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Preface

Machine Learning has become a key enabling technology for many engineering
applications, investigating scientific questions and theoretical problems alike. To
stimulate discussions and to disseminate new results, a series of summer schools
was started in February 2002. One year later two more of such summer schools
were held, one at the Australian National University in Canberra, Australia,
and the other one in the Max-Planck Institute for Biological Cybernetics, in
Tübingen, Germany.

The current book contains a collection of main talks held during those two
summer schools, presented as tutorial chapters on topics such as Pattern Re-
cognition, Bayesian Inference, Unsupervised Learning and Statistical Learning
Theory. The papers provide an in-depth overview of these exciting new areas,
contain a large set of references, and thereby provide the interested reader with
further information to start or to pursue his own research in these directions.

Complementary to the book, photos and slides of the presentations can be
obtained at

http://mlg.anu.edu.au/summer2003
and

http://www.irccyn.ec-nantes.fr/mlschool/mlss03/home03.php.

The general entry point for past and future Machine Learning Summer Schools
is

http://www.mlss.cc

It is our hope that graduate students, lecturers, and researchers alike will find
this book useful in learning and teaching Machine Learning, thereby continuing
the mission of the Machine Learning Summer Schools.

Tübingen, June 2004 Olivier Bousquet
Ulrike von Luxburg

Gunnar Rätsch

Empirical Inference for Machine Learning and Perception
Max-Planck Institute for Biological Cybernetics
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Stéphane Boucheron
Olivier Bousquet
Chris Burges
Jean-François Cardoso
Manuel Davy
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Canberra: Gunnar Rätsch and Alex Smola
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An Introduction to Pattern Classification

Elad Yom-Tov

IBM Haifa Research Labs, University Campus, Haifa 31905, Israel
yomtov@il.ibm.com

1 Introduction

Pattern classification is the field devoted to the study of methods designed to
categorize data into distinct classes. This categorization can be either distinct
labeling of the data (supervised learning), division of the data into classes (unsu-
pervised learning), selection of the most significant features of the data (feature
selection), or a combination of more than one of these tasks.

Pattern classification is one of a class of problems that humans (under most
circumstances) are able to accomplish extremely well, but are difficult for com-
puters to perform. This subject has been under extensive study for many years.
However during the past decade, with the introduction of several new classes of
pattern classification algorithms this field seems to achieve performance much
better than previously attained.

The goal of the following article is to give the reader a broad overview of
the field. As such, it attempts to introduce the reader to important aspects of
pattern classification, without delving deeply into any of the subject matters.
The exceptions to this rule are those points deemed especially important or
those that are of special interest. Finally, we note that the focus of this article
are statistical methods for pattern recognition. Thus, methods such as fuzzy
logic and rule-based methods are outside the scope of this article.

2 What Is Pattern Classification?

Pattern classification, also referred to as pattern recognition, attempts to build
algorithms capable of automatically constructing methods for distinguishing be-
tween different exemplars, based on their differentiating patterns.

Watanabe [53] described a pattern as ”the opposite of chaos; it is an entity,
vaguely defined, that could be given a name.” Examples of patterns are human
faces, handwritten letters, and the DNA sequences that may cause a certain
disease. More formally, the goal of a (supervised) pattern classification task is to
find a functional mapping between the input data X, used to describe an input
pattern, to a class label Y so that Y = f(X). Construction of the mapping is
based on training data supplied to the pattern classification algorithm. The
mapping f should give the smallest possible error in the mapping, i.e. the min-
imum number of examples where Y will be the wrong label, especially on test
data not seen by the algorithm during the learning phase.

O. Bousquet et al. (Eds.): Machine Learning 2003, LNAI 3176, pp. 1–20, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



2 E. Yom-Tov

An important division of pattern classification tasks are supervised as op-
posed to unsupervised classification. In supervised tasks the training data
consists of training patterns, as well as their required labeling. An example are
DNA sequences labeled to show which examples are known to harbor a genetic
trait and which ones do not. In unsupervised classification tasks the labels are
not provided, and the task of the algorithm is to find a ”good” partition of the
data into clusters. Examples for this kind of task are grouping of Web pages into
sets so that each set is concerned with a single subject matter.

A pattern is described by its features. These are the characteristics of the
examples for a given problem. For example, in a face recognition task some
features could be the color of the eyes or the distance between the eyes. Thus,
the input to a pattern recognition task can be viewed as a two-dimensional
matrix, whose axes are the examples and the features.

Pattern classification tasks are customarily divided into several distinct blocks.
These are:

1. Data collection and representation.
2. Feature selection and/or feature reduction.
3. Clustering.
4. Classification.

Data collection and representation are mostly problem-specific. Therefore it
is difficult to give general statements about this step of the process. In broad
terms, one should try to find invariant features, that describe the differences in
classes as best as possible.

Feature selection and feature reduction attempt to reduce the dimensionality
(i.e. the number of features) for the remaining steps of the task. Clustering
methods are used in order to reduce the number of training examples to the
task. Finally, the classification phase of the process finds the actual mapping
between patterns and labels (or targets). In many applications not all steps are
needed. Indeed, as computational power grows, the need to reduce the number
of patterns used as input to the classification task decreases, and may therefore
make the clustering stage superfluous for many applications.

In the following pages we describe feature selection and reduction, clustering,
and classification.

3 Feature Selection and Feature Reduction: Removing
Excess Data

When data is collected for later classification, it may seem reasonable to assume
that if more features describing the data are collected it will be easier to classify
these data correctly. In fact, as Trunk [50] demonstrated, more data may be
detrimental to classification, especially if the additional data is highly correlated
with previous data. Furthermore, noisy and irrelevant features are detrimental to
classification as they are known to cause the classifier to have poor generalization,
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increase the computational complexity, and require many training samples to
reach a given accuracy [4].

Conversely, selecting too few features will lead to the ugly duckling theorem
[53], that is, it will be impossible to distinguish between the classes because there
is too little data to differentiate the classes. For example, suppose we wish to
classify a vertebrated animal into one of the vertebra classes (Mammals, Birds,
Fish, Reptiles, or Amphibians). A feature that will tell us if the animal has skin is
superfluous, since all vertebrates have skins. However, a feature that measures if
the animal has warm blood is highly significant for the classification. A feature
selection algorithm should be able to identify and remove the former feature,
while preserving the latter.

Hence the goal of this stage in the processing is to choose a subset of features
or some combination of the input features that will best represent the data. We
refer to the process of choosing a subset of the features as feature selection,
and to finding a good combination of the features as feature reduction.

Feature selection is a difficult combinatorial optimization problem. Finding
the best subset of features by testing all possible combinations is practically
impossible even when the number of input features is modest. For example,
attempting to test all possible combinations of 100 input features will require
testing 1030 combinations. It is not uncommon for text classification problems
to have 104 to 107 features [27]. Consequently numerous methods have been
proposed for finding a (suboptimal) solution by testing a fraction of the possible
combinations.

Feature selection methods can be divided into three main types [4]:

1. Wrapper methods: The feature selection is performed around (and with) a
given classification algorithm. The classification algorithm is used for ranking
possible feature combinations.

2. Embedded methods: The feature selection is embedded within the classifi-
cation algorithm.

3. Filter methods: Features are selected for classification independently of the
classification algorithm.

Most feature selection methods are of the wrapper type. The simplest algo-
rithms in this category are the exhaustive search, which is practical only when the
number of features is small, sequential forward feature selection (SFFS)
and sequential backward feature selection (SBFS). In sequential forward
feature selection the feature with which the lowest classification error is reached
is selected. Then, the feature that, when added, causes the largest reduction in
error is added to the set of selected features. This process is continued iteratively
until the maximum number of features needed are found or until the classification
error starts to increase. Although sequential feature selection does not assume
dependence between features, it usually attains surprisingly reasonable results.
There are several minor modifications to SFFS and SBFS, such as Sequential
Floating Search [41] or the ”Plus n, take away m” features.

One of the major drawbacks of methods that select and add a single feature at
each step is that they might not find combinations of features that perform well
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together, but are poor predictors individually. More sophisticated methods for
feature selection use simulated annealing or genetic algorithms [56] for solving
the optimization problem of feature selection. The latter approach has shown
promise in solving problems where the number of input features is extremely
large.

An interesting approach to feature selection is based in information theoretic
considerations [25]. This algorithm estimates the cross-entropy between every
pair of features, and discards those features that have a large cross-entropy with
other features, thus removing features that add little additional classification in-
formation. This is because the cross-entropy estimates the amount of knowledge
that one feature provides on other features. The algorithm is appealing in that
it is independent of the classification algorithm, i.e. it is a filter algorithm. How-
ever, the need to estimate the cross entropy between features limits its use to
applications where the datasets are large or to cases where features are discrete.

As mentioned above, a second approach to reducing the dimension of the
features is to find a lower-dimensional combination (linear or non-linear) of the
features which represent the data as well as possible in the required dimension.

The most commonly used technique for feature reduction is principal com-
ponent analysis (PCA), also known as the Karhunen-Loeve Transform (KLT).
PCA reshapes the data along the directions of maximal variance. PCA works
by computing the eigenvectors corresponding to the largest eigenvalues of the
covariance matrix of the data, and returning the projection of the data on these
eigenvectors. An example of feature reduction using PCA is given in Figure 1.

Fig. 1. Feature reduction using principle component analysis. The figure on the left
shows the original data. Note that most of the variance in the data is along a single
direction. The figure on the right shows probability density function of the same data
after feature reduction to a dimension of 1 using PCA

Principle component analysis does not take into account the labels of the
data. As such, it is an unsupervised method. A somewhat similar, albeit su-
pervised, linear method is the Fisher Discriminant Analysis (FDA). This
method projects the data on a single dimension, while maximizing the separation
between the classes of the data.

A more sophisticated projection method is Independent Component
Analysis (ICA)[8]. This method finds a linear mixture of the data, in the
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same dimension of the data or lower. ICA attempts to find a mixture matrix
such that each of the projections will be as independent as possible from the
other projections.

Instead of finding a linear mixture of the feature, it is also possible to find
a nonlinear mixture of the data. This is usually done through modifications of
the above-mentioned linear methods. Examples of such methods are nonlinear
component analysis [33], nonlinear FDA [32], and Kernel PCA[46]. The latter
method works by remapping data by way of a kernel function into feature space
where the principle components of the data are found.

As a final note on feature selection and feature reduction, one should note
that as the ratio between the number of features and the number of training
examples increases, it becomes likelier for a noisy and irrelevant feature to seem
relevant for the specific set of examples. Indeed, feature selection is sometimes
viewed as an ill-posed problem [52], which is why application of such methods
should be performed with care. For example, if possible, the feature selection
algorithm should be run several times, and the results tested for consistency.

4 Clustering

The second stage of the classification process endeavors to reduce the number
of data points by clustering the data and finding representative data points (for
example, cluster centers), or by removing superfluous data points. This stage is
usually performed using unsupervised methods.

A cluster of points is not a well-defined object. Instead, clusters are defined
based on their environment and the scale at which the data is examined. Figure 2
demonstrates the nature of the problem. Two possible definitions for clusters[23]
are: (I) Patterns within a cluster are more similar to each other than are patterns
belonging to other clusters. (II) A cluster is a volume of high-density points
separated from other clusters by a relatively low density volumes. Both these
definitions do not suggest a practical solution to the problem of finding clusters.
In practice one usually specifies a criterion for joining points into clusters or the
number of clusters to be found, and these are used by the clustering algorithm
in place of a definition of a cluster. This practicality results in a major drawback
of clustering algorithms: A clustering algorithm will find clusters even if there
are no clusters in the data.

Returning to the vertebrate classification problem discussed earlier, if we
are given data on all vertebrate species, we may find that this comprises of
too many training examples. It may be enough to find a representative sample
for each of the classes and use it to build the classifier. Clustering algorithms
attempt to find such representatives. Note that representative samples can be
either actual samples drawn from the data (for example, a human as an example
for a mammal) or an average of several samples (i.e. an animal with some given
percentage of hair on its body as a representative mammal).

The computational cost of finding an optimal partition of a dataset into a
given number of clusters is usually prohibitively high. Therefore, in most cases
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Fig. 2. An example of data points for clustering. Many possible clustering configura-
tions can be made for this data, based on the scale at which the data is examined, the
shape of the clusters, etc

clustering algorithms attempt to find a suboptimal partition in a reasonable
number of computations. Clustering algorithms can be divided into Top-Down
(or partitional) algorithms and Bottom-Up (or hierarchical) algorithms.

A simple example for Bottom-Up algorithms is the Agglomerative Hi-
erarchical Clustering Algorithm (AGHC). This algorithm is an iterative
algorithm, which starts by assuming that each data point is a cluster. At each
iteration two clusters are merged until a preset number of clusters is reached.
The decision on which clusters are to be merged can be done using one of several
functions, i.e. distance between cluster centers, distance between the two nearest
points in different clusters, etc. AGHC is a very simple, intuitive scheme. How-
ever, it is computationally intensive and thus impractical for medium and large
datasets.

Top-Down methods are the type more frequently used for clustering due
to their lower computational cost, despite the fact that they usually find an
inferior solution compared to Bottom-Up algorithms. Probably the most popular
amongst Top-Down clustering algorithms in the K-means algorithm [28], a
pseudo-code of which is given in figure 3. K-means is usually reasonably fast, but
care should be taken in the initial setting of the cluster centers so as to attain a
good partition of the data. There are probably hundreds of Top-Down clustering
algorithms, but popular algorithms include fuzzy k-means [3], Kohonen maps
[24], and competitive learning [44].

Recently, with the advent of kernel-based methods several algorithms for clus-
tering using kernels have been suggested (e.g. [2]). The basic idea behind these
algorithms is to map the data into a higher dimension using a non-linear function
of the input features, and to cluster the data using simple clustering algorithms
at the higher dimension. More details regarding kernels are given in the Classi-
fication section of this paper. One of the main advantages of kernel methods is
that simple clusters (for example, ellipsoid clusters) formed in a higher dimen-
sion correspond to complex clusters in the input space. These methods seem to
provide excellent clustering results, with reasonable computational costs.
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A related class of clustering algorithms are the Spectral Clustering meth-
ods [37, 11]. These methods first map the data into a matrix representing the
distance between the input patterns. The matrix is then projected onto its k
largest eigenvectors, and the clustering is performed on this projection. These
methods demonstrated impressive results on several datasets, with computa-
tional costs slightly higher than those of kernel-based algorithms.

The K-means clustering algorithm

1. Begin initialize N random cluster centers.
2. Assign each of the data points the nearest of the N cluster centers.
3. Recompute the cluster centers by averaging the points assigned to each cluster.
4. Repeat steps 2-4 until the there is no change in the location of the cluster centers.
5. Return the cluster centers.

5 Classification

Classification, the final stage of a pattern classifier, is the process of assigning la-
bels to test patterns, based on previously labeled training patterns. This process
is commonly divided into a learning phase, where the classification algorithm is
trained, and a classification phase, where the algorithm labels new data.

The general model for statistical pattern classification is one where patterns
are drawn from an unknown distribution P , which depends on the label of the
data (i.e., P (x|ωi) i = 1, . . . , N , where N is the number of labels in the data).
During the learning phase the classification algorithm is trained with the goal
of minimizing the error that will be obtained when classifying some test data.
This error is known as the risk or the expected loss.

When discussing the pros and cons of classification algorithms, it is important
to set criteria for assessing these algorithms. In the following pages we describe
several classification algorithms and later summarize (in table 1) their strong
and weak points with regard to the following points:

– How small are the classification errors reached by the algorithm?
– What is the computational cost and the memory requirements for both train-

ing and testing?
– How difficult is it for a novice user to build and train an efficient classifier?
– Is the algorithm able to learn on-line (i.e. as the data appears, allowing each

data point to be addressed only once)?
– Can one gain insight about the problem from examining the trained classi-

fier?

It is important to note that when discussing the classification errors of clas-
sifiers one is usually interested in the errors obtained when classifying test data.
Many classifiers can be trained to classify all the training data correctly. This

Fig. 3. Pseudo-code of the K-means clustering algorithm
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does not imply that they will perform well on unseen test data. In fact, it is more
often the case that if a classification algorithm reduces the training set error to
zeros it has been over-fitted to the training data. Section 6 discusses methods
that can be applied in order to avoid over-fitting. A good classifier should be able
to generalize from the training data, i.e. learn a set of rules from the training
data that will then be used to classify the test data.

The first question one should address in the context of classification is, is
there an optimal classification rule (with regard to the classification error)? Sur-
prisingly, such a rule exists, but in practice one can rarely use it. The optimal
classification rule is the Bayes rule. Suppose that we wish to minimize the ex-
pected loss function: R (ωi|x) =

∑
L (ωi, ωj) P (ωj |x) where L is the loss function

for deciding on class i given that the correct class is class j. If the zero/one loss
is used (i.e. a wrong decision entails a loss of one, and a correct decision re-
sults in a loss of zero) the Bayes rule simplifies to the Maximum Aposteriory
(MAP) rule, which requires that we label an input sample x with the label i if
P (ωi|x) > P (ωj |x) for all j �= i.

As mentioned above, it is usually impossible to use the Bayes rule because it
requires full knowledge of the class-conditional densities of the data. Thus, one
is frequently left with one of two options. If a model for the class-conditional
densities is known (for example, if it is known that the data consists of two
Gaussians for one class and a single uniform distribution for the other class), one
can use plug-in rules to build a classifier. Here, given the model, its parameters
are estimated, and then the MAP rule can be used. If a model for the data
cannot be provided, classifiers can proceed by estimating the density of the data
or the decision boundaries between the different classes.

The simplest plug-in model for data is to assume that each class of data is
drawn from a single Gaussian. Under this assumption, the mean and variance of
each class is estimated, and the labeling of test points is achieved through the
MAP rule. If the data is known to contain more than one variate (e.g. Gaussian
or uniform) distribution, the parameters of these distributions can be computed
through algorithms such as Expectation-Maximization (EM) [12] algorithm. In
order to operate the EM algorithm, the number of components in each class
must be known in advance. This is not always simple, and an incorrect number
might result in an erroneous solution. It is possible to alleviate this effect by
estimating the number of components in the data using ML-II [29] or MDL [1].

Most classification algorithms do not attempt to find or even to approximate
the Bayes decision region. Instead, these algorithms classify points by estimating
decision regions or through estimation of densities. Arguably the simplest of
these methods is the k-Nearest Neighbor classifier. Here the k points of the
training data closest to the test point are found, and a label is given to the test
point by a majority vote between the k points. This method is highly intuitive
and attains a remarkably low classification errors, but it is computationally
intensive and requires a large memory to store the training data.

Another intuitive class of classification algorithms are decision trees. These
algorithms solve the classification problem by repeatedly partitioning the input
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Fig. 4. An example a decision tree. Classification of a new test point is achieved by
moving from top to bottom along the branches of the tree, starting from the root node,
until a terminal node (square) is reached

space, so as to build a tree whose nodes are as pure as possible (that is, they
contain points of a single class). An example of a tree for classifying vertebrates
into classes is shown in 4. Classification of a new test point is achieved by moving
from top to bottom along the branches of the tree, starting from the root node,
until a terminal node is reached. Decision trees are simple yet effective classifi-
cation schemes for small datasets. Large datasets tend to result in complicated
trees, which in turn require a large memory for storage. There is considerable
literature on methods for simplifying and pruning decision trees (for example
[30]). Another drawback of decision trees is their relative sensitivity to noise,
especially if the size of the training data is small. The most commonly used
algorithms for building decision trees, all developed by Quinlan, are CART [6],
ID3 [42], and C4.5 [43].

An important approach to classification is through estimation of the den-
sity of data for each of the classes and classifying test points according to the
maximum posterior probability. A useful algorithm for density estimation is the
Parzen windows estimation[39]. Parzen windows estimate the probability of a
point in the input space by weighing training points using a Gaussian window
function (the farther a training sample is from the test sample, the lower its
weight). This method is, however, expensive both computationally and memory
wise. Furthermore, many training points are required for correct estimation of
the class densities.

Another approach for classification is to optimize a functional mapping from
input patterns to output labels so that the training error will be as small as
possible. If, for example, we assume a linear mapping (i.e. that the classifier
takes the form of a weighted sum of the input patterns), it is possible to find a
closed-form solution to the optimization (under a least-squares criterion) through
the Moore-Penrose pseudo-inverse. Suppose the training patterns are placed in
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a matrix of size N × D where D is the input dimension and N the number of
examples, and that the corresponding labels are placed in a N × 1 vector T . We
wish to find a weight vector w so that:

P · w = T

The least-squares (LS) solution to this problem is:

w =
(
PT · P

)−1 · PT · T

Assuming that the labels of the data are either −1 or +1, the labeling of a
new test point x will be:

t̂ = sign
(
wT · x

)
=

{
+1 if wT · x > 0
−1 if wT · x < 0

LS is extremely efficient in both memory requirement and computational
effort, but it is usually too simplistic a model to obtain sufficiently good results
for the data.

The optimization approach to pattern classification has been utilized in nu-
merous other algorithms. An interesting example is the use of Genetic Pro-
gramming (GP) for classification. Genetic algorithms are computational models
inspired by evolution [55]. As such, they encode potential solutions to an opti-
mization problem as a chromosome-like data structure and apply recombination
operators on these structures. These recombination operators are designed so as
to gradually improve the solutions, much like evolution improves individuals in
a population. In genetic programming the encoded solution is a function, and
the goal is to search in function space for a mapping of inputs to labels that
will reduce the training error. GP can sometimes find a very good solution with
both a low error and small computational and memory requirements, but there
is no proof that it will converge (At all or to a good solution) and thus it is not
a popular algorithm.

Perhaps one of the commonly used approaches to classification that solves an
optimization problem are Neural Networks (NN). Neural networks (suggested
first by Alan Turing [51]) are a computational model inspired by the connectiv-
ity of neurons in animate nervous systems. A further boost to their popularity
came with the proof that they can approximate any function mapping via the
Universal Approximation Theorem [22]. A simple scheme for a neural network is
shown in 5. Each circle denotes a computational element referred to as a neuron.
A neuron computes a weighted sum of its inputs, and possibly performs a non-
linear function on this sum. If certain classes of nonlinear functions are used, the
function computed by the network can approximate any function (specifically
a mapping from the training patterns to the training targets), provided enough
neurons exist in the network. Common nonlinear functions are the sign function
and the hyperbolic tangent.

The architecture of neural networks is not limited to the feed-forward struc-
ture shown in Figure 5. Many other structures have been suggested, such as
recurrent NN, where the output is fed back as an input to the net, networks
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Fig. 5. A schematic diagram of a neural network. Each circle in the hidden and output
layer is a computational element known as a neuron

with multiple outputs, and networks where each of the neurons activates only if
the input pattern is in a certain region of the input space (an example of which
are radial-basis function (RBF) networks).

If a single neuron exists in a network, it is usually referred to as a perceptron.
Perceptrons find a linear separating hyperplane and proof can be given to show
that it will converge to a solution, if one exists. There are many algorithms for
training (i.e. finding the weight vector for the perceptron): Batch and stochastic,
on-line and off-line, with and without memory [15]. The perceptron is a good
choice for an on-line linear classifier. It shares the same pros and cons as the LS
classifier, with the additional drawback that it might not converge if no linear
separation exists. However, for off-line applications it is usually simpler to use
the LS algorithm.

Multiple-layered NNs are far more difficult to train. Indeed this was a ma-
jor obstacle in the development of NNs until an efficient algorithm for training
was developed. This algorithm is known as the backpropagation algorithm, so-
called because the errors that are the driving force in the training (if there is
no error, there is no need to change the weights of the NN) are propagated
from the output layer, through the hidden layers, to the input layer. This algo-
rithm, whether in batch or stochastic mode, enables the network to be trained
according to the need. Further advancement was attained through second-order
methods for training, which achieve faster convergence. Among these we note
the conjugate-gradient descent (CGD) algorithm [36] and Quickprop [18], both
of which significantly accelerate network training.

NNs have significant advantages in memory requirements and classification
speed, and have shown excellent results on real-world problems [26]. Neverthe-
less, they suffer from major drawbacks. Among these are the difficulty in deciding
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Algorithm Classification Computational Memory Difficulty to On-line Insight from
error cost requirements Implement the classifier

Expectation- Low Medium Small Low No Yes
Maximization

(EM)
Nearest Medium- High High Low No No
neighbor low
Decision Medium Medium Medium Low No Yes

trees
Parzen Low High High Low No No

windows
Linear least High Low Low Low Yes Yes
squares (LS)

Genetic Medium- Medium Low Low No Some
programming low

Neural Low Medium Low High Yes No
Networks
Ada-Boost Low Medium Medium Medium No No

Support vector Low Medium Low Medium Yes Some
machines
(SVM)

on network architecture as well as several other network parameters, and that
the resulting classifier is a ”black box”, where it is difficult to understand why
the network training resulted in a certain set of weights. Finally, contrary to
other classification algorithms, efficient training of NNs is also dependent on
several ”tricks of the trade” such as normalizing the inputs, setting the initial
weight values, etc. This makes it difficult for the novice to use NN effectively.

An interesting and extremely useful approach to classification is to use simple
classifiers as building blocks for constructing complicated decision regions. This
approach is known as Boosting. Schematically, we first train a simple (or weak)
classifier for the data. Then, those points of the train-set that are incorrectly
classified are located and another weak classifier is trained so as to improve the
classification of these incorrectly labeled points. This process is repeated until a
sufficiently low training error is reached.

The training of the weak classifiers can be performed by either drawing points
from the training data with a probability inversely proportional to the distance
of the points from the decision region or by selecting a cluster of the incorrectly
trained points. In the first case, the algorithm is known as AdaBoost [19], which
is the most popular boosting algorithm. In the second case, the algorithm is the
Local Boosting algorithm [31].

Boosting has been shown to give very results on many data-sets. Its compu-
tational cost is reasonably low, as are its memory requirements. Thus, boosting
is one of the most useful classification algorithms.

The last type of classification algorithm we discuss in this introduction is the
Support Vector Machine (SVM) classifier. This classifier is the result of
seminal work by Boser, Guyon, and Vapnik [5] and later others. SVM draws on
two main practical observations:

Table 1. Comparison of the reviewed classification algorithms
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1. At a sufficiently high dimension, patterns are orthogonal to each other, and
thus it is easier to find a separating hyperplane for data in a high dimension.

2. Not all patterns are necessary for finding a separating hyperplane. In fact,
it is sufficient to use only those points that are near the boundary between
groups for constructing the boundary.

An SVM classifier is a linear classifier which finds the hyperplane that sepa-
rates the data with the largest margin(i.e. the distance between the hyperplane
and the closest data point) possible, built after transforming the data into a
high dimension (known as the feature space). Let us begin with the second part
of the process - the separating hyperplane. A linear separating hyperplane is a
decision function in the form

f (x) = sign (〈w, x〉 + b)

where x is the input pattern, w is the weight vector, b is a bias term, and 〈·, ·〉
denotes the inner product.

If the data is to be classified correctly, this hyperplane should ensure that

yi · (〈w, xi〉 + b) > 0 for all i = 1, . . . , m

assuming that y ∈ {−1, +1}.
There is one separating hyperplane that maximizes the margin separating

the data, which is attractive since this hyperplane gives good generalization
performance[46]. In order to find this hyperplane we need to minimize ‖w‖2.

Thus the SVM problem can be written as:

minimize 1
2 ‖w‖2

subject to yi · (〈w, xi〉 + b) ≥ 1 for all i = 1, . . . , m

(The right hand side of the bottom equation was changed to one instead
of zero otherwise the minimum of w would be the trivial solution. In fact, any
positive number would suffice)

This constrained minimization problem is solved using Lagrange multipliers,
which results in a dual optimization problem:

maximize W (α) =
∑m

i=1 αi − 1
2

∑m
i,j=1 αiαjyiyj 〈xi, xj〉

s.t. αi ≥ 0,
∑m

i=1 αiyi = 0

The coefficients of a corresponding to input patterns that are not used for
construction of the class boundary should be zero. The remaining coefficients are
known as the support vectors. The above optimization problem can be solved
in several ways, for example: Through a perceptron, which finds the largest
margin hyperplane separating the data[15]; By use of quadratic programming
optimization algorithms, which solve the optimization problem [15]; or through
other efficient optimization algorithms such as the sequential minimal optimiza-
tion (SMO) algorithm [40].
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Classification of new samples is performed using the equation

y = sign

(
m∑

i=1

yiαi 〈x, xi〉 + b

)

As noted above, it is useful to map the input patterns into a high dimensional
space. This could be done by mapping each input pattern through a function
so that x̃ = ϕ (x). However, in practice, if the function maps the data into
a very high dimension, it would be problematic to compute and to store the
results of the mapping. If the mapping is done into an infinite dimensional space
this would be impossible. Fortunately, this problem can be avoided through a
substitute known as the kernel trick[5]. Note that in the optimization problem
above, the input patterns only appear in an inner product of pairs of patterns.
Thus, instead of mapping each sample to a higher dimension and then performing
the inner product, it is possible (for certain classes of kernels) to first compute
the inner product between patterns and only then compute the mapping on a
scalar. Thus, in the equations above we now replace the inner products 〈x, x′〉
with k(x, x′) where k is the kernel function. The kernel function used for mapping
should conform to conditions known as the Mercer conditions [22]. Examples of
such functions are polynomials, radial basis functions (Gaussian functions), and
hyperbolic tangents.

SVMs have been studied extensively[46]. They have been extended in many
directions. Some notable examples include:

1. Cases where the optimal hyperplane does not exist, through the introduction
of a penalty term which allows some training patterns to be incorrectly
classified [10].

2. Single class learning (outlier detection) [45].
3. Online learning [17].
4. Feature selection [20, 54].
5. Incremental classification so as to reduce the computational cost of SVMs[7].

It is difficult to find thorough comparative studies of classification algorithms.
Several such studies (for example [33, 46]) point to the conclusion that a few
classification algorithms, namely SVM, AdaBoost, Kernel Fisher discriminant,
and Neural networks achieve similar results with regard to error rates. Lately,
the Relevance Vector Machine [49], a kernel method stemming from Bayesian
learning, has also joined this group of algorithms. However, these algorithm differ
greatly in the other factors outlined at the beginning of this chapter.

Finally, we note several practical points of importance which one should take
into account when designing classifiers:

1. In order to reduce the likelihood of over-fitting the classifier to the training
data, the ratio of the number of training examples to the number of features
should be at least 10:1. For the same reason the ratio of the number of train-
ing examples to the number of unknown parameters should be at least 10:1.

2. It is important to use proper error-estimation methods (see next section),
especially when selecting parameters for the classifier.
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3. Some algorithms require the input features to be scaled to similar ranges.
This is especially evident those that use some kind of a weighted average of
the inputs such as neural networks, SVM, etc.

