Equation (7). 
The dimension values of human and NN in each two dimension are given as vectors   

of H and N . 

),min(),(
H

N

N

H

NH

NH
NHS

⋅=
 

(7) 

Table 1 describes a degree of similarity of expression recognition between human 
and NN on the two-dimensional structure of affect. In Table 1, the result of expres-
sion recognition of NN is matched to the most nearest emotion word in 44 emotion 
words related to internal emotion states. The result of expression recognition of NN 
looks very similar to the result of expression recognition of human. The displeasure 
emotions of high level arousal dimension seems like fairly generalized and stabled 
emotions in expression space. Such expressions are surprise, disgust, fear, distress, 
and worry. It seems that the quantity of physical changes can be detected easily. High 
level arousal dimension in the pleasure dimension also seems like a important com-
ponent to discriminate the expression images. For instance, satisfaction, tiredness, 
and comfort show low level arousal dimension (sleep dimension) in the pleasure 
dimension, while happiness shows high level arousal dimension in the pleasure di-
mension. 
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Table 1. The result data of expression recognition between human and NN(Pleasure-
Displeasure: P – D, Arousal-Sleep: A – S) 

Human(Mean) Neural Network Emotion 
words P – D A – S P – D A – S 

Similarity Recognition on 
Neural Network 

happiness 1.65 7.53 3.88 3.44 0.54 lightheartedness 
   4.92 4.6 0.71 boredom 
   2.86 5.86 0.82 pleasantness 
   1.31 5.69 0.75 gratification 
   4.43 4.8 0.73 Longing 
satisfaction 1.85 4.65 1.49 6.07 0.79 pleasantness 
   2.14 4.96 0.92 contentment 
   6.32 5.9 0.52 shyness 
comfort 2.61 2.98 5.0 5.7 0.52 strangeness 
   3.65 3.64 0.77 lightheartedness 
sadness 7.22 6.57 7.07 5.23 0.89 shyness 
   3.7 6.37 0.72 hope 
   6.62 7.12 0.91 surprise 
tiredness 5.44 2.2 7.94 6.29 0.56 strain 
   4.06 4.05 0.90 sleepiness 
   4.39 4.28 0.89 longing 
   4.8 5.09 0.76 strangeness 
   6.39 5.65 0.65 uneasiness 
worry 7.4 5.96 6.89 6.09 0.97 confusion 
   7.39 6.84 0.94 strain 
surprise 4.65 7.8 4.55 8.29 0.95 surprise 
   4.61 7.67 0.98 surprise 
   4.65 5.60 0.79 hope 
disgust 7.93 6.74 6.35 3.42 0.68 isolation 
   7.33 6.14 0.91 hate 
   7.68 6.03 0.98 distress 
   6.05 6.72 0.86 surprise 
Fear 7.25 6.77 6.75 4.49 0.80 sadness 
   6.43 5.21 0.83 stuffiness 
   6.68 7.97 0.94 disgust 
   7.30 7.96 0.91 chagrin 
   5.91 4.17 0.72 isolation 
distress 7.46 6.29 7.48 7.16 0.94 disgust 
   4.28 5.81 0.72 hope 
   4.77 4.97 0.70 boredom 
   5.60 4.11 0.71 boredom 
   5.81 5.05 0.79 strangeness 

 
This study is a new approach of human’s emotion processing, it is interesting to 

note in this context that machine vision may represent various emotions similar to 
human with the combination of each dimension in the internal emotion states. To 
future study we are planning to recognize the expressions with person independent 
and a wider range of emotions in much larger database than present system.  
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Abstract. In this paper we show how Weighted Cone-Curvature (WCC) Models 
are suitable to carry out clustering tasks. CC is a new feature extracted from 
mesh models that gives an extended geometrical surroundings knowledge for 
every node of the mesh. WCC concept reduces the dimensionality of the object 
model without loss of information. A similarity measure based on the WCC fea-
ture has been defined and implemented to compare 3D objects using their mod-
els. Thus a similarity matrix based on WCC corresponding to an object database 
is the input of a fuzzy c-means algorithm to carry out an optimal partition of it. 
This algorithm divides the object database into disjoints clusters, objects in the 
same cluster being somehow more similar than objects in different clusters. The 
method has been experimentally tested in our lab under real conditions and the 
main results are shown in this work. 

1   Introduction 

Clustering is a well known topic in the image processing field. Roughly speaking, the 
clustering’s goal is to achieve the best partition over a set of objects stored in a data-
base in terms of similarity. For partitioning we need to extract or define features of 
each object in such a way as to be well characterized. Depending on how that infor-
mation was dealt with, several strategies of clustering can be found in the literature. 

Methods based on perceptual/functional organizations aim to make hierarchical 
procedures where the step from one level to another must be controlled in some way. 
A perceptual organization mechanism is developed by Sengupta and Boyer in [1, 2] 
where surfaces belonging to the same object are identified. A graph is constructed, 
each surface corresponding to a node in this graph.  Finally a partitioning scheme is 
carried out by comparing graphs corresponding to the objects. Selinger et al. argue 
that a single level of perceptual grouping is inadequate for recognition and use four 
levels of perceptual grouping [3]. In [4] a generic clustering scheme combining struc-
tural and functional approaches is presented. In this, a mapping of functionality to the 
primitive shape parts is the base for classifying objects. 
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Similarity-base clustering is a simple technique that uses a similarity measure to 
guarantee if two objects are similar enough to put them in the same cluster. The simi-
larity measure is usually defined through features of the object. In this sense, a good 
similarity measure is essential to carry out further clustering tasks. Lately, several 
works can be mentioned in this area. Yeung and Wang [5] introduce a similarity 
measure based on feature weight learning which is a reduction of the uncertainty 
existing in the clustering process. Thus clustering performance is improved. A sto-
chastic clustering algorithm over silhouettes is accomplished in [6] where, in order to 
obtain a silhouettes database, a large number of views of each object is processed. 
Then, a dissimilarity matrix is obtained and a clustering algorithm is run over it. Cyr 
and Kimia [7] measure the similarity between two views of the 3D object by a metric 
that measures the distance between their corresponding 2D projected shapes. Ohbuchi 
et al. [8] present a version of the shape functions proposed by Osada [9] for 3D po-
lygonal mesh models that allow them to make an efficient  shape similarity search. 

Lately we have developed a new strategy for 3D objects recognition using a flexi-
ble similarity measure based on spherical mesh models called Cone Curvature models 
[10, 11]. The difference between other strategies and ours is that we are able to com-
pare two objects taking any part of information of the mesh model. In this sense, it 
can be said that our method is ‘flexible’ to experimental specifications. Consequently, 
an adaptable (or flexible) similarity measure contrary to previous fixed similarity 
measures is defined in our case. Secondly, we have carried out a reduction of the 
dimensionality of the object representation. So, unlike other techniques, no redundant 
information but a synthetic characterization is used. This reduction notoriously sim-
plifies the volume of data handled in the model without loss of information and alle-
viates the computational cost of algorithms based on the model. 

Now we present the applicability of such a method for clustering where our simi-
larity matrix is the input of a fuzzy c-means algorithm. To show this we have struc-
tured the paper as follows. In Section 2,  Weighted Cone Curvature model is briefly 
described defining Cone-Curvature and Weighted Cone Curvature as features of the 
object. Section 3 is devoted to defining a similarity measure and presenting the clus-
tering algorithm. Clustering experimentation is dealt with throughout Section 4 pre-
senting the results of a set of the tests. 

2   WCC Models 

2.1   Cone-Curvature Feature 

Our solid representation model is defined on a mesh of h nodes from the tessellation of 
the unit sphere. Let TI be this initial spherical mesh and TM the mesh fitted to the object . 

For building TM, TI is deformed until it fits into the normalized surface of the object. In 

this process, mesh regularizing/smoothing tasks are also included. Then several geomet-
ric features are extracted from TM  and finally, mapped again into TI.  
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a) b)  c) 

Fig. 1. a) MW drawn over TI and a detail of WFs over TM. b) Definition of CCs. b) Visualiza-

tion of the CCs vector for a node N. 

On the initial tessellation TI, a topological structure called Modeling Wave (MW) [12] 

organizes the nodes of TI in disjointed subsets following a new relationship. In this sense 

a three-neighbour relationship is just a kind of local topology. Each subset contains a 
group of nodes spatially disposed over the sphere as a closed quasi-circle, resulting in 
subsets that look like concentric rings on the sphere. Since this organization resembles the 
shape of a wave, this has been called Modeling Wave (MW). Consequently each of the 
disjointed subsets is known as Wave Front (WF) and the first WF is called Focus. Of 
course, MW structure remains after the modeling process has finished. In other words, the 
WF structures remain in TM (see Figure 1 a)).  

From the previous definition it can be deduced that any node of TI may be Focus and, 

therefore, it can generate its MW. Therefore h different MWs can be generated. 
Although several kinds of features have been mapped into TI in previous works [12] in 

this case Cone-Curvature (CC) is defined as a new and intuitive feature based on the 
MW structure taking into account the location of the WFs inside the model TM. Its 

formal definition is as follows: 

Let N be Initial Focus on TM. We call jth Cone Curvature jα of N, the angle of 

the cone with vertex N whose surface inscribes the jth Wave Front of the Modeling 
Wave associated to N. 

The range of CC values is [-π/2, π/2], being the sign assigned taking into account 
the relative location of O, C j, and N, where O is the origin of the coordinate system 
fixed to TM and C j is the barycentre of the jth WF. Negative values are for concave 

zones, values next to zero correspond to flat areas and positive values correspond to 
convex zones. Figure 1 b) illustrates this definition.  

Note that a set of values {α1, α2, α3, …αq} gives an extended curvature informa-
tion around N until the qth WF, where the word ‘curvature’ has a non-local meaning. 
So for each node N a set of q values could be used for exploring its surroundings (see 
Figure 1 c)).  

On the other hand, it can be said that a vector C={c1, c2, c3 …cq} where 

[ ] q,...1j2/,2/T:c I
j =−→ ππ , q being the number of Wave Front considered, is 

established for all the nodes of TI. The whole Cone Curvature information is stored in 

a CC-matrix Θ, of hxq dimension. Note that Θ is invariant, unless row permutations, 
to changes in the pose of the object. 
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2.2   Weighted Cone Curvature 

Now we show a study for the dimensionality reduction of the CCs by defining a new 
feature called Weighted Cone-Curvature (WCC). To do that a principal component 
analysis must be carried out over the CC vectors. 

With the purpose of showing the degree of correlation existing between different 
curvature orders, correlation values for CCs from 2nd to 18th order are plotted in Fig-
ure 2 a) (notice that 1st order has no meaning). In this Figure, the correlation values 
are coded in grey levels (corresponding 0 to black and 1 to white). Each plotted value 
is computed as the average of the correlation values obtained for all the objects in the 
handled database (70 objects). It can be seen that, in general, there are very high cor-
relation values for near orders of CC. On the contrary, small correlation values are 
found between lower orders of CC (2nd and 3rd) and all the others. It is also noticeable 
from the same Figure the high correlation existing between the upper orders of CC. 

The meaning of h and q dimensions of the O CC-matrix could be explained as fol-
lows. The choice of a particular row N is equivalent to selecting the Focus of the MW 
whereas q provides CCs values corresponding to a specific depth; the higher order the 
more depth. 

Our purpose is to obtain a single value for each row of the O matrix from the 
analysis of the principal components performed on all the rows, so that each row is 
reduced to a single representative value (see Principal Component Analysis or Kar-
hunen-Loeve transform in [13]). Then, by means of the adequate linear combination, 
for each node N a single variable cw will fuse the q values provided by its CCs. 

Therefore, every node will have just a variable cw associated that is called Weighted 

Cone Curvature (WCC). Consequently, the O matrix is reduced to a vector C of hx1 
dimension. 

The variable Weighted Cone Curvature can be defined as a weighted combination 
of the different CCs given by the expression: 

∑ ⋅=
j

jj
w cvc . (1) 

The coefficients vj of the linear combination are the coordinates of the eigenvector 
associated to the highest eigenvalue of the covariance matrix for the set of indexes j 
considered. These coefficients have been empirically determined by evaluating the 
principal component analysis over the models of our object database in our lab. 

Note that different combinations of CC orders with respect to different criteria 
could be chosen. So, local, half, global, contiguous or discontiguous CCs could be 
chosen. That is why labeled our method as ‘flexible’. Because we are interested in 
using the CCs for partial views we have considered the CC of orders j=4,5,…9. This 
means to consider only the CC information near to the focus but filtering also the first 
two orders (which are sensitive to noise). 

The study of the principal components has been carried out over a database with 
70 objects. Figure 2 b) shows a plot of the highest eigenvectors. Each line corre-
sponds to the highest eigenvector obtained for a given object where the X axis repre-
sents the index and Y axis represents the eigenvector values. Very similar eigenvec-
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tors vj can be appreciated for most of the objects showing higher dispersion for the 
greater indexes. 

Finally, we consider the weighted array {vj} by computing the eigenvectors aver-
age obtained above. To evaluate the goodness of the dimensionality reduction an 
analysis of the percentage of the total variance that corresponds to the new variable is 
required. If a high percentage is achieved the new variable will satisfactorily explain 
the initial variables and the dimensionality reduction makes sense. In our study this 
percentage has been 95,34%. which means that the dimensionality reduction does not 
provoke any significant loss of information. Figure 2 c) shows, for all objects, the 
results of the percentage of the total variance that corresponds to the new variable cw. 

With these results it can be concluded that the dimensional reduction of the CC 
vector to a single variable cw is very appropriate because it adequately summarizes 

the information provided by the entire vector. Each node of TI will have a numeric 

value associated, called Weighted Cone Curvature, and the complete model can be 
characterized by the WCC vector C of h components. 

3   Clustering Based on Similarity Matrix 

In this section, a similarity measure for 3D shapes based-on WCC feature is firstly 
defined. After that the procedure of clustering is dealt with. 

Keeping the WCC concept in mind, a distance d between two models Ti and Tj  is 
defined as: 

∑
=

−=−=
h

k

jijiji kCkCCCTTd
1

2))()((),(                          (2) 

where Ci and Cj are sorted distributions of WCC vectors for both models.  
Once the distance d has been defined and considering a model database where D is 

the maximum distance, a binary relationship through a similarity function s is estab-
lished as follows. 

[ ]1,0: →× XXs       DTTdsTTs ji
ij

ji /),(1),( −==       (3) 

X being the model database. Thus we can define a Similarity Matrix S= (sij) which 

stores the whole similarity information for a database.  

a) b) c) 

Fig. 2. a) Illustration of the correlation between different CC values from 2nd to 18th orders, in 
the object database. b) Plots of the highest eigenvectors. c) Percentage of the total variance that 
corresponds to cw. 
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Roughly speaking, clustering procedures yield a data description in terms of clus-
ters or groups of data points that possess strong similarities [14]. In our case, we have 
an object database H that we want to divide in groups of objects. We may consider H 
as a set of n unlabelled samples x1, x2, …xn where xi is a feature vector of the ith 

object. For us, every object is characterized by the vector of similarity values with 
respect to the rest of the objects so xi=(si1,….sin). Note that xi corresponds to ith row 

into the Similarity Matrix S. Therefore the clustering procedure would be to divide H 
into p disjoint subsets H1, H2,…Hp, samples in the same cluster being somehow more 

similar than samples in different clusters.  
Once we fix the clustering and similarity measurement problems, we are obliged 

to evaluate the partitioning. Then, the problem is one of finding the partition that 
extremizes a criterion function. For that we have used the fuzzy c-means function, 
which is a variation of sum-of-squared-error criterion. Although complete informa-
tion about this can be found in [15], we will make a brief reference to this criterion 
function. 

For a given integer p>1 and real m>1, the criterion function to be minimized is 
defined as follows: 

∑ ∑
= =

−=
p

i

n

k
ik

m
ik mxuJ

1 1
)(          (4) 

where mi is the mean vector in Hi, |x| denotes the Euclidean norm of x and uik is the 

ith membership function on the kth sample xk to the cluster Hi. The vectors m1, …,mp 

can be interpreted as prototypes of cluster (called cluster centers). So, high member-
ships occur for samples close to the corresponding cluster centers. The number m is 
called the exponent weight and is used to control the contribution of the samples to J 
depending on their memberships values. Once chosen p and m, an iterative procedure 
recomputes mi and uik until a local minimum of J is achieved. 

4   Experimental Tests 

Taking our similarity measure as the basis of the clustering procedure, we have 
evaluated it by carrying out several tests for different sets of objects. This experimen-
tation has been accomplished with 41 free form objects sensed in the lab where dif-
ferent people participated in their election. Curiously, there were different opinions 
for establishing the clusters a priori. Obviously the choosing of natural groups was 
not completely clear for us. Finally we grouped the objects in sub-sets that we have 
labeled as: cubes (1-6), prisms (7-9), round shapes (10-13), cars (14-17), polyhedral 
(18-23), free shapes (24-29), cone shapes (30-36) and cylinders (37-41) (Figure 3). 
The goal of our experimentation is to know what the performance of our method in 
real environments is and what concordance exists between the clusters computed with 
the clusters established a priori. 
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In order to graphically illustrate the Similarity Matrix S we have presented it as a 
two dimension grey map where the grey level goes from 0, plotted as white, to 1, 
plotted as black. This election, that seems illogical, has been adopted in order to 
achieve better visualization. Note that reflexive (black diagonal) and symmetrical 
properties can be clearly seen on it. Looking at the grey levels for the ith row we can 
check the feature vector (called xi in section 3) which is the similarity vector. Making 

a visual analysis of S we can sometimes appreciate dark grouping zones for a set of 
rows (or columns indistinctly). These groups might be thought of as candidate clus-
ters. 

 

 

Fig. 3. Objects. 

When a set H of n objects (samples) x1, x2, …xn  is considered, each object xi is 

inside a n-dimensional space (xi has n components) and therefore the resulting cluster 

is in a n-dimensional space. In order to graphically show the clusters we have in-
cluded two-dimensional projections of that space (corresponding to first and last 
dimensions). 

Table 1 summarizes the results obtained for twelve tests. For each test, a set of ob-
ject H belonging to different groups are chosen. Then the clustering algorithm is run 
and clusters H1,…,Hp are computed. The number of cluster p is set taking into ac-

count the mean values of the membership functions of the objects in their respective 
clusters (denoted as u in the table). In the first column the name of the groups set a 
priori appears and last rows shows the cases where an object is put in an unexpected 
cluster. 

There are cases where clustering results coincide quite well with the natural groups 
(test nº: 1, 3, 7, 10). For example in Test nº1, the three clusters correspond to cubes, 
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round shapes and polyhedral. This grouping can be seen clearly in the Similarity 
Matrix (Figure 4 above) because three disjointed dark zones appear. On the right, 
four groups are also evident in the Similarity Matrix corresponding to Test nº3. 

On the other hand, when the number of cluster is forced to be less than the number 
of initial groups, cases exist where two groups are put in the same cluster (test nº: 2, 
4, 5, 6, 8, 9, 11 and 12). Nevertheless, a coherent clustering is made in such cases. 
Test nº 2 is a good example confirming that. In this case H is formed by cars, polyhe-
dral, cones and cylinders. When the clustering procedure is executed for p=3, cones 
and cylinders are put in the same cluster. Figure 4 below shows the nearness of such 
groups. Test nº 4 is a more complex case where this coherence can also be seen. 

Table 1. Results for tests. 

Test 1 2 3 4 5 6 7 8 9 10 11 12 
p 3 3 4 4 3 2 3 3 3 3 3 5 
u 0.93 0.92 0.72 0.81 0.90 0.86 0.88 0.88 0.82 0.85 0.84 0.76 
n 16 20 18 37 37 18 19 19 23 11 22 41 
Cubes  H1   H1 H1 H1 H1    H1 H1 
Prisms   H1 H1 H1   H1  H1 H1 H1 
Round shapes H2 H1  H2 H2   H2  H2 H2 H2 
Cars  H2 H2      H1 H3 H3 H3 
Polyhedrals H3   H3 H3  H2 H3 H1   H3 
Free shapes   H3 H3 H3   H3 H2   H4 
Cones  H3  H4 H1 H2 H3  H3   H5 
Cilinders  H3 H4 H4 H1 H2     H1 H5 

Unexpected cases 19→H1  24→H2 
37→H1 

19→H1 
19→H1 37→H1 19→H1 19→H1 24→H1   

19→H1 

37→H1 

24→H3 

17→H1 

 

 
                                                 Test Nº1                                                                         Test Nº3 

 
                                         Test Nº 2                                                                        Test Nº4. 

Fig. 4. Clustering results. 
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H3 

H1 

H2 

H3 
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H1 
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In conclusion, it can be said that the method has worked in a real environment 
which implies working with noise and error sources. None of the experiments has 
given unexpected clustering; on the contrary the clustering algorithm has given re-
sults according to the human grouping established by us. Nevertheless, we have 
started several initiatives to improve the method concerning to increase the database 
and deal with the problem of the validity of the clusters. 

References 

1.  Sengupta K., Boyer K.L.: Creating Random Structural Descriptions of CAD Models and 
Determining Object Classes. Proc. IEEE Workshop on CAD-based Vision. Pp 38-45. 1994. 

2.  Sengupta K. and Boyer K.L.: Modelbase Partitioning Using Property Matrix Spectra. Com-
puter Vision and Image Understanding Vol 70, No 2, pp 177-196, 1998. 

3.  Selinger A. and Nelson R.: A perceptual Gruping Hierarchy for Appearance-Based 3D 
Object Recognition. Computer Vision and Image Understanding, Vol76, No1 pp 83-92, 
1999. 

4.  Froimovich G., Rivlin E., Shimshoni I.: Object Classification by Functional Parts. Fisrt 
Symposium on 3D Data, Proccesing, Viasualization and Trnasmision. Padova, pp 648-655. 
2002. 

5.  Yeung D.S., Wang X. Z.: Improving Performance of Similarity-Based Clustering by Fea-
ture Weight Learning. IEEE Trans. On Pattern Analysis and Machine Intelligence. Vol 24, 
No 4, pp 556-561. 

6.  Gdalyahu Y. and Weinshall D.: Flexible Syntactic Matching of Curves and Its Application 
to Automatic Hierarchical Classification of Silhouettes. IEEE Trans. On Pattern Analysis 
and Machine Intelligence. Vol 21 No 12, pp 1312-1328. 1999. 

7.  Cyr C. Kimia M, B. B. : 3D Object recognition using shape similarity-based aspect graph. 
Int. Conference on Computer Vision. Vancouver. pp 254-261. 2001 

8.  Ohbuchi R., Minamitani T., Takei T.: Shape-Similarity search of 3D Models by Using En-
hanced Shape Functions. Proc of the Theory and Practice of Computer Graphics 
(TPCG’03). 2003. 

9.  Osada R., Funkhouser T., Chazelle D., Dobkin D. Matching 3D Models with Shapes Dis-
tributions. Proc. Int. Conf. On Shape Modeling and Applications, pp 154-166. Genova. 
2001. 

10. Adán M., Adán A., Solids Characterization Using Modeling Wave Structures. Lecture 
Notes in Computer Science, LNCS 2652, pp 1-10. 2003. 

11. Adán M., Adán A., Cerrada C., Merchán P., Salamanca S.: Weighted Cone-Curvature: 
Applications to 3D Similarity Shapes. The Fourth International Conference on 3-D Digital 
Imaging and Modeling (3D DIM). Banff. Pp 458-465. 2003. 

12. Adán A., Cerrada C., and Feliú V.: Modeling Wave Set: Definition and Application of a 
new Topological Organization for 3D Object Modeling. Computer Vision and Image 
Understanding, 79, pp. 281-307. 2000 

13. Jolliffe, I. T. , Principle Components Analysis, Springer-Verlag, New York, 1986. 
14. Duda R. O. and Hart P. E.: Pattern Classification and Scene Análisis. Jonh Wiley & Sons . 

1973.  
15. Bezdek J. C and Pal S. K.: Fuzzy Models For Pattern Recognition. IEEE Press. 1992. 



Algorithms for Constructing Min-Max Partitions
of the Parameter Space for MDL Inference

Adriana Vasilache, Ioan Tăbuş, and Jorma Rissanen

Tampere University of Technology, Tampere, Finland

Abstract. In this paper we present several algorithms for the construc-
tion of min-max optimal partitions of the parameter space. Two inter-
pretations of the problem lead to two families of practical algorithms
that are tested and compared.

1 Introduction

The problem of partitioning the parameter space of a given class of models
arises as a necessary step in statistical inference based on the minimum descrip-
tion length (MDL) principle. This is because the model cost is linked to the
code-length needed to represent a quantized version of the parameters, either
in implicit or explicit manner. The exact construction of the partition is not
always needed, and establishing bounds for the average or min-max distortions
may suffice, for instance when one wants to find only the structure of the model
by the MDL principle. However, when the optimal MDL model including the
parameter values themselves are needed, for instance when the models are used
for classification or prediction, it is necessary to have an algorithm to give the
actual quantization of the parameters.

For a class of models defined by a parametric probability distribution f =
f(yn; θ), the additional increase in code-length incurred by quantizing the pa-
rameter vector θ to the center of a partition cell θi can be measured by the
Kullback-Leibler (K-L) distance between the un-quantized model f = f(yn; θ)
and the quantized one fj = f(yn; θj). It is therefore of interest to design parti-
tions of the parameter space such that either the average or the min-max loss
is minimized. A related problem was discussed in [1], where a preliminary step
in the construction of the Kolmogorov structure function was that of obtaining
a partition of the parameter space by minimizing the min-max K-L distance
between the models fi = f(yn; θi) and fj = f(yn; θj), defined by the centers of
two adjacent partition cells, θi = θ(i) and θj = θ(j).

In this paper we propose several algorithmic approaches to the construction
of min-max optimal partitions. To ensure the practicality of the algorithms we
decide to allocate a model f = f(yn; θ) to the center fj = f(yn; θj) by the nearest
neighbor rule; i.e. the smallest Euclidean norm, ||θ − θj ||2. With this rule, the
parameter space is partitioned into polygonal cells V (θi); i.e. the Voronoi cells
corresponding to the centers θj . As in universal coding, the relevant criteria
are of a min-max nature, since usually there is no apriori distribution on the

A. Fred et al. (Eds.): SSPR&SPR 2004, LNCS 3138, pp. 930–938, 2004.
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parameter space for defining meaningful averages. If we allow {V (θi)} to be
a covering instead of a partition, the optimal min-max problem for the K-L
distance D(·‖·)

min
{θi}Ni=1

max
i

max
θ∈V (θi)

D(f(yn; θ)||f(yn; θi)) (1)

has a simple solution if one can find the set of centers {θi}Ni=1 such that

max
θ∈V (θi)

D(f(yn; θ)||f(yn; θi)) = d′ (2)

is constant. In the same way the slightly different min-max problem

min
{θi}Ni=1

max
i

max
j:(i,j)are neighbors

D(f(yn; θj)||f(yn; θi)) (3)

has a simple solution when

D(f(yn; θj)||f(yn; θi)) = d′ (4)

is constant for all neighbors i and j.
By the Taylor expansion the K-L distance between two adjacent models can

be approximated as [2]

D(fi||fj) =
n

2
(θj − θi)TJ(θ̃)(θj − θi), (5)

where θ̃ is a point between θi and θj and J(θ̃) is the Fisher information matrix
[3] calculated at θ̃.

Assuming further that the information matrix varies smoothly so that it can
be calculated at θi instead of θ̃, the goal of optimization expressed by Eq. (4)
can be redefined as one of aiming at the partition of the parameter space such
that the weighted distance

dF (θi, θj) = (θj − θi)TJ(θi)(θj − θi) (6)

between each two adjacent centers θi and θj is the same.
In the quantization literature weighted metrics like d(x, y) = (x− y)TBy(x−

y), where By is a positive definite matrix depending on y, have been studied in
view of creating a partition of the space such that the average weighted metric
is minimized [4]. Also in the clustering literature the discriminative clustering
using a mutual information criterion was shown to be asymptotically equivalent
to vector quantization using Fisher weighted distance [5].

We give first the basic definitions and notations, after which we propose sev-
eral methods for obtaining the desired partition. The methods will be applied to
a multinomial source. Also, theoretical considerations concerning the significance
of having the neighbors on the hyper-ellipsoids are presented.
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2 Definitions and Notations

We consider the parameter space to be finite. There are then, say N , models in
this space, whose neighborhood relation is determined by the Euclidean metric
(to simplify the calculations). The distance between two neighboring models
is in turn evaluated by the Fisher weighted distance (6). The matrix J(θi) is
the parametric Fisher information matrix. If J(θi) is decomposed into its the
singular values

J(θi) = V (θi)Λ(θi)V T (θi), (7)

the Fisher weighted distance is in fact an Euclidean weighted distance in a
rotated space, the rotation matrix being V (θi) and the weights being given by
the singular values of J(θi).

2.1 Neighborhood Relationship

Gabriel neighbors. Given a set of points, two points are Gabriel neighbors if they
share a facet of their Voronoi cells and if the line passing through the two points
intersects that facet. In order to check if two points are Gabriel neighbors their
midpoint is considered. If the midpoint has as a nearest neighbor none of the
two points in discussion, then they are not Gabriel neighbors. If the midpoint
has as a nearest neighbor one of the two points then one more check should
be performed to establish that the two points are Gabriel neighbors. Two more
points, equally distanced from the midpoint and situated on the line bisecting
the line passing through the two initial points should be considered (see Fig. 1).
If either one of the two initial points is their nearest neighbor then the initial
points are Gabriel neighbors. This procedure implies the use of one parameter
defining the distance of the secondary check points from the midpoint.

Voronoi neighbors. Two centers are Voronoi neighbors if they share a facet of
their partition cells. To check if two centers are Voronoi neighbors one should
check first if they are Gabriel neighbors. If they are not and if they have one
common Gabriel neighbor, it should be subsequently checked if the points of the
line bisecting the line connecting the two centers are ever quantized to one of
the two centers.

3 Optimal Partition

From a practical point of view, Eq. (2) is interpreted as the realization of a
partition having the vertices of each partition cell on an ellipse defined by Eq.
(8) and Eq. (4) is interpreted as the realization of a partition having the neighbors
of each center on an ellipse defined by

(θj − θi)TJ(θi)(θj − θi) =
d′

n
= d. (8)
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Gabriel and Voronoi neighbors No neighbors

Midpoint

Voronoi neighbors 
but no Gabriel neighbors

Potential neighbors

Checkpoints
Other centers

Fig. 1. Neighborhood relationship definition.

Consider the general problem of making a partition in which certain points
defining the partition should be positioned on ellipses whose shape and size vary
in space. A practical measure to be minimized is the average distance between
each of such points and the ellipses on which they should be. We denote this
distance to the ellipses by (DE).

3.1 Enforcing the Neighbors of Each Center on an Ellipse (NE)

The practical criterion to be used for the set of points P = {θi}Ni=1 is mathe-
matically expressed as

D1(P ) =
N∑
i=1

�i∑
j=1

‖θi − Prj(θi)‖2, (9)

where Prj(θi) is the projection of the point θi on the ellipse centered in θj , and
!i is the number of neighbors of the center θi. The ellipse centered in θj is given
by Eq. (8). The measure used to evaluate the performance of the algorithm will
be an average of the estimates of d, obtained by fitting an ellipse to the Gabriel
neighbors of each point in the set that generates the partition. The orientation
of the ellipse at each point is given by the information matrix calculated at that
point. This is virtually equivalent to calculating the average Fisher weighted
distance for the neighbors of each point.

Uniform partitioning (UP). Before trying more complex algorithms a reasonable
starting point is the evaluation of a uniform partitioning of the parameter space.
We consider a lattice Zn of partitions with different scaling factors. The set of
points P in the parameter space is then defined as

P = {s · v|s ∈ R+, v ∈ Zn}, (10)
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where s is the scaling factor. The optimization of this uniform partition is per-
formed on the scaling factor with respect to DE for a given d.

Centroid assignment (CA). Consider a given center (point in the parameter
space) and its Gabriel neighbors. In conformity with our goal this center should
lie on all the ellipses centered at its neighbors. In one iteration each codevector
is assigned to the centroid of its projections on the ellipses corresponding to its
Gabriel neighbors, which then minimizes the DE. Note that in this case we are
using the Euclidean distance. All the points are updated in each iteration step.

A major problem consists of the points near the boundary of the domain
since they do not have neighbors toward the border, therefore they can only be
pushed inside the domain. If it happens that after an iteration a point gets out of
the domain, it will be eliminated. This means that some of the initial points get
eliminated since no procedure exists with which extra points could be inserted.

Grid neighborhood structure (GNS). The partition centers are let free to move,
but the neighborhood relation between them is predefined by the original rectan-
gular grid. Only one point is considered in each iteration step, and its neighbors
given by the grid are updated by moving them toward the ellipse of the center.
In geometrical interpretation this is similar to the preservation of the structure
in the self-organizing maps [6], but here the goal of the optimization is com-
pletely different. The algorithm is parameterized by a factor indicating how far
each neighbor is moved toward its projection on the ellipse. Compared to the
centroid assignment method a supplementary feature is the possibility to add
centers in the domain by allowing a larger initial set of centers in the grid. Out
of this set of centers only those that are inside the admissible domain are consid-
ered for the calculation of the information matrix and the corresponding ellipse,
but their neighbors are moved when called for by the algorithm, even if they lie
outside the domain.

3.2 Enforcing the Vertices of Each Cell on an Ellipse (VE)

The practical criterion to be optimized in this case is

D2(P ) =
1∑N

i=1 nvi

N∑
i=1

nvi∑
j=1

‖vji − Pri(vji )‖2, (11)

where nvi is the number of vertices of the partition cell of the center i and
vji , j = 1, nvi are the vertices of the partition cell for the center θi. The measure
used to evaluate the performance of the algorithm will be an average of the
estimates of d, obtained by fitting an ellipse to the partition cell vertices of each
center.

Uniform partition of space. A uniform partition of the parameter space can
be used as a reference and/or as initialization for further algorithms. A scaled
Zn lattice can be used, the optimization being this time the average distance
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between the partition set vertices and their projections on the ellipses on which
they should lie.

Centroid assignment. In this case the centroid assignment algorithm is related
to the minimization of the average distance of the partition set vertices to the
ellipses on which they should lie. Therefore one vertex is replaced at each it-
eration by the average of its projections on the ellipses on which it should lie.
All the vertices are updated at each iteration, and the new centers are updated
to be the centroids of the polyhedral volume defined by a set of vertices. The
delimitation of a partition set is considered to be realized by the same vertices
even if the vertex positions change from an iteration to another.

Minimization of the maximum Fisher (MMF) weighted distance. Another me-
thod of putting the partition set vertices on the ellipses is by selecting the center
of the partition as the point that minimizes the maximum Fisher weighted dis-
tance between the center and the vertices. The consistency of this approach with
the declared goal will be proved in the next section. The minimization of the
maximum Fisher weighted distance is done numerically. There are two possible
approaches for updating the set of centers, first by updating all the centers at
one iteration (MMF1), and secondly by updating only one center at one itera-
tion (MMF2). The second approach implies supplementary calculations of the
vertices of the partition sets.

4 Optimal Location of Points on an Ellipse

We have presented two approaches with goal to equalize the distance between
pairs of adjacent models. In this section we check if the methods might have any
other significance as well. More precisely we show that, under certain conditions
when some neighboring points in the parameter space are on the ellipse whose
center defines a model, the center minimizes the maximum K-L distance to the
neighboring points as well.

The following theorems are given for the 2-dimensional case, but the gener-
alization to higher dimensions is straightforward. The proofs are left out due to
lack of space.

Theorem 1. If more than three points {xi} are located on a circle C(R, c) , but
not on the same semicircle, then the center of the circle c is the point for which
maxi d(c, xi) is minimized, where d(c, xi) is the Euclidean distance between xi
and c.

If we consider the ellipse given by the equation λ1
d y21 +

λ2
d y22 = 1, then the

transformation given by T =

⎛⎝√
λ1
λ2

0

0
√

λ2
λ1

⎞⎠ with λ1 �= 0, λ2 �= 0, transforms

the ellipse into a circle. The transform is invertible.



936 Adriana Vasilache, Ioan Tăbuş, and Jorma Rissanen

Theorem 2. If more than three points {xi} are located on an ellipse E(a, b, c) ,
but not on the same semi-ellipse, then the center of the ellipse c is the point for
which maxi da,b(c, xi) is minimized, where da,b(c, xi) is the weighted Euclidean
distance between xi and c, having the weights a and b on the first and the second
dimensions respectively. Here a and b are the semi-axes of the ellipse.

For the points in the parameter space excluding the border of the domain, the
neighbors as well as the vertices of the corresponding partition sets, are around
the point in the sense of the Theorem 2. Therefore, Theorem 2 insures the
equivalence of the minimization of the maximum Fisher weighted distance from
a point c to a set of points {xi} and the placement of the points on the ellipse
centered in c.

5 Results

We consider a ternary independent source having parameters θ0, θ1, θ2 = 1−θ0−
θ1 where the independent parameters are grouped in the vector θ = [θ0 θ1]′. The
information matrix for the probability density function P (x; θ) = θ

1x,0
0 θ

1x,1
1 (1−

θ0 − θ1)1x,2 is given by

Jn(θ) = nJ(θ) = n

[ 1
θ0
+ 1
1−θ0−θ1

1
1−θ0−θ1

1
1−θ0−θ1

1
θ1
+ 1
1−θ0−θ1

]
, (12)

and the matrix of interest is J(θ) = lim 1
nJn(θ).

5.1 Neighbors on Ellipses

First, the uniform partition has been tested with differently scaled versions of the
Z2 lattice. For a given target d, the number of points in the admissible domain
results by setting the scale to the value minimizing the average distance from
the centers to the ellipses centered in their neighbors. The results are presented
in Fig. 3, the average d being generally larger than the target d. On the same
plot the results obtained with the grid of the neighborhood structure are also
presented. Starting with the optimal uniform partitions the GNS leads to the
average d closer to the target values. The GNS algorithm is used without adding
any supplementary centers. This feature is useful when initialized with a general
partition or, at least with a non-optimal uniform one, which shows that the GNS
method finds only a local optimum. Figure 2 exemplifies the resulting partition
centers after CA together with the corresponding ellipses for a target d of 0.03.
The effect of evading the borders can be observed along the axes. Due to this
effect, it is not fair to have the graphics for the CA method on the same figure
as for the UP and GNS methods.

5.2 Partition Set Vertices on Ellipses

Since the distance to ellipses in this case does not vary smoothly as a function
of scale for a uniform partition the results for the UP method are only suitable



Algorithms for Constructing Min-Max Partitions of the Parameter Space 937

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

θ
0

θ
1

Fig. 2. Centroid assignment method for target d = 0.03

to be used as starting points for subsequent algorithms. The centroid approach
gives better results than the uniform partition but, like in the NE case, it can
only be used for a part of the domain since the centers tend to move away from
the borders. The MMF method has the best results (see Tab. 1) and, generally,
the update of one center per iteration gives better results. In all the methods
the vertices at infinity have been neglected.

Table 1. Comparison of methods for vertices on ellipses. N is the number of points in
the parameter space, dUP , dMMF • and dMMF • are the average d for the corresponding
methods.

N dUP dMMF • dMMF •

300 0.00582 0.00481 0.00484
528 0.00374 0.00308 0.00303
780 0.00293 0.00241 0.00236
1225 0.00205 0.00169 0.00166
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Fig. 3. Method comparison for neighbors on ellipses case.

6 Conclusion

We have presented several methods for obtaining optimal partitions in the min-
max sense. We compared them within each of two families, and found GNS to
be the best in NE family and MMF in the VE family. The CA method gives
promising results, but the resulting partition does not cover the entire space.
The proposed methods are exemplified for a 2-dimensional case, but they can
also be applied to higher dimensional spaces.
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Abstract. Holter signals are ambulatory long-term electrocardiographic
(ECG) registers used to detect heart diseases which are difficult to find
in normal ECGs. These signals normally include several channels and
its duration is up to 48 hours. The principal problem for the cardiolo-
gists consists of the manual inspection of the whole holter ECG to find
all those beats whose morphology differ from the normal synus rhythm.
The later analisys of these arrhythmia beats yields a diagnostic from
the pacient’s heart condition. The Hidden Markov Models (HMM) can
be used in ECG diagnosis avoiding the manual inspection. In this paper
we improve the performance of the HMM clustering method introduc-
ing a preclustering stage in order to diminish the number of elements to
be finally processed and reducing the global computational cost. An ex-
perimental comparative study is carried out, utilizing records form the
MIT-BIH Arrhythmia database. Finally some results are presented in
order to validate the procedure.

1 Introduction

HMMs [11], [3], [8] is a useful tool for biomedical signal analysis. The proposal
would be to use them for clustering the beats contained in a Holter ECG signal
in order to facilitate the cardiologist work. The problem lies within the great
quantity of elements to be initially processed. Taking into account that the most
of the beats will be grouped into the same cluster, it would be a good idea
to reduce the number of redundant elements in a preclustering stage [2], [13].
After the preclustering, the more complex clustering algorithm (based on trained
HMMs) will be applied.

In this paper we present a new method for HMMs quickly initialization (re-
ferred as left-to-right HMM). In addition, and improving the method proposed
in [9], we are going to use left-to-right HMMs to drastically reduce in a preclus-
tering stage the number of representative Holter beats.
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2 Method

Actually, the real goal of any Holter computer-aided process is to finally sepa-
rate heart beats into different groups. The fact of classifying objects within these
groups is known as clustering process. The accurate object feature extraction is
needed in order to group these objects by means of dissimilitude evaluation. If
the selected features does not represent the intrinsic quality of each object, the
final results derived from clustering process will not become acceptable. We can
approximate a biomedical signal using polygonal lines (segments) defined by two
different features [6]: the amplitude of the sample and the duration of the seg-
ment. Through this beat approximation it is possible to initialize a left-to-right
HMM to firstly cluster all the beats. In this case, the dissimilitude among objects
is given by the HMM probability measure. Hence, the initialized model is applied
to each beat and generates an output probability measure. This probability mea-
sure is used in order to calculate the dissimilitude estimator among beats. One
beat will be clustered in certain group depending on its dissimilitude related to
the cluster. Otherwise, if the dissimilitude is too high, beats should be unclas-
sified. So, a general threshold is set and if the processed beat does not reach it,
this beat will be directly labelled as unclassified. Threshold can be defined in two
ways: fixing the probability or the dissimilitude level. Once all the beats have
been (pre)clustered by the first model, the left-to-right HMM creation process
will start again taking as the input a randomly selected unclassified beat. The
loop will repeat until there are left no more unclassified beats. The whole process
followed for HMM initialization and preclustering stages is shown in Figure 1.
The input signal consists of a preprocessed ECG composed by a certain amount
of segmented and normalized beats [2]. The algorithm output are the initialized
HMMs and a lower number of beats to be processed in the later clustering stage.
All these stages will be developed in the sections below.

2.1 ECG Normalisation and Segmentation

In most of the cases a 24 hour Holter is composed by more than 110, 000 beats
[7]. The signal preprocessing plays a very important role for further analysis as
classification or clustering. In this stage we solve the three main problems which
normally arise in signal processing tasks: (i) characteristic point detection as
a tool for signal preprocessing, (ii) baseline removal and (iii) signal denoising.
As a result of the preprocessing, we will obtain (from the Holter) a clearly
segmented set of beats. All the mentioned method has been developed under
wavelet framework [9], [1] and [4].

2.2 HMM Initialization

A complete specification of an HMM [11] requires specification of two model
parameters (the number of states, N ; and the number of mixtures, M), and
specification of the three probability measures (the state transition probability
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Fig. 1. Stages of the process.

distribution, A; the emission probability, b; and the initial state distribution, π).
We will refer to all HMM parameters using the set:

λ = {A,B, π} (1)

This type of statistical model has shown its capacities for certain types of
biological signal modelling problem [6], [12] or [10]. In our case, to model an
ECG throughout a left-to-right HMM (assuming that M = 1), we will have to
define the appropriate number of states in order to evaluate the three probability
measures (Equation 1).

HMM’s Number of States. The definition of the number of states of the
model has serious implications in the way how the beats are approximated, and
will be given by the morphology of the beat [6] that determines the minimum
number of polygonal lines needed to approximate the beat. In this case, we
just need 12 segments to approximate quite well the normal beat morphology
[6] (Figure 2). This fact results in a left-to-right 12 − state HMM definition
(Section 3).

Beat Selection and Polygonal Approximation. The HMM’s number of
states N , is closely related to the number of polygonal lines used for beat seg-
mentation. In fact, the preclustering model briefly described in Section 2 is based
on evaluating these polygonal lines passing through the model states (dissimilar-
ity measure). The result of the polygonal approximation (θk) of the kth beat from
a sequence of segmented beats, consists of a set of points ∈ �2 composed by two
features: the duration (tki), and the amplitude of the line segment (hki). Once
defined the number of states of the model (N), we describe beat observation as
follows:
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θk =
[
(tk1, hk1), (tk2, hk2), . . . , (tkN , hkN )

]
∈ �2 (2)

In this way, the question is how to keep every beat feature by just selecting
the N points ∈ �2 in Eq. 2 needed for the N -state HMM. To solve the problem
we have used a simplified and faster version of the algorithm proposed in [6]. This
new algorithm evaluates an error calculating the difference between the ordinate
component from the point of the original record to its ordinate projection over
the polygonal line used to approximate the interval processed, in order to quickly
select the N points.

Left-to-Right HMM Initialization. The left-to-right model assumes that
each state is assigned to each polygonal line used for the ECG approximation.
This topology reflects the sequential activity of the cardiac conduction system.
Using the hidden Markov modelling approach, one observation (one of the lines
from the beat polygonal approximation defined by the couple tki, hki) is gener-
ated by just one state transition, so there is a one-to-one registration between
the observation sequence and the undelying state sequence. In order to initialize
a left-to-right HMM we will choose randomly any beat (its 12-segment polygonal
approximation) from the input ECG, resulting as follows:

– The state transition probability distribution A, will take the sub-diagonal
form taking into account the left-to-right model definition.

– The initial state distribution π, will be centered on the initial state (giving
the total likelihood to the state number one).

– The observation symbol probability distribution b, will depend on the selected
beat’s approximation. As this density estimation can be approximated with
a Gaussian mixture (in this paper we assume that all the components have
d-variate Gaussian distributions) [5], the mean value for each state will be
set using the values of the 12 polygonal approximation selected points, that
have been obtained from the concrete beat input observation sequence θk
(Eq. 2). The variance for each state is calculated as a percentage of the
mean (in our case, the 10%).

On the other hand, the HMM lacks adaptibility if the inicialization is done as
described above. In fact, if a concrete beat changes in some way (because baseline
time shift, noise, etc.) but still belonging to a concrete morphology group, the
HMM defined above will not be able to follow the variation and, consequently
will classify the object into the wrong cluster. Using HMMs in this way help
us to discard a big amount of similar (regular) beats although without ensuring
that all of them with the same morphology are going to be clustered in the
same group. This is the reason because preclustering models are only used to
improve the unsupervised trained HMM stage and not for the clustering itself. A
further development using unsupervised HMM training techniques (runned over
the results from the preclustering stage) will provide larger HMMs (in terms of
number of states) that will be able to adapt themselves to a concrete morphology
without taking care of the different segment durations.
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Fig. 2. 12-segment beat polygonal approximation determining a 12-state HMM. Dif-
ferent morphologies selected from initially unclassified beats are used to generate left-
to-right HMMs to improve the preclustering stage.

2.3 Preclustering

Due to the great amount of beats contained in a Holter ECG, it is convenient
to diminish (without loosing relevant information) the number of beats, in order
to further alleviate computational burden.

The mathematical definition of clustering is as follows. Let X be our data
set composed of vectors xi, X = {x1, x2, . . . , xN}. We define as an m-clustering
of X , the partition of X into m sets (clusters), C1, . . . , Cm, so that the following
three conditions are met:

– Ci �= ∅, i = 1, 2, . . . ,m
–

⋃m
i=1 Ci = X

– Ci
⋂ Cj = ∅, i �= j, j = 1, . . . ,m

As we explain below, the developed preclustering algorithm is based on this
definition and on the recurrent loop to identify and initializate them left-to-right
HMMs for preclustering operations.

Beat Probability Evaluation. If we project the input beat θk to the model
hmmj we obtain the probability that the beat is generated by the model, Pr(θk |
hmmj). Thus, when calculating this parameter for every beat from the input
beat sequence of length T and using every model obtained while repeating the
loop from the preclustering model initialization stage (Figure 1), we will get the
PM×T beat probability matrix.The MIT-BIH Arrhythmia database [7] was used
for results evaluation.
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Threshold Application. Depending on the beat probability matrix PM×T , it
is possible to fix a threshold level in order to label (as non-classsified, we will use
the symbol @) all those objects whose dissimilitude measure do not exceed the
threshold. Thus, with an accurate threshold definition, we can easily simplify
the preclustering stage from all those beats that have not been clearly evaluated
by the models.

Preclustering and Beat Elimination. There are two parameters to apply
at this stage: the threshold value and the dissimilitude distance. In the latter
case we have used a very simple dissimilitude evaluation algorithm, since this
distance is calculated for each beat as the maximum value from the corresponding
column of the probability matrix, P . Thus, if the beat’s dissimilitude exceeds
the threshold, this beat will be clustered within the model that provides the
maximum value (Eq. 3), otherwise it will be labelled as unclassified (@).

cj | θk = argmax1≤j≤M (Pj,k) , ∀θk ∈ Θ, ∀ci ∈ C (3)

When all the beats have been (pre)clustered by the first model, the left-
to-right HMM creation process will start again taking as the input a randomly
selected unclassified beat. The loop will repeat until there are left no more unclas-
sified beats. This process will generate so many left-to-right HMMs as necessary
for the classification of the complete set of beats from the input ECG. Once
every beat has been clustered, we have proceeded to the analisys of the cluster
purity. The cluster purity is the percent of beats with the same morphology
that have been grouped in that cluster. A high purity means that nearly every
beat in the cluster has a similar morphology. So, and depending on the analysed
cluster’s purity we will be able to clean the cluster, deleting all those beats with
a similar dissimilitude and keeping all those whose morphology maybe does not
match exactly with the eliminated ones.

3 Results

Several input sets of segmented beats, from MIT-BIH database, have been pre-
pared for the tests. These sets have been used both for HMMs evaluation and
beat preclustering stage. A total of 18.700 beats have been processed in a series of
ten different experiments, in each one of them threshold value has been changed.
The results obtained from two of these test series are presented on Tables 1-2.
Taking into account that every beat used in our tests has been previously la-
belled from MIT-BIH database, information and percents displayed within table
cells follows the next format:

– The 1st value from celli,j gives us the number of beats labelled as i-morpho-
logy which have been classified to cluster j.

– The 2nd value (among parenthesis,()) gives us the percentage of beats la-
belled as i-morphology in cluster j from the total of beats that presents this
concrete morphology.
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– The 3rd value (bracketed,[]) gives us the percentage of beats labelled as i-
morphology in cluster j from the total of beats that have been classified in
that cluster. We have referred to this parameter as cluster purity.

Beat labels used in tests have the following meaning:

– θA: atrial premature beat.
– θE : ventricular escape beat.
– θL: left bundle branch block beat.
– θN : normal sinus rhythm beat.
– θR: right bundle branch block beat.
– θT : ventricular flutter wave.

Table 1. Thresholded test to classify six different beat morphologies (θi) within seven
possible clusters (Cj), where cluster C• is used for threshold-dismissed beats.

θA θE θL θN θR θT
C• 82(78.8)[97.6] 0(0)[0] 0(0)[0] 2(0.5)[2.4] 0(0)[0] 0(0)[0]
C• 0(0)[0] 97(97)[52.7] 0(0)[0] 87(23.7)[47.2] 0(0)[0] 0(0)[0]
C• 0(0)[0] 0(0)[0] 29(35.4)[16] 74(20.2)[40.8] 78(79.6)[43] 0(0)[0]
C• 0(0)[0] 1(1)[0.5] 0(0)[0] 201(54.9)[99.5] 0(0)[0] 0(0)[0]
C• 0(0)[0] 0(0)[0] 0(0)[0] 2(0.7)[12.5] 14(14.2)[87.5] 0(0)[0]
C• 0(0)[0] 0(0)[0] 0(0)[0] 0(0)[0] 0(0)[0] 27(10.5)[100]
C• 22(21.2)[7.2] 2(2)[0.6] 53(64.6)[16.8] 0(0)[0] 6(6.2)[1.9] 231(89.5)[73.5]

As it is shown in Table 1 there are some unclassified beat in almost every
morphology. Nevertheless, the purity percentage for clusters C1, C4, C5 and
C6 is big enough to consider them as a good approximation in order to delete
redundant beats and start the unsupervised HMM training stage. However it
can be clearly observed how, ventricular escape beats (labelled as beatsE) are
the best grouped in the same cluster (97%) in spite of its dirtiness in terms of
purity (52.7%) (Figure 3).

Table 2. Non-thresholded test to classify the ECG signal composed by two different
beat morphologies (θi) within three possible clusters (Cj).

θR θN
C• 74(4)[77] 22(2.4)[23]
C• 70(3.8)[8] [810][88.3][92]
C• 1671(92)[95.2] 85(9.2)[4.8]

In Table 2, there are only needed three from the eight HMM initially prepared
for clustering the whole set of beats. In addition, the high purity percentage
presented in clusters C2 and C3 reveals us that they fit almost perfectly with
the preclustering models obtained from θN and θR. Cluster C1 has been used to
group all those beats whose morphology have not been clearly identified (only
the 4% of the total amount from θR and the 2.4% from θN ) (Figure 4).
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Cluster A − Hit Rate = 34% Cluster E − Hit Rate = 79% Cluster L − Hit Rate = 2%

Cluster N − Hit Rate = 55% Cluster R − Hit Rate = 8% Cluster T − Hit Rate = 7%

Fig. 3. Clusters obtained from results in Table 1. Rigth clustered beats are presented
with vanes and badly ones with spots. Hit rate gives us the percent of beats classified
within the right cluster.