4. There is no single best classification algorithm!

Thus far we have implicitly only discussed problems where there are two
classes of data, i.e. the labels can take one of two values. In many applications
it is necessary to distinguish between more than two classes. Some classifiers
are suitable for such applications with only minor changes. Examples of such
classifiers are the LS classifier, the Nearest Neighbor classifier, and decision trees.
Neural networks require a minor modification to work with multiclass problems.
Instead of having a single output neuron there should be as many output neurons
as labels. Each of the output neurons is trained to respond to data of one class,
and the strongest activated neuron is taken to be the predicted class label. SVMs
have been modified to solve multiclass problems through a slight change in the
objective function to the minimization procedure [46].

Not all classifiers are readily modifiable to multiclass applications. The strat-
egy for solution of such cases is to train several classifiers and add a gating
network that decides on the predicted label based on the output of these clas-
sifiers. The simplest example of such a strategy is to train as many classifiers
as classes where each classifier is trained to respond to one class of data. The
gating network then outputs the number of the classifier that responded to a
given input. This type of solution is called a one-against-all solution. The main
drawbacks of this solution are that it is heuristic, that the classifiers are solving
problems that are very different in their difficulty, and that, if the output of
the classifiers is binary, there might be more than one possible class for each
output. A variation on the one-against-all solution is to train classifiers to dis-
tinguish between each pair of classes[21]. This solution has the advantage that
the individual classifiers are trained on smaller datasets. The main drawback
of this solution is the large number of classifiers that are needed to be trained
((N − 1) N/2).

An elegant solution to multiclass problems was suggested in [13]. That ar-
ticle showed the parallel between multiclass problems and the study of error-
correcting codes for communication applications. In the latter, bits of data are
sent over a noisy channel. At the receiver, the data is reconstructed through
thresholding of the received bit. In order to reduce the probability of error, ad-
ditional bits of data are sent to the receiver. These bits are a function of the
data bits, and are designed so that they can correct errors that occurred dur-
ing transmission (if only a small numbers of error appeared). The functions by
which these extra bits are computed are known as error-correcting codes. The
application of error-correcting codes to multiclass problems is straightforward.
Classifiers are trained according to an error-correcting code, and their output
to test patterns is interpreted as though they were the received bits of informa-
tion. This solution requires the addition of classifiers according to the specific
error-correcting code (for example, the simple Hamming code requires 2N −N−1
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classifiers for N classes of data), but if a few of the classifiers are in error, the
total output would still be correct.

In practice, the one-against-all method is usually not much worse than the
more sophisticated approaches described above. When selecting the solution,
one should consider training times and the available memory, in addition to the
overall accuracy of the system.

The last topic we address in the context of classification is one-class learning.
This is an interesting philosophical subject, as well as an extremely practical
one. We usually learn by observing different examples (Car vs. Plane, Cat vs.
Dog, etc). Is it possible to learn by observing examples of only a single class?
(e.g. would a child who only saw cats be able to say that a dog, first seen, is not
a cat?). In the framework of classification, the object of single-class learning is to
distinguish between objects of one kind (the target object) and all other possible
objects)[48], where the latter are not seen during training. Single-class learning
has been applied to problems such as image retrieval[9], typist identification[38],
and character recognition[46].

The idea behind single-class learning is to identify areas where the data rep-
resenting the target object is of high density. If a test sample appears close to
(or inside) such a high-density area, it would be classified as a target object. If
it is in a low-density area of the input space, it would be classified as a different
object.

The simplest type of single-class algorithm describes the data by a single
Gaussian (with a mean and a covariance matrix). The probability estimate that
a test sample is drawn from this Gaussian is computed, and this measure is
reported to the user. A more sophisticated measure is the Parzen windows esti-
mation of density, or through the use of a multi-Gaussian model, with EM used
for training. Neural networks have also been used for this task training the net-
work to form closed decision surfaces, and labeling points outside these surfaces
as non-target-class data [34].

More recently, single-class SVMs were developed[47]. These are a modification
of the two-class SVM described above, with the SVM attempting to enclose the
data with a sphere in feature space. Any data falling outside this sphere is
deemed not to be of the target class.

6 Error Estimation Techniques

As noted above, the most important factor in the performance of a classifier is
its error rate. This measure is important for assessing if the classifier is useful,
for tuning its parameters[35], and in order to compare it to other classifiers. It is
often difficult to estimate the error rate of a given classifier even if there is full
knowledge of the underlying distribution is available.

In practice, it is desirable to estimate the error rate given a sample data set.
This problem is aggravated if the dataset is small[23]. If the whole dataset is
used to both training the classifier and for estimating its error, there is a serious
danger of over-fitting the classifier to the training data (in the extreme case,
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consider a 1-Nearest Neighbor classifier). Therefore, the data should be split
into training data and testing data.

There are three main methods for splitting the data:

1. Resubstitution: Here the whole dataset is used for both training and testing.
As noted above this method is extremely optimistic. In practice, for small
datasets error estimation obtained using this method is erroneous.

2. Holdout: Part of the data (for example, 80%) is used for training, and the
remaining is used for testing. This method is pessimistically biased, and
different splits of the data will result of different error rates.

3. Cross-validation: The data is divided into N equal sub-sets. The data is
trained using (N-1) sub-sets, and tested on the N-th subset. The process is
repeated until each of the N sub-sets is used as a test set. The error rate is
the average of the N resulting errors. The resulting error rate has a lower
bias than the holdout method. An extreme form of cross-validation is known
as leave-one-out, where the sub-sets contain a single point. The estimate of
leave-one-out is unbiased but it has a large variance and is computationally
expensive to compute.

After computing the error rate of a classifier, we have an estimation of how
well the algorithm will perform on new data. The algorithm should then be
trained using the whole dataset, in preparation of new data.

Although it is desirable to use the error rate as a way to compare the per-
formance of different classification algorithms, this is (surprisingly) still an open
issue for future research. Some researchers have used the Wilcoxon signed-rank
tests for such comparison, although the underlying assumptions of this test are
violated when it is used for such a comparison[14].

7 Summary

The purpose of pattern classification algorithms is to automatically construct
methods for distinguishing between different exemplars, based on their differen-
tiating patterns.

The goal of completely automated learning algorithms is yet to be attained.
Most pattern classification algorithms need some manual parameter tuning to
achieve the best possible performance. More importantly, in most practical appli-
cations, domain knowledge remains crucial for the successful operation of Pattern
Classification algorithms.

Pattern classification has been an object of research for several decades. In
the past decade this research resulted in a multitude of new algorithms, better
theoretic understanding of previous ideas, as well as many successful practical
applications.

Pattern classification remains an exciting domain for theoretic research, as
well as for application of its’ tools to practical problems. Some of the problems
yet to be solved were outlined in previous paragraphs, and a more detailed list
appears in [16].
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Abstract. This chapter describes Lagrange multipliers and some
selected subtopics from matrix analysis from a machine learning per-
spective. The goal is to give a detailed description of a number of math-
ematical constructions that are widely used in applied machine learning.

1 Introduction

The topics discussed in this chapter are ones that I felt are often assumed in ap-
plied machine learning (and elsewhere), but that are seldom explained in detail.
This work is aimed at the student who’s taken some coursework in linear meth-
ods and analysis, but who’d like to see some of the tricks used by researchers
discussed in a little more detail. The mathematics described here is a small
fraction of that used in machine learning in general (a treatment of machine
learning theory would include the mathematics underlying generalization error
bounds, for example)1, although it’s a largely self-contained selection, in that
derived results are often used downstream. I include two kinds of homework,
‘exercises’ and ‘puzzles’. Exercises start out easy, and are otherwise as you’d
expect; the puzzles are exercises with an added dose of mildly Machiavellian
mischief.

Notation: vectors appear in bold font, and vector components and matrices
in normal font, so that for example v

(a)
i denotes the i’th component of the

a’th vector v(a). The symbol A � 0 (�) means that the matrix A is positive
(semi)definite. The transpose of the matrix A is denoted AT , while that of the
vector x is denoted x′.

2 Lagrange Multipliers

Lagrange multipliers are a mathematical incarnation of one of the pillars of
diplomacy (see the historical notes at the end of this section): sometimes an
indirect approach will work beautifully when the direct approach fails.

1 My original lectures also contained material on functional analysis and convex opti-
mization, which is not included here.

O. Bousquet et al. (Eds.): Machine Learning 2003, LNAI 3176, pp. 21–40, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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2.1 One Equality Constraint

Suppose that you wish to minimize some function f(x), x ∈ Rd, subject to
the constraint c(x) = 0. A direct approach is to find a parameterization of
the constraint such that f , expressed in terms of those parameters, becomes
an unconstrained function. For example, if c(x) = x′Ax − 1, x ∈ Rd, and if
A � 0, you could rotate to a coordinate system and rescale to diagonalize the
constraints to the form y′y = 1, and then substitute with a parameterization
that encodes the constraint that y lives on the (d − 1)-sphere, for example

y1 = sin θ1 sin θ2 · · · sin θd−2 sin θd−1

y2 = sin θ1 sin θ2 · · · sin θd−2 cos θd−1

y3 = sin θ1 sin θ2 · · · cos θd−2

· · ·
Unfortunately, for general constraints (for example, when c is a general poly-

nomial in the d variables) this is not possible, and even when it is, the above
example shows that things can get complicated quickly. The geometry of the
general situation is shown schematically in Figure 1.

Fig. 1. At the constrained optimum, the gradient of the constraint must be parallel to
that of the function

On the left, the gradient of the constraint is not parallel to that of the func-
tion; it’s therefore possible to move along the constraint surface (thick arrow) so
as to further reduce f . On the right, the two gradients are parallel, and any mo-
tion along c(x) = 0 will increase f , or leave it unchanged. Hence, at the solution,
we must have ∇f = λ∇c for some constant λ; λ is called an (undetermined)
Lagrange multiplier, where ‘undetermined’ arises from the fact that for some
problems, the value of λ itself need never be computed.

2.2 Multiple Equality Constraints

How does this extend to multiple equality constraints, ci(x) = 0, i = 1, . . . , n?
Let gi ≡ ∇ci. At any solution x∗, it must be true that the gradient of f has no
components that are perpendicular to all of the gi, because otherwise you could
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move x∗ a little in that direction (or in the opposite direction) to increase (de-
crease) f without changing any of the ci, i.e. without violating any constraints.
Hence for multiple equality constraints, it must be true that at the solution x∗,
the space spanned by the gi contains the vector ∇f , i.e. there are some constants
λi such that ∇f(x∗) =

∑
i λigi(x∗). Note that this is not sufficient, however -

we also need to impose that the solution is on the correct constraint surface
(i.e. ci = 0 ∀i). A neat way to encapsulate this is to introduce the Lagrangian
L ≡ f(x) − ∑

i λici(x), whose gradient with respect to the x, and with respect
to all the λi, vanishes at the solution.

Puzzle 1: A single constraint gave us one Lagrangian; more constraints must
give us more information about the solution; so why don’t multiple constraints
give us multiple Lagrangians?

Exercise 1. Suppose you are given a parallelogram whose side lengths you can
choose but whose perimeter is fixed. What shaped parallelogram gives the largest
area? (This is a case where the Lagrange multiplier can remain undetermined.)
Now, your enterprising uncle has a business proposition: to provide cheap storage
in floating containers that are moored at sea. He wants to build a given storage
facility out of a fixed area of sheet metal which he can shape as necessary. He
wants to keep construction simple and so desires that the facility be a closed
parallelepiped (it has to be protected from the rain and from the occasional wave).
What dimensions should you choose in order to maximize the weight that can be
stored without sinking?

Exercise 2. Prove that the distance between two points that are constrained to
lie on the n-sphere is extremized when they are either antipodal, or equal.

2.3 Inequality Constraints

Suppose that instead of the constraint c(x) = 0 we have the single constraint
c(x) ≤ 0. Now the entire region labeled c(x) < 0 in Figure 1 has become feasible.
At the solution, if the constraint is active (c(x) = 0), we again must have that
∇f is parallel to ∇c, by the same argument. In fact we have a stronger condition,
namely that if the Lagrangian is written L = f+λc, then since we are minimizing
f , we must have λ ≥ 0, since the two gradients must point in opposite directions
(otherwise a move away from the surface c = 0 and into the feasible region would
further reduce f). Thus for an inequality constraint, the sign of λ matters, and
so here λ ≥ 0 itself becomes a constraint (it’s useful to remember that if you’re
minimizing, and you write your Lagrangian with the multiplier appearing with
a positive coefficient, then the constraint is λ ≥ 0). If the constraint is not
active, then at the solution ∇f(x∗) = 0, and if ∇c(x∗) 	= 0, then in order that
∇L(x∗) = 0 we must set λ = 0 (and if in fact if ∇c(x∗) = 0, we can still
set λ = 0). Thus in either case (active or inactive), we can find the solution
by requiring that the gradients of the Lagrangian vanish, and we also have
λc(x∗) = 0. This latter condition is one of the important Karush-Kuhn-Tucker
conditions of convex optimization theory [15, 4], and can facilitate the search for
the solution, as the next exercise shows.
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For multiple inequality constraints, again at the solution ∇f must lie in the
space spanned by the ∇ci, and again if the Lagrangian is L = f +

∑
i λici,

then we must in addition have λi ≥ 0 ∀i (since otherwise f could be reduced
by moving into the feasible region); and for inactive constraints, again we (can,
usually must, and so might as well) set λi = 0. Thus the above KKT condition
generalizes to λici(x∗) = 0 ∀i. Finally, a simple and often useful trick is to solve
ignoring one or more of the constraints, and then check that the solution satisfies
those constraints, in which case you have solved the problem; we’ll call this the
free constraint gambit below.

Exercise 3. Find the x ∈ Rd that minimizes
∑

i x2
i subject to

∑
i xi = 1. Find

the x ∈ Rd that maximizes
∑

i x2
i subject to

∑
i xi = 1 and xi ≥ 0 (hint: use

λix∗i = 0).

2.4 Cost Benefit Curves

Here’s an example from channel coding. Suppose that you are in charge of four
fiber optic communications systems. As you pump more bits down a given chan-
nel, the error rate increases for that channel, but this behavior is slightly different
for each channel. Figure 2 show a graph of the bit rate for each channel versus
the ‘distortion’ (error rate). Your goal is to send the maximum possible number
of bits per second at a given, fixed total distortion rate D. Let Di be the number

of errored bits sent down the i’th channel. Given a particular error rate, we’d like
to find the maximum overall bit rate; that is, we must maximize the total rate
R ≡ ∑

i=1 Ri subject to the constraint D =
∑

i=1 Di. Introducing a Lagrange
multiplier λ, we wish to maximize the objective function

L =
4∑

i=1

Ri(Di) + λ(D −
4∑

i=1

Di) (1)

Setting ∂L/∂Di = 0 gives ∂Ri/∂Di = λ, that is, each fiber should be oper-
ated at a point on its rate/distortion curve such that its slope is the same for all
fibers. Thus we’ve found the general rule for resource allocation, for benefit/cost

Fig. 2. Total bit rate versus distortion for each system



Some Notes on Applied Mathematics for Machine Learning 25

curves like those shown2 in Figure 2: whatever operating point is chosen for each
system, in order to maximize the benefit at a given cost, the slope of the graph
at that point should be the same for each curve. For the example shown, the
slope of each graph decreases monotonically, and we can start by choosing a
single large value of the slope λ for all curves, and decrease it until the condition∑

i=1 Di = D is met, so in general for m fibers, an m dimensional search prob-
lem has been reduced to a one dimensional search problem. We can get the same
result informally as follows: suppose you had just two fibers, and were at an oper-
ating point where the slope s1 of the rate/distortion graph for fiber 1 was greater
than the slope s2 for fiber 2. Suppose you then adjusted things so that fiber 1 sent
one more errored bit every second, and fiber 2 sent one fewer. The extra number
of bits you can now send down fiber 1 more than offsets the fewer number of bits
you must send down fiber 2. This will hold whenever the slopes are different. For
an arbitrary number of fibers, we can apply this argument to any pair of fibers,
so the optimal point is for all fibers to be operating at the same slope.

Puzzle 2: Suppose that instead of fibers, you have four factories making widgets,
that the y-axis in Figure 2 represents the total cost for making ni widgets, and
that the x-axis represents the number ni of widgets made by the i’th factory. The
curves have the same shape (they drop off at larger ni due to the economies of
scale). Does the above argument mean that, to produce a total, fixed number of
widgets, in order to minimize the cost, each factory should be operated at the
same slope on its curve as all the other factories?

2.5 An Isoperimetric Problem

Isoperimetric problems - problems for which a quantity is extremized while a
perimeter is held fixed - were considered in ancient times, but serious work
on them began only towards the end of the seventeenth century, with a minor
battle between the Bernoulli brothers [14]. It is a fitting example for us, since the
general isoperimetric problem had been discussed for fifty years before Lagrange
solved it in his first venture into mathematics [1], and it provides an introduction
to functional derivatives, which we’ll need. Let’s consider a classic isoperimetric
problem: to find the plane figure with maximum area, given fixed perimeter.
Consider a curve with fixed endpoints {x = 0, y = 0} and {x = 1, y = 0}, and
fixed length ρ. We will assume that the curve defines a function, that is, that for
a given x ∈ [0, 1], there corresponds just one y. We wish to maximize the area
between the curve and the x axis, A =

∫ 1
0 ydx, subject to the constraint that

the length, ρ =
∫ 1
0

√
1 + y′2dx, is fixed (here, prime denotes differentiation with

respect to x). The Lagrangian is therefore

L =
∫ 1

0
ydx + λ

(∫ 1

0

√
1 + y′2dx − ρ

)

(2)

2 This seemingly innocuous statement is actually a hint for the puzzle that follows.
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Two new properties of the problem appear here: first, integrals appear in
the Lagrangian, and second, we are looking for a solution which is a function,
not a point. To solve this we will use the calculus of variations, introduced by
Lagrange and Euler. Denote a small variation of a function3 f by δf : that is,
replace f(x) by f(x) + δf(x) everywhere, where δf is chosen to vanish at the
boundaries, that is, δf(0) = δf(1) = 0 (note that δf is also a function of x).
Here, y is the variable function, so the change in L is

δL =
∫ 1

0
δydx + λ

∫ 1

0
(1 + y′2)−1/2y′δy′dx

By using the facts that δy′ = δ dy
dx = d

dxδy and that the variation in y vanishes
at the endpoints, integrating by parts then gives:

δL =
∫ 1

0

(
1 − λy′′(1 + y′2)−3/2

)
δydx

⇒ 1 −λy′′(1 + y′2)−3/2 ≡ 1 − λκ = 0

where κ is the local curvature, and where the second step results from our being
able to choose δy arbitrarily on (0, 1), so the quantity multiplying δy in the
integrand must vanish (imagine choosing δy to be zero everywhere except over
an arbitrarily small interval around some point x ∈ [0, 1]). Since the only plane
curves with constant curvature are the straight line and the arc of circle, we
find the result (which holds even if the diameter of the circle is greater than
one). Note that, as often happens in physical problems, λ here has a physical
interpretation (as the inverse curvature); λ is always the ratio of the norms of
∇f and ∇c at the solution, and in this sense the size of λ measures the influence
of the constraint on the solution.

2.6 Which Univariate Distribution has Maximum Entropy?

Here we use differential entropy, with the understanding that the bin width
is sufficiently small that the usual sums can be approximated by integrals, but
fixed, so that comparing the differential entropy of two distributions is equivalent
to comparing their entropies. We wish to find the function f that minimizes

∫ ∞

−∞
f(x) log2 f(x)dx, x ∈ R (3)

subject to the four constraints

f(x) ≥ 0 ∀x,

∫ ∞

−∞
f(x) = 1,

∫ ∞

−∞
xf(x) = c1

∫ ∞

−∞
x2f(x) = c2

3 In fact Lagrange first suggested the use of the symbol δ to denote the variation of a
whole function, rather than that at a point, in 1755 [14].
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Note that the last two constraints, which specify the first and second mo-
ments, is equivalent to specifying the mean and variance. Our Lagrangian is
therefore:

L =
∫ ∞

−∞
f(x) log2 f(x)dx + λ

(

1 −
∫ ∞

−∞
f(x)

)

+ β1

(

c1 −
∫ ∞

−∞
xf(x)dx

)

+ β2

(

c2 −
∫ ∞

−∞
x2f(x)dx

)

where we’ll try the free constraint gambit and skip the positivity constraint. In
this problem we again need the calculus of variations. In modern terms we use
the functional derivative, which is just a shorthand for capturing the rules of the
calculus of variations, one of which is:

δg(x)
δg(y)

= δ(x − y) (4)

where the right hand side is the Dirac delta function. Taking the functional
derivative of the Lagrangian with respect to f(y) and integrating with respect
to x then gives

log2 f(y) + log2(e) − λ − β1y − β2y
2 = 0 (5)

which shows that f must have the functional form

f(y) = C exp(λ+β1y+β2y2) (6)

where C is a constant. The values for the Lagrange multipliers λ, β1 and β2
then follow from the three equality constraints above, giving the result that the
Gaussian is the desired distribution. Finally, choosing C > 0 makes the result
positive everywhere, so the free constraint gambit worked.

Puzzle 3: For a given event space, say with N possible outcomes, the maximum
entropy is attained when pi = 1/N ∀i, that is, by the uniform distribution. That
doesn’t look very Gaussian. What gives?

Exercise 4. What distribution maximizes the entropy for the class of univariate
distributions whose argument is assumed to be positive, if only the mean is fixed?
How about univariate distributions whose argument is arbitrary, but which have
specified, finite support, and where no constraints are imposed on the mean or
the variance?

Puzzle 4: The differential entropy for a uniform distribution with support in
[−C, C] is

h(PU ) = −
∫ C

−C

(1/2C) log2(1/2C)dx

= − log2(1/2C) (7)

This tends to ∞ as C → ∞. How should we interpret this? Find the variance
for any fixed C, and show that the univariate Gaussian with that variance has
differential entropy greater than h.



28 C.J.C. Burges

2.7 Maximum Entropy with Linear Constraints

Suppose that you have a discrete probability distribution Pi,
∑n

i Pi = 1, and
suppose further that the only information that you have about the distribution
is that it must satisfy a set of linear constraints:

∑

i

αjiPi = Cj , j = 1, . . . , m (8)

The maximum entropy approach (see [5], for example) posits that, subject
to the known constraints, our uncertainty about the set of events described by
the distribution should be as large as possible, or specifically, that the mean
number of bits required to describe an event generated from the constrained
probability distribution be as large as possible. Maximum entropy provides a
principled way to encode our uncertainty in a model, and it is the precursor
to modern Bayesian techniques [13]. Since the mean number of bits is just the
entropy of the distribution, we wish to find that distribution that maximizes4

−
∑

i

Pi log Pi +
∑

j

λj(Cj −
∑

i

αjiPi) + µ(
∑

i

Pi − 1) −
∑

i

δiPi (9)

where the sum constraint on the Pi is imposed with µ, and the positivity of each
Pi with δi (so δi ≥ 0 and at the maximum, δiPi = 0 ∀i)5. Differentiating with
respect to Pk gives

Pk = exp(−1 + µ − δk −
∑

j

λjαjk) (10)

Since this is guaranteed to be positive we have δk = 0 ∀k. Imposing the sum
constraint then gives Pk = 1

Z exp(−∑
j λjαjk) where the “partition function” Z

is just a normalizing factor. Note that the Lagrange multipliers have shown us the
form that the solution must take, but that form does not automatically satisfy
the constraints - they must still be imposed as a condition on the solution. The
problem of maximizing the entropy subject to linear constraints therefore gives
the widely used logistic regression model, where the parameters of the model
are the Lagrange multipliers λi, which are themselves constrained by Eq. (8).
For an example from the document classification task of how imposing linear
constraints on the probabilities can arise in practice, see [16].

2.8 Some Algorithm Examples

Lagrange multipliers are ubiquitous for imposing constraints in algorithms. Here
we list their use in a few modern machine learning algorithms; in all of these ap-
plications, the free constraint gambit proves useful. For support vector machines,
the Lagrange multipliers have a physical force interpretation, and can be used to

4 The factor log2 e can be absorbed into the Lagrange multipliers.
5 Actually the free constraint gambit would work here, too.
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find the exact solution to the problem of separating points in a symmetric sim-
plex in arbitrary dimensions [6]. For the remaining algorithms mentioned here,
see [7] for details on the underlying mathematics. In showing that the principal
PCA directions give minimal reconstruction error, one requires that the projec-
tion directions being sought after are orthogonal, and this can be imposed by
introducing a matrix of multipliers. In locally linear embedding [17], the trans-
lation invariance constraint is imposed for each local patch by a multiplier, and
the constraint that a solution matrix in the reconstruction algorithm be orthog-
onal is again imposed by a matrix of multipliers. In the Laplacian eigenmaps
dimensional reduction algorithm [2], in order to prevent the collapse to trivial
solutions, the dimension of the target space is enforced to be d > 0 by requiring
that the rank of the projected data matrix be d, and again this imposed using a
matrix of Lagrange multipliers.

Historical Notes. Joseph Louis Lagrange was born in 1736 in Turin. He was one
of only two of eleven siblings to survive infancy; he spent most of his life in Turin,
Berlin and Paris. He started teaching in Turin, where he organized a research
society, and was apparently responsible for much fine mathematics that was
published from that society under the names of other mathematicians [3, 1]. He
’believed that a mathematician has not thoroughly understood his own work till he
has made it so clear that he can go out and explain it effectively to the first man
he meets on the street’ [3]6. His contributions lay in the subjects of mechanics,
calculus7, the calculus of variations8, astronomy, probability, group theory, and
number theory [14]. Lagrange is at least partly responsible for the choice of base
10 for the metric system, rather than 12. He was supported academically by Euler
and d’Alembert, financed by Frederick and Louis XIV, and was close to Lavoisier
(who saved him from being arrested and having his property confiscated, as
a foreigner living in Paris during the Revolution), Marie Antoinette and the
Abbé Marie. He survived the Revolution, although Lavoisier did not. His work
continued to be fruitful until his death in 1813, in Paris.

3 Some Notes on Matrices

This section touches on some useful results in the theory of matrices that are
rarely emphasized in coursework. For a complete treatment, see for example [12]
and [11]. Following [12], the set of p by q matrices is denoted Mpq, the set of
(square) p by p matrices by Mp, and the set of symmetric p by p matrices by
Sp. We work only with real matrices - the generalization of the results to the
complex field is straightforward. In this section only, we will use the notation
in which repeated indices are assumed to be summed over, so that for example

6 Sadly, at that time there were very few female mathematicians.
7 For example he was the first to state Taylor’s theorem with a remainder [14].
8 . . . with which he started his career, in a letter to Euler, who then generously delayed

publication of some similar work so that Lagrange could have time to finish his work
[1].
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AijBjkCkl is written as shorthand for
∑

j,k AijBjkCkl. Let’s warm up with some
basic facts.

3.1 A Dual Basis

Suppose you are given a basis of d orthonormal vectors e(a) ∈ Rd, a = 1, . . . , d,
and you construct a matrix E ∈ Md whose columns are those vectors. It is a
striking fact that the rows of E then also always form an orthonormal basis. We
can see this as follows. Let the e(a) have components e

(a)
i , i = 1, . . . , d. Let’s

write the vectors constructed from the rows of E as ê so that ê(a)
i ≡ e(i)

a . Then
orthonormality of the columns can be encapsulated as ET E = 1. However since
E has full rank, it has an inverse, and ET EE−1 = E−1 = ET , so EET = 1 (using
the fundamental fact that the left and right inverses of any square matrix are the
same) which shows that the rows of E are also orthonormal. The vectors ê(a) are
called the dual basis to the e(a). This result is sometimes useful in simplifying
expressions: for example

∑
a e

(a)
i e

(a)
j Λ(i, j), where Λ is some function, can be

replaced by Λ(i, i)δij .

3.2 Other Ways to Think About Matrix Multiplication

Suppose you have matrices X ∈ Mmn and Y ∈ Mnp so that XY ∈ Mmp. The
familiar way to represent matrix multiplication is (XY )ab =

∑n
i=1 XaiYib, where

the summands are just products of numbers. However an alternative represen-
tation is XY =

∑n
i=1 xiy′

i, where xi (y′
i) is the i’th column (row) of X (Y ), and

where the summands are outer products of matrices. For example, we can write
the product of a 2 × 3 and a 3 × 2 matrix as

[
a b c
d e f

]
⎡

⎣
g h
i j
k l

⎤

⎦ =
[

a
d

]
[g h]

+
[

b
e

]
[i j]

+
[

c
f

]
[k l]

One immediate consequence (which we’ll use in our description of singular
value decomposition below) is that you can always add columns at the right
of X, and rows at the bottom of Y , and get the same product XY , provided
either the extra columns, or the extra rows, contain only zeros. To see why this
expansion works it’s helpful to expand the outer products into standard matrix
form: the matrix multiplication is just

{(
a 0 0
d 0 0

)

+
(

0 b 0
0 e 0

)

+
(

0 0 c
0 0 f

)

+
}

×
⎧
⎨

⎩

⎛

⎝
g h
0 0
0 0

⎞

⎠ +

⎛

⎝
0 0
i j
0 0

⎞

⎠ +

⎛

⎝
0 0
0 0
k l

⎞

⎠

⎫
⎬

⎭

Along a similar vein, the usual way to view matrix-vector multiplication is
as an operation that maps a vector z ∈ Rn to another vector z′ ∈ Rm: z′ = Xz.
However you can also view the product as a linear combination of the columns
of X: z′ =

∑n
i=1 zixi. With this view it’s easy to see why the result must lie in

the span of the columns of X.
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3.3 The Levi-Civita Symbol

The Levi-Civita symbol9 in d dimensions is denoted εij···k and takes the value
1 if its d indices are an even permutation of 1, 2, 3, · · · , d, the value -1 if an odd
permutation, and 0 otherwise. The 3-dimensional version of this is the fastest
way I know to derive vector identities in three dimensions, using the identity
εijkεimn = δjmδkn − δjnδkm (recall that repeated indices are summed).

Exercise 5. Use the fact that a = b ∧ c can be written in component form
as ai = εijkbjck to derive, in one satisfying line, the vector identity in three
dimensions: (a ∧ b) · (c ∧ d) = (a · c)(b · d) − (a · d)(b · c).

3.4 Characterizing the Determinant and Inverse

The determinant of a matrix A ∈ Mn can be defined as

|A| ≡ 1
n!

εα1α2···αn
εβ1β2···βn

Aα1β1Aα2β2 · · ·Aαnβn
(11)

Exercise 6. Show that also,

|A| = εα1α2···αnA1α1A2α2 · · ·Anαn (12)

We can use this to prove an interesting theorem linking the determinant,
derivatives, and the inverse:

Lemma 1. For any square nonsingular matrix A,

∂|A|
∂Aij

= A−1
ji (13)

Proof.