Cluster 8 (1756 beats)

Cluster 1 (96 beats)

Cluster 7 (880 beats)

Cluster 2 (0 beats) Cluster 3 (0 beats)

Cluster 4 (0 beats) Cluster 5 (0 beats) Cluster 6 (0 beats)

Fig. 4. Clusters obtained from results in Table 2. Consequently, it is possible to elimi-
nate at least the 96.4% of the beats, what is a significant reduction of the input beat
sequence size.

4 Discussion and Conclusion

We can conclude that it is very important to note that if more strict (in terms of
probability) threshold is applied, the clusters are less contaminated. This is our
final goal because of two reasons: first of all, to eliminate as much similar beats
as possible in order to reduce the size of the input set of beats and alleviating,
in this way, the computational burden; and secondly, to facilitate the HMM
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unsupervised training using this preclustering results. Although clustering with
a very demanding threshold value is feasible, this fact presents the non-desirable
effect of the non-classified objects increase, minimizing the preclustering stage
performance. In spite of good results, it is very important to note the relevance
of a correct model initialization, since the beat dissimilitude measure will depend
on how the model fits with that beat. A badly initialized model will provide a
low beat probability, and this fact will result in the labeling as non-classified or,
what is worse, in the wrong clustering. Future work will be focused on improving
each stage of the process by using dynamic programming techniques as Dynamic
Time Warping (DTW).
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Abstract. In this paper, we define clusters and the boundary curves of
clusters in a random point set using the Delaunay triangulation and the
principal curve analysis. The principal curve analysis is a generalization
of principal axis analysis, which is a standard method for data analysis
in pattern recognition.

1 Introduction

In this paper, we develop a graph-based algorithm for clustering of point sets and
learning of the boundary of random point sets. The boundary of a random point
set is extracted by the principal curve analysis. The principal curve analysis is
a generalization of principal axis analysis, which is a standard method for data
analysis in pattern recognition.

For the vector space method of data mining, each datum is expressed as a
point in the higher dimensional Euclidean space. Symbolic expressions of these
point sets are required for the visual interface for the data mining systems.
Furthermore, these data are sometimes transformed as a point distribution in
lower dimensional vector spaces, usually tow or three dimensional spaces, for
the visualisation of data distribution on CRT. Therefore, the extraction of the
symbolic features of random point sets in two and three dimensional is a basic
process for the visual interpretation of random point sets for the visualisation of
the data space.

Computational geometry provides combinatorial methods for the recovery of
boundary curves as polygonal curves. These algorithms are based on Voronoi tes-
sellation, Delaunay triangulation, Gabriel graphs, crust, α-shape, and β-skeleton
[1–3]. The reconstructed curves by these methods are piecewise linear. Further-
more, the solutions are sensitive against noise and outlayers, since these methods
construct polygons and polyhedrons using all sample points. Furthermore, the
algorithm extracts a boundary curves.

In this paper, we introduce method for the estimation of the boundary of a
random point set which permits the extraction of boundary curves of clusters in
a random point set.

A. Fred et al. (Eds.): SSPR&SPR 2004, LNCS 3138, pp. 948–956, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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2 Mathematical Preliminary

Delaunay Triangulation. Setting {pi}ni=1 to be a point set in Rn, the region

Vi = {x||x− pi| ≤ |x− pj |, i �= j} (1)

is called Voronoi region with respect to the generator pi. The hyperplane

Fi = {x||x− pi| = |x− pj |} (2)

is the Voronoi face. Setting pi and pj to be the generators of Voronoi regions
sharing a face, a geometric graph which connect all pairs of generators in the
face-sharing region is called Delaunay triangulation. The Voronoi tessellation
and the Delaunay triangulation are dual figures each other.

Mathematical Morphology. Setting A to be a finite closed set in the n-
dimensional Euclidean space Rn, the Minkowski addition and subtraction of
sets are defined as

A⊕B =
⋃

x∈B,y∈B
(x+ y), A*B = A⊕B. (3)

The inner and outer boundary of point setA with respect to radius λ are defined
as

Δ+
λA = (A⊕ λB) \A, Δ−λA = A \ (A* λB) (4)

for the unit n-sphere such that B = {x|x ≤ 1}, where λB = {λx|x ∈ B} for
λ > 0. We call Aλ = Δ+

λA
⋃

Δ−λA the boundary belt of A with respect to λ.
Geometrically, we have the relation

lim
λ→+0

Aλ = ∂A, (5)

where ∂A is the boundary curve of set A.

Principal Curve Analysis. Let X be a mean-zero point distribution in Rn.
The major principal component w maximizes the criterion

J(w) = Ex∈X|x�w|2 (6)

with respect to |w| = 1, where Ex∈X expresses the expectation over set X.
Line x = tw is a one-dimensional linear subspace which approximates X. A
maximization criterion

J(P ) = Ex∈X|Px|2 (7)

with respect to rankP = 1, determines a one dimensional linear subspace which
approximates X. If X is not a mean-zero point distribution in R2 and the cen-
troid of X is not predetermined, the maximization criterion

J(P , g) = Ex∈X|P (x− g)|2 (8)
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with respect to rankP = 1, determines a one-dimensional linear manifold which
approximates point distribution X.

For the partition of X into {Xi}Ni=1 such that X = ∪N
i=1Xi, vectors gi and

wi which maximize the criterion

J(w1, · · · ,wN , g1, · · · , gN ) =
N∑
i=1

Ex∈Xi |(x− gi)
�wi|2 (9)

determine a polygonal curve [4],

l = gi + twi. (10)

Furthermore, for an appropriate partition of X into {X}Ni=1, such that X =
∪N
i=1Xi, vector gi and orthogonal projector P i, which maximize the criterion

J(P 1, · · · ,PN , g1, · · · , gN ) =
N∑
i=1

Ex∈Xi |P i(x− gi)|2 (11)

with respect to rankP i = 1, determine a piecewise linear curve,

Ci = {x+ gi|P ix = x}. (12)

This piecewise linear is called the principal curve [4]. Figure 1 shows the principal
components and principal curves on a plane.

w1
w2

Xu

(a)

wp,1

wp,2

Xu

(b)

Fig. 1. Principal components (a) and Principal curve (b).

3 Graph-Based Clustering

Using Delaunay triangulation of a random point set, we develop an algorithm
for the separation of clusters of point set. We assume that in each subset, the
distances between two points connected by a Delaunay edge is shorter than a
constant. We call this constant the resolution of point sets. We adopt the median
of Delaunay edges as the estimation of the resolution of the point sets.
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Definition 1 For a point p in a random point set V, we call

pδ = {x| |p− x| < δ, p ∈ V, ∀x ∈ R2}

the effective region of point p with respect to radius δ.

As the union of the effective region of each point, we define the effective region
of a random point set.

Definition 2 For a random point set V, we call

V =
⋃
p∈V

pδ

the effective region of point set V with respect to radius δ.

If points in V are sampled from a connected region in Rn, V becomes a
connected region in Rn, selecting an appropriate δ. Therefore, we introduce a
method for the selection of a suitable radius for the estimation of the connected
region from a random point set. Using this estimated connected region, we de-
velop an algorithm for the construction of the boundary of a random point set.

Setting E to be the set of edges of the Delaunay triangulation D constructed
from the points in random point set V, we set

δ = mediane∈E |e|, (13)

if points distribute uniformly in a region. Then, we define the boundary set as

Vγ = Vγ

⋂
V, Vγ = V \ {V * γD(δ)}, (14)

where γ > 1 is a constant and D = {x||x| ≤ δ} is the set of all points in the
circle with radius δ. We call Vγ the γ-boundary of random point set V.

Next, we construct the new Delaunay triangulation D′ for points in

V′ = V ⊕ δ{{di}ni=1}, (15)

where di is an appropriate vector such that |di| = 1. We call the point set V′

the effective set of V.
After Delaunay triangulation D′ of the new point set, there exist three types

of edges as shown in Figure 2 (e), edges connect points in V, edges connect
points in V′, and edges connect points in V and V′. As shown in (a), in the
neighborhood of points in each cluster of V, there exist points in V′, since
points in V′ \V lie in the region D(δ)⊕pi for a point pi ∈ V . This geometrical
property leads to the conclusion that in Delaunay triangulation D′, edges which
connect points in V is the bridges which connect clusters. Therefore, we have
the following clustering algorithm using Delaunay triangulation.

1. Construct Delaunay triangulation D from random point set V.
2. Assign label 1 to points in the random point set V.
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3. For the collection of all edges E of D, detect the median length, and set it
as δ.

4. Construct V′ = V ⊕ δ{{di}ni=1}, for appropriate unit vectors {di}ni=1
5. Assign label 2 to point in V′.
6. Construct Delaunay D′ from V′.
7. Eliminate edges connect whose both vertices are labelled as 1.

Figure 2 shows a process for the clustering. Delaunay triangulation (b) of
the original point set (a) determines the effective region (c). After Delaunay
triangulation (e) of point in the effective set (d), the algorithm extract bridges
(f). By eliminating bridges (g) and (h), the algorithm yields clusters.

4 Detection of Cluster Boundary

After extracting clusters from random point set, we extract the boundary of each
cluster using the principal curve analysis. As the boundary of each cluster, we
extract the principal curve from the γ-boundary.

Definition 3 The principal boundary of a random point set is the principal
manifold of the point in the γ-boundary of a random point set.

We also call this principal manifold extracted from random point set V the
γ-curve of V.

4.1 Principal Curves Detection

Set D and S to be a random point set and the vertices of polygonal curve,
respectively, and the distance between point x ∈ S and y ∈ D is defined as
d(x,D) = miny∈D d(x,y) for the Euclidean distance in a plane.

The initial shapes S and C are a line segment whose direction is equivalent
to the major component w1 of a random point set and a regular triangle whose
vertices are determined from the principal components w1 and w2. For a se-
quence of vertices 〈v1,v2, · · ·vn〉 of a polygonal curve, we define the tessellation
as

Vα = {x|d(x,vα) < d(x,vi), d(x,vα) < d(x, eij), α �= i},
Eαα+1 = {x|d(x, eαα+1) < d(x,vi), d(x, eαα+1) < d(x, eii+1), α �= i},

where eii+1 is the edge which connects vi and vi+1. The minimization criterion
of reference [5] is expressed as

I =
∑
vk∈C

F (vk,D) + λ
∑
vk∈P

1∑
i=−1

v�i−1ivii+1
|vi−1i||vii+1|

(16)

for
F (vk,D) =

∑
x∈Ek−1k

d(x,vk) +
∑
x∈Vk

d(x,vk) +
∑

x∈Ekk+1

d(x,vk).

Using this criterion, we obtain an algorithm for the detection of the principal
curve [5] where IK is the value of I with K vertices.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. Clustering algorithm: Delaunay triangulation (b) of the original point set (a)
determines the effective region (c). After Delaunay triangulation (e) of point in the
effective set (d), the algorithm extract bridges (f). By eliminating bridges (g) and (h),
the algorithm yields clusters.

1. Set the vertices of the initial curve as S.

2. Move all vertices vi i = 1, 2, · · · ,K, to minimize IK .

3. Generate the new vertex vK+1 on the curve S.

4. If |IK−IK−1| ≤ ε for a positive constant ε, then stop, else set S := S∪{vK+1}
and go to 2.
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This incremental algorithm preserves the topology of the initial curve, since the
algorithm generates new vertices on the curve.

4.2 Boundary Curve Detection

It is possible to detect boundary of random point set if we can extract the
boundary belt of random point set. In this section, we develop an algorithm for
the extraction of the boundary belt.

Using definitions in the previous sections, we have the following algorithm
for the construction of the principal boundary of a random point set.

1. Construct Delaunay triangulation D from random point set V.
2. For the collection of all edges E of D, detect the median length, and set it
as δ.

3. Compute the effective region of random point set V.
4. Compute γ-boundary of random point set V.
5. Compute γ-curve of random point set V.

The construction of the Delaunay triangulation using all points in V is in
practice an time-consuming process for a large number of points even if we use
an optimal algorithm. Furthermore, we only need the lengths of the Delaunay
triangles for the construction of the effective region of the neighborhood of a
random point set. Therefore, we replace steps 1 and 2 of the algorithm to the
following random sampling process.

1. Select a finite closed subset S of R2.
2. Compute Delaunay triangulation for points in S

⋂
V.

3. Compute the median of length of edges of Delaunay triangles with respect
to subset S.

4. Repeat steps 1 to 3 until the predetermined number of times.
5. Select the maximum length.

In Figure 3, we show, the sequence of boundary curves of a sequence of
random point sets which changes number of clusters. The clusters are generated
using geometric property of the Delaunay edges.

Figure 4, we also show an example of clustering. 4299 points in (a) are sep-
arated to three clusters which are encircled by curves in (b).

In these examples, the density of point distribution are 0.3/unit length2.
Therefore, the average distance between points are 3 to 4 units. Furthermore,
the median of the edges of the first Delaunay triangulation are 4 to 5 units.
These results allow that the median of the lengths the edges of the first Delaunay
triangulation is a reasonable estimation of the resolution of the random point
sets.
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Fig. 3. The sequence of boundary belts (a), (b), and (c) and curves (d), (e), (f) of
a sequence of random point sets which changes number of clusters. The clusters are
generated using geometric property of the Delaunay edges.

Fig. 4. An example of clustering. 4299 points in (a) are separated to three clusters
which are encircled by curves in (b).
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5 Conclusions

In this paper, we have defined clusters and the boundary curves of clusters in
a random point set using the Delaunay triangulation and the principal curve
analysis. Once the polygonal boundary of a random point set is estimated, it is
possible to compute the linear skeleton of the polygonal boundary [10, 11]. We
adopt the linear skeleton of the polygonal boundary as the skeleton of a random
point set.
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Abstract. For many clustering algorithms, it is very important to determine an 
appropriate number of clusters, which is called cluster validity problem. In this 
paper, we offer a new approach to tackle this issue. The main point is that the 
better outputs of clustering algorithm, the more stable. Therefore, we establish 
the relation between cluster validity and stability of clustering algorithms, and 
propose that the conditional number of Hessian matrix of the objective function 
with respect to outputs of the clustering algorithm can be used as cluster valid-
ity cluster index. Based on such idea, we study the traditional fuzzy c-means al-
gorithms. Comparison experiments suggest that such a novel cluster validity in-
dex is valid for evaluating the performance of the fuzzy c-means algorithms.  

1   Introduction 

Cluster analysis plays an important role in pattern recognition fields. However, the 
outputs of clustering algorithms are sensitive to parameters of the clustering algo-
rithm. Sometimes, the same algorithm can lead to totally different outputs with re-
spect to different parameters. A good clustering algorithm could produce undesirable 
results if parameters are chosen improperly. In the literature, many researches have 
been done on how to choose the optimal parameters in the clustering algorithms, 
particularly on how to choose the optimal number of clusters, for example, [1-4]. In 
general, selection of appropriate number of clusters and evaluation of outputs of clus-
tering algorithms are called cluster validity problem.  

In the literature, how to choose the optimal number of clusters depends on specific 
clustering algorithm. Many results on this issue are relevant to c-means or fuzzy c-
means, for example, [1-4]. As for cluster validity for the FCM, one common ap-
proach is to design a cluster validity index to evaluate the performance of clustering 
algorithms. Frequently, there are two ways to design cluster validity index. One is 
based on the concept of fuzzy partition, the main assumption is that the performance 
of the FCM is better when its outputs are closer to crisp partition, for example, parti-
tion coefficient [2], partition entropy [5], uniform data functional [6], proportion 
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exponent [7], nonfuzziness index [8], etc. However, as noted in [9], they lack of di-
rect connection to the geometrical property of data set. Taking into account geometri-
cal property results in another way to design cluster validity index, for instance, Xie-
Beni index [9], Gunderson’s separation coefficient [10], etc. In fact, the above cluster 
validity indices have the similar drawback, i.e., all of them do not pay enough atten-
tion to the property of the FCM itself.   

From a point of algorithmic view, it is necessary to study the properties of cluster-
ing algorithms in order to determine number of clusters and evaluate clustering re-
sults. 

Speaking roughly, given that data set truly follows the assumption of clustering al-
gorithm, the probable outputs of a clustering algorithm should be the optimal cluster-
ing results. Obviously, it is a reasonable assumption. Otherwise, it has little chance to 
obtain the optimal clustering results no matter what cluster validity index is used. 
Therefore, we need to measure the probability of occurrence with respect to different 
outputs produced by clustering algorithm. It is easy to conjecture that clustering re-
sults with high stability are outputted with large probability. Therefore, we need to 
obtain and study the stability criterion of clustering algorithm. In the following, we 
study cluster validity for the FCM according to the above idea.  

The reminder of this paper is organized as follows: In Section 2, the FCM and rele-
vant cluster validity indices are related. In Section 3, a new cluster validity index, 
stable index, is defined and analyzed.  In Section 4, numerical experiments are carried 
out to make a comparison between Xie-Beni index and our cluster index, and experi-
mental results are analyzed. In the final, we draw conclusion and make a discussion. 

2   The FCM Algorithm and Related Cluster Validity Indices 

Let X={x1,x2,…,xn} be a s-dimensional data set, u={uik} is partition matrix, 

v={v1,v2,…,vc} is clustering prototype, the objective function is defined as 

( )XvuJ m ,, = ∑∑
= =

n

k

c

i

m
iku

1 1

)( 2|||| ik vx − . The aim of the FCM algorithm is to obtain the 

partition matrix {=u }iku nc×  and clustering prototype v={v1,v2,…,vc}corresponding 

to the minimum of the objective function Jm, where },1|{ nkkk ≤≤∈∀  
}1|{ ciii ≤≤∈∀ , the membership iku represents the degree that  xk belongs to the 

clustering center iv , and u=[uik] nc× ∈  Mfcn={ u=[uik] nc× ik

c

i
ik uu ,1

1

=∑
=  

u
c

i
ik<≥ ∑

=1

0,0
 

< n}. 
By Lagrange multiplier’s approach, we obtain the necessary conditions for the 

minimum of ( )XvuJ m ,,  as: 
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Consequently, the procedure of the FCM is described as follows: 
Step 1. Fix the number of clusters, the weighting exponent, the iteration limit T and 

the tolerance ε , and set ( )XvuJ m ,, = ∞ ; initialize the partition matrix; 

Step 2. Update the cluster center iv  (1 ci ≤≤ ) by (1) ; 

Step 3. Update the membership function iku  (1 ci ≤≤ , nk ≤≤1 ) by (2); 

Step 4. Repeat Step 2 and Step 3 until the decreasing value of ( )XvuJ m ,,  between 

two successive iterations is less than ε  or the iterations reach T.  

The objective function of the FCM can be reduced to (3) by (2), which is obtained 

by Bezdek in [11] as follows:  ( )vXJ m ,
mn

k
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                            (3) 

It has been proved that the above algorithm converges to local minimum or saddle 

point of the objective function of the FCM when m>1. Let ∑ =
−= n

k kxnx
1

1 , when m 

approaches infinite, the only solution of the FCM is x  according to [1]. It is easily 
proved that x  is a fixed point of the FCM algorithm. 

As the clustering results of the FCM are greatly influenced by the weighting expo-
nent, number of clusters, etc, it is a key issue for users to properly evaluate the clus-
tering results of the FCM algorithm.  In the literature, many methods are proposed to 
tackle this issue. One of the most used methods is to design an appropriate cluster 
validity index; Halkidi et al presented a well-written review of cluster validity indices 
in [12]. As noted in [1], many cluster validity indices like ( )uVpc  or XBV  have a 

monotone tendency with number of clusters increasing. Hence, it is always supposed 

that the optimal number of clusters has an upper bound nc ≤max , more details can 

be seen in [13]. In [1], Pal and Bezdek evaluated that the partition coefficient and 
entropy index, Xie-Beni Criterion, extended Xie-Beni Criterion, and the Fukuyama-
Sugeno Index [14] by numerical experiments and limit analysis. They experimentally 
discovered that Xie-Beni Criterion provided the best response over a wide arrange of 
choices for number of clusters c and weighting exponent m, and the Fukuyama-
Sugeno Index is not robust to both high and low values of weighting exponent m and 
its performance may be not stable as cluster validity index. Therefore, we use Xie-
Beni index as benchmark of cluster validity index for the FCM algorithm in the fol-
lowing. As a matter of fact, we have another theoretical explanation of choosing a 
Xie-Beni index as benchmark of cluster validity index, more details will be given in 
Section 3. 
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3   A Novel Cluster Validity Index-Stability Index 

As noted above, many cluster validity indices for the FCM algorithm have been pro-
posed in the literature. However, all of them do not pay enough attention to the prop-
erties of the FCM algorithm. In this paper, we propose a novel cluster validity index 
based on the properties of the FCM algorithm itself. It is a reasonable assumption that 
the probable clustering output is the optimal clustering result of clustering algorithms 
if the data set complies with its clustering hypothesis. Obviously, the more stable the 
clustering result is, the more probable it is outputted. Therefore, we need to obtain 
stability criterion of clustering algorithm.  Transparently, the stability criterion of a 
clustering algorithm depends on its optimality test. Fortunately, the optimality test of 
the FCM algorithm has been given in [15] or [16] as: 
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Hessian matrix vH of ( )vF can be represented by ( )( )jiv vvvFH ∂∂∂= 2 . It is well 

known that vH can judge whether the clustering result is stable or not, i.e., if the 

clustering result is a local minimum of the objective function. However, how to meas-
ure the probability the clustering result v  is outputted?  It is easy to conjecture that 
the stable degree of a clustering result is proportional to the probability the clustering 
result v is outputted. Therefore, we need to define an index to measure the stability of 
a clustering result. Since the conditional number of Hessian matrix vH  reflects the 

stability of Hessian matrix vH , it can be reasonably used as an index to show the 

stability of a clustering result. In order to clearly visualize the experimental results in 
this paper, we use an ad hoc definition of the conditional number of Hessian matrix as 
follows: ( ) ( )vvv HHHcond maxmin)( λλ= , where ( )vHmaxλ , ( )vHminλ  are the 

maximum and the minimum eigenvalues of vH , respectively. 

If ( )vHcond≥1 >0, the clustering result of FCM is stable; if ( )vHcond <0 or 

( )vHcond >1, the clustering result of FCM is unstable. Therefore, we call ( )vHcond  

stability index. Obviously, if ( )vHcond≥1 >0, the larger ( )vHcond , the more stable 

the clustering result, therefore the more probable it is outputted. In other words, 
( )vHcond  can measure the probability of a clustering result outputted by its corre-

sponding algorithm. According to the above analysis, ( )vHcond  can be used as clus-

ter validity index to choose the optimal number of clusters.  



Cluster Validity and Stability of Clustering Algorithms      961 

According to [17], undesirable solutions of clustering algorithm can be defined as 
follows: if ( )cvvvv ,,, 21 �=  is an output of clustering algorithm and 

∃ cji ≤≠≤1 such that ji vv = , then it is called undesirable solutions of clustering 

algorithm. Noticing that Xie-Beni Criterion (in this paper, Xie-Beni Criterion and 
Xie-Beni index are interchangeable) is defined as: 

( ) ⎟⎠
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11 1

22 min ji
cji

c

i

n

k ikikXB vvnvxuV  

So, we can use Xie_Beni index to determine whether or not outputs of the FCM 
are undesirable solutions. But others cluster indices can not well conduct this task. 
For example, Fukuyama-Sugeno Index [14], partition coefficient [2], partition en-
tropy [5], uniform data functional [6], proportion exponent [7], nonfuzziness index 
[8], Gunderson’s separation coefficient [10]. Noticing the value of Xie_Beni index is 
infinite when outputs of the FCM are undesirable solutions, we use the following 
form instead of Xie-Beni index, which is convenient for calculation and visualization 

in the computer and denoted by 1−
XBV :   

∑ ∑= =
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vv
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1 1

22

2
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. 
In Section 4, we verify the above conclusions by numerical experiments. 

4   Numerical Experiments and Analysis 

In this section, we verify the above conclusions by numerical experiments. In the 
following, we set the same initial partition matrix, ε =10-8 and the maximum iteration 
T=200 for the FCM algorithm, and run the FCM algorithm with different weighting 

exponent m and number of clusters c, then calculate 1−
XBV  and ( )vHcond  according to 

the clustering outputs. 
The datasets used in this section are described as follows: 

IRIS data: The Iris data set has 150 data points. It is divided into three groups and 
two of them are overlapping. Each group has 50 data points. Each point has four 
attributes. More details about the IRIS data are available in Anderson [18]. 

Cube_6. This data set is drawn as in Fig.1 (a), and consists of 6 clusters. Each clus-
ter consists of 8 points located at 8 corners of a cube. More details about Cube6 
can be seen in [16]. 

Data 3: Data are composed of 4 clusters as shown in Fig.1 (b). The cluster centers 
are as follows: =1μ  [-4, 4]; =2μ [5, 5]; =3μ [14, 5]; =4μ [20, -3]. Each cluster 

includes 100 points and the points in the ith cluster are independently drawn from 
the normal distribution ( )2, IN iμ .   
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Fig. 1. (a) Cube 6, (b) Data 3 
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Fig. 4.  1−
XBV  with varying c and m for Data 3. In the left, the weighting exponent varies from 

1.05 to 4.05, 1−
XBV  shows that the optimal number of clusters is 4, which is consistent with the 

real substructure of Data 3. However, in the right, the weighting exponent varies from 4.25 to 

7.05, 1−
XBV  shows that the optimal number of clusters becomes 2. According to [19], we know 

the FCM algorithm works well for m>1, at least in theory. It easily demonstrates that the per-

formance of 1−
XBV  sometimes heavily depends on the weighting exponent m in the FCM algo-

rithm. 

 

Fig. 5. Stability index with respect to c and m, and datasets 

When m>1, Fig.5 demonstrates that the outputs of the FCM algorithm are local 
minimum of (3) with probability close to 1, and the performance of ( )vHcond  as 

cluster validity index is the same as Xie-Beni index. We also know that weighting 
exponent m plays a key role in the FCM algorithm. In [19], it is proved that if 

( ) 5.0*max <
dataU

Fλ  and ( )( ) 1
max *21 −−≥

dataU
Fm λ , then *

dataU  is a stable fixed point of the 

FCM, and if ( ) 5.0*max ≥
dataU

Fλ , then *
dataU  is not a stable fixed point of the FCM, 
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It is easy to calculate that ( )IRISFmaxλ =0.8079, ( )6max CubeFλ =0.3333 and 

( )3max DataFλ =0.7036. Therefore, we know that m<3 should hold in order to keep the 

FCM algorithm work well on Cube 6 according to [19]. Since 
( )IRISFmaxλ =0.8079>0.5 and ( )3max DataFλ =0.7036>0.5, any value of m>1 is theoreti-

cally appropriate for the FCM algorithm.  
Fig. 2, 4 verify that the FCM algorithm may not outcome undesirable solutions 

when ( ) 5.0*max ≥
dataU

Fλ . However, Fig.3 tells us that the FCM algorithm indeed out-

comes undesirable solutions when ( ) 5.0*max <
dataU

Fλ . Simultaneously, Fig.5 empiri-

cally proves that the outputs of the FCM algorithm are local minima, which is consis-
tent with our intuition. As for IRIS and Cube6, the performances of ( )vHcond  and 

Xie-Beni index are the same with respect to a wide range of the weighting exponent 
m. As for data3, Fig.4 shows that Xie-Beni index is sensitive to high values of the 
weighting exponent m. However, Fig.5 shows that the performance of ( )vHcond  is 

still satisfactory with respect to a wide range of the weighting exponent m. Such facts 
suggest that ( )vHcond is more robust than Xie-Beni Criterion with respect to m as 

cluster validity index.  

5   Conclusions and Discussions 

In this paper, we propose a novel cluster validity index for the FCM algorithm, the 
stability index, based on the optimality test. The major contribution of this paper is 
that our approach is totally out of mathematical analysis of the FCM algorithm, while 
other previous methods out of geometrical or psychological tuition. The theoretical 
analysis and experimental results suggest that the stability index is valid for the FCM 
algorithm as a cluster validity index. Moreover, the stability index also can be used as 
the optimality test of the FCM algorithm. 
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Abstract. Bagging is an ensemble method proposed to improve the predictive 
performance of learning algorithms, being specially effective when applied to 
unstable predictors. It is based on the aggregation of a certain number of predic-
tion models, each one generated from a bootstrap sample of the available train-
ing set. We introduce an alternative method for bagging classification models, 
motivated by the reduced bootstrap methodology, where the generated boot-
strap samples are forced to have a number of distinct original observations be-
tween two values k1 and k2. Five choices for k1 and k2 are considered, and the 

five resulting models are empirically studied and compared with bagging on 
three real data sets, employing classification trees and neural networks as the 
base learners. This comparison reveals for this reduced bagging technique a 
trend to diminish the mean and the variance of the error rate.  

1   Introduction 

Bagging (Bootstrap Aggregating) is a method proposed by Breiman [1] to improve 
the performance of prediction models. Given a model, bagging draws B independent 
bootstrap samples from the available training set, fits a particular model to each boot-
strap sample, and finally it aggregates the B models by computing the mean (regres-
sion) or majority voting (classification). Bagging is a very effective procedure when 
applied to unstable learning algorithms such as classification and regression trees and 
neural networks. The empirical success of the first published works has been con-
firmed by theoretical results as we can see in [2], where bagging is shown to smooth 
hard decision problems, yielding smaller variance and mean squared error (MSE). 
These results have been derived for classification and regression trees, but the vari-
ance and MSE reduction effect of bagging is not necessarily true for other models, as 
it is shown in [3] for U-statistics.  

Bagging averages models constructed over nearby empirical distributions corre-
sponding to replacement samples from the training set. However, if we consider other 
classes of neighborhoods of the empirical distribution of the original sample, or if we 
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vary the method to carry out the aggregating process, a more general bagging is de-
fined. The use of robust location measures, as the median, is an example of the sec-
ond approach. For the first approach, we could draw samples with or without re-
placement, and sample sizes not necessarily equal to the training set size would also 
be considered, as is the case for Subbagging (Subsample Aggregating) in [2]. 

If we maintain the replacement sampling process, a generalization is motivated by 
the following reasoning of [4]: bootstrap samples are simple random samples of size 
n selected with replacement from the original n sized sample, so not all bootstrap 
samples are equally informative, due to the randomness associated to the number of 
distinct original observations in the bootstrap sample. The variability of this number 
is neither necessary nor desirable, having negative effects on the performance of the 
bootstrap technique in certain applications. For example, the bootstrap does not pro-
vide a consistent estimator for the variance of the median, but an alternative bootstrap 
resampling scheme which solves that inconsistency is presented in [5]. We propose to 
consider this alternative bootstrap procedure, namely the reduced bootstrap, as the 
sampling algorithm for bagging. In section 2 we present this new method, while sec-
tion 3 is devoted to some empirical comparisons with the usual bagging procedure, 
resuming the main conclusions and the future work in section 4. 

2   Reduced Bootstrap 

We consider a classification problem where a training set D={Ui=(Xi,Yi), i=1,…,n} is 

available. Xi is a realization of a multidimensional predictor variable and Yi contains 

the label of the class of the case i, for example an element of {1,2,…,K} for a K-class 
problem. Given a classification model g, depending on a set of parameters to be op-
timized, bagging was defined in [1] as follows: 

 

Definition 1. Algorithm Bagging 
Fix B 
 For b=1,2,…,B 
  Draw a bootstrap sample, i.e., a simple random sample with replacement 
    D* =(U1

*,…,Un
*) taken from D. 

  Fit g to D*, obtaining gb. 

 Next b. 
The aggregate model gagg is defined by voting of the B computed models: 

                                         )(maxarg)( xfxg j
j

agg =                                           (1) 

                                           })({#)( jxgxf bj ==                                             (2) 

We must note that the bootstrap procedure inside bagging is really what Efron 
called in [6] the bootstrap Method II, used to approximate a theoretical distribution by 
Monte Carlo simulation. However, this simulation process is affected by a series of 
errors and variabilities, as is formalized in [7]. For this reason, several alternative 
techniques have been proposed, as those recorded by [4], [8], [9]. 
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In [7] we defined a variation of Efron´s method II based on the outlier bootstrap 
sample concept, namely OBS, that is based on only considering those bootstrap sam-
ples having a number of distinct original observations dn greater or equal to some 

value computed from the distribution of such random variable dn. Several empirical 

studies carried out in [7] showed closer estimations of the parameters under study and 
a reduction of the standard deviations of such estimations. These results were theo-
retically confirmed in [10]. 

In this paper we consider a generalization of the OBS method, that consists of 
drawing bootstrap samples verifying k1≤dn≤k2 for some 1≤ k1≤k2≤n. We will name 

RB (Reduced Bootstrap) to this method. This way, only αnn bootstrap samples are 
considered, where α=P[k1≤dn≤k2]. The use of RB inside a bagging procedure lets us 

to define Bagging with Reduced Bootstrap. We will name Rbagging the resulting 
procedure. 

 

Definition 2. Algorithm Rbagging. 
Fix B, k1, k2 

 For b=1,2,…,B 

  Draw a reduced bootstrap sample, i.e., a bootstrap sample D*= ),,( **
1 nUU �   

     with ,2
*

1 kdk n ≤≤ taken from D 

  Fit g to D*, obtaining gb 

Next b. 
  
The resulting aggregated model is also computed as in (1) and (2). To obtain a 

bootstrap sample D* with ,2
*

1 kdk n ≤≤ we propose the next algorithm. 
 

Definition 3. Algorithm Reduced Bootstrap Sampling. 
1. Select a random sample of size k2 without replacement from {1,…,n}, say I1 

2. Select a random sample of size k1 without replacement from I1, say I2 

3. Draw a random sample of size n-k1 with replacement from I1 say I3 

4. Let L=(l1,…,ln) be a vector whose components are obtained by randomly  

    permuting the string formed by concatenating I2 and I3 

5. The sample obtained taking the elements of D indexed by (l1,…,ln) is a  

    bootstrap sample D* =(U1
*,…,Un

*), with .2
*

1 kdk n ≤≤  
 

In [5], six choices for k1 and k2 are proposed in a study about the consistent estima-

tion of the variance of the sample median, including the usual bagging as a particular 
case. Because of its good performance, we have used these selections to study the 
performance of Rbagging. The six resulting methods are presented in table 1, being 
identified by RB1,…, RB6, where p=1-1/e, q=1-p. Note that RB1 is the original 
method II presented by Efron, while RB2 and RB6 are particular cases of the OBS 
method. 
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Table 1. The six selections for k1 and k2 

Method k1 k2 

RB1 1 n 
RB2 [np-(npq)1/2]+1 n 

RB3 [np-(npq)1/2]+1 [np+(npq)1/2] 
RB4 [np]+1 [np]+1 
RB5 [np+(npq)1/2]+1 [np+(npq)1/2]+1 
RB6 [np+(npq)1/2]+1 n 

3   Numerical Results 

We have made an empirical comparison of the six considered methods over three real 
data sets. Two unstable classification models, classification trees and neural net-
works, are used as the base algorithm. R system [11] has been the selected computa-
tional tool for our study, whereas the tree and nnet libraries have provided us with the 
implementation of classification trees and multiplayer perceptrons, respectively. Tree 
library is based on the CART methodology [12] proposed by Breiman. Nnet library 
fits single-hidden-layer neural networks by a quasi-Newton method (also known as a 
variable metric algorithm), specifically that published simultaneously in 1970 by 
Broyden, Fletcher, Goldfarb and Shanno. We have used the logistic activation func-
tion in the hidden layer and the identity function as the activation function for the 
output layer, selecting the hidden layer size by cross validation. 

3.1  Fragile X Syndrome Data 

Fragile X is the most common inherited cause of mental impairment and the most 
common known cause of autism. In 1991, the gene (called FMR1) that causes Fragile 
X was discovered. In individuals with Fragile X, a defect in FMR1 (a "full mutation") 
shuts the gene down. Symptoms of fragile X include: mental impairment, ranging 
from learning disabilities to mental retardation, attention deficit and hyperactivity, 
anxiety and unstable mood, autistic-like behaviors, long face, large ears, flat feet, and 
hyperextensible joints, especially fingers. A DNA based test to diagnose Fragile X 
was developed in 1992. This test is quite accurate, and it can detect both carriers and 
fully-affected individuals. However it can be very expensive, and for this reason, an 
automatic classification model would be acknowledged, motivating a study con-
ducted in Andalusia, Spain, where 100 FMR1 mutated children and 72 children with 
Fragile X symptoms but not mutated were selected, being the last 72 the control 
cases. From the 61 recorded variables, we selected those variables retained by a step-
wise logistic regression analysis performed with SPSS v11.0, reducing to 9 the num-
ber of predictor variables. 
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We randomly divided the data set into training (80%) and test (20%) sets, and we 
applied the six bagging procedures with B=100 to the classification tree and muti-
layer perceptron with 12 hidden nodes, computing the error rate (percent of incor-
rectly classified cases) for both data sets for each method. The whole procedure were 
independently repeated 50 times. Table 2 shows the mean and standard deviation of 
the 50 test error rates for each bagging procedure, where “raw” denotes no bagging. 

Table 2. Fragile X Syndrome data. Mean and standard deviation of the 50 test error rates for 
each procedure 

 Classification trees Multilayer perceptron 

Method Mean S.D. Mean S.D. 
Raw  5.652 5.111 5.403 4.592 
RB1 5.977 5.043 5.607 4.919 
RB2 5.225 4.584 5.285 4.675 
RB3 5.799 5.524 5.388 4.571 
RB4 5.225 4.828 5.669 4.958 
RB5 5.448 4.629 5.375 5.203 
RB6 5.577 4.388 5.329 4.549 

 
Fig. 1. Distribution of the 50 test mean error rates for the raw and bagged classification trees 
(left) and multilayer perceptrons with 12 hidden nodes (right) for the fragile X syndrome data 
 

We can see in table 2 and figure 1 that for both models the mean error rate is in-
creased when bagging is applied. However, for classification trees reduced bagging 2, 
4, 5 and 6 yield a lower mean error rate, accompanied by a lower variance of the error 
rate. A similar comparative performance is observed for the multiplayer perceptron, 
with the exception of an increase in the variability of RB5 (motivated by two out-
liers), though RB3 also offers a reduction in the mean and standard deviation of the 
test error rate. We must note that RB2, a reduced bagging based on OBS bootstrap, 
produces the minimum mean error rate and a clear reduction of the variability, for 
both classification models. 
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3.2   Forensic Glass Data 

The forensic glass dataset has 214 points from six classes with nine measurements, 
and provides a fairly stiff test for classification methods. As in 3.1, we randomly 
divided the data set into training (80%) and test (20%) sets, applying the six bagging 
procedures with B=100 to the classification tree and mutilayer perceptron with 15 
hidden nodes, also computing the error rate (percent of incorrectly classified cases) 
for both data sets for each method. The whole procedure were independently repeated 
50 times, and the main results are exhibited in table 3 and figure 2.  

Table 3. Forensic glass data. Mean and standard deviation of the 50 test error rates for each 
procedure 

 Classification trees Multilayer perceptron 

Method Mean S.D. Mean S.D. 
Raw  32.662 3.211 50.761 13.141 
RB1 23.441 2.334 39.627 10.892 
RB2 23.239 2.441 39.243 24.924 
RB3 23.621 2.178 39.426 10.010 
RB4 23.622 2.156 39.042 9.326 
RB5 23.337 2.561 40.572 9.964 
RB6 23.620 2.357 39.624 9.153 

 

Fig. 2. Distribution of the 50 test mean error rates for the raw and bagged classification trees 
(left) and multilayer perceptrons with 15 hidden nodes (right) for the forensic glass dataset 

Figure 2 (left) shows the box-and-whisker plots for the classification tree, where a 
clear reduction in the mean error rate is observed for all the six bagging procedures. 
However, a slight additional reduction with RB2 and RB5 is observed, though last 
method has a greater variability. Figure 2 (right) contains a similar representation for 
the multiplayer perceptron. The bests results are also achieved by RB2, with a great 
reduction in the mean percent error rate and in its variability. 
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3.3   South Africa Heart Disease Data 

This dataset, utilized in [13], contains 463 cases selected from a larger retrospective 
sample of males in a heart-disease high-risk region of the Western Cape, South Af-
rica. The target is the absence/presence of a coronary heart disease, existing nine 
predictor variables. A similar study as in 3.1 and 3.2 were conducted: we randomly 
divided the data set into training (80%) and test (20%) sets, applying the six bagging 
procedures with B=100 to the classification tree and mutilayer perceptron with 12 
hidden nodes, also computing the error rate (percent of incorrectly classified cases) 
for both data sets for each method. The whole procedure were also independently 
repeated 50 times. Table 4 shows the mean and standard deviation of the 50 test error 
rates for each bagging procedure, and the whole distributions are plotted in the fig-
ure 3. 

Table 4. South Africa heart disease data. Mean and standard deviation of the 50 test error rates 
for each procedure 

Classification trees Multilayer perceptron  
Method Mean S.D. Mean S.D. 
Raw  33.217 4.398 34.434 4.783 
RB1 31.173 4.350 34.134 5.042 
RB2 30.693 4.572 34.326 4.143 
RB3 30.608 4.355 34.413 4.378 
RB4 30.630 4.295 34.413 4.433 
RB5 31.021 4.082 34.086 4.313 
RB6 30.562 4.082 34.108 4.358 

 

 

Fig. 3. Distribution of the 50 test mean error rates for the raw and bagged classification trees 
(left) and multilayer perceptrons with 12 hidden nodes (right) for the South Africa heart disease 
dataset 

We see that the five reduced bagging procedures yield a mean percent error rate 
lower than the raw and bagged classification trees, standing out the reduced bag-
ging 6, which also provides the minimum standard deviation, as it is confirmed by the 
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figure 3 (left). For the multiplayer perceptron the bagging procedure is not so clearly 
improved, but the procedures rbagging 5 and 6 provide the lowest mean values, ac-
companied by a standard deviation lower than that achieved by the usual bagging 
procedure. This better performance, particularly for rbagging 6, is more clearly illus-
trated in the figure 3 (right). 

4   Concluding Remarks 

The alternative bagging methodology based on reduced bootstrap sampling shows 
good and hopeful results. It has outperformed the usual bagging in our empirical 
study over real data sets, at least one rbagging method which offers a lower mean and 
variance of the test error rate is found for each data set. 

However, a further study may be realized following some guidelines, for example: 
the theoretical study of the properties of rbagging, the development of criteria to 
select the parameters k1 and k2, a comparison with other ensemble methods, to ana-

lyze the effect of rbagging over other learning algorithms, and the application to 
prediction problems. 
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Abstract. Ensembles of classifiers have successfully been used to improve the 
overall predictive accuracy in many domains. In particular, the use of boosting 
which focuses on hard to learn examples, have application for difficult to learn 
problems. In a two-class imbalanced data set, the number of examples of the 
majority class is much higher than that of the minority class. This implies that, 
during training, the predictive accuracy against the minority class of a tradi-
tional boosting ensemble may be poor. This paper introduces an approach to 
address this shortcoming, through the generation of synthesis examples which 
are added to the original training set. In this way, the ensemble is able to focus 
not only on hard examples, but also on rare examples. The experimental results, 
when applying our Databoost-IM algorithm to eleven datasets, indicate that it 
surpasses a benchmarking individual classifier as well as a popular boosting 
method, when evaluated in terms of the overall accuracy, the G-mean and the 
F-measures. 

1   Introduction 

Over the past few years, ensembles have emerged as a promising technique with the 
ability to improve the performance of weak classification algorithms [1, 2]. Ensem-
bles of classifiers consist of a set of individually trained classifiers whose predictions 
are combined to classify new instances [1, 2]. In particular, boosting is an ensemble 
method where the performance of weak classifiers is improved by focusing on hard 
examples which are difficult to classify. Boosting produces a series of classifiers and 
the outputs of these classifiers are combined using weighted voting in the final predic-
tion of the model [3]. In each step of the series, the training examples are re-weighted 
and selected based on the performance of earlier classifiers in the training series. This 
produces a set of “easy” examples with low weights and a set of hard ones with high 
weights. During each of the iterations, boosting concentrates on classifying the hard 
examples correctly. Recent studies have indicated that boosting algorithm is applica-
ble to a broad spectrum of problems with great success [3, 4]. 

The class imbalance problem corresponds to domains for which one class is repre-
sented by a large number of examples while the other is represented by only a few [5]. 
Many real world applications involve learning from imbalanced sets, such as fraud 
detection, telecommunications management, oil spill detection and text classification 
[6]. When learning from imbalanced data sets, machine learning algorithms tend to 
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produce high predictive accuracy over the majority class, but poor predictive accuracy 
over the minority class [7]. There have been several proposals for coping with imbal-
anced data sets [5], including under-sampled examples of the majority class and/or 
over-sampling of the minority class [6, 7, 8] and weighing examples in an effort to 
bias the learning toward the minority class [7]. Research into the use of boosting in-
cludes [9], which evaluated boosting algorithms to classify rare classes; and [10] 
which combined boosting and synthetic data to improve the prediction of the minority 
class.  

In this paper, we discuss the DataBoost-IM approach, which combines data genera-
tion and boosting procedures to improve the predictive accuracies of both the majority 
and minority classes, without forgoing one of the two classes. The aim of our ap-
proach is therefore to ensure that the resultant predictive accuracies of both classes are 
high. Our approach differs from prior work in the following ways. Firstly, we sepa-
rately identify hard examples from, and generate synthetic examples for, the minority 
as well as the majority classes. Secondly, we generate synthetic examples with bias 
information toward the hard examples on which the next component classifier in the 
boosting procedures needs to focus. That is, we provide additional knowledge for the 
majority as well as the minority classes and thus prevent boosting over-emphasizing 
the hard examples. Thirdly, the class frequencies of the new training set are rebal-
anced to alleviate the learning algorithm’s bias toward the majority class. Fourthly, 
the total weights of the different classes in the new training set are rebalanced to force 
the boosting algorithm to focus on not only the hard examples, but also the minority 
class examples. In this way, we focus on improving the predictions of both the minor-
ity and majority classes. 

This paper is organized as follows. The performance measures used to evaluate the 
performance of our approach is introduced in Section 2. Section 3 describes the Da-
taBoost-IM algorithm. This is followed, in Section 4, with an evaluation of the Data-
Boost-IM algorithm against eleven data sets from the UCI data set repository [11]. 
Finally, Section 5 concludes the paper. 

2   Performance Measures 

Traditionally, the performance of a classifier is evaluated by considering the overall 
accuracy against test cases [12]. However, when learning from imbalanced data sets, 
this measure is often not sufficient [12]. Following [7, 8, 10, 13], we employ the 
overall accuracy, G-Mean [8] and F-Measures [14] metrics to evaluate our Data-
Boost-IM method. The confusion matrix, as shown in Table 1, represents the typical 
metrics for evaluating the performance of machine learning algorithms on skew class 
problems. 

Table 1. Confusion Matrix 

 

 Predicted  Negative Predicted Positive 
Actual Negative TN ( the number of True Negatives) FP( the number of False Positives) 
Actual Positive FN (the number of False Negatives)  TP( the number of True Positives) 



976      Herna L. Viktor and Hongyu Guo 

In Table 1, the Precision and Recall are calculated as TP / (TP + FP) and TP / (TP 
+ FN). The F-measure is defined as  

                          
)ecisionPrcallRe()ecisionPrcallRe)1(( 22 +×××+ ββ

                         
(1) 

 

where� �(����)����)�����	����
*��+���,����*�(�����precision versus the recall and it is 
usually set to 1. The F-measure incorporates the recall and precision into a single 
number. It follows that the F-measure is high when both the recall and precision are 
high [9]. This implies that the F-measure is able to measure the “goodness” of a 
learning algorithm on the current class of interest. Note that we also use this measure 
for the majority class, since we are interested in measuring the performance of both 
classes. Another criteria used to evaluate a classifier’s performance on skew data is 
the G-mean [8, 10, 13]. The G-mean is defined as 
 

                                     
curacyNegativeAccuracyPositiveAc ×

                                          (2) 
 

where Positive Accuracy and Negative Accuracy are calculated as TP / (FN+TP) and 
TN / (TN+FP). This measure relates to a point on the ROC curve and the idea is to 
maximize the accuracy on each of the two classes while keeping these accuracies 
balanced [8]. For instance, a high Positive accuracy by a low Negative accuracy will 
result in poor G-mean [8].  

3   DataBoost-IM Algorithm 

The DataBoost-IM approach extends our earlier DataBoost algorithm which was 
successfully used to produce highly accuracy classifiers in balanced domains contain-
ing hard to learn examples [15]. In this section, we describe a variation, the Data-
Boost-IM algorithm, applied to imbalanced data sets. This approach extends the 
original DataBoost algorithm as follows. Firstly, we separately identify hard exam-
ples from and generate synthetic examples for different classes. Secondly, the class 
distribution and the total weights of different classes are rebalanced to alleviate the 
learning algorithms’ bias toward the majority class.  

Recall that boosting involves the creation of a series of classifiers which aims to 
correctly classify hard to learn examples, through focusing on these hard examples 
during training. Following this mechanism, the DataBoost-IM algorithm, as shown in 
Figure 1, consists of the following three stages. Firstly, each example of the original 
training set is assigned an equal weight. The original training set is used to train the 
first classifier of the DataBoost-IM ensembles. Secondly, the hard examples (so-
called seed examples) are identified and for each of these seed examples, a set of 
synthetic examples is generated. During the third of the algorithm, the synthetic ex-
amples are added to the original training set and the class distribution and the total 
weights of different classes are rebalanced. The second and third stages of the Data-
Boost-IM algorithm are re-executed until reaching a user-specified number of itera-
tions or the current component classifier’s error rate is worse than a threshold value. 
Following the AdaBoost ensemble method, this threshold is set to 0.5 [1, 2].  

The seed selection, data generation and re-balancing process of the DataBoost-IM 
algorithm are described next.  
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Input:  Sequence of m examples )y,x(),...,y,x( mm11
 with labels }k,...,1{Yyi =∈  

  Weak learning algorithm WeakLearn 
  Integer T specifying number of iterations 
Initialize Dj(i) = 1/m for all i. 
Do for  t  = 1, 2, …,  T 

1. Identify hard examples from the original data set for different classes.  
2. Generate synthetic data to balance the training knowledge of different classes 
3. Add synthetic data to the original training set to form a new training data set 
4. Update and balance the total weights of the different classes in the new training data set 
5. Call WeakLearn, providing it with the new training set with synthetic data and rebalanced 

weights 
6. Get back a hypothesis YX:ht → . 
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t

1
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β
  

Fig. 1. Pseudo-code of the DataBoost-IM algorithm 

3.1   Identify Seed Examples 

The aim of the seed selection process is to identify hard examples for both the major-
ity and minority classes. These examples, are used as input for the data generation 
process as discussed in Section 3.2.  

The seed examples are selected as follows. Firstly, the examples in the training set 
(Etrain) are sorted descending, based on their weights. The original training set Etrain 

contains Nmaj examples from the majority class and Nmin examples from the minority 

class. The number of examples that is considered to be hard (denoted by Ns) is calcu-

lated as (Etrain X Err), where Err is the error rate of the currently trained classifier.  

Next, the set Es, which contains the Ns examples with the highest weights in Etrain, is 

created. The set Es consists of two subset of examples Esmin and Esmaj, i.e. examples 

from the minority and majority classes, respectively. Here, Esmin and Esmaj contain 

Nsmin and Nsmaj examples, where Nsmin < Nmin and Nsmaj < Nmaj. We select a number of 

seed examples of the majority class in Esmaj by calculating ML, which is equal to min 

(Nmaj / Nmin, Nsmaj). Correspondingly, a subset MS of the minority class examples in 

Esmin, is selected as seeds, where MS is calculated as min ( (Nmaj X ML) / Nmin, Nsmin). 

The final sets of seed examples are placed in sets Emaj and Emin.  
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3.2   Generate Synthetic Data and Balance Class Frequencies 

The aim of the data generation process is to generate additional synthesis instances to 
add to the original training set Etrain. The data generation process extends our earlier 
work, as presented in [15, 16, 17], by generating data for the majority and minority 
classes separately. That is, the data generation process generates two sets of data. 
Firstly, a total of ML sets of new majority class examples, based on each seed instance 

in Emaj, are generated. For each attribute included in the synthetic example, a new 
value is generated based on the following constraints [15, 16, 17].  

For Nominal attribute, the data generation produces a total of Nmaj attribute values 

for each seed in Emaj. The values are chosen to reflect the distribution of values con-
tained in the original training attribute with respect to the particular class. This is 
achieved by considering, for each class, the number of occurrences of different attrib-
ute values in the original data set.  

For Continuous attribute, the data generation produces a total of Nmaj attribute val-

ues. The values are chosen by considering the range [min, max] of the original attrib-
ute values with respect to the seed class. Also, the distribution of original attribute 
values, in terms of the deviation and the mean, is used during data generation.  

Similarly, Ms different sets of new minority class examples, each based on a seed 

instance in Emin, are constructed. These sets of instances are added to the original 
training set. Interested readers are referred to [15, 16, 17] for a description of the data 
generation process and its evolution. 

3.3   Balance the Training Weights of Separate Classes 

In the final step prior to re-training, the total weights of the examples in the different 
classes are rebalanced. By rebalancing the total weights of the different classes, boost-
ing is forced to focus on hard as well as rare examples. 

Recall that the data generation process generates sets of synthetic examples based 
on seed examples Emaj and Emin corresponding to the majority and minority classes. 
Before the generated data are added to the original data set, each of the synthetic ex-
amples is assigned an initial weight. The initial weight of each example is calculated 
by dividing the weight of the seed example by the number of instances generated 
from it. In this way, the very high weights associated with the hard examples are bal-
anced out. Rebalancing ensures that the boosting algorithm focuses on hard as well as 
minority class examples. 

When the new training set is formed, the total weights of the majority class exam-
ples (denoted by Wmaj) and the minority class examples (denote by Wmin) in the new 

training data are rebalanced as follows. If Wmaj > Wmin, the weight of each instance in 

the minority class is multiplied by Wmaj / Wmin, Otherwise, the weight of each instance 

in the majority class is multiplied by Wmin / Wmaj. In this way, the total weight of the 
majority and minority classes will be balanced. Note that, prior to training, the 
weights of the new training set will be renormalized, following the AdaBoost method, 
so that their sum equals 1 [1, 2, 3]. 
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4   Experiments 

This section describes the results of evaluating the performance of the DataBoost-IM 
algorithm against imbalanced data sets, in comparison with the AdaBoost benchmark-
ing boosting algorithm [1, 2] and as well as the C4.5 decision tree, which has become 
a de facto standard against which new algorithms are being judged [18]. The C4.5 
algorithm is also used as base classifier.  