∂|A|
∂Aij

= εjα2···αnδi1A2α2 · · ·Anαn + εα1j···αnA1α1δi2A3α3 · · ·Anαn + · · ·

so

Akj
∂|A|
∂Aij

= εα1α2···αn(Akα1δi1A2α2 · · ·Anαn + A1α1Akα2δi2A3α3 · · · + · · · )

For any value of i, one and only one term in the sum on the right survives,
and for that term, we must have k = i by antisymmetry of the ε. Thus the right
hand side is just |A|δki. Multiplying both sides on the right by (AT )−1 gives the
result. ��

9 The name ‘tensor’ is sometimes incorrectly applied to arbitrary objects with more
than one index. In factor a tensor is a generalization of the notion of a vector and is
a geometrical object (has meaning independent of the choice of coordinate system);
ε is a pseudo-tensor (transforms as a tensor, but changes sign upon inversion).
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We can also use this to write the following closed form for the inverse:

A−1
ij =

1
|A|(n − 1)!

εjα1α2···αn−1εiβ1β2···βn−1Aα1β1Aα2β2 · · ·Aαn−1βn−1 (14)

Exercise 7. Prove this, using Eqs. (11) and (13).

Exercise 8. Show that, for an arbitrary non-singular square matrix A,
∂A−1

ij

∂Aαβ
= −A−1

iα A−1
βj . (Hint: take derivatives of A−1A = 1).

Exercise 9. The density p(x) for a multivariate Gaussian is proportional to
|Σ|−1/2 exp

(− 1
2 (x − µ)′Σ−1(x − µ)

)
. For n independent and identically dis-

tributed points, the density is p(x1,x2, · · · ,xn|µ, Σ) =
∏

i p(xi|µ, Σ). By taking
derivatives with respect to µ and Σ and using the above results, show that the
maximum likelihood values for the mean and covariance matrix are just their
sample estimates.

Puzzle 5: Suppose that in Exercise 9, n = 2, and that x1 = −x2, so that the
maximum likelihood estimate for the mean is zero. Suppose that Σ is chosen
to have positive determinant but such that x is an eigenvector with negative
eigenvalue. Then the likelihood can be made as large as you like by just scaling
Σ with a positive scale factor, which appears to contradict the results of Exercise
9. What’s going on?

3.5 SVD in Seven Steps

Singular value decomposition is a generalization of eigenvalue decomposition.
While eigenvalue decomposition applies only to square matrices, SVD applies to
rectangular; and while not all square matrices are diagonalizable, every matrix
has an SVD. SVD is perhaps less familiar, but it plays important roles in every-
thing from theorem proving to algorithm design (for example, for a classic result
on applying SVD to document categorization, see [10]). The key observation is
that, given A ∈ Mmn, although we cannot perform an eigendecomposition of A,
we can do so for the two matrices AAT ∈ Sm and AT A ∈ Sn. Since both of
these are positive semidefinite, their eigenvalues are non-negative; if AAT has
rank k, define the ‘singular values’ σ2

i to be its k positive eigenvalues. Below we
will use ‘nonzero eigenvector’ to mean an eigenvector with nonzero eigenvalue,
will denote the diagonal matrix whose i’th diagonal component is σi by diag(σi),
and will assume without loss of generality that m ≤ n. Note that we repeatedly
use the tricks mentioned in Section (3.2). Let’s derive the SVD.

1. AAT has the same nonzero eigenvalues as AT A. Let xi ∈ Rm be an eigenvec-
tor of AAT with positive eigenvalue σ2

i , and let yi ≡ (1/σi)(AT xi), y ∈ Rn.
Then AT Ayi = (1/σi)AT AAT xi = σiA

T xi = σ2
i yi. Similarly let yi ∈ Rn be

an eigenvector of AT A with eigenvalue σ′2
i , and let zi ≡ (1/σ′

i)(Ayi). Then
AAT zi = (1/σ′

i)AAT Ayi = σ′
iAyi = σ′2

i zi. Thus there is a 1-1 correspon-
dence between nonzero eigenvectors for the matrices AT A and AAT , and the
corresponding eigenvalues are shared.
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2. The xi can be chosen to be orthonormal, in which case so also are the yi.
The xi are orthonormal, or can be so chosen, since they are eigenvectors of
a symmetric matrix. Then yi · yj ∝ x′

iAAT xj ∝ xi · xj ∝ δij .
3. rank(A) = rank(AT ) = rank(AAT ) = rank(AT A) ≡ k [12].
4. Let the xi be the nonzero eigenvectors of AAT and the yi those of AT A. Let

X ∈ Mmk (Y ∈ Mnk) be the matrix whose columns are the xi (yi). Then
Y = AT Xdiag(1/σi) ⇒ diag(σi)Y T = XT A. Note that m ≥ k; if m = k,
then A = Xdiag(σi)Y T .

5. If m > k, add m−k rows of orthonormal null vectors of AT to the bottom of
XT , and add m − k zero rows to the bottom of diag(σi); defining the latter
to be diag(σi, 0), then X is orthogonal and A = Xdiag(σi, 0)Y T . Note that
here, X ∈ Mm, diag(σi, 0) ∈ Mmk and Y ∈ Mnk.

6. To get something that looks more like an eigendecomposition, add n − k
rows of vectors that, together with the yi form an orthonormal set, to the
bottom of Y T , and add n − k columns of zeros to the right of diag(σi, 0);
defining the latter to be diag(σi, 0, 0), then the Y are also orthogonal and
A = Xdiag(σi, 0, 0)Y T . Note that here, X ∈ Mm, diag(σi, 0, 0) ∈ Mmn, and
Y ∈ Mn.

7. To get something that looks more like a sum of outer products, just write A
in step (4) as A =

∑k
i=1 σixiy′

i.

Let’s put the singular value decomposition to work.

3.6 The Moore-Penrose Generalized Inverse

Suppose B ∈ Sm has eigendecomposition B = EΛET , where Λ is diagonal and E
is the orthogonal matrix of column eigenvectors. Suppose further that B is non-
singular, so that B−1 = EΛ−1ET =

∑
i(1/λi)eie′

i. This suggests that, since SVD
generalizes eigendecomposition, perhaps we can also use SVD to generalize the
notion of matrix inverse to non-square matrices A ∈ Mmn. The Moore-Penrose
generalized inverse (often called just the generalized inverse) does exactly this10.
In outer product form, it’s the SVD analog of the ordinary inverse, with the latter
written in terms of outer products of eigenvectors: A† =

∑k
i=1(1/σi)yix′

i ∈ Mnm.
The generalized inverse has several special properties:

1. AA† and A†A are Hermitian;
2. AA†A = A;
3. A†AA† = A†.

In fact, A† is uniquely determined by conditions (1), (2) and (3). Also, if A is
square and nonsingular, then A† = A−1, and more generally, if (AT A)−1 exists,
then A† = (AT A)−1AT , and if (AAT )−1 exists, then A† = AT (AAT )−1. The
generalized inverse comes in handy, for example, in characterizing the general
solution to linear equations, as we’ll now see.

10 The Moore-Penrose generalized inverse is one of many pseudo inverses.
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3.7 SVD, Linear Maps, Range and Null Space

If A ∈ Mmn, the range of A, R(A), is defined as that subspace spanned by
y = Ax for all x ∈ Rn. A’s null space N (A), on the other hand, is that subspace
spanned by those x ∈ Rn for which Ax = 0. Letting A|i denote the columns
of A, recall that Ax = x1A|1 + x2A|2 + · · · + xnA|n, so that the dimension
of R(A) is the rank k of A, and R(A) is spanned by the columns of A. Also,
N (AT ) is spanned by those vectors which are orthogonal to every row of AT

(or every column of A), so R(A) is the orthogonal complement of N (AT ). The
notions of range and null space are simply expressed in terms of the SVD, A =∑k

i=1 σixiy′
i, x ∈ Rm, y ∈ Rn. The null space of A is the subspace orthogonal

to the k yi, so dim(N (A)) = n − k. The range of A is spanned by the xi, so
dim(R(A)) = k. Thus in particular, we have dim(R(A)) + dim(N (A)) = n.

The SVD provides a handy way to characterize the solutions to linear systems
of equations. In general the system Az = b, A ∈ Mmn, z ∈ Rn, b ∈ Rm has 0, 1
or ∞ solutions (if z1 and z2 are solutions, then so is αz1 +βz2, α, β ∈ R). When
does a solution exist? Since Az is a linear combination of the columns of A, b
must lie in the span of those columns. In fact, if b ∈ R(A), then z0 = A†b is
a solution, since Az0 =

∑k
i=1 σixiy′

i

∑k
j=1(1/σi)yjx′

jb =
∑k

i=1 xix′
ib = b, and

the general solution is therefore z = A†b + N (A).

Puzzle 6: How does this argument break down if b /∈ R(A)?

What if b /∈ R(A), i.e. Az = b has no solution? One reasonable step would
be to find that z that minimizes the Euclidean norm ‖Az−b‖. However, adding
any vector in N (A) to a solution z would also give a solution, so a reasonable
second step is to require in addition that ‖z‖ is minimized. The general solution
to this is again z = A†b. This is closely related to the following unconstrained
quadratic programming problem: minimize f(z) = 1

2z
′Az + bz, x ∈ Rn, A � 0.

(We need the extra condition on A since otherwise f can be made arbitrarily
negative). The solution to this is at ∇f = 0 → Az + b = 0, so the general
solution is again z = A†b + N (A).

Puzzle 7: If b /∈ R(A), there is again no solution, even though A � 0. What
happens if you go ahead and try to minimize f anyway?

3.8 Matrix Norms

A function ‖·‖ : Mmn → R is a matrix norm over a field F if for all A, B ∈ Mmn,

1. ‖A‖ ≥ 0
2. ‖A‖ = 0 ⇔ A = 0
3. ‖cA‖ = |c|‖A‖ for all scalars c ∈ F
4. ‖A + B‖ ≤ ‖A‖ + ‖B‖

The Frobenius norm, ‖A‖F =
√∑

ij |Aij |2, is often used to represent the

distance between matrices A and B as ‖A − B‖2
F , when for example one is

searching for that matrix which is as close as possible to a given matrix, given
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some constraints. For example, the closest positive semidefinite matrix, in Frobe-
nius norm, to a given symmetric matrix A, is Â ≡ ∑

i:λi>0 λie(i)e′(i) where the
λi, e(i) are the eigenvalues and eigenvectors of A, respectively. The Minkowski
vector p-norm also has a matrix analog: ‖A‖p ≡ max‖x‖=1 ‖Ax‖p. There are
three interesting special cases of this which are easy to compute: the maximum
absolute column norm, ‖A‖1 ≡ maxj

∑n
i |Aij |, the maximum absolute row norm,

‖A‖∞ ≡ maxi

∑n
j |Aij |, and the spectral norm, ‖A‖2. Both the Frobenius and

spectral norms can be written in terms of the singular values: assuming the

ordering σ1 ≥ σ2 · · · ≥ σk, then ‖A‖2 = σ1 and ‖A‖F =
√∑k

i=1 σ2
i .

Exercise 10. Let U and W be orthogonal matrices. Show that ‖UAW‖F =
‖A‖F .

Exercise 11. The submultiplicative property, ‖AB‖ ≤ ‖A‖‖B‖, is an ad-
ditional property that some matrix norms satisfy [11]11. Prove that, if A ∈ Mm

and if a submultiplicative norm exists for which ‖A‖ < 1, then (1 + A)−1 =
1−A+A2 −A3 + · · · , and if A is nonsingular and a submultiplicative norm ex-
ists for which ‖A−1‖ < 1, then (1+A)−1 = A−1(1−A−1+A−2−A−3+· · · ). Show
that for any rectangular matrix W , W (1+W ′W )−1W ′ = (1+WW ′)−1WW ′ =
WW ′(1 + WW ′)−1. (This is used, for example, in the derivation of the condi-
tional distribution of the latent variables given the observed variables, in proba-
bilistic PCA [19].)

The Minkowski p norm has the important property that ‖Ax‖p ≤ ‖A‖p ‖x‖p.
Let’s use this, and the L1 and L∞ matrix norms, to prove a basic fact about
stochastic matrices. A matrix P is stochastic if its elements can be interpreted
as probabilities, that is, if all elements are real and non-negative, and each row
sums to one (row-stochastic), or each column sums to one (column-stochastic),
or both (doubly stochastic).

Theorem 1. If P is a square stochastic matrix, then P has eigenvalues whose
absolute values lie in the range [0, 1].

Proof. For any p ≥ 1, and x any eigenvector of P , ‖Px‖p = |λ| ‖x‖p ≤ ‖P‖p ‖x‖p

so |λ| ≤ ‖P‖p. Suppose that P is row-stochastic; then choose the L∞ norm, which
is the maximum absolute row norm ‖P‖∞ = maxi

∑
j |Pij | = 1; so |λ| ≤ 1. If

P is column-stochastic, choosing the 1-norm (the maximum absolute column
norm) gives the same result. ��

Note that stochastic matrices, if not symmetric, can have complex eigenval-
ues, so in this case F is the field of complex numbers.

3.9 Positive Semidefinite Matrices

Positive semidefinite matrices are ubiquitous in machine learning theory and
algorithms (for example, every kernel matrix is positive semidefinite, for Mercer

11 Some authors include this in the definition of matrix norm [12].
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kernels). Again we restrict ourselves to real matrices. A matrix A ∈ Sn is positive
definite iff for every x ∈ Rn, x′Ax > 0; it is positive semidefinite iff for every
x ∈ Rn, x′Ax ≥ 0, and some x exists for which the equality is met. Recall
that we denote the property of positive definiteness of a matrix A by A � 0,
and positive semidefiniteness by A � 0. Let’s start by listing a few properties,
the first of which relate to what positive semidefinite matrices look like (here,
repeated indices are not summed):

1. If A � 0, then Aii > 0 ∀i;
2. If A � 0, then Aii ≥ 0 ∀i;
3. If A � 0, then Aii = 1 ∀i ⇒ |Aij | ≤ 1 ∀i, j;
4. If A ∈ Sn is strictly diagonally dominant, that is, Aii >

∑
j �=i |Aij | ∀i, then

it is also positive definite;
5. If A � 0 and Aii = 0 for some i, then Aij = Aji = 0 ∀j;
6. If A � 0 then AiiAjj ≥ |Aij |2 ∀i, j;
7. If A ∈ Sn � 0 and B ∈ Sn � 0 then AB � 0;
8. A ∈ Sn is positive semidefinite and of rank one iff A = xx′ for some x ∈ Rn;
9. A � 0 ⇔ A all of the leading minors of A are positive.

A very useful way to think of positive semidefinite matrices is in terms of
Gram matrices. Let V be a vector space over some field F , with inner product
〈·, ·〉. The Gram matrix G of a set of vectors vi ∈ V is defined by Gij ≡ 〈vi,vj〉.
Now let V be Euclidean space and let F be the reals. The key result is the
following: let A ∈ Sn. Then A is positive semidefinite with rank r if and only if
there exists a set of vectors {v1, . . . ,vn}, vi ∈ V , containing exactly r linearly
independent vectors, such that Aij = vi · vj .

Note in particular that the vectors v can always be chosen to have dimension
r ≤ n.

Puzzle 8: A kernel matrix K ∈ Sn is a matrix whose elements take the form
Kij ≡ k(xi,xj) for some xi,xj ∈ Rd, i, j = 1, . . . , n for some d, where k is a
symmetric function which satisfies Mercer’s condition (see e.g. [6]). For any such
function k, there exists an inner product space H and a map Φ : Rd �→ H such
that k(xi,xj) = Φ(xi) · Φ(xj). The dimension of H can be large, or even infinite
(an example of the latter is k(xi,xj) = exp−(1/σ2)‖xi−xj‖2

). In particular, the
dimension of the dot product space can be larger than n. How does this square
with the claim just made about the maximum necessary dimension of the Gram
vectors?

Some properties of positive semidefinite matrices that might otherwise seem
mysterious become obvious, when they are viewed as Gram matrices, as I hope
the following exercise helps demonstrate.

Exercise 12. Use the fact that every positive semidefinite matrix is a Gram
matrix to prove items (2), (3), (5), and (6) in the list above. Use the definition
of a positive (semi)definite matrix to prove (1), (4), (7) and (8).

If the Gram representation is so useful, the question naturally arises: given
a positive semidefinite matrix, how can you extract a set of Gram vectors for
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it? (Note that the set of Gram vectors is never unique; for example, globally
rotating them gives the same matrix). Let A ∈ Sn � 0 and write the eigen-
decomposition of A in outer product form: A =

∑n
a=1 λae(a)e′(a) or Aij =

∑n
a=1 λae

(a)
i e

(a)
j . Written in terms of the dual eigenvectors (see Section 3.1):

Aij =
∑n

a=1 λaê
(i)
a ê

(j)
a , the summand has become a weighted dot product; we

can therefore take the set of Gram vectors to be v
(i)
a =

√
λaê

(i)
a . The Gram

vectors therefore are the dual basis to the scaled eigenvectors.

3.10 Distance Matrices

One well-known use of the Gram vector decomposition of positive semidefinite
matrices is the following. Define a ‘distance matrix’ to be any matrix of the
form Dij ∈ Sn ≡ ‖xi − xj‖2, where ‖ · ‖ is the Euclidean norm (note that
the entries are actually squared distances). A central goal of multidimensional
scaling is the following: given a matrix which is a distance matrix, or which is
approximately a distance matrix, or which can be mapped to an approximate
distance matrix, find the underlying vectors xi ∈ Rd, where d is chosen to be
as small as possible, given the constraint that the distance matrix reconstructed
from the xi approximates D with acceptable accuracy [8]. d is chosen to be small
essentially to remove unimportant variance from the problem (or, if sufficiently
small, for data visualization). Now let e be the column vector of n ones, and
introduce the ‘centering’ projection matrix P e ≡ 1 − 1

nee′.

Exercise 13. Prove the following: (1) for any x ∈ Rn, P ex subtracts the mean
value of the components of x from each component of x, (2) P ee = 0, (3) e is the
only eigenvector of P e with eigenvalue zero, and (4) for any dot product matrix
Aij ∈ Sm ≡ xi·xj , i, j = 1, . . . , m, xi ∈ Rn, then (P eAP e)ij = (xi−µ)·(xj−µ),
where µ is the mean of the xi.

The earliest form of the following theorem is due to Schoenberg [18]. For a
proof of this version, see [7].

Theorem 2. Consider the class of symmetric matrices A ∈ Sn such that Aij ≥
0 and Aii = 0 ∀i, j. Then Ā ≡ −P eAP e is positive semidefinite if and only if
A is a distance matrix, with embedding space Rd for some d. Given that A is a
distance matrix, the minimal embedding dimension d is the rank of Ā, and the
embedding vectors are any set of Gram vectors of Ā, scaled by a factor of 1√

2
.

3.11 Computing the Inverse of an Enlarged Matrix

We end our excursion with a look at a trick for efficiently computing inverses.
Suppose you have a symmetric matrix K ∈ Sn−1, and suppose you form a new
symmetric matrix by adding a number u ≡ Knn and a column v, vi ≡ Kin (and
a corresponding row Kni ≡ Kin). Denote the enlarged matrix by

K+ =
(

K v
v′ u

)

(15)
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Now consider the inverse

K−1
+ ≡

(
A b
b′ c

)

(16)

where again b is a column vector and c is a scalar. It turns out that it is straight-
forward to compute A, b and c in terms of K−1, v and u. Why is this useful?
In any machine learning algorithm where the dependence on all the data is cap-
tured by a symmetric matrix K(xi,xj), then in test phase, when a prediction is
being made for a single point x, the dependence on all the data is captured by
K+, where vi = K(xi,x) and u = K(x,x). If that algorithm in addition requires
that the quantities b and c be computed, it’s much more efficient to compute
them by using the following simple lemma (and computing K−1 just once, for
the training data), rather than by computing K−1

+ for each x. This is used,
for example, in Gaussian process regression and Gaussian process classification,
where in Gaussian process regression, c is needed to compute the variance in the
estimate of the function value f(x) at the test point x, and b and c are needed
to compute the mean of f(x) [9, 20].

Lemma 2. Given K ∈ Mn−1 and K+ ∈ Mn as defined above, then the elements
of K+ are given by:

c =
1

u − v′K−1v
(17)

b = − 1
u − v′K−1v

v′K−1 (18)

Aij = K−1
ij +

1
u − v′K−1v

(v′K−1)i(v′K−1)j (19)

and furthermore,
det(K)
det(K+)

=
1

u − v′K−1v
= c (20)

Proof. Since the inverse of a symmetric matrix is symmetric, K−1
+ can be written

in the form (16). Then requiring that K−1
+ K+ = 1 gives (repeated indices are

summed):

i < n, j < n : AimKmj + bivj = δij (21)
i = n, j < n : bmKmj + cvj = 0 (22)
i < n, j = n : Aimvm + biu = 0 (23)
i = n, j = n : bmvm + cu = 1 (24)

Eq. (22) gives b = −cv′K−1. Substituting this in (24) gives Eq. (17), and
substituting it in (21) gives Eq. (19). Finally the expression for the ratio of
determinants follows from the expression for the elements of an inverse matrix
in terms of ratios of its cofactors. ��
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Exercise 14. Verify formulae (17), (18), (19) and (20) for a matrix K+ ∈ S2
of your choice.

Puzzle 9: Why not use this result iteratively (starting at n = 2) to compute
the inverse of an arbitrary symmetric matrix A ∈ Sn? How does the number of
operations needed to do this compare with the number of operations needed by
Gaussian elimination (as a function of n)? If, due to numerical problems, the
first (top left) element of the first matrix is off by a factor 1 + ε, ε � 1, what is
the error (roughly) in the estimated value of the final (bottom right) element of
Sn?
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Abstract. This article gives a basic introduction to the principles of
Bayesian inference in a machine learning context, with an emphasis on
the importance of marginalisation for dealing with uncertainty. We be-
gin by illustrating concepts via a simple regression task before relating
ideas to practical, contemporary, techniques with a description of ‘sparse
Bayesian’ models and the ‘relevance vector machine’.

1 Introduction

What is meant by “Bayesian inference” in the context of machine learning? To
assist in answering that question, let’s start by proposing a conceptual task: we
wish to learn, from some given number of example instances of them, a model
of the relationship between pairs of variables A and B. Indeed, many machine
learning problems are of the type “given A, what is B?”.1

Verbalising what we typically treat as a mathematical task raises an interest-
ing question in itself. How do we answer “what is B?”? Within the appealingly
well-defined and axiomatic framework of propositional logic, we ‘answer’ the
question with complete certainty, but this logic is clearly too rigid to cope with
the realities of real-world modelling, where uncertainty over ‘truth’ is ubiquitous.
Our measurements of both the dependent (B) and independent (A) variables are
inherently noisy and inexact, and the relationships between the two are invari-
ably non-deterministic. This is where probability theory comes to our aid, as it
furnishes us with a principled and consistent framework for meaningful reasoning
in the presence of uncertainty.

We might think of probability theory, and in particular Bayes’ rule, as pro-
viding us with a “logic of uncertainty” [1]. In our example, given A we would
‘reason’ about the likelihood of the truth of B (let’s say B is binary for exam-
ple) via its conditional probability P (B|A): that is, “what is the probability of
B given that A takes a particular value?”. An appropriate answer might be “B
is true with probability 0.6”. One of the primary tasks of ‘machine learning’ is

1 In this article we will focus exclusively on such ‘supervised learning’ tasks, although
of course there are other modelling applications which are equally amenable to
Bayesian inferential techniques.
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then to approximate P (B|A) with some appropriately specified model based on
a given set of corresponding examples of A and B.2

It is in the modelling procedure where Bayesian inference comes to the fore.
We typically (though not exclusively) deploy some form of parameterised model
for our conditional probability:

P (B|A) = f(A;w), (1)

where w denotes a vector of all the ‘adjustable’ parameters in the model. Then,
given a set D of N examples of our variables, D = {An, Bn}N

n=1, a conventional
approach would involve the maximisation of some measure of ‘accuracy’ (or
minimisation of some measure of ‘loss’) of our model for D with respect to the
adjustable parameters. We then can make predictions, given A, for unknown B
by evaluating f(A;w) with parameters w set to their optimal values. Of course,
if our model f is made too complex — perhaps there are many adjustable pa-
rameters w — we risk over-specialising to the observed data D, and consequently
realising a poor model of the true underlying distribution P (B|A).

The first key element of the Bayesian inference paradigm is to treat pa-
rameters such as w as random variables, exactly the same as A and B. So
the conditional probability now becomes P (B|A,w), and the dependency of the
probability of B on the parameter settings, as well as A, is made explicit. Rather
than ‘learning’ comprising the optimisation of some quality measure, a distribu-
tion over the parameters w is inferred from Bayes’ rule. We will demonstrate
this concept by means of a simple example regression task in Section 2.

To obtain this ‘posterior’ distribution over w alluded to above, it is necessary
to specify a ‘prior’ distribution p(w) before we observe the data. This may be
considered an inconvenience, but Bayesian inference treats all sources of uncer-
tainty in the modelling process in a unified and consistent manner, and forces
us to be explicit as regards our assumptions and constraints; this in itself is
arguably a philosophically appealing feature of the paradigm.

However, the most attractive facet of a Bayesian approach is the manner
in which “Ockham’s Razor” is automatically implemented by ‘integrating out’
all irrelevant variables. That is, under the Bayesian framework there is an au-
tomatic preference for simple models that sufficiently explain the data without
unnecessary complexity. We demonstrate this key feature in Section 3, and in
particular underline the point that this property holds even if the prior p(w)
is completely uninformative. We show that, in practical terms, the concept of
Ockham’s Razor enables us to ‘set’ regularisation parameters and ‘select’ models
without the need for any additional validation procedure.

The practical disadvantage of the Bayesian approach is that it requires us
to perform integrations over variables, and many of these computations are
analytically intractable. As a result, much contemporary research in Bayesian

2 In many learning methods, this conditional probability approximation is not made
explicit, though such an interpretation may exist. However, one might consider it a
significant limitation if a particular machine learning procedure cannot be expressed
coherently within a probabilistic framework.
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approaches to machine learning relies on, or is directly concerned with, approxi-
mation techniques. However, we show in Section 4, where we describe the “sparse
Bayesian” model, that a combination of analytic calculation and straightforward,
practically efficient, approximation can offer state-of-the-art results.

2 From Least-Squares to Bayesian Inference

We introduce the methodology of Bayesian inference by considering an example
prediction (regression) problem. Let us assume we are given a very simple data
set (illustrated later within Figure 1) comprising N = 15 samples artificially
generated from the function y = sin(x) with added Gaussian noise of variance
0.2. We will denote the ‘input’ variables in our example by xn, n = 1 . . . N . For
each such xn, there is an associated real-valued ‘target’ tn, n = 1 . . . N , and from
these input-target pairs, we wish to ‘learn’ the underlying functional mapping.

2.1 Linear Models

We will model this data with some parameterised function y(x;w), where w =
(w1, w2, . . . , wM ) is the vector of adjustable model parameters. Here, we consider
linear models (strictly, “linear-in-the-parameter”) models which are a linearly-
weighted sum of M fixed (but potentially nonlinear) basis functions φm(x):

y(x;w) =
M∑

m=1

wmφm(x). (2)

For our purposes here, we make the common choice to utilise Gaussian data-
centred basis functions φm(x) = exp

{−(x − xm)2/r2
}
, which gives us a ‘radial

basis function’ (RBF) type model.

“Least-Squares” Approximation. Our objective is to find values for w such
that y(x;w) makes good predictions for new data: i.e. it models the underlying
generative function. A classic approach to estimating y(x;w) is “least-squares”,
minimising the error measure:

ED(w) =
1
2

N∑

n=1

[

tn −
M∑

m=1

wmφm(xn)

]2

. (3)

If t = (t1, . . . , tN )T and Φ is the ‘design matrix’ such that Φnm = φm(xn),
then the minimiser of (3) is obtained in closed-form via linear algebra:

wLS = (ΦTΦ)−1ΦTt. (4)

However, with M = 15 basis functions and only N = 15 examples here,
we know that minimisation of squared-error leads to a model which exactly
interpolates the data samples, as shown in Figure 1.

Now, we may look at Figure 1 and exclaim “the function on the right is
clearly over-fitting!”. But, without prior knowledge of the ‘truth’, can we really
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Fig. 1. Overfitting? The ‘ideal fit’ is shown on the left, while the least-squares fit using
15 basis functions is shown on the right and perfectly interpolates all the data points

judge which model is genuinely better? The answer is that we can’t — in a real-
world problem, the data could quite possibly have been generated by a complex
function such as shown on the right. The only way that we can proceed to
meaningfully learn from data such as this is by imposing some a priori prejudice
on the nature of the complexity of functions we expect to elucidate. A common
way of doing this is via ‘regularisation’.

2.2 Complexity Control: Regularisation

A common, and generally very reasonable, assumption is that we typically expect
that data is generated from smooth, rather than complex, functions. In a linear
model framework, smoother functions typically have smaller weight magnitudes,
so we can penalise complex functions by adding an appropriate penalty term to
the cost function that we minimise:

Ê(w) = ED(w) + λEW (w). (5)

A standard choice is the squared-weight penalty, EW (w) = 1
2

∑M
m=1 w2

m,
which conveniently gives the “penalised least-squares” (PLS) estimate for w:

wPLS = (ΦTΦ + λI)−1ΦTt. (6)

The hyperparameter λ balances the trade-off between ED(w) and EW (w) —
i.e. between how well the function fits the data and how smooth it is. Given that
we can compute the weights directly for a given λ, the learning problem is now
transformed into one of finding an appropriate value for that hyperparameter. A
very common approach is to assess potential values of λ according to the error
calculated on a set of ‘validation’ data (i.e. data which is not used to estimate
w), and examples of fits for different values of λ and their associated validation
errors are given in Figure 2.

In practice, we might evaluate a large number of models with different hyper-
parameter values and select the model with lowest validation error, as demon-
strated in Figure 3. We would then hope that this would give us a model which
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Fig. 2. Function estimates (solid line) and validation error for three different values
of regularisation hyperparameter λ (the true function is shown dashed). The training
data is plotted in black, and the validation set in green (gray)

was close to ‘the truth’. In this artificial case where we know the generative
function, the deviation from ‘truth’ is illustrated in the figure with the measure-
ment of ‘test error’, the error on noise-free samples of sin(x). We can see that
the minimum validation error does not quite localise the best test error, but it is
arguably satisfactorily close. We’ll come back to this graph in Section 3 when we
look at marginalisation and how Bayesian inference can be exploited in order to
estimate λ. For now, we look at how this regularisation approach can be initially
reformulated within a Bayesian probabilistic framework.