Table 2. Summary of the data sets used in this paper. Shown are the number of examples in the 
data set; the number of minority class; the number of majority class; the class distribution; the 
number of continous, and the number of discrete input features 

Data set Case Minority 
Class 

Majority 
Class 

Class  
Distribution 

Feature  
Continuous    Discrete 

CREDIT-G 1000 300 700 0.30:0.70 7 13 
BREAST-CANCER 286 85 201 0.30:0.70 0 9 
PHONEME 5484 1586 3818 0.29:0.71 5 0 
VEHICLE 846 199 647 0.23:0.77 18 0 
HEPATITIS 155 32 123 0.20:0.80 6 13 
SEGMENT 2310 330 1980 0.14:0.86 19 0 
GLASS 214 29 185 0.13:0.87 9 0 
SATIMAGE 6435 626 5809 0.09:0.91 33 0 
VOWEL 990 90 900 0.09:0.91 10 3 
SICK 3772 231 3541 0.06:0.94 6 23 
PRIMARY-TUMOR 339 14 325 0.04:0.96 0 17 

 
To evaluate the performance of the DataBoost-IM method, we obtained eleven data 
sets from the UCI data repository [11]. These data sets were carefully selected to 
ensure that they (a) are based on real-world problems, (b) varied in feature character-
istics, and (c) vary extensively in size and class distribution. Table 2 gives the charac-
teristics of the data sets used for the experiments. Shown are the number of cases, the 
number of the majority and minority classes, the class distribution, and the type of the 
features. For the glass, vowel, vehicle, satimage and primary-tumor data sets, we 
increased the degree of skew by converting all but the smallest class into a single 
class. For the sick data sets, we deleted the ’TBG’ attribute due to the high occurrence 
of missing values.  

4.1   Methodology and Experimental Results 

We implemented the experiments using Weka [19], a Java-based knowledge learning 
and analysis environment developed at the University of Waikato in New Zealand. 
Results for the data sets, as shown in Table 2, are averaged over five standard 10-fold 
cross validation experiments. For each 10-fold cross validation the data set was first 
partitioned into 10 equal sized sets and each set was then in turn used as the test set 
while the classifier trains on the other nine sets. A stratified sampling technique was 
applied here to ensure that each of the sets had the same proportion of different 
classes. For each fold an ensemble of ten component classifiers was created. In the 
experiments, the C4.5 decision trees were pruned [18].  
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Table 3. Test set G-mean, F-measure of minority class, F-measure of majority class, overall 
accuracy , true positive rate of minority class, and true positive rate of majority class for the  
data sets using (1) C4.5,  (2) AdaBoost ensembles, and (3) DataBoost-IM ensembles 

Data Set 
Name 

Methods G-
Mean 

F-measure 
of min. class 

F-measure 
of maj. class 

Overall 
Accuracy 

TP rate of 
min. class 

TP rate of  
Maj. Class 

CREDIT-G C4.5 56.72 43.88 80.53 71.10 37.66 85.42 
 AdaBoost 58.91 45.74 78.69 69.40 43.00 80.71 
 DataBoost-IM 61.96 49.64 80.22 71.60 46.66 82.28 
BREAST- C4.5 50.84 39.31 84.39 75.17 27.05 95.52 
CANCER AdaBoost 58.12 44.06 74.93 65.38 45.88 73.63 
 DataBoost-IM 60.04 46.51 77.00 67.83 47.05 76.61 
PHONEME C4.5 84.22 77.23 90.07 86.17 79.88 88.78 
 AdaBoost 86.74 81.86 92.60 89.48 80.83 93.08 
 DataBoost-IM 88.40 83.83 93.29 90.52 83.73 93.34 
VEHICLE C4.5 92.50 87.90 96.19 94.20 89.44 95.67 
 AdaBoost 95.58 92.57 97.67 96.45 93.96 97.21 
 DataBoost-IM 95.77 93.70 98.06 97.04 93.46 98.14 
HEPATITIS C4.5 57.91 42.10 86.95 78.70 37.50 89.43 
 AdaBoost 66.86 52.45 88.35 81.29 50.00 89.43 
 DataBoost-IM 76.25 62.68 89.71 83.87 65.62 88.61 
SEGMENT C4.5 92.28 87.23 97.87 96.36 86.96 97.92 
 AdaBoost 95.98 93.59 98.94 98.18 93.03 99.04 
 DataBoost-IM 97.35 95.59 99.26 98.74 95.45 99.29 
GLASS C4.5 85.91 78.57 96.77 94.39 75.86 97.29 
 AdaBoost 89.48 81.35 97.01 94.85 82.75 96.75 
 DataBoost-IM 92.34 89.28 98.38 97.19 86.20 98.91 
SATIMAGE C4.5 72.70 56.44 95.41 91.70 55.27 95.62 
 AdaBoost 77.01 66.72 96.76 94.11 60.70 97.71 
 DataBoost-IM 80.42 68.86 96.76 94.14 66.61 97.10 
VOWEL C4.5 95.81 93.78 99.38 98.88 92.22 99.55 
 AdaBoost 97.69 97.17 99.72 99.49 95.55 99.88 
 DataBoost-IM 99.38 98.88 99.88 99.79 98.88 99.88 
SICK C4.5 93.03 89.13 99.30 98.70 87.01 99.46 
 AdaBoost 94.23 91.15 99.43 98.93 89.17 99.57 
 DataBoost-IM 95.96 91.84 99.46 98.99 92.64 99.40 
PRIMARY- C4.5 0.00 0.00 97.89 95.87 0.00 100.0 
TUMOR AdaBoost 37.50 19.04 97.41 94.98 14.28 98.46 
 DataBoost-IM 52.62 28.57 96.92 94.10 28.57 96.92 

 
The experimental results for all eleven data sets described in Table 2 are presented 

in Table 3. For each data set, we present the results achieved when using the C4.5, 
AdaBoostM1 and DataBoost-IM methods. Also, for each algorithm, the table presents 
the results in terms of the G-mean, overall accuracy rates, TP rate of the majority 
class and the minority class, F-measure of the majority class and the minority class. 

One conclusion drawn from the experimental results is that the DataBoost-IM 
method consistently achieves higher performance on the minority class as well as the 
majority class in comparison with the C4.5 and AdaBoost algorithms. However, this 
improvement varies with different data sets. Consider the G-mean scores, which re-
flect the classifier’s predictive accuracies against the majority and the minority class, 
as well as the degree of balance between classes. The results show that, for the G-
mean score, the DataBoost-IM method surpasses the performance of the C4.5 and the 
AdaBoost algorithms in all cases. The experimental results also show that in many 
cases, the improvements are large. For example, in the Hepatitis data set, the 
AdaBoost algorithm improves on the C4.5 method’s G-mean, i.e. 57.91% compared 
to 66.86%, and the DataBoost-IM algorithm significantly improved on the AdaBoost 
algorithm’s performance, with a G-mean of 76.25%. In the case of the Primary-
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Tumor data sets, the G-mean for the C4.5 method is 0%, since the C4.5 classifier 
achieved a 100% accuracy rate for the majority class but misclassified all minority 
examples. In this case, the AdaBoost algorithm produced a G-mean of 37.50%, whilst 
the DataBoost-IM ensemble achieved a G-mean of 52.62%. This improvement was 
credited with the achievement of the minority class’s TP Rate of 28.57% by the Da-
taBoost-IM compared to 0% by the C4.5 classifier and 14.28% by the AdaBoostM1 
method. When considering the F-measures a similar conclusion holds. Table 3 more-
over shows that, when considering the overall accuracy, the DataBoost-IM method 
consistently produces highly accurate ensembles. 

In conclusion, the results, as shown in Table 3, indicate that the DataBoost-IM ap-
proach described here extends the predictive capabilities of the boosting ensemble and 
the component classifier when evaluated in terms of overall accuracy, G-mean and F-
measures. This is achieved through integrating the data generation approach, in which 
class frequencies and training weights on different classes are rebalanced, into the 
boosting procedures. 

5   Conclusion 

This paper introduced a technique to create an ensemble of highly accuracy classifi-
ers, when learning from imbalanced data sets. The DataBoost-IM algorithm extends 
the standard boosting approach by generating additional synthetic examples for both 
the majority and the minority classes, balancing the class distribution and rebalancing 
the training weights on different classes. In this way, boosting focuses not only on 
hard examples, but also on rare minority class examples. The DataBoost-IM algo-
rithm was illustrated by means of eleven UCI data sets with various features, degrees 
of imbalance and sizes. The results obtained indicate that the DataBoost-IM approach 
increases the performance power of boosting algorithms when applied to imbalanced 
data sets. In particular, the DataBoost-IM algorithm achieved better predictions, in 
terms of the G-mean and F-measures metrics, against both the minority and majority 
classes, when compared with the C4.5 and AdaBoostM1 algorithms. Importantly, our 
method does not sacrifice one class for the other, but produce high predictive accu-
racy against both the majority and the minority class. 

It follows that our approach should address two issues, namely finding optimal 
way to re-balance the learning bias toward majority class and investigating the per-
formance against noisy data. Also, other weight-assignment methods will be further 
investigated. Future work will also include studying the voting mechanism of the 
boosting algorithm using different metrics such as the ROC curve and to provide a 
sound theoretical justification of the Databoost-IM parameter selection process.  
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Abstract. Cascades of boosted classifiers have become increasingly pop-
ular in machine vision and have generated a lot of recent research. Most
of it has focused on modifying the underlying Adaboost method and far
less attention has been given to the problem of dimensioning the cascade,
i.e. determining the number and the characteristics of the boosted classi-
fiers. To a large extent, the designer of a cascade must set the parameters
in the cascade using ad-hoc methods.

We propose to automatically build a cascade of classifiers, given just a
family of weak classifiers a desired performance level and little more.
First, a boosted classifier with the desired performance is built using any
boosting method. This classifier is then “sliced” using dynamic program-
ming into a cascade of classifiers in a nearly computation-cost-optimal
fashion.

1 Introduction

Boosting, [5, 17] combines the output of many weak classifiers - ones that perform
slightly better than guessing [11]. By increasing the number of weak classifiers,
arbitrarily small error rates can be reached on a training set. For example, one
can achieve very good face recognition by combining hundreds of very simple
classifiers [21]. However, the computational complexity increases linearly with
the number of weak classifiers. If the target application has few true positives,
as is the case in face detection, running such a big boosted detector would be
an overkill, since, as shown by Viola and Jones [21], most true negatives can be
rejected easily, using a small boosted detector. Their approach was thus to build
a cascade of increasingly discriminative detectors, resulting in a face detector
with performance similar or better to that of previous approaches [16, 18] while
being computationally much less demanding.

Since then, cascades of classifiers have become increasingly popular [9, 10,
6]. Moreover, the methodology in [21] is not specific to face detection and was
effectively applied to other cases [3]. The designer of a cascade does not need
an advanced task-specific classifiers, although doing so can improve the overall
performance of the system.

Many variants of [21] of have been developed. In most, the research effort
focuses on employing better boosting methods. Viola and Jones [20] adapt Ad-
aboost to the case of different misclassification costs for false positive and false

� This work was funded by the Kentucky Office of New Economy.

A. Fred et al. (Eds.): SSPR&SPR 2004, LNCS 3138, pp. 983–991, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



984 Etienne Grossmann

Algorithm 1 Cascaded classifier.
Given: Weak classifiers h• () , . . . , hT () and weights provided by a boosted classifier

HB (X), cascade schedule 1 = T• < T• < . . . < TL = T + 1 and thresholds
θ• , . . . , θL.

Input: Vector X

Initialization: Set l = 1,η = 0
While l ≤ L

1. Set η = η + αTl−1hTl−1 (X) + . . . + αTl−• hTl−• (X)
2. If η < θl, classify X as a negative, i.e. H(X) = −1. Exit.
3. Set l = l + 1.

Classify H (X) = sign (η).

negatives. Li et al [8] modify Adaboost to obtain better performance using less
weak classifiers, resulting in better performance on the training set and lower
run-time complexity, but increased training time. Wu et al [6] and McCane and
Novins [12] reduce drastically the training time1 at the cost of slightly reduced
performance. Little science, in contrast, has been applied to the characteristics
of the boosted classifiers in a principled manner : empirical guidelines are given
in [21] and by Lienhart et al [10] to dimension the intermediate classifiers of the
cascade. McCane and Novins [12] propose a method to do this automatically and
we will discuss their method further in this article. The present article proposes
another such method.

We argue that choosing the characteristics of the classifiers in the cascade
- whether it be number of weak classifiers or error rates - is the fundamental
problem. After all, the main difference between a cascade and a single big boosted
algorithm is precisely this architecture, which allows to reject true negatives early
and thus reduce the computation load.

In the present work, we propose to build a cascade from a single big boosted
classifier. The -very simple- idea is to compute a subset of weak classifiers of the
big boosted classifier and test whether the input is positive or negative. If it is
positive, compute another subset of weak classifiers and test again. We continue
this way until the input is rejected or the complete boosted classifier has been
computed. The resulting classifier algorithm is shown in Algorithm 1.

Some properties of the proposed method are easily seen. Most importantly,
the set of positive inputs of the proposed classifier H (X) is included in that of
the boosted classifier HB (X) on which it is based. The true positive ratio of
H (X) is thus smaller than that of HB (X) and its true negatives is higher. The
point in “ROC space” corresponding to H (X) is thus below and on the left of
the point corresponding to HB (X).

This algorithm shows a clear resemblance both with Adaboost, for the choice
of weights and with the cascaded classifiers cited above. Figure 1 compares graph-
ically the three architectures considered so far. In Adaboost (a), all weak classi-

• Viola and Jones mention weeks of training time.
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fiers are computed at once, whereas in the proposed method and in the cascade
of [21], only a subset of the weak classifiers is computed between each test. The
difference between the proposed method (b) and [21] (c) is that in the former,
the output the previous classifiers is kept to contribute to the input of the next.
As a result, the output of the last classifier in (b) is exactly the same (assuming
the weights and weak classifiers are the same, which is the case) as that of the
boosted algorithm (a).
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Fig. 1. Comparison of classifier architectures. The difference between adaboost (a) and
(b,c) is that in the later, negative classification can be achieved after just a few weak
classifier evaluations. The difference between the proposed method (b) and the cascade
of [21] (c) is that the output of previous stages of decision is taken into account at each
decision (bold arrows in (b)).

Going back to Algorithm 1, one sees that the output of H (X) is defined by
the weak classifiers h1 (X) , . . . , hT (X) and weights α1, . . . , αT that define the
boosted classifier HB (X), but also by the schedule T1, . . . , TL and thresholds
θ1, . . . , θL of the tests. The choice of the Tl and θl is determinant to obtain a
computationally efficient classifier and at first sight, this it may appear that
setting these parameters is as hard as setting the parameters for a cascade of
classifiers. However we will see that, using dynamic programming, it is possible
to set these parameters in a way that:

a) Preserves the output of the boosted classifier on any given data set, e.g. on
the training set of the boosted classifier.

b) Nearly optimal in terms of the computational cost of the classifier, amongst
all cascades that verify a).

Another benefit of the proposed method is that it is easier to choose the true
positive and negative rates of the detector. Indeed, in a boosted classifier, there
is a unique threshold that determines the point on the ROC curve on which the
classifier lies. It is sufficient to set this threshold prior to building the cascade
to guarantee that the cascade will achieve this point of the ROC curve (for the
given dataset). Since the computation cost of building the cascade is negligible
with respect to that of boosting, it is easy to build classifiers for any point on the
ROC curve achievable by the original boosted algorithm. In contrast, previous
cascading methods would either require to train a new cascade for each desired
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Algorithm 2 Cascade building procedure.
Assume given

– A family of weak classifiers h (X) a dataset X• , . . . ,XN and y• , . . . yN .
– Target false positive and true positive ratios for the classifier.
– An estimate of the proportion P• of positives in the targeted real-world input.
– An estimate of the computational cost of the weak classifiers and of performing a
test on the targeted computer architecture.

The cascade is obtained by:

Boost the weak classifiers and build its ROC until the targeted performance or better
[14] is attained.

Build a computationally-optimal cascade with the architecture of Alg. 1 that has
exactly the same output as the boosted classifier on the training data.

ROC point, or use an ad-hoc method to adjust the thresholds of the boosted
classifiers.

Also, the proposed cascading method is not limited to a particular boosting
method. It is possible to use a boosted classifier specialized for a given cost
metric [4, 20, 13] or aimed at being computationally more efficient [8]. In the
present work, we will use the most studied Adaboost method [17, 11].

The proposed procedure for building a cascade of classifiers is described in
Algorithm 2.

Note that we assume the proportion of true positives P0 in the targeted
real-world application is approximately known. This proportion is usually not
known precisely, but one knows that positives are a small minority - without
this assumption, the whole cascade architecture stops making sense. We will see
below that the exact value of P0 does not influence greatly the resulting cascade.

Also, it is assumed that the computational cost of the weak classifiers is
known, as well as the computational cost of performing the test in Algorithm 1.
These quantities can be determined experimentally by benchmarking the tar-
geted computer system. We do not assume that the cost of a test is negligible,
as the cost of the weak classifiers may itself be very low.

We model explicitly the computational complexity of the classifier and de-
termine a nearly optimal cascade amongst all cascades derived from a given
boosted classifier. Although there exists work that considers the cost of evaluat-
ing a classifying tree [19], we are only aware of McCane and Novins who adopt
[12] a similar approach to build a computationally near-optimal cascade of de-
tectors. However, [12] assumes an approximate model for the computational cost
of a boosted classifier as a function of its false positive rate. Also, they need to
consider every possible (plausible) cascade length separately and determine, by
numerical optimization, sub-optimal parameters for each. In contrast, we obtain
the nearly-optimal sequence using very few assumptions and with very little
computation, by using dynamic programming.
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2 Computationally Optimal Cascade Design

We assume having a boosted classifier that achieves desired true positive and
true negative rates on a given dataset. This can be done boosting a family of
weak classifiers. until the ROC curve of the classifier passes above the desired
true positive and negative ratios.

At this point, we have a boosted classifier HB (X) defined by weak classifiers
h1 (X),..., hT (X) and weights α1, . . . , αT :

HB (X) =
{
1 if

∑T
t=1 αtht (X) > 0

−1 otherwise.

Additionally, we are given a dataset X1, . . . , XN , with known classes y1, . . . , yN
(yn ∈ {−1, 1}). Define I+ (resp. I−) the set of indices n such that HB (Xn) = 1
(resp. −1).

2.1 Choice of Thresholds θ1, . . . , θL

Consider an algorithm as in Alg. 1, characterized by the test schedule T1, . . . , TL
and thresholds θ1, . . . , θL. Define the intermediate real-valued classifiers:

Gt (X) =
t∑

s=1

αshs (X) (1)

Define thresholds θ′t for each 1 ≤ t ≤ T so that Gt (Xn) > θ′t for all the positive
examples n ∈ I+:

θ′t > min
{
Gt (Xn) | n ∈ I+

}
. (2)

In practice, we may usually set θ′t to the midpoint between the value above and
the smallest Gt (Xn) that is greater than Eq. (2) and n ∈ I−.

We will set
θl = θ′Tl . (3)

It is clear that, with this choice, and independently of the T1, . . . , TL, the cascade
defined in Algorithm 1 has the same output as the original boosted algorithm
on the training data.

2.2 Computational Cost Model

The proportion of true positives and false positives that are accepted at level2 t
is estimated by:

pt = # {n | yn = 1 andGt (Xn) > θ′t} /# {n | yn = 1}
rt = # {n | yn = −1 andGt (Xn) > θ′t} /# {n | yn = −1} .

• We will call levels 1 ≤ t ≤ T the indices of the weak classifiers that constitute the
boosted classifier.
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where # denotes the cardinal. Assuming that the proportion of positives in the
real-world input is P0, the proportion of real-world inputs that are accepted at
level t is approximately:

qt = P0pt + (1− P0) rt. (4)

We assume in the following that q is decreasing in t. Although this is not
necessarily true in the training data, the true ratio can be expected to be
monotonously decreasing.

Now, considering any cascade of the type of Algorithm 1, the expected com-
putation cost for a real-world input is approximately:

C = (A1 + B) + (A2 +B) qT1 + . . .+ (AL +B) qTL , (5)

where
Al =

∑
Tl−1≤t<Tl

At,

At is the computational cost of the tth weak classifier and B is the cost of
performing a test on the targeted computer.

2.3 Optimal Test Schedule T1, ..., TL

We now show that the optimal computational cost is obtained efficiently using
dynamic programming [2], because the cost Ct of the optimal cascade starting
at level t ∈ {1, . . . , T} is can be defined recursively from the costs Cs>t.

The optimal cascade starting at t is necessarily one of the following: (1) the
trivial cascade consisting in computing all the remaining classifiers and testing
the result; (2) the cascade consisting in computing classifiers t, . . . , T − 1 per-
forming the test at T −1 and following the optimal sequence from T −1 to T ; ...
; (T − t+1) computing the tth weak classifier, testing and following the optimal
sequence from t+ 1 to T . The costs of each possibility is:

Ct,T = qt (At + . . .+AT−1 +AT ) + 0
Ct,T−1 = qt (At + . . .+AT−1) + CT

...
...

Ct,t = qtAt + Ct+1

(6)

The optimal cascade cost and optimal “jump” at t are thus:

Ct = min {Ct,s | t < s ≤ T } , St = 1 + argsmin {Ct,s | t < s ≤ T } . (7)

From there, the optimal cascade sequence is:

T0 = 1, T1 = S1, T2 = ST1 , . . . , Tt = STt−1 , . . . , TL = T + 1. (8)

Note that it is not necessary to specify the length of the optimal sequence.
Also, the resulting cascade does not depend on the proportion of true and false
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positives in the training data, but on the expected proportion P0 of positives in
the real-world data.

The dependence on P0 is itself quite mild : the terms in Eq. (6), can be
developed as affine expressions of P0 with coefficients depending on pt, rt, At

and B in which the constant term is proportional to the false positive rate rt.
Near the end of any cascade, the cost is thus, nearly linear in P0 and the optimal
cascade does not depend on P0. Even earlier in the cascade, when rt is greater,
we have found that the optimal sequence does not vary greatly with P0.

Finally, on should note that the obtained scheduling is optimal only if the
series qt defined in Eq. (4) is decreasing, which is not necessarily the case for
a given dataset, although this is the expected behaviour of the boosted clas-
sifier. We found that in practice, these series are not monotonous, and that
some smoothing could be applied3. However, since the general tendency of the
unsmoothed series is monotonous, we consider that the cost of the resulting
sequence is near the true minimum.

3 Experimentation

This section, presents experimental validation for the theory developed above.
For this purpose, we use a face classifier still in development, which uses the
same Haar filters as [21]. The training dataset consists in 2000 face images taken
from the BioID database [7], from dataset C of the CMU database [15] and from
images gathered on the internet. All face and non-face images were scaled to 18-
by-31 pixels and were normalized in variance and range. Images from the BioID
database were cropped repeatedly at slightly different positions and scales. A
validation dataset of 5000 other images is built in the same way. On our computer
system, it was found that the cost A of weak classifiers is approximately 40 times
that of performing a test and this value is used in the sequel.

Comparison of performance of boosted classifier and cascades. In this experi-
ment, a boosted classifier4 consiting of T = 100 weak classifiers is built using
the training dataset and its ROC is computed using the validation dataset. Only
points on the upper convex hull of the ROC curve are kept. For each non-trivial
vertex of the ROC, the corresponding cascaded classifier is built, using the train-
ing dataset and assuming P0 = 0.001. The cascades have from 29 to 37 levels
(average: 34.1).

Figure 2 (left) shows part of the ROC curve of the boosted classifier (topmost
curve) the curve linking linking the performances of the cascaded classifiers ob-
tained from the boosted classifier with the thresholds of the ROC vertices. The
lower dotted ROC is that of the boosted classifier truncated at the 34th weak
classifier, having thus similar computation cost as the cascades. This experiment
shows the performance of the cascade is very close to that of the underlying
boosted classifier, while decreasing the average computation cost very much.
• We do not use any in the experimental section, unless otherwise specified.
• We use an unpublished boosting method inspired of [1] and [20] adapted to unequal
importances of false positives and false negatives.
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Fig. 2. Left: Detail of ROC of boosted (plain line), cascaded classifiers (dashed) and
boosted classifier with same cost as cascades (dotted). Right: Relative computational
cost of cascade w.r.t. original classifier v.s. false positive rates.

Figure 2 (right) shows the computational cost of the cascade, assuming that
P0 = 0.001 divided by that of the original boosted classifier. The dotted curve
is the expected value determined while constructing the cascade, while the the
dashed curve above is the value observed on the validation dataset.

Since P0 is very low, it is natural to set the classifier with a very low false
positive rate, to avoid being overwhelmed by false positives. Figure 2 (right)
shows that in this condition, the empirical and theoretical compuation costs are
very similar and that they are at their lowest.

Architecture of cascade with varying P0. In this experiment, the cascade is built
for P0 ∈

{
1/101+i/2 | 0 ≤ i ≤ 6

}
with a fixed boosted classifier (T = 100) and

input data. This experiment showed that the schedule is the same for nearly all
cascades, with those with higher levels of P0 skipping some tests. This confirms
our claim that the value of P0 is not determinant in the resulting cascade.

4 Discussion and Conclusions

We have proposed a method to automatically design a cascade classifier with a
desired performance, targeted for a given type of input and a given computer
architecture. This methodology applies to any underlying boosting method,
whether the best-known algorithm of Schapire and Singer [17] or, as was the
case in the experimental section, a boosting method targeted at a given region
of the ROC space. Since the resulting cascade is so closely related to its un-
derlying boosted classifier, we can expect that the theoretical properties of this
cascade will be easier to study than that of ad-hoc cascades and that this would
be a step towards being able to set the generalization bounds of the cascade,
rather than its performance on a given dataset.

Future research is required to find ways of setting the thresholds of the cas-
cade levels so as to follow the ROC of the original classifier better still than was
shown in the experimental section. Another direction of research is to better
estimate the proportion ql of examples that reach a level l of the cascade.
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Abstract. Off-line handwritten numeral recognition is a very difficult task. It is 
hard to achieve high recognition results using a single set of features and a sin-
gle classifier, since handwritten numerals contain many pattern variations 
which mostly depend upon individual writing styles. In this paper, we propose a 
recognition system using hybrid features and a combined classifier. To improve 
recognition rate, we select mutually beneficial features such as directional fea-
tures, crossing point features and mesh features, and create three new hybrid 
feature sets from them. These feature sets hold the local and global characteris-
tics of input numeral images. We also implement a combined classifier from 
three neural network classifiers to achieve a high recognition rate, using fuzzy 
integral for multiple network fusion. In order to verify the performance of the 
proposed recognition system, experiments with the unconstrained handwritten 
numeral database of Concordia University, Canada were performed, producing 
a recognition rate of 97.85%. 

1   Introduction 

As a typical example of complex pattern recognition system, totally unconstrained 
handwritten numeral recognition is a real challenge. It is difficult to achieve high 
recognition results using a single feature set and a single classifier, since this system 
contains many pattern variations which mostly depend upon individual writing styles. 
Several methods have been proposed and implemented in a number of different ways 
in the practical applications such as zip code recognition, document analysis and 
factory automation and accuracy of 95% and above have been reported [1][11]. To 
improve the recognition rate, current researchers aim at two major tasks, i.e. selection 
of good feature candidates and realization of universal classifiers. First, the selection 
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of good feature candidates largely depends upon one’s experience and their capabili-
ties can only be evaluated by the recognition results. In this paper, we have selected 
feature extraction methods, which represent pattern variations effectively. Features 
that we extracted from input numerals include directional features, crossing point 
features, and zoning features. To improve the recognition rate, we combine mutually 
beneficial features and create three new feature sets by considering both the local and 
global characteristics of the input images. Second, the design of classifiers generally 
falls into three categories depending upon the feature vectors used, i.e., feature vector 
based classifier, syntactic/structural based classifier, and neural networks classifier 
[2][3][11]. But it is very difficult to achieve good performances with a single classi-
fier, thus the current trend is to implement pattern multiple classifiers rather than a 
single classifier to achieve a highly reliable performance[4][11]. In this paper, we 
have used three neural networks as single classifiers, and used fuzzy integral to com-
bine their outputs to obtain a higher recognition rate. 

This paper is organized as follows. In section 2, we present a review of earlier 
works. Feature extraction methods are introduced in section 3. In section 4, we de-
scribe our classification methodology and fuzzy integral for the aggregation of output 
of the single neural networks. Recognition result of each single classifier and overall 
recognition results are included in section 5. Finally a brief summary and future study 
are discussed in the last section.  

2   Review of Earlier Works 

In this section, we review some representative methods for the recognition of totally 
unconstrained handwritten numerals. These approaches generally fall into two realms 
according to the attributes of the feature vectors. The first category includes tech-
niques such as template matching, moments, characteristic loci and mathematical 
transforms which generally represent global characteristics of the input numerals. In 
the second category, efforts are aimed at extracting the shape characteristics of the 
input numerals from their skeletons or contour profiles. Such features include loops, 
endpoints, junctions, arcs, concavities and convexities that generally represent local 
characteristics of the input numerals. 

Template feature extraction methods have the problem that they are very suscepti-
ble to small variations such as translation and rotation, thus the modified version such 
as affine transform is a good alternative [7]. Structural decomposition methods of 
feature extraction strive to represent structural properties of the input patterns. Series 
expansions are methods of representing a signal as a series of coefficients created by 
projecting the signal onto some basis, but Fourier descriptors can not be applied to 
fragmented characters, which usually happen in the handwritten numerals because 
this method extracts only one single closed contour. Furthermore the frequency in-
formation of Fourier transform is global, intuitively; a more localized frequency 
representation should be more effective such as wavelets transform [10]. Moments 
are invariant to size and rotation, and some moment invariants have invariant 
characteristics to skewed and mirrored images. Using Zernike moments, we can 
obtain size and rotation independent features. And KL transform has the best optimal 
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rotation independent features. And KL transform has the best optimal information 
compactness in terms of mean square error, and is used for object recognition in sev-
eral application domains, e.g., face recognition and the verification of slab number. 

3   Feature Extraction 

In the case of handwritten numerals, it seems natural to use some a priori knowledge 
about the recognition task in order to transform the low level information of the pixel 
image into a data representation at a higher level. A good feature should represent 
characteristics of a class (‘0’-‘9’) that helps to distinguish it from other classes, while 
remaining invariant to pattern diversities within the class. Features also should avoid 
redundant information since this will lead to a more complex distribution in the fea-
ture space and therefore requires a more complex model. Before we extract feature 
vectors from the input image, we first extract generic data area in the input image by 
using projections on vertical and horizontal axes. After this segmentation, we under-
take preprocessing steps, viz, median filtering for removing small holes inside black 
pixels which may cause problems especially when extracting crossing point feature 
and then we perform size normalization to reduce the effect of pattern variations. In 
this paper, three features are used. The first one consists of directional and global 
features. Line segments and their directions seem to be an adequate feature. For each 
location in the image, information about the presence of a line segment of a given 
direction (4-directions) is stored in a feature map. Among many first-order differen-
tial operators, the Kirsch edge detector has been known to detect four directional 
edges more accurately in comparison to other methods because the Kirsch edge de-
tector considers all eight neighbors. Directional feature maps for horizontal (H), ver-
tical (V), right-diagonal(R), and left-diagonal (L) directions are easily calculated by 
using Kirsch masks[5]. Some researchers used the four directional feature maps 
which are normalized to an 8×8 format [5], and others used the four directional fea-
ture maps normalized to 4×4 [4][6], and one global feature normalized to 4×4. In this 
paper, the size of 4×4 is used for directional and global feature maps. From normal-
ized 16×16 input images, four directional images are obtained by Kirsch operation in 
which 10 is used as a threshold value. After that, these 16×16 directional images and 
input image are compressed to 4×4 feature maps by accumulating the pixels in each 
4×4 subregion. This feature extraction process is depicted in Figure 1. 

 
�

 

Fig. 1. Overview of feature extraction 
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The second feature is zoning feature that can be considered as a good candidate for 
global feature, since zoning feature is obtained by diminishing the image resolution, 
thus, small variations are easily expressed by the rate of scaling factor although it is 
susceptible to slant and rotation. In this paper, 10×10 are used as the size of zoning 
feature. While the first feature considers global and local characteristics of input nu-
merals at the same time, zoning feature represents only global characteristics, which 
contain more detailed shape information. Finally, the third feature is a crossing point 
feature. Crossing point is defined as the point at which white pixel changes to black 
pixel at one scan line. And crossing point feature is obtained by summing the number 
of crossing points for each vertical and horizontal scan line. In this paper, from a 
normalized 20×20 input images, we obtain a 20-dimensional crossing point feature 
vector, 10-dimensions per axis. Each feature element of this feature vector is calcu-
lated as follows: one feature element is obtained by considering every two scan lines, 
i.e., one feature element is calculated by summing the number of crossing points on 
two adjacent scan lines and dividing it by the maximum number of occurrences in 
one scan line at each axis. We determine the maximum number of occurrences as 2 
for a horizontal scan line and 4 for a vertical scan line. So, in our case, 4 and 8 are 
used respectively. The purpose of using two scan lines per feature element is to re-
duce the dimension of the feature vector and avoid confusions caused by shape varia-
tion of the numeral. Figure 2 shows this feature extraction process. 

 
�

 

Fig. 2.  Extraction of crossing point feature 

By using the three features described above, we created three feature sets to im-
prove the recognition rate; feature set 1(FS1) is 4×4 directional and global feature 
maps which is the first feature itself, feature set 2(FS2) is the combination of zoning 
feature and crossing point feature and feature set 3(FS3) is the combination of feature 
set 1 and crossing point feature. Each feature set is used as the input for each single 
classifier. 

4   Multiple Classifications 

In this paper, we combine three independent neural networks classifiers to recognize 
totally unconstrained handwritten numerals. Recently the concept of combining mul-
tiple networks has been actively studied for developing highly reliable neural net-
works system. One of the key issues of this approach is how to combine the results of 



996      Kyoung Min Kim et al. 

the various networks to give the best estimate of the optimal result. The basic idea of 
the multiple network classifiers is to develop n independently trained classifiers with 
particular features, and to classify a given input pattern by obtaining a classification 
from each replica of the network and then using combination methods [8]. Each clas-
sifier uses an independent feature vector as input. The combiner acts as a final deci-
sion making processor for selecting the appropriate output class. There are two meth-
ods of combining multiple classifiers: loosely coupled and tightly coupled subnet-
works. Ryu used tightly coupled subnetworks [2], based on the results of the interme-
diate layer as the inputs of the final classification stage. Loosely coupled subnetworks 
use final outputs of each subnetwork and they evaluate the overall classification re-
sults using only these values. There are several methods to achieve this goal, such as 
winner take all, majority voting, Dempster-shafer method and BKS (Behavior knowl-
edge space) method etc. [9][11]. In this paper we use the concept of fuzzy integral to 
combine multiple classifiers. Fuzzy integral is a nonlinear functional that is defined 
with respect to a fuzzy measure, especially λg -fuzzy measure introduced by Sugeno 

and provides a useful way for aggregating information. To calculate fuzzy integral, 
we first select fuzzy measure satisfying boundness, monotonousness and continuity. 
Fuzzy measure can be determined in several ways. Sugeno introduced the λg -fuzzy 

measure satisfying the following property. 

         (B) (A)g g  g(B) g(A) B) g(A  λ++=∪  (1) 

 For all Φ=∩⊂ BAXBA ,,  and for some ∞<<− λ1 . 

Fuzzy integral is defined as follows; Let Y  be a finite set and ]1,0[: →Yh  a fuzzy 

subset of Y . The fuzzy integral over Y of the function h  with respect to a fuzzy 
measure g  is defined by  
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The calculation of the fuzzy integral when Y  is a finite set is easily given. Let 
Y = },...,,,{ 321 nyyyy be a finite set and let ]1,0[: →Yh  be a function which is the 
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where λ  is given by solving the following equation 
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and ),1( ∞−∈λ  and 0≠λ  and n  is the number of subnetworks. This can be easily 

calculated by solving a )1( −n th degree polynomial and finding the unique root 

greater than -1. The calculation of the fuzzy integral with respect to a λg -fuzzy 

measure would only require the knowledge of density function, where i -th density 
ig  is interpreted as the degree of importance of the source iy  toward the final 

evaluation. Fuzzy integral shows a good performance when the difference of outputs 

of subnetworks is minute because the value of ig  dramatically changes the perform-

ance compared to simple averaging or majority voting method. There is however, a 
key issue unsolved in the application of fuzzy integral, the determination of density 
values that determine the fuzzy measure used in the fusion process. In this paper, we 
determine these fixed densities from the knowledge of recognition rates of three neu-
ral networks, which also reflect the importance of each feature set they used. 

5   Experimental Results 

In this paper, we use three different feature sets to recognize totally unconstrained 
handwritten numerals. Aforementioned features have certain deficiencies in repre-
senting the input numerals, e.g. directional features can be confused when the input 
numeral is slanted or connected among pixels, and zoning features always lose their 
local characteristics. To effectively manipulate global and local characteristics of 
input numerals, we combine two or three mutually complementary features and make 
three new feature sets. This can make up for the weakness of one feature by the 
strength of other features. And the network fusion algorithm is used to improve the 
overall recognition results. The overall recognition system block diagram of our 
scheme is shown in Fig. 3 where NN1, NN2, and NN3 are feedforward neural net-
work classifiers with one hidden layer, for which backpropagation learning algorithm 
is used. 
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Fig. 3. The overall recognition system 
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5.1   Results from Single Classifiers 

In this section, we use learning rate as 0.9, momentum as 0.7 for each neural network. 
The rejection criterion used in this paper is 

21

21

OO

OO
RC

+
−

=                  (6) 

where 1O  is the highest output node value and 2O  is the second highest of a given 
input pattern. Rejection takes place if the RC  falls below a threshold value that we 
set as 0.2. And the reliability in the table is computed according to the following 
equation: 

100×
+

=
Sub.Rec.

Rec.
Rel.   (7) 

where Rec. = correct recognition rate, and Sub. = substitution error rate. 

5.1.1   Feature Set 1 
The first feature set (FS1) consists of directional features and global features. FS1 has 
been used in several studies by itself and in combination with other features. Direc-
tional features have robustness with small pattern variations. To extract directional 
feature, we first normalize the input image to 16×16 using bilinear interpolation. And 
we obtain the four directional feature maps normalized to a 4×4 and one global fea-
ture normalized to 4×4, in which we use the value 10 and 12 respectively for value 
normalization to the range [0,1]. In the training process, we used several different 
numbers of hidden layer nodes, and obtained satisfactory error rates (0.8%) when we 
used the number of hidden layer nodes as about 80% of the dimension of the input 
feature vector.  

From the above recognition result, we see that feature set 1 has poor discrimina-
tive capability in number '8'. This is because of slanted and narrow inner spaces of the 
number '8'. And because we used only normalized 4×4 image as a global feature, this 
feature is inadequate to represent overall shape variations when distorted. But the 
overall recognition result is better than other relevant studies. 

5.1.2   Feature Set 2 
The second feature set (FS2) is composed of zoning features and crossing point fea-
tures. The training result (0.7% error rate) is a little better than feature set 1. This 
feature set represents global characteristics very well, but it may lead to confusion 
among similar numerals. The recognition result of feature set 2 shows a little im-
provement in comparison with feature set 1. We can observe that this feature set 
shows lower recognition results for '2' and '3' than other numerals due to the weak-
ness of the zoning feature. 

5.1.3   Feature Set 3 
To effectively manipulate the minute differences among input numerals, we make 
feature set 3 (FS3), which is composed of feature set 1, and crossing point feature 
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which was derived in the same manner as used in the feature set 2. The training result 
(0.01%) is much better than those of previous two feature sets. From Table 1, we see 
that this feature set shows better recognition results than the previous two recognition 
results. This is mainly due to the FS3, which represents local and global characteris-
tics of input numerals more effectively than the previous two individual feature sets. 
This recognition result alone has provided another possibility for practical use. But in 
numerals ’2’ and ’3’, there exist certain confusion in discerning one from the other. We 
will deal with an aggregation of three neural network outputs by using fuzzy integral 
to compensate for the weakness of a single classifier’s limitations and improve the 
overall recognition result. 

5.2   Results for Using Multiple Classifiers 

As introduced in the previous section, the network fusion using fuzzy integral com-
putes an overall recognition result by using fuzzy integral and the results of all the 
subnetworks. We use 1g  = 0.31, 2g  = 0.32, and 3g  = 0.33 as density values for 

NN1, NN2 and NN3 according to their recognition rates. The final recognition result 
using combined multiple classifiers is shown in Table 1. And some examples of mis-
recognized numerals are shown in Fig. 4. 

Comparatively, when we use simple averaging method in which the used weight 
values are the same as the above density values and majority voting techniques as a 
network fusion algorithm, we obtained final recognition results of 97.4% and 96.5%, 
respectively. From these results, we see that network fusion using fuzzy integral out-
performs other methods, but we also need to pay more attention to selecting proper 
feature sets for each subnetwork. 

Table 1. Final recognition result using feature sets and fuzzy integral 

 
 
 
 
 
 
 
 

 

 

Fig. 4. Examples of misrecognized numerals 

Methods Rec. Sub. Rej. Rel. 

Feature Set  1 95.15 4.10 0.75 95.88 

Feature Set 2 95.65 3.90 0.45 96.09 

Feature Set 3 96.95 3.00 0.05 96.97 

Multiple Classifier 
(Fuzzy Integral) 

97.85 2.15 0.0 97.85 
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6   Conclusion 

In this paper, we presented three feature sets, which consisted of several feature vec-
tors to represent input numerals effectively. The recognition result shows that the 
proposed feature set effectively represents pattern variations such as slant, size and 
thickness etc. We used multilayer perceptron neural networks (MLP) as each single 
classifier, and used fuzzy integral to combine the outputs of three single classifiers. 
Combining of multiple classifiers using fuzzy integral considers the importance of 
input feature sets and a higher recognition rate was obtained in comparison with other 
proposed recognition systems. Further studies should be made to design classifiers 
which have more generalization capabilities and feature extraction methods which are 
mutually helpful for the recognition of unconstrained handwritten numerals. 
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Abstract. Recently, it has been shown that for majority voting combination 
methods, (negatively) dependent classifiers may provide better performance 
compared to that obtained with independent classifiers. The aim of this paper is 
to analyse the performance of plurality voting according to classifier diversity 
(agreement). This analysis is conducted in parallel with majority voting in order 
to show which method is more efficient with dependent classifiers. For this 
purpose, we develop a new method for the artificial generation of classifier out-
puts with fixed individual accuracies and pair-wise agreement. A diversity 
measure is applied for building the classifier teams. The experimental results 
show that the plurality voting is less sensitive to the correlation between classi-
fiers than majority voting. It is also more efficient in achieving the trade-off be-
tween the recognition rate and rejection rate than the majority voting. 

1   Introduction 

Voting methods, in particular plurality voting and majority voting, are widely used in 
multiple classifier systems. They operate on the class labels assigned by the classifi-
ers to each pattern. Plurality voting means that the class with the most votes is cho-
sen. In majority voting, the class that receives more than half of votes is chosen. For 
these voting rules, the use of independent classifiers is considered to be essential to 
achieve better performance [5, 6, 12, 14]. However, in practice, it is difficult to obtain 
independent classifiers. Recently, the assumption of independence is questioned “Is 
independence good for combination ?” [7] and some attention has been devoted to 
the relationship between dependency and accuracy of voting methods especially for 
the majority voting method. In [8], it is shown that independence is not a universal 
requirement and negatively dependent classifiers are more beneficial than independ-
ent classifiers. In [11], the authors derive the upper and lower limits on the majority 
vote accuracy with respect to individual classifier accuracy p (the same for all classi-
fiers), the number of classifiers in the pool and the pair wise dependence between the 
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classifiers. They showed that for achieving the highest improvement over p, all pairs 
of classifiers in the pool should have the same negative dependency. How will the 
results of the plurality voting be affected when the classifiers are dependent? Is the 
plurality voting more sensitive to correlation than the majority voting? To seek an-
swers to these questions, a large number of classifier ensembles with desired diversity 
is needed. However, building such ensembles on real-life data is difficult. In this 
paper, we are interested in the use of diversity in designing classifier teams in order to 
examine empirically the relationship between the plurality voting and classifier diver-
sity. The idea behind the proposed approach is to generate classifier outputs with 
fixed accuracies and fixed agreement. A statistical measure, chosen in advance, is 
used to determine the pair wise agreement between the classifiers.  

The paper is organized as follows. Section 2 presents the techniques suggested to 
enforce diversity between classifiers. Section 3 discusses the diversity measure used 
to generate the pair-wise agreement. The process of generating two classifiers accord-
ing to the predefined agreement measure is presented in section 4. The case of more 
than two classifiers is addressed in section 5. Experimental results are reported in 
section 6. Conclusions are drawn in section 7. 

2   Enforcing Diversity 

Diversity among classifiers, in addition to individual performance of each classifier, 
is considered as one of the main factors, to explain the behaviour of combination 
methods. To create a consistent ensemble of classifiers, several implicit and explicit 
methods have been investigated in the literature. Duin [2] lists the main implicit ap-
proaches to build diverse classifiers. The principal one is to use different data repre-
sentations adapted to the classifiers, for example, by using different feature vectors as 
inputs of classifiers [6, 13, 16]. The diversity can also be implicitly encouraged either 
by varying the classifier topology, the learning parameters [5] or by training each 
classifier on different parts of the data which is done for example by Bagging [1]. On 
the contrary, the aim of explicit methods is to design a set of classifiers by asserting 
the diversity measure in the process of building ensembles [4, 8, 13, 14]. The advan-
tage of the incorporation of diversity measure is to control a priori the diversity be-
tween the classifier outputs in order to facilitate the analysis of the combination be-
havior. In [8] for example, the authors propose a comprehensive study of the random 
generation of binary classifier outputs to evaluate the performance of majority voting. 
They derive formulas according to how two classifiers can be generated with speci-
fied accuracies and dependencies between them using Q statistic as a diversity meas-
ure. Based on these formulas, the authors propose an algorithm for generating multi-
ple dependent classifiers. Lecee et al [13] have also studied the influence of correla-
tion among classifiers to evaluate combination methods of class type. For that, teams 
of classifiers producing binary outputs are created according to fixed recognition 
rates and predefined similarity measure.  
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3   Diversity Measure 

The problems with diversity started to emerge with the attempts of measuring it [9]. 
Although used in many recognition problems, there is no analytic proof that a particu-
lar measure of diversity is preferable to another. The diversity measures operating on 
binary classifier outputs have been broadly categorized as pair-wise (measures which 
are calculated for each pair of classifiers in the team and then averaged) and non pair-
wise [9, 15]. Such measures have been studied for artificial datasets [9] or for real-
world datasets [15] to analyse the correlation between diversity and majority voting 
performance. In [9], the authors used ten diversity measures (four averaged pair-wise 
measures and six non pair-wise measures). Since most of the investigated measures 
showed very weak correlation with majority voting performance, they recommended 
the pair-wise Q statistic based on the criteria that it is understandable and relatively 
simple to implement. To emphasize the relationship between the plurality voting and 
diversity as well as the difference with the majority voting, we use in this study the 
kappa measure κ  to estimate the level of agreement between the classifier outputs 
[3]. We slightly favoured this measure for the following reasons: κ  depends on the 
individual accuracies of the classifiers and has a specific value 0 for statically inde-
pendent classifiers. κ  varies between –1 and +1. Values of κ  close to +1 indicate 
that the classifiers tend to recognize the same objects correctly. If the classifiers 
commit errors for different objects, then κ  takes negative values. In this paper, we 
assess a global agreement on correct and incorrect classification.  

More specifically, let iA  and jA  be two classifiers providing S outputs for a N-

class classification problem. Each output is made up of input pattern bs (s=1, …, S) 

and class labels Ci (i=1 to N). We consider that when iA  and jA  propose the true 

class label bs in their outputs, they agree. If they both propose incorrect labels, they 

also agree. In all the other cases, they disagree. Let ip be the accuracy or the recog-

nition rate of iA  which stands for the ratio of the number of outputs in which the true 

class appears on the total number of outputs. We can represent the output of classifier 

iA  as an S-dimensional binary vector T
iSi vvV

i
],...,[ ,,1=  such that isv , =’c’ (cor-

rect), if the output s contain the true class label sb , and isv , =’w’ (wrong) otherwise. 

Thus S× ip  elements of iV  have values ‘c’ and S × (1- ip ) elements have values 

‘w’. Thus, the N-class problem is transformed into a 2-class problem depending on 
the presence or absence of the true class in the classifier outputs.  

The pair-wise agreement between iA  and jA  having accuracies ip  and jp  can be 

obtained by the following function [9]: 

)1(2
1,

pp

pp wccw
ji −

+
−=κ  (1) 
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where p is the mean accuracy of the two classifiers, 
2

j
pp

p
i +

=
 

xyp  is the probability that isv , =x and jsv , =y (see Table 1). 

The probabilities estimated in Table 1 are obtained by: ccp =
S

ncc , cwp =
S

ncw , 

wcp =
S

nwc  and wwp =
S

nww  with Snnnn wwwccwcc =+++  

where xyn  is the number of outputs in which the classifiers iA  and jA  propose or 

not the true class sb . 

Table 1. Diversity matrix ijDM  representing the percentage of agreement and disagreement 

between two classifiers iA  and jA  

 
jA  correct (c)  jA  wrong (w) 

iA  correct (c) ccp  cwp  

iA  wrong (w) wcp  
wwp  

4   Output Generation for Two Classifiers 

Generating classifiers according to accuracy only is easy. However, when the diver-
sity has to be considered, the generation is not straightforward. Recently Kuncheva 
and Kountchev propose a method for generating multiple classifier (binary) outputs 
[8]. They derive formulas according to how two classifiers can be generated with 
desired accuracies and dependency Q between them. The generation of the classifiers 
is realized simultaneously. Inspired by this study, we present here another possible 
solution based on the kappa measure. The idea is to determine a priori the relationship 
(agreement or disagreement) between the two classifiers through the diversity matrix 
DM according to fixed accuracies and pre-specified agreement level and then to gen-
erate, from this matrix, the classifier outputs. The outputs of the first classifier in each 
team are generated by the classifier simulator developed in our previous work [18]. 
The generation procedure of these outputs is beyond the scope of this paper and has 
been discussed earlier in a separate paper [18]. Here we concentrate on the generation 
of the second classifier based on the outputs of the first classifier and the diversity 

matrix. Thus, when two classifiers 1A  and 2A  are to be simulated according to a 

predefined diversity level, the procedure of generation follows 3 steps: 
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1. Construction of the diversity matrix 12DM  between 1A  and 2A  according to 

the desired accuracies 1p , 2p  and kappa 2,1κ . 

2. Generation of the outputs of 1A according to the fixed accuracy 1p . 

3. Generation of the second classifier from 1A  taking into account the accuracy 

2p  and the diversity matrix 12DM . 

After simple algebraic manipulations using Table 1, we can express the entries ccp , 

cwp , wcp  and wwp  using 1p , 2p , p and 2,1κ  as: 

ccp  = p ((1- p )( 2,1κ -1)-1) 

cwp  = 1p - ccp  

wcp  = 2p - ccp  

wwp  = 1-2 p  + ccp  

(2) 

After computing the elements of the diversity matrix 12DM , we generate the outputs 

1O =[ 1,1o , …, So ,1 ] of the basic classifier 1A  according to the desired accuracy 1p  

and we transform it into the binary vector 1V . Based on this vector and 12DM , we 

generate the vector 2V  of the classifier 2A . To do that, we should place the solutions 

‘c’ or ‘w’ in the outputs of 2V . This generation depends on the number of elements 

nc. that is the number of outputs for which the first classifier provides ‘c’ and nw. that 

is the number of outputs for which the first classifier provides ‘w’ with nc. = ncc+ ncw 

and nw. = nwc+ nww. Next, we generate the vector 2O of the classifier 2A  according to 

1O , 1V and 2V . This procedure is illustrated in Table 2. 

Table 2. Generating outputs of the classifier 2A  from the classifier 1A  
 

Input: S the number of outputs, 1O  the output vector of 1A  

Outputs: 2O the output vector of 2A  

Begin 

  For each output s =1 to S do 

  Draw a number X randomly in the range [1, nc.+nw.] 

    If X < nc then sv ,2 =‘c’ Else sv ,2 =‘w’  

    If sv ,1  = sv ,2  then so ,2 = so ,1  

  Else  

    If sv ,1 =’c’ then so ,2  = bs 

    Else  

      Choose randomly a class label Ci (i=1, …, N) different from bs  

      so ,2 = Ci  

End  
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5   The Case of More Than Two Classifiers 

The aim of the procedure described in this section is to generate automatically S out-
puts of L classifiers, for a N-class problem, which can be used for analysing the per-
formance of voting methods. The input is the number of classes N, the number of 
outputs S, a vector with the desired individual accuracies p=[p1,…pL]T, and a Kappa 

matrix κ=[κi,j], where κi,j is the desired agreement between classifiers iA  and jA  (i 

= 1,…, L-1; j = i+1,…, L). In the first step, the diversity matrices ijDM  are deter-

mined for each pair of classifiers iA  and jA  using (2). With L classifiers, we obtain 

L(L-1)/2 possible diversity matrices. The outputs of the first classifier are next gener-

ated according to the desired accuracy 1p . Starting from these outputs, outputs of 

the other classifiers are generated. For example, take 3 classifiers. For each output s 

(s=1 to S), we use so ,1 to set the output label so ,2  of A2 as presented in Table 2. Next, 

we use so ,1  to generate the output label of A3 according to the diversity matrices 

DM13 and DM23 . Note that there is no reason to use the same order of the classifiers. 