2.3 A Probabilistic Regression Framework

We assume as before that the data is a noisy realisation of an underlying func-
tional model: tn = y(xn;w) + εn. Applying least-squares resulted in us min-
imising

∑
n ε2n, but here we first define an explicit probabilistic model over the

noise component εn, chosen to be a Gaussian distribution with mean zero and
variance σ2. That is, p(εn|σ2) = N(0, σ2). Since tn = y(xn;w) + εn it fol-
lows that p(tn|xn,w, σ2) = N(y(xn;w), σ2). Assuming that each example from
the the data set has been generated independently (an often realistic assump-
tion, although not always true), the likelihood3 of all the data is given by the
product:

3 Although ‘probability’ and ‘likelihood’ functions may be identical, a common con-
vention is to refer to “probability” when it is primarily interpreted as a function
of the random variable t, and “likelihood” when interpreted as a function of the
parameters w.
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Fig. 3. Plots of error computed on the separate 15-example training and validation
sets, along with ‘test’ error measured on a third noise-free set. The minimum test
and validation errors are marked with a triangle, and the intersection of the best λ

computed via validation is shown

p(t|x,w, σ2) =
N∏

n=1

p(tn|xn,w, σ2), (7)

=
N∏

n=1

(2πσ2)−1/2 exp

[

−{tn − y(xn;w)}2

2σ2

]

. (8)

Note that, from now on, we will write terms such as p(t|x,w, σ2) as p(t|w, σ2),
since we never seek to model the given input data x. Omitting to include such
conditioning variables is purely for notational convenience (it implies no further
model assumptions) and is common practice.

2.4 Maximum Likelihood and Least-Squares

The ‘maximum-likelihood’ estimate for w is that value which maximises p(t|w,
σ2). In fact, this is identical to the ‘least-squares’ solution, which we can see by
noting that minimising squared-error is equivalent to minimising the negative
logarithm of the likelihood which here is:

− log p(t|w, σ2) =
N

2
log(2πσ2) +

1
2σ2

N∑

n=1

{tn − y(xn;w)}2
. (9)

Since the first term on the right in (9) is independent of w, this leaves only
the second term which is proportional to the squared error.

2.5 Specifying a Bayesian Prior

Of course, giving an identical solution for w as least-squares, maximum likeli-
hood estimation will also result in overfitting. To control the model complexity,
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instead of the earlier regularisation weight penalty EW (w), we now define a prior
distribution which expresses our ‘degree of belief’ over values that w might take:

p(w|α) =
M∏

m=1

( α

2π

)1/2
exp

{
−α

2
w2

m

}
. (10)

This (common) choice of a zero-mean Gaussian prior, expresses a preference
for smoother models by declaring smaller weights to be a priori more probable.
Though the prior is independent for each weight, there is a shared inverse vari-
ance hyperparameter α, analogous to λ earlier, which moderates the strength of
our ‘belief’.

2.6 Posterior Inference

Previously, given our error measure and regulariser, we computed a single point
estimate wLS for the weights. Now, given the likelihood and the prior, we com-
pute the posterior distribution over w via Bayes’ rule:

p(w|t, α, σ2) =
likelihood × prior
normalising factor

=
p(t|w, σ2)p(w|α)

p(t|α, σ2)
. (11)

As a consequence of combining a Gaussian prior and a linear model within a
Gaussian likelihood, the posterior is also conveniently Gaussian: p(w|t, α, σ2) =
N(µ,Σ) with

µ = (ΦTΦ + σ2αI)−1ΦTt, (12)

Σ = σ2(ΦTΦ + σ2αI)−1. (13)

So instead of ‘learning’ a single value for w, we have inferred a distribution
over all possible values. In effect, we have updated our prior ‘belief’ in the pa-
rameter values in light of the information provided by the data t, with more
posterior probability assigned to values which are both probable under the prior
and which ‘explain the data’.

MAP Estimation: A ‘Bayesian’ Short-Cut. The “maximum a posteriori”
(MAP) estimate for w is the single most probable value under the posterior
distribution p(w|t, α, σ2). Since the denominator in Bayes’ rule (11) earlier is
independent of w, this is equivalent to maximising the numerator, or equiv-
alently minimising EMAP (w) = − log p(t|w, σ2) − log p(w|α). Retaining only
those terms dependent on w gives:

EMAP (w) =
1

2σ2

N∑

n=1

{tn − y(xn;w)}2 +
α

2

M∑

m=1

w2
m. (14)

The MAP estimate is therefore identical to the PLS estimate with λ = σ2α.
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Illustration of Sequential Bayesian Inference. For our example problem,
we’ll end this section by looking at how the posterior p(w|t, α, σ2) evolves as
we observe increasingly more data points tn. Before proceeding, we note that
we can compute the posterior incrementally since here the data are assumed
independent (conditioned on w). e.g. for t = (t1, t2, t3):

p(w|t1, t2, t3) ∝ p(t1, t2, t3|w) p(w),
= p(t2, t3|w) p(t1|w) p(w),
= Likelihood of (t2, t3) × posterior having observed t1.

So, more generally, we can treat the posterior having observed (t1, . . . , tK)
as the ‘prior’ for the remaining data (tK+1, . . . , tN ) and obtain the equivalent
result to seeing all the data at once. We exploit this result in Figure 4 where we
illustrate how the posterior distribution updates with increasing amounts of data.

The second row in Figure 4 illustrates some relevant points. First, because
the data observed up to that point are not generally near the centres of the
two basis functions visualised, those values of x are relatively uninformative
regarding the associated weights and the posterior thereover has not deviated
far from the prior. Second, on the far right in the second row, we can see that
the function is fairly well determined in the vicinity of the observations, but at
higher values of x, where data are yet to be observed, the MAP estimate of the
function is not accurate and the posterior samples there exhibit high variance.
On the third row we have observed all data, and notice that although the MAP
predictor appears subjectively good, the posterior still seems quite diffuse and
the variance in the samples is noticeable. We emphasise this point in the bottom
row, where we have generated and observed an extra 200 data points and it can
be seen how the posterior is now much more concentrated, and samples from it
are now quite closely concentrated about the MAP value.

Note that this facility to sample from the prior or posterior is a very infor-
mative feature of the Bayesian paradigm. For the posterior, it is a helpful way
of visualising the remaining uncertainty in parameter estimates in cases where
the posterior distribution itself cannot be visualised. Furthermore, the ability
to visualise samples from the prior alone is very advantageous, as it offers us
evidence to judge the appropriateness of our prior assumptions. No equivalent
facility exists within the regularisation or penalty function framework.

3 Marginalisation and Ockham’s Razor

Since we have just seen that the maximum a posteriori (MAP) and penalised
least-squares (PLS) estimates are equivalent, it might be tempting to assume
that the Bayesian framework is simply a probabilistic re-interpretation of clas-
sical methods. This is certainly not the case! It is sometimes overlooked that
the distinguishing element of Bayesian methods is really marginalisation, where
instead of seeking to ‘estimate’ all ‘nuisance’ variables in our models, we attempt
to integrate them out. As we will now see, this is a powerful component of the
Bayesian framework.
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Fig. 4. Illustration of the evolution of the posterior distribution as data is sequen-
tially ‘absorbed’. The left column shows the data, with those points which have been
observed so far crossed, along with a plot of the basis functions. The contour plots
in the middle column show the prior/posterior over just two (for visualisation pur-
poses) of the weights, w10 and w11, corresponding to the highlighted basis functions
on the left. The right hand column plots y(x;w) from a number of samples of w from
the full prior/posterior, along with the posterior mean, or MAP, estimator (in thicker
green/gray). From top to bottom, the number of data is increasing. Row 1 shows the
a priori case for no data, row 2 shows the model after 8 examples, and row 3 shows
the model after all 15 data points have been observed. Finally, the bottom row shows
the case when an additional 200 data points have been generated and absorbed in the
posterior model
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3.1 Making Predictions

First lets reiterate some of the previous section and consider how, having ‘learned’
from the training values t, we make a prediction for the value of t∗ given a new
input datum x∗:

Framework Learned Quantity Prediction

Classical wPLS y(x∗;wPLS)
MAP Bayesian p(w|t, α, σ2) p(t∗|wMAP , σ2)
True Bayesian p(w|t, α, σ2) p(t∗|t, α, σ2)

The first two approaches result in similar predictions, although the MAP
Bayesian model does give a probability distribution for t∗ (which can be sampled
from, e.g. see Figure 4). The mean of this distribution is the same as that of the
classical predictor y(x∗;wPLS), since wMAP = wPLS .

However, the ‘true Bayesian’ way is to integrate out, or marginalise over, the
uncertain variables w in order to obtain the predictive distribution:

p(t∗|t, α, σ2) =
∫

p(t∗|w, σ2) p(w|t, α, σ2) dw. (15)

This distribution p(t∗|t, α, σ2) incorporates our uncertainty over the weights
having seen t, by averaging the model probability for t∗ over all possible values
of w. If we are unsure about the parameter settings, for example if there were
very few data points, then p(w|t, α, σ2) and similarly p(t∗|t, α, σ2) will be ap-
propriately diffuse. The classical, and even MAP Bayesian, predictions take no
account of how well-determined our parameters w really are.

3.2 The General Bayesian Predictive Framework

You way well find the presence of α and σ2 as conditioning variables in the
predictive distribution, p(t∗|t, α, σ2), in (15) rather disconcerting, and indeed,
for any general model, if we wish to predict t∗ given some training data t, what
we really, really want is p(t∗|t). That is, we wish to integrate out all variables
not directly related to the task at hand. So far, we’ve only placed a prior over
the weights w — to be truly, truly Bayesian, we should define p(α), a so-called
hyperprior, along with a prior over the noise level p(σ2). Then the full posterior
over ‘nuisance’ variables becomes:

p(w, α, σ2|t) =
p(t|w, σ2)p(w|α)p(α)p(σ2)

p(t)
. (16)

The denominator, or normalising factor, in (16) is the marginalised proba-
bility of the data:

p(t) =
∫

p(t|w, σ2)p(w|α)p(α)p(σ2) dw dα dσ2, (17)
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and is nearly always analytically intractable to compute! Nevertheless, as we’ll
soon see, p(t) is a very useful quantity and can be amenable to effective approx-
imation.

3.3 Practical Bayesian Prediction

Given the full posterior (16), Bayesian inference in our example regression model
would proceed with:

p(t∗|t) =
∫

p(t∗|w, σ2) p(w, α, σ2|t) dw dα dσ2, (18)

but as we indicated, we can’t compute either p(w, α, σ2|t) or p(t∗|t) analytically.
If we wish to proceed, we must turn to some approximation strategy (and it is
here that much of the Bayesian “voodoo” resides). A sensible approach might
be to perform those integrations that are analytically computable, and then ap-
proximate remaining integrations, perhaps using one of a number of established
methods:

– Type-II maximum likelihood (discussed shortly)
– Laplace’s method (see, e.g., [2])
– Variational techniques (see, e.g., [3, 4])
– Sampling (e.g. [2, 5])

Much research in Bayesian inference has gone, and continues to go, into the
development and assessment of approximation techniques, including those listed
above. For the purposes of this article, we will primarily exploit the first of them.

3.4 A Type-II Maximum Likelihood Approximation

Here, using the product rule of probability, we can rewrite the ideal full posterior
p(w, α, σ2|t) as:

p(w, α, σ2|t) ≡ p(w|t, α, σ2) p(α, σ2|t). (19)

The first term is our earlier weight posterior which we have already computed:
p(w|t, α, σ2) ∼ N(µ,Σ). The second term p(α, σ2|t) we will approximate, ad-
mittedly crudely, by a δ-function at its mode. i.e. we find “most probable” values
αMP and σ2

MP which maximise:

p(α, σ2|t) =
p(t|α, σ2) p(α) p(σ2)

p(t)
. (20)

Since the denominator is independent of α and σ2, we only need maximise the
numerator p(t|α, σ2)p(α)p(σ2). Furthermore, if we assume flat, uninformative,
priors over log α and log σ, then we equivalently just need to find the maximum
of p(t|α, σ2). Assuming a flat prior here may seem to be a computational con-
venience, but in fact it is arguably our prior of choice since our model will be
invariant to the scale of the target data (and basis set), which is almost always
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an advantageous feature4. For example, our results won’t change if we measure
t in metres instead of miles. We’ll return to the task of maximising p(t|α, σ2) in
Section 3.6.

3.5 The Approximate Predictive Distribution

Having found αMP and σ2
MP, our approximation to the predictive distribution

would be:

p(t∗|t) =
∫

p(t∗|w, σ2) p(w|t, α, σ2) p(α, σ2|t) dw dα dσ2,

≈
∫

p(t∗|w, σ2) p(w|t, α, σ2) δ(αMP, σ2
MP) dw dα dσ2,

=
∫

p(t∗|w, σ2
MP) p(w|t, αMP, σ2

MP) dw. (21)

In our example earlier, recall that p(w|t, αMP, σ2
MP) ∼ N(µ,Σ), from which

the approximate predictive distribution can be finally written as:

p(t∗|t) ≈
∫

p(t∗|w, σ2
MP) p(w|t, αMP, σ2

MP) dw. (22)

This is now computable and is Gaussian: N(µ∗, σ2
∗), with:

µ∗ = y(x∗; µ),

σ2
∗ = σ2

MP + fTΣf ,

where f = [φ1(x∗), . . . , φM (x∗)]T. Intuitively, we see that

– the mean predictor µ∗ is the model function evaluated with the posterior
mean weights (the same as the MAP prediction),

– the predictive variance σ2
∗ is the sum of variances associated with both the

noise process and the uncertainty of the weight estimates. In particular, it
can be clearly seen that when the posterior over w is more diffuse, and Σ is
larger, σ2

∗ is also increased.

3.6 Marginal Likelihood

Returning now to the question of finding αMP and σ2
MP, as noted earlier we find

the maximising values of the ‘marginal likelihood’ p(t|α, σ2). This is given by:

4 Note that for scale parameters such as α and σ2, it can be shown that it is appropriate
to define uniformative priors uniformly over a logarithmic scale [6]. While for brevity
we will continue to denote parameters “α” and “σ”, from now on we will work with
the logarithms thereof, and in particular, will maximise distributions with respect to
log α and log σ. In this respect, one must note with caution that finding the maximum
of a distribution with respect to parameters is not invariant to transformations
of those parameters, whereas the result of integration with respect to transformed
distributions is invariant.



Bayesian Inference: Principles and Practice in Machine Learning 53

p(t|α, σ2) =
∫

p(t|w, σ2) p(w|α) dw,

= (2π)−N/2|σ2I + α−1ΦΦT|−1/2 exp
{

−1
2
tT(σ2I + α−1ΦΦT)−1t

}

.

(23)

This is a Gaussian distribution over the single N -dimensional dataset vector
t, and (23) is readily evaluated for arbitrary values of α (and σ2). Note that
here we can use all the data to directly determine αMP and σ2

MP — we don’t
need to reserve a separate data set to validate their values. We can use gradient-
based techniques to maximise (23) (and we will do so for a similar quantity in
Section 4), but here we choose to repeat the earlier experiment for the regularised
linear model. While we fix σ2 (though we could also experimentally evaluate it),
in Figure 5 we have computed the marginal likelihood (in fact, its negative
logarithm) at a number of different values of α (for just the 15-example training
set, though we could also have made use of the validation set too) and compared
with the training, validation and test errors of Figure 3 earlier.

It is quite striking that using only 15 examples and no validation data, the
Bayesian approach for setting α (giving test error 1.66) finds a closer model
to the ‘truth’ than the classical model with its validated value of λ (test error
2.33). It is also interesting to see, and is it not immediately obvious why, that the
marginal likelihood measure, although only measured on the training data, is not
monotonic (unlike training error) and exhibits a maximum at some intermediate
complexity level. The marginal likelihood criterion appears to be successfully
penalising both models that are too simple and too complex — this is “Ockham’s
Razor” at work.
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Fig. 5. Plots of the training, validation and test errors of the model as shown in Figure
3 (with the horizontal scale adjusted appropriately to convert from λ to α) along with
the negative log marginal likelihood evaluated on the training data alone for that same
model. The values of α and test error achieved by the model with highest marginal
likelihood (smallest negative log) are indicated
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3.7 Ockham’s Razor

In the fourteenth century, William of Ockham proposed:
“Pluralitas non est ponenda sine neccesitate”

which literally translates as “entities should not be multiplied unnecessarily”.
Its original historic context was theological, but the concept remains relevant
for machine learning today, where it might be translated as “models should be
no more complex than is sufficient to explain the data”. The Bayesian procedure
is effectively implementing “Ockham’s Razor” by assigning lower probability both
to models that are too simple and too complex. We might ask: why is an interme-
diate value of α preferred? The schematic of Figure 6 shows how this can be the
case, as a result of the marginal likelihood p(t|α) being a normalised distribution
over the space of all possible data sets t. Models with high α only fit (assign sig-
nificant marginal probability to) data from smooth functions. Models with low
values of α can fit data generated from functions that are both smooth and com-
plex. However, because of normalisation, the low-α model must generally assign
lower probability to data from smooth functions, so the marginal likelihood natu-
rally prefers the simpler model if the data is smooth, which is precisely the mean-
ing of Ockham’s Razor. Furthermore, one can see from Figure 6 that for a data
set of ‘intermediate’ complexity, a ‘medium’ value of α can be preferred. This is
qualitatively analogous to the case of our example set, where we indeed find that
an intermediate value of α is optimal. Note, crucially, that this is achieved with-
out any prior preference for any particular value of α as we originally assumed

Fig. 6. A schematic plot of three marginal probability distributions for ‘high’, ‘medium’
and ‘low’ values of α. The figure is a simplification of the case for the actual distri-
bution p(t|α), where for illustrative purposes the N -dimensional space of t has been
compressed onto a single axis and where, notionally, data sets (instances of t) arising
from simpler (smoother) functions lie towards the left-hand end of the horizontal scale,
and data from complex functions to the right
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a uniform hyperprior over its logarithm. The effect of Ockham’s Razor is an
automatic and pleasing consequence of applying the Bayesian framework.

3.8 Model Selection

While we have concentrated so far on the search for an appropriate value of hy-
perparameter α (and, to an extent, σ2), our model is also conditioned on other
variables we have up to now overlooked: the choice of basis set Φ and, for our
Gaussian basis, its width parameter r (as defined in Section 2.1). Ideally, we
should define priors P (Φ) and p(r), and integrate out those variables when mak-
ing predictions. More practically, we could use p(t|Φ, r) as a criterion for model
selection with the expectation that Ockham’s Razor will assist us in selecting
a model that is sufficient to explain the data but is not over-complex. In our
example model, we previously optimised the marginal likelihood to find a value
for α. In fact, as there are only two nuisance parameters here, it is feasible to
integrate out α and σ2 numerically.

In Figure 7 we evaluate several basis sets Φ and width values r by computing
the integral

p(t|Φ, r) =
∫

p(t|α, σ2,Φ, r) p(α) p(σ2) dα dσ2, (24)

≈ 1
S

S∑

s=1

p(t|αs, σ
2
s ,Φ, r), (25)

with a Monte-Carlo average where we obtain S samples log-uniformly from α ∈
[10−12, 1012] and σ ∈ [10−4, 100].

The results of Figure 7 are quite compelling: with uniform priors over all
nuisance variables —i.e. we have imposed absolutely no prior knowledge — we
observe that test error appears very closely related to marginal likelihood. The
qualitative shapes of the curves, and the relative merits, of Gaussian and Lapla-
cian basis functions are also captured. For the Gaussian basis we are very close
to obtaining the optimal value of r, in terms of test error, from just 15 exam-
ples and no validation data. Reassuringly, the simplest model that contains the
‘truth’, y = w1 sin(x), is the most probable model here. We also show in the fig-
ure the model y = w1 sin(x)+w2 cos(x) which is also an ideal fit for the data, but
it is penalised in marginal probability terms since the addition of the w2 cos(x)
term allows it to explain more data sets, and normalisation thus requires it to
assign less probability to our particular set. Nevertheless, it is still some orders
of magnitude more probable than the Gaussian basis model.

3.9 Summary So Far. . .

Marginalisation is the key element of Bayesian inference, and hopefully some of
the examples above have persuaded the reader that it can be an exceedingly
powerful one. Problematically though, ideal Bayesian inference proceeds by in-
tegrating out all irrelevant variables, and we must concede that
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Fig. 7. Top: negative log model probability − log p(t|Φ, r) for various basis sets, eval-
uated by analytic integration over w and Monte-Carlo averaging over α and σ2. Bot-
tom: corresponding test error for the posterior mean predictor. Basis sets examined
were ‘Gaussian’, exp

{−|x − xm|2/r2}, ‘Laplacian’, exp {−|x − xm|/r}, sin(x), sin(x)
with cos(x). For the Gaussian and Laplacian basis, the horizontal axis denotes vary-
ing ‘width’ parameter r shown. For the sine/cosine bases, the horizontal axis has no
significance and the values are placed to the left for convenience

– for practical purposes, it may be appropriate to require point estimates of
some ‘nuisance’ variables, since it could easily be impractical to average
over many parameters and particularly models every time we wish to make
a prediction (imagine, for example, running a handwriting recogniser on a
portable computing device),

– many of the desired integrations necessitate some form of approximation.

Nevertheless, regarding these points, we can still leverage Bayesian techniques
to considerable benefit exploiting carefully-applied approximations. In particu-
lar, marginalised likelihoods within the Bayesian framework allow us to estimate
fixed values of hyperparameters where desired and, most beneficially, choose be-
tween models and their varying parameterisations. This can all be done without
the need to use validation data. Furthermore:

– it is straightforward to estimate other parameters in the model that may be
of interest, e.g. the noise variance,

– we can sample from both prior and posterior models of the data,
– the exact parameterisation of the model is irrelevant when integrating out,
– we can incorporate other priors of interest in a principled manner.
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We now further demonstrate these points, notably the last one, in the next
section where we present a practical framework for the inference of ‘sparse’
models.

4 Sparse Bayesian Models

4.1 Bayes and Contemporary Machine Learning

In the previous section we saw that marginalisation is a valuable component of
the Bayesian paradigm which offers a number of advantageous features applicable
to many data modelling tasks. Disadvantageously, we also saw that the integra-
tions required for full Bayesian inference can often be analytically intractable,
although approximations for simple linear models could be very effective. Histor-
ically, interest in Bayesian “machine learning” (but not statistics!) has focused
on approximations for non-linear models, e.g. for neural networks, the “evidence
procedure” [7] and “hybrid Monte Carlo” sampling [5]. More recently, flexible
(i.e. many-parameter) linear kernel methods have attracted much renewed in-
terest, thanks mainly to the popularity of the “support vector machine”. These
kind of models, of course, are particularly amenable to Bayesian techniques.

Linear Models and Sparsity. Much interest in linear models has focused on
sparse learning algorithms, which set many weights wm to zero in the estimated
predictor function y(x) =

∑
m wmφm(x). Sparsity is an attractive concept; it

offers elegant complexity control, feature extraction, the potential for elucidation
of meaningful input variables along with the practical benefits of computational
speed and compactness.

How do we impose a preference for sparsity in a model? The most common
approach is via an appropriate regularisation term or prior. The most common
regularisation term that we have already met, EW (w) =

∑M
m=1 |wm|2, of course

corresponds to a Gaussian prior and is easy to work with, but while it is an effec-
tive way to control complexity, it does not promote sparsity. In the regularisation
sense, the ‘correct’ term would be EW (w) =

∑
m |wm|0, but this, being discon-

tinuous in wm, is very difficult to work with. Instead, EW (w) =
∑

m |wm|1 is a
workable compromise which gives reasonable sparsity and reasonable tractabil-
ity, and is exploited in a number of methods, including as a Laplacian prior
p(w) ∝ exp(−∑

m |wm|) [8]. However, there is an arguably more elegant way
of obtaining sparsity within a Bayesian framework that builds effectively on the
ideas outlined in the previous section and we conclude this article with a brief
outline thereof.

4.2 A Sparse Bayesian Prior

In fact, we can obtain sparsity by retaining the traditional Gaussian prior, which
is great news for tractability. The modification to our earlier Gaussian prior (10)
is subtle:

p(w|α1, . . . , αM ) =
M∏

m=1

[

(2π)−1/2αm
1/2 exp

{

−1
2
αmw2

m

}]

. (26)
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In contrast to the model in Section 2, we now have M hyperparameters
α = (α1, . . . , αM ), one αm independently controlling the (inverse) variance of
each weight wm.

A Hierarchical Prior. The prior p(w|α) is nevertheless still Gaussian, and
superficially seems to have little preference for sparsity. However, it remains
conditioned on α, so for full Bayesian consistency we should now define hyper-
priors over all αm. Previously, we utilised a log-uniform hyperprior — this is a
special case of a Gamma hyperprior, which we introduce for greater generality
here. This combination of the prior over αm controlling the prior over wm gives
us what is often referred to as a hierarchical prior. Now, if we have p(wm|αm)
and p(αm) and we want to know the ‘true’ p(wm) we already know what to do
— we must marginalise:

p(wm) =
∫

p(wm|αm) p(αm) dαm. (27)

For a Gamma p(αm), this integral is computable and we find that p(wm) is
a Student-t distribution illustrated as a function of two parameters in Figure 8;
its equivalent as a regularising penalty function would be

∑
m log |wm|.

4.3 A Sparse Bayesian Model for Regression

We can develop a sparse regression model by following an identical methodology
to the previous sections. Again, we assume independent Gaussian noise: tn ∼
N(y(xn;w), σ2), which gives a corresponding likelihood:

p(t|w, σ2) = (2πσ2)–N/2 exp
{

− 1
2σ2 ‖t − Φw‖2

}

, (28)

where as before we denote t = (t1 . . . tN )T, w = (w1 . . . wM )T, and Φ is the
N × M ‘design’ matrix with Φnm = φm(xn).

Gaussian prior Marginal prior: single α Independent α

Fig. 8. Contour plots of Gaussian and Student-t prior distributions over two param-
eters. While the marginal prior p(w1, w2) for the ‘single’ hyperparameter model of
Section 2 has a much sharper peak than the Gaussian at zero, it can be seen that it
is not sparse unlike the multiple ‘independent’ hyperparameter prior, which as well
as having a sharp peak at zero, places most of its probability mass along axial ridges
where the magnitude of one of the two parameters is small
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Following the Bayesian framework, we desire the posterior distribution over
all unknowns:

p(w,α, σ2|t) =
p(t|w,α, σ2)p(w,α, σ2)

p(t)
, (29)

which we can’t compute analytically. So as previously, we decompose this as:

p(w,α, σ2|t) ≡ p(w|t,α, σ2) p(α, σ2|t) (30)

where p(w|t,α, σ2) is the ‘weight posterior’ distribution, and is tractable. This
leaves p(α, σ2|t) which must be approximated.

The Weight Posterior Term. Given the data, the posterior distribution over
weights is Gaussian:

p(w|t,α, σ2) =
p(t|w, σ2) p(w|α)

p(t|α, σ2)
,

= (2π)–(N+1)/2|Σ|–1/2 exp
{

−1
2
(w − µ)TΣ–1(w − µ)

}

, (31)

with

Σ = (σ–2ΦTΦ + A)–1, (32)

µ = σ–2ΣΦTt, (33)

and where we collect all the hyperparameters into a diagonal matrix: A =
diag(α1, α2, . . . , αM ). A key point to note from (31–33) is that if any αm = ∞,
the corresponding µm = 0.

The Hyperparameter Posterior Term. Again we will adopt the “type-II
maximum likelihood” approximation where we maximise p(t|α, σ2) to find αMP
and σ2

MP. As before, for uniform hyperpriors over log α and log σ, p(α, σ2|t) ∝
p(t|α, σ2), where the marginal likelihood p(t|α, σ2) is obtained by integrating
out the weights:

p(t|α, σ2) =
∫

p(t|w, σ2) p(w|α) dw,

= (2π)–N/2|σ2I + ΦA−1ΦT|–1/2 exp
{

−1
2
tT(σ2I + ΦA–1ΦT)–1t

}

.

(34)

In Section 2, we found the single αMP empirically but here for multiple (in
practice, perhaps thousands of) hyperparameters, we cannot experimentally ex-
plore the space of possible α so we instead optimise p(t|α, σ2) directly, via a
gradient-based approach.
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Hyperparameter Re-estimation. Differentiating log p(t|α, σ2) with respect
to α and σ2, setting to zero and rearranging (see [9]) ultimately gives iterative
re-estimation formulae:

αnew
i =

γi

µ2
i

, (35)

(σ2)new =
‖t − Φµ‖2

N − ∑M
i=1 γi

. (36)

For convenience we have defined

γi = 1 − αiΣii, (37)

where γi ∈ [0, 1] is a measure of ‘well-determinedness’ of parameter wi. This
quantity effectively captures the influence of the likelihood (total when γ → 1)
and the prior (total when γ → 0) on the value of each wi. Note that the quantities
on the right-hand-side of equations (35–37) are computed using the ‘old’ values
of α and σ2.

Summary of Inference Procedure. We’re now in a position to define a
‘learning algorithm’ for approximate Bayesian inference in this model:

1. Initialise all {αi} and σ2 (or fix latter if known)
2. Compute weight posterior sufficient statistics µ and Σ
3. Compute all {γi}, then re-estimate {αi} (and σ2 if desired)
4. Repeat from 2. until convergence
5. ‘Delete’ weights (and basis functions) for which optimal αi = ∞, since this

implies µi = 0
6. Make predictions for new data via the predictive distribution computed with

the converged αMP and σ2
MP:

p(t∗|t) =
∫

p(t∗|w, σ2
MP) p(w|t,αMP, σ2

MP) dw (38)

the mean of which is y(x∗; µ)

Step 5. rather ideally assumes that we can reliably estimate such large values
of α, whereas in reality limited computational precision implies that in this
algorithm we have to place some finite upper limit on α (e.g. 1012 times the
value of the smallest α). In many real-world tasks, we do indeed find that many
αi do tend towards infinity, and we converge toward a model that is very sparse,
even if M is very large.

4.4 The “Relevance Vector Machine” (RVM)

To give an example of the potential of the above model, we briefly introduce
here the “Relevance Vector Machine” (RVM), which is simply a specialisation
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of a sparse Bayesian model which utilises the same data-dependent kernel basis
as the popular “support vector machine” (SVM):

y(x;w) =
N∑

n=1

wnK(x,xn) + w0 (39)

This model is described, with a number of examples, in much more detail
elsewhere [9]. For now, Figure 9 provides an illustration, on some noise-polluted
synthetic data, of the potential of this Bayesian framework for effectively com-
bining sparsity with predictive accuracy.