The selection can be done dynamically by generating for each output s, a random 
permutation of the integers from 2 to L. This is used to pick the order in which the 
classifiers will be selected. This generation process is repeated S times, so that L-1 
output vectors are obtained. (see Table 3).  

Table 3. Algorithm for the generation of classifier outputs according to the fixed accuracies 
and pair-wise agreement κ 

 

Inputs: L the number of classifiers, S the number of outputs, N 
the number of classes, p = {p1, p2, …,  pL) the desired accuracies 
and κ=[κi,j], where κi,j is the desired agreement between classifiers 

iA  and jA  (i=1,…,L-1; j=i+1,…,L) 

 
Outputs: the output vectors Oh (h=1,…, L) 
 
Begin 

 For each pair of classifiers iA  and jA  do  

  Calculate the matrix 
ij

DM  according to κ and p using (2) 

  Generate the outputs O1 of A1 according to N, S and p1 
  For each output s of A1 (s = 1 to S) do 
    Choose a random permutation (k1, k2,…, kL-1) in {2,…, L} 

    Using A1, set the s
th output of 

1kA  according to 
1,1 kDM  

    For t =2 to L-1 do 

      Using A1, set the s
th output of 

tkA  according to 
tkDM ,1
  

      Decrement the matrix 
1,1 −tkDM  

End 
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Note that there are cases where the generation of classifier ensembles with fixed 
diversity and accuracy are not possible (when the elements of the diversity matrix are 
negative). This can be explained by the fact that the kappa measure depends on the 
individual classifier accuracy. For two classifiers having performance equal to 0.5, 
the diversity can varied between –1 and +1. But, as the accuracy increases, the range 
of the diversity decreases. For example, the diversity between two classifiers with 
p=0.9, vary in [-0.1, 1].  

6   Experimental Results 

In this section, we report two experiments aimed at examining the relationship be-
tween the performance of voting methods and diversity in classifier behavior. In these 
experiments, we simulate ensembles of classifiers with the same pair-wise agreement 
κ = {-0.4, -0.2, 0, +0.2, +0.4} for a 10-class problem. For each classifier, S = 10000 
outputs are generated. The goal of the first experiment is to study the effect of an 
additional classifier on the performance of plurality voting method. For this experi-
ment, we simulate two classifiers with the same recognition rate p1=p2 in {0.5, 0.6, 

0.7} to which is added a third one whose recognition rate performance p3 vary from 

0.5 to 0.7 by 0.1 step. The recognition rates of the three individual classifiers and the 
plurality voting are shown in Figure 1. The results of Figure 1a demonstrate that the 
addition of the third classifier is interesting for pairs of classifiers having recognition 
rates higher than 0.5. In this case, as the value of kappa measure increases (i.e. the 
diversity decreases), the performance of plurality voting decrease. However, the addi-
tion of the third classifier does not achieve better performance over the best individ-
ual classifier for classifiers having recognition rate equal to 0.5, even in negatively 
dependent situation. Figure 1b and 1c show that  for diverse and independent classifi-
ers, the addition of a third classifier is beneficial for combination whatever its per-
formance. However, for kappa > 0,  the combination is not interesting.  

The main goal of the second experiment is to determine which voting methods 
would perform best under the condition that all of the classifiers have the same accu-
racy p=0.5 (i.e. weak classifiers). Table 4 shows the results of combining five classi-
fiers by plurality and majority voting. These results show that plurality voting outper-
forms majority voting for different classifier ensembles. The performance of majority 
voting is quite similar to the individual classifiers. The combination by this rule is not 
interesting in this case. Consider the combination of three classifiers with p1= p2= p3 

=0.5 as in the Figure 1a. We can see that the addition of two classifiers in the second 
experiment improves significantly the recognition rates of the plurality voting. The 
behaviour of the plurality voting becomes more stable than in the previous experi-
ment. Another advantage of plurality voting over majority voting is its higher rejec-
tion efficiency. Plurality voting has a lower rejection rate than the majority voting. 
This rejection rate increases when the diversity between the classifiers decreases. The 
experimental results in [14] also support this conclusion when combining independ-
ent classifiers.  
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Fig. 1 . Combination results with different performance of classifiers 

Table 4. Results of combining five weak classifiers with the two combining rules 

 Majority voting Plurality voting 
Diversity Recognition rates Rejection rates Recognition rates Rejection rates 
-1 0.504 ± 0.001 0.492 ± 0.010 0.812 ± 0.036 0.143 ± 0.045 
-0.5 0.501 ± 0.004 0.495 ± 0.002 0.741± 0.009 0.186 ± 0.007 
0 0.500 ± 0.030 0.494 ± 0.004 0.737 ± 0.016 0.190 ± 0.018 
0.5 0.500 ± 0.008 0.492 ± 0.004 0.682 ± 0.003 0.213 ± 0.005 
1 0.500 ± 0.009 0.500 ± 0.011 0.524 ± 0.003 0.286 ± 0.007 

7   Conclusion 

In this paper, we have proposed a new simulation method for the artificial generation 
of classifier outputs to examine the relationship between the plurality voting perform-
ance and between-classifier diversity. An algorithm for building two classifiers with 
specified accuracies and a pair-wise agreement κ between them is presented. The 
algorithm for generating more than 2 classifiers has also been proposed. The experi-
mental results point out the advantages of plurality voting over majority voting when 
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classifiers with different agreement levels are combined. The proposed method will 
be useful to evaluate any abstract-level combination methods and thus will be helpful 
to clarify the conditions under which a combination method can be used or is the best 
for different pattern recognition problems. 
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Abstract. A major characteristic of text document classification prob-
lem is extremely high dimensionality of text data. In this paper we
present two algorithms for feature (word) selection for the purpose of
text classification. We used sequential forward selection methods based
on improved mutual information introduced by Battiti [1] and Kwak
and Choi [6] for non-textual data. These feature evaluation functions
take into consideration how features work together. The performance of
these evaluation functions compared to the information gain which eval-
uate features individually is discussed. We present experimental results
using naive Bayes classifier based on multinomial model on the Reuters
data set. Finally, we analyze the experimental results from various per-
spectives, including F• -measure, precision and recall. Preliminary exper-
imental results indicate the effectiveness of the proposed feature selection
algorithms in a text classification problem.

1 Introduction

The goal of text document classification is to assign automatically a new docu-
ment into one or more predefined classes based on its contents.

An increasing number of statistical classification methods and machine learn-
ing algorithms have been explored to build automatically a classifier by learning
from previously labelled documents including naive Bayes, k-nearest neighbor,
support vector machines, neural network, decision trees, logistic regression (see
e.g. [7], [9], [5], [11], [12] and the references therein).

In text classification, usually a document representation using a bag-of-words
approach is employed (each position in the feature vector representation cor-
responds to a given word). This representation scheme leads to very high-
dimensional feature space. Feature selection is a very important step in text
classification, because irrelevant and redundant words often degrade the perfor-
mance of classification algorithms both in speed and classification accuracy.

A. Fred et al. (Eds.): SSPR&SPR 2004, LNCS 3138, pp. 1010–1017, 2004.
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Methods for feature subset selection for text document classification task
use an evaluation function that is applied to a single word. All words are in-
dependently evaluated and sorted according to the assigned criterion. Then, a
predefined number of the best features is taken to form the best feature subset.
Scoring of individual words can be performed using some of the measures, for
instance, document frequency, term frequency, mutual information, information
gain, odds ratio, χ2 statistic and term strength [10], [8], [3]. Yang and Peder-
sen [10] and Mladenic [8] give experimental comparison of the above mentioned
measures in text classification. The information gain (IG) and a very simple fre-
quency measures were reported to work well on text data. Forman in [3] presents
an extensive comparative study of twelve feature selection criteria for the high-
dimensional domain of text classification.

In this paper we propose to use sequential forward selection methods based
on improved mutual information introduced by Battiti [1] and Kwak and Choi
[6], who introduced these criteria for non-textual data. To our knowledge, the
improved mutual information has not yet been applied in text classification as
a criterion for reducing vocabulary size. We use the simple but effective naive
Bayes classifier based on multinomial model.

2 Naive Bayes Classifier

According to the bag-of-words representation, the document di can be repre-
sented by a feature vector consisting of one feature variable for each word wt

in the given vocabulary V = {w1, . . . , wn} containing n distinct words. Let
C = {c1, . . . , c|C|} be the set of |C| classes. Note, that |C| classes are pre-defined
and that document always belongs to at least one class. Given a new document
d, the probability that d belongs to class cj is given by Bayes rule

P (cj |d) =
P (cj)P (d|cj)

P (d)
. (1)

If the task is to classify a new document into a single class, simply select the
class c� with the highest posterior probability.

Assuming a multinomial model [7, 9] and class-conditional independence of
words yields the well-known naive Bayes classifier, which computes the most
probable class for d as

c� = argmax
j=1,...,C

P (cj |d) = argmax
j=1,...,C

P (cj)
n∏

t=1

P (wt|cj)N(wt,d) (2)

where N(wt, d) is the number of occurrences of word wt in document d. The
word probability P (wt|cj) are usually estimated using Laplacean prior:

P (wt|cj) =
1 +

∑
di∈cj N(wt, di)

|V |+∑|V |
r=1

∑
di∈cr N(wt, di)

. (3)
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The class priors P (cj) are estimated by maximum-likelihood estimates the
fraction of documents in each class.

2.1 Classifier Estimation

For evaluating the multi-label classification accuracy we use the standard multi-
label measures: precision, recall and F1 measure. Precision and recall are com-
puted as

precision =
# classes found and correct

# total classes found

recall =
# classes found and correct

# total classes correct

where ”classes found” means classes ck with P (ck|d) ≥ h. To obtain the single
number measure of classification performance we compute the F1 measure that
combine both the precision p and recall r

F1 =
2pr
p+ r

. (4)

The closer are the values of precision and recall, the higher is the F1 measure.
In the case of multi-label classification the document d is classified in the class

ck if the probability P (ck|d) ≥ h. The threshold h is estimated to maximize F1
measure (4) on the training data set. The threshold hj shifts from 0 to 1 and for
each potential value of hj we make the classification process on the training data
set. All training documents di are classified according to the equation P (ck|di) ≥
hj and the F1 measure is computed for each hj . Then the threshold h with the
highest F1 value is selected.

Given a new document d, the probability P (cj |d) is computed by applying
Bayes rule (1). If the probability P (cj |d) > h, than the document d is assigned
to the class cj . Therefore, the document d can be assigned to one or more classes.
If P (cj |d) < h for each class cj , the document d is classified in the class with
highest probability P (cj |d).

While the word independence assumption is false in practice with real-world
data, there is empirical evidence that the naive Bayes yields surprisingly good
classification performance on text data.

3 Feature Selection

Feature subset selection is commonly used when learning on text data, since text
documents are characterized by high-dimensionality feature vector.

The focus of this paper is the comparison between best individual features
and sequential forward selection methods. Both methods are based on mutual
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information I(C,wi) between classes C and word wi that is commonly named
information gain (IG) in text classification

I(C,wi) =
|C|∑
k=1

P (ck, wi) log
P (ck, wi)

P (ck)P (wi)
+
|C|∑
k=1

P (ck, wi) log
P (ck, wi)

P (ck)P (wi)
(5)

where P (wi) is the probability, that the word wi occurred, wi means, that the
word not occurred, P (cj) is the probability of the class cj , P (cj , wi) is the joint
probability of the class cj and the occurrence of the word wi.

3.1 Best Individual Features

Best individual features (BIF) methods [4] evaluate all the n words individually
according to a given criterion, sort them and select the best k words.

Since the vocabulary has usually several thousands or tens of thousands
of words, the BIF methods are popular in text classification because they are
rather fast, efficient and simple. However, they evaluate each word separately
and completely ignore the existence of other words and the manner how the
words work together. In [2] it has been proven that the best pair of features
need not contain the best single features.

Scoring of individual features can be performed using some of the measures,
for instance, document frequency, term frequency, mutual information, informa-
tion gain, χ2 statistic or term strength. Yang and Pedersen [10] give experimental
comparison of the above mentioned measures in text classification. They found
information gain and χ2 statistic most effective in word selection.

In our comparison we include BIF method with information gain criterion
(BIF IG) defined in (5).

3.2 Sequential forward Selection

Sequential forward selection (SFS) methods firstly select the best single word
evaluated by given criterion. Then, add one word at a time until the number of
selected words reaches desired k words. However SFS methods do not result in
the optimal words subset but they take note of dependencies between words as
opposed to the BIF methods. Therefore SFS often give better results than BIF.
The similar strategy is sequential backward selection that starts with all n words
and successively remove one word at a time.

SFS are not usually used in text classification because of their computation
cost due to large vocabulary size. However, in practice we can often both employ
calculations from previous steps and make some pre-computations during the
initialization. Since feature selection is typically done in an off-line manner, the
computational time is not as important as the optimality of words subset or
classification accuracy.

We propose two SFS methods based on mutual information (SFS MI) intro-
duced by Battiti [1] and Kwak and Choi [6]. They sufficiently applied these two
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methods for non-textual data compared with BIF. In contrast to BIF IG, SFS
MI uses not only mutual information I(C,wi) between the set of classes C and
a word wi but also mutual information I(wi, wj) between the words wi and wj .
The SFS MI algorithm is described in the following steps:

1. Initialization:
the set of selected words S = Ø,
the set of unselected words U = ’all n words’.

Pre-computation:
I(C,wi) for i = 1, . . . , n,
Iij , for i, j = 1, . . . , n and i �= j

– Battiti: Iij = I(wi, wj)
– Kwak-Choi: Iij = I(wi, wj)I(C,wj)/H(wj)

2. First word selection:
Find the word w� with maximal I(C,wi),
w� = argmaxi=1,...,n I(C,wi),
set the sets S = {w�}, U = U \ {w�}.

3. One step:
Repeat until the demand k words are selected (|S| = k).
Choose the best word w� from the set U .
w� = argmaxi=1,...,|U|{I(C,wi)− β

∑|S|
j=1 Iij}

Set the sets S = S ∪ w� and U = U \ w�.

H(wj) is the entropy of the word wj . The variable β ≥ 0 is typically set to
1. The higher β the stronger impact of the mutual information between words.
On the other hand if β = 0, then the mutual information between words is not
considered and the algorithm coincides with the BIF IG selection.

4 Experimental Results

In our experiments we compared the performance of three feature selection meth-
ods. The first method is standard BIF algorithm using the IG criterion. Each
word is evaluated by IG criterion and then are selected the first best k words.
The other two SFS methods Battiti SFS MI [1] and Kwak-Choi SFS MI [6] are
based on mutual information criterion between the set of classes C and the word
wi as well as BIF IG method. Moreover SFS MI consider the mutual information
between each pair of words and add one word in each step.

All experiments were tested for different number of words on the common
used Reuters1 data set. Since Reuters documents are multi-labelled we employed
the micro-average F1-measure and the precision-recall tradeoff for evaluating
performance.

• http://www.daviddlewis.com/resources/testcollections/reuters21578
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Fig. 1. (a) F• measure of BIF IG, SFS MI (Battiti) and SFS MI (Kwak and Choi) on
Reuters data set with Apte split. (b) Identical feature selection methods with (a) but
precision-recall tradeoff on 2000 selected words. The highlighted points in (b) show the
maximal F• -measure.

First, we displaced all unlabelled documents from the data. Second, we re-
moved all uninformative words occurring in stop-list, such as prepositions, con-
junctions or articles. Then, Porter stemming algorithm2 was used. Finally we
deleted the words that occurred only once or twice. The data resulted in 7732
words and 11280 documents in 118 classes. We divided this data set in the
training and the testing set according to the usually used Apte split.

For classification was used the naive Bayes classifier based on the multinomial
model. In addition to training standard parameters, the threshold h for multi-
label classification was made to maximize F1 measure on the training data set.

Figure 1 (a) shows the comparison of all three FS methods on F1 measure.
We can see that both observed SFS MI methods significantly overcome the BIF
IG algorithm on the Reuters data. Compared with the BIF IG, the F1 value of
SFS MI algorithms is with some vocabulary sizes even greater than with the full
number of 7732 words.

The highest value of F1 is achieved on 2000 words with the Battiti SFS MI
algorithm. The precision-recall tradeoff on 2000 words is depicted on the Figure
1 (b). Figures 2 (a) and (b) presents the similar result like Figure 1 (a) but on
the precision and recall measure.

The Kwak-Choi SFS MI has approximately higher value of F1, precision and
recall than the Battiti SFS MI on the lower number of words. However, on the
greater number of words the Battiti SFS MI overcome it with all three measures.

The time complexity of SFS algorithms is less than O(kn2) where k is the
number of desired words and n is the total number of words. The algorithm adds
step by step k words and in each step compute the mutual information between

• http://www.tartarus.org/˜martin/PorterStemmer
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Fig. 2. (a) Precision and (b) recall of BIF IG, SFS MI (Battiti) and SFS MI (Kwak
and Choi) on Reuters data with Apte split. The same threshold h was used as in the
figure 1.

each word belonging to the set S (selected words) and each word from the set
U (unselected words). The required space is n2/2 because we need to store the
mutual information between each pair of words. If we compare the BIF and SFS
methods, the SFS methods are more time consuming but achieve significantly
better results on the testing data.

5 Conclusions and Future Work

In this paper, we have presented sequential forward selection methods based on
novel improved mutual information measure. The algorithms are new in the field
of text classification and take into consideration how the features work together.
These methods significantly overcome standard best individual features method
based on information gain on the testing data set.

Many areas of future work remain. Ongoing work includes comparison on
the other text classifiers, for example, support vector machines and k-nearest
neighbor.
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Abstract. This paper presents an optimized Hill Climbing algorithm to select a 
subset of features for handwritten character recognition. The search is con-
ducted taking into account a random mutation strategy and the initial relevance 
of each feature in the recognition process. The experiments have shown a re-
duction in the original number of features used in an MLP-based character rec-
ognizer from 132 to 77 features (reduction of 42%) without a significant loss in 
terms of recognition rates, which are 99% for 60,089 samples of digits, and 
93% for 11,941 uppercase characters, both handwritten samples from the NIST 
SD19 database. The proposed method has shown to be an interesting strategy to 
implement a wrapper approach without the need of complex and expensive 
hardware architectures. 

1   Introduction 

Many feature subset selection algorithms [1,2,3] have been developed in the last 
years, since this procedure can reduce not only the cost of recognition by reducing the 
number of features that need to be used, but in some cases it can also provide better 
classification accuracy. Usually, the methods found in the literature [4,5] can be cate-
gorized as: Filter or Wrapper-based approach. 

In both categories, given a set of candidate features, the objective is to select a sub-
set that performs the best under some classification system. The main difference be-
tween them is that in the Filter-based approach the relevance of each feature is de-
fined taking into account statistical information calculated from the training dataset, 
while in the Wrapper approach [6,7] the classifier is used to evaluate the relevance of 
each feature during the selection process.  

An interesting wrapper-based method was proposed in [8,9] using a genetic algo-
rithm to the subset selection. The authors have achieved a significant feature reduc-
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tion (from 132 to 100 features), which means about 25% keeping the initial classifica-
tion rate almost the same (99.16%) for handwritten digits available in the NIST SD19 
database. However, their process must to evaluate 128,000 feature subset candidates. 
For this purpose, the authors use a cluster of 17 personal computers (with 1.1GHz and 
512 Mb RAM each). 

In order to provide a low-cost solution in terms of architecture needed, this paper 
presents an optimized Hill Climbing algorithm to select a subset of features for hand-
written character recognition. The search is done taking into account a random muta-
tion strategy and a priority associated to each feature by considering its relevance in 
the recognition accuracy. Different from the method proposed in [8], the proposed 
method has shown to be an interesting strategy to implement a wrapper approach, 
which can be executed in more simple hardware architecture. The results presented in 
this paper are based on 16,000 features subset candidates selected by the proposed 
algorithm in a single PC (1.3 GHz). 

2   Proposed Method 

Figure 1 presents an overview of the proposed method, in which is possible to observe 
5 stages. The first stage consists of a feature extraction process, which generates 5 
files (train, val1, val2, val3 and test) containing feature vectors extracted from charac-
ter images.   
 

 

Fig. 1. Overview of the proposed method 

In the second stage, a MLP neural network is trained and evaluated considering the 
original configuration of the feature vector and using train and val1. In the third stage, 
an optimized Hill Climbing (OpHC) algorithm uses val2 in order to select multiple 
candidates of feature subsets. A feature randomly selected is removed, or not, taking 
into account its relevance on the classification accuracy. In addition, a priority is as-
sociated to each feature to guide the search.  
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2.1   Feature Extraction 

The same feature extraction method described in [8] is used. It divides a character 
image into 6 regions and calculates 132 features based on contour, concavity and 
surface information.  

2.2   Classifier 

The classifier is an MLP neural network, which was used to allow the comparison 
with the results reported in [8,9]. The initial topology consists of 132 nodes in the 
input layer, 100 nodes in the hidden layer, and the output layer contains 10 or 26 
nodes for digit or uppercase character recognition, respectively.  

2.3   Optimized Hill Climbing Algorithm (OpHC) 

This module consists of a modified Hill Climbing algorithm. Figure 2 shows, in italic 
style, the main differences of the proposed algorithm from the Original Hill Climbing 
(OrHC). 

1. Establish priority for each feature; 
2. Load neural network previously trained; 
3.  If (Number of Iteration = MAXITER) then exit; 
4.  Select a feature, randomly;  
5. If (the priority of the selected feature = zero) 

                   then remove it (e.g. replace it by it’s average value) and 
                            update the current feature set mask; 

               else increase the feature priority and go to step 4;  
6. Evaluate the classification accuracy with the new feature set configuration; 

     7. If (current error rate <= previous one)  
               then keep the current feature set configuration; 
               else backtrack to the previous state; 

     8.      If (number of removed features = TFEAT) 
              then save current configuration as a local maximum; go to step 3; 
              else go to step 4. 
TFEAT – Total of features;               MAXITER – Maximum of iterations. 

Fig. 2. Optimized Hill Climbing Algorithm (OpHC) 

The algorithm starts by defining a priority for each feature (step 1) available on the 
initial feature vector configuration (132 for this problem). Each feature, or seed, has 
its priority level calculated as shown in Figure 3. In the second step of the algorithm, 
the neural network trained using the entire feature set is loaded. In the kernel of the 
algorithm (step 4), a random process is used to select a feature to be removed. In case 
the priory related to this feature is zero (step 5), it will be removed, otherwise its pri-
ority will be increased and a different feature will be randomly selected. The step 6 
provides the current error rate after removing the selected feature. A decision about to 
keep the current feature set configuration is taken on step 7. For this purpose, the 
current error rate is compared to the previous one.  As we can see, a local maximum is 
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found after evaluating all the features in the current state (see step 8). After that, the 
OpHC algorithm returns to the initial state instead of backtracking to the previous 
one. Thus, the complete configuration of the feature set is considered again and a new 
feature or seed (not processed yet) is selected. The objective is to investigate other 
areas of the search space. In addition, the priority computed for each feature provides 
a way of guiding the search taking into account the feature relevance, while the con-
cept of randomized feature removal is maintained.  

 
1.  Calculate the error rate when individual features are removed (FERROR), 

see Figure 4; 
2.  Select the maximum (MAX) and minimum (MIN) FERROR over all fea-

tures; 
3.  Select a number of levels (NLEVELS), which is the number of priority lev-

els to be considered; 
4.     Calculate the range of each level using R = (MAX-MIN) / NLEVELS; 
5.     The relevance (priority) of each feature is calculated as: 
                 P = (- NLEVELS + (MAX–FERROR) / R). 

Fig. 3. Scheme to calculate the feature priority 

As described before, the feature priority takes values between 0 and -NLEVELS. 
According to Figure 3, the highest error values receive –NLEVEL and the lowest 
error values receive zero. Each time that a feature is selected to removing, the algo-
rithm evaluates its priority and in case of the priority is 0 (zero) the feature will be 
removed, otherwise the feature is not removed and the priority is updated (P = P+1). 
Thus, when the priority reaches the value zero, the corresponding feature is removed. 
Figure 4 shows the initial individual feature error. 
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Fig. 4. Error rate after individual removal 

The number of levels (NLEVELS) was experimentally defined. After evaluating 
the values 0, 5, 10, 20 and 50, the best results were obtained by using the value 10. 
Figure 5 shows that, after 120 iterations the algorithm had already removed 40 fea-
tures from the original set. 

Another important characteristic of the proposed algorithm is the use of sensitivity 
analysis [8], since to retrain the neural network at each new feature subset is not fea-
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sible due to the limits imposed by the learning time of the huge training set considered 
in this work. The sensitivity of the network is used to estimate the relationship be-
tween the input features and the network performance. So, in order to evaluate a given 
feature subset we replace the unselected features by their averages values (step 5 – 
Figure 3) evaluated on the training database. In this way, we avoid training the neural 
network and hence turn the wrapper approach feasible for our problem. 

Each local maximum found by this module represents a feature subset candidate. 
The search for feature subsets is done on val2.    

2.4   Selection of the Best Feature Subset Candidate 

A different validation dataset (val3) is used to select one feature subset from those 
candidates provided by the OpHC algorithm. The selection is done based on the rec-
ognition accuracy. Another strategy used to select the best feature set configuration is 
selecting that with represents the smallest feature subset – also evaluated in our ex-
periments.  

2.5   Final Evaluation 

In this module, the final feature subset selected in the last stage is used to retrain the 
neural network, whose topology is adapted to this new configuration of the feature 
set. A final evaluation is done using the test file. 

3   Experimental Results and Discussion 

The experiments are based on handwritten digits and uppercase characters available in 
the NIST SD19 database. In the experiment based on digits the following protocol 
was used: 195,000 samples for training (train) and 28008 for validation (9,336 in 
va11, 9,336 in val2 and 9,336 samples in val3) - all samples from series hsf_0, 1, 2 and 
3 series. Other 60,089 samples were used for testing (test), which are available on 
hsf_7 series. 
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The data sets used in the experiments using uppercase characters are composed of 
37,440 samples for training (train) and 12,092 for validation (4,031 in val1, 4,031 in 
val2 and 4,030 in val3) – all samples from hsf_0,1,2 and 3 series. Other 11,941 sam-
ples from hsf_4 were used for testing (test). 

In the experimental protocol, val1 is used during training of the neural network to 
avoid an overtraining. Val2 is used during the search for feature subset candidates 
performed by the HC algorithm. Finally, val3 is used to select the subset of features, 
which provides the best recognition accuracy among the candidates provided by the 
HC algorithm.  The testing set (test) is used as a black box just to compare the final 
recognition results of the classifier after his topology has been adapted to the new 
configuration of the feature set. 

3.1   Experiments on Handwritten Digits 

Both algorithms, the original and optimized HC were evaluated. The MAXITER 
variable was set to 16,000 iterations or solutions. At the end of the iterations the 
original HC has used only 3 seeds, since it does not returns to the initial configuration 
of the feature set (initial state) after finding a local maximum or after removing all 
features in the current state, but it returns to the previous state. From this three seeds 
or starting points, the original algorithm found 172 local maximum (subset candi-
dates). By contrast, the modified algorithm has investigated with the priority scheme 
all possible seeds (132) using the same 16,000 iterations and it has generated 47 fea-
ture subset candidates. In fact, the proposed algorithm has stopped after all features 
have been used as seed. This means that all features were removed during the search 
and a bigger diversity on evaluated solutions was reached.   

In Figure 6, each point represents a feature subset candidate of the 172 found by 
using the Original Hill Climbing (OrHC). As we can observe, all points are very con-
centrated in a small area of the search space. By contrast, in Figure 7, the 47 feature 
subset candidates found by using the modified HC are not concentrated as those pro-
vided by the original algorithm. The reason is that in the modified algorithm each 
time a local maximum is found, the initial configuration of the feature set is returned 
in order to select a new seed. Moreover, the strategy of using the priority scheme has 
provided to the algorithm a faster convergence to a local maximum. 
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Fig. 6. Feature subset candidates provided by the traditional HC algorithm 
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In a first set of experiments, the val3 dataset is used to evaluate and select the best 
local maximum (or feature subset) from the 172 provided by the original HC algo-
rithm (OrHC). The same strategy is used to select a local maximum from the 47 pro-
vided by the optimized algorithm (OpHC).  In addition, we also experiment to con-
sider just the number of features removed, since the classifier has shown a small loss 
in terms of accuracy. This means that, in this experiment, the best configuration cor-
responds to the smallest subset of features.  

As we can observe in Table 1, there is no significant loss in terms of classification 
accuracy. However, it is possible to observe a reduction of features when the opti-
mized HC algorithm was used.  

Table 1. Experimental results on digits 

Experiment  # Features  Training 
 

Testing 
 

Initial configuration of the feature set  132 99.77% 99.10% 
OrHC (using val3) 92 99.50% 99.04% 
OpHC (using val3) 87 99.95% 98.95% 
OrHC  (smallest feature set) 81 99.50% 98.92% 
OpHC (smallest feature set) 77 99.86% 98.94% 

 
In order to compare our results with those obtained by Soares [8], we have used 

the same experimental protocol. The proposed wrapper approach has shown a more 
significant reduction (42%) than that observed by using GA (25%). Moreover, while 
the wrapper-based approach proposed by Soares [9] needs to evaluate around 128,000 
solutions running in a cluster with 17 machines, the proposed method evaluates just 
16,000 solutions using a Pentium III (1.3 GHz). 

3.2   Experiments on Handwritten Characters 

The method was also applied to handwritten uppercase characters available in the 
NIST SD19 database. During the experiments, just the optimized HC was used. How-
ever, the experiments considers to select the final feature set configuration taking into 

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

70 80 90 100 110 120 130 140

Number of Features

E
rr

o
r 

R
at

e(
%

)

Validation 2 Validation 3

vv

 

Fig. 7. Feature subset candidates provided by the optimized HC algorithm 
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account the recognition rate on val3 dataset, and also it considers the more significant 
reduction on the number of features. 

The reduction of feature was about 24% in the first experiment and about 40% in 
the last one. 

4   Conclusion 

The proposed method has shown to be an interesting strategy to implement a wrapper-
based method, which can be executed in low-cost hardware architecture. In the ex-
periments, a reduction in the original number of features 132 to 77 features (around 
42%) without a significant loss in terms of digit recognition rate was observed. Simi-
lar result was observed for uppercase characters, reduction around 40%.  
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Abstract. High-resolution spectroscopy is a powerful industrial tool.
The number of features (wavelengths) in these data sets varies from sev-
eral hundreds up to a thousand. Relevant feature selection/extraction
algorithms are necessary to handle data of such a large dimensional-
ity. One of the possible solutions is the SVM shaving technique. It was
developed for applications in microarray data, which also have a huge
number of features. The fact that the neighboring features (wavelengths)
are highly correlated allows one to propose the SVM band-shaving algo-
rithm, which takes into account the prior knowledge on the wavelengths
order. The SVM band-shaving has a lower computational demands than
the standard SVM shaving and selects features organized into bands.
This is preferable due to possible noise reduction and a more clear phys-
ical interpretation.

1 Introduction

In pattern recognition, objects are usually described by a number of features. Not
all of them are equally informative for the problem at hand. Therefore, feature
selection is an important step in solving a classification problem. It simplifies the
classification task offering a faster and cheaper solution and, moreover, it allows
to improve the classification performance by avoiding the curse of dimension-
ality. Feature selection methods can be divided into two groups: a) univariate
approaches, where each single feature is tested for its ability to discriminate
between classes and b) multivariate approaches, where all features are ranked
according to some criterion, which takes all of them into account at once. Uni-
variate approaches are simple to implement, but multivariate approaches give
better results as they take into account the feature dependences.

Recently, a number of feature selection methods under the name of ‘shaving’
have been developed. Among them there are the SVM shaving [1] and the PCA
shaving [2, 3]. Shaving approaches are similar but not equivalent to the backward
feature elimination technique. In general, shaving algorithms remove a small
portion of features at each step based on some criterion calculated on all the
features available at that moment. During the backward feature elimination, an
importance of each feature is estimated according to a criterion calculated on the
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feature set present at that moment but this particular feature. The backward
feature elimination algorithm should theoretically provide better results than
shaving. Yet, the shaving approach is much faster, while it is still able to provide
a good solution.

Originally, shaving methods were applied to the microarray data. It has been
shown that shaving techniques are useful in finding a small group of features
(genes) significant for discrimination in high dimensional microarray data [1–
3]. In our research, we are dealing with the problem of spectra classification.
Based on the number of channels in the spectrometer, the feature sizes may
vary from several hundreds up to a thousand. It is natural to try to apply these
methods to the high-resolution spectral data. However, there is an important
difference between the spectral data and gene arrays. In spectroscopy, neighbor-
ing features (wavelengths) are often highly correlated (more than 90 percent). It
makes shaving methods first detect these correlations and only then the actual
feature selection starts. In the case of small training set, the estimation of the
local correlations may be very imprecise. This leads to a waste of the computa-
tional time and it may also result in loss of important features. The outcomes
of shaving methods are the sets of original features. However, it is more natural
for spectroscopy to select continuous bands of wavelengths and derive (possi-
bly weighted) average representative feature from each band. Such features are
easily interpretable from the physical point of view and also more robust to a
change of the measurement device.

Another family of feature extraction/selection approaches under the name of
GLDB was proposed in [4]. There, the neighboring wavelengths are combined
into one feature based on log-odds class posterior probabilities (top-down ap-
proach) or on a product of the Fisher criterion and correlation between the
features (bottom-up approach). Although these methods take features depen-
dencies into account, all the criteria are applied to the each single region of
wavelengths. Thus this family of methods is not fully multivariate.

In this paper, we propose a use of modification of the SVM shaving algo-
rithm, SVM band-shaving, which makes use of specific properties of spectral
data. Briefly, we combine neighbouring wavelengths into bands at first and then
apply the shaving algorithm to them. The paper is organized as follows. In the
section 2 we shortly describe the SVM shaving algorithm and our modification
of it. Then, in section 3 we present the results of numerical experiments and we
summarize with a short conclusion in section 4.

2 Shaving Algorithms

All shaving algorithms rely on a computation of the ranking vector w ∈ Rd,
where d is the number of features. The absolute value of the element w(i) esti-
mates the importance of i-th feature e.g. for a discrimination task. After remov-
ing the least important feature or some portion of such features, the algorithm
recalculates the weight vector for the reduced feature set. Recalculation on the
data set with reduced dimensionality is desirable or even necessary, since the
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algorithm starts from the complete set of features, for which the estimated im-
portance values can be very imprecise due to the curse of dimensionality. The
algorithm continues the reduction of feature set size until the specified number of
features is reached. It is also possible to estimate the classification error at each
step on the current feature set and choose the one which offers a good tradeoff
between the small number of features and an acceptable classification error.

It is possible to use as a ranking vector the weight vector w of a linear
classifier

f(x) = sgn((w, x) + b) (1)

In [1], the usage of the SVM classifier was proposed due to its reputation of
being robust to the curse of dimensionality and being able to provide better
estimations at early steps of shaving.

In [1], the SVM shaving was applied to microarray data. The relations be-
tween gene expression levels are either unknown or very complicated. In our
case, we have extra prior information about spectra: the order of the features
(wavelengths) is meaningful. The spectral values of the neighboring features are
typically highly correlated (of course, this is only true for data with a sufficiently
high spectral resolution). We use the word connectivity to name this property of
spectral data sets.

The use of any additional information about a data set is similar to (but
more specific than) regularization and in a similar way can help to reach better
generalization abilities. In this article, we propose a modification of the SVM
shaving technique which takes into account connectivity in the feature set. First
we combine features into continuous groups (bands). For this purpose, we use
absolute values |w(i)| of the weights w(i) obtained by training linear SVM on all
the features. The bands are separated from each other by local minima of |w(i)|.
To find local minima we estimate the first and the second derivates of |w(i)| using
Savitsky-Golay filter [6] with the second order polynomials. By averaging data
in each band we create a new feature set to which the standard SVM shaving
algorithm will be applied. The small number of features in the new feature set
allows us to remove them one by one instead of removing some percentage of
them. In all cases we use the ν-SVM algorithm [5], because its parameter ν has
a more convenient interpretation (the estimation of the classification error) than
the parameter C of the standard C-SVM algorithm.

As input parameters of the algorithm, additionally to the ν parameter of
SVM, the minimum number of bands (stopping criterion) and the size of smooth-
ing window for Savitsky-Golay filter should be specified. The selection of the
meaningful minimum number of bands is a matter of the experiment and can
be only roughly estimated beforehand e.g. as the number of significant principal
components. It is worth to notice that classes can overlap substantially for the
small numbers of bands which leads to the long execution times of SVM routines.
All these problems are also present in the standard SVM shaving. The size of
smoothing window should be selected as a largest interval on which |w(i)| (or
spectra themselves) can be well fitted by the second order polynomials for any i.
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The pseudo-code of the proposed algorithm is presented below:

Input:
the training data set D,
the complete feature set F,
the parameter ν of the ν-SVM classifier,
minimum number of bands min bn,
maximum smoothing window size max ws.

Output:
the sequence of feature sets F1 ⊃ ... ⊃ Fn.

Algorithm:

1. Calculate the weight vector w for the full feature set F
using ν-SVM algorithm.

2. Calculate the absolute values of the weight vector elements
wa(i) = |w(i)|.

3. Find the set of bands B = {b1, ..., bm} which are separated by the
minima in wa(i). Use Savitsky-Golay [6] algorithm with the
second order polynomials and with the smoothing window less or
equal to max ws to estimate the first and the second
derivatives of wa.

4. Create a new feature set F1 such that each feature z(i) is a
signed mean value of features x(j) which belong to the band bi.

z(i) =
1
|bi|

∑
j∈bi

sgn(w(j)) ∗ x(j) (2)

5. Perform the standard SVM shaving (using ν-SVM algorithm) on F1
removing each time one band producing the sequence of feature
sets F1 ⊃ F2... until no more than min bn bands left.

One can use a validation data set to estimate the classification error on the
resulting sequence F1 ⊃ ... ⊃ Fn to judge which subset has the smallest number
of bands while yielding a suitable performance.

3 Numerical Experiment

For a demonstration of our algorithm we use the data from the CD of [7]. This
is a 191-channel airborne multispectral scanner data set which contains a hy-
perspectral image of Washington DC Mall. The sensor system used in this case
measured a response in 0.4 to 2.4 μm region of the visible and infrared spec-
trum. The task is to discriminate between seven classes of pixels: Roofs, Roads,
Paths, Trees, Grass, Water and Shadows. We demonstrate our algorithm on the
Roofs/Paths classification. For our calculations we have selected 30 spots of each
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Fig. 1. Upper plot: lower and upper quartiles (25% and 75% levels of a distribution) for
each wavelength for both classes. Radiance units are arbitrary. Bottom plot: absolute
values of the weights w(i) resulting from training of the SVM classifier on a feature set
containing all 191 wavelengths.

class. Each spot consists of 9 pixels. The spots were manually selected to guar-
antee a representative examples and placed faraway from each other. We used a
5-fold cross-validation to estimate classification errors. The parameter ν = 0.05
of ν-SVM algorithm was selected after a few probe runs and proved to be a good
choice. The values of ν greater than ν = 0.05 lead to larger classification errors
due to the insufficient penalizing of the classification error. At smaller values,
the solutions of the SVM problem start to show early signs of overtraining with
the decreasing of the number of features in the shaving procedure. This happens,
because in low dimensional data sets classes start to overlap, so unreasonably
high penalization of margin errors (ν is much smaller than Bayes error) leads to
narrow margin and a bad generalization ability. See [8] for more details.

In Fig. 1, the spectra of both classes are shown, as well as the result of SVM
applied to the non-reduced feature set. After a few experiments, we have selected
the upper limit for the smoothing window max ws = 11. The result of the band
extraction is shown in Fig. 2.
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algorithm (band extraction). The cumulative weight of each band is equally distributed
among features from this band.
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Fig. 3. The classification errors for the feature sets selected by shaving algorithms. The
x-axis represents the number of effective features, i.e. the dimensionalities of spaces in
which classifiers were trained and tested.

The total classification errors on the feature sets selected by the standard
SVM shaving and the SVM band-shaving are shown in Fig 3. Both methods
start from the same entire feature set (191 original features). Then, the standard
procedure gradually removes the least important features by portions of 5% of
the remaining features. The classification error remains almost the same during
the shaving. It reaches minimum at 49 features. The number of features equal to
6 seems to be an optimal choice because of a significant dimensionality reduction
(from 191 to 6 features) and still a low classification error.

The absolute values of weights w(i) of the SVM trained on the selected 6
features are shown in Fig. 4. The classification performance for the number of
features less than 4 is very bad due to overlap.
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Fig. 4. Absolute values of SVM weights w(i) which are the result of the training SVM
classifier on a feature set containing 6 features selected by the SVM shaving procedure.

0 50 100 150 200
0

2

4

6x 10
−4

|w
|

wavelength index

Fig. 5. The absolute values of SVM weights w(i) trained on 5 bands selected by SVM
band-shaving. The weight of each band is equally distributed among features from this
band.

The SVM band-shaving immediately jumps from the entire feature set to
a feature set containing only approximately 10 features. This number varies
slightly in each cross-validation run. The results suggest that only by combining
the features into the bands, the classification performance can be improved.
Moreover, this performance can be better than one of a classifier trained on
the same number of features selected by the standard procedure. During the
removing the least important bands, the classification error becomes smaller. It
reaches the minimum at the number of bands equal to 5 (see Fig. 5). At lower
numbers of bands results show the clear signs of a substantial overlap between
classes.
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4 Conclusion

We proposed a variant of the SVM shaving algorithm, the SVM band-shaving,
which takes into account the connectivity property of the spectra. The conducted
experiment shows that our algorithmmay outperform the standard SVM shaving
technique. The SVM band-shaving removes the whole band at once. Thus the
number of retrainings of the classifier is smaller than in the standard SVM
shaving procedure. On the other hand, our algorithm requires the specification of
an additional parameter: the maximum size of smoothing window. A few runs of
the whole procedure or an expert knowledge on the nature of data are necessary
to select a proper value of this parameter. It is also worth to mention that 5 bands
selected by the SVM band-shaving contain in total about 90 original features
(wavelengths). So the application of some band shrinking algorithm would be
useful. Our results, although preliminary, are very encouraging. We plan to study
these techniques further on and apply them to other data sets.
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Abstract. We redefine the problem of feature selection as one of model selection
and propose to use a Markov Chain Monte Carlo method to sample models. The
applicability of our method is related to Bayesian network classifiers. Simulation
experiments indicate that our novel proposal distribution results in an ignorant
proposal prior. Finally, it is shown how the sampling can be controlled by a reg-
ularization prior.

1 Introduction

The problem of feature selection has been targeted regularly in publications appear-
ing in the literature on datamining and statistical pattern recognition. Important key
references include [1–4]. Whether one wants to learn a statistical classifier from data, a
graphical model or perform clustering in high-dimensional space, confining the number
of feature variables included in the model by either feature selection or feature transfor-
mation, is often necessary. Inclusion of too many feature variables leads to over-fitting.
Within the context of feature selection, over-fitting causes the so-called peaking phe-
nomenon to occur [5]. Peaking refers to the fact that the performance of a statistical
model (e.g., the error rate of a classifier) on an independent test dataset generally peaks
when utilizing only a subset of the available feature variables. This is counterintuitive,
as adding extra non-informative feature variables to a statistical model should not, intu-
itively, lead to a performance decrease. However, as the model parameters are estimated
from a training dataset of a finite size, variance associated with the parameter estimates
leads to fitting random variations of the non-informative features and hence to a de-
crease in performance.

The problem of feature selection is more complex than often stated in the litera-
ture, because the use of different feature subsets inevitably imposes different models
(e.g., a different topology of a neural network [6]). Hence, feature selection implies
model selection. Model selection is a complex problem that, even in the simple case
where models are compared with one assessment criterion (e.g., the likelihood of the
model, its classification error rate or its residual variance), entails a trade-off between
bias and variance. On the one hand, allowing the inclusion of a large number of fea-
tures/parameters, may lead to an accurate model. However, the parameters will because
of their large variance result in a model performance that is prone to noise. On the other
hand, limiting the number of parameters is more likely to bias model performance, but
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it results in less variance. In this paper, we suggest to sample different models from a
statistical distribution in order to make such trade-offs explicit. So instead of looking
for “that one particular model with the best performance”, we propose to sample the
posterior distribution of models using a Markov Chain Monte Carlo method [7, 8].

2 Background

Feature selection has been approached within statistical pattern recognition at an early
stage. In 1971, it was conjectured that the peak in performance (1 – error rate) of statis-
tical classifiers solely occurred when the features were dependent [9]. Later, Trunk [10]
managed to prove that even for nall independent normally distributed feature variables,
peaking can occur when nall → ∞. It is furthermore clear that increasing the size m of
the training dataset solely shifts the position of the peak, allowing the model to utilize an
increasing number of feature variables. Also within multivariate statistics, approaches
for variable selection for linear regression [11], linear and quadratic discriminant anal-
ysis [12] have been developed.

Algorithms for feature selection rely on a search scheme and an assessment crite-
rion Js(X,n) for comparing feature subsets. Within the pattern recognition literature,
much research focused on search schemes [4, 13] and assessment criteria Js [6]. Solely
exhaustive search is guaranteed to result in an optimal feature subset with the maximal
score Js(X,n) on a test set, when the assumption of monotony of Js(X,n)with respect
to an increase in n does not hold [5].

Conclusively, three interrelated obstacles impede efficient feature selection: the
peaking phenomenon, the combinatorial complexity of exhaustive search resulting in
2nall − 1 nonempty feature subsets and the fact that feature selection entails model
selection.

3 A Formalism for Model and Feature Selection

We formalize the joint problem of feature and model selection. In the sequel, individual
stochastic variables are denoted with capital letters A,B, . . ., sets of stochastic variables
with bold capital letters, X ,Y ,Z. Outcomes of the variables are denoted with small
letters, e.g., P (A = a). Correspondingly, P (X = x) denotes the probability that the
variables X have the outcomes x. In general, we use X to denote the set of feature
variables and C the outcome variable. The statistical model M consists of a structural
part represented by the graph G and a set of parameters θ, M = (G,θ). The model is
used to implicitly estimate the class-conditional probability distribution P (X | C,M),
when the variables X are discrete and the density p(X | C,M) when the variables
X are continuous. For simplicity, we henceforward solely address the situation where
C is discrete. With D, we denote a training database with m training instances, D =
(d1, . . . ,dm). Each instance d is represented by the discrete feature vector x and class
label c, yielding d = (x, c)T .

The search for the best feature subset can be illustrated with the lattice graph intro-
duced in [14]. Let GU = (V ,E) be an undirected graph with V indicating the vertices
and E the edges connecting pairs of vertices: Eijk = 1 if the vertices Vi and Vj are
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connected (indicating feature subsets with a Hamming distance of 1), with k the model
index, whereas Eijk = 0when Vi and Vj are not connected in model k. Figlure 1 shows
an example of a nested lattice structure that represents both feature subsets and models.
It is clear that model selection can be performed separately, for a given feature subset,
but that feature selection necessitates model selection.

111

011 101 110

001 010 100

000

M 1

101
M 2

M 3

M 4

M 5

M 6

Fig. 1. (a) Lattice structure connecting the feature subsets with a feature set Hamming distance of
1. (b) A close-up of the model subspace associated with feature subset ‘101’ reveals that several
alternative models (M1 − M6) may be applied to the feature subset 101. The edges indicate
models with a model Hamming distance of 1. The model subspace associated with the empty
set 000 below (not shown) contains solely one model, namely the distribution of the predicted
variable C in the training set.

The nested lattice structure depicted in figure 1, with an upper layer representing
the feature subsets and a lower layer representing the possible models that utilize the
associated feature subset, is unnecessary complex to work with. Instead, we redefine the
feature selection problem as one of model selection. Consequently, we propose consid-
ering the score Js as a random variable and set as goal to sample the joint distribution

p(Js,Y , M̂ |D), Y ∈ P(X), M ∈ M (1)

where the score Js is a continuous stochastic variable. The generic score function Js
may indicate, for example, the likelihood s = L, the Bhattacharyya distance s = μ, the
error rate s = ε, or another measure depending on how the model M should be scored
for the particular application at hand. The hat-notation indicates that the parameters θ of
the model M have been estimated from the training set, but they may also be integrated
out, see e.g. [15]. P(X) denotes the power set ofX and M the set of valid models that
can be learned from it.

4 Markov Chain Monte Carlo Sampling

We will use the Metropolis-Hastings algorithm [16] to perform Markov Chain Monte
Carlo sampling from a target probability function Π . More specifically, we propose to
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sample the distribution P (J,Y , M̂ |D). The Metropolis-Hastings algorithm results in a
discrete Markov Chain over a state space, S. The transition probabilities, Pq(Sk → Sl),
Sk, Sl ∈ S specify the probability of making a jump from state Sk (associated with
model k) to state Sl.

4.1 Probabilistic Network Classifiers

Markov Chain Monte Carlo techniques can be used to sample the posterior distribution
of different types of classifiers. Here, we illustrate MCMC by probabilistic network
classifiers [17, 18]. A probabilistic network classifier matches the general description
of a statistical model given in Section 3, see Fig. 2.

A B

C

D

E A B

C

D E

Fig. 2. (a) Directed acyclic graph specifying the direct dependencies in a Bayesian network clas-
sifier with 4 feature variables. The chain rule (Eq. (2)) specifies how the joint probability factor-
izes: P (A,B,C,D,E) = P (A)P (B|A)P (C|A,B)P (D|C,E)P (E). The variables A and B
are independent from D and E, given the class label C. (b) Naive Bayesian classifier where the
feature variables are independent, given the class label C. The joint probability factorizes into:
P (A,B,C,D,E) = P (A|C)P (B|C)P (C)(D|C)P (E|C).

A probabilistic network classifier M = (G,θ) consists of a structural model specifi-
cation, the directed graph G, and the parameters, θ, with the (un)conditional probability
θi,j,π(i) = P (Di = dj | π(Di) = dπ(Di)). The notation π(Di) = dπ(Di) indicates the
values of the parents of node Di in the graph G (the parents constitute the nodes with
arcs pointing directly to node Di). Computation of the posterior probability distribution
P (C = c|X = x) is specified by the directed graph. It follows from the chain rule that
the joint probability P (d) = P (c,x) is computed from

P (d) =
n+1∏
i=1

P (Di = d | π(Di) = dπ(Di)) (2)

(see Fig. 2). A little manipulation of Bayes formula yields the posterior probability
associated with class label cj (where we omit denoting the variables)

P (cj |x) =
P (cj ,x)∑
k P (ck,x)

(3)
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4.2 Approach by Madigan & York

Madigan & York have earlier presented an approach for sampling graphical models,
based on the Markov Chain Monte Carlo scheme [8]. In their approach, the goal is
to sample graphical models G ∈ G from the posterior distribution, P (G | D). The
likelihood L(G | D) ∝ P (D | G) with P (D | G) the probability that a particular
structural model G results in the dataset D.

Madigan & York define a homogeneous, stationary and reversible Markov chain.
This chain specifies the transition probabilities, Pq(G → G′), that a jump is made from
the model G to the model G′. The possible jumps from G to G′ consist of all acyclic
graphs that can be constructed by adding one arc to G or by deleting one arc from G.
Hence, G′ ∈ NB(G), the neighborhood of G defined by

NB(G) =

{ ⋃
i ∈ I(D),

⋃
j ∈ (I(D)\i | (Xi→Xj) �∈ G) AddAC(G, (Xi → Xj))

⋃⋃
i ∈ I(G),

⋃
j ∈ (I(G)\i | (Xi→Xj) ∈ G) Del(G, (Xi → Xj))

}
(4)

with I(D) denoting the indices of the nodes representing all n + 1 variables, and
AddAC a function that adds an arc to G iff the resulting graph G′ is acyclic. To-
gether, the requirements of homogeneity and reversibility and the fact that the Markov
Chain is stationary, make it feasible to use the transition kernel (proposal distribu-
tion) q(G → G′) in the Metropolis-Hastings algorithm [8]. The proposal probabil-
ity Pq(G → G′) = |NB(G)|−1, whereas the probability of the reverse proposal is
Pq(G′ → G) = |NB(G′)|−1. The transition probability P (G′|G) is modelled as
P (G′|G) = Pq(G → G′)α(G,G′), G �= G′. The detailed balance, which ensures
reversibility, is obtained by using the normalization factor α(G,G′)

α(G,G′) = min
[
1 ,

P (D|G′)P (G′)
P (D|G)P (G)

Pq(G′ → G)
Pq(G → G′)

]
(5)

Sampling from the proposal distribution q(G → G′) and normalising by α(G,G′)
result in a posterior distribution P (G|D) where more likely models appear more often
than unlikely ones.

4.3 Naive Bayes classifiers

A special type of probabilistic network classifiers are the naive Bayesian classifiers, see
Fig. 2 (b). MCMC can be modified to sample naive Bayesian classifiers. Because no
model selection takes place in this simple case, each node in the lattice graph (Fig. 1
(a)) contains solely one model. Instead of using the likelihood P (D|G) as assessment
criterion, we suggest to use the general criterion Js, which may be the likelihood, 1–
error rate, or another metric that measures discriminative performance. We define the
add-one-delete-one neighborhood to include only Naive Bayes classifiers

NBI(G) =

⎧⎨⎩
⋃

i ∈ I(X) | (C→Xi) �∈ G Add(G, (C → Xi))
⋃

⋃
i ∈ I(G) \ C Del(G, (C → Xi))

⎫⎬⎭ (6)
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Following the approach by Madigan & York, it would be natural to set the proposal
probability to Pq(G → G′) = |NBI(G)|−1. However, such a choice leads nonuni-
form proposal distribution P (N) with respect to the size of the feature subsets that are
compared. The following theorem formalizes this

Theorem 1 A Markov Chain Monte Carlo scheme for proposing feature subsets, where
each subset in the add-one-delete-one neighborhood NBI has the same probability of
being proposed, Pq(G → G′) = |NBI(G)|−1, this results in a proposal probabil-
ity imposing a nonuniform prior P (N) that is maximal for N = n, n ∈ {nall/2 −
1, nall/2, nall/2 + 1}, depending on whether nall is even or odd.