Max error: 0.0664
RMS error: 0.0322
RV’s: 7

Relevance Vector Regression

Noise:   0.100
Estimate: 0.107

Max error: 0.0896
RMS error: 0.0420
SV’s: 29

Support Vector Regression

Noise:   0.100

C and ε found by
 cross−validation

Fig. 9. The relevance vector and support vector machines applied to a regression
problem using a Gaussian kernel, which demonstrates some of the advantages of the
Bayesian approach. Of particular note is the sparsity of the final Bayesian model,
which qualitatively appears near-optimal. It is also worth underlining that the ‘nui-
sance’ parameters C and ε for the SVM had to be found by a separate cross-validation
procedure, whereas the RVM algorithm estimates them automatically, and arguably
quite accurately in the case of the noise variance

5 Summary

While the tone of the first three sections of this article has been introductory
and the models considered therein have been quite simplistic, the brief example
of the ‘sparse Bayesian’ learning procedure given in Section 4 is intended to
demonstrate that ‘practical’ Bayesian inference procedures have the potential to
be highly effective in the context of modern machine learning. Readers who find
this demonstration sufficiently convincing and who are interested specifically in
the sparse Bayesian model framework can find further information (including
some implementation code), and details of related approaches, at a web-page
maintained by the author: http://www.research.microsoft.com/mlp/RVM. In



62 M.E. Tipping

particular, note that the algorithm for hyperparameter estimation of Section 4.3
was presented here as it has a certain intuitive simplicity, but in fact there is a
much more efficient and practical approach to optimising log p(t|α, σ2) which is
detailed in [10].

We summarised some of the features, advantages and limitations of the gen-
eral Bayesian framework earlier in Section 3.9, and so will not repeat them here.
The reader interested in investigating further and in more depth on this general
topic may find much helpful further material in the references [1, 5, 11, 12, 13, 14].
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Abstract. We give a basic introduction to Gaussian Process regression
models. We focus on understanding the role of the stochastic process
and how it is used to define a distribution over functions. We present
the simple equations for incorporating training data and examine how
to learn the hyperparameters using the marginal likelihood. We explain
the practical advantages of Gaussian Process and end with conclusions
and a look at the current trends in GP work.

Supervised learning in the form of regression (for continuous outputs) and clas-
sification (for discrete outputs) is an important constituent of statistics and
machine learning, either for analysis of data sets, or as a subgoal of a more
complex problem.

Traditionally parametric1 models have been used for this purpose. These have
a possible advantage in ease of interpretability, but for complex data sets, simple
parametric models may lack expressive power, and their more complex counter-
parts (such as feed forward neural networks) may not be easy to work with
in practice. The advent of kernel machines, such as Support Vector Machines
and Gaussian Processes has opened the possibility of flexible models which are
practical to work with.

In this short tutorial we present the basic idea on how Gaussian Process
models can be used to formulate a Bayesian framework for regression. We will
focus on understanding the stochastic process and how it is used in supervised
learning. Secondly, we will discuss practical matters regarding the role of hyper-
parameters in the covariance function, the marginal likelihood and the automatic
Occam’s razor. For broader introductions to Gaussian processes, consult [1], [2].

1 Gaussian Processes

In this section we define Gaussian Processes and show how they can very nat-
urally be used to define distributions over functions. In the following section
we continue to show how this distribution is updated in the light of training
examples.

1 By a parametric model, we here mean a model which during training “absorbs” the
information from the training data into the parameters; after training the data can
be discarded.

O. Bousquet et al. (Eds.): Machine Learning 2003, LNAI 3176, pp. 63–71, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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Definition 1. A Gaussian Process is a collection of random variables, any finite
number of which have (consistent) joint Gaussian distributions.

A Gaussian process is fully specified by its mean function m(x) and covariance
function k(x, x′). This is a natural generalization of the Gaussian distribution
whose mean and covariance is a vector and matrix, respectively. The Gaussian
distribution is over vectors, whereas the Gaussian process is over functions. We
will write:

f ∼ GP(m, k), (1)

meaning: “the function f is distributed as a GP with mean function m and
covariance function k”.

Although the generalization from distribution to process is straight forward,
we will be a bit more explicit about the details, because it may be unfamiliar
to some readers. The individual random variables in a vector from a Gaussian
distribution are indexed by their position in the vector. For the Gaussian process
it is the argument x (of the random function f(x)) which plays the role of index
set: for every input x there is an associated random variable f(x), which is the
value of the (stochastic) function f at that location. For reasons of notational
convenience, we will enumerate the x values of interest by the natural numbers,
and use these indexes as if they were the indexes of the process – don’t let yourself
be confused by this: the index to the process is xi, which we have chosen to index
by i.

Although working with infinite dimensional objects may seem unwieldy at
first, it turns out that the quantities that we are interested in computing, require
only working with finite dimensional objects. In fact, answering questions about
the process reduces to computing with the related distribution. This is the key
to why Gaussian processes are feasible. Let us look at an example. Consider the
Gaussian process given by:

f ∼ GP(m, k), where m(x) = 1
4x2, and k(x, x′) = exp(− 1

2 (x − x′)2). (2)

In order to understand this process we can draw samples from the function
f . In order to work only with finite quantities, we request only the value of f at
a distinct finite number n of locations. How do we generate such samples? Given
the x-values we can evaluate the vector of means and a covariance matrix using
Eq. (2), which defines a regular Gaussian distribution:

µi = m(xi) = 1
4x2

i , i = 1, . . . , n and

Σij = k(xi, xj) = exp(− 1
2 (xi − xj)2), i, j = 1, . . . , n,

(3)

where to clarify the distinction between process and distribution we use m and
k for the former and µ and Σ for the latter. We can now generate a random
vector from this distribution. This vector will have as coordinates the function
values f(x) for the corresponding x’s:

f ∼ N (µ, Σ). (4)
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Fig. 1. Function values from three functions drawn at random from a GP as specified
in Eq. (2). The dots are the values generated from Eq. (4), the two other curves have
(less correctly) been drawn by connecting sampled points. The function values suggest
a smooth underlying function; this is in fact a property of GPs with the squared
exponential covariance function. The shaded grey area represent the 95% confidence
intervals

We could now plot the values of f as a function of x, see Figure 1. How can
we do this in practice? Below are a few lines of Matlab2 used to create the plot:

xs = (-5:0.2:5)’; ns = size(xs,1); keps = 1e-9;
m = inline(’0.25*x.^2’);
K = inline(’exp(-0.5*(repmat(p’’,size(q))-repmat(q,size(p’’))).^2)’);
fs = m(xs) + chol(K(xs,xs)+keps*eye(ns))’*randn(ns,1);
plot(xs,fs,’.’)

In the above example, m and k are mean and covariances; chol is a function
to compute the Cholesky decomposition3 of a matrix.

This example has illustrated how we move from process to distribution and
also shown that the Gaussian process defines a distribution over functions. Up
until now, we have only been concerned with random functions – in the next
section we will see how to use the GP framework in a very simple way to make
inferences about functions given some training examples.

2 Posterior Gaussian Process

In the previous section we saw how to define distributions over functions using
GPs. This GP will be used as a prior for Bayesian inference. The prior does not
depend on the training data, but specifies some properties of the functions; for

2 Matlab is a trademark of The MathWorks Inc.
3 We’ve also added a tiny keps multiple of the identity to the covariance matrix

for numerical stability (to bound the eigenvalues numerically away from zero); see
comments around Eq. (8) for a interpretation of this term as a tiny amount of noise.
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example, in Figure 1 the function is smooth, and close to a quadratic. The goal
of this section is to derive the simple rules of how to update this prior in the
light of the training data. The goal of the next section is to attempt to learn
about some properties of the prior4 in the the light of the data.

One of the primary goals computing the posterior is that it can be used to
make predictions for unseen test cases. Let f be the known function values of
the training cases, and let f∗ be a set of function values corresponding to the
test set inputs, X∗. Again, we write out the joint distribution of everything we
are interested in: [

f
f∗

]

∼ N
([

µ
µ∗

]

,

[
Σ Σ∗
Σ�

∗ Σ∗∗

])

, (5)

where we’ve introduced the following shorthand: µ = m(xi), i = 1, . . . , n for the
training means and analogously for the test means µ∗; for the covariance we
use Σ for training set covariances, Σ∗ for training-test set covariances and Σ∗∗
for test set covariances. Since we know the values for the training set f we are
interested in the conditional distribution of f∗ given f which is expressed as5:

f∗|f ∼ N (
µ∗ + Σ�

∗ Σ−1(f − µ), Σ∗∗ − Σ�
∗ Σ−1Σ∗

)
. (6)

This is the posterior distribution for a specific set of test cases. It is easy to
verify (by inspection) that the corresponding posterior process is:

f |D ∼ GP(mD, kD),

mD(x) = m(x) + Σ(X, x)�Σ−1(f − m)

kD(x, x′) = k(x, x′) − Σ(X, x)�Σ−1Σ(X, x′),

(7)

where Σ(X, x) is a vector of covariances between every training case and x.
These are the central equations for Gaussian process predictions. Let’s examine
these equations for the posterior mean and covariance. Notice that the posterior
variance kD(x, x) is equal to the prior variance k(x, x) minus a positive term,
which depends on the training inputs; thus the posterior variance is always
smaller than the prior variance, since the data has given us some additional
information.

We need to address one final issue: noise in the training outputs. It is common
to many applications of regression that there is noise in the observations6. The
most common assumption is that of additive i.i.d. Gaussian noise in the outputs.

4 By definition, the prior is independent of the data; here we’ll be using a hierarchical
prior with free parameters, and make inference about the parameters.

5 the formula for conditioning a joint Gaussian distribution is:
[
x
y

]
∼ N

([
a
b

]
,

[
A C

C� B

])
=⇒ x|y ∼ N (

a + CB−1(y − b), A − CB−1C�)
.

6 However, it is perhaps interesting that the GP model works also in the noise-free
case – this is in contrast to most parametric methods, since they often cannot model
the data exactly.
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Fig. 2. Three functions drawn at random from the posterior, given 20 training data
points, the GP as specified in Eq. (3) and a noise level of σn = 0.7. The shaded area
gives the 95% confidence region. Compare with Figure 1 and note that the uncertainty
goes down close to the observations

In the Gaussian process models, such noise is easily taken into account; the
effect is that every f(x) has a extra covariance with itself only (since the noise
is assumed independent), with a magnitude equal to the noise variance:

y(x) = f(x) + ε, ε ∼ N (0, σ2
n),

f ∼ GP(m, k), y ∼ GP(m, k + σ2
nδii′),

(8)

where δii′ = 1 iff i = i′ is the Kronecker’s delta. Notice, that the indexes to the
Kronecker’s delta is the identify of the cases, i, and not the inputs xi; you may
have several cases with identical inputs, but the noise on these cases is assumed
to be independent. Thus, the covariance function for a noisy process is the sum
of the signal covariance and the noise covariance.

Now, we can plug in the posterior covariance function into the little Matlab
example on page 65 to draw samples from the posterior process, see Figure 2. In
this section we have shown how simple manipulations with mean and covariance
functions allow updates of the prior to the posterior in the light of the training
data. However, we left some questions unanswered: How do we come up with
mean and covariance functions in the first place? How could we estimate the
noise level? This is the topic of the next section.

3 Training a Gaussian Process

In the previous section we saw how to update the prior Gaussian process in the
light of training data. This is useful if we have enough prior information about
a dataset at hand to confidently specify prior mean and covariance functions.
However, the availability of such detailed prior information is not the typical case
in machine learning applications. In order for the GP techniques to be of value
in practice, we must be able to chose between different mean and covariance
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functions in the light of the data. This process will be referred to as training7

the GP model.
In the light of typically vague prior information, we use a hierarchical prior,

where the mean and covariance functions are parameterized in terms of hyper-
parameters. For example, we could use a generalization of Eq. (2):

f ∼ GP(m, k),

m(x) = ax2 + bx + c, and k(x, x′) = σ2
y exp

( − (x − x′)2

2�2
)

+ σ2
nδii′ ,

(9)

where we have introduced hyperparameters θ = {a, b, c, σy, σn, �}. The purpose
of this hierarchical specification is that it allows us to specify vague prior infor-
mation in a simple way. For example, we’ve stated that we believe the function
to be close to a second order polynomial, but we haven’t said exactly what
the polynomial is, or exactly what is meant by “close”. In fact the discrepancy
between the polynomial and the data is a smooth function plus independent
Gaussian noise, but again we’re don’t need exactly to specify the characteristic
length scale � or the magnitudes of the two contributions. We want to be able
to make inferences about all of the hyperparameters in the light of the data.

In order to do this we compute the probability of the data given the hyperpa-
rameters. Fortunately, this is not difficult, since by assumption the distribution
of the data is Gaussian:

L = log p(y|x, θ) = − 1
2 log |Σ| − 1

2 (y − µ)�Σ−1(y − µ) − n
2 log(2π). (10)

We will call this quantity the log marginal likelihood. We use the term
“marginal” to emphasize that we are dealing with a non-parametric model. See
e.g. [1] for the weight-space view of Gaussian processes which equivalently leads
to Eq. (10) after marginalization over the weights.

We can now find the values of the hyperparameters which optimizes the
marginal likelihood based on its partial derivatives which are easily evaluated:

∂L

∂θm
= − (y − µ)�Σ−1 ∂m

∂θm
,

∂L

∂θk
= 1

2 trace
(
Σ−1 ∂Σ

∂θk

)
+ 1

2 (y − µ)� ∂Σ

∂θk
Σ−1 ∂Σ

∂θk
(y − µ),

(11)

where θm and θk are used to indicate hyperparameters of the mean and covari-
ance functions respectively. Eq. (11) can conveniently be used in conjunction

7 Training the GP model involves both model selection, or the discrete choice between
different functional forms for mean and covariance functions as well as adaptation
of the hyperparameters of these functions; for brevity we will only consider the
latter here – the generalization is straightforward, in that marginal likelihoods can
be compared.
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Fig. 3. Mean and 95% posterior confidence region with parameters learned by maxi-
mizing marginal likelihood, Eq. (10), for the Gaussian process specification in Eq. (9),
for the same data as in Figure 2. The hyperparameters found were a = 0.3, b = 0.03, c =
−0.7, � = 0.7, σy = 1.1, σn = 0.25. This example was constructed so that the approach
without optimization of hyperparameters worked reasonably well (Figure 2), but there
is of course no guarantee of this in a typical application

with a numerical optimization routine such as conjugate gradients to find good8

hyperparameter settings.
Due to the fact that the Gaussian process is a non-parametric model, the

marginal likelihood behaves somewhat differently to what one might expect from
experience with parametric models. Note first, that it is in fact very easy for the
model to fit the training data exactly: simply set the noise level σ2

n to zero, and
the model produce a mean predictive function which agrees exactly with the
training points. However, this is not the typical behavior when optimizing the
marginal likelihood. Indeed, the log marginal likelihood from Eq. (10) consists
of three terms: The first term, − 1

2 log |Σ| is a complexity penalty term, which
measures and penalizes the complexity of the model. The second term a nega-
tive quadratic, and plays the role of a data-fit measure (it is the only term which
depends on the training set output values y). The third term is a log normaliza-
tion term, independent of the data, and not very interesting. Figure 3 illustrates
the predictions of a model trained by maximizing the marginal likelihood.

Note that the tradeoff between penalty and data-fit in the GP model is auto-
matic. There is no weighting parameter which needs to be set by some external
method such as cross validation. This is a feature of great practical importance,
since it simplifies training. Figure 4 illustrates how the automatic tradeoff comes
about.

We’ve seen in this section how we, via a hierarchical specification of the prior,
can express prior knowledge in a convenient way, and how we can learn values
of hyperparameters via optimization of the marginal likelihood. This can be
done using some gradient based optimization. Also, we’ve seen how the marginal

8 Note, that for most non-trivial Gaussian processes, optimization over hyperparam-
eters is not a convex problem, so the usual precautions against bad local minima
should be taken.
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Fig. 4. Occam’s razor is automatic. On the x-axis is an abstract representation of all
possible datasets (of a particular size). On the y-axis the probability of the data given
the model. Three different models are shown. A more complex model can account for
many more data sets than a simple model, but since the probabilities have to integrate
to unity, this means more complex models are automatically penalized more

likelihood automatically incorporates Occam’s razor; this property of of great
practical importance, since it simplifies training a lot.

4 Conclusions and Future Directions

We’ve seen how Gaussian processes can conveniently be used to specify very flex-
ible non-linear regression. We only mentioned in passing one type of covariance
function, but in fact any positive definite function9 can be used as covariance
function. Many such functions are known, and understanding the properties of
functions drawn from GPs with particular covariance functions is an impor-
tant ongoing research goal. When the properties of these functions are known,
one will be able to chose covariance functions reflecting prior information, or
alternatively, one will be able to interpret the covariance functions chosen by
maximizing marginal likelihood, to get a better understanding of the data.

In this short tutorial, we have only treated the simplest possible case of
regression with Gaussian noise. In the case of non-Gaussian likelihoods (such as
e.g. needed for classification) training becomes more complicated. One can resort
to approximations, such as the Laplace approximation [3], or approximations
based on projecting the non-Gaussian posterior onto the closest Gaussian (in a
KL sense) [4] or sampling techniques [5].

9 The covariance function must be positive definite to ensure that the resulting co-
variance matrix is positive definite.
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Another issue is the computational limitations. A straightforward implemen-
tation of the simple techniques explained here, requires inversion of the covari-
ance matrix Σ, with a memory complexity of O(n2) and a computational com-
plexity of O(n3). This is feasible on a desktop computer for dataset sizes of n
up to a few thousands. Although there are many interesting machine learning
problems with such relatively small datasets, a lot of current work is going into
the development of approximate methods for larger datasets. A number of these
methods rely on sparse approximations.
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Abstract. We give a tutorial and overview of the field of unsupervised
learning from the perspective of statistical modeling. Unsupervised learn-
ing can be motivated from information theoretic and Bayesian principles.
We briefly review basic models in unsupervised learning, including fac-
tor analysis, PCA, mixtures of Gaussians, ICA, hidden Markov models,
state-space models, and many variants and extensions. We derive the
EM algorithm and give an overview of fundamental concepts in graph-
ical models, and inference algorithms on graphs. This is followed by a
quick tour of approximate Bayesian inference, including Markov chain
Monte Carlo (MCMC), Laplace approximation, BIC, variational approx-
imations, and expectation propagation (EP). The aim of this chapter is
to provide a high-level view of the field. Along the way, many state-of-
the-art ideas and future directions are also reviewed.

1 Introduction

Machine learning is the field of research devoted to the formal study of learn-
ing systems. This is a highly interdisciplinary field which borrows and builds
upon ideas from statistics, computer science, engineering, cognitive science, op-
timization theory and many other disciplines of science and mathematics. The
purpose of this chapter is to introduce in a fairly concise manner the key ideas
underlying the sub-field of machine learning known as unsupervised learning.
This introduction is necessarily incomplete given the enormous range of topics
under the rubric of unsupervised learning. The hope is that interested readers
can delve more deeply into the many topics covered here by following some of
the cited references. The chapter starts at a highly tutorial level but will touch
upon state-of-the-art research in later sections. It is assumed that the reader is
familiar with elementary linear algebra, probability theory, and calculus, but not
much else.

1.1 What Is Unsupervised Learning?

Consider a machine (or living organism) which receives some sequence of inputs
x1, x2, x3, . . ., where xt is the sensory input at time t. This input, which we will

� The author is also at the Center for Automated Learning and Discovery, Carnegie
Mellon University, USA.

O. Bousquet et al. (Eds.): Machine Learning 2003, LNAI 3176, pp. 72–112, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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often call the data, could correspond to an image on the retina, the pixels in a
camera, or a sound waveform. It could also correspond to less obviously sensory
data, for example the words in a news story, or the list of items in a supermarket
shopping basket.

One can distinguish between four different kinds of machine learning. In
supervised learning the machine1 is also given a sequence of desired outputs
y1, y2, . . . , and the goal of the machine is to learn to produce the correct output
given a new input. This output could be a class label (in classification) or a real
number (in regression).

In reinforcement learning the machine interacts with its environment by pro-
ducing actions a1, a2, . . .. These actions affect the state of the environment, which
in turn results in the machine receiving some scalar rewards (or punishments)
r1, r2, . . .. The goal of the machine is to learn to act in a way that maximizes the
future rewards it receives (or minimizes the punishments) over its lifetime. Rein-
forcement learning is closely related to the fields of decision theory (in statistics
and management science), and control theory (in engineering). The fundamental
problems studied in these fields are often formally equivalent, and the solutions
are the same, although different aspects of problem and solution are usually
emphasized.

A third kind of machine learning is closely related to game theory and gen-
eralizes reinforcement learning. Here again the machine gets inputs, produces
actions, and receives rewards. However, the environment the machine interacts
with is not some static world, but rather it can contain other machines which
can also sense, act, receive rewards, and learn. Thus the goal of the machine is
to act so as to maximize rewards in light of the other machines’ current and
future actions. Although there is a great deal of work in game theory for simple
systems, the dynamic case with multiple adapting machines remains an active
and challenging area of research.

Finally, in unsupervised learning the machine simply receives inputs x1, x2,. . .,
but obtains neither supervised target outputs, nor rewards from its environment.
It may seem somewhat mysterious to imagine what the machine could possibly
learn given that it doesn’t get any feedback from its environment. However, it
is possible to develop of formal framework for unsupervised learning based on
the notion that the machine’s goal is to build representations of the input that
can be used for decision making, predicting future inputs, efficiently communi-
cating the inputs to another machine, etc. In a sense, unsupervised learning can
be thought of as finding patterns in the data above and beyond what would be
considered pure unstructured noise. Two very simple classic examples of unsu-
pervised learning are clustering and dimensionality reduction. We discuss these
in Section 2. The remainder of this chapter focuses on unsupervised learning,

1 Henceforth, for succinctness I’ll use the term machine to refer both to machines
and living organisms. Some people prefer to call this a system or agent. The same
mathematical theory of learning applies regardless of what we choose to call the
learner, whether it is artificial or biological.
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although many of the concepts discussed can be applied to supervised learning
as well. But first, let us consider how unsupervised learning relates to statistics
and information theory.

1.2 Machine Learning, Statistics, and Information Theory

Almost all work in unsupervised learning can be viewed in terms of learning
a probabilistic model of the data. Even when the machine is given no super-
vision or reward, it may make sense for the machine to estimate a model that
represents the probability distribution for a new input xt given previous in-
puts x1, . . . , xt−1 (consider the obviously useful examples of stock prices, or the
weather). That is, the learner models P (xt|x1, . . . , xt−1). In simpler cases where
the order in which the inputs arrive is irrelevant or unknown, the machine can
build a model of the data which assumes that the data points x1, x2, . . . are
independently and identically drawn from some distribution P (x)2.

Such a model can be used for outlier detection or monitoring. Let x represent
patterns of sensor readings from a nuclear power plant and assume that P (x)
is learned from data collected from a normally functioning plant. This model
can be used to evaluate the probability of a new sensor reading; if this proba-
bility is abnormally low, then either the model is poor or the plant is behaving
abnormally, in which case one may want to shut it down.

A probabilistic model can also be used for classification. Assume P1(x) is a
model of the attributes of credit card holders who paid on time, and P2(x) is
a model learned from credit card holders who defaulted on their payments. By
evaluating the relative probabilities P1(x′) and P2(x′) on a new applicant x′, the
machine can decide to classify her into one of these two categories.

With a probabilistic model one can also achieve efficient communication and
data compression. Imagine that we want to transmit, over a digital communica-
tion line, symbols x randomly drawn from P (x). For example, x may be letters of
the alphabet, or images, and the communication line may be the Internet. Intu-
itively, we should encode our data so that symbols which occur more frequently
have code words with fewer bits in them, otherwise we are wasting bandwidth.
Shannon’s source coding theorem quantifies this by telling us that the optimal
number of bits to use to encode a symbol with probability P (x) is − log2 P (x).
Using these number of bits for each symbol, the expected coding cost is the
entropy of the distribution P .

H(P ) def= −
∑

x

P (x) log2 P (x) (1)

In general, the true distribution of the data is unknown, but we can learn
a model of this distribution. Let’s call this model Q(x). The optimal code with

2 We will use both P and p to denote probability distributions and probability den-
sities. The meaning should be clear depending on whether the argument is discrete
or continuous.
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respect to this model would use − log2 Q(x) bits for each symbol x. The expected
coding cost, taking expectations with respect to the true distribution, is

−
∑

x

P (x) log2 Q(x) (2)

The difference between these two coding costs is called the Kullback-Leibler
(KL) divergence

KL(P‖Q) def=
∑

x

P (x) log
P (x)
Q(x)

(3)

The KL divergence is non-negative and zero if and only if P=Q. It measures
the coding inefficiency in bits from using a model Q to compress data when the
true data distribution is P . Therefore, the better our model of the data, the more
efficiently we can compress and communicate new data. This is an important link
between machine learning, statistics, and information theory. An excellent text
which elaborates on these relationships and many of the topics in this chapter
is [1].

1.3 Bayes Rule

Bayes rule,

P (y|x) =
P (x|y)P (y)

P (x)
(4)

which follows from the equality P (x, y) = P (x)P (y|x) = P (y)P (x|y), can be
used to motivate a coherent statistical framework for machine learning. The
basic idea is the following. Imagine we wish to design a machine which has
beliefs about the world, and updates these beliefs on the basis of observed data.
The machine must somehow represent the strengths of its beliefs numerically. It
has been shown that if you accept certain axioms of coherent inference, known
as the Cox axioms, then a remarkable result follows [2]: If the machine is to
represent the strength of its beliefs by real numbers, then the only reasonable
and coherent way of manipulating these beliefs is to have them satisfy the rules
of probability, such as Bayes rule. Therefore, P (X = x) can be used not only to
represent the frequency with which the variable X takes on the value x (as in
so-called frequentist statistics) but it can also be used to represent the degree
of belief that X = x. Similarly, P (X = x|Y = y) can be used to represent the
degree of belief that X = x given that one knows Y = y.3

3 Another way to motivate the use of the rules of probability to encode degrees of belief
comes from game-theoretic arguments in the form of the Dutch Book Theorem. This
theorem states that if you are willing to accept bets with odds based on your degrees
of beliefs, then unless your beliefs are coherent in the sense that they satisfy the rules
of probability theory, there exists a set of simultaneous bets (called a “Dutch Book”)
which you will accept and which is guaranteed to lose you money, no matter what
the outcome. The only way to ensure that Dutch Books don’t exist against you, is
to have degrees of belief that satisfy Bayes rule and the other rules of probability
theory.
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From Bayes rule we derive the following simple framework for machine learn-
ing. Assume a universe of models Ω; let Ω = {1, . . . , M} although it need not be
finite or even countable. The machines starts with some prior beliefs over models
m ∈ Ω (we will see many examples of models later), such that

∑M
m=1 P (m) = 1.

A model is simply some probability distribution over data points, i.e. P (x|m).
For simplicity, let us further assume that in all the models the data is taken to
be independently and identically distributed (i.i.d.). After observing a data set
D = {x1, . . . , xN}, the beliefs over models is given by:

P (m|D) =
P (m)P (D|m)

P (D)
∝ P (m)

N∏

n=1

P (xn|m) (5)

which we read as the posterior over models is the prior multiplied by the likeli-
hood, normalized.

The predictive distribution over new data, which would be used to encode
new data efficiently, is

P (x|D) =
M∑

m=1

P (x|m)P (m|D) (6)

Again this follows from the rules of probability theory, and the fact that the
models are assumed to produce i.i.d. data.

Often models are defined by writing down a parametric probability distri-
bution (again, we’ll see many examples below). Thus, the model m might have
parameters θ, which are assumed to be unknown (this could in general be a vec-
tor of parameters). To be a well-defined model from the perspective of Bayesian
learning, one has to define a prior over these model parameters P (θ|m) which
naturally has to satisfy the following equality

P (x|m) =
∫

P (x|θ, m)P (θ|m)dθ (7)

Given the model m it is also possible to infer the posterior over the pa-
rameters of the model, i.e. P (θ|D, m), and to compute the predictive distribu-
tion, P (x|D, m). These quantities are derived in exact analogy to equations (5)
and (6), except that instead of summing over possible models, we integrate over
parameters of a particular model. All the key quantities in Bayesian machine
learning follow directly from the basic rules of probability theory.

Certain approximate forms of Bayesian learning are worth mentioning. Let’s
focus on a particular model m with parameters θ, and an observed data set D.
The predictive distribution averages over all possible parameters weighted by
the posterior

P (x|D, m) =
∫

P (x|θ)P (θ|D, m)dθ. (8)

In certain cases, it may be cumbersome to represent the entire posterior
distribution over parameters, so instead we will choose to find a point-estimate
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of the parameters θ̂. A natural choice is to pick the most probable parameter
value given the data, which is known as the maximum a posteriori or MAP
parameter estimate

θ̂MAP = arg max
θ

P (θ|D, m) = arg max
θ

[

log P (θ|m) +
∑

n

log P (xn|θ, m)

]

(9)

Another natural choice is the maximum likelihood or ML parameter estimate

θ̂ML = arg max
θ

P (D|θ, m) = arg max
θ

∑

n

log P (xn|θ, m) (10)

Many learning algorithms can be seen as finding ML parameter estimates.
The ML parameter estimate is also acceptable from a frequentist statistical mod-
eling perspective since it does not require deciding on a prior over parameters.
However, ML estimation does not protect against overfitting—more complex
models will generally have higher maxima of the likelihood. In order to avoid
problems with overfitting, frequentist procedures often maximize a penalized
or regularized log likelihood (e.g. [3]). If the penalty or regularization term is
interpreted as a log prior, then maximizing penalized likelihood appears iden-
tical to maximizing a posterior. However, there are subtle issues that make a
Bayesian MAP procedure and maximum penalized likelihood different [4]. One
difference is that the MAP estimate is not invariant to reparameterization, while
the maximum of the penalized likelihood is invariant. The penalized likelihood is
a function, not a density, and therefore does not increase or decrease depending
on the Jacobian of the reparameterization.

2 Latent Variable Models

The framework described above can be applied to a wide range of models. No
singe model is appropriate for all data sets. The art in machine learning is to
develop models which are appropriate for the data set being analyzed, and which
have certain desired properties. For example, for high dimensional data sets it
might be necessary to use models that perform dimensionality reduction. Of
course, ultimately, the machine should be able to decide on the appropriate
model without any human intervention, but to achieve this in full generality
requires significant advances in artificial intelligence.

In this section, we will consider probabilistic models that are defined in terms
of some latent or hidden variables. These models can be used to do dimensionality
reduction and clustering, the two cornerstones of unsupervised learning.

2.1 Factor Analysis

Let the data set D consist of D-dimensional real valued vectors,D={y1, . . . ,yN}.
In factor analysis, the data is assumed to be generated from the following model

y = Λx + ε (11)



78 Z. Ghahramani

where x is a K-dimensional zero-mean unit-variance multivariate Gaussian vec-
tor with elements corresponding to hidden (or latent) factors, Λ is a D × K ma-
trix of parameters, known as the factor loading matrix, and ε is a D-dimensional
zero-mean multivariate Gaussian noise vector with diagonal covariance matrix
Ψ . Defining the parameters of the model to be θ = (Ψ, Λ), by integrating out the
factors, one can readily derive that

p(y|θ) =
∫

p(x|θ)p(y|x, θ)dx = N (0, ΛΛ� + Ψ) (12)

where N (µ, Σ) refers to a multivariate Gaussian density with mean µ and co-
variance matrix Σ. For more details refer to [5].

Factor analysis is an interesting model for several reasons. If the data is very
high dimensional (D is large) then even a simple model like the full-covariance
multivariate Gaussian will have too many parameters to reliably estimate or
infer from the data. By choosing K < D, factor analysis makes it possible to
model a Gaussian density for high dimensional data without requiring O(D2)
parameters. Moreover, given a new data point, one can compute the posterior
over the hidden factors, p(x|y, θ); since x is lower dimensional than y this pro-
vides a low-dimensional representation of the data (for example, one could pick
the mean of p(x|y, θ) as the representation for y).

2.2 Principal Components Analysis (PCA)

Principal components analysis (PCA) is an important limiting case of factor
analysis (FA). One can derive PCA by making two modifications to FA. First,
the noise is assumed to be isotropic, in other words each element of ε has equal
variance: Ψ = σ2I, where I is a D×D identity matrix. This model is called prob-
abilistic PCA [6, 7]. Second, if we take the limit of σ → 0 in probabilistic PCA,
we obtain standard PCA (which also goes by the names Karhunen-Loève expan-
sion, and singular value decomposition; SVD). Given a data set with covariance
matrix Σ, for maximum likelihood factor analysis the goal is to find parameters
Λ, and Ψ for which the model ΛΛ� +Ψ has highest likelihood. In PCA, the goal
is to find Λ so that the likelihood is highest for ΛΛ�. Note that this matrix is
singular unless K = D, so the standard PCA model is not a sensible model.
However, taking the limiting case, and further constraining the columns of Λ to
be orthogonal, it can be derived that the principal components correspond to
the K eigenvectors with largest eigenvalue of Σ. PCA is thus attractive because
the solution can be found immediately after eigendecomposition of the covari-
ance. Taking the limit σ → 0 of p(x|y, Λ, σ) we find that it is a delta-function
at x = Λ�y, which is the projection of y onto the principal components.

2.3 Independent Components Analysis (ICA)

Independent components analysis (ICA) extends factor analysis to the case
where the factors are non-Gaussian. This is an interesting extension because
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many real-world data sets have structure which can be modeled as linear combi-
nations of sparse sources. This includes auditory data, images, biological signals
such as EEG, etc. Sparsity simply corresponds to the assumption that the fac-
tors have distributions with higher kurtosis that the Gaussian. For example,
p(x) = λ

2 exp{−λ|x|} has a higher peak at zero and heavier tails than a Gaus-
sian with corresponding mean and variance, so it would be considered sparse
(strictly speaking, one would like a distribution which had non-zero probability
mass at 0 to get true sparsity).

Models like PCA, FA and ICA can all be implemented using neural networks
(multi-layer perceptrons) trained using various cost functions. It is not clear
what advantage this implementation/interpretation has from a machine learn-
ing perspective, although it provides interesting ties to biological information
processing.

Rather than ML estimation, one can also do Bayesian inference for the pa-
rameters of probabilistic PCA, FA, and ICA.

2.4 Mixture of Gaussians

The densities modeled by PCA, FA and ICA are all relatively simple in that they
are unimodal and have fairly restricted parametric forms (Gaussian, in the case
of PCA and FA). To model data with more complex structure such as clusters,
it is very useful to consider mixture models. Although it is straightforward to
consider mixtures of arbitrary densities, we will focus on Gaussians as a common
special case. The density of each data point in a mixture model can be written:

p(y|θ) =
K∑

k=1

πk p(y|θk) (13)

where each of the K components of the mixture is, for example, a Gaussian with
differing means and covariances θk = (µk, Σk) and πk is the mixing proportion
for component k, such that

∑K
k=1 πk = 1 and πk > 0, ∀k.

A different way to think about mixture models is to consider them as latent
variable models, where associated with each data point is a K-ary discrete latent
(i.e. hidden) variable s which has the interpretation that s = k if the data point
was generated by component k. This can be written

p(y|θ) =
K∑

k=1

P (s = k|π)p(y|s = k, θ) (14)

where P (s = k|π) = πk is the prior for the latent variable taking on value
k, and p(y|s = k, θ) = p(y|θk) is the density under component k, recovering
Equation (13).

2.5 K-Means

The mixture of Gaussians model is closely related to an unsupervised clustering
algorithm known as k-means as follows: Consider the special case where all the
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Gaussians have common covariance matrix proportional to the identity matrix:
Σk = σ2I, ∀k, and let πk = 1/K, ∀k. We can estimate the maximum likelihood
parameters of this model using the iterative algorithm which we are about to
describe, known as EM. The resulting algorithm, as we take the limit σ2 → 0,
becomes exactly the k-means algorithm. Clearly the model underlying k-means
has only singular Gaussians and is therefore an unreasonable model of the data;
however, k-means is usually justified from the point of view of clustering to
minimize a distortion measure, rather than fitting a probabilistic models.

3 The EM Algorithm

The EM algorithm is an algorithm for estimating ML parameters of a model
with latent variables. Consider a model with observed variables y, hidden/latent
variables x, and parameters θ. We can lower bound the log likelihood for any
data point as follows

L(θ) = log p(y|θ) = log
∫

p(x,y|θ) dx (15)

= log
∫

q(x)
p(x,y|θ)

q(x)
dx (16)

≥
∫

q(x) log
p(x,y|θ)

q(x)
dx def= F (q, θ) (17)

where q(x) is some arbitrary density over the hidden variables, and the lower
bound holds due to the concavity of the log function (this inequality is known
as Jensen’s inequality). The lower bound F is a functional of both the density
q(x) and the model parameters θ. For a data set of N data points y(1), . . . ,y(N),
this lower bound is formed for the log likelihood term corresponding to each
data point, thus there is a separate density q(n)(x) for each point and F (q, θ) =∑

n F (n)(q(n), θ).
The basic idea of the Expectation-Maximization (EM) algorithm is to iterate

between optimizing this lower bound as a function of q and as a function of θ. We
can prove that this will never decrease the log likelihood. After initializing the
parameters somehow, the kth iteration of the algorithm consists of the following
two steps:

E Step: Optimize F with respect to the distribution q while holding the param-
eters fixed

qk(x) = arg max
q(x)

∫

q(x) log
p(x,y|θk−1)

q(x)
(18)

qk(x) = p(x|y, θk−1) (19)

M Step: Optimize F with respect to the parameters θ while holding the distri-
bution over hidden variables fixed
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θk = arg max
θ

∫

qk(x) log
p(x,y|θ)

qk(x)
dx (20)

θk = arg max
θ

∫

qk(x) log p(x,y|θ) dx (21)

Let us be absolutely clear what happens for a data set of N data points:
In the E step, for each data point, the distribution over the hidden variables is
set to the posterior for that data point q

(n)
k (x) = p(x|y(n), θk−1), ∀n. In the M

step the single set of parameters is re-estimated by maximizing the sum of the
expected log likelihoods: θk = arg maxθ

∑
n

∫
q
(n)
k (x) log p(x,y(n)|θ) dx.

Two things are still unclear: how does (19) follow from (18), and how is this
algorithm guaranteed to increase the likelihood? The optimization in (18) can
be written as follows since p(x,y|θk−1) = p(y|θk−1)p(x|y, θk−1):

qk(x) = arg max
q(x)

[
log p(y|θk−1) +

∫

q(x) log
p(x|y, θk−1)

q(x)
dx

]
(22)

Now, the first term is a constant w.r.t. q(x) and the second term is the
negative of the Kullback-Leibler divergence

KL(q(x)‖p(x|y, θk−1)) =
∫

q(x) log
q(x)

p(x|y, θk−1)
dx (23)

which we have seen in Equation (3) in its discrete form. This is minimized at
q(x) = p(x|y, θk−1), where the KL divergence is zero. Intuitively, the interpre-
tation of this is that in the E step of EM, the goal is to find the posterior
distribution of the hidden variables given the observed variables and the current
settings of the parameters. We also see that since the KL divergence is zero, at
the end of the E step, F (qk, θk−1) = L(θk−1).

In the M step, F is increased with respect to θ. Therefore, F (qk, θk) ≥
F (qk, θk−1). Moreover, L(θk) = F (qk+1, θk) ≥ F (qk, θk) after the next E step.
We can put these steps together to establish that L(θk) ≥ L(θk−1), establishing
that the algorithm is guaranteed to increase the likelihood or keep it fixed (at
convergence).

The EM algorithm can be applied to all the latent variable models described
above, i.e. FA, probabilistic PCA, mixture models, and ICA. In the case of mix-
ture models, the hidden variable is the discrete assignment s of data points to
clusters; consequently the integrals turn into sums where appropriate. EM has
wide applicability to latent variable models, although it is not always the fastest
optimization method [8]. Moreover, we should note that the likelihood often has
many local optima and EM will converge some local optimum which may not
be the global one.

EM can also be used to estimate MAP parameters of a model, and as we will
see in Section 11.4 there is a Bayesian generalization of EM as well.
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4 Modeling Time Series and Other Structured Data

So far we have assumed that the data is unstructured, that is, the observations
are assumed to be independent and identically distributed. This assumption is
unreasonable for many data sets in which the observations arrive in a sequence
and subsequent observations are correlated. Sequential data can occur in time
series modeling (as in financial data or the weather) and also in situations where
the sequential nature of the data is not necessarily tied to time (as in protein
data which consist of sequences of amino acids).

As the most basic level, time series modeling consists of building a probabilis-
tic model of the present observation given all past observations
p(yt|yt−1,yt−2 . . .). Because the history of observations grows arbitrarily large
it is necessary to limit the complexity of such a model. There are essentially two
ways of doing this.

The first approach is to limit the window of past observations. Thus one can
simply model p(yt|yt−1) and assume that this relation holds for all t. This is
known as a first-order Markov model. A second-order Markov model would be
p(yt|yt−1,yt−2), and so on. Such Markov models have two limitations: First,
the influence of past observations on present observations vanishes outside this
window, which can be unrealistic. Second, it may be unnatural and unwieldy to
model directly the relationship between raw observations at one time step and
raw observations at a subsequent time step. For example, if the observations
are noisy images, it would make more sense to de-noise them, extract some
description of the objects, motions, illuminations, and then try to predict from
that.

The second approach is to make use of latent or hidden variables. Instead of
modeling directly the effect of yt−1 on yt, we assume that the observations were
generated from some underlying hidden variable xt which captures the dynamics
of the system. For example, y might be noisy sonar readings of objects in a room,
while x might be the actual locations and sizes of these objects. We usually call
this hidden variable x the state variable since it is meant to capture all the
aspects of the system relevant to predicting the future dynamical behavior of
the system.

In order to understand more complex time series models, it is essential that
one be familiar with state-space models (SSMs) and hidden Markov models
(HMMs). These two classes of models have played a historically important role
in control engineering, visual tracking, speech recognition, protein sequence mod-
eling, and error decoding. They form the simplest building blocks from which
other richer time-series models can be developed, in a manner completely anal-
ogous to the role that FA and mixture models play in building more complex
models for i.i.d. data.

4.1 State-Space Models (SSMs)

In a state-space model, the sequence of observed data y1,y2,y3, . . . is assumed to
have been generated from some sequence of hidden state variables x1,x2,x3, . . ..
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Letting x1:T denote the sequence x1, . . . ,xT , the basic assumption in an SSM
is that the joint probability of the hidden states and observations factors in the
following way:

p(x1:T ,y1:T |θ) =
T∏

t=1

p(xt|xt−1, θ)p(yt|xt, θ) (24)

In order words, the observations are assumed to have been generated from
the hidden states via p(yt|xt, θ), and the hidden states are assumed to have
first-order Markov dynamics captured by p(xt|xt−1, θ). We can consider the first
term p(x1|x0, θ) to be a prior on the initial state of the system x1.

The simplest kind of state-space model assumes that all variables are multi-
variate Gaussian distributed and all the relationships are linear. In such linear-
Gaussian state-space models, we can write

yt = Cxt + vt (25)
xt = Axt−1 + wt (26)

where the matrices C and A define the linear relationships and v and w are zero-
mean Gaussian noise vectors with covariance matrices R and Q respectively. If
we assume that the prior on the initial state p(x1) is also Gaussian, then all
subsequent xs and ys are also Gaussian due the the fact that Gaussian densities
are closed under linear transformations. This model can be generalized in many
ways, for example by augmenting it to include a sequence of observed inputs
u1, . . . ,uT as well as the observed model outputs y1, . . . ,yT , but we will not
discuss generalizations further.

By comparing equations (11) and (25) we see that linear-Gaussian SSMs can
be thought of as a time-series generalization of factor analysis where the factors
are assumed to have linear-Gaussian dynamics over time.

The parameters of this model are θ = (A, C, Q, R). To learn ML settings of
these parameters one can make use of the EM algorithm [9]. The E step of the
algorithm involves computing q(x1:T ) = p(x1:T |y1:T , θ) which is the posterior
over hidden state sequences. In fact, this whole posterior does not have to be
computed or represented, all that is required are the marginals q(xt) and pair-
wise marginals q(xt,xt+1). These can be computed via the Kalman smoothing
algorithm, which is an efficient algorithm for inferring the distribution over the
hidden states of a linear-Gaussian SSM. Since the model is linear, the M step of
the algorithm requires solving a pair of weighted linear regression problems to
re-estimate A and C, while Q and R are estimated from the residuals of those
regressions. This is analogous to the M step of factor analysis, which also involves
solving a linear regression problem.

4.2 Hidden Markov Models (HMMs)

Hidden Markov models are similar to state-space models in that the sequence of
observations is assumed to have been generated from a sequence of underlying
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hidden states. The key difference is that in HMMs the state is assumed to be
discrete rather than a continuous random vector. Let st denote the hidden state
of an HMM at time t. We assume that st can take discrete values in {1, . . . , K}.
The model can again be written as in (24):

P (s1:T ,y1:T |θ) =
T∏

t=1

P (st|st−1, θ)P (yt|st, θ) (27)

where P (s1|s0, θ) is simply some initial distribution over the K settings of the
first hidden state; we can call this discrete distribution π, represented by a K ×1
vector. The state-transition probabilities P (st|st−1, θ) are captured by a K × K
transition matrix A, with elements Aij = P (st = i|st−1 = j, θ). The observations
in an HMM can be either continuous or discrete. For continuous observations
yt one can for example choose a Gaussian density; thus p(yt|st = i, θ) would
be a different Gaussian for each choice of i ∈ {1, . . . , K}. This model is the
dynamical generalization of a mixture of Gaussians. The marginal probability
at each point in time is exactly a mixture of K Gaussians—the difference is
that which component generates data point yt and which component generated
yt−1 are not independent random variables, but certain combinations are more
and less probable depending on the entries in A. For yt a discrete observation,
let us assume that it can take on values {1, . . . , L}. In that case the output
probabilities P (yt|st, θ) can be captured by an L × K emission matrix, E.

The model parameters for a discrete-observation HMM are θ = (π, A, E).
Maximum likelihood learning of the model parameters can be approached us-
ing the EM algorithm, which in the case of HMMs is known as the Baum-
Welch algorithm. The E step involves computing Q(st) and Q(st, st+1) which
are marginals of Q(s1:T ) = P (s1:T |y1:T , θ). These marginals are computed as
part of the forward–backward algorithm which as the name suggests sweeps for-
ward and backward through the time series, and applies Bayes rule efficiently
using the Markov conditional independence properties of the HMM, to compute
the required marginals. The M step of HMM learning involves re-estimating π,
A, and E by adding up and normalizing expected counts for transitions and
emissions that were computed in the E step.

4.3 Modeling Other Structured Data

We have considered the case of i.i.d. data and time series data. The observations
in real world data sets can have many other possible structures as well. Let us
mention a few examples, although it is not possible to strive for completeness.

In spatial data, the points are assumed to live in some metric, often Euclidean,
space. Three examples of spatial data include epidemiological data which can
be modeled as a function of the spatial location of the measurement; data from
computer vision where the observations are measurements of features on a 2D
input to the camera; and functional neuroimaging where the data can be phys-
iological measurements related to neural activity located in 3D voxels defining
coordinates in the brain. Generalizing HMMs, one can define Markov random
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field models where there are a set of hidden variables correlated to neighbors in
some lattice, and related to the observed variables.

Hierarchical or tree-structured data contains known or unknown tree-like
correlation structure between the data points or measured features. For example,
the data points may be features of animals related through an evolutionary
tree. A very different form of structured data is if each data point itself is tree-
structured, for example if each point is a parse tree of a sentence in the English
language.

Finally, one can take the structured dependencies between variables and con-
sider the structure itself as an unknown part of the model. Such models are
known as probabilistic relational models and are closely related to graphical mod-
els which we will discuss in Section 7.

5 Nonlinear, Factorial, and Hierarchical Models

The models we have described so far are attractive because they are relatively
simple to understand and learn. However, their simplicity is also a limitation,
since the intricacies of real-world data are unlikely to be well-captured by a
simple statistical model. This motivates us to seek to describe and study learning
in much more flexible models.

A simple combination of two of the ideas we have described for i.i.d. data
is the mixture of factor analyzers [10, 11, 12]. This model performs simultane-
ous clustering and dimensionality reduction on the data, by assuming that the
covariance in each Gaussian cluster can be modeled by an FA model. Thus, it
becomes possible to apply a mixture model to very high dimensional data while
allowing each cluster to span a different sub-space of the data.

As their name implies linear-Gaussian SSMs are limited by assumptions of
linearity and Gaussian noise. In many realistic dynamical systems there are
significant nonlinear effects, which make it necessary to consider learning in
nonlinear state-space models. Such models can also be learned using the EM
algorithm, but the E step must deal with inference in non-Gaussian and poten-
tially very complicated densities (since non-linearities will turn Gaussians into
non-Gaussians), and the M step is nonlinear regression, rather than linear regres-
sion [13]. There are many methods of dealing with inference in non-linear SSMs,
including methods such as particle filtering [14, 15, 16, 17, 18, 19], linearization
[20], the unscented filter [21, 22], the EP algorithm [23], and embedded HMMs
[24].

Non-linear models are also important if we are to consider generalizing sim-
ple dimensionality reduction models such as PCA and FA. These models are
limited in that they can only find a linear subspace of the data to capture the
correlations between the observed variables. There are many interesting and
important nonlinear dimensionality reduction models, including generative to-
pographic mappings (GTM) [25] (a probabilistic alternative to Kohonen maps),
multi-dimensional scaling (MDS) [26, 27], principal curves [28], Isomap [29], and
locally linear embedding (LLE) [30].
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Hidden Markov models also have their limitations. Even though they can
model nonlinear dynamics by discretizing the hidden state space, an HMM with
K hidden states can only capture log2 K bits of information in its state variable
about the past of the sequence. HMMs can be extended by allowing a vector
of discrete state variables, in an architecture known as a factorial HMM [31].
Thus a vector of M variables, each of which can take K states, can capture KM

possible states in total, and M log2 K bits of information about the past of the
sequence. The problem is that such a model, if dealt with naively as an HMM
would have exponentially many parameters and would take exponentially long
to do inference in. Both the complexity in time and number of parameters can
be alleviated by restricting the interactions between the hidden variables at one
time step and at the next time step. A generalization of these ideas is the notion
of a dynamical Bayesian network (DBN) [32].

A relatively old but still quite powerful class of models for binary data is
the Boltzmann machine (BM) [33]. This is a simple model inspired from Ising
models in statistical physics. A BM is a multivariate model for capturing cor-
relations and higher order statistics in vectors of binary data. Consider data
consisting of vectors of M binary variables (t he elements of the vector may, for
example, be pixels in a black-and-white image). Clearly, each data point can be
an instance of one of 2M possible patterns. An arbitrary distribution over such
patterns would require a table with 2M − 1 entries, again intractable in num-
ber of parameters, storage, and computation time. A BM allows one to define
flexible distributions over the 2M entries of this table by using O(M2) parame-
ters defining a symmetric matrix of weights connecting the variables. This can
be augmented with hidden variables in order to enrich the model class, without
adding exponentially many parameters. These hidden variables can be organized
into layers of a hierarchy as in the Helmholtz machine [34]. Other hierarchical
models include recent generalizations of ICA designed to capture higher order
statistics in images [35].

6 Intractability

The problem with the models described in the previous section is that learn-
ing their parameters is in general computationally intractable. In a model with
exponentially many settings for the hidden states, doing the E step of an EM
algorithm would require computing appropriate marginals of a distribution over
exponentially many possibilities.

Let us consider a simple example. Imagine we have a vector of N binary
random variables s = (s1, . . . , sN ), where si ∈ {0, 1} and a vector of N known
integers (r1, . . . , rN ) where ri ∈ {1, 2, 3, . . . , 10}. Let the variable Y =

∑N
i=1 risi.

Assume that the binary variables are all independent and identically distributed
with P (si = 1) = 1/2, ∀i. Let N be 100. Now imagine that we are told Y = 430.
How do we compute P (si = 1|Y = 430)? The problem is that even though the
si were independent before we observed the value of Y , now that we know the
value of Y , not all settings of s are possible anymore. To figure out for some si
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the probability of P (si = 1|Y = 430) requires that we enumerate all potentially
exponentially many ways of achieving Y = 430 and counting how many of those
had si = 1 vs si = 0.

This example illustrates the following ideas: Even if the prior is simple, the
posterior can be very complicated. Whether two random variables are indepen-
dent or not is a function of one’s state of knowledge. Thus si and sj may be
independent if we are not told the value of Y but are certainly dependent given
the value of Y . These type of phenomena are related to “explaining-away” which
refers to the fact that if there are multiple potential causes for some effect, ob-
serving one, explains away the need for the others [36].

Intractability can thus occur if we have a model with discrete hidden vari-
ables which can take on exponentially many combinations. Intractability can
also occur with continuous hidden variables if their density is not simply de-
scribed, or if they interact with discrete hidden variables. Moreover, even for
simple models, such as a mixture of Gaussians, intractability occurs when we
consider the parameters to be unknown as well, and we attempt to do Bayesian
inference on them. To deal with intractability it is essential to have good tools
for representing multivariate distributions, such as graphical models.

7 Graphical Models

Graphical models are an important tool for representing the dependencies be-
tween random variables in a probabilistic model. They are important for two
reasons. First, graphs are an intuitive way of visualizing dependencies. We are
used to graphical depictions of dependency, for example in circuit diagrams and
in phylogenetic trees. Second, by exploiting the structure of the graph it is pos-
sible to devise efficient message passing algorithms for computing marginal and
conditional probabilities in a complicated model. We discuss message passing
algorithms for inference in Section 8.

The main statistical property represented explicitly by the graph is condi-
tional independence between variables. We say that X and Y are conditionally
independent given Z, if P (X, Y |Z) = P (X|Z)P (Y |Z) for all values of the vari-
ables X,Y , and Z where these quantities are defined (i.e. excepting settings
z where P (Z = z) = 0). We use the notation X⊥⊥Y |Z to denote the above
conditional independence relation. Conditional independence generalists to sets
of variables in the obvious way, and it is different from marginal independence
which states that P (X, Y ) = P (X)P (Y ), and is denoted X⊥⊥Y .

There are several different graphical formalisms for depicting conditional in-
dependence relationships. We focus on three of the main ones: undirected, factor,
and directed graphs.

7.1 Undirected Graphs

In an undirected graphical model each random variable is represented by a node,
and the edges of the graph indicate conditional independence relationships.
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Fig. 1. Three kinds of probabilistic graphical model: undirected graphs, factor graphs
and directed graphs

Specifically, let X ,Y, and Z be sets of random variables. Then X⊥⊥Y|Z if every
path on the graph from a node in X to a node in Y has to go through a node in
Z. Thus a variable X is conditionally independent of all other variables given the
neighbors of X, and we say that the neighbors separate X from the rest of the
graph. An example of an undirected graph is shown in Figure 1. In this graph
A⊥⊥B|C and B⊥⊥E|{C, D}, for example, and the neighbors of D are B, C, E.

A clique is a fully connected subgraph of a graph. A maximal clique is not
contained in any other clique of the graph. It turns out that the set of condi-
tional independence relations implied by the separation properties in the graph
are satisfied by probability distributions which can be written as a normalized
product of non-negative functions over the variables in the maximal cliques of the
graph (this is known as the Hammersley-Clifford Theorem [37]). In the example
in Figure 1, this implies that the probability distribution over (A, B, C, D, E)
can be written as:

P (A, B, C, D, E) = c g1(A, C)g2(B, C, D)g3(C, D, E) (28)

Here, c is the constant that ensures that the probability distribution sums to
1, and g1, g2 and g3 are non-negative functions of their arguments. For example,
if all the variables are binary the function g2 is a table with a non-negative
number for each of the 8 = 2 × 2 × 2 possible settings of the variables B, C, D.
These non-negative functions are supposed to represent how compatible these
settings are with each other, with a 0 encoding logical incompatibility. For this
reason, the g’s are sometimes referred to as compatibility functions, other times
as potential functions. Undirected graphical models are also sometimes referred
to as Markov networks.

7.2 Factor Graphs

In a factor graph there are two kinds of nodes, variable nodes and factor nodes,
usually denoted as open circles and filled dots (Figure 1). Like an undirected
model, the factor graph represents a factorization of the joint probability distri-
bution: each factor is a non-negative function of the variables connected to the
corresponding factor node. Thus for the factor graph in Figure 1 we have:
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P (A, B, C, D, E) = cg1(A, C)g2(B, C)g3(B, D), g4(C, D)g5(C, E)g6(D, E)
(29)

Factor nodes are also sometimes called function nodes. Again, as in an undi-
rected graphical model, the variables in a set X are conditionally independent
of the variables in a set Y given Z if all paths from X to Y go through variables
in Z. Note that the factor graph is Figure 1 has exactly the same conditional
independence relations as the undirected graph, even though the factors in the
former are contained in the factors in the latter. Factor graphs are particularly
elegant and simple when it comes to implementing message passing algorithms
for inference (Section 8).

7.3 Directed Graphs

In directed graphical models, also known as probabilistic directed acyclic graphs
(DAGs), belief networks, and Bayesian networks, the nodes represent random
variables and the directed edges represent statistical dependencies. If there exists
an edge from A to B we say that A is a parent of B, and conversely B is a child
of A. A directed graph corresponds to the factorization of the joint probability
into a product of the conditional probabilities of each node given its parents. For
the example in Figure 1 we write:

P (A, B, C, D, E) = P (A)P (B)P (C|A, B)P (D|B, C)P (E|C, D) (30)

In general we would write:

P (X1, . . . , XN ) =
N∏

i=1

P (Xi|Xpai
) (31)

where Xpai
denotes the variables that are parents of Xi in the graph.

Assessing the conditional independence relations in a directed graph is slightly
less trivial than in undirected and factor graphs. Rather than simply looking
at separation between sets of variables, one has to consider the directions of
the edges. The graphical test for two sets of variables being conditionally in-
dependent given a third is called d-separation [36]. D-separation takes into ac-
count the following fact about v-structures of the graph, which consist of two
(or more) parents of a child, as in the A → C ← B subgraph in Figure 1.
In such a v-structure A⊥⊥B, but it is not true that A⊥⊥B|C. That is, A and
B are marginally independent, but conditionally dependent given C. This can
be easily checked by writing out P (A, B, C) = P (A)P (B)P (C|A, B). Sum-
ming out C leads to P (A, B) = P (A)P (B). However, given the value of C,
P (A, B|C) = P (A)P (B)P (C|A, B)/P (C) which does not factor into separate
functions of A and B. As a consequence of this property of v-structures, in a
directed graph a variable X is independent of all other variables given the par-
ents of X, the children of X, and the parents of the children of X. This is the
minimal set that d-separates X from the rest of the graph and is known as the
Markov boundary for X.
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It is possible, though not always appropriate, to interpret a directed graphical
model as a causal generative model of the data. The following procedure would
generate data from the probability distribution defined by a directed graph: draw
a random value from the marginal distribution of all variables which do not
have any parents (e.g. a ∼ P (A), b ∼ P (B)), then sample from the conditional
distribution of the children of these variables (e.g. c ∼ P (C|A = a, B = a)),
and continue this procedure until all variables are assigned values. In the model,
P (C|A, B) can capture the causal relationship between the causes A and B and
the effect C. Such causal interpretations are much less natural for undirected and
factor graphs, since even generating a sample from such models cannot easily be
done in a hierarchical manner starting from “parents” to “children” except in
special cases. Moreover, the potential functions capture mutual compatibilities,
rather than cause-effect relations.

A useful property of directed graphical models is that there is no global nor-
malization constant c. This global constant can be computationally intractable to
compute in undirected and factor graphs. In directed graphs, each term is a con-
ditional probability and is therefore already normalized

∑
x P (Xi = x|Xpai

) = 1.

7.4 Expressive Power

Directed, undirected and factor graphs are complementary in their ability to ex-
press conditional independence relationships. Consider the directed graph con-
sisting of a single v-structure A → C ← B. This graph encodes A⊥⊥B but not
A⊥⊥B|C. There exists no undirected graph or factor graph over these three vari-
ables which captures exactly these independencies. For example, in A − C − B
it is not true that A⊥⊥B but it is true that A⊥⊥B|C. Conversely, if we consider
the undirected graph in Figure 2, we see that some independence relationships
are better captured by undirected models (and factor graphs).

Fig. 2. No directed graph over 4 variables can represent the set of conditional inde-
pendence relationships represented by this undirected graph

8 Exact Inference in Graphs

Probabilistic inference in a graph usually refers to the problem of computing the
conditional probability of some variable Xi given the observed values of some
other variables Xobs = xobs while marginalizing out all other variables. Starting
from a joint distribution P (X1, . . . , XN ), we can divide the set of all variables
into three exhaustive and mutually exclusive sets {X1, . . . XN} = {Xi} ∪ Xobs ∪
Xother. We wish to compute
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P (Xi|Xobs = xobs) =
∑

x P (Xi, Xother = x, Xobs = xobs)∑
x′

∑
x P (Xi = x′, Xother = x, Xobs = xobs)

(32)

The problem is that the sum over x is exponential in the number of variables
in Xother. For example. if there are M variables in Xother and each is binary,
then there are 2M possible values for x. If the variables are continuous, then
the desired conditional probability is the ratio of two high-dimensional integrals,
which could be intractable to compute. Probabilistic inference is essentially a
problem of computing large sums and integrals.