Proof (sketch)
It follows from the Binomial theorem that the number of size n ∈ {1, . . . , nall} feature
subsets of nall, is

(
nall
n

)
. As

(
nall
n+1

)
≥

(
nall
n

)
, n < nall/2 because |I(X), (C → Xi) �∈

G| ≥ |I(G) \ C| whereas
(
nall
n+1

)
≤

(
nall
n

)
, n > nall/2 because |I(X), (C → Xi) �∈

G| ≤ |I(G) \ C|, it follows that the prior P (N) is maximal for feature subsets with a
size nall/2.

We will instead use a proposal distribution, that results in each size n having the
same (uniform) probability. Establish the partitioning of NBI(G) into two disjoint sub-
sets, NBI(G) = {NBIG(+1), NBIG(−1)}, where NBIG(+1)(G) is the subset of graphical
models in NBI(G) that results from adding one arc to G, and NBIG(−1)(G) is the sub-
set of graphical models in NBI(G) that results from deleting one arc from G. We now
suggest a two-step proposal distribution q: Draw a uniformly distributed number u ∼
U(0, 1). If u ≥ 1

2 then choose a model in NBIG(+1) with the probability |NBIG(+1)|−1,
otherwise choose a model in NBIG(−1) with the probability |NBIG(−1)|−1. The normal-
ization factor that ensures detailed balance, becomes

α(G,G′) = min
[
1 ,

P (J |G′)P (G′)
P (J |G)P (G)

Pq(G′ → G)
Pq(G → G′)

]
(7)

with the proposal probability Pq(G → G′) = 1 and

Pq(G′ → G) =

⎧⎨⎩
1
2 : n(G) = 0
1
2 : n(G) = nmax
1 : otherwise

(8)

where n(G) indicates the number of features included in model G. Pq restores detailed
balance with respect to the number of features in relation to the two end points, 0 and
nmax, of the proposal interval. The parameter nmax ≤ nall such that the maximal size
of a feature subset can be limited. The resulting posterior distribution implies a non-
informative (uniform) prior, P (N), on size N = n of any feature subset. We conduct a
simulation experiment to illustrate the practical implication of Theorem 1.

4.4 General Bayesian Network Classifiers

We now extend our MCMC approach to sample general Bayesian network classifiers.
Hence, the lattice graph (Fig. 1 (a)) represents both different feature subsets and mod-
els. Define the one-step look ahead neighborhood of the graph G consisting of the di-
rected acyclic graphs resulting in valid probabilistic classifiers that can be constructed
by adding one arc to G or deleting one arc from G
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Fig. 3. (Upper left) Shows the posterior distribution of J for MCMC scheme 1. (Lower left)
Shows the distribution of feature subsets for MCMC scheme 1. (Upper right) Shows the posterior
distribution of J for MCMC scheme 2. (Lower right) Shows the distribution of feature subsets
for MCMC scheme 2.

NBC(G) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⋃

i ∈ I(X), C �∈ σ(Xi), C �∈ π(Xi)
Add(G, (Xi → C))

⋃⋃
i ∈ I(X), C �∈ σ(Xi), C �∈ π(Xi)

Add(G, (C → Xi))
⋃⋃

j ∈ I(σ(C))

⋃
i ∈ I(X) \ π(Xj) Add(G, (Xi → Xj))

⋃⋃
i ∈ I(G)

⋃
j ∈ I(G) | (Xi→Xj) ∈ G Del(G, (Xi → Xj))

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (9)

with π(Xi) the children of node Xi and σ(Xi) the parents of node Xi. The function
I(σ(C)) denotes the indices of the children of the classification node C. The neighbor-
hood NBC(G) is subdivided into four disjoint subsets

NBC(G) = {NBC(G+ 1F ), NBC(G − 1F ), NBC(G+ 1M ), NBC(G − 1M )} (10)

The subset NBC(G + 1F ) contains the graphical models in NBC(G) where the addi-
tion of an arc implies that G′ contains one feature variable more than G. The subset
NBC(G − 1F ) contains the models in NBC(G) where the deletion of an arc implies
that G′ contains one feature variable less than G. The subset NBC(G + 1M ) contains
the models in NBC(G) where the addition of an arc increases the complexity of G′, but
where G and G′ include the same feature variables. NBC(G−1M ) contains the models
in NBC(G) where the deletion of an arc decreases the complexity of G′, but where G
and G′ include the same feature variables.

We define the proposal distribution qC as follows:

qC(G → G′) =

⎧⎪⎪⎨⎪⎪⎩
u < 1

4 q1(|NBC(G+ 1F )|−1)
1
4 ≤ u < 1

2 q2(|NBC(G − 1F )|−1)
1
2 ≤ u < 3

4 q3(|NBC(G+ 1M )|−1)
3
4 ≤ u q4(|NBC(G − 1M )|−1)

(11)
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Fig. 4. (a) Shows the posterior distribution of J when using a Poisson prior, P (G). The left tail
contains models with the maximal performance 0.9. (b) Shows the distribution of feature subsets
when the same prior is used.

with u ∼ U(0, 1). So in each proposal, the MCMC-algorithm with the same probability
chooses to add a feature, delete a feature, increase the model complexity or simplify the
model (the two latter moves keep the same feature subset).

5 Simulation Experiments

We performed a simulation experiment in order to compare the two sampling schemes
proposed for the Naive Bayesian classifier in Section 4.3. We set the scoring metric
J(X) = 1 − ε(X) and chose to simulate with a feature set of 10 features. Five of the
(independent) features could each lead to an increase in J(X) of 0.08, yielding a max-
imum of 0.9. The performance resulting from the empty feature set is 0.5. We sampled
100.000 feature subsets (naive Bayes classifiers) using the scheme based on the Madi-
gan & York approach (scheme 1), and 100.000 using our novel proposal distribution
(scheme 2).

Our second proposal distribution based on the neighborhood NBI behaves as could
be expected and support Theorem 1. The more features a subset contains, the higher the
resulting score J will be. To cope with the curse of dimensionality, we experimented
with using the discrete Posson distribution as prior, P (N). Setting λ = 4, we obtained
the results as shown in Fig. 4.

In our third experiment, we implemented the proposal distribution for general
Bayesian network classifiers, Eq. (11). We sampled 100 training cases from the prob-
ability distribution specified by the graph in Fig. 2. MCMC was set to run for 1000
iterations. The simulation resulted in 757 nonempty feature sets. The most frequent
nonempty feature set included all 5 features, and was found 166 times. The second
most likely feature set consisting only of feature 1, was sampled 63 times. So the cor-
rect feature set was also most frequently sampled in the markov chain.

6 Discussion

We have presented a method for sampling statistical models in general, and pattern
classifiers in particular, using an ignorant proposal distribution. It was shown how a
regularization prior can be used to restrain the maximal dimensionality of the sampled
models. Finally, we showed how general Bayesian classifiers can be sampled using the
novel proposal distribution.
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Abstract.Supervised data structures in high dimensional feature spaces
are displayed as graphs. The structure is analyzed by normal mixture
distributions. The nodes of the graph correspond the mean vectors of
the mixture distributions, and the location is carried out by Sammon’s
nonlinear mapping. The thickness of the edges expresses the separability
between the component distributions, which is determined by Kullback-
Leibler divergence. From experimental results, it was confirmed that the
proposed method can illustrate in which regions and to what extent it
is difficult to classify samples correctly. Such visual information can be
utilized for the improvement of the feature sets.

1 Introduction

In usual pattern recognition systems, both construction of classifiers and classi-
fication of unknown samples are carried out in a high dimensional vector space,
called “feature space.” The space is spanned by the “features” extracted from
raw patterns in the observation space. Therefore, the system’s accuracy strongly
depends on the feature extraction part. However, the extraction process cannot
be generalized, so the system has to be improved heuristically by evaluating the
extracted features.

For this purpose, many feature selection method have been proposed. They
can find and remove redundant features, while they cannot illuminate what fea-
tures should be added. Therefore, on the other hand, many trials of visualizations
that illustrate the distributions of samples in the feature space have been carried
out [1-7]. By using such methods, the following properties can be observed: (1) in
what “shape” the samples distribute in the high dimensional space, (2) whether
the class regions are separated from the others sufficiently or not, and (3) if it is
not, in which regions the classes are not separated well. These matters may help
us in improving the system’s accuracy, and are also useful for superclass finding
problem [8].

A. Fred et al. (Eds.): SSPR&SPR 2004, LNCS 3138, pp. 1043–1051, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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2 Visualization Methods

To achieve the purpose mentioned above, many “mapping” methods [1-7] can be
applied. These mapping techniques are characterized from the following view-
points:

1. Using supervise information or not.
2. Displaying the individual points or representative points.
3. Linear mapping or nonlinear mapping.

The relationship among these methods can be illustrated as Fig.1.
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Fig. 1. Visualization methods of high-dimensional data.

When the supervise information, i.e., the class labels, are used, the separa-
tion status between the class regions can be observed. Therefore, almost latest
methods are included in that group. In addition, the latest studies display rep-
resentative points instead of the individual points. This is effective especially in
the case of numerous samples. Once the points in a high dimensional space were
mapped onto two dimensional space, the visual can trick us that the near points
on the resultant map are also near in the feature space. This phenomenon can
be happened both in linear mapping and nonlinear mapping methods.

To avoid these misunderstandable situations, Mori et al. proposed a novel vi-
sualization method [6]. In that technique, the individual samples in the feature
space are organized to special type of overlapping clusters by a nonparamet-
ric classifier called subclass method [9], and such clusters are displayed as the
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nodes of a graph. The clusters called “subclasses” are formed so as to include
the samples belonging to a certain class (positive samples) as many as possible
and exclude the samples belonging to the other classes (negative samples) com-
pletely. In addition, the method connects the nodes according to the overlapping
hypervolumes between the subclasses in order to display the separability.

However, the method tends to produce much subclasses in order to exclude
the negative samples, then the resultant graph becomes complex. Although such
a parameter that is used to eliminate too small subclasses in the graph is pre-
pared, it is difficult to judge whether such nodes can be removed or important
for showing the separability of the class regions.

From these points of view, in this study, normal mixture distributions are
employed for the analysis of the structures in order to absorb the effects of the
noise or outlier samples. Hence, Kullback-Leibler divergence is used to illustrate
the separability between the component distributions.

3 Proposed Method

3.1 Overview

The supervised data structure is displayed as a “graph” by the following proce-
dure:

1. Estimate normal mixture distributions on the samples in the feature space.
2. Project the mean vectors of the component distributions onto two dimen-
sional space by Sammon’s nonlinear mapping [1], and let them the nodes of
a graph.

3. Calculate Kullback-Leibler divergences between the component distributions,
and connect the nodes according to the values of the divergences.

The details of the steps are described in the following sections.

3.2 Normal Mixture Distributions

In this study, normal mixture distributions on the samples are estimated by EM
algorithm [10] that maximizes the following likelihood:

L =
N∑
i=1

log p(xi) =
N∑
i=1

log

{
K∑
k=1

ckN(mk, Σk)(xi)

}
,

where xi is the ith feature vector (sample), N is the number of the samples, K
is the number of the components, N(mk, Σk)(·) is a normal distribution with a
mean vectormk and a covariance matrixΣk, and ck is the weight of the kth com-
ponent

(∑K
k=1 ck = 1

)
. Such mixture models are estimated for the individual

classes.
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Here, the appropriate value of K is determined by MDL (minimum descrip-
tion length) criterion [11]. Each hypothesis is evaluated by the following formula:

MDL(K) = −L+
1
2

[
(K − 1) +K

{
D +

D(D + 1)
2

}]
logN,

where D is the number of the features. The appropriate number of components
K̂ is determined by varying K from 1 through a fixed number Kmax, e.g., 10,
as:

K̂ = argmin
K
MDL(K).

3.3 Nonlinear Mapping

In this study, the nodes of a graph are located by Sammon’s nonlinear mapping
[1]. This method projects the points in a high dimensional space so as to maintain
the distances of every pair as far as possible, that is achieved by minimizing the
following evaluation formula:

E =
1
γ

N∑
i<j

{δ(xi,xj)− δ(yi,yj)}2
δ(xi,xj)

,

where xi is the original vector and yi is the corresponding projected vector,

γ =
∑
i<j

δ(xi,xj),

and δ(·, ·) is the Euclidean distance.
Unfortunately, the original Sammon’s method cannot project additional

points after the calculation of the mapping. Therefore, in this study, the mean
vectors of the component distributions are tentatively added to the samples be-
fore performing the projection, and are picked up from the result.

3.4 Kullback-Leibler Divergence

In order to take into account the scattering information of the samples, the
separability between the classes are evaluated by Kullback-Leibler divergence.

Because, in this study, normal mixture distributions are used for the anal-
ysis of the structure, the divergence between two components p, q is calculated
directly from the distribution parameters as follows:

D(p||q) = 1
2
{
log det(ΣqΣ

−1
p )− D+ tr(Σ−1q Σp) + (mp−mq)tΣ−1q (mp−mq)

}
.

The thickness of the edge between two nodes is determined proportional
to 1/D(p||q). As a result, well-separated nodes have no or thin edges, while
nonseparated nodes have thick edges.

Here, a threshold parameter θ for D(p||q) is introduced to eliminate the
edges with too large value of D(p||q), because the resultant too thin edges are
redundant and obstacle for the observation.
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4 Experiments

The proposed method was tested on SHIP dataset [12]. This dataset aims to
distinguish eight types of navy ships with eleven features, that were extracted
from the ships’ silhouette images. The total number of samples is 2545.

The result of Sammon’s nonlinear mapping is shown in Fig.2, and the graphs
obtained by the proposed method are shown in Fig.3 (a) and (b). In addition,
the graphs obtained by Mori et al.’s method are also shown in Fig.4(a) and (b),
corresponding to two different types of location methods. The parameters in
their method were adjusted according to their guideline.

Fig. 2. Result for SHIP data by Sammon’s nonlinear mapping.

The result of Sammon’s nonlinear mapping is very condensed, therefore it is
difficult to find where the class ω6, ω7, ω8 samples distribute.

On the other hand, from the result of the proposed method (a), the essential
distribution structure of each class is easily observed. For example, the class ω5
forms “ring” structure, the class ω8 forms unimodal cluster, and the other classes
forms nonlinear belt structure and some isolated clusters.

In addition, from the result of the proposed method (b), it can be observed
that in which regions correct classification is difficult. Here, two distant nodes
in the graph does not necessarily mean that the separation of the corresponding
samples is easy, and vice versa. For example, the distance between the class
ω1–ω7 nodes at the left-bottom region in Fig.3(b) is far, but they should be
nonseparable because there is the edge between the nodes. On the other hand,
the class ω2–ω5 nodes at the right-upper region are close to each other, so it
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(a) Within-class edges with the threshold θ = 70.

(b) Between-class edges with the threshold θ = 35.

Fig. 3. Result for SHIP data by the proposed method. The numbers in the circles
correspond the class labels.

(a) Polygon display type. (b) Principal component display type.

Fig. 4. Result for SHIP data by Mori et al.’s method.

seems very difficult to separate them. However, there is no edge between the
nodes. This means the separation may be easy in the feature space.

In order to confirm that the nonseparable regions illustrated by the proposed
method is right, the resultant graphs were compared to the confusion matrices
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obtained by nearest neighbor method and SVM with soft-margin. The hold-
out method was used for the calculation. The results are shown in Table 1 (a)
and (b).

Table 1. Confusion matrices for SHIP data. Too much erroneous results are underlined.

(a) by nearest neighbor method. (b) by SVM with soft-margin.
I\O ω• ω• ω• ω• ω• ω• ω• ω• Error

ω• 143 1 0 0 1 12 11 2 0.159
ω• 0 214 5 6 1 0 1 0 0.057
ω• 0 7 72 9 5 0 0 0 0.226
ω• 0 5 10 225 5 0 0 0 0.082
ω• 2 6 0 5 154 5 1 1 0.115
ω• 8 1 0 0 3 114 2 12 0.186
ω• 9 5 0 0 1 0 102 2 0.143
ω• 1 0 0 0 1 4 0 98 0.058

I\O ω• ω• ω• ω• ω• ω• ω• ω• Error

ω• 140 3 0 0 0 19 6 2 0.176
ω• 0 222 1 3 1 0 0 0 0.022
ω• 1 6 68 9 9 0 0 0 0.269
ω• 0 4 0 235 6 0 0 0 0.041
ω• 0 3 1 5 161 3 0 1 0.075
ω• 5 2 0 0 2 120 0 11 0.143
ω• 17 5 0 0 2 1 92 2 0.227
ω• 0 0 0 0 1 5 1 97 0.067

By comparing Fig.3 to the tables, it can be confirmed that the understanding
of the resultant graph is almost consistent with the results of those classifiers. For
example, in the confusion matrices, the most erroneous relationships between
classes are ω1–ω6, ω3–ω4, ω6–ω8 and ω1–ω7. Such classes are also connected
strongly in the result of the proposed method. This means that such class regions
are very closed and/or the local variance of each class is large, then the local
distributions are overlapped. Therefore, new features should be added in order
to improve the system’s accuracy at these classes. On the other hand, the other
classes, for example, ω1–ω3 has no error in the tables, and there is also no edge
between the classes in the graph. This means the current feature set is sufficient
for such classes, and the features may be reduced by feature selection methods.

While, the resultant graphs obtained by Mori et al.’s method do not nec-
essarily match the results of the proposed method and the two classifiers. For
example, Fig.4 insists that there are much overlaps between the class ω3–ω4,
ω1–ω7 and ω2–ω5, but no or not so much overlaps between the class ω1–ω6 and
ω6–ω8. Two options can be considered for the reason: (1) the subclass classifier
is so strong that succeeded to separate these class regions completely, (2) Im-
portant but small nodes were removed by the threshold parameter. As a result,
the corresponding edges did not appear in the graph.

5 Conclusion

A new graph type visualization method for supervised data structures was pro-
posed. The method uses normal mixture distributions for the analysis of the
distribution structures, and uses Kullback-Leibler divergence for the evaluation
of the separability between the class regions.

From the experimental results, it was confirmed that the proposed method
can display the essential distribution structure by within-class edges, and also
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can show by between-class edges in which regions and to what extent the class
separation is not achieved sufficiently by the current feature set.

Compared to Mori et al.’s method, the proposed method shows the within-
class structure simply and the between-class relationships appropriately. This
property comes from the normal mixture distributions and MDL criterion in the
complexity selection.

However, the proposed method also has a drawback in nature. The estimation
of normal mixture models is difficult when the number of samples is relatively
smaller than the number of features. Therefore, the estimation should be carried
out with special care as far as possible. For example, it may be effective to sub-
stitute the basic EM algorithm to SMEM (Split and Merge EM) algorithm [13].
In addition, MDL framework for the selection of the appropriate number of com-
ponent distributions does not work well if the number of samples is insufficient.
Also at this point, good substitutions should be researched for the visualization
purpose.
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Texel-Based Texture Synthesis
with Bunch Sampling

Dongxiao Zhou and Georgy Gimel’farb
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Auckland, New Zealand

Abstract. Texture is frequently considered as a repetitive spatial ar-
rangement of texels, the primitive elements of texture. We define the
texel as a bunch of image signals that has a particular geometric struc-
ture (shape and size). This provides for fast synthesis of a spatially ho-
mogeneous texture by bunch sampling. First, the structure of the texels
and a placement grid to spatially arrange them are estimated from a
training image using a generic Gibbs random field model of the texture.
Then at the synthesis stage, the structure serves as a sampling mask to
capture the texels from the training image. Random positions for repli-
cating texels to form a synthetic large-size texture are selected according
to the placement grid.

1 Introduction

Most of the known texture synthesis methods use Markov random field (MRF)
models to describe spatially homogeneous textures with translation invariant sig-
nal statistics. With respect to sampling techniques, there are two main groups of
such methods, namely, model-based probabilistic synthesis and non-parametric
sampling. Model-based methods [1, 3, 4, 7, 17] construct an explicit MRF model
of a given training image. The model is specified by a joint Gibbs probability
distribution (GPD) of image signals. New textures are generated by iterative
Markov Chain Monte Carlo (MCMC) probabilistic sampling of the GPD based
pixel-wise stochastic relaxation e.g., the Gibbs or Metropolis sampler. These
methods are successful in modelling a broad range of textures, but are inefficient
in realistic texture synthesis because the stochastic relaxation is too computa-
tionally complex.

Non-parametric sampling [5, 6, 11] achieves much faster texture synthesis by
avoiding slow pixel-wise relaxation. The MRF model of texture is assumed only
implicitly, and the training texture itself is used as a sampling source. To preserve
local features of the training texture, the sampling in [6], for instance, chooses
sampling candidates by minimising the distance (e.g., in the L2 metric) between
the pixel neighbourhoods in the training image and the like neighbourhood in the
synthetic texture. As each sampling candidate is copied to the synthetic texture,
the pixel neighbourhood structure and thus the texture feature is expected to be
inherited by the synthetic texture. However, without an explicit texture model,

A. Fred et al. (Eds.): SSPR&SPR 2004, LNCS 3138, pp. 1052–1060, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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Fig. 1. Brodatz’s training textures D4 and D34 (128×128), the corresponding MBIMs
and the structure of texels. The MBIMs for the 65 × 65 search window are scaled up
for better visual perception.

the non-parametric sampling lacks knowledge of internal structure of signal de-
pendencies varying from texture to texture. This hinders adaptive selection of
the shape and size of the pixel neighbourhood for a particular texture. Also,
the distance-based pixel-wise copying may accumulate local errors. More stable
block- or patch-based copying in [5, 11] results in false borders between adjacent
permuted blocks (patches) and in verbatim replicas of each training singularity.
Most of these problems are overcome by “smart copying” [12] that cuts from
the training image arbitrary shaped patches forming a “borderless” synthetic
texture rather than attempts to post-fix the false borders.

Our paper describes an alternative method, called bunch sampling in [9, 16],
for realistic texture synthesis. It combines the strengths of both the model-based
probabilistic synthesis and the non-parametric sampling to provide fast synthesis
of large-size textures. Compared to [9, 16], this paper introduces more elaborated
techniques for estimating the geometric structure of texels and their placement
grid for each particular texture. The same bunch sampling is used here also to
rectify grayscale and colour textures with at least weak translational periodicity.
The single texel for a rectified prototype of the periodic texture is estimated
using marginal posterior probabilities of the corresponding signals in all the
superposed training bunches.
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2 Bunch Sampling

Structural approach to texture analysis [10] considers a homogeneous texture
as the result of regular and repetitive spatial arrangement of its primitive el-
ements or texels. Bunch sampling synthesises textures in line with this idea,
that is, a new texture is generated by permuting and replicating the texels. The
replication is guided by a placement grid specifying the periodic spatial arrange-
ment of texels in the texture. Experiments in [16] have shown that the bunch
sampling forms realistic large-scale synthetic textures for two separate classes
of images, namely, periodic or almost periodic mosaics and aperiodic stochastic
textures. The classes have different notions of the texels and placement grids.
Textures of the first class contain spatially uniform repetitive subimages (graph-
ical patterns) that may be considered as noisy or transformed replicas of a single
texel prototype or a few such prototypes. The grid puts strict limits on possible
relative positions of the neighbouring texels. Textures of the second class has
spatially uniform marginal distributions of signal co-occurrences in the bunches.
The texel-based description is still possible, but now it involves a very large set of
different texels, and there are no too strict limitations on their relative placement
except for the image continuity (that is, the absence of “false borders”).

Loosely speaking, in both cases the texel is a bunch of image signals having
a geometric structure with particular shape, orientation, and size. Due to as-
sumed translational invariance, all the texels share the same geometric structure
but may differ by particular signal combinations. Spatial repetitiveness results
in non-uniform frequencies of signal co-occurrences. Thus the bunch structure
can be approximately related to most characteristic pairwise gray level cooccur-
rences in a generic Gibbs random field (GGRF) model of translation invariant
textures [7, 8]. Once that the structure is found for a given training image, the
placement grid is specified accordingly in terms of relative spatial positions of
the texels.

The GGRF texture model allows to rank families of translation invariant pixel
pairs according to their partial interaction energies in a particular texture. LetR
denote an arithmetic lattice supporting digital images. Let Cξ,η = {(x, y), (x +
ξ, y+η) : (x, y) ∈ R, (x+ξ, y+η) ∈ R} be a family of pixel pairs having the same
relative spatial displacement. Then the first approximation of the partial energy
for these pixel pairs in the training image g is proportional to the variance of the
normalised grey level co-occurrence histogram (GLCH) collected over the family
Cξ,η [7, 8]:

Eξ,η(g) ∝ (Fξ,η(g)− FIRF) • Fξ,η(g) (1)

where Fξ,η(g) and FIRF are the normalised GLCHs for the image and the inde-
pendent random field, respectively, and • denotes the dot product.

The partial energy of Eq. (1) specifies the contribution of the family Cξ,η to
the overall interaction energy, that is, to the probability of the training image.
The higher the partial energy, the more probable the image and the more char-
acteristic the family itself for this texture. The top-rank partial energies specify
the most characteristic structure of pairwise interactions [8].



Texel-Based Texture Synthesis with Bunch Sampling 1055

The partial energies of all the families in a large search set of displacements,
W = {(ξ, η) : |ξ| ≤ Δ, |η| ≤ Δ} of the size (2Δ + 1) × (2Δ + 1), specify a
symmetric model based interaction map (MBIM) [8]. Points (ξ, η) and (−ξ,−η)
in the MBIM correspond to the family Cξ,η, and their scalar values represent
the relative partial energy Eξ,η(g) in Eq. (1). Figure 1 demonstrates the MBIMs
with the search windowW of the size 65×65 for the Brodatz’s stochastic texture
D4 and periodic mosaic D34.

2.1 Geometric Structure of Texels

As shown in Fig. 1, the top-rank partial energies form specific clusters in the
MBIMs. These most energetic clique families determine both statistical features
of the texture and the geometric structure of the texels. Stochastic textures
(e.g. D4) with dominant close-range pixel interactions have only one central
cluster. The like central cluster for periodic textures such as D34 relates mainly
to uniform background. The periodic structure of these textures is reflected by
the peripheral clusters. Thus, the MBIM allows bunch sampling to distinguish
between the aperiodic and periodic textures and estimate the geometric structure
of texels using different strategies. For a stochastic texture, the central cluster in
the MBIM specifies the shape of the texel (usually it is a connected region). For
a periodic mosaic, the peak points of the peripheral clusters being the nearest
neighbours to the MBIM’s centre form the geometric structure of the texels.
These texels are of the relatively small size, e.g., only six pixels for the texture
D34. As shown later, even these simple structures are adequate for realistic
texture synthesis.

The following algorithm is used to analyse MBIMs.

1. Find the threshold that separates the most energetic families of pixel pairs
from others, using the algorithm described in [14]. The energy histogram for
the MBIM is usually unimodal, with only one main peak at the lower end
representing the majority of families with the low partial energy.

2. Segment the MBIM using the obtained threshold and identify the energy
clusters using a general connected component labeling technique.

3. Find the peak of every cluster (it can be approximated by the gravity centre
of the cluster if the partial energies are considered as the weights).

2.2 Placement Grid for Texels

Assuming that non-overlapping bunches are conditionally independent, bunch
sampling tessellates the textured image with a guiding grid derived according to
the estimated geometric structure of the texel. Each cell of the grid is a com-
pact parallelogram enclosing the texel’s structure. The parallelogram is specified
with four parameters, (θx, θy,m, n) where the angles θx and θy give the guid-
ing orientation of the cell sides with respect to the image coordinate axes, and
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the side sizes m and n are the maximum spans of the texel along the guid-
ing directions(Fig. 3).The enclosing parallelogram is computed here using the
Voss–Suesse’s algorithm in [15].

The guiding grid reflects the underlying structure that forms the repetitive
pattern of a homogeneous texture. It defines a reference coordinate system so
that the spatial dependencies between the texels are specified in terms of the
relative positional shift of each texel with respect to the closest grid cell. As
shown in Fig. 4, the relative shift, (δx, δy), for the texel centred on point p =
{x, y} in the image is as follows:

δx = (y · sin θy + x · cos θx) mod m
δy = (y · cos θy − x · sin θx) mod n

(2)

2.3 Texture Synthesis with Bunch Sampling

Given a training texture g0, texture synthesis begins with a blank goal image,
g1, that can be of arbitrary size. For each pixel, p, in the goal image, bunch
sampling computes its relative shift (δx, δy) with respect to the placement grid
by Eq. (2), and then searches the training image for a proper sampling position
ps with the same relative shift. Usually there are multiple candidate sampling
positions satisfying the condition, so one of them is chosen randomly. With ps
as the centre and the geometric texel structure as the sampling mask, a bunch
of image signals is picked up from the training image, and then it is copied into
the goal image g1 with the centre on p. During the synthesis, signal collisions
happen when a new bunch has to be placed into an area that has been occupied
by a previously placed bunch. A simple heuristic rule that preserves the already
placed signals to resolve the collisions [9] results in the most of cases in realistic
borderless textures.

The pixels in the goal image can be generated in an arbitrary order, and the
texture synthesis completes after all the pixels are covered. The synthesis has
linear computational complexity with respect to the size of the synthetic image
|g1|. It depends linearly on the size of the bunch, too.

D4 D34

Fig. 2. Synthetic textures D4 and D34 (360 × 360).
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for the texture D34.

Fig. 4. Tessellation of D34 and relative
positions of the bunches: (0, 0) for Bunch
a and (δx, δy) for Bunch b.

D3 D14 D20 D52 D102

Bark09 Fabrics16 Flowers04 Grass01 Metal05

Fig. 5. Training Brodatz’s and MIT VisTex textures 128 × 128.

3 Results and Discussion

Bunch sampling has been tested on a variety of textures, mainly from the digi-
tised Brodatz album [2] and the MIT VisTex texture database [13]. Figure 2
shows the synthetic textures D4 and D34 generated with the texels in Fig 1.
Figure 6 shows synthetic textures for the training images in Fig. 5. In these
cases, the synthetic and training textures have good visual similarity.

But deviations from periodicity may hinder the synthesis. Figure 7,a shows
the visually unsatisfactory synthetic Brodatz’s texture D3. Because the bunch
sampling assumes the fixed geometric structure of each texel, it fails under local
deformations of such a weakly homogeneous texture. As a result, random distor-
tions appear in the synthetic texture due to mismatches between the estimated
fixed structure and its local deformation at the sampling position.

However, in this case, the bunch sampling can at least rectify the distorted
training image and produce its idealised periodic prototype. The approximate
Bayesian estimate of a single texel based on the maximum marginal posterior
(MMP) probabilities of signals in each pixel is easily obtained by superposing all
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signals with the same relative shift with respect to the placement grid. Figure 7,b
shows the resulting synthetic prototype. In spite of less noise and better visual
appearance, it is far from a realistic D3-like texture. Such a “homogenised”
prototype allows to recover local geometric deformations of the training image,
and their spatial model can be later used to convert the prototype into a more
realistic texture.

The GGRF model is usually restricted to only the second order GLCHs as
its sufficient statistics. Moreover, to restrict the computational complexity we
deal in practice with only 16 grey levels. Nevertheless, the bunch sampling still

D14 D20 D52

D102 Bark09 Fabrics16

Flowers05 Grass01 Metal05

Fig. 6. Examples of synthetic textures (360 × 360) generated with bunch sampling.
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a b

Fig. 7. Synthetic textures D3 (360× 360) generated under different selection of texels.

handles colour textures fairly well due to the separate analysis and synthesis
stages. At the analysis stage, a colour texture is reduced to the greyscale one for
extracting the texel structure and placement grid. During the synthesis, the sig-
nals sampled from the original colour images are used to generate new textures.
Figure 8 shows examples of the training and rectified synthetic colour textures.

4 Conclusions

Bunch sampling uses a “placement rule + texels” scheme to model homogeneous
textures. The size, shape, and placement rule for texels are derived from image
statistics of the sample texture using a GGRF model. During the synthesis, texels
are sampled form the training texture and are directly moved to the synthetic
one guided by the placement rule. In such a way, bunch sampling provides a
fast model-based texture synthesis. However, bunch sampling is less efficient in
handling inhomogeneous deformation in texture because the assumption of the
uniform geometric structure for texels is too rigid for weakly homogeneous and
inhomogeneous textures. Our future work is to relax the geometric structure of
texels with some geometric adaption so that we can model the local deformation
in those textures more effectively.

Fig. 8. Synthesis of colour textures, “windows” and “cans”.
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Abstract. 3-dimensional pattern recognition requires the definition of
a similarity measure between 3-dimensional patterns. We discuss how
to match 3-dimensional patterns, which are represented by a set of im-
ages taken from multiple directions and approximately represented by
subspaces. The proposed method is to calculate the canonical angles, in
particular the third smallest angle between two subspaces. We demon-
strate the viability of the proposed method by performing a pilot study
of face recognition.

1 Introduction

We aim to extend pattern recognition coverage from 2-dimensional (2-D) appli-
cations to 3-dimensional (3-D). One expected application of such 3-D pattern
recognition is differentiation between an object and its photograph as well as
identification of the object.

In general, for pattern recognition, we define a similarity measure between
two patterns and use this as the criterion for performing recognition. Thus, for
our purpose, we need a definition of similarity between two 3-D patterns.

A set of images taken from multiple directions are used to describe a 3-D
object1 and the set is approximately represented by a subspace. A subspace
representation of 3-D objects was introduced, for example, in the parametric
eigenspace representation [1], although the subspace representation of a pattern
set had been known as the subspace method [2]. In most cases, the principal
component analysis (PCA) is used for making the subspace as an approximation
of the distribution of the patterns in the set. However, the pattern matching
method in [1] is limited to measure the nearest distance between an input rep-
resented by a vector and a reference that is the nearest vector in a class.

The largest problem with such a framework is that a single photograph which
happens to be identical to an image that is captured from a particular direction
matches exactly even though the actual objects are different. More concretely,
it is impossible to differentiate between an object and its photograph using
conventional methods.
• 3-D modeling provides a representation of 3-D objects, but it takes a long time to
construct such models for real objects. It is therefore currently impractical to acquire
real-time results with this approach.

A. Fred et al. (Eds.): SSPR&SPR 2004, LNCS 3138, pp. 1061–1068, 2004.
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We present a 3-D pattern matching method to solve this problem. The pro-
posed method is an extension of a 2-D pattern matching method, the mutual
subspace method (MSM) [3]. The extension is to calculate angles between two
subspaces, in particular the third smallest one rather than the smallest one that
is used in the MSM. We also show the results of a pilot study where faces and
their photographs are dealt with.

2 Approach to the Task

2.1 Use of the Subspace Method Framework

It is desirable that the 3-D pattern matching method is an extension of a 2-D
method. Among existing 2-D methods, we chose the subspace method framework
[2] because most of its calculations are linear operations that are executable at
high speed, in particular with the SIMD instructions of today’s CPUs. The sub-
space method framework has been widely applied in various pattern recognition
tasks, such as character, speech, and face recognition. However, if we try to ap-
ply the subspace method directly to the 3-D problem, a 3-D model is required:
which is expensive.

Among the subspace methods, the MSM has the most interesting proper-
ties. It was initially developed in order to provide greater tolerance for hand-
printing deformation of Kanji in early 80’s, and outperformed the classical sub-
space method in a Kanji recognition experiment [3]. It was later applied to face
recognition, which is originally a form of 3-D recognition, and achieved satisfac-
tory accuracy [4].

2.2 Review of the Mutual Subspace Method

The MSM2 was the first method to utilize the angle between two subspaces
for defining the similarity between an input and a reference3, though they are
originally two sets of vectors. Given subspaces, U and V , the angle between these
is defined as the minimum angle between vectors u and v, where u ∈ U and
v ∈ V , according to [7]. Let θ be the angle. Then θ is calculated as

cos2 θ
.= sup
u ∈ U,v ∈ V
‖u‖ �= 0, ‖v‖ �= 0

(u,v)2

‖u‖2‖v‖2 . (1)

This is also used as the definition of the similarity of the subspaces, i.e. the sets
of the vectors, in the MSM. In order to calculate the similarity, we apply the
following theorem.

• Since the first MSM paper [3] is only in Japanese, we summarize the major topics
in this subsection.

• The concept of using the angle between subspaces was also discussed in [5] and [6],
but the aim was other than defining similarity between an input and a reference.



Towards 3-Dimensional Pattern Recognition 1063

Theorem 1:
Let U and V be two subspaces and P and Q be orthogonal projection operators
onto U and V , respectively. Then the angle between U and V is calculated as the
maximum eigenvalue of PQP or QPQ [3] [8] [9]. Let μ and ν be the maximum
eigenvalues of PQP and QPQ, i.e.

PQPx = μx, (2)

and
QPQx = νx, (3)

respectively. Then

cos2 θ = ‖QP‖2, (4)
= ‖PQ‖2, (5)
= μ, (6)
= ν, (7)

where the norm of an operator A is defined as

‖A‖ .= sup
‖z‖�=0

‖Az‖
‖z‖ . (8)

According to this theorem, μ or ν itself can be used as the similarity in the
sense that it is the angle between the two subspaces. However, as the eigenvalue
calculation of PQP or QPQ is costly, the matrices basically being large, we
actually calculate the eigenvalue of a smaller matrix X whose eigenvalues are
identical.

Let X = (xij) be

xij =
M∑

m=1

(ψi,φm)(φm,ψj), (9)

or

xij =
N∑
n=1

(φi,ψn)(ψn,φj), (10)

where {φm}Mm=1 and {ψn}Nn=1 are the bases of U and V , respectively. Then the
eigenvalues of X are equal to those of PQP and QPQ [3].

In the sense that an input is represented by a subspace, the MSM is an
extension of the classical subspace method where the input is represented by a
vector: which is also a basis of a 1-D subspace.

2.3 Use of Other Canonical Angles

Canonical Angles in Previous Methods. The canonical angles are defined
as the angles between two subspaces which are measured from the directions
that are orthogonal to one another [9]. The angle calculated in the MSM is the
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smallest one, calculated as the largest eigenvalue. It is sufficient for application
to 2-D pattern matching, but there exists a serious problem for 3-D pattern
matching, as described earlier.

The problem can be modeled as follows; if we imagine a case where two
subspaces share a smaller subspace, e.g. two 2-D subspaces sharing a line, as
shown in Fig. 1, the smallest angle is zero. In such a case, the two patterns will
be evaluated as identical in the MSM framework.

Fig. 1. Two 2-D subspaces in 3-D space.

As an alternative definition of distance between two subspace, Oja and Park-
kinen proposed to use the smallest eigenvalue, μmin, i.e. the largest canonical
angle [5]. This method does not have the above problem, because it uses another
angle of the shared line in Fig. 1.

Let P and Q be the projections to the subspaces U and V , respectively. Then
the equation in [5] is

PQPx = μminPx, (11)

where
‖Px‖ = 1. (12)

As the eigenvectors of PQP are on the subspace U , (11) is equivalent to (2). But
for the condition of (12), the smallest eigenvalue would be zero in most cases
because it corresponds to a direction that is out of the subspaces, so it would
not represent the canonical angle.

Canonical Angles for 3-D Recognition. We have found a possibility of fur-
ther extension of the subspace method framework, using other angles4, referring
to the two previous methods. The methods adopted the opposite definitions of
subspace distance; the smallest angle in the MSM and the largest angle in [5].
However we can have more canonical angles by solving the eigenvalue problem,
(2) or

Xy = μy. (13)

Now the question is determining which one is suitable for 3-D recognition.
• A similar approach was presented in [10], but the meanings of the other angles and
similarity were not clearly discussed.
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In order to simplify the issue of 3-D recognition, we assume the following
conditions, so that a linear approximation can be applied:
– The moving object is captured using a fixed camera.
– Motion primarily consists of small rotations.
– An appropriate normalization is performed.
These conditions ensure that variations in the recognition patterns are small.

When variation, e.g. lateral rotation, in the patterns is small, the distribution
of the patterns caused by the variation can be assumed to be on a 2-D subspace,
reflecting the dimension of the pattern itself and that of the variation. A differ-
ent variation, e.g. vertical rotation5, makes another 2-D subspace that shares a
dimension of the pattern itself with the previous one.

Ωy

Ωx Ωz

Fig. 2. Rotation of a 3-D object – a face –.

We should consider both lateral and vertical rotations, so that the rotations
of a different direction or multiple directions can be described as a combination
of these two rotations. Therefore a 3-D subspace is a good approximation of
distributions due to rotation6.

Given two 3-D objects that are identical, the 3-D subspaces for them should
also be identical, or more precisely, the 3-D intersecting parts of two higher-
dimensional subspaces should be identical. This means that the three smallest
canonical angles should be zero. Since some actual objects like human faces have
other variations, the canonical angles may have small values. However the three
angles are still good measures of the similarity between the objects.

Referring to the definition of distance used in [5], we propose to use just the
third smallest angle or the third largest eigenvalue among the three. The fourth
largest eigenvalue should be nearly zero because we assume that the distribution
is approximated by a 3-D subspace. The second largest eigenvalue can be 1 or
near 1 if the photograph has a cylinder shape whose side view is the same as
that of the object. This makes the third largest more appropriate.
• There is yet another rotation for 3-D objects; a rotation around the axis of the lens.
However, considering the task of differentiating an object from its photograph, this
the rotation is of no use, we take only Ωx and Ωy into account, and not Ωz (see
Fig. 2).

• Since the actual distribution lies in a higher-dimensional subspace due to many
variations such as facial expressions, the input and reference subspaces should be
represented in higher dimensions, e.g. in five or seven dimensions, shown empirically
in [11].
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The proposed method corresponds to calculating the largest canonical angle
between two 3-D subspaces that are the closest part of the two original subspaces.
Assume that {μk}Kk=1 are the eigenvalues of matrix X in (9) or (10) which
are sorted in descending order. Then μ3(= cos2 θ3) is the answer. Since the
calculation of the eigenvalues is in descending order and we need only the third
largest one, the condition of (12) is no longer required.

3 A Pilot Study on Differentiating an Object
from Its Photograph

We performed a pilot study on differentiating an object from its photograph in
face recognition, which we consider to be a typical application in this paper (see
Fig. 3). As described earlier, it is impossible to make this differentiation if we
use a single image that is taken head-on.

Fig. 3. Differentiation between an object – a face – and its photograph.

If we use the images of a 3-D object taken from multiple directions, some
images may exhibit occlusions, or the lighting and shading conditions may be
different among the images. Differently, all the images of a 2-D object are affine
transformed ones of any single image. Even with the difference between these
two situations, the largest eigenvalues of the two cases in the MSM framework
are identical.

We experimented with using μ3 as well as μ1. Due to the normalization
process [4], the variation in the normalized 3-D patterns is small as shown in
Fig. 4. The experimental set therefore fulfills the conditions assumed in the last
section.

We registered a set of face images (subject P0), and performed recognition
for 11 people’s faces including the registered person’s and their photographs.
Figure 5 shows an example set of face images, and Figure 6 shows an example
set of photograph images of the same subject. Table 1 shows the experimental
results for face inputs, and Table 2 shows the experimental results for photograph
inputs.
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Fig. 4. Normalized recognition area.

Fig. 5. Example set of face images.

Fig. 6. Example set of photograph images.

Table 1. Recognition results for face in-
puts.

Person μ• μ•
P0 0.989 0.937
P1 0.702 0.256
P2 0.707 0.520
P3 0.786 0.488
P4 0.701 0.457
P5 0.643 0.459
P6 0.730 0.227
P7 0.554 0.334
P8 0.750 0.557
P9 0.716 0.545
P10 0.772 0.435

Table 2. Recognition results for photo-
graph inputs.

Person μ• μ•
P0 0.977 0.204
P1 0.591 0.165
P2 0.619 0.237
P3 0.741 0.123
P4 0.665 0.075
P5 0.626 0.124
P6 0.612 0.055
P7 0.678 0.238
P8 0.732 0.246
P9 0.600 0.154
P10 0.648 0.075
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The experimental results show that μ1 is not suitable for differentiating be-
tween the face and the photograph since the values for P0’s face and photograph
are 0.989 and 0.977, respectively. It is difficult to determine a threshold of rejec-
tion between such similar values.

Conversely, μ3 makes a good criterion because the values for the face and the
photograph are 0.937 and 0.204, respectively. As well as μ1, μ3 is also effective
for rejecting other subjects (P1, ..., P10).

4 Conclusion

We have shown that the MSM framework can be extended to 3-D object recog-
nition by using the third largest eigenvalue or the third smallest canonical angle.
The viability of the proposed method has been demonstrated by a face recog-
nition pilot study. Quantitative evaluation of this method with a large data set
will be considered in future work.
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Abstract. A general technique for the construction of hidden Markov
models (HMMs) from multiple-variable time-series observations in noisy
experimental environments is set out. The proposed methodology pro-
vides an ICA-based feature-selection technique for determining the num-
ber, and the transition sequence, of underlying hidden states, along with
the statistics of the observed-state emission characteristics. In retain-
ing correlation information between features, the method is potentially
far more general than Gaussian mixture model HMM parameterisation
methods such as Baum-Welch re-estimation, to which we demonstrate
our method reduces when an arbitrary separation of features, or an
experimentally-limited feature-space is imposed.

1 Introduction

1.1 Objective

We shall set out a generic methodology for the automated generation of max-
imally generalising hidden Markov models given an initial time-sequence (or
possibly Markovian) model of observed feature-space transitions within a noisy
experimental environment. That is, for any experimental situation where multi-
ple measurements are associated with individual temporally-ordered observation
states, and where the observed state-transition mechanisms are governed to any
extent by stochastic processes detrimental to classification, we propose to de-
rive a method for automated hidden Markov model (HMM) generation that will
provide maximal generalisation under the stated experimental assumptions.

In order to qualify as more general than existing HMM parameterisation tech-
niques, the elaborated methodology might be expected to incorporate existing
methods as a limiting subset: when measurement modalities are artificially con-
strained, we will therefore, in section 2.21, demonstrate an equivalence between
the results of our technique and that of the Gaussian mixture-model estimation
methods (such as Baum-Welch re-estimation [1]).

Other issues arise in the application of this method, particularly the pos-
sibility of sub- and super-sampling of hidden states, with their attendant con-
sequences for classification performance; these, however, fall beyond the scope

A. Fred et al. (Eds.): SSPR&SPR 2004, LNCS 3138, pp. 1069–1077, 2004.
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of the current paper, and will be dealt with in a future publication. Also re-
served for future publication is experimental evidence for the utility of this
method, demonstrating an approximately 50 percent performance improvement
over ‘naive’ Markovian modelling of observed transitions in typical experimental
spaces: indeed, the method may be considered as a technique for transform-
ing naturally between Markovian and hidden-Markovian models of a particular
feature-space.

1.2 Overview of Technique

The mechanics of the proposed methodology will centre on determining both
the number of, and the transition sequence of, a set of putative hidden states
underlying experimental scenarios characterised by a certain common type of
noise model, in addition to determining the emission characteristics of the cor-
responding observation states. More specifically, the technique for generating
the HMM structure derives from the many-to-one mapping that spontaneously
arises between the space of observed feature-space transitions and the corre-
sponding ‘hidden’ state-transitions occurring in a subspace defined by the un-
derlying ‘operational’ manifold specific to the nature of the experimental system
under consideration. Most importantly, this mapping will be of an essentially
stochastic nature, as required by the relation of hidden and observed states in
hidden Markov modelling [cf eg. 2]. It is this stochasticity, in particular, that ac-
counts for the failure of purely Markovian descriptions of observed feature-space
transitions to generalise within such experimental environments, requiring the
utilisation of hidden Markov techniques for optimal classification.

Since there will, in general, be several distinct noise sources represented
within an observed feature-space, characterised by their collective stochastic in-
dependence, the technique adopted to bring about the distinction of the signal
and noise components consists in an initial independent component analysis
(ICA) [enacted via coordinate transformation], followed by a secondary feature-
selection (FS) procedure, this process being sufficient to completely eliminate
all of the independent noise features. It is, in particular, only the prior ICA-
transformation stage that permits feature-section to remove the independent
noise sources. Without this step, since the original features contain both informa-
tion and noise signals, feature-selection would, in removing both simultaneously,
invariably act to degrade overall classification performance.

Once this ICA+FS procedure has taken place, there then exists an implicit
many-to-one mapping between the observed feature-space and the optimally-
compactly described signal-space arising from the procedure. However, since the
observed state-space into which the signal subspace is mapped is defined by
the noise features removed by feature-selection, these mappings are dictated
purely by chance, and not by the specific configuration of the noise vectors in
the training set. Thus it becomes possible to ignore the particular transition
structure of the mapped states and consider rather a stochastic model of the
behaviour of observed states with respect to the ‘hidden’ states in the ICA+FS
space. We have thus all the ingredients required, given an observed set of feature-
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space transition sequences, to arrive at a maximally generalising hidden Markov
model in which a naturally occurring distinction between hidden states and
observed states is modelled by some emission probability. Moreover, once the
ICA+FS procedure has taken place, it becomes possible to eliminate it entirely
from the classifying process, working only with the HMM model so derived.
Setting out precisely how this process takes place will be the concern of the next
section of this paper.

2 Details of Methodology

2.1 ICA Description

The first requirement of our technique is the ICA transformation of the observed
pattern space: we shall give a very brief overview of this process as follows (with
more detailed and general treatments being available in, for instance, [3] and
[4]): Let t be a vector describing the state of the fn individual feature channels
over the complete temporal range, t. We wish to describe this vector in terms of
the fully independent feature-set vector, t′, of presently unknown dimensionality.
The two vector quantities are related by a mixing matrix, M , via t′ =Mt. The
determination of the matrix M is hence the objective of our calculation, the first
stage of which is the decorrelating (or ‘whitening’, ‘sphering’) of the original
input space. That is, we shall require a linear transformation tw = W t′ such
that the expectation E(twtwT ) is equal to I (I being the identity matrix). A
simple solution to this constraint exists via the expansion:

I = E(twtwT ) = E(W t′[W t′]T ) (1)
= E(W t′t′TWT ) = E(W [t′t′T ]WT ) (2)

Setting S = E(t′t′T ), we observe thatW = S
1
2 fulfils the terms of the constraint,

the last term in the equation becoming S
1
2SS

1
2 (= I). Having found a suitable

W , it only remains to perform a rotation of the whitened pattern-space axes
such that the non-Gaussianity of the probability distribution of the individual
variates of the transformed space is maximised (linear mixtures of variates being
invariably more Gaussian than their components via the central limit theorem).
This is usually achieved via an appropriate statistical, information theoretic or
morphological measure of non-Gaussianity, and any one of a number of algo-
rithms for finding global maxima/minima.

2.2 Experimental Noise
in the Context of Independent Component Analysis

A necessary preliminary for the detailing of our technique is to consider the
manner in which experimental noise relates to the above processes. Perhaps
the paradigmatic illustration of the application of ICA techniques in this con-
text is the ‘blind’ discrimination of spatially-distinct sound sources by multiple
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randomly-placed microphones. Within the feature-space (technically a Hilbert
space) defined by the simultaneous composition of the microphone outputs, each
of the various signal sources has associated with it a characteristic vector, the
orientation of which is determined by their placement relative to the various
microphones. This is not an exact replication of the physical geometry of the sit-
uation, since each sound source’s amplitude is attenuated by the inverse-square
of the distance between itself and the microphone in question; however, it is a
linear transformation thereof. Critically, when more than one source is consid-
ered, the individual fixed-orientation vectors are combined via linear addition of
the components (it is this quality, along with the presence of an inner product
term [to be introduced later], that defines the feature-space as a Hilbert space).
That is:

S = S1Ŝ1 + S2Ŝ2 + . . .+ SsŜs (3)

denotes the total source feature vector, with the Ŝi unit vectors denoting individ-
ual signal source ‘orientations’. The coefficients Si vary over the range [0 : Si

max],
defined by the maximum signal output and source/microphone geometry.

Since the s sound sources are completely independent, the noiseless signal
vector consequently describes a uniform Euclidean subspace S within the original
feature-space, defined by tensor multiplication of the various source vectors:

S = S1maxŜ1 ⊗ S2maxŜ2 ⊗ . . . ⊗ Ss
maxŜs (4)

(written henceforth as: S =
⊗s

i=1 SiŜi ). In our example, the origin of this
subspace embedding is straightforwardly inferred from the geometry already in-
herent in the nature of the experimental situation, with the signal/microphone
positioning characterising the unit vectors composing the feature subspace. This
behaviour is very much more general, however, and precisely describes any sit-
uation in which features are composed of differing linear signal combinations.
Crucially, it also approximates the very much wider class of situations in which
the feature subspace topology is identical to that of a projective hyperplane.

We wish now to establish exactly how stochastic noise modifies this signal
geometry. This can be encompassed within the above regime by considering
white-noise emitting speakers placed at random locations within the experimen-
tal geometry. Each of the noise sources has again associated with it a character-
istic orientation vector determined by its relative geometry, written N iN̂i, where
N̂i is the noise source unit vector and N i a uniform random variate distributed
over the range [0 : N i

max]. These orientation vectors combine via tensor multipli-
cation in the same manner as the signal vectors, increasing the dimensionality
of the signal manifold SN by the number of independent noise sources, n:

SN =
(

s⊗
i=1

SiŜi

)
⊗

(
n⊗
i=1

NiN̂i

)
(5)

The actual, measured feature vector V is thus composed of the vector sum;
S +N , the latter term denoting the pure noise vector.
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Applying ICA-transformation to the distribution over SN performs an opti-
mal coordinatisation of the manifold, in the sense of generating a hyper-space
over which state vectors are uniformly distributed, and entirely eliminating the
vector magnitude coefficients:

SN ′ =
(

s⊗
i=1

Ŝi
′
)

⊗
(

n⊗
i=1

N̂i
′
)

(6)

Here the Ŝi
′
, N̂i
′
are orthogonal unit vectors, which is to say they obey the

constraints Ŝi.Ŝj = 0, Ŝi.N̂j = 0, N̂i.N̂j = 0 ∀i �= j: dashed terms will in
general indicate ICA-transformed quantities throughout the paper.