There are several algorithms for computing these sums and integrals which
exploit the structure of the graph to get the solution efficiently for certain graph
structures (namely trees and related graphs). For general graphs the problem is
fundamentally hard [38].

8.1 Elimination

The simplest algorithm conceptually is variable elimination. It is easiest to ex-
plain with an example. Consider computing P (A = a|D = d) in the directed
graph in Figure 1. This can be written

P (A = a|D = d) ∝
∑

c

∑

b

∑

e

P (A = a, B = b, C = c, D = d, E = e)

=
∑

c

∑

b

∑

e

P (A = a)P (B = b)P (C = c|A = a, B = b)

P (D = d|C = c, B = b)P (E = e|C = c, D = d)

=
∑

c

∑

b

P (A = a)P (B = b)P (C = c|A = a, B = b)

P (D = d|C = c, B = b)
∑

e

P (E = e|C = c, D = d)

=
∑

c

∑

b

P (A = a)P (B = b)P (C = c|A = a, B = b)

P (D = d|C = c, B = b)

What we did was (1) exploit the factorization, (2) rearrange the sums, and
(3) eliminate a variable, E. We could repeat this procedure and eliminate the
variable C. When we do this we will need to compute a new function φ(A =
a, B = b, D = d) def=

∑
c P (C = c|A = a, B = b)P (D = d|C = c, B = b),

resulting in:

P (A = a|D = d) ∝
∑

b

P (A = a)P (B = b)φ(A = a, B = b, D = d)

Finally, we eliminate B by computing φ′(A = a, D = d) def=
∑

b P (B =
b)φ(A = a, B = b, D = d) to get our final answer which can be written

P (A = a|D = d) ∝ P (A = a)φ′(A = a, D = d) =
P (A = a)φ′(A = a, D = d)

∑
a P (A = a)φ′(A = a, D = d)
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The functions we get when we eliminate variables can be thought of as mes-
sages sent by that variable to its neighbors. Eliminating transforms the graph by
removing the eliminated node and drawing (undirected) edges between all the
nodes in the Markov boundary of the eliminated node.

The same answer is obtained no matter what order we eliminate variables in;
however, the computational complexity can depend dramatically on the ordering
used.

8.2 Belief Propagation

The belief propagation (BP) algorithm is a message passing algorithm for com-
puting conditional probabilities of any variable given the values of some set of
other variables in a singly-connected directed acyclic graph [36]. The algorithm
itself follows from the rules of probability and the conditional independence
properties of the graph. Whereas variable elimination focuses on finding the
conditional probability of a single variable Xi given Xobs = xobs, belief propa-
gation can compute at once all the conditionals p(Xi|Xobs = xobs) for all i not
observed.

We first need to define singly-connected directed graphs. A directed graph
is singly connected if between every pair of nodes there is only one undirected
path. An undirected path is a path along the edges of the graph ignoring the
direction of the edges: in other words the path can traverse edges both upstream
and downstream. If there is more than one undirected path between any pair
of nodes then the graph is said to be multiply connected, or loopy (since it has
loops).

Singly connected graphs have an important property which BP exploits. Let
us call the set of observed variables the evidence, e = Xobs. Every node in
the graph divides the evidence into upstream e+

X and downstream e−
X parts.

For example, in Figure 3 the variables U1 . . . Un their parents, ancestors, and
children and descendents (not including X, its children and descendents) and
anything else connected to X via an edge directed toward X are all considered
to be upstream of X; anything connected to X via an edge away from X is
considered downstream of X (e.g. Y1, its children, the parents of its children,
etc). Similarly, every edge X → Y in a singly connected graph divides the

X

Y

U U

Y

1

1

n

......

......

m

Fig. 3. Belief propagation in a directed graph
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evidence into upstream and downstream parts. This separation of the evidence
into upstream and downstream components does not generally occur in multiply-
connected graphs.

Belief propagation uses three key ideas to compute the probability of some
variable given the evidence p(X|e), which we can call the “belief” about X.4

First, the belief about X can be found by combining upstream and downstream
evidence:

P (X|e) =
P (X, e)
P (e)

∝ P (X, e+
X , e−

X) ∝ P (X|e+
X)P (e−

X |X) (33)

The last proportionality results from the fact that given X the downstream
and upstream evidence are conditionally independent: P (e−

X |X, e+
X) = P (e−

X |X).
Second, the effect of the upstream and downstream evidence on X can be com-
puted via a local message passing algorithm between the nodes in the graph.
Third, the message from X to Y has to be constructed carefully so that node X
doesn’t send back to Y any information that Y sent to X, otherwise the message
passing algorithm would reverberate information between nodes amplifying and
distorting the final beliefs.

Using these ideas and the basic rules of probability we can arrive at the
following equations, where ch(X) and pa(X) are children and parents of X,
respectively:

λ(X) def= P (e−
X |X) =

∏

j∈ch(X)

P (e−
XYj

|X) (34)

π(X) def= P (X|e+
X) =

∑

U1...Un

P (X|U1, . . . , Un)
∏

i∈pa(X)

P (Ui|e+
UiX

) (35)

Finally, the messages from parents to children (e.g. X to Yj) and the messages
from children to parents (e.g. X to Ui) can be computed as follows:

πYj
(X) def= P (X|e+

XYj
)

∝
[ ∏

k �=j

P (e−
XYk

|X)
] ∑

U1,...,Un

P (X|U1 . . . Un)
∏

i

P (Ui|e+
UiX

) (36)

λX(Ui)
def= P (e−

UiX
|Ui)

=
∑

X

P (e−
X |X)

∑

Uk:k �=i

P (X|U1 . . . Un)
∏

k �=i

P (Uk|e+
UkX) (37)

It is important to notice that in the computation of both the top-down mes-
sage (36) and the bottom-up message (37) the recipient of the message is explic-
itly excluded. Pearl’s [36] mnemonic of calling these messages λ and π messages
is meant to reflect their role in computing “likelihood” and “prior” terms.

4 There is considerably variety in the field regarding the naming of algorithms. Belief
propagation is also known as the sum-product algorithm, a name which some people
prefer since beliefs seem subjective.
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BP includes as special cases two important algorithms: Kalman smoothing
for linear-Gaussian state-space models, and the forward–backward algorithm for
hidden Markov models. Although BP is only valid on singly connected graphs
there is a large body of research on its application to multiply connected graphs—
the use of BP on such graphs is called loopy belief propagation and has been
analyzed by several researchers [39, 40]. Interest in loopy belief propagation
arose out of its impressive performance in decoding error correcting codes [41,
42, 43, 44]. Although the beliefs are not guaranteed to be correct on loopy
graphs, interesting connections can be made to approximate inference procedures
inspired by statistical physics known as the Bethe and Kikuchi free energies [45].

8.3 Factor Graph Propagation

In belief propagation, there is an asymmetry between the messages a child sends
its parents and the messages a parent sends its children. Propagation in singly-
connected factor graphs is conceptually much simpler and easier to implement.
In a factor graph, the joint probability distribution is written as a product of
factors. Consider a vector of variables x = (x1, . . . , xn)

p(x) = p(x1, . . . , xn) =
1
Z

∏

j

fj(xSj ) (38)

where Z is the normalisation constant, Sj denotes the subset of {1, . . . , n} which
participate in factor fj and xSj = {xi : i ∈ Sj}.

Let n(x) denote the set of factor nodes that are neighbours of x and let
n(f) denote the set of variable nodes that are neighbours of f . We can compute
probabilities in a factor graph by propagating messages from variable nodes to
factor nodes and vice-versa. The message from variable x to function f is:

µx→f (x) =
∏

h∈n(x)\{f}
µh→x(x) (39)

while the message from function f to variable x is:

µf→x(x) =
∑

x\x

⎛

⎝f(x)
∏

y∈n(f)\{x}
µy→f (y)

⎞

⎠ (40)

Once a variable has received all messages from its neighbouring factor nodes
we can compute the probability of that variable by multiplying all the messages
and renormalising:

p(x) ∝
∏

h∈n(x)

µh→x(x) (41)

Again, these equations can be derived by using Bayes rule and the condi-
tional independence relations in a singly-connected factor graph. For multiply-
connected factor graphs (where there is more than one path between at least one
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pair of variable nodes) one can apply a loopy version of factor graph propagation.
Since the algorithms for directed graphs and factor graphs are essentially based
on the same ideas, we also call the loopy version of factor graph propagation
“loopy belief propagation”.

8.4 Junction Tree Algorithm

For multiply-connected graphs, the standard exact inference algorithms are based
on the notion of a junction tree [46]. The basic idea of the junction tree algo-
rithm is to group variables so as to convert the multiply-connected graph into a
singly-connected undirected graph (tree) over sets of variables, and do inference
in this tree.

We will not explain the algorithm in detail here, but rather give an overview
of the steps involved. Starting from a directed graph, undirected edges are in-
troduced between every pair of variables that share a child. This step is called
“moralisation” in a tongue-in-cheek reference to the fact that it involves mar-
rying the unmarried parents of every node. All the remaining edges are then
changed from directed to undirected. We now have an undirected graph which
does not imply any additional conditional or marginal independence relations
which were not present in the original directed graph (although the undirected
graph may easily have many fewer conditional or marginal independence rela-
tions than the directed graph). The next step of the algorithm is “triangula-
tion” which introduces an edge cutting across every cycle of length 4. For ex-
ample, the cycle A − B − C − D − A which would look like Figure 2 would
be triangulated either by adding an edge A − C or an edge B − D. Once
the graph has been triangulated, the maximal cliques of the graph are or-
ganised into a tree, where the nodes of the tree are cliques, by placing edges
in the tree between some of the cliques with an overlap in variables (plac-
ing edges between all overlaps may not result in a tree). In general it may be
possible to build several trees in this way, and triangulating the graph means
than there exists a tree with the “running intersection property”. This prop-
erty ensures that none of the variable is represented in disjoint parts of the
tree, as this would cause the algorithm to come up with multiple possibly
inconsistent beliefs about the variable. Finally, once the tree with the run-
ning intersection property is built (the junction tree) it is possible to intro-
duce the evidence into the tree and apply what is essentially a variant of be-
lief propagation to this junction tree. This BP algorithm is operating on sets
of variables contained in the cliques of the junction tree, rather than on in-
dividual variables in the original graph. As such, the complexity of the algo-
rithm scales exponentially with the size of the largest clique in the junction
tree. For example, if moralisation and triangulation results in a clique con-
taining K binary variables, the junction tree algorithm would have to store
and manipulate tables of size 2K . Moreover, finding the optimal triangulation
to get the most efficient junction tree for a particular graph is NP-complete
[47, 48].
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8.5 Cutest Conditioning

In certain graphs the simplest inference algorithm is cutset conditioning which
is related to the idea of “reasoning by assumptions”. The basic idea is very
straightforward: find some small set of variables such that if they were given
(i.e. you knew their values) it would make the remainder of the graph singly
connected. For example, in the undirected graph in Figure 1, given C or D, the
rest of the graph is singly connected. This set of variables is called the cutset.
For each possible value of the variables in the cutset, run BP on the remainder
of the graph to obtain the beliefs on the node of interest. These beliefs can be
averaged with appropriate weights to obtain the true belief on the variable of
interest. To make this more concrete, assume you want to find P (X|e) and you
discover a cutset consisting of a single variable C. Then

P (X|e) =
∑

c

P (X|C = c, e)P (C = c |e) (42)

where the beliefs P (X|C = c, e) and corresponding weights P (C = c |e) are
computed as part of BP, run once for each value of c.

9 Learning in Graphical Models

In Section 8 we described exact algorithms for inferring the value of variables in a
graph with known parameters and structure. If the parameters and structure are
unknown they can be learned from the data [49]. The learning problem can be
divided into learning the graph parameters for a known structure, and learning
the model structure (i.e. which edges should be present or absent).5

We focus here on directed graphs with discrete variables, although some of
these issues become much more subtle for undirected and factor graphs [50]. The
parameters of a directed graph with discrete variables parameterise the condi-
tional probability tables P (Xi|Xpai

). For each setting of Xpai
this table contains

a probability distribution over Xi. For example, if all variables are binary and Xi

has K parents, then this conditional probability table has 2K+1 entries; however,
since the probability over Xi has to sum to 1 for each setting of its parents there
are only 2K independent entries. The most general parameterisation would have
a distinct parameter for each entry in this table, but this is often not a natural
way to parameterise the dependency between variables. Alternatives (for binary
data) are the noisy-or or sigmoid parameterisation of the dependencies [51].
Whatever the specific parameterisation, let θi denote the parameters relating

5 It should be noted that in Bayesian statistics there is no fundamental difference
between parameters and variables, and therefore the learning and inference problems
are really the same. All unknown quantities are treated as random variables, and
learning is just inference about parameters and structure. It is however often useful
to distinguish between parameters, which we assume to be fairly constant over the
data, and variables, which we can assume to vary over each data point.
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Xi to its parents, and let θ denote all the parameters in the model. Let m de-
note the model structure, which corresponds to the set of edges in the graph.
More generally the model structure can also contain the presence of additional
hidden variables [52].

9.1 Learning Graph Parameters

We first consider the problem of learning graph parameters when the model
structure is known and there are no missing or hidden variables. The presence
of missing/hidden variables complicates the situation.

The Complete Data Case. Assume that the parameters controlling each fam-
ily (a child and its parents) are distinct and that we observe N iid instances of
all K variables in our graph. The data set is therefore D = {X(1) . . . X(N)} and
the likelihood can be written

P (D|θ) =
N∏

n=1

P (X(n)|θ) =
N∏

n=1

K∏

i=1

P (X(n)
i |X(n)

pai
,θi) (43)

Clearly, maximising the log likelihood with respect to the parameters re-
sults in K decoupled optimisation problems, one for each family, since the
log likelihood can be written as a sum of K independent terms. Similarly,
if the prior factors over the θi, then the Bayesian posterior is also factored:
P (θ|D) =

∏
i P (θi|D).

The Incomplete Data Case. When there is missing/hidden data, the like-
lihood no longer factors over the variables. Divide the variables in X(n) into
observed and missing components, X

(n)
obs and X

(n)
mis. The observed data is now

D = {X
(1)
obs . . . X

(N)
obs } and the likelihood is:

P (D|θ) =
N∏

n=1

P (X(n)
obs |θ) (44)

=
N∏

n=1

∑

x
(n)
mis

P (X(n)
mis = x

(n)
mis, X

(n)
obs |θ) (45)

=
N∏

n=1

∑

x
(n)
mis

K∏

i=1

P (X(n)
i |X(n)

pai
,θi) (46)

where in the last expression the missing variables are assumed to be set to the
values x

(n)
mis. Because of the missing data, the cost function can no longer be

written as a sum of K independent terms and the parameters are all coupled.
Similarly, even if the prior factors over the θi, the Bayesian posterior will couple
all the θi.

One can still optimise the likelihood by making use of the EM algorithm (Sec-
tion 3). The E step of EM infers the distribution over the hidden variables given
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the current setting of the parameters. This can be done with BP for singly con-
nected graphs or with the junction tree algorithm for multiply-connected graphs.
In the M step, the objective function being optimised conveniently factors in ex-
actly the same way as in the complete data case (c.f. Equation (21)). Whereas
for the complete data case, the optimal ML parameters can often be computed
in closed form, in the incomplete data case an iterative algorithm such as EM is
usually required.

Bayesian parameter inference in the incomplete data case is also substantially
more complicated. The parameters and missing data are coupled in the posterior
distribution, as can be seen by multiplying (45) by the parameter prior and
normalising. Inference can be achieved via approximate inference methods such
as Markov chain Monte Carlo methods (Section 11.3, [53]) like Gibbs sampling,
and variational approximations (Section 11.4, [54]).

9.2 Learning Graph Structure

There are two basic components to learning the structure of a graph from data:
scoring and search. Scoring refers to computing a measure which can be used
to compare different structures m and m′ given a data set D. Search refers
to searching over the space of possible model structures, usually by proposing
changes to the current model, so as to find the model with the highest score. This
view of structure learning presupposes that the goal is to find a single structure
with the highest score, although of course in the Bayesian inference framework
it is desirable to infer the probability distribution over model structures given
the data.

Scoring Metrics. Assume that you have a prior P (m) over model structures,
which is ideally based on some domain knowledge. The natural score to use is the
probability of the model given the data (although see [55]) or some monotonic
function of this:

s(m,D) = P (m|D) ∝ P (D|m)P (m). (47)

This score requires computing the marginal likelihood

P (D|m) =
∫

P (D|θ, m)P (θ|m)dθ. (48)

We discuss the intuitions behind the marginal likelihood as a natural score
for model comparison in Section 10.

For directed graphical models with fully-observed discrete variables and fac-
tored Dirichlet priors over the parameters of the conditional probability tables,
the integral in (48) is analytically tractable. For models with missing/hidden
data, alternative choices of priors and types of variables, the integral in (48) is
often intractable and approximation methods are required. Some of the standard
approximations that can be applied in this context and many other Bayesian in-
ference problems are briefly reviewed in Section 11.
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Search Algorithms. Given a way of scoring models, one can search over the
space of all possible valid graphical models for the one with the highest score [56].
The space of all possible graphs is very large (exponential in the number of vari-
ables) and for directed graphs it can be expensive to check whether a particular
change to the graph will result in a cycle being formed. Thus intelligent heuristics
are needed to search the space efficiently [57]. An alternative to trying to find
the most probable graph are methods that sample over the posterior distribution
of graphs [58]. This has the advantage that it avoids the problem of overfitting
which can occur for algorithms that select a single structure with highest score
out of exponentially many.

10 Bayesian Model Comparison and Occam’s Razor

So far in this chapter we have seen many different kinds of models. One of the
most important problems in unsupervised learning is automatically determining
which models are appropriate for a given data set. Model selection and compar-
ison questions include all of the following:

– Are there clusters in the data and if so, how many? What are their shapes (e.g.
Gaussian, t-distributed)?

– Does the data live on a low dimensional manifold? What dimensionality? Is
this manifold flat or curved?

– Is the data discretised? If so, to what precision?
– Is the data a time series? If so, is it better modelled by an HMM, a state-

space model? Linear or nonlinear? Gaussian or non-Gaussian noise? How
many states should the HMM have? How many state variables should the
SSM have?

– Can the data be modelled well by a directed graph? What is the structure of
this graph? Does it have hidden variables? Are these continuous or discrete?

Clearly, this list could go on. A human may be able to answer these ques-
tions via careful use of visualisation, hypothesis testing, and guesswork. But
ultimately, an intelligent unsupervised learning system should be able to answer
all these questions automatically.

Fortunately, the framework of Bayesian inference can be used to provide a
rational, coherent and automatic way of answering all of the above questions.
This means that, given a complete specification of the prior assumptions there is
an automatic procedure (based on Bayes rule) which provides a unique answer.
Of course, as always, if the prior assumptions are very poor, the answers obtained
could be useless. Therefore, it is essential to think carefully about the prior
assumptions before turning the automatic Bayesian handle.

Let us go over this automatic procedure. Consider a model mi coming from
a set of possible models {m1, m2, m3, . . .}. For instance, the model mi might
correspond to a Gaussian mixture model with i components. The models need
not be nested, nor does the space of models need to be discrete (although we’ll
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focus on that case). Given data D, the natural way to compare models is via
their probability:

P (mi|D) =
P (D|mi)P (mi)

P (D)
(49)

To compare models, the denominator, which sums over the potentially huge
space of all possible models, P (D) =

∑
j P (D|mj)P (mj) is not required. Prior

preference for models can be included in P (mi). However, it is interesting to look
closely at the marginal likelihood term (sometimes called the evidence for model
mi). Assume that model mi has parameters θi (e.g. the means and covariance
matrices of the i Gaussians, along with the mixing proportions, c.f. Section 2.4).
The marginal likelihood integrates over all possible parameter values

P (D|mi) =
∫

P (D|θi, mi)P (θ|mi) dθi (50)

where P (θ|mi) is the prior over parameters, which is required for a complete
specification of the model mi.

The marginal likelihood has a very interesting interpretation. It is the proba-
bility of generating data set D from parameters that are randomly sampled from
under the prior for mi. This should be contrasted with the maximum likelihood
for mi which is the probability of the data under the single setting of the param-
eters θ̂i that maximises P (D|θi, mi). Clearly a more complicated model will have
a higher maximum likelihood, which is the reason why maximising the likelihood
results in overfitting — i.e. a preference for more complicated models than nec-
essary. In contrast, the marginal likelihood can decrease as the model becomes
more complicated. In a more complicated model sampling random parameter
values can generate a wider range of possible data sets, but since the probability
over data sets has to integrate to 1 (assuming a fixed number of data points)
spreading the density to allow for more complicated data sets necessarily results
in some simpler data sets having lower density under the model. This situation
is diagrammed in Figure 4. The decrease in the marginal likelihood as additional
parameters are added has been called the automatic Occam’s Razor [59, 60, 61].

In theory all the questions posed at the beginning of this section could be
addressed by defining appropriate priors and carefully computing marginal like-
lihoods of competing hypotheses. However, in practice the integral in (50) is
usually very high dimensional and intractable. It is therefore necessary to ap-
proximate it.

11 Approximating Posteriors and Marginal Likelihoods

There are many ways of approximating the marginal likelihood of a model, and
the corresponding parameter posterior. In this section, we review some of the
most frequently used methods.
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too simple

too complex

"just right"

All possible data sets
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Fig. 4. The marginal likelihood (evidence) as a function of an abstract one dimensional
representation of “all possible” data sets of some size N . Because the evidence is a
probability over data sets, it must normalise to one. Therefore very complex models
which can account for many datasets only achieve modest evidence; simple models can
reach high evidences, but only for a limited set of data. When a dataset D is observed,
the evidence can be used to select between model complexities

11.1 Laplace Approximation

It can be shown that under some regularity conditions, for large amounts of data
N relative to the number of parameters in the model, d, the parameter posterior
is approximately Gaussian around the MAP estimate, θ̂:

p(θ|D, m) ≈ (2π)− d
2 |A| 1

2 exp
{

−1
2
(θ − θ̂)�A (θ − θ̂)

}

(51)

Here A is the d × d negative of the Hessian matrix which measures the cur-
vature of the log posterior at the MAP estimate:

Aij = − d2

dθidθj
log p(θ|D, m)

∣
∣
∣
∣
θ=θ̂

(52)

The matrix A is also referred to as the observed information matrix. Equa-
tion (51) is the Laplace approximation to the parameter posterior.

By Bayes rule, the marginal likelihood satisfies the following equality at any θ:

p(D|m) =
p(θ,D|m)
p(θ|D, m)

(53)

The Laplace approximation to the marginal likelihood can be derived by
evaluating the log of this expression at θ̂, using the Gaussian approximation to
the posterior from equation (51) in the denominator:
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log p(D|m) ≈ log p(θ̂|m) + log p(D|θ̂, m) +
d

2
log 2π − 1

2
log |A| (54)

11.2 The Bayesian Information Criterion (BIC)

One of the disadvantages of the Laplace approximation is that it requires com-
puting the determinant of the Hessian matrix. For models with many parame-
ters, the Hessian matrix can be very large, and computing its determinant can
be prohibitive.

The Bayesian Information Criterion (BIC) is a quick and easy way to com-
pute an approximation to the marginal likelihood. BIC can be derived from the
Laplace approximation by dropping all terms that do not depend on N , the
number of data points. Starting from equation (54), we note that the first and
third terms are constant with respect to the number of data points. Referring
to the definition of the Hessian, we can see that its elements grow linearly with
N . In the limit of large N we can therefore write A = NÃ, where Ã is a matrix
independent of N . We use the fact that for any scalar c and d × d matrix P , the
determinant |cP | = cd|P |, to get

1
2

log |A| ≈ d

2
log N +

1
2

log |Ã| (55)

The last term does not grow with N , so by dropping it and substituting into
Eq. (54) we get the BIC approximation:

log p(D|m) ≈ log p(D|θ̂, m) − d

2
log N (56)

This expression is extremely easy to compute. Since the expression does not
involve the prior it can be used either when θ̂ is the MAP or the ML parameter
estimate, the latter choice making the entire procedure independent of a prior.
The likelihood is penalised by a term that depends linearly on the number of
parameters in the model; this term is referred to as the BIC penalty. This is how
BIC approximates the Bayesian Occam’s Razor effect which penalises overcom-
plex models. The BIC criterion can also be derived from within the Minimum
Description Length (MDL) framework.

The BIC penalty is clearly attractive since it does not require any costly
integrals or matrix inversions. However this simplicity comes at a cost in accuracy
which can sometimes be catastrophic. One of the dangers of BIC is that it relies
on the number of parameters. The basic assumption underlying BIC, that the
Hessian converges to N times a full-rank matrix, only holds for models in which
all parameters are identifiable and well-determined. This is often not true.

11.3 Markov Chain Monte Carlo (MCMC)

Monte Carlo methods are a standard and often extremely effective way of com-
puting complicated high dimensional integrals and sums. Many Bayesian infer-
ence problems can be seen as computing the integral (or sum) of some function
f(θ) under some probability density p(θ):
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f̄
def=

∫

f(θ)p(θ) dθ. (57)

For example, the marginal likelihood is the integral of the likelihood func-
tion under the prior. Simple Monte Carlo approximates (57) by sampling M
independent draws θi ∼ p(θ) and computing the sample average of f :

f̄ ≈ 1
M

M∑

i=1

f(θi) (58)

There are many limitations of simple Monte Carlo, for example it is often not
possible to draw directly from p. Generalisations of simple Monte Carlo such as
rejection sampling and importance sampling attempt to overcome some of these
limitations.

An important family of generalisations of Monte Carlo methods are Markov
chain Monte Carlo (MCMC) methods. These are commonly used and power-
ful methods for approximating the posterior over parameters and the marginal
likelihood. Unlike simple Monte Carlo methods, the samples are not drawn inde-
pendently but rather dependently in the form of a Markov chain . . .θi → θi+1 →
θt+2 . . . where each sample depends on the value of the previous sample. MCMC
estimates have the property that the asymptotic distribution of θi is the desired
distribution. That is, limt→∞ pt(θt) = p(θ). Creating MCMC methods is some-
what of an art, and there are many MCMC methods available, some of which
are reviewed in [53]. Some notable examples are Gibbs sampling, the Metropolis
algorithm, and Hybrid Monte Carlo.

11.4 Variational Approximations

Variational methods can be used to derive a family of lower bounds on the
marginal likelihood and to perform approximate Bayesian inference over the
parameters of a probabilistic models [62, 63, 64]. Variational methods provide
an alternative to the asymptotic and sampling-based approximations described
above; they tend to be more accurate than the asymptotic approximations like
BIC and faster than the MCMC approaches.

Let y denote the observed variables, x denote the latent variables, and θ de-
note the parameters. The log marginal likelihood of data y can be lower bounded
by introducing any distribution over both latent variables and parameters which
has support where p(x,θ|y, m) does, and then appealing to Jensen’s inequality
(due to the concavity of the logarithm function):

ln p(y|m) = ln
∫

p(y,x,θ|m) dx dθ = ln
∫

q(x,θ)
p(y,x,θ|m)

q(x,θ)
dx dθ (59)

≥
∫

q(x,θ) ln
p(y,x,θ|m)

q(x,θ)
dx dθ. (60)

Maximising this lower bound with respect to the free distribution q(x,θ) re-
sults in q(x,θ) = p(x,θ|y, m) which when substituted above turns the inequality
into an equality (c.f. Section 3). This does not simplify the problem since evaluat-
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ing the true posterior distribution p(x,θ|y, m) requires knowing its normalising
constant, the marginal likelihood. Instead we use a simpler, factorised approxi-
mation q(x,θ) = qx(x)qθ(θ):

ln p(y|m) ≥
∫

qx(x)qθ(θ) ln
p(y,x,θ|m)
qx(x)qθ(θ)

dx dθ
def= Fm(qx(x), qθ(θ),y). (61)

The quantity Fm is a functional of the free distributions, qx(x) and qθ(θ).
The variational Bayesian algorithm iteratively maximises Fm in equation (61)

with respect to the free distributions, qx(x) and qθ(θ). We use elementary calcu-
lus of variations to take functional derivatives of the lower bound with respect to
qx(x) and qθ(θ), each while holding the other fixed. This results in the following
update equations where the superscript (t) denotes the iteration number:

q(t+1)
x (x) ∝ exp

[∫

ln p(x,y|θ, m) q
(t)
θ (θ) dθ

]

(62)

q
(t+1)
θ (θ) ∝ p(θ|m) exp

[∫

ln p(x,y|θ, m) q(t+1)
x (x) dx

]

(63)

When there is more than one data point then there are different hidden
variables xi associated with each data point yi and the step in (62) has to be
carried out for each i, where the distributions are q

(t)
xi (xi).

Clearly qθ(θ) and qxi
(xi) are coupled, so we iterate these equations until

convergence. Recalling the EM algorithm (Section 3 and [65, 66]) we note the
similarity between EM and the iterative algorithm in (62) and (63). This proce-
dure is called the Variational Bayesian EM Algorithm and generalises the usual
EM algorithm; see also [67] and [68].

Re-writing (61), it is easy to see that maximising Fm is equivalent to minimis-
ing the KL divergence between qx(x) qθ(θ) and the joint posterior p(x,θ|y, m):

ln p(y|m)−Fm(qx(x), qθ(θ),y) =
∫

qx(x) qθ(θ) ln
qx(x) qθ(θ)
p(θ,x|y, m)

dx dθ = KL(q‖p)

(64)

Note that while this factorisation of the posterior distribution over latent
variables and parameters may seem drastic, one can think of it as replacing
stochastic dependencies between x and θ with deterministic dependencies be-
tween relevant moments of the two sets of variables. To compare between models
m and m′ one can evaluate Fm and Fm′ . This approach can, for example, be
used to score graphical model structures [54].

Summarising, the variational Bayesian EM algorithm simultaneously com-
putes an approximation to the marginal likelihood and to the parameter poste-
rior by maximising a lower bound.