Hence we see that signal and noise sources, being independent at both the
collective and individual levels, are orthogonalised with respect to each other
via ICA-transformation. Under these circumstances it is possible to selectively
eliminate individual signal and noise features from the space. In particular, it
becomes possible to perform feature-selection on the transformed space via a
classification-performance based criterion such as forward searching [5]. Since
the noise dimensions can only degrade classification performance, we would nat-
urally expect the terminating output of the feature selection procedure to be the
subspace S′ = Ŝ1

′ ⊗ Ŝ2
′ ⊗ . . . ⊗ Ŝs

′
, representing perfect noise elimination. This

immediately implies a projective mapping of observational states:
s⊗

i=1

N̂i
′
N̂1
′ → 1 (7)

In fact there is a very much more inclusive projection than this (in the sense
of a mapping of states beyond those present in the operational manifold) im-
plied by the feature-selection from fn-dimensions to s-dimensions, given by the
orthogonal complement space mapping:(

s⊗
i=1

Si
maxŜi

)⊥
→

s⊗
i=1

Si
maxŜi (8)

This does not represent a difference in state mappings from equation 7 for the
training data, but does so for test-data with noise characteristics differing from
the training set (caused, perhaps, by insufficiently large training sets). From the
point of view of the construction of hidden Markov models, however, we shall
consider only the identified noise features in defining the emission characteristics
of the hidden states in order to give precise statistical descriptions.

It is thus our central contention that the many-to-one mapping of the ob-
served states to signal states represented by equation 7, without which observa-
tional state transitions would be partially stochastic, represents (in reverse) the
emission spectrum for the ‘hidden’ state transitions that take place within the
embedded signal space, S1maxŜ1 ⊗ S2maxŜ2 ⊗ . . .⊗ Ss

maxŜs. That is, critically, the
various transitions that take place between the noise vector component of the to-
tal observed feature vector S +N , ie N1 →N2 → . . . for times T = 1, 2, 3, are
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of a purely random nature, and may be modelled by an emission probability den-
sity over states determined by the signal vector S. In essence, by removing ICA
noise components in the feature-selection, we have thus replaced the particular
mapping of observed-to-signal-subspace states present in the training-set by a
more general mapping that can only be interpreted statistically, which is to say
via a hidden Markov process of random emission of observation states.

In more conventional Markovian terminology [cf eg 2] a Markov chain of
observed state transition coefficients, a(S+N)t(S+N)t+1 , is here transformed to
an HMM with hidden state transition coefficients;

a′(S)t(S)t+1 =
∫
∀N1

∫
∀N2

a(St+N1)(St+1+N2)dN1N2 (9)

and state emission probabilities:{
bSt(V ) = 1/|

⊗n
i=1N i

maxN̂i|
if V − St ∈ {⊗n

i=1N i
maxN̂i}; N i ∈ �{

bSt(V ) = 0
if V − St /∈ {

⊗n
i=1N i

maxN̂i}; N i ∈ �
We will demonstrate in the next section that when the observed features are
considered as separate data streams (which is to say, when the vector decompo-
sition V → {V1,V2,V3 . . .} takes place), the above emission spectrum defaults
exactly to the Gaussian emission spectra typically assumed by conventional hid-
den Markov model parametrisation techniques, and hence that the above method
serves as a Gaussian mixture model parameteriser under these circumstances.

We reiterate that while the above analysis deals with an idealised noise model,
to the extent that the underlying conditions of additive linear noise hold, sub-
stantial benefit may still be gained by application of the technique in the fully
general case. Indeed, empirical testing on data for which no a priori guaran-
tee of the validity of the model assumptions can be made (to be published at
a later date), nonetheless yields very substantial performance improvement on
application of the ICA+FS technique.

2.3 Relation to Gaussian Mixture-Model Parameterisation Methods

It is frequently found in the experimental domain that the total feature-space is
naturally divided into separate subspaces (for instance, division of the physical
configuration-space into position and velocity vectors). We will aim to demon-
strate in this subsection that, under these circumstances, our methodology ap-
proximates that of the Gaussian mixture-model parameterisation methods (such
as Baum-Welch re-estimation). In carrying out this exercise, it should be empha-
sised that the generality of our method means that optimal results are always to
be obtained by generating a composite feature-space (ie, one in which the con-
tributing subspaces are appended) prior to application of the ICA+FS method:
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however it is reassuring to note that imposing this limitation reproduces familiar,
empirically-validated methodologies.

We shall initially consider only a single dimensional marginal projection for
simplicity of demonstration, later providing an argument for its generalisation
to higher dimensionality feature space projections (such as those required to
specify independent position and velocity vectors). A more general indication
of the tendency of oblique projections of uniform multivariate distributions to
approximate Gaussian distributions is given explicit proof in [6].

Firstly, let the chosen marginal feature, Dc, be characterised by its unit
vector, D̂c, in the composite observed space. Measurements of observed states
(defined by the projection D̂c.V ) are thus characterised, for a given signal vector
Sg, by the sum of the individual random variates D̂c.N

iN̂i and the signal vector
marginal projection, D̂c.Sg. That is to say:

D̂c.V =
i=n∑
i=1

D̂c.N
iN̂i + D̂c.Sg

These random noise variates are uniformly distributed over the range [D̂c.Sg :
D̂c.Sg + D̂c.N̂iN

i], and hence have a mean D̂c.Sg + D̂c.N̂iN
i
max/2 and variance

(D̂c.N̂iN
i
max)2/12. Now, according to the central limit theorem, the composite

variate:

X =
∑n

i=1 xi −
∑n

i=1 μi∑n
i=1 σ2i

(10)

with individual means, μi, and variances, σi , obeys a Gaussian distribution
with mean 0 and variance 1 in the limit n > ∞, on the proviso that a number of
constraints on the individual variate probability density functions are observed,
all of which are fulfilled by the uniform distribution.

Comparing this to the variate sum D̂c.V above, it is clear that we only
require a coordinate transform of:

D̂c.V → (D̂c.V −∑n
i=1 D̂c.N̂iN

i
max/2− D̂c.Sg)∑n

i=1(D̂c.N̂iN i
max)2/12

to bring about an equivalence. Hence, our marginal variate D̂c.V becomes asymp-
totically normally-distributed with mean D̂c.Sg +

∑n
i=1 D̂c.N̂iN

i
max/2 and vari-

ance
∑n

i=1(D̂c.N̂iN
i
max)

2/12, obeying the overall formula:

P (D̂c.V |Sg) =
e

[
(D̂c.V−(D̂c.Sg+

∑n

i=1
D̂c.N̂iN

i
max/2))

2

2(
∑
n

i=1
(D̂c.N̂iN

i
max)

2/12)

]
[
2
∑n

i=1(D̂c.N̂iN i
max)2/12π

] 1
2

(11)

Thus our mapping of the marginal observational states onto the ‘hidden’ states
of the ICA+FS transformed total observational configuration space implies the
existence of a hidden Markovian model of Gaussian observed state emission
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characteristics (of the kind familiar from, in particular, automated speech recog-
nition). It should be emphasised that this form is in no way imposed a priori;
the relationship between, and distribution of, hidden and observed states is de-
termined purely by the output of the ICA+FS procedure.

The fn-dimensional generalisation of the above argument for single-dimen-
sional marginal projections is complicated by the issue of covariance. However,
it is possible to see that there must always exist a coordinate transformation
of the fn-dimensional space such that each of the noise source vectors N iN̂i

supplies an equivalent aggregate contribution to the signal vector: that is, a
transformation such that unit vectors in the transformed space, ûi, satisfy the
constraint: < ûi.N̂j >= constant ∀i, j : 1 ≤ i ≤ fn, 1 ≤ j ≤ n. Full details
of the derivation of this transformation, T , are set out in [7]: critically, the
coordinate transformation is both linear and invertible.

That the signal-vector distribution in the transformed space is now com-
posed of normalised uniform distributions again implies, via the central limit
theorem, that they collectively approximate symmetric Gaussian distributions
of variance: 1/(

√
2fn−112) for each marginal distribution of the transformed

space. Since these marginal distributions are independent of each other, we can
take their tensor product in order to recover the distribution over the full trans-
formed space. Consequently, since the tensor product of Gaussian distributions is
itself Gaussian, we find that the overall distribution is a covariance-less (F −n)-
dimensional Gaussian distribution over the vectorial range of the transformed
space. The bijective linear transformation back into the original space, T−1,
maintains this Gaussian form, but generates a unique covariance matrix Σ de-
fined by the various shear and rotation deformations implicit in T−1 1.

It is hence this potential to constrain unique Σ and μ values that constitutes
the effective Gaussian parameterisation of the ICA+FS method in restricted
spaces, and brings it in to an operational equivalence with the Gaussian mixture-
model estimators such as Baum-Welch re-estimation, which typically [cf eg. 2]
assume models of the form:

bj(ot) =
W∏
w=1

[
Mw∑
m=1

cjwmN (owt;μjwm, Σjwm)

]
(12)

with;

N (o;μ, Σ) =
1

((2π)n|Σ|) 12
e
1
2 (o−μ)

′Σ−1(o−μ) (13)

(M is the number of Gaussians in the mixture, W the number of distinct obser-
vational feature-spaces, and o the within-stream observational vector).

• It is additionally the case that multiple Gaussians may by formed by this type of
marginal projection where there exist distinct signal regions within the observational
space, as might be obtained by regional application of the ICA+FS procedure. The
key requirement for Gaussianisation of the emission states in either scenario is that
there exists a projective mapping from a higher to a lower dimensional space.
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3 Conclusions

We have set out a technique for automatically obtaining parameterised hidden
Markov models from observed feature transition sequences through a process of
feature-selection in an ICA-transformed space, on the assumption of the pres-
ence of independent noise sources within the data. This involves the mapping of
observed states onto a space of hidden states induced by the orthogonalisation
and removal of the noise sources within the observed features. The stochasticity
of this mapping accounts for the generated entity being a hidden, rather than a
simply Markovian model, and thus allows a much greater generalising capacity
than would a simple Markovian description of the observed transitions.

When an artificial distinction between data streams (such as position and ve-
locity) is assumed, or when the observed feature-space represents an incomplete
description of the free experimental parameters, the observed state distribu-
tion in the HMM models generated by the ICA+FS technique was shown to
default to a Gaussian emission model. The proposed methodology under these
circumstances thus reproduces the familiar Gaussian mixture model parame-
terises, without, however, having to assuming this form on an a priori basis.
The technique is thus very much more general than existing HMM parameteri-
sation techniques, having fewer underlying assumptions, and can be treated as
first recourse when the nature of the emission state/hidden state transition rela-
tionships are unknown. Empirical studies suggest a consistent 50% performance
improvement over equavalent ‘naive’ Markovian methods.
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Abstract. The creation of a cognitive perception systems capable of
inferring higher-level semantic information from low-level feature and
event information for a given type of multimedia content is a problem
that has attracted many researchers’ attention in recent years. In this
work, we address the problem of automatic interpretation and evolution
tracking of a tennis match using standard broadcast video sequences
as input data. The use of a hierarchical structure consisting of Hidden
Markov Models is proposed. This will take low-level events as its input,
and will produce an output where the final state will indicate if the point
is to be awarded to one player or another. Using hand-annotated data as
input for the classifier described, we have witnessed 100% of the points
correctly awarded to the players.

1 Introduction

The area of automatic data parsing from multimedia sequences has been one of
great research interest for many years now. Such applications can be very useful
for a wide range of purposes – most of them concerning automatic annotation and
indexing of these sequences according to the criteria one might wish to specify.
Especially for today’s broadcasters, where the enormous amount of audiovisual
information coming in to them can only mean more time spent on indexing
what they store in their archives, such tools would greatly improve their ability
to manage those archives in an efficient manner. Another important reason for
this is the fact that automatic annotation of multimedia content will help us
preserve it and re-use it through time.

More specifically though, sports events are very common in broadcast televi-
sion, and also usually have a quite well-defined structure. Sports will either run
against the clock and have some distinctive events as reference points (like foot-
ball or basketball have scoring) or will be solely based on specific events which
will define their evolution through time (like tennis or volleyball have scoring).
Therefore, the underlying structure of each sport, which is largely dictated by
its rules, is strong enough to allow for such approaches to be designed and more
efficiently implemented.

A. Fred et al. (Eds.): SSPR&SPR 2004, LNCS 3138, pp. 1078–1086, 2004.
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In this work, we focus on trying to extract high-level information from pro-
cessing low-level input data for a specific kind of content – video sequences of
tennis matches. The choice of a clearly event-driven sport will make things easier
in this analysis by not explicitly involving time. Besides, time-constrained sports
can be considered as event-driven ones if we consider a set of ‘time’ events being
triggered at regular intervals throughout the sequence. The layout of this paper
is as follows: in the following section, a short summary of some relevant work
on scene evolution tracking in video sequences and event recognition in sport
videos is presented; Section 3 is a presentation of the proposed system; the re-
sults from the application of the proposed system to a hand-annotated data set
are presented and discussed in Section 4; and finally, conclusions and ideas for
future work are given in Section 5.

2 Related Work

As we can see in literature, HMMs and other forms of Dynamic Bayesian Net-
works (DBNs) in general are very powerful tools in the area of machine learning.
Hence, a great number of cognitive visions applications have deployed such tools
in order to perform information extraction from video sequences. Some of those
attempts would include those of [1] for automatic annotation of Formula 1 race
programs, [2] for recognising various types of strokes from tennis players during
a tennis match, [5] for the recognition of general hand gestures, [3] for the recog-
nition of American Sign Language and [4] for general human pose estimation.
Apparently, such pieces of work may prove to be extremely useful in our case as
well, and they can certainly serve as a guideline of what is feasible in cognitive
vision, and what issues in this area are still open.

In the work by Ivanov and Bobick [5], we can see that the authors introduced
a framework by which they analyse each complex event into its constituent el-
ementary actions; in one of the examples the authors have used, a gesture is
broken down into simple hand trajectories, which can be tracked more success-
fully via HMMs. Then, they apply Stochastic Context-Free Grammars to infer
the full gesture. The results reported show that the proposed system performed
quite well on real-world data. Such a paradigm can be considered as quite sim-
ilar to that of a tennis match; if we consider all elementary events leading up
to the award of a point in a tennis match to be the equivalent of the elemen-
tary gestures in this work, and the tennis rules related to score keeping as an
equivalent of the grammar-based tracking of the full gesture the authors have
implemented, we can easily see the underlying similarities between the authors’
work and reasoning on tennis video sequences.

Another piece of work that deals with sets of body movements that are by
definition constrained is that reported by Starner et al. in [3]. In this case, the
objective was to develop a system that will be capable of recognising a gesture
language that is the American Sign Language (ASL). The main idea behind
this is the use of Hidden Markov Models to ‘learn’ a small lexicon of words in
ASL, as they are expressed through gestures. The low-level visual information
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(in this case, the hands that has been segmented out of the input sequence) are
separately analysed in terms of their shape, and this information is fed into the
HMMs. The output is the word recognised by the system, and it can be seen that
(at least for a small vocabulary of gesture-words) the system has performed very
well. This piece of work, along with that discussed in the previous paragraph,
show us that HMMs can be quite successfully applied in recognising shapes and
tracking object trajectories – which are very important parts of analysing tennis
video sequences at a lower level.

Moreover, in the work of Rosales and Sclaroff [4], a more general problem
concerning human body pose estimation has been addressed. Through the use of
an artificial neural network (ANN), the authors have initially attempted to clas-
sify the various possible configurations of the human body by initially capturing
3-D body positions, which they the project into 2-D (namely, a set of image
planes). Given these 2-D projections, they have formulated exclusive subsets via
unsupervised clustering, using the Expectation-Maximisation (EM) algorithm.
The results of this approach have proven to be quite promising as well, showing
us that we can use reasoning tools to distinguish between different body poses.

In [1], we can see how an overall cognitive vision system for sport videos
has been developed and deployed. In this case, the authors have attempted to
isolate semantic information from both the audio and the visual content of the se-
quence, and tried to annotate the video sequences processed by detecting events
perceived as highly important; for example, and bearing in mind what events can
occur in Formula 1 racing, they attempted to cover visual events such as over-
taking, cars running out of the road etc. In addition, as the sequences used came
from live broadcasts, they also included textual information about the race, like
drivers’ classification and times; that information was also extracted and used.
The audio part of the sequences, since they came from normal broadcasts, was
dominated by the race commentary; out of that, features like voice intensity and
pause rates were also used. Having performed all these operations, the authors
attempted to infer events of semantic importance through the use of Dynamic
Bayesian Networks, attempting to infer content semantics by using audio and
video information separately or combining this information in the temporal do-
main; both approaches yielded promising results when tested on simple queries
(like finding shots in the Formula 1 race where a car runs out of the race track)

In another piece of work by Petkovic et al. [2], we can see a piece of work that
is somewhat more constrained that that described in the previous paragraph,
but which is still quite useful in terms of understanding the scene described,
and which is obviously much more relevant to the present work. In this case,
the authors have chosen to use HMMs in order to determine how the player hits
the tennis ball; hit types would include forehands, backhands, serves, etc. To do
this, the authors initially segmented the players out of the background (that is,
the tennis court); then, they used Fourier Descriptors in order to describe the
players’ body positioning; finally, they trained a set of Hidden Markov Models
to recognise each type of hit. The results of this work show that this method
can be quite successful in performing the recognition task it was designed for.
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Finally, another relevant piece of work is that of Kijak et al. [6], where the
authors have attempted to analyse the structure of a tennis video through the
use of Hidden Markov Models, as well as fuse audio and visual cue data in order
to perform reasoning. Their objective was to separate a tennis video sequence
into a set of scenes, each of which had to be classified under one of the following
categories:

– First missed serve
– Rally
– Replay
– Break – that is, a commercial break

The visual cues include a vector of dominant colours and their respective spatial
coherencies, and a measure of camera motion, whereas the audio cues form a
binary feature vector where speech, applause, ball hits, noise and music are
shown to be detected (or not). The results of the semantic segmentation system
the authors proposed in this paper also seem to be quite promising.

Nonetheless, this is just a small subset of the applications these inference
tools have been tested upon, and we can observe that all of these systems tend
to perform the recognition and/or reasoning operations they were designed to do
quite well. Therefore, it can safely be assumed that similar methods are capable
of producing satisfactory results in other similar problems, like the one we are
asked to address in this paper.

3 Proposed Scheme

In our context (the analysis of tennis video sequences), the rules of the game of
tennis provide us with a very good guideline as to what events we will have to
be capable of tracking efficiently, so as to follow the evolution of a tennis match
properly. The full graphical model for the evolution and award of a point in a
tennis match is given in the graph of Figure 1.

As we can readily see from this diagram, it is a graphical model where a num-
ber of loops exist; the state transitions drawn with bolder lines indicate where
these loops close. Moreover, as it has already been mentioned, this graphical
model only tackles the problem of awarding a single point in the match; there is
some more detail to be added to it if we wish to include the awarding of games,
sets or the full match. How these stages are going to be implemented will be
discussed in more detail later in this section. Finally, this figure also shows us
that, in order to address the problem of ‘understanding’ the game of tennis more
effectively and robustly, we will have to convert this complex evolution graph
into a set of simpler structures.

In the game of tennis, we have a case of a hierarchical evolution model. That
is, we first need to identify and examine elementary events within the tennis
sequence. Such events would include, among others:
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Fig. 1. Graphical model for awarding a point in a tennis match.

– The tennis ball being hit by the players
– The ball bouncing on the court
– The players’ positions and shapes (that is, body poses)
– Sounds related to the tennis match (not implemented yet – however, prelim-
inary experiments show that it does contain important semantic information
as well)

These events can then be used as a basis on which to perform reasoning
for events of higher importance, like awarding the current point from the events
witnessed during play. Having successfully performed this step, we can then move
on to the award of games, sets and the match to the players involved. Obviously,
since the detection of such elementary events will be done using machine vision
algorithms and techniques; however, we are bound to encounter event detection
errors from this process – a fact which leads us to the conclusion that we will
need some kind of correction at a higher level of reasoning to address such errors.
Since probabilistic reasoning tools (such as HMMs) can address this problem
effectively, they are a natural choice to perform reasoning processes where the
input data comes directly from the low-level event detectors – which is the case
in awarding points.

Therefore, the reasoning process described here is best represented by a hi-
erarchical model. Using such a model will allow us to properly decompose the
evolution of the tennis match into smaller events, which can be more concisely
defined and tracked with greater accuracy. For example, it would be best if we
modelled events of lower conceived importance through an HMM, which would
then trigger another HMM to infer on more important events within the game;
that would also help us prevent spurious data from low-level feature extraction
modules from propagating to higher levels of the inference engine.

Moreover, we can also implement parts of this graph by using a ‘switch’ vari-
able to select which, among a number of acyclic sub-graphs, will be appropriately
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modelling the scene at that moment. Those sub-graphs will contain subsets of
the initial, full-scale graph we have just seen. In more detail, we can consider the
start of a tennis point (that is, the serve) as the starting state of a set of Hidden
Markov Models, each of which will follow a particular scenario within the game;
for example, the serve could either be successful (so we then ‘switch’ to the model
that deals with a rally of balls) or unsuccessful (where we switch to the model
dealing with second serves and double faults). Another useful application of a
‘switching’ model in this context is the fact that the initial state switches from
one player serving to the other (or one player hitting the ball, then the other);
therefore, a ‘switch’ variable between two models that are identical in structure
but exactly opposite as to which player they address could help simplify the
design and training of all models quite considerably.

Thus, we propose to replace the original scene evolution model with a set
of smaller models, each one trying to properly illustrate a certain scenario of
the match evolution. The most important thing we need to ensure during this
procedure is that, when we combine all of the models in this set, we must have a
model equivalent to the original one (so that it reflects the rules of tennis). The
set of sub-graphs proposed to replace the original one is illustrated in Figure 2.

As we can see from the set of models above, we have opted for a more
‘perceptual’ way of selecting the set of event chains that will formulate the new
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Fig. 2. Switching model and its respective set of sub-models for awarding a point in a
tennis match, as separated out from the original graphical model.



1084 Ilias Kolonias, William Christmas, and Josef Kittler

model set for our purposes. This design strategy is going to be particularly
helpful in the (quite frequent, as it is expected) case where the system receives
a query to extract sequences which contain some specific event; since the scene
description will consist of a series of events occurring in the match, such queries
can be dealt with relatively easily. Moreover, choosing to break the initial graph
down to a number of sub-graphs and train each one of them separately will be
beneficial in many more different ways. Some of the resulting benefits are:
– Using probabilistic reasoning tools (like HMMs) will allow for correction of
wrongly detected elementary events within the game – so we can have a point
correctly awarded even if we haven’t tracked all events accurately from the
start.

– Since the models are simpler, we will not have to acquire a huge training
data set; a relatively small amount of data per model will suffice for our
analysis.

– Training will certainly not be as time-consuming if we break down the initial
graph as it would be if we did not do so. This is because, apart from the
training needing more input training data if it were to be trained as a whole,
it would also need to calculate more event transition probabilities compared
to what would be required if we broke the initial graph to smaller models.

– In some cases, we can considerably speed up the training process due to prior
knowledge for this type of content – as the amount of statistics available for
some events in a tennis match helps us get a very reasonable initial estimate
without the need to go through a training procedure – we only need to pick
up some existing measurements for this purpose.

– It will be far easier for us to determine which specific areas of reasoning need
to be improved to boost the overall performance of the system, and which
low-level feature extraction modules are more suspect to produce misleading
results – so that we can either improve them or altogether discard them.
As soon as we have determined which way the points are going to be awarded,

we can move on to the award of games and sets in the match. This can either
be done through the use of probabilistic reasoning tools (such as HMMs), or
with simpler, rule-based tools – such as grammars. The latter is possible due
to the fact that at this level of abstraction in modelling tennis game sequences,
it is the rules of the game of tennis that stipulate the evolution of the scene
rather than low-level events in it. Anyway, the uncertainty stemming from the
successful (or unsuccessful) detection of the elementary events mentioned above
is considered to have been effectively addressed in the lower-level stages of the
reasoning process – up to the level of point awarding. Therefore, and since it
will be an easier and more natural approach to record the rules of tennis via
a rule-based tool, we could just as easily opt for using grammars to perform
higher levels of reasoning for these video sequences as we could use probabilistic
reasoning approaches. An example of the point illustrated in this paragraph
could be the way games are awarded in a tennis match out of points won by
both sides (assuming that we record the score correctly at all times); if a player
has scored 4 or more points in the current game and his/her opponent has at
least 2 points less, then this player has won the game – otherwise the game goes
on.
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4 Results and Discussion

The architecture described above has been tested on one hour’s play from the
men’s Final of the 2003 Australian Tennis Open. The sequence contained a total
of 100 points played – which was the equivalent of approximately one and a half
sets of the match. Out of these 100 exchanges, a total of 36 were played on a
second serve. The data that was used as input in this experiment were ground-
truth, hand-annotated event chains from the broadcast match video. Therefore,
we have not examined the robustness of the proposed method that in this work;
we were more interested in its ability to actually model the evolution of the
match accurately. To do that, we had to introduce four sets of models – one
for every combination of which player serves and which side of the court he/she
serves from (left or right).

In those 100 exchanges, we have intentionally left in a few unfinished points,
so as to examine whether the selection of the hidden states for these models can
lead to an accurate representation of the scene at any given time – not only at
the end of the scene. They were 4 in total – 2 leading to a second serve and 2
were cut short while still on play. An overall view of the results is given in the
table below.

Table 1. Total results.

Ground Correctly Wrongly Not awarded
Truth Awarded Awarded (still on play)

Near Player
Points 59 59 0 0

Far Player
Points 37 37 0 0

Unfinished
Points 4 4 0 n/a

TOTAL 100 100 0 0

As we can see in Table 1, all of the points were successfully tracked by the
proposed system. Therefore, it can be easily seen that the performance of this
method allows us to use any kind of decision-making scheme (either rule-based
or probabilistic) to make decisions about events of higher semantic importance
– since that is what is finally intended.

5 Conclusions

As we can readily see from the results shown above, the proposed system has
tackled the problem of tracking the evolution of a tennis match very effectively.
However, there are still some issues to be addressed in this area. First of all, is
is obvious that the excellent performance of the proposed method can partly be
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attributed to the fact that the input events were came from manual annotation
of a tennis video sequence. Thus, it has been verified that they were correct
chains of events, either leading to points or not. However, the aim of developing
such an automatic evolution tracking system is mainly to be used in conjunction
with a set of fully automatic low-level feature extraction tools that will be able
to detect the basic events required for input to the proposed system, so that
the combined system can be effectively used as an automatic video annotation
system. Obviously, as in any fully automatic computer vision system, the low-
level feature extraction tools are bound to produce some recognition errors, which
will propagate to the proposed decision-making scheme. Therefore, it is essential
that the proposed system is tested to effectively address such situations and
provide accurate information about the evolution of the game to higher levels of
the inference engine.

Moreover, the system can only be considered as the first step in a hierarchical
model that will fully describe the evolution of a tennis match – it will only cover
the award of a single point in the match. The creation of a full system will
include a system to award games, sets and finally the match to the players –
which will all rely on the efficiency of this method – on top of it. Therefore, a
full system will also have to include a system similar to the one proposed here
for point award, which will address that problem effectively as well.
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Abstract. An approach combining a simple local representation method
with a k-nearest neighbors-based direct voting scheme is proposed for
speaker recognition. This approach rises computational problems that we
effectively solved through an approximate fast k-nearest neighbors search
technique. Experimental results with the EuTrans and SIVAspeech
databases are reported showing the effectiveness of the proposed ap-
proach.
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1 Introduction

Biometric identification (BI) is presently one of the most active areas in pattern
recognition. The local features (LF) approach have been used before to solve
problems related to the BI field satisfactorily [1, 2].

Local features are explicitly cited mainly in the image database retrieval
literature [5–7], where invariances to scale, rotation and illumination changes
are needed. A good BI system has to show a high degree of robustness with
respect to the variability that the biometrics signals use to reflect. Usually, the
biometric signal considered to identify a person can be very different of those
used to build the identification system. On the other hand, these signals are
often composed by several small objects that bear discriminative information by
themselves, almost independently of the other parts. In this context the use of
the LF approach is clearly recommended.

Among BI systems speaker recognition is one of the most unobtrusive meth-
ods, well tolerated by users, and with a wide range of applications. In this paper
we propose a combination of a simple local representation along a specially
devised feature extraction technique and a direct decision scheme based on k-
nearest neighbors. This approach has shown to be most effective if the set of
local-feature vectors from the training data is large. This entails a high compu-
tational cost, which is avoided by using an approximate fast k-nearest neighbors
search technique.
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2 Proposed Approach

2.1 Preprocessing and Feature Extraction

The audio speech signal is sampled and represented into vector sequences of
Mel-cepstral coefficients. To this end, short-term spectral analysis is performed
on short overlapping signal segments (frames). The resulting power spectrum is
warped according to the Mel-scale and 11 cepstral-coefficients are derived from
each log power spectrum [3].

Figure 1 shows a speech sentence. In the top of the figure, the speech signal
of an utterance is represented in the temporal domain. In the middle, the cor-
responding spectrogram is shown, with frequency presented in the vertical axis,
and time in the horizontal axis. Finally, the cepstral coefficients appear in the
bottom of the figure. The coefficient number is presented in the vertical axis,
and time in the horizontal axis. These cepstral-coefficient vectors are normalized
between 0 and 255 in all the experiments carried out in this work.
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Fig. 1. Top, the original speech signal of a utterance. Middle, the corresponding spec-
trogram. Bottom, the temporal evolution of the Mel-cepstral coefficients.

Preprocessing consists of two steps. The first step aims at selecting those
parts of the speech signal with high information content. We have chosen a
simple and fast method: the local variance in a small window of the speech
signal is measured. Those parts of the signal having local variance above a certain
global threshold are selected. The proposed approach based on local variance is
applied to these cepstral-coefficient vectors. Around each selected vectors a small
window of size w is applied, obtaining a local representation vector of 11 × w
cepstral-coefficient components.
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The second step aims at reducing the resulting dimensionality using principal
component analysis (PCA). In this way, a compact local representation of a
region of the object is obtained. Finally, we label each vector with an identifier
of the class, i.e. the person who uttered the speech sentence considered.

In a classical classifier, each object is represented by a single feature vector,
and a discrimination rule is applied to classify a test object that is also rep-
resented by a single feature vector. Local features approach, however, implies
that each test object is scanned to compute many feature vectors. Each of these
vectors can be classified into a different class, and therefore a consensus scheme
is required to finally decide a single class for the whole test object.

2.2 Classification through a k-NN Based Voting Scheme

The classification procedure used in this work is closely related to a family of
techniques often referred to as “direct voting schemes” [6]. It is in fact based on
applying the well known k-nearest neighbor rule to the set of vectors representing
a test utterance, using the local-feature vectors obtained from the training ut-
terances as reference or training set. More formally, we can present the proposed
classification technique under the statistical framework of “classifier combina-
tion” [9].

Let Y be a test speech signal. Following the conventional probabilistic frame-
work, Y can be optimally classified in a class ŵ having the maximum posterior
probability among all the C classes:

ŵ = argmax
1≤j≤C

P (ωj |Y ) (1)

By applying the feature extraction process described in the previous section
to Y , a set of mY feature vectors, {y1, . . . ,ymY } is obtained. Thus, we can see
the classifier (1) as a combination of mY classifiers, each for every feature vector
of Y . Assuming independence between each yi, P (ωj |Y ) could be written as the
product of the posterior probabilities associated to every feature vector and (1)
becomes:

ŵ = argmax
1≤j≤d

mY∏
i=1

P (ωj |yi)

This is commonly called the “product rule” for classifier combination [9].
In order to smooth the (poorly estimated) small probabilities the so called

“sum rule” can alternatively be used for classifier combination [2]:

ŵ = argmax
1≤j≤d

mY∑
i=1

P (ωj |yi) (2)

In our case, posterior probabilities are directly estimated by k-nearest neigh-
bors. Let kij be the number of neighbors of yi belonging to class ωj . Assuming
the average number of reference vectors representing all the training local fea-
tures of each class is more or less constant, a well known estimate of P (ωj |yi)
is:
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P̂ (ωj |yi) =
kij
k

and, using this estimate in (2), our classification rule becomes:

ŵ = argmax
1≤j≤d

mY∑
i=1

kij (3)

That is, a class ω̂ is selected with the largest number of “votes” accumulated
over all the vectors belonging to the test biometric signal. This justifies why
techniques of this type are often referred to as “voting schemes”.

2.3 Efficient Approximate Search for Matching Feature Vectors

The nearest neighbor search is performed by a fast approximate nearest neighbor
search algorithm [4]. This algorithm uses a kd-tree structure to store the set of
local features from the training objects. In a kd-tree, the search of the nearest
neighbor of a test point is performed starting from the root, which represents the
whole space, and choosing at each node the sub-tree that represents the region of
the space containing the test point. When a leaf is reached, an exhaustive search
of the b prototypes contained in the associated region is performed. Since the
closest point may also be a member of some other region, the algorithm needs
to backtrack until all possible regions are checked.

If a guaranteed exact solution is not needed, as can be assumed in our case,
the backtracking process can be aborted as soon as a certain criterion is met
by the current best solution. In [4], the concept of (1 + ε)-approximate nearest
neighbor query is introduced. A point p is a (1 + ε)-approximate nearest neigh-
bor of q if the distance from p to q is less than 1 + ε times the distance from
p to its nearest neighbor. This concept is used here to obtain an efficient ap-
proximate search that can easily cope with very large sets of reference vectors
at significantly lower runtime.

3 Experiments

The speaker recognition experiments were carried out with two different corpus,
the EuTrans and SIVA. Both experiments were carried out varying the variance
threshold t used to decide if a cepstral-coefficient vector is selected as a center
of a local feature, the window w of cepstral-coefficient vectors considered, and
the PCA dimensionality reduction applied. A lower value of t means a large
number of local features obtained from the speech signal. Figure 2 shows the
relation between the total number of training local features and the parameter
t for EuTrans and SIVA.

The parameter w is related with the dimensionality of the original represen-
tation space while the PCA parameter is the final dimensionality of the feature
vectors.
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Fig. 2. Training set size with respect to the variance threshold.

3.1 EUTRANS

Experiments were carried out with Italian speech sentences acquired in the Eu-
Trans project [17]. This database has a total of 2, 757 sentences and 213 speak-
ers (approximately 7.9h of speech). The database was splited into 2, 161 sen-
tences for training and 596 sentences for test. The speech corpus consisted of
acquisitions of real phone calls to the front desk of a hotel, simulated usingWiz-
ard of Oz techniques [16]. This corpus is highly spontaneous and contains many
non-speech artifacts. The speech signal was sampled at 8 kHz.

Figure 3 shows the results obtained for pca = 40. Similar results were ob-
tained for pca = 20 and pca = 30. In the experiments the threshold value, t, was
varied from 8 to 64. We obtained 465, 527 local vectors from the training speech
sentences by setting the variance threshold t = 8. The window size w, was varied
from 5 to 11.

For a window size of w = 9 samples and a variance threshold of t = 8 the
best result is obtained leading to an 85.9% of accuracy. This can be considered
a good result taking into account the large number of speakers and the high
degree of spontaneity of the corpus. This results show again that this approach
is more effective if the set of local-feature vectors obtained from the training
data is large.

3.2 SIVA

The Italian speech database SIVA (Speaker Identification and Verification Ar-
chives) [18], contains the recordings of more than 2, 000 speakers. This corpus
consists of four speaker categories: male users, female users, male impostors and
female impostors.
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Fig. 3. Accuracy on the EuTrans data base for different window sizes and variance
thresholds.

The speakers access the recording system calling a ’toll free’ number. An
automatic answering system guides them along the three sessions that complete
the recording. This corpus has a controlled utterance scenario involving non
spontaneous sentences.

For speaker recognition experiments a reduced part of this corpus was se-
lected. We used only utterances from the female and male impostors sets and
only of those speakers having more than one utterances. Under these restric-
tions our final set has 102 different speakers and 612 utterances. We used half
utterances for training and the other half error estimation.

In the experiments the threshold value, t, was varied from 8 to 64 and the
window size, w, from 5 to 11.

Figure 4 shows the results obtained. As in the previous experiment, it is
important to remark that the most important parameter of this approach is
the size of the local feature set obtained from the training data, controlled by
the variance threshold, t. The best accuracy, 99.7%, is obtained for the largest
data set extracted with the variance threshold t = 8 and with a window size
w = 7, using pca = 40. Again, similar results were obtained for different pca
values tested. This result is significantly better than the results obtained for the
EuTrans corpus, mainly it is due to the lower degree of spontaneity of the
utterances involved.

Table 1 shows comparative results for the EuTrans and SIVA corpora. The
accuracy is reported for different values of the variance threshold, with window
sizes w = 7 and w = 9 for SIVA and EuTrans respectively.
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Fig. 4. Accuracy on the SIVA data base for different window sizes and variance thresh-
olds.

Table 1. Comparative results for EuTrans and SIVA corpora. Results in boldface are
the best results obtained for each corpus.

Corpus/Threshold 8 16 32 48 64

SIVA w = 7 99.7% 98.7% 92.5% 69.3% 43.8%
EuTrans w = 9 85.9% 82.9% 66.9% 46.1% 28.8%

Both experiments show that the most important parameter is the number of
local features used to represent the speech sentences. This behavior, under the
proposed probability estimation scheme, reflects the importance of using a fast
k-nearest neighbors search technique. In our experiments the system takes less
than one second to recognize a speaker in a conventional PC computer.

4 Conclusions

A local feature approach is proposed for speaker recognition which combines
a simple local representation method with a direct voting scheme based on k-
nearest neighbors. The results confirm that the most important parameter is
the number of local features extracted from the speech signals. This number of
local features is controlled by a variance-threshold parameter in the proposed
feature selection approach. Large number of local features implies slow k-nearest
neighbors searches, this problem is effectively solved through an approximate fast
k-nearest neighbors search technique.
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Current work is under way to test the proposed approach on other public-
domain databases. We are also interested in studying other voting schemes and
local feature extraction methods.
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Abstract. Recently a number of successful algorithms to select/extract dis-
criminative spectral regions was introduced. These methods may be more bene-
ficial than the standard feature selection/extraction methods for spectral classi-
fication. In this paper, on the example of autofluorescence spectra measured in 
the oral cavity, we intend to get deeper understanding what might be the best 
way to select informative spectral regions and what factors may influence the 
success of this approach. 

1    Introduction 

In medical applications, one often faces the small sample size problem: the number of 
measurements is smaller than or comparable with the data dimensionality. In such 
conditions, it is difficult (or even impossible) to construct a good classification rule 
[1]. One has to reduce the data dimensionality. When having spectral data, using 
standard feature selection/extraction methods may be inconvenient. The standard 
approaches assume the independency of data features while in spectra the features 
(neighbouring wavelengths/pixels/bins) are correlated. Therefore, some useful infor-
mation may be lost if the connectivity of spectral neighbouring pixels is not taken into 
account when extracting/selecting features informative for discrimination between 
data classes. During the last few years, a number of novel methods for selection/ ex-
traction informative spectral regions/bands has been developed. One example of such 
feature extraction algorithms is an Optimal Region Selector (ORS) [2] guided by a 
genetic algorithm. Another example is a top-down multiresolution feature extraction 
algorithm proposed by Kumar, Ghosh and Crawford [7]. 

In this paper we pretend neither to introduce fundamentally new algorithms for se-
lection/extraction of informative spectral regions, nor to perform an extensive com-
parison of already existing algorithms with a standard feature selection/extraction 
methods. Our goal is to understand what happens exactly when extracting informative 
spectral regions by different methods, what underlines the success of this process and 
what factors influence the benefit of this approach. 
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In order to perform our study we have selected a real data set, which represents 
autofluorescence spectra measured in the oral cavity. This data set introduces a 2-
class problem: lesions against healthy tissues. It is described in section 2. Different 
feature selection/extraction techniques used for finding informative spectral re-
gions/bands are introduced in section 3. The results of our simulation study are pre-
sented in section 4. Conclusions can be found in section 5.  

2    Data 

We perform our study on the example of autofluorescence spectra measured in the 
oral cavity. The data consist of the autofluorescence spectra acquired from healthy 
and diseased mucosa in the oral cavity. The measurements were performed at the 
Department of Oral and Maxillofacial Surgery of the University Hospital of Gronin-
gen [3]. Autofluorescence spectra were collected from 97 volunteers with no clini-
cally observable lesions of the oral mucosa and 137 patients having lesions in the oral 
cavity. The measurements were taken at 11 different anatomical locations with excita-
tion wavelength equal to 365 nm. The previously performed study [3] has shown that 
spectra measured at different anatomical locations are similar, and the location of a 
probe affects only the intensity of the spectra but not the shape. By this, it was possi-
ble to use a larger data set for our study. In total, 856 spectra representing healthy 
tissue and 132 spectra representing diseased tissue were obtained. After preprocessing 
[3], each spectrum consists of 199 bins (pixels/wavelengths).  

In order to get rid of a large deviation in a spectral intensity within each data class, 
we normalized spectra by the Unit Area (UA) 

 (1) 

where ai is an intensity of a spectrum A={a1, ...., a199} at bin i, i=1,...,199. Normalized 
autofluorescence spectra representing healthy and diseased tissues and their median 
spectra are illustrated in Fig. 1.  
 

 

Fig. 1. Normalized autofluorescence spectra for healthy and diseased mucosa in oral cavity. 

For our simulation study, training data sets with 2/3 of available samples per class 
are chosen randomly from the total set. The remaining data are used for testing. The 
prior class probabilities are set to be equal as the data are very unbalanced and the real 
prior class probabilities are unknown. To evaluate the performance of lesion diagnos-
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tics when different feature selection/extraction methods are used, we have chosen the 
Linear Discriminant Analysis (LDA) [4] which was the best performing classifier for 
this application. In particular, we apply the regularized linear classifier [5] which 
constructs a linear discriminant function assuming normal class distributions and 
using a joint class covariance matrix for both data classes. The value of the regulariza-
tion parameter used is equal to 10-10. All experiments are repeated 20 times on inde-
pendent training sample sets. In all figures the averaged results over 20 trials are pre-
sented and we do not mention that anymore. The standard deviations of the reported 
mean generalization errors (the mean per two data classes) is approximately 0.01 for 
each considered case. 

3    Selection/Extraction of Spectral Regions 

Inspired by the success of approaches suggested by Nikulin [2] and Kumar [7], we 
became interested in what actually happens when selecting/extracting spectral re-
gions, why and when it is beneficial and not.  

The first approach, Optimal Region Selector by Nikulin [2], is based on a genetic 
algorithm. First, one randomly generates few sets of non-overlapping spectral regions 
of arbitrary size. For each region, a new feature (for instance, the mean of the spectral 
intensities in the region) is derived. Then the goodness of each set of new features is 
evaluated by some criterion (Nikulin has used the mean square error between the true 
labels and the posterior class probabilities calculated on the training dataset by the 
linear classifier having the averaged coefficients over all linear classifiers constructed 
on leave-one-out cross-validation). According to this criterion, the best subsets of 
spectral regions are selected. Further, one again increases the number of these subsets 
by random mutations and crossovers of the region definitions, and the procedure re-
peats. At the end, a suboptimal solution (due to a randomness of the whole procedure) 
for the best set of spectral regions is found. 

The second approach, a top-down multiresolution feature extraction algorithm pro-
posed by Kumar et al. [7], partitions the original p-dimensional spectra into smaller 
subspaces by using a top-down recursive algorithm. First, the best place to split spec-
tra into two parts is found by computing a discriminant measure between data classes 
(for instance, Bhattacharya distance, Kullback-Leibler divergence or log-odds of class 
posterior probabilities used by Kumar can be applied). The discriminant measure 
obtained on the parent space is compared with the discriminant measures calculated 
on the children subspaces. If the child subspace has a higher discrimination than the 
parent space, then it is partitioned further. If the child subspace does not show any 
improvement in its discrimination capacity compared to the parent space, then this 
child subspace is not partitioned any further. Finally, one finds a set of spectral re-
gions/ bands with high discrimination. However, the optimization is performed only 
in a one-dimensional way: a discrimination capacity is evaluated for each spectral 
region separately but not for a total set of selected spectral regions.  

We consider here the Top-Down variant of Generalized Local Discriminant Bases 
algorithm (GLDB-TD), which is conceptually close to the algorithms, described in 
this paper. The GLDB-TD algorithm represents each group of wavelengths by a mean 
of corresponding intensities. 

In our study on the usefulness of spectral regions extraction/selection approach and 
on the benefits of different ways to extract/select discriminative spectral regions, we 
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do not use exactly the two algorithms discussed above. First, we would like to sim-
plify the procedures for selection/extraction of discriminative spectral regions in order 
to get more insight what does actually happen. Second, it is convenient to use the 
same discriminant measure between data classes when comparing different ways of 
selecting/extracting the best spectral bands. And finally, we prefer to use multi-
dimensional optimization when looking for the informative spectral regions.  

In our study we consider few approaches to extract/select the informative/dis-
criminative spectral regions. In all of them, first we perform the dimensionality reduc-
tion for each considered spectral band. Namely, from each spectral region considered 
we derive one new feature by taking the average of intensities in this region. This new 
feature (the averaged intensity of the spectral band) is used further to introduce the 
spectral region.  

In order to evaluate a discriminative capacity of extracted spectral regions, we use 
the Mahalanobis Distance (MD) between data classes: 

 (2) 

where μA, μB and ΣA, ΣB are the means and the covariance matrices of data classes A 

and B, respectively; p is the prior probability of the data class A. The larger Maha-
lanobis distance, the larger discriminative capacity between data classes. In order to 
perform the multi-dimensional optimization of S spectral regions, we calculate the 
Mahalanobis distance on the whole set of S features (the averaged intensities of spec-
tral bands), each representing one of S spectral regions. By this, we find the optimal 
set of spectral regions providing the best discrimination (according to MD) between 
data classes. 

In our study we consider the following ways to extract/select the informative 
spectral regions. 

Approach 1.  

A. Sequential Partition of Spectra into Non-overlapping Bands Using All Spectral 
Pixels. 

First, we split spectra into two spectral regions by finding the best split which gives 
the largest MD (over all possible partitions) in the space of two features extracted 
from the two spectral bands. Then, the first found split is fixed and we look for the 
next optimal split in such a way that the MD in a three-dimensional space (on three 
features extracted from the three spectral bands) is the largest over all possible loca-
tions for the second split (when the location of the first split is anchored). Again, we 
fix the location for the first two found splits and repeat the procedure while the de-
sired number of spectral regions S is found (see top plots in Fig. 2). In this approach, 
all spectral emission wavelengths are used in the partitioning of spectra. However, 
some spectral bins can be uninformative - introducing only noise. Hence, they may 
deteriorate the classification when they are included in the extracted spectral regions. 
Therefore, it is good to remove them from the spectral bands. One way to do this is 
described below. 

B. Sequential Partition of Spectra into Non-overlapping Bands Excluding Uninforma-
tive Spectral Pixels. 

After a desired number of spectral regions S is found by Approach 1A, we can shrink 
the spectral bands removing uninformative emission wavelengths. We reduce the 
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number of bins in each spectral region in a sequential way moving from the most left 
spectral region to the most right one. For shrinking the spectral band, we consider all 
possible subregions of the reduced size in this band and find the one with the largest 
MD in S-dimensional space (one feature, the averaged intensity, calculated from a 
shrunk subregion of the spectral band under consideration and the rest S-1 features 
extracted from the other S-1 spectral bands which definitions are fixed for a moment). 
After the optimal shrinking for the first spectral band is found, we anchor its new 
definition and move to the next spectral band in order to exclude uninformative pixels 
(see middle plots in Fig. 2). We should mention that the proposed method is highly 
dependent on the spectral regions proceeding order and therefore it does not guaranty 
the optimal shrinking for all regions in general.  

Approach 2. 

A. Sequential Selection/Extraction of Discriminative Spectral Regions.  

In order to find a set of the most discriminative spectral bands, at each step s,                  
s = 1, 2, … S, we consider all possible definitions of spectral regions (of arbitrary 
size) in spectra. For each of them we calculate the MD criterion in s dimensions: one 

 

Fig. 2.  Approach 1A (top plots), Approach 1B (middle plots) and Approach 2A (bottom plots)
for selection/extraction of informative spectral regions (SR) to discriminate between healthy 
and diseased tissues.  
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feature is the averaged intensity of a current potential pretender for the most informa-
tive band and other s-1 features are extracted from the previously found optimal spec-
tral regions. The spectral band (a potential pretender) with the largest MD is picked as 
the most discriminative spectral band (in combination with the s-1 previously found 
optimal regions). Let us mention that in this approach overlapping as well as non-
overlapping spectral bands are possible (see bottom plots in Fig. 2). 

B. Sequential Selection/Extraction of Non-overlapping Discriminative Spectral Re-
gions.  

This approach is identical to Approach 2A with the exception that overlapping spec-
tral bands are not allowed: when looking for an additional discriminative spectral 
region, the regions overlapping with the previously selected optimal spectral bands 
are excluded from consideration.  

4    Simulation Study 

Let us now study the benefits of extracting/selecting the discriminative spectral re-
gions. In order to judge the success of this approach, we compare different ways to 
extract/select spectral regions with one of the most successful standard feature extrac-
tion methods - the Principal Component Analysis (PCA) [4]. In Fig. 3, we present the 
mean generalization errors of the LDA (top plots) (over 20 independent trials) and the 
mean Mahalanobis distances (bottom plots) obtained on the autofluorescence spectral 

 

Fig. 3. The mean generalization error (GE) of LDA (a-c) and the mean Mahalanobis distance 
(MD) (d-f) when the MD criterion is used in Approaches 1 (a,d) and 2 (b,e) to select/extract
discriminative spectral bands for autofluorescence spectral data. In plots (c,f) the comparison is
made between Approaches 1A and 2A. The standard deviation of the mean GE is around 0.01.
GLDB-TD denotes the performance of a Top-Down variant of the Generalized Local Discrimi-
nant Bases using a Mahalanobis distance criterion. 
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data when feature extraction is performed by the PCA and Approaches 1A, 1B, 2A 
and 2B for discriminative spectral bands extraction. We see that almost all introduced 
approaches for selection/extraction of informative spectral regions outperform the 
PCA. The exceptions are the cases when the whole spectrum is taken as one spectral 
band (the averaged intensity over the whole spectrum is not very informative) or too 
many spectral regions (some of them contain only noise) are picked to discriminate 
between data classes. 

In order to evaluate our approach we compare different feature extraction tech-
niques, proposed by us, to two existing methods. The first is a Principal Component 
Analysis (PCA). The second is a Top-Down Generalized Local Discriminant Bases 
algorithm (GLDB-TD) of Kumar et al. [7]. 

Similarly to the proposed feature extraction techniques, the GLDB-TD algorithm 
uses the Mahalanobis distance as a criterion. 

Because the GLDB-TD algorithm terminates automatically using a data-driven cri-
terion, only a single point is given in each plot. The point represents the mean error of 
20-fold cross-validation. Because each fold results, in general, in a different number 
of wavelength groups, we plot a median over these 20 results. 

Comparing the performance of the linear classifier for Approaches 1A and 1B, we 
notice that shrinking the spectral regions in the optimal partition of spectra is not 
useful (see Fig. 3a). One reason underlies in the proposed method 1B that is not opti-
mal in general. Another reason is that the MD criterion is not equivalent to the LDA: 
the covariance matrices of data classes are assumed to be different in the MD criterion 
while they are considered to be the same for both data classes in the LDA. Therefore, 
optimizing the MD in selection/extraction of the most discriminative spectral regions 
does not guaranty the optimal performance for the linear classifier. For instance, for 
20 spectral features extracted, Approach 1A provides the largest MD (see Fig.3d) but 
worse performance of the LDA than for the PCA (see Fig. 3a).  

For our autofluorescence spectral data, we do not observe any difference between 
Approaches 2A and 2B: it is not important whether the extracted spectral regions do 
overlap or do not (see Fig. 3b). However, we see that Approach 2A is more beneficial 
than Approach 1A: using less spectral wavelengths in selected spectral bands is better 
than when all spectral wavelengths are used in the partitioning of spectra (see Fig. 
3c). In addition, we should mention that often both Approaches 1B and 2B tend to 
select/ extract very narrow spectral bands consisting only of 1-3 pixels/wavelengths 
which may introduce more noise fluctuations than a real difference between data 
classes. This may happen due to the overtraining that occurs when the same training 
set is used to construct the LDA and to optimize the MD criterion in the spectral re-
gions extraction. 

In order to avoid the shortages of the MD criterion mentioned above and the over-
training when extracting discriminative spectral regions, other criterion should be 
used. The alternative may be the apparent error (AE) (the classification error on the 
training set) of the linear classifier. This criterion is more close to the LDA than the 
MD criterion what concerns assumptions on the data classes distributions. The elusion 
of overtraining can be done by bootstrapping [6] the training set when calculating the 
apparent error. Namely, we bootstrap the training set B times constructing a linear 
classifier on each bootstrap replicate of the training set and calculate the average clas-
sification error of these B bootstrapped classifiers on the original training set. 

Let us now consider the differences in the performance of the LDA caused by ap-
plying the AE criterion instead of the MD to extract informative spectral bands. In our 
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simulations we use B=5 bootstrap replicates of the training set to calculate the appar-
ent error. Figures 4 and 5 illustrate that using the AE criterion is indeed more benefi-
cial than using the MD criterion: the performance of all four Approaches (1A, 1B, 2A 
and 2B) is improved. In figure 4 also the AE result for the GLDB is shown. In Ap-
proaches 1B and 2B, wider spectral bands on average are found to be optimal when 
the AE criterion is applied instead of the MD criterion for extracting discriminative 
spectral regions. Also, the previously made observations hold on: using a subset of 
spectral wavelengths in extracted spectral bands is more preferable than using them 
all in the optimal partition of spectra; it seems to be unnecessary to extract uncorre-
lated spectral bands in order to achieve the best classification results.  

 

 

Fig. 5. The performance of LDA calculated on principal components (PCA) and on spectral 
regions selected/extracted by using the Mahalanobis Distance (MD) and the Apparent Error 
(AE) criteria for autofluorescence spectra. 

5   Conclusions 

Summarizing simulation results presented in the previous section, we can conclude 
the following. The selection/extraction of discriminative spectral bands may be more 
beneficial than the standard unsupervised feature selection/extraction methods (e.g., 

 

Fig. 4. The mean generalization error (GE) of LDA when the discriminative spectral regions
for autofluorescence spectra are extracted/selected by using the apparent error (AE) criterion in 
Approach 1 (plot a) and Approach 2 (plot b). In plot (c) the comparison is made between Ap-
proaches 1A and 2A. The standard deviation of the mean GE is around 0.01. GLDB-TD de-
notes the performance of a Top-Down variant of the Generalized Local Discriminant Bases 
using an apparent error criterion. 
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PCA) that do not assume the connectivity of the neighbouring wavelengths in spectral 
data.  

In order to gain more advantage from the selection/extraction of informative spec-
tral regions, the optimization criterion to select/extract discriminative spectral bands 
should be adjusted to the classification rule used to solve the problem. When selecting 
informative spectral regions, overtraining may be avoided if the evaluation criterion 
measures a performance on a different than the training dataset. For this purpose, the 
bootstrapped training set or an additional validation dataset can be used. 

It follows from our experiments that it is advantageous to perform a multi-variate 
selection of wavelength groups, compared to a uni-variate approach such as General-
ized Local Discriminant Bases (GLDB) utilizing the same criterion. It is also useful to 
exclude uninformative wavelengths from the spectral regions. 

Interestingly, we have found out that extracted informative spectral bands do not 
need to be uncorrelated. Classifiers such as a linear discriminant assuming normal 
densities will find a good separation boundary even for correlated features. Feature 
extraction techniques like GLDB identify groups of non-overlapping wavelengths. 
Our finding suggests that overlapping groups of wavelengths may provide discrimina-
tive representation as well. 
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Abstract. Principal component analysis (PCA) is widely used in signal process-
ing, pattern recognition, etc. PCA was extended to the relative PCA (RPCA).
RPCA provides principal components of a signal while suppressing effects of
other signals. PCA was also extended to the kernel PCA (KPCA). By using a
mapping from the original space to a higher dimensional space and its kernel,
we can perform PCA in the higher dimensional space. In this paper, we propose
the kernel RPCA (KRPCA) and give its solution. Similarly to KPCA, the order
of matrices that we should calculate for the solution is the number of samples,
that is ‘kernel trick’. We provide experimental results of an application to pattern
recognition in order to show the advantages of KRPCA over KPCA.

1 Introduction

Principal component analysis (PCA) or Karhunen-Loève transform is widely used in
signal processing, pattern recognition, etc [1], [2], [3]. We can extract important com-
ponents of a signal that minimize the mean square error between the extracted and the
original signals. Consider that input vectors are in a D-dimensional real vector space
RD with the inner product 〈 f , g〉 and the norm ‖ f ‖ = √〈 f , f 〉 for vectors f and g. Let
P be a matrix. PCA is defined by minimizing the following criterion

E f ‖P f − f‖2 (1)

under the condition that rank(P) ≤ d for any d ≤ D, where E f is the ensemble average

with respect to a signal f . Let R f = E f f f T be the correlation matrix of f , where f T is
the transpose of f . The vector φn is given as the eigen vector corresponding to the n-th
largest eigenvalue of R f . The solution of the PCA P is given as

A. Fred et al. (Eds.): SSPR&SPR 2004, LNCS 3138, pp. 1105–1113, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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P =

d∑
n=1

φnφ
T
n . (2)

We consider the case that there exist two signals f and g and the principal compo-
nent of f is obtained while the effect of g is suppressed. When g is noise, we can extract
the principal components of a signal f in the presence of noise. When g is a pattern in
other categories, we can extract the features of f that are not closed to the features of g.

By extending eq.(1) the relative PCA (RPCA) or the relative Karhunen-Loève trans-
form was proposed [4], [5]. Consider that a matrix X minimizes the following criterion:

E f ‖X f − f‖2 + αEg‖X g‖2 (3)

under the condition that rank(X) ≤ d for any d. The parameter α(> 0) controls the
weight for suppressing the effect of g. With a large α, the effect of g is suppressed well.
With a small α, the approximation error between X f and f is decreased.

The solution of RPCA is given as the form:

X =

d∑
n=1

φn(ϕn)T . (4)

Here, we describe its solution when R f + αRg is not singular. Let μn (μ1 ≥ μ2 ≥ · · · ≥
μD) be eigenvalues and let ψi be corresponding eigen vectors of R f (R f + αRg)−1R f .

Then, the solution is given as φn = ψn and ϕn = (R f +αRg)−1R fψn. From eq.(4) the n-
th relative principal component of f is given as 〈 f ,ϕn〉φn. When d = D, X is reduced to
Wiener filter, which provides the best approximation of a signal in sense of mean square
error. A similar criterion with eq.(3) was provided for the rank reduced Wiener filter.
However, the reason why they restrict the rank is not for obtaining principal components
but for robustness [6].

The advantages of RPCA over PCA were shown by experiments of data compres-
sion in the presence of noise [4] and handwritten character recognition [5].

As for PCA with two kinds of signals, Fisher discriminant [7] and Oriented PCA
(OPCA) [3] were proposed. OPCA is defined by vectors φn that minimize

E f 〈 f ,φn〉2

Eg〈g,φn〉2
(5)

under the condition that 〈φm, R fφn〉 = 0 and 〈φm, Rgφn〉 = 0 for m � n. The theoretical
advantage of RPCA over them is in that the criterion of RPCA compares the approx-
imation error between principal components and the original signal directly. Then, it
provides the principal components of which accuracy is guaranteed.

PCA was extended to another direction based on a kernel. The kernel PCA (KPCA)
is defined as follows [8], [9], [10], [11], [12], [13]. Let Φ be a mapping from a input
vector space RD to a real Hilbert space H . The inner product 〈x, y〉 is also defined for
vectors x and y in H . Furthermore, we assume 〈Φ( f ), Φ(g)〉 = k( f , g), where k( f , g) is
a kernel function. Let { f l}L

l=1 be a set of samples of a signal. When H is a vector space,
a sample correlation matrix S f in H is given as
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S f =
1
L

L∑
l=1

Φ( f l)Φ( f l)
T . (6)

Let Vn be the eigen vector corresponding to the n-th largest eigenvalue of S f . For an
input vector f , the magnitude of the n-th principal component is given as 〈Vn, Φ( f )〉.
However, for obtaining the magnitude we don’t need to calculate the eigenvalue prob-
lem in H , which is a very high or infinite dimensional space. The advantage of the
theory of KPCA is that we can reduce the dimension for the calculation to the number
of samples L. Fisher discriminant was also extended to the kernel Fisher discriminant
[14], [15], [16].

Since a signal contains noise in almost all cases or suppression of the effect of other
categories is useful in many cases, the kernelization of RPCA is very important as well
as the kernelization of PCA. In this paper, we propose the kernel relative PCA (KRPCA)
which is a kernel based extension of RPCA. We provide the definition and its solution
in this paper. The dimension of a space for the calculation is the number of samples.
Different from other many kernelized problems such as support vector machine (SVM),
the solution that minimizes the criterion of KRPCA is given by a closed form, that is,
it can be provided by eigen vectors and inversion of matrices similarly to KPCA. Fur-
thermore, since it provides the relative principal components, it can be applied not only
to discrimination but also to many problems such as feature extraction and dimensional
reduction. In order to show the advantage of KRPCA, we show experimental results of
an application to pattern recognition.

2 Kernel Relative PCA

In this section, we provide the definition and a solution of KRPCA.
Schatten product x ⊗ y for vectors x and y in H is defined as a linear operator from

H to H such that (x⊗ y)z = 〈z, y〉x for any z ∈ H [17]. It is an abstract notation of xyT

for vectors in a Hilbert space.
Let { f l}L

l=1 be a set of samples, of which principal components are extracted. Let
{gm}M

m=1 be a set of samples of which effect is suppressed. We define the criterion of
KRPCA X as minimizing

J =
1
L

L∑
l=1

‖XΦ( f l) − Φ( f l)‖2 +
α

M

M∑
m=1

‖XΦ(gm)‖2 (7)

under the conditions that rank(X) ≤ d and its null space includes the orthogonal sub-
space of the subspace spanned by { f l}L

l=1 and {gm}M
m=1.

For brief, let f i+L = gi (i = 1, 2, · · · , M) and N = L + M. Since all vectors in the
criterion(7) are in a subspace spanned by Φ( f i) (i = 1, 2, · · · , L, L + 1, · · · , N), we can
assume that X is expressed with an (N, N)-matrix A = (ai j) as

X =

N∑
i=1

N∑
j=1

ai jΦ( f i) ⊗ Φ( f j) (8)
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Let 0mn be (m, n)-matrix of which all elements are zero. We define (L, L)-matrix K0,
(N, L)-matrix K1, (N, M)-matrix K2, (N, N)-matrix K̃1, (N, N)-matrix K̃2, (N, N)-matrix
K, and (N, N)-matrix K̃ as

K0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
k( f 1, f 1) · · · k( f 1, f L)

...
. . .

...
k( f L, f 1) · · · k( f L, f L)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

K1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
k( f 1, f 1) · · · k( f 1, f L)

...
. . .

...
k( f N , f 1) · · · k( f N , f L)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , K2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
k( f 1, f L+1) · · · k( f 1, f N)

...
. . .

...
k( f N , f L+1) · · · k( f N , f N)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

K̃1 =

[
1√
L

K1 0NM

]
, K̃2 =

[
0NL

√
α

M
K2

]
, K = [K1 K2] , K̃ = K̃1 + K̃2.

It is clear that K1KT
1 = LK̃1K̃T

1 , αK2KT
2 = MK̃2K̃T

2 , and K̃1K̃T
1 + K̃2K̃T

2 = K̃K̃T . For a
matrix B there exists an unique matrix C such that BCB = B, CBC = C, (BC)T = BC,
and (CB)T = CB. The matrix C is called the Moore-Penrose generalized inverse matrix
and denoted by B† [18]. A symmetric matrix B is called the positive semi-definite if
and only if 〈Bx, x〉 ≥ 0 for any x. For a positive semi-definite matrix B, there exists a
positive semi-definite matrix C such that CC = B. We denote the matrix C by B1/2. We
define a matrix A0 as

A0 = K†K̃1K̃T
1 (K̃K̃T )†. (9)

Let λi (λ1 ≥ λ2 ≥ · · · ≥ λN) be eigenvalues of K1/2A0K̃(K1/2A0K̃)T , which is a symmet-
ric matrix, and let ui be the corresponding eigen vectors such that {un}N

n=1 is an orthonor-
mal basis. When λn � 0, let vn = ((K1/2A0K̃)T un)/

√
λn. When λn = 0, we can chose

any vn such that {vn}N
n=1 is an orthonormal basis. The i-th element of an N-dimensional

vector w is denoted by (w)i.

Theorem 1. A KRPCA X is given as

X =

N∑
i=1

N∑
j=1

⎛⎜⎜⎜⎜⎜⎜⎝
d∑

n=1

(
(K1/2)†un

)
ṽT

n

⎞⎟⎟⎟⎟⎟⎟⎠
i j

Φ( f i) ⊗ Φ( f j), (10)

where
ṽn =
√

λn(K̃†)T vn. (11)

For an input vector f , let

h = (k( f , f 1), k( f , f 2), · · · , k( f , f N))T . (12)

Then, XΦ( f ) is given as

XΦ( f ) =
N∑

i=1

d∑
n=1

〈h, ṽn〉
(
(K1/2)†un

)
i
Φ( f i). (13)
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The n-th kernel relative principal component of f with respect to g is given as

N∑
i=1

〈h, ṽn〉
(
(K1/2)†un

)
i
Φ( f i). (14)

Furthermore, we have

‖XΦ( f )‖2 =

d∑
n=1

|〈ṽn, h〉|2 (15)

and

‖XΦ( f ) − Φ( f )‖2 = k( f , f ) +
d∑

n=1

{|〈ṽn, h〉|2 − 〈ṽn, h〉〈(K1/2)†un, h〉}. (16)

Outline of the Proof
We can expand the sum in eq.(7) and simplify to

J = ‖K1/2AK̃ − K1/2A0K̃‖2
2 − tr[K̃T AT

0 KA0K̃] +
1
L

tr[K0]. (17)

where ‖ · ‖2 is the Frobenius norm of a matrix. From eq.(17), J is minimum subject to
rank(A) ≤ d if and only if ‖K1/2AK̃ − K1/2A0K̃‖2

2 is minimum with the condition. From
the definitions of un and vn, by considering SVD of K1/2A0K̃, J is minimum subject to
rank(A) ≤ d if and only if

K1/2AK̃ =

d∑
n=1

√
λnunvT

n . (18)

Note that the sum of (18) is truncated by d. Then, we have

A = (K1/2)†
d∑

n=1

unṽT
n . (19)

Then, eq.(10) is proved. Furthermore, XΦ( f ) is given as

XΦ( f ) =
N∑

i=0

(Ah)iΦ( f i) =
N∑

i=1

d∑
n=1

〈h, ṽn〉
(
(K1/2)†un

)
i
Φ( f i). (20)

The rest of the proof is clear. �

3 Application to Pattern Recognition

In order to show the advantage of KRPCA, we provide an experimental result of hand-
written character recognition.

Let Ωc be the learning sample set for a category c (c = 1, 2, · · · , NC). The matrix Pc

and the operator P′
c of PCA and KPCA for the category Ωc are decided as minimizing

1
|Ωc|
∑
f ∈Ωc

‖Pc f − f‖2,
1

|Ωc|
∑
f ∈Ωc

‖P′
cΦ( f ) − Φ( f )‖2
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subject to rank(Pc) and rank(P′
c) are fixed, respectively, where |Ωc| is the number of

samples in Ωc.
The matrix Xc and the operator X′

c of the RPCA and the KRPCA for a category c is
decided as minimizing with a parameter α

1
|Ωc|
∑
f ∈Ωc

‖Xc f − f ‖2 + α
1

|Ωx|
∑
g∈Ωx

‖Xc g‖2, (21)

1
|Ωc|
∑
f ∈Ωc

‖X′
cΦ( f ) − Φ( f )‖2 + α

1
|Ωx|
∑
g∈Ωx

‖X′
cΦ(g)‖2 (22)

subject to rank(Xc) and rank(X′
c) are fixed, respectively, where Ωx is the set of sam-

ples which are suppressed. We call Ωx the suppression set. In the above criterion, the
notations f and g express patterns in the own and the others categories, respectively.

An unknown pattern h is discriminated as the category c for each method, when for
all b � c we have

‖Pch − h‖2 < ‖Pbh − h‖2, ‖P′
cΦ(h) − Φ(h)‖2 < ‖P′

bΦ(h) − Φ(h)‖2,

‖Xch − h‖2 < ‖Xbh − h‖2, ‖X′
cΦ(h) − Φ(h)‖2 < ‖X′

bΦ(h) − Φ(h)‖2.

In cases of PCA and KPCA since Pc and P′
c are orthogonal projection matrix and opera-

tor, ‖Pch−h‖2 and ‖P′
cΦ(h)−Φ(h)‖2 are minimum if and only if ‖Pch‖2 and ‖P′

cΦ(h)‖2

are maximum, respectively. Usually the latter rules are used as the discriminant laws.
In point of view of the learning set, KPCA and KRPCA use the same learning set.

In point of view of calculation complexity, the dimension of the space where we have
to calculate is the number of learning samples used for evaluations. For KPCA and
KRPCA the numbers are given as |Ωc| and |Ωc| + |Ωx|, respectively. Therefore, it is
difficult to use all samples, which do not belong to Ωc, for the suppression set Ωx. Then,
we fix |Ωx| as Nx. Consider a value t(g) = ‖P′

cΦ(g)‖/‖P′
bΦ(g)‖ for a pattern g in Ωb

(b � c). Let tNx be the Nx-th largest value among t(h) for all patterns h in Ωb (b � c).
We add the pattern g to the suppression set Ωx with respect to Ωc when t(g) is not less
than tNx .

3.1 Data

We use US Postal Service database (USPS) which contains 7291 training patterns and
2007 test patterns collected from real-life zip codes. It has ten categories from ’0’ to ’9’
(Nc = 10). For a preprocessing we use the weighted direction index histogram method
and the variable transformation [19].

3.2 Result

The following kernel is used in this experiment for KPCA and KRPCA.

k( f , g) = (〈 f , g〉 + 1)20. (23)
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Table 1. Result of handwritten character recognition.

METHOD ERROR RATE (%) RANK α |Ωx |
PCA 5.38 9 –
RPCA 4.91 12 10−2.5 25
KPCA 4.43 150 –
KRPCA 3.49 20 10−4.0 150
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Fig. 1. (a) Parameter α and error rate by KRPCA(rank=20) (|Ωx| = 150). (b) Rank and error rate
in KRPCA(α = 10−4.0, |Ωx | = 150) and KPCA.

We show the best error rate of the test set for each method among various ranks and
values of the parameter α, |Ωx| in Table 1. We show the relation between the parameter
α and the error rate of KRPCA in Figure 1 (a). We also show the relation between the
ranks and the error rates of KPCA and KRPCA in Figure 1 (b).

We can see from Table 1 that KRPCA performs the best recognition rate. We can
also see from Figures 1 (a) and (b) that KRPCA outperforms KPCA for any α > 10−4

and for any rank of operators, respectively.

4 Discussion

4.1 Computational Complexity

In the construction stage, the computational complexity to calculate a matrix of KRPCA
is several times higher than that of KPCA. The dominant parts of computations are as
follows.

– KPCA
the kernel function: L2 times
the eigen value problem of an (L, L)-matrix: 1 times

– KRPCA
the kernel function: N2 times
the inversion of an (N, N)-matrix: 2 times
the SVD of an (N, N)-matrix: 1 times
the square root of a symmetric (N, N)-matrix: 1 times
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In the recognition stage, since many terms in eq.(16) can be calculated in advance,
the dominant parts of computations are as follows.

– KPCA
the kernel function: L times
multiplication of elements: DL times

– KRPCA
the kernel function: N times
multiplication of elements: 2DN times

where D is the rank of each operator. In case of the experiment in Section 3, L = 729
and N = 879 in average and D = 150 for KPCA and D = 20 for KRPCA to achieve
minimum error rates. In this case, the computational complexity of KRPCA is less than
that of the KPCA in the recognition stage.

4.2 Comparison with Other Kernel Machines

SVM has the problem that training needs enormous computational cost because the
optimization problem becomes very large. It depends on the complexity of the prob-
lem and the number of samples belonging to both its own and all rival classes. If the
total number of samples is very large, kernel fisher discriminant (KFD) also has the
same problem. On the other hand, KPCA and KRPCA are trained by the samples of
its own class only and by those and some samples of rival classes, respectively, and
can be solved only by matrix computations. Therefore, even if the number of classes
is very large, KPCA and KRPCA can be obtained easily compared to SVM and KFD.
Since SVD has a convex criterion and SVM does not have, sample selection for SVM
also needs much computational cost. In practice, the KRPCA with a few thousands of
samples for a class can be obtained by a present personal computer. Furthermore, since
KRPCA extracts features of which mean square error is minimized, it can be used not
only for discrimination but also for analysis.

5 Conclusion

We proposed the theory of the kernel relative principal component analysis (KRPCA).
KRPCA can extract the principal components of a signal while suppressing the effects
of other signals. We provided its definition and a solution. In order to show the ad-
vantage of KRPCA, we provided an experimental example of handwritten character
recognition.
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Abstract. This paper proposes a novel method of generating statistical Korean 
Hangul character models in real time. From a set of grapheme average images 
we compose any character images, and then convert them to P2DHMMs. The 
nonlinear, 2D composition of letter models in Hangul is not straightforward and 
has not been tried for machine-print character recognition. It is obvious that the 
proposed method of character modeling is more advantageous than whole char-
acter or word HMMs in regard to the memory requirement as well as the train-
ing difficulty. In the proposed method individual character models are synthe-
sized in real-time using the trained grapheme image templates. The proposed 
method has been applied to key character/word spotting in document images. In 
a series of preliminary experiments, we observed the performance of 86% and 
84% in single and multiple word spotting respectively without language models. 
This performance, we believe, is adequate and the proposed method is effective 
for the real time keyword spotting applications 

1   Introduction 

In the field of OCR the neural network is a highly successful model for recognizing 
machine-printed characters. However, one problem with the neural network is that 
the sequential nature of texts running left to right is not well captured without sophis-
ticated network architectures like that of TDNN [1]. As a result, most of the neural 
network systems with ordinary architectures assume external segmentation of charac-
ter blocks prior to recognition. In this case the overall system performance is usually 
limited by the performance of the segmenter and the quality of the resulting segments. 
Another problem with the neural network model is that it is a purely wholistic model 
that cannot be decomposed, analyzed nor synthesized; therefore training thousands of 
character models is extremely difficult, if not impossible. 

Since the early nineties one model has come into the arena of document analysis; it 
is the hidden Markov model or HMM. Stimulated by the success in speech recogni-
tion, the modeling capability of the variability and sequential flow of a pattern, HMM 
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has been used in diverse areas successfully [2]. The application of HMMs benefits 
from the wide range of experience accumulated in speech recognition and many other 
fields.  

Since document texts run sequentially and, mostly, left to right, it is natural that 
the idea of using HMM occurs to researchers. To date, the HMM application to Eng-
lish has been reported in several places in the literature. But, although texts run line-
arly, individual character patterns are not linear but two-dimensional. This fact has 
not been a barrier to the modeling of Latin alphabet-based texts that run strictly left-
to-right down at the letter level. In fact the idea is simply straightforward. But in the 
case of Korean Hangul characters the problem is not so simple. At the character level 
or above, texts run linearly. One problem is that there are thousands of characters 
used in Hangul texts, and we may need the corresponding number of models. An 
observation below the character level is that a Korean Hangul character is composed 
of either two or three graphemes arranged two-dimensionally in a way to fit into a 
rectangle. The two-dimensional composition of grapheme models in Hangul is not 
straightforward and thus the HMM has not been tried for machine-print character 
recognition. Without doubt, however, the composition method of character modeling 
is more advantageous than that of designing thousands of whole character models in 
regard to the memory requirement as well as the training difficulty. 

This research is focused on the application of the HMM method to the analysis of 
document text images. The basic idea lies in the real time generation of Korean Han-
gul character models for spotting key characters in the content analysis of optical 
documents. In the proposed method individual character models are synthesized in 
real-time using the trained grapheme image templates. 

Since characters are two-dimensional, it is natural to believe that a 2D HMM, an 
extension to the standard HMM, will be helpful and offer a great potential for analyz-
ing and recognizing character patterns. But a fully connected 2D HMM leads to an 
algorithm of exponential complexity [3]. To avoid the problem, the connectivity of 
the network has been reduced in several ways, two among which are Markov random 
field and its variants [4] and pseudo 2D HMM [5]. The latter model, called 
P2DHMM, is a very simple and efficient 2D model that retains all of the useful 
HMM features. The basic idea of this paper is about the real time construction of the 
Hangul character pseudo 2D HMM using trained grapheme image templates. We 
believe the proposed method is feasible and particularly appropriate thanks to the 
absence of natural italic fonts corresponding to the English italics, a rationale for 
using P2DHMM. 

In the proposed method, we prepared a set of grapheme patterns for each graph-
eme and obtained their average, the grapheme template. By superposing appropriate 
grapheme templates, we can compose a character image template. This character 
template is converted to a P2DHMM in a systematic way. In this method the new 
idea of location-preserving 2D superposition is very simple but highly elegant and 
efficient for real-time processing. The idea of character composition is not new, but 
the application to strictly 2D model design is. It is especially true in 2D HMM 
framework. Another feature of the proposed method is the conversion of the gray-
scale template into P2DHMM, which is theoretically correct in the sense of maximum 
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likelihood estimation. Additional noteworthy feature is model reduction by noting the 
information redundancy in the templates; successive HMM states are merged based 
on the similarity between their output PDs. The resulting models are often much 
smaller than the original and thus speed up the spotting task, and sometimes, im-
proves the performance. 

The rest of the paper consists as follows. In Section 2 we will briefly review the 
HMM and P2DHMM. In Section 3 the pseudo 2D HMM and its algorithm are de-
scribed; and then a procedure for developing character models is discussed in detail. 
Section 4 describes auxiliary models needed for the proposed method of key charac-
ter spotting. Section 5 presents results from preliminary experiments. Section 6 con-
cludes the paper. 

2   HMM Theory 

This section reviews briefly the theories of HMM and pseudo 2D HMM. 

2.1   HMM 

The hidden Markov model is a doubly stochastic process that can be described by 
three sets of probabilistic parameters as λ = (A, B, π). Given a set of N states and a set 
V of observable symbols, the parameters are formally defined by [2]: 

- Transition probability: A = { aij = p(qt = j | qt-1 = i), 1 ≤ i, j ≤ N }, ∑j aij = 1.  
- Output probability: B = { bi(v) = p(xt = v | qt = i), 1 ≤ i ≤ N, v∈V }, ∑v bi(v) = 1. 
- Initial transition probability: π = { πi = p(q1 = i), 1 ≤ i ≤ N }, ∑i πi = 1. 

The most frequent task with an HMM is the evaluation of the model matching 
score for an input sequence X = x1 x2 … xT. It is given by the likelihood function of the 
sequence generated from the model 

∑ ∏
=

−
=

Q

T

t
tqqqqqq xbaxbXP

ttt
2

)()()|(
111

πλ  (1) 

Although simple in form, the time requirement is exponential. Thanks to the use of 
the DP technique, this can be computed in linear time in T. However when it comes 
to 2D HMM formulation, even the DP technique alone is not enough. One research 
direction is the structural simplification of the model, and the pseudo 2D HMM is one 
solution. 

2.2   P2DHMM 

Pseudo 2D HMM in this paper is realized as a horizontal connection of vertical sub-
HMMs (λk). But it is not the only one. The alternative realization is the vertical con-
nection of horizontal sub-HMMs as in the work of Xu and Nagy [6]. In order to im-
plement a continuous forward search method and sequential composition of word 
models, the former type has been used in this research. 
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Let us consider a t-th vertical frame Xt = x1t x2t … xSt, 1≤t≤T, in a text line image. 
This is a one-dimension sequence like that of X in Equation (1). This is modeled by a 
sub-HMM λk with the likelihood P(Xt|λk). You may regard each sub-HMM λk as a 
super-state whose observation is a vertical frame of pixels. 

∑ ∏
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(2) 

Now let us consider a bitmap image which we define as a sequence of such verti-
cal frames as X = X1 X2 … XT. Each frame will be modeled by a super-state or a sub-
HMM. Let Λ be a sequential concatenation of sub-HMMs. Then the evaluation of Λ 
given the sample image X is  
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where it is assumed that super-state process starts only from the first state. The 

tr
P function is the super-state likelihood. Note that both of the Equations (2) and (3) 

can be effectively approximated by the Viterbi score. 
One immediate goal of the Viterbi search is the calculation of the matching likeli-

hood score between X and an HMM. The objective function for an HMM λk is de-
fined by the maximum likelihood as 
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where SqqqQ �21= is a sequence of states of λk, and 
110 qqqa π= . Δ(Xt, λk) is the 

similarity score between two sequences of different length. The basic idea behind the 
efficiency of DP computation lies in formulating the expression into a recursive form 
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s xbaij −= δδ     j = 1, …, Mk, s = 1, …, S,  k = 1, … K (5) 

where )( jk
sδ denotes the probability of observing the partial sequence x1t … xst in 

model k along the best state sequence reaching the state j at time/step s. Note that 

)(),( k
k
Skt NX δλ =Δ  

(6) 

where Nk is the final state of the state sequence. The above recursion constitutes the 
DP in the lower level structure of the P2DHMM. The remaining DP in the upper level 
of the network is similarly defined by 

∏
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that can similarly be- reformulated into a recursive form. Here 21rra denotes the prob-

ability of transition from super-states r1 to r2. According to the formulation described 
thus far, a P2DHMM adds only one parameter set, the super-state transitions, to the 
conventional HMM parameter sets. Therefore it is a simple extension to conventional 
HMM. 
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3   Character Modeling 

One of the most important tasks in hidden Markov modeling is estimating the prob-
abilistic parameters. For this task we assume a set of typical samples of character 
images X = { X(1), …, X(D) } of an equal dimension. Different size raises no problem if 
we scale the images bilinearly. Moreover, the scale difference in test images is natu-
rally resolved with HMM method. 

The focus of the section lies in the construction of the P2DHMM for a Korean 
Hangul character. A Hangul character consists of either two or three graphemes of 
phonetic consonant and vowel letters. The composition follows a general rule to fit 
the graphemes into a rectangle. There are six types of combination (Fig. 1) according 
to the shape of the vowel (horizontal, vertical, or both) and the presence of consonant 
suffix. The proposed method of model creation is based on the given set of bitmap 
images. The overall procedure is shown in Fig. 2, and explained as follows: 

(1)  Grapheme segmentation. This step involves extracting the individual graphemes 
from character samples while retaining the location inside the box enclosing the 
character. As illustrated in Fig. 3, the graphemes are separated while retaining the 
position with the box. In its simplest form this step is the most costly in the pro-
posed method. But the problem can be avoided by using a bootstrapping strategy 
or a little more sophisticated prototyping idea [6]. 

 

 
 

 

Fig. 1. (Top) Six types of grapheme arrangement inside a Korean syllable character box. A 
grapheme changes its shape according to the type. (Bottom) Grapheme segment samples. 

(2)  Average the extracted samples. Now there is a set of grapheme samples. First we 
classify the samples according to the type of the grapheme arrangement pattern of 
the original character. For the initial consonant grapheme there are six types (see 
Fig. 1), and two for each vowel grapheme. Then, take the sample average of the 
set of categorized images pixel by pixel so that a smooth grayscale-like image is 
obtained (see Fig. 3). Assuming binary samples, the average intensity of the pixel 
at (i, j) is 

N

N
x ij

ij =  

where Nij is the number of samples whose (i, j) pixel is black (or white) and N is 
the total number of samples. Essentially the training phase is finished at this stage. 
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� (1) Letter segmentation 

(2) Sample average 

(3) Character composition 

Construct max character 

image intensity   

(4) Convert to mesh 

P2DHMM 

(4) State merge 

(Model Reduction) 
 

Fig. 2. Model design procedure. 

 

 

Fig. 3. Korean graphemes separated out from a syllabic character for /han/. From left to right: 
the initial consonant, the vowel, and the suffix consonant. Note that the grapheme position in 
the original character block is retained. 

(3) Character image construction. From this step on the process belongs to the decod-
ing or recognition phase, and is performed in real time. Here the given task is to 
spot or recognize a character. The image template of the character is synthesized 
in the image domain from the component grapheme images generated in the pre-
vious step(Fig. 4). The value of the (i, j)-th pixel of the character template takes 
the maximum of the two or three pixels (i, j) from each grapheme plane. 

(4) Conversion into P2DHMM. Given a character image, it is straightforward to con-
struct a P2DHMM. First assign a state to every pixel with the output probability 
being the intensity value. Then the states are linked according to the topological 
constraint of P2DHMM: vertical sub-state transition, and then horizontal transi-
tion between super-states. Note that all the transition probabilities are one without 
self-transitions. There is no space-warping in the current model. 

(5) State merge. When two or more successive states are similar in the output prob-
ability (gray scale), they are replaced with a new node with a modified output 
probability 
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Fig. 4. Character image construction and the result. 

jiiijiij nwxwx ,11 +++=  

where wi is the weight as a function of the duration in the state i. The state similar-
ity is measured by the output probability of the states. In the case of super-states, 
the distance measure is  

α
kk nxnxd −=),(  

where α ∈ R. If α = 2, then this measures the dissimilarity in the least square 
sense. Then we estimate the transition probability similarly, or the whole transi-
tion parameter set may be replaced by state duration probabilities.  

The proposed procedure of creating statistical model is theoretically correct in the 
sense of maximum likelihood sense. One problem with the method is found in the 
final stage of merging states. But it is justified because, although the method of state 
merging itself is coarse yet, the idea of merging is correct information-theoretically. 

4   Keyword Spotting 

For keyword spotting task, we developed two more classes of P2DHMMs in addition 
to key character models, and then combined then into a network model for continu-
ous decoding of input streams. 

4.1   Filler Model 

In keyword spotting task, a filler corresponds to something between interesting things 
or keywords. It is also called a non-key character. Then a filler model is defined as 
the model for all non-key characters. For convenience sake, however, it does not 
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discriminate keys and non-keys but models all kinds of character patterns statistically. 
The desired characteristic of the filler model λF is 

( | ) ( | )K K
F Kp x p xλ λ<  

( | ) ( | )F F
F Kp x p xλ λ>  

where λK is a key model for the key pattern xK, and xF is a non-key pattern. In general, 
however, the character patterns are not completely random and there is a certain de-
gree of similarity between some characters. In addition it is not easy to design a sin-
gle good model for numerous patterns of all characters. According to the work of Lee 
and Kim [7], the filler model can behave as a threshold. For better thresholding capa-
bility in Korean Hangul characters, we defined six fillers, one for each of the six 
character composition types as of Fig. 1. Fig. 5 shows the filler images before con-
version to P2DHMMs. They are simple arithmetic averages over a large set of char-
acter samples. Unlike the key character models, the filler models are not synthesized 
in real-time. Rather they are prepared once and for all from the image templates. 
Compared to the key model construction, filler model creation is very simple. 

 

 

Fig. 5. Bitmap images for filler models. 

4.2   White Space Model 

The region excluding the text is white space. The white space will be limited to the 
white frames between characters. It is modeled with a small number of nodes. Actu-
ally the state merge step reduced the nodes to one or two most of the time in practice. 

4.3   Spotting Network 

For character spotting task we have designed a network-based transcription 
model(Fig. 6). It is a circular digraph with a backward link via the space model so 
that it can model arbitrary long sequence of non-key as well as key patterns. Given 
such a network, an input sequence of will be aligned to every possible path circulat-
ing the network. One circulation is called a level. An l level path hypothesis repre-
sents a string of l characters [8]. The result is retrieved from the best hypothesis. 

4.4   Search Method 

The spotter network models a small set of key patterns and used to locate them while 
ignoring the rest of the words of no interest. One efficient search is the one stage DP. 
For the continuous spotting with forward scanning, we applied a modified form of 
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two-level one-stage DP; this performs a single forward pass consisting of alternating 
partial forward search and output. The time requirement for the DP is O(N2ST) where 
N is the total number of states or nodes, and S and T are the frame length and the 
number of vertical frames in a line [9] respectively. In the proposed method, this is 
reduced to O(NST). 

 

 

Fig. 6. The circular network of P2DHMMs for spotting keywords. 

5   Experiments 

5.1   Hangul Character Spotting 

One significant characteristic of Korean text is that there are no natural italic fonts. 
This observation justifies the use of simple image-based modeling scheme. In the 
initial experiment a limited test has been performed using 10 point (Myongjo font) 
character images scanned in 200dpi resolution. The letter models were created from 
the hand-segmented letter images. In this test we prepared only a single image for 
each letter and blurred it by a Gaussian filter to the effect of averaging multiple im-
ages. The most frequently used 97 character classes were used in character (not word) 
spotting task. The character set constitutes approximately the half of the test text.  

The test result has been analyzed in terms of correct spottings(H), false posi-
tives(P) and false negatives(N). The overall spotting performance was 79.7 percent as 
shown in Table 1. In order to better understand the performance and weakness, we 
detailed the result into character type hits and failures in the same table. The character 
Types I to VI correspond to the six different arrangements (see Fig. 1) of Hangul 
vowels and consonants. Here the type hit means that the type of the character is cor-
rect regardless of the correctness of the character label. According to the table, the hit 
ratios of Type III and V are relatively low, for which false acceptance and rejection 
are high. We noted this fact to refine the models and tune merge parameters for the 
next set of experiments. 

����

Keyword models 

Filler models 

White space model 

Global 
initial  
node 

Global 
final 
node 
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Table 1. Korean Hangul character spotting result. (h = the number of hits, p = the number of 
false positives, and n = the number of false negatives; H = h/(h+p+n), P = p/(h+p+n), and N = 
n/(h+p+n)) All figures are in %.  

 H FA FR #Classes 

Character 79.7% 10.9% 9.4% 107 

Type average 87.0% 5.6% 7.4% 6 
Type I 90.9% 0.0% 9.1% (20) 
Type II 91.7% 8.3% 0.0% (22) 
Type III 81.3% 12.5% 6.3% (17) 
Type IV 88.9% 11.1% 0.0% (18) 
Type V 80.0% 0.0% 20.0% (19) 
Type VI 87.5% 0.0% 12.5% (11) 

5.2   Word Spotting 

A word is a linear left-to-right concatenation of characters in Hangul system. For 
word spotting task we tested a mixture of fourteen keyword models on a set of one 
hundred journal papers’ abstract images. In this test we fixed the filler models opti-
mized previously since they need not be created dynamically at run time. 

Fig. 7 shows the performance change by varying the state merging thresholds. In 
the graph the highest hit(H) reaches 66.7% at the threshold of 0.03. In this case the 
recall is very high but the precision is sacrificed a lot; the best precision score is ob-
tained at threshold 0.01.  
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Fig. 7. Word spotting result. 

Let us compare the performance figures of the proposed method with those of 
spotting with Baum-Welch-trained P2DHMMs which are assumedly optimal. The 
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latter models record 77.3%(H* for the hit rate), 22.6%(P* for the false positives) and 
0.1%(N* for the false negatives), as are separately marked at threshold 1.0. The 
Baum-Welch modeling method for the P2DHMM, although superior, cannot be used 
for large vocabulary keyword spotting tasks that require training tens of thousand 
P2DHMMs and preparing a huge number of character samples. This implies that the 
proposed method of dynamic synthesis of key character P2DHMMs has a definite 
advantage over the traditional Baum-Welch modeling. Furthermore, if a higher preci-
sion is desired, we can pass the spotted word images to a high-performance recog-
nizer for a more accurate spotting. This method will be far faster than the full 
recognition of the whole documents. 

 

 

Fig. 8. A sample result, part of screen shot, showing correct spotting and filler type classifica-
tion. 

Fig. 8 gives a sample result, a part of screen shot, showing correct spotting and 
filler type labeling. Note the small gaps between fillers. They denote white spaces 
between characters. 

5.3   Keyword Set Spotting 

In the final experiment we compared the hit ratio by varying the number of keywords 
sought at a time. Table 2 summarizes the result. When the number of keywords N = 1, 
the  hit  ratio  reached  peak,  above from  character  spotting  performance. When N 
increases, the confusion among words also increases thus degrading the performance 
gradually. The last column corresponds to the highest hit ratio in the preceding ex-
periment. But when N is moderately large, the word spotting task is more successful 
than the individual character spotting task where we used about four character models 
at a time, about two Korean Hangul syllable characters in a word. 

Table 2. Character and word spotting performance with increasing number of keyword models 
spotted at a time. 

word spotting 
(N = # keywords) 

 Character 
spotting 
(N = 2) N = 1 N = 2.5 N = 14 

Hit ratio(H) 75.0% 86.3% 83.8% 66.7% 
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6   Conclusion 

Using a set of letter image templates, we proposed a very effective method for real 
time synthesis of key word P2DHMMs. The method is based on the principle of 
composing Hangul syllable characters. The composition itself is very efficient and its 
conversion to a P2DHMM is highly intuitive considering that we are dealing with 
machine printed character images. With experimental results form the application to 
key word spotting tasks, we consider that the method is highly feasible and meets our 
ultimate demand for the application to content-based document image indexing and 
retrieval. 
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Abstract. In the recent decades, many features used to represent a texture were 
proposed. However, these features are always used exclusively. In this paper, a 
novel approach is presented that combines two types of features extracted by 
discrete wavelet transform and contourlet transform. Support vector machines 
(SVMs), which have demonstrated excellent performance in a variety of pattern 
recognition problems, are used as classifiers. The algorithm is tested on four 
different datasets, selected from Brodatz and VisTex database. The experimen-
tal results show that the combined features result in better classification rates 
than using only one type of those. 

1   Introduction 

Texture analysis is important in many applications, such as object recognition, image 
retrieval, remote sensing, and biomedical image analysis, scene interpretation and 
segmentation.  

The method for feature extraction from texture is critical to the success of the tex-
ture classification. Many methods have been proposed to extract texture features, 
such as the co-occurrence matrices [1], the Markov random fields [2], fractals [3], 
and the Gabor filters [4], wavelet transforms [5,6] and quadrature mirror filters [7]. 
Recently, Randen and Husøy did an extensive review and comparative study for 
texture classification on most major filtering-based approaches [8]. They concluded 
that various filtering approaches yield different results for different images. 

However, Most of these previous studies have used on the features individually. In 
this paper, a novel approach is presented that combines two types of features ex-
tracted by discrete wavelet transform and contourlet transform. Compared to wavelet 
transform, which can only offer limited directional information in representing image 
edges, the contourlet proposed by Do and Vetterli can capture the intrinsic geometri-
cal structure in images [9]. Unlike other transforms, such as curvelets, that were ini-
tially developed in the continuous-domain and then discretized for sampled data, the 
contourlet starts with a discrete-domain transform. The discrete contourlet transform 
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has a fast-iterated filter bank algorithm that requires an order N operation for N-pixel 
images.  

The classifier is also clearly critical in texture classification. The support vector 
machine [10,11], which has found important applications in image classifications, is 
used as classifiers for texture classification. 

This paper is structured as follows. Section 2 briefly introduces the contourlet. In 
section 3 the feature extraction methods using wavelet and contourlet are described. 
Section 4 describes the datasets, experiments and their results. Conclusions can be 
found in section 5. 

 
(a)                                      (b) 

Fig. 1. (a) Block diagram of the contourlet filter bank. First, a standard multiscale decomposi-
tion into octave bands is computed, where the lowpass subband is subsampled and iterated, 
while a directional filter bank is applied the to the bandpass subband. (b) Resulting frequency 
division, where the number of directions is increased with frequency 

2   Contourlet 

Do and Vetterli developed the contourlet representation based on an efficient two-
dimensional nonseparable filter banks that can deal effectively with images having 
smooth contours [9]. The block structure for the contourlet filter bank is shown in 
Figure 1 together with an example of its frequency partition. In contourlet transfor-
mation, the Laplacian pyramid is first used to capture the point discontinuities, then 
followed by a directional filter bank to link point discontinuities into linear structures. 
Contourlets possess not only the main features of wavelets, namely multiresolution 
and time-frequency localization, but they also show a high degree of directionality 
and anisotropy. Precisely, contourlet transform involves basis functions that are ori-
ented at any power of two’s number of directions with flexible aspect ratios. With 
such richness in the choice of bases, contourlets can represent any one-dimensional 
smooth edges with close to optimal efficiency.  

3   Feature Extraction and Combination 

The original texture sample is first decomposed using wavelet and contourlet. For 
each filtered subband image (except the one from the approximation subband) from 
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wavelet, its mean and standard deviation are used to identify the textures based on the 
common belief. Denote the M×N image obtained in subband i by 

iI , its mean and 

standard deviation are shown as follows.  
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By decomposing the image to d levels using wavelet, we thus obtain a feature vec-
tor of length 6×d.  

To contourlet, only the means of absolute decomposition values in subbands are 
used as feature vector. Figure 2 shows the contourlet representation of one texture 
image with [2 3] decomposition levels, from which we can extract 13 features.  

Commonly, the exploitation of different information sources for the same recogni-
tion task often leads to different errors in the recognition results, which are very often 
complementary. This means that an appropriate exploitation of these sources can 
effectively reduce the error rate. Thus, we have chosen the strategy of using the com-
bination of features from wavelet and contourlet for texture classification. Here the 
Combination of features from wavelet and contourlet are achieved by simply con-
catenating them. 

 

        
(a)                                                                      (b) 

Fig. 2. (a) One texture region; (b) Its contourlet transform 

4   Experimental Results 

4.1   Data 

In this experiment, we have applied our method to four datasets from two commonly 
used texture sources: the Brodatz album and the MIT Vision Texture database.  
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The dataset 1 has 40 textures with size of 256×256, ten of which are shown in 
Fig.3. This dataset is challenging because there are significant variations within some 
textures and some of them are very similar to each other [12]. The dataset 2 and 3, 
shown in Fig. 4 (a) and (b), both have 10 textures are challenging too, which with 
size of 128×128, used in [8] and [12]. For these two groups, due to the inhomogene-
ity and large variations, texture types in local windows are perceptually close. The 
dataset 4 has 28 textures with size of 256×256 used in [5]. All textures are gray-scale 
images when presented to the methods. The dynamic ranges are represented by eight 
bits per sample.  

 

     

     
Fig. 3. Ten of the dataset 1 with 40 textures. The input image size is 256× 256. These images 
are available at http://www-dbv.cs.uni-bonn.de/image/texture.tar.gz 

 

 
(a) 

 
(b) 

Fig. 4. (a) Dataset 2 with 10 textures; (b) Dataset 3 with 10 textures. The image size is 
128× 128. These images are available at http://www.ux.his.no/~tranden/ 
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In this experiment, we use a complete separation between the training and test sets 
and repeat the experiment 100 times and compute the average performance. 

The classification gain defined by [12] is adopted as a measure to test the classifi-
cation performance,  

)1(
1

1
err

err CM

M

C
G −=−=                                                (3) 

where 
errC is the classification error rate, M is the total number of classes in the data-

base. G measures the effectiveness of classifiers more objectively than 
errC  because is 

errC  closely related to M. 

4.2   Selection of SVM Parameters 

SVMs were originally designed for binary classification. Dealing with multi-class 
problem, SVMs can use one-against-the rest, one-against-one, error-correcting output 
coding and other methods. In this paper, we adopt the one-against-the rest. For train-
ing a class-Ci, the one-against-the rest method labels the data for the class-Ci as +1 

and the data for other classes as –1. On classifying a new sample, the classifier with 
the largest output will be selected as the winner, and this new sample is assigned to 
the winner's corresponding texture class. 

In the experiment, the Gaussian kernel will be used in the SVM, because prelimi-
nary results suggest that the Gaussian kernel outperforms the polynomial kernel. To 
select a suitable gamma value for Gaussian kernel function, we use the dataset 1, 
where size is 256×256, is subdivided into 64 nonoverlapping samples of size 
32×32, resulting in a total of 2560 samples. For each sample, 3 level wavelet using 
“coif4” filters and [2 3] level contourlet with “pkva” filters are separately applied, so 
18 and 13 features are obtained, respectively, resulting in the combined feature vector 
with length of 31. In the total samples, 50% are used for training and the rest of 50% 
are used for testing. The figures of average classification gain and the average num-
ber of support vectors versus gamma value are shown in Fig.5(a) and Fig.5(b), re-
spectively, where C value is set to 1000.  

It can be found that the classification gain on the combined feature is much better 
than those on wavelet feature and contourlet feature individually from Fig.5(a). The 
classification gains using individual wavelet features and contourlet features reach the 
maximum when gamma equals to 2-3 and 2-2, respectively. And the classification gain 
using the combined features is increasing when the gamma value increases. But when 
gamma be larger than 2-5, the increasing trend is slow. As shown in Fig.5(b), to the 
classifiers using wavelet feature and contourlet feature individually, the average 
number of support vectors is the fewest when the gamma value is about 0.5 and 1, 
respectively. The classifiers with combined features have fewest average number of 
support vectors when gamma equals to 0.25. After gamma be larger than 2, the aver-
age number of support vectors are increasing dramatically. So during the following 
experiments, considering the relationship between classification gain and computa-
tion complexity, the gamma is set to 1 and C value is 1000.  



Texture Classification by Combining Wavelet and Contourlet Features      1131 

 
(a)   

  
(b) 

Fig. 5. (a) Average classification gain versus gamma (b) Average number of SVs versus 
gamma. Solid line-wavelet based; Dotted line-contourlet based; Dash-dot line-combined fea-
tures based 

4.3   Experimental Results and Comparisons 

Table 1 shows the classification gain on dataset 1 using window size of 32×32. The 
experimental setup is same to the previous section. Different proportions of samples 
for training are applied to investigate the generalization capability of the proposed 
method. From the table, we can see that the classification result by using the com-
bined features does not change too much for the training samples ranging from 12.5% 
to 75% of the total samples. The best result in [12] on that dataset is given in Table 1 
for comparison. From the result we can see that, for the case 50% for training and 
50% for testing, the classification gains of individual wavelet and contourlet features 
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are slightly worse than that of the spectral histogram-based method, but the classifiers 
using combination of these two features can obtain much better results.  

Table 1. Average classification gains of the proposed method on dataset 1 with window size of 
32× 32  

Ratio Wavelet Contourlet Combined Method in [12] 
(best) 

12.5% 33.95 33.62 37.27 N/A 
25% 35.82 35.54 38.27 N/A 
50% 37.00 36.81 38.87 >=37 
75% 37.41 36.42 39.13 N/A 

 
In order to analyze the effect of the window size, samples of size 64×64 pixels are 

also be used for experiment. So the original image is subdivided into 16 nonoverlap-
ping windows, resulting in a total of 640 samples. The classification results are 
shown in Table 2. It can be seen the result is also very good.  

Table 2. Average classification gains of the proposed method on dataset 1 with window size of 
64× 64  

Ratio Wavelet Contourlet Combined 

12.5% 33.13 34.89 36.74 
25% 35.85 37.09 38.30 
50% 38.18 38.62 39.44 
75% 38.77 38.94 39.57 

  
The experimental results on the dataset 2 and 3 are given in Table 3 and Table 4, 

respectively. The original image is with size of 128×128, which is divided into 16 
32×32 regions. The best results of the methods in [8] and [12] are also given in the 
tables. As we can see, in the case of 50% samples for training and 50% for testing, 
the proposed method can get significantly improvement to those methods.  

Table 3. Average classification gains of the proposed method on dataset 2 

Ratio Wavelet Contourlet Combined Method in 
[8] (best) 

Method in 
[12] (best) 

12.5% 8.04 7.31 8.51 N/A N/A 
25% 8.53 8.23 9.14 N/A N/A 
50% 9.01 8.76 9.52 6.77 8.31 
75% 9.28 9.09 9.72 N/A N/A 

 
To further illustrate our method, we have done a comparison with a method pro-

posed by [5], which on the dataset 4. The original image, where size is 256×256, is 
subdivided into 64 nonoverlapping samples of size 32×32, resulting in a total of 
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1792 samples. Eighty percent of samples are used for learning and the rest are used 
for testing the classifier. The classification performance is evaluated using five differ-
ent randomly selected learning and testing sets. The results shown in Table 5, from 
which we can see that the proposed method can get better results than the method in 
[5]. 

Table 4. Average classification gains of the proposed method on dataset 3 

Ratio Wavelet Contourlet Combined Method in  
[8] (best) 

Method in 
[12] (best) 

12.5% 7.19 6.62 7.37 N/A N/A 
25% 7.88 7.08 7.90 N/A N/A 
50% 8.33 7.66 8.58 7.22 7.91 
75% 8.78 7.87 8.92 N/A N/A 

Table 5. Average classification gains of the proposed method on dataset 4 

Wavelet Contourlet Combined Method in [5] (best)  

27.42 27.50 27.88 27.36 

5   Conclusions 

In this paper, we have proposed a method for texture classification by using com-
bined features from wavelet and contourlet. SVMs with Gaussian kernel are used as 
classifiers. Experiments are performed on four different texture datasets selected from 
Brodatz and VisTex database. Experimental results demonstrated the combination of 
the two feature sets always outperformed each method individually. Comparative 
results to other methods show that the proposed method can get better results than 
other methods.  
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Abstract. The aim of this article is to purpose a distance measure between At-
tributed Graphs (AGs) and Second-Order Random Graphs (SORGs) for recog-
nition and classification proposes. The basic feature of SORGs is that they in-
clude both marginal probability functions and joint probability functions of
graph elements (vertices or arcs). This allows a more precise description of both
the structural and semantic information contents in a set (or cluster) of AGs
and, consequently, an expected improvement in graph matching and object rec-
ognition. The distance measure is derived from the probability of instantiating a
SORG into an AG.
SORGs are shown to improve the performance of other random graph models
such as FORGs and FDGs and also the direct AG-to-AG matching in two ex-
perimental recognition tasks.

1   Introduction

Some attempts have been made to try to reduce the computational time of matching
the unknown input patterns to the whole set of models from the database. Assuming
that the AGs that represent a cluster or class are not completely dissimilar in the data-
base, only one structural model is defined from the AGs that represent the cluster, and
thus, only one comparison is needed for each cluster.

One of the most common methodologies are based on keeping the probabilistic in-
formation in the structure that represent the cluster of AGs. These models, which are
usually called Random Graphs (RGs), are described in the most general case through
a joint probability space of random variables ranging over graph vertices and arcs.
They are the union of the AGs in the cluster, according to some synthesis process,
together with its associated probability distribution. In this manner, a structural pat-
tern can be explicitly represented in the form of an AG and an ensemble of such rep-
resentations can be considered as a set of outcomes of the RG. The most important
probabilistic methods are First-Order Random Graphs (FORGs) [4], the Sengupta
method [3], Function-Described Graphs (FDGs) [1,6,7] and Second-Order Random
Graphs (SORGs), which can be seen as a generalisation of both of them [5].

In the following section, we introduce the formal definitions used throughout the
paper. In section 3, we recall the general formulation for estimating the joint prob-



1136      Francesc Serratosa and Alberto Sanfeliu

ability of the random elements in a RG synthesised from a set of AGs. In section 4,
we present the new distance measure between AGs and SORGs derived from the joint
probabilities of the random elements. Finally, we present a comparative study be-
tween SORGs and FORGs, FDGs and direct AG-to-AG matching. In the last section,
we provide some discussion about our distance measure.

2   Formal Definitions of Random-Graph Representation

Definition 1: Attributed Graph (AG).  Let Δv and Δe denote the domains of possible
values for attributed vertices and arcs, respectively. These domains are assumed to
include a special value Φ that represents a null value of a vertex or arc. An AG G over
(Δv,Δe) is defined to be a four-tuple ( )evevG γγ ,,,ΣΣ= , where { }nkvkv ,...,1==Σ  is a

set of vertices (or nodes), { }{ }jinjieije ≠∈=Σ ,,...,1,  is a set of arcs (or edges), and the

mappings 
vvv Δ→Σ:γ  and 

eee Δ→Σ:γ  assign attribute values to vertices and arcs,

respectively.

Definition 2: Random Graph (RG). Let Ωv and Ωe be two sets of random variables
with values in Δv (random vertices) and in Δe (random arcs), respectively. A random-
graph structure R over (Δv,Δe)  is defined to be a tuple ( )Pevev ,,,, γγΣΣ , where

{ }nkkv ,...,1==Σ ω  is a set of vertices, { }{ }jinjiije ≠∈=Σ ,,...,1,ε  is a set of arcs, the

mapping vvv Ω→Σ:γ  associates each vertex 
vk Σ∈ω  with a random variable

( )kvk ωγα =  with values in Δv, and 
eee Ω→Σ:γ  associates each arc 

eij Σ∈ε  with a

random variable ( )ijek εγβ =  with values in Δe. And, finally, P is a joint probability dis-

tribution ( )mnP ββαα ,,,,, 11 ��  of all the random vertices { }niiii ≤≤= 1),(ωγαα ω

and random arcs { }mjkljj ≤≤= 1),(εγββ ε
.

Definition 3: Probability of a RG instantiation. Given an AG G and a RG R, the joint
probability of random vertices and arcs is defined over an instantiation that produces
G, and such instantiation is associated with a structural isomorphism RG →’:μ ,

where ’G  is the extension of G to the order of R. G’ represents the same object than
G but some vertices or arcs have been added with the null value Φ to be μ bijective.
Let G be oriented with respect to R by the structurally coherent isomorphism μ; for
each vertex 

iω  in R, let ( )( )ivi ωμγ 1−=a  be the corresponding attribute value in G’,

and similarly, for each arc 
klε  in R (associated with random variable 

jβ ) let

( )( )klej εμγ 1−=b  be the corresponding attribute value in G’. Then the probability of G

according to (or given by) the orientation μ, denoted by ( )μGPR
, is defined as

( ) ( ) ( ) ( )mnjj
m

j
ii

n

i
R pGP bbaaba ,,,,,Pr 1111

��=⎟⎠
⎞⎜⎝

⎛ =∧==
==

∧∧ βαμ        (1)
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We define di to represent a vertex or arc attribute value (ai or bi). Thus, if s is the
number of vertices and arcs, s=m+n, eq. (1) can be rewritten as,

( ) ( )sR pGP dd ,,1 �=μ                                                          (2)

3   Second-Order Random-Graph Representation

If we want to represent the cluster of AGs by a RG, it is impractical to consider the
high order probability distribution defined in the RGs P(α1,…,αn,β1,…,βm) (definition
2), where all components and their relations in the structural patterns are taken jointly
due to time and space costs. For this reason, some other more practical approaches
have been presented that propose different approximations [3,4,5,7]. All of them take
into account in some manner the incidence relations between attributed vertices and
arcs, i.e. assume some sort of dependence of an arc on its connecting vertices. Also, a
common ordering (or labelling) scheme is needed that relates vertices and arcs of all
the involved AGs, which is obtained through an optimal graph mapping process
called synthesis of the random graph representation. We showed in [5] that all the
approximations in the literature of the joint probability of an instantiation of the ran-
dom elements in a RG (eq. 1) can be described in a general form as follows:

( ) ( ) ( ) ( ) ( ) ( ) ( )∏∏∏∏∏∏∏∏
−

= +== =

−

= +===

==
1

1 11 1

1

1 111
11 ,,,,,,,,,,

m

i

m

ij
jiij

n

i

m

j
jiij

n

i

n

ij
jiij

m

i
ii

n

i
iimnR rrrpppGP bbbaaababbaaμ     (3)

where pi are the marginal probabilities of the s random elements 
iγ , (vertices or arcs)

and ijr  are the Peleg compatibility coefficients [2] that take into account both the

marginal and 2nd-order joint probabilities of random vertices and arcs.
According to eq. (2), we can generalise the joint probability as,

                 ( ) ( ) ( ) ( )∏ ∏∏
= +==

==
s

i

s

ij
jiij

s

i
iisR rppGP

1 11
1 ,,,, dddddμ                            (4)

and define the Peleg coefficient,

                                 ( ) ( )
( ) ( )jjii

jiij
jiij pp

p
r

dd

dd
dd

,
, =                               (5)

The Peleg coefficient, with a non-negative range, is related to the “degree” of de-
pendence between two random variables. If they are independent, the joint probabil-
ity, pij, is defined as the product of the marginal ones, thus, rij = 1 (or a value close to 1
if the probability functions are estimated). If one of the marginal probabilities is null,
the joint probability is also null. In this case, the indecisiveness 0/0 is solved as 1,
since this do not affect the global joint probability, which is null.

4   Distance Measure between AGs and SORGs

The distance measure presented in this section provides a quantitative value of the
match between an AG G (data graph) and a SORG S (model graph) similar to the one
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presented in [1]. It is related to the probability of G according to the labelling function
SG →:μ , denoted ( )μGP  in eq. (4). We may attempt to minimise a global cost

measure C of the morphism μ  in the set H of allowable configurations, by taking the
cost as a monotonic decreasing function of the conditional probability of the
data graph given the labelling function, ( )( )μGPfC = . For instance,

( )( )μGPC ln−=  would be a possible choice. Thus, considering eq. (4),

( ) ( ) ( ) ( )( ) ( )( )jiij

s

i

s

ij

s

i
ii

s

i

s

ij
jiij

s

i
ii rprpGC dddddd ,lnln,ln

1

1 11

1

1 11
∑ ∑∑∏ ∏∏

−

= +==

−

= +==

−−=⎟⎟⎠

⎞
⎜⎜⎝

⎛
−=μ  (6)

and using the definition of the Peleg coefficient (eq. 5) we obtain the following equa-
tion in the case that ( ) 0>iip d  and ( ) 0>jjp d

( ) ( )( ) ( )( ) ( )( ) ( )( )[ ]∑ ∑∑
−

= +==

−−−−=
1

1 11

lnln,lnln
s

i

s

ij
jjiijiij

s

i
ii ppppGC dddddμ       (7)

Rearranging the second term of the expression we arrive at the equation

( ) ( )( ) ( ) ( )( ) ( )( )[ ]∑ ∑∑∑
−

= +===

−−+−=
1

1 111

,lnln1ln
s

i

s

ij
jiij

s

i
ii

s

i
ii ppspGC ddddμ       (8)

And we obtain the final expression in which the cost of the labelling monotonically
depends on the probabilities provided that ( ) 0: >∀ iipi d .

( ) ( ) ( )( ) ( )( )[ ]∑ ∑∑
−

= +==

−−=
1

1 11

,lnln2
s

i

s

ij
jiij

s

i
ii ppsGC dddμ       (9)

In the case that there is only one random element any joint probability is not de-
fined and s=1. Then, the global cost of the matching is ( ) ( )( )iipGC dln−=μ .

Moreover, in the case that there is a couple of random elements (s=2), the cost de-
pends only on the joint probability, ( ) ( )( )2112 ,ln ddpGC −=μ , although it has to be

considered that ( ) 011 >dp  and ( ) 022 >dp . And finally, in the case that there are 3

random elements (s=3), the cost is defined as, ( ) ( )( )+= 11ln dpGC μ  ( )( )+22ln dp

( )( )33ln dp  ( )( )2112 ,ln ddp−  ( )( )3113 ,ln ddp−  ( )( )3223 ,ln ddp− . In the last case (and all

the cases that s≥3, the marginal probabilities make the global cost decrease and the
joint probabilities make the cost increase.

4.1   Assuming Independence between Random Elements

In the case that the random elements are independent, the joint probability is defined
as the product of the marginal ones, ( ) ( ) ( )jjiijiij ppp dddd =, . Thus, eq. (9) is rewrit-

ten as,
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( ) ( ) ( )( ) ( ) ( )( )[ ]

( ) ( )( ) ( )( ) ( )( )[ ]

( ) ( )( ) ( ) ( )( )∑∑

∑ ∑∑

∑ ∑∑

==

−

= +==

−

= +==

−−−=

=+−−=

=−−=

s

i
ii

s

i
ii

s

i

s

ij
jjii

s

i
ii

s

i

s

ij
jjii

s

i
ii

psps

ppps

pppsGC

11

1

1 11

1

1 11

ln1ln2

lnlnln2

lnln2

dd

ddd

dddμ

      (10)

Thus, the final equation is,

( ) ( )( )∑
=

−=
s

i
iipGC

1

ln dμ       (11)

Note that this expression could be obtained by considering eq. (4) and (6) with rij = 1,
that is, assuming independence between the random elements.

4.2   Approximating the Distance Using Bounded Individual Costs

Using the above distance, only that one graph element had a probability of zero, the
global joint probability would be zero and C would be infinite. Since this may happen
due to the noisy presence of an unexpected element or the absence of a model’s ele-
ment, only that one graph element were not properly mapped, the involved graphs
would be wrongly considered to be completely different. We must therefore admit the
possibility of both extraneous and missing elements in the data graphs, since the data
extracted from the information sources (e.g. images) will usually be noisy, incomplete
or uncertain. As a consequence, the matches for which ( ) 0=μGP  should not be

discarded since they could be the result of a noisy feature extraction and graph for-
mation. In addition, a model (SORG) should match to a certain degree not only the
objects (AGs) in its learning set but also the ones that are “near”.

Hence, it is more appropriate for practical purposes to decompose the global cost C
into the sum of some bounded individual costs, one for each of the graph element
matches (first-order costs on the marginal probabilities) and one for each relation
between a pair of element matches (second-order costs on the joint probabilities)

( ) ( ) ( ) ( )∑ ∑∑
−

= +==

+−−=
1

1 1

2
,

1

1 ,2
s

i

s

ij
jiji

s

i
ii CCsGC dddμ                                  (12)

where first-order costs are given by

( ) ( )( )iiii pCostC dd =1                          (13)

and second-order costs are given by

( ) )),((, ,
2
, jijijiji pCostC dddd = (14)

and the function Cost(Pr) yields a bounded normalised cost value between 0 and 1
depending on the negative logarithm of a given probability Pr and parameterised by a
positive constant Kpr∈[0,1], which is a threshold on low probabilities that is intro-
duced to avoid the case ln(0), which would give negative infinity. This is,
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                        ( )
⎪
⎪

⎩

⎪
⎪

⎨

⎧ ≥
−
−

=
otherwise1

Prif
)ln(

ln(Pr)

Pr

Pr
Pr

K
K

Cost                                     (15)

Once a cost measure C is defined, a distance measure between an AG and a SORG
and the optimal labelling *μ  are defined respectively as

          ( ){ }μ
μ

GCd
H∈

= min         and     ( ){ }μμ
μ

GC
H∈

= minarg*                (16)

The algorithm we use to calculate d and *μ  is a classical recursive tree search pro-
cedure, where the search space is reduced by a branch and bound technique (not de-
scribed here due to lack of space).

5   Results

We carried out two different types of experiments to assess the usefulness of our new
representation and to compare it with some other representations presented in the
literature. In the first experiments, the AGs were synthetically generated varying some
parameters such as the number of vertices or the distance between the AGs in their
clusters. In the second experiments, we used a real application in which AGs repre-
sent coloured 3D objects. They were extracted and recognised from some 2D images.
The first experiments are useful to study our representation from the theoretical point
of view and the second ones are useful to apply our methods on noisy, real and com-
plex images.

We present the experiments in the following three sections. In each experiment, we
compare SORGs with three other methods: FDGs, FORGs and AG-to-AG matching.
First, we show  some information of the AGs and the structures obtained in the syn-
thesis process and then we show the run time and ratio of correctness of the classifi-
cation processes for each method. SORGs, FDGs and FORGs were synthesised using
the dynamic clustering in which the models are incrementally updated from a se-
quence of AGs that represent the same cluster or 3D-object [6] (We used the order of
presentation of AGs that obtained the best results). In the SORG method, AGs were
classified using the distance measure described in this paper. In the FDG method, the
AGs were classified applying the distance measure between AGs and FDGs relaxing
second-order constraints (moderate costs on the antagonisms, existences and occur-
rences), without the efficient module, presented in [7]. FORGs were compared using
the methods presented in [4]. Finally, in the  direct AG-to-AG matching method, we
used the edit-operations distance between AGs presented in [8]. The algorithms pre-
sented here were implemented in visual C++ and run on a Pentium IV (1.6Ghz).

5.1   Experiments with Randomly Generated AGs

The AGs used in this section were generated by the random graph generator process
shown in figure 1 (this graph generator was also used and explained in depth in [6]).
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Initial 
AG 1 

AG1 1 

Initial 
AG 10 

AG1 2 AG1 10 AG10 1 AG10 10 AG10 2 

Reference set:  100 elements 

AG1 
1 AG1 2 AG1 10 AG10 1 AG10 10 

Test set:  

FDG 1 FDG 10 

100 elements 

Fig. 1. Random generation of reference and test sets and FDG synthesis.

We first generated 10 initial AGs randomly, one for each model, that had 15 verti-
ces and 5 arcs per vertex. From these AGs, the reference and test sets were derived in
the following way. For each initial AG, a reference and a test set of 10 AGs was built
by randomly deleting 3 vertices and replacing the attribute of the other vertices by
adding gaussian noise with variance V to the attribute values. Then, from each set of
10 reference AGs, an FDG was synthesised.

Fig. 2. (a) Ratio of recognition correctness (b) run time spent in the classification. SORG: ;

FDG: ; FORG: ; AG-AG:

Figure 2 shows in (a) the ratio of recognition correctness and in (b) the time in sec-
onds spent to compute an AG classification in average applying 4 different classifica-
tion methods: SORGs, FDGs, FORGs and direct AG-AG matching. We have seen
that the second-order knowledge kept in the SORGs is higher than in the FDGs and
than in the FORGs. We see, through the results, that this knowledge is useful to repre-
sent the cluster of AGs and so to increase the recognition ratio. The direct AG-AG
matching methods have similar results than SORGs and FDGS only when there is few
noise in the test set. When the variance of the noise increases, the AGs in the tests set
are very different from the AGs in the reference sets and then the ratio of classifica-
tion decreases. While considering the run time, we see that the higher differences
appear when the variance of the noise is large. FDGs is the fastest method since the
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antagonisms are useful to prune the search tree (see 10] for more details).  Neverthe-
less, the Peleg coefficients computed in the distance between AGs and SORGs are
also useful to prune the search tree. For this reason, SORGs obtain better results than
FORGs. Finally, the direct AG to AG matching is the slowest method when the vari-
ance is bigger than 0.6. This is due to the fact that the AGs in the test set are very
different to those in the reference set and so the branch and bound algorithm can
scarcely prune the search tree.

Fig. 3. The 20 selected objects at angle 100 and the segmented images with the AGs.

5.2   Application of Graph Structures to 3D Object Recognition

Finally, we present a real application to recognise coloured objects using 2D images.
Images were extracted from the database COIL-100 from Columbia University
(www.cs.columbia.edu/CAVE/research/ softlib/coil-100.html). It is composed by 100
isolated objects and for each object there are 72 views (one view each 5 degrees).
AGs are obtained by the segmentation process presented in [9]. AG nodes represent
regions and their attribute value is their average hue and arcs represent adjacent re-
gions and their attribute value is the distance between average hues. Figure 3 shows
the 20 objects at angle 100 and their segmented images with the AGs. These AGs
have from 6 to 18 vertices and the average number is 10. The test set was composed
by 36 views per object (taken at the angles 0, 10, 20 and so on), whereas the reference
set was composed by the 36 remaining views (taken at the angles 5, 15, 25 and so on).
We made 6 different experiments in which the number of clusters that represents each
3D-object varied. If the 3D-object was represented by only one cluster, the 36 AGs
from the reference set that represent the 3D-object were used to synthesise the
SORGs, FORGs or FDGs. If it was represented by 2 clusters, the 18 first and con-
secutive AGs from the reference set were used to synthesise one of the SORGs,
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FORGs or FDGs and the other 18 AGs were used to synthesise the other ones. A
similar method was used for the other experiments with 3, 4, 6 and 9 clusters per 3D-
object.

Fig. 4. (a) Ratio of recognition correctness (b) run time spent in the classification. SORG: ;

FDG: ; FORG: ; AG-AG:

Figure 4.a shows the ratio of correctness of the four classifiers varying the number
of clusters per each object. When objects are represented by only 1 or 2 clusters, there
are too much spurious regions (produced in the segmentation process) to keep the
structural and semantic knowledge of the object. For this reason, different regions or
faces (or vertices in the AGs) of different views (that is, AGs) are considered to be the
same face (or vertex in the AGs). The best result appears when each object is repre-
sented by 3 or 4 clusters, that is, each cluster represents 90 degrees of the 3D-object.
When objects are represented by 9 clusters, each cluster represents 40 degree views of
the 3D-object and 4 AGs per cluster, there is poor probabilistic knowledge and there-
fore there is a lack of discrimination between objects.

Figure 4.b shows the average run time spent to compute the classification. When
the number of clusters per object decreases, the number of total comparisons also
decreases but the time spent to compute the distance increases since the structures that
represent the clusters (SORGs, FORGs or FDGs) are bigger.

6   Conclusions and Future Work

SORGs are a general formulation of an approximation of the joint probability of ran-
dom elements in a RG, that describes a set of AGs, based on 2nd order joint probabili-
ties and marginal ones. FORG and FDG approaches are two specific cases of SORGs.
A new distance measure between AGs and SORGs has been presented. It is related to
the probability of the AG according to the function that matches the graph elements.
We have commented the features of the new distance measure and we have applied to
two pattern recognition applications. We show that in both cases the use of the 2nd

order probabilities is useful to increase the recognition ratio and decrease the
run time.
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Abstract. Non-metric dissimilarity measures may arise in practice e.g.
when objects represented by sensory measurements or by structural de-
scriptions are compared. It is an open issue whether such non-metric
measures should be corrected in some way to be metric or even Eu-
clidean. The reason for such corrections is the fact that pairwise metric
distances are interpreted in metric spaces, while Euclidean distances can
be embedded into Euclidean spaces. Hence, traditional learning methods
can be used.
The k-nearest neighbor rule is usually applied to dissimilarities. In our
earlier study [12, 13], we proposed some alternative approaches to general
dissimilarity representations (DRs). They rely either on an embedding to
a pseudo-Euclidean space and building classifiers there or on construct-
ing classifiers on the representation directly. In this paper, we investigate
ways of correcting DRs to make them more Euclidean (metric) either by
adding a proper constant or by some concave transformations. Classi-
fication experiments conducted on five dissimilarity data sets indicate
that non-metric dissimilarity measures can be more beneficial than their
corrected Euclidean or metric counterparts. The discriminating power
of the measure itself is more important than its Euclidean (or metric)
properties.

1 Introduction

For learning purposes, objects can be described by dissimilarities to some chosen
examples. Such representations can be derived from raw (sensor) measurements,
e.g. images or spectra [10, 7], feature-based representations, e.g. for objects rep-
resented by mixed variables, or they can result from structural descriptions, e.g.
when objects are defined by strings or trees [2].

Assume a collection of objects, a representation set R :={p1, p2, . . . , pr} and
a dissimilarity measure d, capturing the notion of closeness between two objects.
d is required to be nonnegative and to obey the reflexivity condition, d(x, x)=0,
yet, it might be non-metric. A dissimilarity representation (DR) of an object
x is defined as a vector of dissimilarities between x and the objects of R, i.e.
D(x,R) = [d(x, p1), d(x, p2), . . . , d(x, pr)]. Hence, for a set of objects from T , it

A. Fred et al. (Eds.): SSPR&SPR 2004, LNCS 3138, pp. 1145–1154, 2004.
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extends to a dissimilarity matrix D(T,R). The set R (R ⊆ T or R ∩ T = ∅),
consisting of representative objects for the domain, should be relatively small.

A direct approach to dissimilarities leads to the k-nearest neighbor (k-NN)
method. This rule is applied here to D (Tt, R), so test objects of Tt become mem-
bers of the class the most frequently occurring among the k nearest neighbors
from R. The k-NN rule can learn complex boundaries and generalize well for
large representation sets, yet, at high computational costs. In practice, it might
also be difficult to get a sufficiently large R to reach a satisfactory accuracy.
Moreover, the performance of the k-NN rule may be affected by presence of
noisy examples.

Alternative approaches to DRs can be more computationally advantageous
than the k-NN method, especially for a small R. The embedding approach builds
an embedded pseudo-Euclidean configuration such that the dissimilarities are
preserved. In the dissimilarity space approach, D(x,R) is considered as a data-
depending mapping to the so-called dissimilarity space, where each dimension
corresponds to a dissimilarity to a particular object from R [12]. Various classi-
fiers can be constructed in both embedded and dissimilarity spaces [11–13].

The k-NN method is often applied to metric distances, where based on metric
properties also fast approximating NN rules can be constructed; see e.g. [9]. Our
approaches to DRs can handle quite arbitrary measures. Still, an open question
refers to possible benefits of correcting a measure to make it metric or even
Euclidean [4, 14]. Metric or Euclidean distances can be interpreted in appro-
priate spaces, which posses many algebraical properties and where an arsenal
of discrimination functions exists. Here, we investigate some ways of making a
dissimilarity measure ‘more’ Euclidean (or ‘more’ metric) and the influence of
such corrections on the performance of some classifiers. We will show that the
corrected measures do not necessarily guarantee better performances.

2 Interpretations of the Dissimilarity Data

Embedding. Given any symmetric D(R,R), a configuration X can be found
such that the distances between the vectors of X reflect the original ones. In
general, a Euclidean space is not ‘large enough’ for such a distance-preserving
mapping, but a pseudo-Euclidean space is [5]. It is a (p+q)-dimensional non-
degenerate indefinite inner product space E :=R(p,q) such that the inner product
〈·, ·〉E is positive definite (pd) on Rp and negative definite on Rq. Therefore,
〈x,y〉E=

∑q
i=1 xiyi−

∑p+q
i=p+1 xiyi=xTJpqy,, where Jpq=diag (Ip×p;−Iq×q) and

I is the identity matrix. Consequently, d2E (x,y)== 〈x−y,x−y〉E =d2Rp(x,y)−
d2Rq (x,y). Since E is a linear space, many inner product based properties can
be appropriately extended from the Euclidean case. Yet, the interpretations are
different [5, 11].

The inner product (Gram) matrix S of the underlying configuration X can
be expressed by using the square dissimilarities D∗2 = (d2ij) as S =− 1

2JD∗2J ,
where J=I− 1

r11
T [5, 13, 11]. So, X is determined by the eigendecomposion

of S=QΛQT =Q|Λ|1/2diag(Jp′q′ ; 0) |Λ|1/2QT , where |Λ| is a diagonal matrix of
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first decreasing p′ positive eigenvalues, then decreasing magnitudes of q′ negative
eigenvalues, followed by zeros.Q is a matrix of the corresponding eigenvectors.X
is then uncorrelated [5, 13] and represented in Rk, k=p′+q′, as X=Qk|Λk|1/2.
Since only some eigenvalues are large (in magnitude), the remaining ones, if
close to zero, can be disregarded as non-informative. By their removal, the data
are not only de-noised, but the curse of dimensionality is also avoided. So, the
reduced representation Xred =Qm |Λm|1/2, m= p+q < k, is determined by the
largest p positive and the smallest q negative eigenvalues. New objects D(Tt, R)
are orthogonally projected onto Rm; see [5, 13, 11] for details.

Inner product based classifiers can appropriately be redefined in a pseudo-
Euclidean space. A linear classifier f(x) = vTJpqx + v0 is e.g. constructed by
addressing it as f(x)=wTx+ v0, where w=Jpqv; see also [5, 13, 11].

Dissimilarity Spaces. In a dissimilarity space, each dimension corresponds
to a dissimilarity D(·, pi). The property that dissimilarities should be small for
similar objects (belonging to the same class) and large for distinct objects, gives
a possibility for a discrimination. Thereby, D(·, pi) can be interpreted as an
attribute. This reasoning justifies the usage of traditional classifiers, e.g. linear
ones, built in dissimilarity spaces. They can outperform the k-NN rule since they
become more global in their decisions by making use of a larger training set T ,
while maintaining a small R. By using weighted combinations of dissimilarities,
such classifiers suppress the influence of noisy examples [12, 13].

3 Going More Euclidean or More Metric

The Gram matrix S = − 1
2JD∗2J is pd iff D is Euclidean [12, 11, 5]. If S has

negative eigenvalues, then D is non-Euclidean and a Euclidean configuration X
preserving the distances perfectly cannot be constructed. However, D can be
corrected to be Euclidean, which makes the corresponding S pd. Some possible
approaches to address this issue are [4, 14, 11]:

– Clipping - only p positive eigenvalues are considered yielding a p-dimensional
configuration X=Qp Λ

1/2
p . Now, after neglecting the negative contributions,

the resulting Euclidean representation overestimates the actual dissimilari-
ties.

– Adding 2τ - there exists a positive τ ≥ −λmin, where λmin is the smallest
(negative) eigenvalue of S, such that Dcorr=[D∗2 + 2 τ (11T−I)]∗1/2 is Eu-
clidean [6, 13, 11]. This means that the corresponding Scorr is pd. In practice,
the eigenvectors of S and Scorr are identical, but the value τ is added to the
eigenvalues, giving rise to the new diagonal eigenvalue matrix Λcor :=Λk+τ I.
The distortion is significant if τ is large. If reduced representations of a fixed
dimensionality are considered, different eigenvectors will be selected (based
on significant eigenvalues) for the original and corrected dissimilarities.

– Adding κ - there exists a positive κ≥λmax, where λmax is the largest eigen-
value of

[
On×n 2S (D∗2)
−In×n −4S (D)

]
, S(A) :=− 1

2JAJ , such that Dcorr=D+κ (11T−I)
is Euclidean [6, 13, 11]. The corresponding Gram matrix Scorr yields eigen-
vectors which are different than these of S.
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Fig. 1. The performance of the LDC for the Pen-angle dissimilarity data.

– Power/Sigmoid - there exists a parameter p such that Dp = (g(dij ; p)) is
Euclidean for a concave function g such as g(x)=xp with p<1 or a sigmoid
g(x)=2/(1+e−x/s)−1 [4, 11]. In practice, p is determined by trial and error.

These approaches transform D such that a Euclidean configuration X can be
found. It is, however, still possible that the corrections applied are less than
required for Euclideaness. In such cases, the measure is simply made ‘more’
Euclidean (hence, also ‘more’ metric), since the influence of negative eigenvalues
will become smaller after applying the above transformations.

4 Experiments

Five dissimilarity data sets are used in our study. The first two refer to DRs built
on the contours of pen-based handwritten digits [1]. All digits are represented by
strings of vectors between the contour points for which an edit distance with a
fixed insertion and deletion costs and with some substitution cost is computed.
The substitution costs such as an angle and a Euclidean distance between vectors
lead to two different DRs, denoted as Pen-dist and Pen-angle, respectively; see
also [2]. Here, only a part of the data of 3488 examples, is considered. The
values are also scaled by some constant to bound the dissimilarities. The digits
are unevenly represented; the class cardinalities vary between 334 and 363.
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Fig. 2. The performances of the LDC and RQDC for the Pen-dist dissimilarity data.

Another dissimilarity data set, consisting of 2000 examples evenly distributed
in ten classes, represents the NIST digits [15]. Here, the asymmetric similarity
measure, based on deformable template matching, as defined in [8], is used. Let
S = (sij) denote the similarities. The symmetric dissimilarities D = (dij) are
derived as dij=(sii+sjj−sij−sji)1/2 for i �= j and dii=0.

The last two DRs are derived for randomly generated polygons. They consist
of convex quadrilaterals and general heptagons. The polygons are first scaled and
then the Hausdorff and modified Hausdorff distances [10] between their corners
are computed. The two classes are equally represented by 2000 objects.

If a dissimilarity d is Euclidean, then for a symmetricD=(dij), all eigenvalues
λi of the corresponding Gram matrix S are non-negative. Hence, the magnitudes
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Table 1. Non-Euclidean and non-metric aspects of some DRs. The ranges of rmm,
rneg and c indicate the smallest and largest values found for D(R,R), where |R| varies
between 30−500 or 10−200 for the digit and polygon data, respectively. As a reference,
the last two columns show the average and maximum dissimilarity for the complete
data.

DR rmm (in %) rneg (in %) c avr. dissim. max dissim.

Pen-angle [10.6, 12.2] [ 9.4, 24.1] [0.0, 0.3] 7.1 20.0
Pen-dist [13.8, 14.3] [14.2, 27.8] [0.3, 1.0] 4.0 12.5
NIST-matching [27.5, 35.5] [10.6, 35.5] [0.1, 0.5] 0.6 1.0
Polygon-hausd [13.0, 25.5] [ 5.4, 31.6] 0 1.2 3.1
Polygon-mhausd [ 5.0, 13.0] [ 1.8, 24.6] [0.0, 0.1] 0.7 1.6
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Fig. 3. The LDC performance for the NIST-matching dissimilarity data.

of negative eigenvalues manifest the deviation from Euclideaness. An indication
of such a deviation is given by rmm := |λmin|/λmax, i.e. the ratio of the smallest
negative eigenvalue to the largest positive one. The overall contribution of neg-
ative eigenvalues can be estimated by rneg :=

∑
λi<0

|λi|/
∑r

j=1 |λj |. Any sym-
metric D can also be made metric by adding a suitable value c to all off-diagonal
elements of D. Such a constant can be found as c=maxp,q,t |dpq+dpt−dqt|. A
smaller value making D metric was determined by us in a binary search. Ta-
ble 1 provides suitable information on the Euclidean and metric aspects of the
measures considered:
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– Pen-angle is moderately non-Euclidean and nearly metric.
– Pen-dist is both moderately non-Euclidean and non-metric.
– NIST-matching is highly non-Euclidean and highly non-metric.
– Polygon-hausd is highly non-Euclidean, yet metric.
– Polygon-mhausd is moderately non-Euclidean and slightly non-metric.

The experiments are repeated 50 times for representations sets of various
sizes and the results are averaged. |R| varies from 3 to 50 examples per class
(ten classes) for the digit DRs and from 5 to 100 examples per class (two classes)
for the polygon DRs. For each |R|, two cases for the training set T are consid-
ered: T = R or T consists of 100/200 objects per class for the digit/polygon
DRs, respectively. In the latter case, the ratio of |T |/|R| becomes smaller with
a growing |R|. The test sets consist of 2488/1000/3600 examples for the pen-
digit/NIST/polygon data, correspondingly. For each DR, the k-NN rule is con-
sidered, as well as the linear discriminant built in both embedded and dissim-
ilarity spaces. The embedding is derived from D(R,R), but additional objects
T\R, if available, are projected there and used for constructing classifiers. To
denoise the data and avoid the curse of dimensionality, the dimensionality of the
embedded space was fixed to 0.3|R|, so the dimensions corresponding to small
eigenvalues (in magnitude) are neglected. Also the principal component analysis
was applied in the dissimilarity space D(·, R) to reduce the dimensionality to
0.3|R|. In both cases, although the dimensionalities are reduced, the spaces are
still defined by all the objects of R.

Adding a constant to the dissimilarities or applying a concave transformation
preserves their order, hence it does not influence the k-NN rule. However, by
clipping (neglecting all negative eigenvalues in the embedding), the re-computed
Euclidean distances differ non-monotonically from the original ones, hence the k-
NN rule behaves differently. Also both embedded and dissimilarity spaces change,
so a linear classifier will change as well. (Adding a constant is not worth doing
in dissimilarity spaces, since a constant shift is applied to all Dij , but the self-
dissimilarity Dii=0. This is expected to worsen a classifier performance). In our
experiments, we study the influence of such corrections on the given measures
for various R. For this purpose, proper κ and τ guaranteeing Euclideaness are
chosen. Two concave transformations are considered: the square root (which
makes the measures close to Euclidean, yet still not Euclidean) and the sigmoid
with the slope s := avr(D(R,R)). Such measures are non-Euclidean, but less
than the original ones as judged by magnitudes of negative eigenvalues in the
embeddings.

The results of our experiments compare the averaged performance of the
linear discriminant (LDC) and 1-NN rule and the best k-NN rule. They are
presented in Fig. 1-5. The standard deviations (for all the data) reach on average
0.3% and maximally 0.8 − 1.4% for very small R. Due to lack of space, the
performance of the RQDC02 (regularized quadratic classifier with a relative
regularization of 0.2) is shown in Fig. 2 for the Pen-dist data only to indicate
that such a classifier can reach even better accuracy than the LDC. The notation
in figures refers to:
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Fig. 4. The LDC performance for the Polygon-hausd dissimilarity data.

– orig - original dissimilarities; no transformation applied.
– add κ/2τ - a constant added to the dissimilarities; makesD(R,R) Euclidean.
– sqrt/sigm - a square root/sigmoid transformation of the dissimilarities;
makes D(R,R) ‘more’ Euclidean.

– clip - only positive eigenvalues are used; a new Euclidean Deu is derived
from D.

The following general conclusions can be made by analyzing our results:

1. The correction by adding 2τ yields worse results than by adding κ (the former
results are missing on some plots since they are out of the given scales).

2. The LDC and the RQDC in (corrected or not) dissimilarity spaces perform
similarly or better than in pseudo-Euclidean spaces (compare right vs. left
columns in all the figures).

3. For larger T and smaller R, the LDC/RQDC in both embedded and dissimi-
larity spaces (original or transformed by a square root or a sigmoid function)
significantly outperform the k-NN and clip k-NN rules (bottom rows in all
the figures). For T =R, this phenomenon is much less pronounced; the k-NN
might even become somewhat better as observed for the Pen-angle data,
Fig. 1.

4. Concave transformations of dissimilarities have a minor effect on the
LDC/RQDC constructed in dissimilarity spaces. On the contrary, ’clipping’
can deteriorate their performance.
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Fig. 5. The LDC performance for the Polygon-mhausd dissimilarity data.

5. The LDC/RQDC built in pseudo-Euclidean spaces derived from concave
transformations of the dissimilarities may perform better than for the orig-
inal dissimilarities or than the LDC/RQDC built in Euclidean spaces ob-
tained from the corrections by clipping or by adding a constant. Still, the
results reached by the LDC/RQDC in dissimilarity spaces are comparable
or better.

5 Conclusions

If the k-NN is far from optimal for small representation sets, it can be signif-
icantly outperformed by linear (quadratic) classifiers built in both embedded
or dissimilarity spaces. Concave transformations of dissimilarities are somewhat
beneficial for classifiers in the embedded spaces, however, they may have no es-
sential effect in dissimilarity spaces. None of the transformations considered here
allows for reaching a considerably better performance than the results in orig-
inal dissimilarity spaces. However, the transformations may influence the error
and reject tradeoff [3]. We conclude that the potential advantages of imposed
Euclideaness are doubtful. It is simply more important that the measure itself
describes compact classes. This can be influenced by concave transformations
which aim at diminishing the relative effect of large dissimilarities and not by
making them really Euclidean or metric.
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Abstract. In this paper, we present an application of the hierarchical HMM for
structure discovery in educational videos. The HHMM has recently been extended
to accommodate the concept of shared structure, ie: a state might multiply inherit
from more than one parents. Utilising the expressiveness of this model, we con-
centrate on a specific class of video – educational videos – in which the hierarchy
of semantic units is simpler and clearly defined in terms of topics and its sub-
units. We model the hierarchy of topical structures by an HHMM and demonstrate
the usefulness of the model in detecting topic transitions.

1 Introduction

The discovery of structure in video data is an important problem. Solution to this prob-
lem will form the core of multimedia indexing and browsing systems. The discovery of
structure is important as it enables the partitioning of the information into meaningful
sub-units and to build a hierarchy of such units in increasing levels of detail. Such hier-
archies are naturally used in other media, for example, the table of contents in a book.
In the case of video, construction of such a hierarchy is equally meaningful and will
allow users to browse the media using a table-of-contents style. The difficult question
includes not only the construction of the hierarchy, but also the understanding of the
sub-units used in the hierarchy.

In this paper, we concentrate on a specific class of video, the educational video, in
which the hierarchy of units is simpler and clearly defined in terms of topics and sub-
topics. We propose the use of the HHMM to segment this class of video. We first modify
the parameter estimation to allow multiple inheritance in hierarchic structures. This is
because a video has shared sub-structures and the model needs to accommodate this
fundamental aspect of topic organisation. For example, all topics generally start with
some introduction shots. The novelty of this work is in the content structure discovery
of educational videos where the shared ‘concepts’ are utilised and incorporated into
the model. This is important because without the ability to model shared structures,
the shared units will have to be repeated, increasing the state space and thus make the
process computationally inefficient. This is particularly relevant when dealing with very
long observation sequences such as a full video.

A. Fred et al. (Eds.): SSPR&SPR 2004, LNCS 3138, pp. 1155–1163, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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2 Related Background

Discovering structure of videos has been a rapidly growing area, in particular as a sub-
field of multimedia content management. In these systems, the central task is effectively
building units of indexation, possibly at different levels of abstractions, to simplify the
process of retrieving and browsing, and also to enrich the viewing experience from the
end-users. There have been many systems proposed for specific video genres. Partition
and classification of broadcast videos into meaningful sections have attracted significant
attention [1–8]. In [7], Liu et al. segment news reports from other categories based on
both audio and visual information. Low-level features are combined with the concept
of shot syntax in [2] to identify and label different narrative structures such as anchor
shots, voice-over segments and interview sections found in news programs. Unsuper-
vised groupings of news stories according topical content with only audio information
was studied in [8]. Research into the domain of lecture videos has also been found in [9].
In their work, visual events are detected from the visual stream and then incorporated
with audio information in a probabilistic framework to detect topic transitions. The do-
main of entertainment film has also been targeted lately [10–13]. In [10], for example,
Adams et al. formulate an algorithmic solution for the computation of movie tempo, a
high-level construct, and later utilise this function to segment a movie into story units.
Wang et al. [12] attempt to detect scenes in film using the similarity in visual informa-
tion and further improve the results with guidance from cinematic grammar.

The HHMM is a powerful stochastic model, first introduced in [14], in which the
HHMM is viewed as a form of probabilistic context free grammar (PCFG), and the
inference algorithm and parameter learning procedures are constructed based on the
inside-outside algorithm. In [15], the HHMM is converted to a DBN, and applies general
DBN inference to the model to achieve complexity linear in time T , but exponential in
the depth D of the model. The same analysis applied is [16], ie: the HHMM is ‘flatened’
into regular HMM with a very large state space for inference purpose. Their work [17,
16] aims to detect structures of soccer videos in an unsupervised manner. The model
selection is first carried out using the MCMC to determine the structure parameters
for the model, followed by a feature selection procedure. Finally, the HHMM is used
to detect two semantic concepts, namely play and break in soccer videos. As there
is little hierarchy at this level, the power of the hierarchic probabilistic model is not
used. The HHMM is also applied in other domains other than multimedia such as in
hand-written recognition [14], robot navigation [18], behaviour recognition [19] and
information retrieval [20].

3 Model Definition and EM for the HHMM

The discrete HHMM and its extension to accommodate shared structured has been ad-
dressed in our previous work [21]. Here we refocus our attention to elucidate the idea of
the shared structures and briefly discuss the EM algorithm for parameter estimation. We
then discuss the case when the emission probability is modeled as mixture of Gaussian
in the context of the hierarchical HMM.
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A HHMM is formally defined by a topological structure ζ and a set of parameter θ
attached to the topology. The general form of DBN representation is shown in Fig. 1(a).
The depth D and the number of states available at each level Qd, for d = 1, .., D,
are specified by ζ. Level 1 is the root level and is always fixed to have only a single
state. Furthermore, the topological structure reveals the ‘parent-children’ relationship
of states between two consecutive levels1. A state p at level d is assigned to a set of
children, ch(p), at level d + 1. A state i at level d + 1 therefore might multiply inherit
from more than one parents at level d. For example, the HHMM defined in Fig. 2 has a
depth D = 3 with 1, 3, 4 are the number of states respectively at level d = 1, 2, 3. The
set of children for state 3 at level 2 is {2, 3, 4} (at lower level 3). The set of parents for
state 2 at level 3 is {1, 2, 3}, which, in this case, is ‘shared’ by all states at level 2.

Given such a topological structure ζ, the parameter θ of the HHMM is specified in
the following way. For each level d ∈ {1..D − 1}, p ∈ Qd, i, j ∈ ch(p), where ch(p)
denote the children set of p:

• πd,p
i � Pr(qd+1t = i | ·qdt = p) : is the initial probability of the child i given

the parent is p at level d.
• Ad,pi,j � Pr(qd+1t+1 = j | edt = 0, q·d+1t = i, qdt = p) : is the transition probability

from child i to child j given that both are children of p.
• Ad,pi,end � Pr(edt = 1 | qdt = p, q·d+1t = i): is the probability that state p

terminates at level d given its current child is i.
where the dot in front of qdt represents the event q·dt−1= 1 (ie: qdt is started at t), and
the dot after qdt represents the event q·dt = 1 (ie: qdt is ended at t). The constraints of
stochastic processes requires that

∑
i π

d,p
i = 1,

∑
j Ad,pi,j = 1, and Ad,pi,end ≤ 1. Finally,

at the lowest level D, an observation probability matrix B is specified in the discrete
observation case, or a set of {μim, Σim} are given when the observation values are
continous and modeled as a mixture of Gaussians.

Given an observed data set O and some initial parameters, the EM algorithm it-
eratively re-estimates a new parameter θ̂, hill climbing in the parameter space which
is guaranteed to converge to a local maxima. As shown in [21], doing EM param-
eter re-estimation reduces to first calculating the expected sufficient statistics (ESS)
τ̄ = EV\O τ , and then set the re-estimated parameter θ̂ to the normalized value of τ̄ .

The ESS for parameter
{

Ad,pi,j

}
, for example, is calculated as:

τ̄ (A)d,pi,j = E
V\O

τ(A)d,pi,j =
T−1∑
t=1

ξd,pt (i, j)
/
Pr(O) (1)

where the auxiliary variable ξd,pt (i, j) is defined as the probabilityPr(qd+1t+1 = j, qd+1t =
i, qdt+1 = p, ed:d+1t = 01,O). Readers are referred to [21] for further details on compu-
tation of the auxiliary variables and other expected sufficient statistics. In the rest of this
section we will discuss the case when the emission probability is modeled as a mixture
of Gaussians.

1 Note that the original HHMM[14] assumes that a state has a only a single parent and therefore
the topology reduces strictly to a tree.



1158 Dinh Q. Phung, Hung H. Bui, and Svetha Venkatesh

In general, modeling the observation probability as a mixture of Gaussians for the
hierarchical HMM is similar to the regular HMM. The DBN structure at level D is modi-
fied as in Fig 1(b), where a mixture variable zt is added. For simplicity, thereafter in this
section we will drop the index D. Let M be the number of mixtures and N be the num-

q12

q21

qD1

q1Tq11

y2y1 y3 yT

q13

t = 1 2 3 T

e•• e••

qD2 qD3 qDT

e•T−•

eD−•
T−•

eD−•
• eD−•

•

(a)

qDt

yt

zt

(b)

Fig. 1. (a) DBN representation for the discrete HHMM; (b) Mixture component zt at level D.

ber of states at level D. The observation matrix B in the discrete case is replaced by the
mixing weight matrix {εim} and a set of means and covariance matrices {μmi, Σmi}
for i = 1, . . . , N and m = 1, . . . ,M . Given observed data O, expressing the expected
complete log-likelihood and discarding terms irrelevant to zt and yt we have:

〈!(θ;O)〉 =
∑

1≤i≤N
1≤m≤M

[
T∑
t=1

〈
Izt,qtm,i

〉
logN (yt, μmi, Σmi) +

T∑
t=1

〈
Izt,qtm,i

〉
log εmi

]

where Izt,qtm,i is the identity function and � 1 if {zt = m} ∪ {qt = i} ;� 0 otherwise;
and its expected value is calculated as:〈

Izt,qtm,i

〉
= Pr(zt= m, qt= i | O) = Pr(zt= m | qt= i, yt) Pr(qt= i | O)

=
Pr(yt | zt= m, qt= i) Pr(zt= m | qt= i)

Pr(yt | qt= i)
× Pr(qt= i,O)

Pr(O)

=
εmiN (yt, μmi, Σmi)∑M

m=1 εmiN (yt, μmi, Σmi)
× γDt (i)
Pr(O)

where2 the auxiliary variable γDt (i) is defined as the probability Pr(qDt = i,O) and can
be computed directly from horizontal transition probability ξd,pt (i, j) and vertical tran-
sition probability χd,p

t (i) (see [21]). Finally, maximising the expected complete log-
likelihood 〈!(θ;O)〉 with respect εim and μmi, Σmi respectively. Introducing the La-
grange multipliers for εim; and setting derivatives to zero for the case of μmi, Σmi. The
set of re-estimated parameters is given as:

2 We put back hierarchic index D for clarity here.
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ε̂mi =

∑T
t=1

〈
Izt,qtm,i

〉∑M
m=1

∑T
t=1

〈
Izt,qtm,i

〉 , μ̂mi =

∑T
t=1

〈
Izt,qtm,i

〉
yt∑T

t=1

〈
Izt,qtm,i

〉
Σ̂mi =

∑T
t=1

〈
Izt,qtm,i

〉
(yt − μmi)(yt − μmi)T∑T
t=1

〈
Izt,qtm,i

〉
When multiple observation sequences are given, the set of above equations can be ad-
justed by simply adding a summation over the number of sequences. This corresponds
to ‘counting’ over all sequences.

4 Elucidating Structures in Educational Videos

An intrinsic functionality of educational videos3 is to ‘teach’ [22], and therefore struc-
turalizing the content and building meaningful indices are important to improve the
learning experience. Materials delivered in an educational video might vary widely to
suit different purposes; however, when restricted to instructional and safety videos, the
content organization is relatively simple. In this paper, we are interested in this particu-
lar type of video and observe that linear presentation is generally chosen to present the
content. Subjects are arranged into a sequence of topics started with a few introduction
shots. Literature in this field [22] offers further insight into how a topic is constructed.
Generally, there are three presentational styles: (1) direct instruction, (2) on-screen in-
struction, and (3) illustrative instruction (see Fig. 2). In direct instruction, the video-
maker choose to present a topic by means of text captions and voice over. In on-screen
instruction, s/he decides to directly appear on the camera to talk directly to the viewers.
Lastly in illustrative instruction, illustrative examples are the major mode of presenta-
tion to convey the subject with possible appearance of the anchors. These presentational
styles shares certain similar semantic concepts at the lower levels such as introduction
shot, or direct appearance of anchor(s) (Fig. 2).

On−screen IllustrativeDirect

1 2 3

1 2 3

1

4

level 1

level 2

level 3

text intro exampleanchor

Fig. 2. Structure of topic generating process with assumed hidden ‘styles’; and its mapping to a
topology for the HHMM. Shared structures are identified with extra dotted circle.

3 The class of educational videos discussed in this work is of professional productions, excluding
hand-held recorded videos such that lecture videos recorded in the classroom.
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5 Experimental Results

Our aim is to apply the HHMM model, taking advantage of the shared units, to segment
an educational video into high-levels of abstraction – ie: detection of topic transitions
in this case. We construct a 3-level HHMM as follows. The root level represents the
entire video, followed by three states at the next level, each of which corresponds to
one topic presentational style. Our assumption here is that the topic content organisa-
tion strictly follows the styles outlined in Sec. 4. The production level includes four
states, corresponding to four semantic concepts at the shot level: (1) the introduction,
(2) instruction delivered by mean of captioned texts, (3) instruction delivered directly
by the presenter and (4) illustrative example (Fig.2). Given a set of training N videos,
we extract features from each video and use them as input observation sequences to
the EM parameter learning algorithm to estimate a new model parameter. This new
parameter set will be used in the second phase to segment a video based on results
from the generalised Viterbi decoding algorithm. The data set includes eight instruc-
tional and safety videos, whose topics span a variety of subjects such as how to exercise
safety at home, in office, or at workplace. Shot indices are assumed to be available,
which is first detected by a commercial software and errors are manually corrected.
In the training phase, each video yields an observation sequence with each shot-based
feature vector o is a column vector of seven elements o = [o1, o2, o3, o4, o5, o6, o7]t.
From the visual stream, we extract three features including the face-content-ratio, text-
content-ratio and average motion based on camera pan and tilt (o1, o2, o3). The other
four features namely music-ratio, speech-ratio, silence-ratio and non-literal sound ratio
(o4, o5, o6, o7) are from the audio track. Feature music-ratio, for example, is calculated
as the ratio of number of clips classified as music to the total number of audio clips
in the shot. Readers are referred to [23] for further details on the computation of these
features.

At the production level of the trained model, the estimated matrices μ̂ and Σ̂ can
be examined to get an idea about the semantics . Fig. 3(a), for instance, shows the
estimated mean value for different features with respect to state 2, which is intended to
model the ‘style’ of shots that used to introduce a new topic. As can be seen, this state
is ‘sensitive’, ie: will yield a high probability, to shots with displayed captioned texts
and no audio. When compared with the ground-truth, we observe that this is indeed a
major kind of shots that demarcate topics.

To evaluate the detection performance, we manually watch and segment each video
into topics. In some cases, this information is available directly from the video manuals.
This results in a total of 75 indices. We use two well-known metrics, namely, recall and
precision to measure the performance of the detection. To perform segmentation, we
first run the Viterbi algorithm to get the time indices for which a state at topic level (ie:
level 2) make the transition. Let τ be such an index, we then examine the state x3τ , which
is the corresponding state at the production level being called. If this state coincides
with the introduction shot (ie: = 2), then τ is recorded as a topic transition. The entire
segmentation results are reported in Fig. 3. Calculation yields a recall of 77.3% and
a precision of 70.7%. Given that the segmentation has been done in an completely
unsupervised manner, ie: there is no hints in the training data as to what is a topic
boundary, the result demonstrate the validity of the HHMM-based detection scheme.
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text−
−

ratio

avg. m
otion

silence−
ratio

0.0854

0.6030
0.5948

0.1091

0.5045

0.3523

0.034

(a) μ̂• •

Video GT TP Errors
FN FP

1. 10 8 2 4

2. 9 6 3 3

3. 8 7 1 0

4. 5 3 2 4

5. 7 6 1 10

6. 19 15 4 2

7. 10 7 3 0

8. 7 6 1 1

Total 75 58 17 24
(b) detection results

Fig. 3. (a) estimated μ vector for state 2 (introduction shot), (b) detection results for 8 videos –
GT : number of ground-truth indices, TP : number of correct detection, FN : number of miss, FP:
number of over segmented indices.

This result is comparative with the probabilistic detection framework developed in [24]
with a slight degradation in performance.

6 Discussion

Fig. 3 reveals that over segmentation is the major source of error causing a degradation
in precision; and the high number of ‘miss’ (false negatives) causing a low recall rate.
The resulting false negatives is not surprising since a topic is introduced in numerous
ways, but the estimated model has learned only a subset of these methods of introduc-
tion. To overcome this, we obviously need a more complex model structure, which will
be considered in our future work. The fact that the detector usually over segments a
video (eg: video 5) is worth further discussion. A close analysis discloses that while
these (over-segmenting) indices do not match the ground-truth, they frequently map to
the lower level of sub-structures within a topic such as segments emphasising a safety
message (for example, this happens many times in video 5). Fig. 4 draws an insight
into the structure of an educational video and illustrate this problem. The vertical solid
lines have been the target of our detection, while dashed-lines correspond to the over-
segmented indices from the detector. This fact suggests that the model might be utilised
to exploit further structure in topics, which will also be considered in our future work.

INTRO

sub−topic 1 sub−topic n

TOPIC mTOPIC 1

ENTIRE VIDEO

intro sub−unit k

Fig. 4. Structure of a Video.
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7 Conclusion

We have presented a framework for topic structure discovery using the HHMM in this
paper. An important aspect of video data when considering its content organisation is
the shared structures embedded in the data. This suggests a natural mapping to the
hierarchical HMM, which we have utilised to model the topic structures in educational
videos. We have briefly addressed the issue of parameter learning in the HHMM, in
particular when the emission probability is modeled as a mixture of Gaussians. Finally,
the experimental results have demonstrated the usefulness of the detection scheme.
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Grossmann, Etienne 983
Günter, Simon 583, 1145
Guo, Hongyu 974

Hagenbuchner, Markus 42
Hancock, Edwin R. 57, 143, 198, 304,

361, 461
Hand, David J. 609
Haxhimusa, Yll 343
Héroux, Pierre 894
Heutte, Laurent 1001
Higuera, Colin de la 260, 269



1166 Author Index

Hikida, Kenji 1105
Hilario, Mélanie 850
Huang, Guanglin 104, 434
Huang, Houkuan 957
Hughes, Alex 530

Iglesias, Isaac 538
Imai, Hideyuki 885
Imiya, Atsushi 948
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Jin, Zhong 626
Juan, Alfons 635
Jung, Kyung-Yong 815

Kaestner, Celso A.A. 1018
Kamel, Mohamed 556, 618
Kandel, Abraham 190
Kato, Tsuyoshi 171
Kermorvant, Christopher 260
Kim, In Cheol 992
Kim, Kyoung Min 992
Kim, Tae-Kyun 565
Kim, Un-Mi 547
Kimura, Fumitaka 95
Kittler, Josef 495, 565, 797, 1069, 1078
Kolonias, Ilias 1078
Kontos, Despina 379
Koroutchev, Kostadin 452
Kortemeyer, Gerd 397
Kropatsch, Walter 343
Kudo, Mineichi 885, 1043
Kuijper, Arjan 512
Kuncheva, Ludmila I. 574

Lado, Maŕıa J. 538
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Silva, Aristófanes C. 242
Silva, Jilseph Lopes 296, 470
Silva-Ramı́rez, Esther-Lydia 966
Sin, Bong-Kee 1114
Skurichina, Marina 1096
Sobel, Marc J. 379
Somol, Petr 716
Somorjai, Ray 707
Son, Byungjun 903
Song, Young Gi 992
Souto, Miguel 538
Sterenborg, Henricus J.C.M. 1096
Stilla, Uwe 486
Suen, Ching Y. 992
Suykens, Johan 671
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