11.5 Expectation Propagation (EP)

Expectation propagation (EP; [23, 69]) is another powerful method for approx-
imate Bayesian inference. Consider a Bayesian inference problem in which you
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are given iid data D = {x(1) . . . ,x(N)} assumed to have come from a model
p(x|θ) parameterised by θ with prior p(θ). The parameter posterior is:

p(θ|D) =
1

p(D)
p(θ)

N∏

i=1

p(x(i)|θ). (65)

To make the notation more general we can write the quantity we wish to
approximate as a product of factors over θ,

N∏

i=0

fi(θ) = p(θ)
N∏

i=1

p(x(i)|θ) (66)

where f0(θ) def= p(θ) and fi(θ) def= p(x(i)|θ) and we will ignore the normalising
constants. We wish to approximate this by a product of simpler terms

q(θ) def=
N∏

i=0

f̃i(θ). (67)

For example, consider a binary linear classification problem where θ are the
parameters of the classification hyperplane and p(θ) is a Gaussian prior ([69],
Chapter 5). The true posterior is the product of this Gaussian and N likelihood
terms, each of which defines a half-plane consistent with the class label observed.
This posterior has a complicated shape, but we can approximate it using EP by
assuming that each of the approximate likelihood terms f̃i is Gaussian in θ. Since
the product of Gaussians is Gaussian, q(θ) will be a Gaussian approximation
to the posterior. In general, one makes the approximate terms f̃i belong to
some exponential family distribution so the overall approximation is in the same
exponential family.

Having decided on the form of the approximation (67), let us consider how
to tune this approximation so as to make it as accurate as possible. Ideally we
would like to minimise the KL divergence between the true and the approximate
distributions:

min
q(θ)

KL

(
N∏

i=0

fi(θ)

∥
∥
∥
∥
∥

N∏

i=0

f̃i(θ)

)

. (68)

For example, if q(θ) is a Gaussian density, minimising this KL divergence will
result in finding the exact mean and covariance of the true posterior distribution
over parameters. Unfortunately, this KL divergence involves averaging with re-
spect to the true posterior distribution, which will generally be intractable. Note
that the KL divergence in Equation (68) is different from the KL minimised by
variational Bayesian methods (64); the former averages with respect to the true
distribution and is therefore usually intractable, while the latter averages with
respect to the approximate distribution and is often tractable. Moreover, for ex-
ponential family approximations the former KL has a unique global optimum,
while the latter usually has multiple local optima.
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Since we cannot minimise (68) we can instead consider minimising the KL
divergence between each true term and the corresponding approximate term.
That is, for each i:

min
f̃i(θ)

KL
(
fi(θ)‖f̃i(θ)

)
. (69)

This will usually be much easier to do, but each such approximate term
will result in some error. Multiplying all the approximate terms together will
probably result in an unacceptably inaccurate approximation. On the plus side,
this approach is non-iterative in that once each term is approximated they are
simply multiplied to get a final answer.

The Expectation Propagation (EP) algorithm is an iterative procedure which
is as easy as the naive approach in (69) but which results in a much more accurate
approximation. At each step of EP, one of the terms is optimised in the context
of all the other approximate terms, i.e. for each i:

min
f̃i(θ)

KL
(
fi(θ)

∏

j �=i

f̃j(θ)
∥
∥
∥f̃i(θ)

∏

j �=i

f̃j(θ)
)
. (70)

Since the approximate terms depend on each other, this procedure is iterated.
On the left hand side of the KL divergence the ith exact term is incorporated
into

∏
j �=i f̃j(θ), which is assumed to be in the exponential family. The right

hand side is an exponential-family approximation to this whole product. The
minimisation is done by matching the appropriate moments (expectations) of
fi(θ)

∏
j �=i f̃j(θ). The name “Expectation Propagation” comes from the fact that

each step corresponds to computing certain expectations, and the effect of these
expectations is propagated to subsequent terms in the approximation. In fact,
the messages in belief propagation can be derived as a particular form of EP
where the approximating distribution is assumed to be a fully factored product
of marginals over the variables in θ, i.e. q(θ) =

∏
k qk(θk) [69].

In its simplest form, the EP algorithm can be summarised as in Figure 5.
Although the algorithm as described here often converges, each step of the algo-
rithm is not in fact decreasing any objective function so there is no guarantee of
convergence. Convergent forms of EP can be derived by making use of the EP
energy function [70] although these may not be as fast and simple to implement
as the algorithm in Figure 5.

12 Conclusion

In this chapter, we have seen that unsupervised learning can be viewed from the
perspective of statistical modelling. Statistics provides a coherent framework for
learning from data and for reasoning under uncertainty. Many interesting statis-
tical models used for unsupervised learning can be cast as latent variable models
and graphical models. These types of models have played an important role in
defining unsupervised learning systems for a variety of different kinds of data.
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Fig. 5. The EP algorithm. Some variations are possible: this assumes that f0 is in the
exponential family, and updates sequentially over i rather than randomly. The names
for the steps (deletion, projection, inclusion) are not the same as in [69]

Graphical models have also played an important unifying framework for think-
ing about the role of conditional independence in inference in models with many
variables. While for certain models exact inference is computationally tractable,
for most of the models in this chapter we have seen that exact inference involves
intractable sums and integrals. Thus, the study of unsupervised learning has lead
us into focusing on ways of approximating high dimensional sums and integrals.
We have reviewed many of the principal approximations, although of course in
the limited space of this chapter one cannot hope to have a comprehensive review
of approximation methods.

There are many interesting and relevant topics we did not get a chance to
cover in this review of unsupervised learning. One of these is the interplay of
unsupervised and supervised learning, in the form of semi-supervised learning.
Semi-supervised learning refers to learning problems in which there is a small
amount of labelled data and a large amount of unlabelled data. These prob-
lems are very natural, especially in domains where collecting data can be cheap
(i.e. the internet) but labelling it can be expensive or time consuming. The key
question in semi-supervised learning is how the data distribution from the unla-
belled data should influence the supervised learning problem [71]. Many of the
approaches to this problem attempt to infer a manifold, graph structure, or tree-
structure from the unlabelled data and use spread in this structure to determine
how labels will generalise to new unlabelled points [72, 73, 74, 75].

Another area of great interest which we did not have the space to cover are
nonparametric models. The basic assumption of parametric statistical models
is that the model is defined using a finite number of parameters. The number
of parameters is assumed fixed regardless of the number of data points. Thus
the parameters provide a finite summary of the data. In nonparametric models,
the number of “parameters” in the model is allowed to grow with the size of the
data set. With more data, the model becomes more complex, with no a-priori
limit on the complexity of the model. For this reason nonparametric models

Input f0(θ) . . . fN (θ)
Initialise f̃0(θ) = f0(θ), f̃i(θ) = 1 for i > 0, q(θ) =

∏
i f̃i(θ)

repeat
for i = 0 . . . N do

Deletion: q\i(θ) ← q(θ)
f̃i(θ)

=
∏

j �=i

f̃j(θ)

Projection: f̃new
i (θ) ← arg min

f(θ)
KL(fi(θ)q\i(θ)‖f(θ)q\i(θ))

Inclusion: q(θ) ← f̃new
i (θ) q\i(θ)

end for
until convergence
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are also sometimes called infinite models. An important example of this are
infinite mixture models, more formally known as Dirichlet Process mixtures [76,
77]. These correspond to mixture models (Section 2.4) where the number of
components is assumed to be infinite. Inference can be done in these models using
MCMC methods [78, 79, 80], variational methods [81], or the EP algorithm [82].
Just as hidden Markov models can be seen as an extension of finite mixture
models to model time series data, it is possible to extend infinite mixture models
to hidden Markov models with infinitely many states [83]. Infinite models based
on Dirichlet processes have also been generalised to be hierarchical in several
different ways [84, 85]. Bayesian inference in nonparametric models is one of the
most active areas of research in unsupervised learning, and there still remain
many open problems.

As we have seen, the field of unsupervised learning can be understood for-
mally within the framework of information theory and statistics. However, it is
important not to lose sight of the tremendous influence ideas from neuroscience
and psychology have had on the field. Many of the models we have reviewed
here started life as models of brain function. These models were inspired by the
brain’s ability to extract statistical patterns from sensory data and to recognise
complex visual scenes, sounds, and odours. Unsupervised learning theory and
algorithms still have a long way to go to mimic some of the learning abilities
of biological brains. As the boundaries of unsupervised learning get pushed for-
ward, we will hopefully not only benefit from better learning machines and also
improve our understanding of how the brain learns.
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1 Motivation and Basic Principles of the Monte Carlo
Method

The modern history of Monte Carlo techniques dates back from the 1940’s and
the Manhattan project. There are earlier descriptions of Monte Carlo experi-
ments, Buffon’s famous needle experiment is one them, but examples have been
traced back to Babylonian and old testament times [13]. As we shall see these
techniques are particularly useful in scenarios where it is of interest to perform
calculations that involve - explicitly or implicitly - a probability distribution π
on a space X (typically X ⊂ R

nx for some integer nx), for which closed-form
calculations cannot be carried out due to the algebraic complexity of the prob-
lem. As we shall see the main principle of Monte Carlo techniques consists of
replacing the algebraic representation of π, e.g. 1/

√
2π exp(−1

2 x2) with a sample

or population representation of π, e.g. a set of samples X1, X2, . . . , XN
iid∼ π(x) =

1/
√

2π exp(−1
2 x2). This proves in practice to be extremely powerful as difficult -

if not impossible - exact algebraic calculations are typically replaced with simple
calculations in the sample domain. One should however bear in mind that these
are random approximations of the true quantity of interest. An important sce-
nario where Monte Carlo methods can be of great help is when one is interested
in evaluating expectations of functions, say f , of the type Eπ (f(X)) where π
is the probability distributions that defines the expectation. The nature of the
approach, where algebraic quantities are approximated by random quantities,
requires one to quantify the random fluctuations around the true desired value.
As we shall see, the power of Monte Carlo techniques lies in the fact that the
rate at which the approximation converges towards the true value of interest
is immune to the dimension nx of the space X where π is defined. This is the
second interest of Monte Carlo techniques.

These numerical techniques have been widely used in physics over the last 50
years, but their interest in the context of Bayesian statistics and more generally
statistics was only fully realized in the late eighties early nineties. Although we
will here mostly focus on their application in statistics, one should bear in mind
that the material presented in this introduction to the topic has applications far
beyond statistics.

The prerequisites for this introduction are a basic first year undergraduate
background in probability and statistics. Keywords include random variable,

O. Bousquet et al. (Eds.): Machine Learning 2003, LNAI 3176, pp. 113–145, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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law of large numbers, estimators, central limit theorem and basic notions about
Markov chains.

1.1 Motivating Example

In this section we motivate and illustrate the use of Monte Carlo methods with a
toy example. We then point out the power of the approach on a “real” example.

Calculating π with the Help of Rain and the Law of Large Numbers

A Physical Experiment Consider the 2 × 2 square, say S ⊂ R
2, with inscribed

disc D of radius 1 as in Figure 1.
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Imagine that an “idealized” rain falls uniformly on the square S, i.e. the
probability for a drop to fall in a region A is proportional to the area of A.
More precisely, let D be the random variable defined on X = S representing the
location of a drop and A a region of the square, then

P(D ∈ A) =

∫
A dxdy

∫
S dxdy

. (1)

where x and y are the Cartesian coordinates. Now assume that we have observed
N such independent drops, say {Di, i = 1, . . . , N} as in Figure 2.

Fig. 1. A 2 × 2 square S with inscribed disk D of radius 1
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Intuitively, without any knowledge of elementary statistics, a sensible tech-
nique to estimate the probability P(D ∈ A) of falling in a given region A ⊂ S
(and think for example of A = D) would consist of using the following formula

P(D ∈ A) � number of drops that fell in A
N

.

This formula certainly makes sense, but we would like to be more rigorous
and give a statistical justification to it.

P(D ∈ A) as an Expectation. Let us first introduce the indicator function of a
set A, defined as follows,

IA(x, y) =
{

1 if point D = (x, y) ∈ A,
0 otherwise, .

We define the random variable V (D) := IA(D) := IA(X, Y ), where X, Y are
the random variables that represent the Cartesian coordinates of a uniformly
distributed point on S, denoted D ∼ US . Using V , it is not hard to show that

P(D ∈ A) =
∫

S
IA(x, y)

1
4
dxdy = EUS (V ),

where for a probability distribution π we will denote Eπ the expectation with
respect to π.

Fig. 2. A 2 × 2 square S with inscribed disk D of radius 1
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The Law of Large Numbers. Now, similarly, let us introduce {Vi := V (Di), i =
1, . . . , N} the random variables associated to the drops {Di, i = 1, . . . , N} and
consider the sum

SN =
∑N

i=1 Vi

N
. (2)

We notice that an alternative expression for SN is

SN =
number of drops that fell in A

N
,

which corresponds precisely to the formula which we intuitively suggested to
approximate P(D ∈ A). However Eq. (2) is statistically more explicit, in the
sense that it tells us that our suggested approximation of P(D ∈ A) is the
empirical average of independent and identically distributed random variables,
{Vi, i = 1, . . . , N}. Assuming that the rain lasts forever and therefore that N →
+∞, then one can apply the law of large numbers (since EUS (|V |) < +∞ here)
and deduce that

lim
N→+∞

SN = EUS (V ), (almost surely).

As we have already proved that P(D ∈ A) = EUS (V ), the law of large
numbers mathematically justifies our intuitive method of estimating P(D ∈ A),
provided that N is large enough.

A Method of Approximating π. We note that as a special case we have defined
a method of calculating π. Indeed,

P(D ∈ D) =
∫

D

1
4
dxdy =

π

4
.

SN as defined in Eq. (2) with A = D is an unbiased estimator of π/4, which
is also ensured to converge towards π/4 for N very large. The quantity SN −
π/4 for a day of rain as a function of the number of drops for one rainfall
is presented in Figure 3. However in practice one is interested in obtaining a
result in finite time, i.e. for N finite. SN is a random variable which can be
rewritten as SN = π/4 + EN where EN is a random error term. It is naturally
of interest to characterize the precision of our estimator, i.e. characterize the
average magnitude of the fluctuations of the random error EN , as illustrated in
Figure 4. A simple measure of the average magnitude of EN is its variance,

var(EN ) = var(SN ) =
1
N

var(V1),

as the {Vi, i = 1, . . . , N} are independent. It is worth remembering that since
SN is unbiased,

√
var(SN ) =

√
E [(SN − P(D ∈ D))2],

which using the result above implies that the mean square error between SN and
P(D ∈ D) decreases as 1/

√
N . This is illustrated in Figure 5 where the dotted
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square error SN − π/4 estimated from the 100 realizations in Figure 4. One can
be slightly more precise and first invoke here an asymptotic result, the central
limit theorem (which can be applied here as var(V ) < +∞). As N → +∞,

√
NSN →d N (π/4, var(V )),

which implies that for N large enough the probability of the error being larger
than 2

√
var(V )/N is

Fig. 3. Convergence of SN − π/4 as a function of the number of samples, for one
realization (or rainfall)

Fig. 4. Convergence of SN − π/4 for 100 realizations of the rain
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P

(
|SN − π/4| > 2

√
var(V )/N

)
� 0.05,

with 2
√

var(V ) = 0.8211. In the present case (we are sampling here from a
Bernoulli distribution) one can be much more precise and use a non-asymptotic
result. Indeed, using a Bernstein type inequality, one can prove [22, p. 69] that
for any integer N ≥ 1 and ε > 0,

P (|SN − π/4| > ε) ≤ 2 exp
(−2Nε2)

which tells us that for any α ∈ (0, 1] ,

P (|SN − π/4| > ε) < α

which on the one hand provides us with a minimum number of samples in order
to achieve a given precision of α,

N =
[
log (2/α)

2ε2

]

,

where for a real x the quantity [x] denotes the integer part of x, or alternatively
tells us that for any N ≥ 1,

P

(

|SN − π/4| >

√
log (40)

2N

)

≤ 0.05

with
√

log (40) /2 = 1.3541.
Both results tell us that in some sense the approximation error is inversely

proportional to
√

N .

A General and Powerful Method. Now consider the case where X = R
nx for any

integer nx, and in particular large values of nx. Replace now S and D above
with a hypercube Snx and an inscribed hyperball Dnx in X. If we could observe
a hyper-rain, then it would not be difficult to see that the method described
earlier to estimate the area of D could be used to estimate the volume of Dnx .
The only requirement is that one should be able to tell if a drop fell in Dnx or not:
in other words one should be able to calculate IDnx (D) point-wise. Now a very
important result is that the arguments that lead earlier to the formal validation
of the Monte Carlo approach to estimate π/4 remain identical here (check it to
convince yourself!). In particular the rate of convergence of the estimator in the
mean square sense is again independent of the dimension nx.

This would not be the case if we were using a deterministic method on a grid of
regularly spaced points. Typically, the rate of convergence of such deterministic
methods is of the form 1/Nr/nx where r is related to the smoothness of the
contours of region A, and is N the number of function (here IA) evaluations.
Monte Carlo methods are thus extremely attractive when nx is large.
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A More General Context. In the previous subsection, we have seen that a
simple experience involving the rain can help us to evaluate an expectation in
an extremely simple way. In this subsection we generalist the ideas developed
earlier in order to tackle the generic problem of estimating

Eπ(f(x)) �
∫

X
f(x)π(x)dx,

where f : X → R
nf and π is a probability distribution on X ⊂ R

nx . We will
assume that Eπ(|f(x)|) < +∞ but that it is difficult to obtain an analytical
expression for Eπ(f(x)).

1.2 Generalization of the Rain Experiment

In the light of the square/circle example, assume that N >> 1 i.i.d. samples
X(i) ∼ π (i = 1, . . . , N) are available to us (since it is unlikely that rain can
generate samples from any distribution π, we will address the problem of sample
generation in the next section). Now consider any set A ⊂ X and assume that we
are interested in calculating π(A) = P(X ∈ A) for X ∼ π. We naturally choose
the following estimator

π(A) � number of samples in A
total number of samples

,

which by the law of large numbers is a consistent estimator of π(A) since

lim
N→+∞

1
N

N∑

i=1

IA(Xi) = Eπ(IA(X)) = π(A).

A way of generalizing this in order to evaluate Eπ(f(x)) consists of considering
the estimator

SN (f) =
1
N

N∑

i=1

f(Xi),

which is unbiased. From the law of large numbers SN (f) will converge and

lim
N→+∞

1
N

N∑

i=1

f(Xi) = Eπ(f(X)) a.s.

Here again a good measure of the approximation is the variance of SN (f),

varπ [SN (f)] = varπ

[
1
N

N∑

i=1

f(X(i))

]

=
varπ [f(X)]

N
.

Now the central limit theorem applies if varπ [f(X)] < ∞ and tells us that

SN (f) N→+∞→ d N
(√

NEπ(f(X)), varπ [f(X)]
)

,
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and the conclusions drawn in the rain example are still valid here:

1. The rate of convergence is immune to the dimension of X.
2. It is easy to take complex integration domains into account.
3. It is easily implementable and general. The requirements are

(a) to be able to evaluate f(x) for any x ∈ X,
(b) to be able to produce samples distributed according to π.

1.3 From the Algebraic to the Sample Representation

In this subsection we make explicit the - approximate - sample representation
of π. Let us first introduce the delta-Dirac function δx0 for x0 ∈ X, defined as
follows

∫

X
f(x)δx0(x)dx = f(x0),

for any f : X → R
nf . Note that this implies in particular that for A ⊂ X,
∫

X
IA(x)δx0(x)dx =

∫

A
δx0(x)dx = IA(x0).

Now, for Xi ∼ π for i = 1, . . . , N , we can introduce the following mixture of
delta-Dirac functions

π̂N (x) :=
1
N

N∑

i=1

δXi
(x) ,

which is the empirical measure of the sample, and consider for any A ⊂ X

π̂N (A) �
∫

A
π̂N (x) dx =

N∑

i=1

∫

A

1
N

δXi (x) =
N∑

i=1

1
N

IA(x).

which is precisely SN (IA). What we have touched upon here is simply the sample
representation of π, of which an illustration can be found in Figure 6 for a
Gaussian distribution. The concentration of points in a given region of
the space represents π. Note that this approach is in contrast with what is
usually done in parametric statistics, i.e. start with samples and then introduce a
distribution with an algebraic representation for the underlying population. Note
that here each sample Xi has a weight of 1/N , but that it is also possible to
consider weighted sample representations of π: the approach is called importance
sampling and will be covered later on.

Now consider the problem of estimating Eπ(f). We simply replace π with its
sample representation π̂N and obtain

Eπ(f) �
∫

X
f (x)

N∑

i=1

1
N

δXi (x) dx =
N∑

i=1

1
N

∫

X
f (x) δXi (x) dx =

1
N

N∑

i=1

f(Xi),

which is precisely SN (f), the Monte Carlo estimator suggested earlier. The
interest of this approximating representation of π will become clearer later, in
particular in the context of importance sampling.
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1.4 Expectations in Statistics

The aim of this subsection is to illustrate why it is important to compute expec-
tations in statistics, in particular in the Bayesian context.

Assume that we are given a Bayesian model, i.e. a likelihood p(y|θ) and a
prior distribution p(θ). We observe some data y and wish to estimate θ. In a
Bayesian framework, all the available information about θ is summarized by the
posterior distribution, given by Bayes’ rule,

Fig. 5. Variance of SN − π/4 across 100 realizations as a function of the number of
samples and the theoretical variance

Fig. 6. Sample representation of a Gaussian distribution
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p(θ|y) =
p(y|θ)p(θ)

∫
Θ

p(y|θ)p(θ)dθ
.

The expression looks simple, but the bottom of the fraction is an integral,
and more precisely an expectation

Ep(θ)(p(y|θ)) =
∫

Θ

p(y|θ)p(θ)dθ.

In many situations this integral typically does not admit a closed-form ex-
pression.

Example 1. We observe y=(y1, y2, . . . , yT ) which are iid such that yi ∼N (µj , σ
2
j )

with probability pj for j = 1, 2. Here θ = (µ1, µ2, σ
2
1 , σ2

2 , p1). The likelihood in
this case is

p(y|θ) =
T∏

i=1

[

p1
1

√
2πσ2

1

e
− (yi−µ1)2

2σ2
1 + (1 − p1)

1
√

2πσ2
2

e
− (yi−µ2)2

2σ2
2

]

.

The normalizing constant of the posterior can be complicated, e.g. impose a
priori constraints on the parameters σ2

1 < 10σ2
2 +

√
µ1µ2 and µ2 < π.

Other important examples include the evaluation of the posterior mean square
estimate of θ,

θ̂MSE := Ep(θ|y)(θ) =
∫

Θ

θp(θ|y)dθ,

the median, i.e. the solution θ̂median of

Ep(θ|y)(I(θ ≤ θ̂median)) =
∫ +∞

−∞
I(θ ≤ θ̂median)p(θ|y)dθ = 1/2.

but also the evaluation of the marginal posterior distribution p(θ1|y) of p(θ1, θ2|y),

p(θ1|y) =
∫

Θ

p(θ1, θ2|y)dθ2

=
∫

Θ

p(θ1|θ2, y)p(θ2|y)dθ2

= Ep(θ2|y)(p(θ1|θ2, y)) . . .

Similar problems are encountered when computing, marginal posterior means,
posterior variances, posterior credibility regions.

1.5 A Simple Application

In 1786 Laplace was interested in determining if the probability θ of a male
birth in Paris over a certain period of time was above 0.5 or not. The official
figures gave y1 = 251, 527 males birth for y2 = 241, 945 female births. The ob-
served proportion was therefore 0.509,. We choose a uniform distribution as prior
distribution for θ the proportion of male births. The posterior distribution is
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p(θ|y) = Be(θ; 251528, 241946).

Imagine that we have no table and are interested in the posterior mean of
this posterior distribution. Furthermore, imagine that we can sample (using a
computer) a large number N of independent samples (θi, i = 1, . . . , N) from this
distribution. One could propose the following estimator

1
N

N∑

i=1

θi

as from the law of large numbers,

lim
N→+∞

1
N

N∑

i=1

θi = Ep(θ|y)(θ).

We could also estimate the posterior variance as

lim
N→+∞

1
N

N∑

i=1

θ2
i = Ep(θ|y)(θ2).

Now consider the following more challenging problems: we want to find esti-
mates of the median of this posterior distribution, as well as a 95% credibility
interval. We start with the median, and assume that we have ordered the sam-
ples, that is for any i < j, θi < θj and for simplicity that N is an even number.
Let θ̄ be the median of the posterior distribution. Then we know that

P(θi ≥ θ̄) =
∫ +∞

−∞
I(θ̄ < θ)p(θ|y)dθ = 1/2

P(θi ≤ θ̄) =
∫ +∞

−∞
I(θ̄ < θ)p(θ|y)dθ = 1/2

so that (assuming for simplicity that N is even and that we have ordered (θi, i =
1, . . . , N)), it is sensible to chose an estimate for θ̄ between θN/2 and θN/2+1.
Now assume that we are looking for θ− and θ+ such that

P(θ− ≤ θ ≤ θ+) =
∫ +∞

−∞
I(θ− ≤ θ ≤ θ+)p(θ|y)dθ = 0.95

or

P(0 ≤ θ ≤ θ−) = 0.025 and P(θ+ ≤ θ ≤ 1) = 0.025

and assuming again for simplicity that N = 1000 and that the samples have
been ordered. We find that a reasonable estimate of θ− is between θ25 and θ26
and an estimate of θ+ between θ975 and θ976. Finally we might be interested in
calculating

P(θ < 0.5) =
∫ 0.5

0
p(θ|y)dθ =

∫ 1

0
I(θ ≤ 0.5)p(θ|y)dθ
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which suggests the following estimator of this probability

P(θ < 0.5) � 1
N

N∑

i=1

I(θi ≤ 0.5).

(one can in fact find that P(θ ≤ 0.5|y1, y2) = 1.146058490255674 × 10−42).

1.6 Further Topic: Importance Sampling

In this subsection we explore the important method of importance sampling.1

This method is of interest either in the case where samples from the desired
distribution π are not available, but samples from a distribution q are, or as a
way of possibly reducing the variance of an estimator.

Importance Sampling. Consider a probability distribution q such that π(x) >
0 ⇒ q(x) > 0. Then one can write

Eπ(f(x)) =
∫

X
f(x)π(x)dx =

∫

X
f(x)

π(x)
q(x)
︸ ︷︷ ︸
w(x)

q(x)dx = Eq(w(x)f(x))

We are now integrating the function w(x)f(x) with respect to the distribution
q. Now provided that we can produce N i.i.d. samples X1, . . . , XN from q, then
one can suggest the following estimator

1
N

N∑

i=1

π(Xi)
q(Xi)

f(Xi) =
∫

X
f(x)

1
N

N∑

i=1

π(Xi)
q(Xi)

δXi(x)dx.

It is customary to call wi = π(Xi)
q(Xi)

the importance weight and q the importance
distribution. Now it is natural to introduce a delta-Dirac approximation of π is
of the form

π̂N (x) =
1
N

N∑

i=1

wiδXi
(dx)

The interpretation of this weighted empirical measure is rather simple. Large
wi’s indicate an underrepresentation of π by samples from q around Xi. Small
wi’s indicate an overrepresentation of π by samples from q around Xi. This
phenomenon is illustrated in Figure 1 where the importance weights required
to represent a double exponential with samples from either a Gaussian or a t-
Student are presented. Note that in the case where q = π then wi = 1/N and
we recover the representation presented earlier.

It is also worth noticing that if the normalizing constants of π and/or q are
not known, then it is possible to define (with π∗(x) ∝ π(x) and q∗(x) ∝ q(x))

wi =
π∗(Xi)/q∗(Xi)

∑N
j=1 π∗(Xj)/q∗(Xj)

.

1 This material can be skipped at first.
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Fig. 7. Top: The three distributions. Middle: importance weights to represent a double
exponential with samples from a Gaussian. Bottom: importance weights to represent
a double exponential with samples from a t-Student

And consider the following estimator

IN (f) =
N∑

i=1

wif(Xi) =
N∑

i=1

π∗(Xi)/q∗(Xi)
∑N

j=1 π∗(Xj)/q∗(Xj)
f(Xi).
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This estimator is biased, but

lim
N→∞

N∑

i=1

π∗(Xi)/q∗(Xi)
∑N

j=1 π∗(Xj)/q∗(Xj)
f(Xi) =

limN→∞ 1
N

∑N
i=1 π∗(Xi)/q∗(Xi)f(Xi)

limN→∞ 1
N

∑N
j=1 π∗(Xj)/q∗(Xj)

=

∫
X f (x) w (x) q (x) dx

∫
X w (x) q (x) dx

as the unknown normalizing constants cancel.

Example 2 (Naive). In a Bayesian framework the target distribution is π (θ) �
p(θ|y), the posterior distribution. One can suggest (and this is not necessarily a
good choice) q (θ) � p (θ). In this case the weights will be proportional to the
likelihood since

w (θ) = p (θ|y) /p (θ) ∝ p (y|θ) p(θ)
p(θ)

∝ p (y|θ) .

Unfortunately this technique is not as general as it might seem. Let us con-
sider the variance of the importance sampling estimator in the simple case where
the normalizing constants are known and where f = C, i.e. is a constant. In this
case

varq(IN (f)) =
C

N

[
Eq

(
w2

1
) − Eq (w1)

2
]

which suggests that even in the simplest case the variance of the weights should
be finite and as small as possible for the variance of IN (f) to be small. The
examples provided earlier in Figure 1, where π was a double exponential and q
either a normal or t-Student distribution, illustrates the possibly large variations
of the weights.

Zero Variance Estimator. Here we illustrate a possible interest of importance
sampling, which is however specialized. We start with the trivial remark that the
variance of a constant function is null, i.e. varπ [f ] = 0 if f is a constant. We seek
here to exploit this property in the context of Monte Carlo integration, although
this might seem of little interest at first sight since no numerical method is
needed to evaluate Eπ(f) for a constant function f . However we are going to use
this as a motivation to describe a method of reducing the variance of a Monte
Carlo estimator for a fixed number of samples. Now assume that Eπ(f) and that
for simplicity f ≥ 0. Using the convention 0/0 = 1 we can rewrite Eπ(f) as

Eπ(f) =
∫

X
f(x)π(x)dx =

∫

X

f(x)
f(x)

π(x)f(x)dx

=
∫

X
1 ×

∫

X
π(x′′)f(x′′)dx′′ π(x)f(x)

∫
X π(x′)f(x′)dx′ dx,

that is

Eπ(f) = Eq(Eπ(f))
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where

q(x) :=
π(x)f(x)

∫
X π(x′)f(x′)dx′

can be thought of as being a probability density. If we could sample from q then
we could integrate the constant function

∫
X π(x′′)f(x′′)dx′′ and obtain a zero

variance estimator. Naturally we have not solved the problem since the constant
is precisely the integral that we are seeking to calculate!

The calculations above can be generalized to functions f that are not every-
where positive, with in this case,

q (x) =
|f (x)|π (x)

∫
X π(x′)|f(x′)|dx′ .

Despite our disappointing/absurd results, the strategy however suggests ways
to improve the constant varπ(f), by trying to sample from a distribution close to
q. Note however that q depends on f , and that as a consequence such a method
is therefore very specialized.

Conclusions. To summaries, the pros and cons of importance sampling are as
follows:
– Advantages. Easy to implement, parallelizable, sequential version are pos-

sible (particle filter etc.). If q is a clever approximation of π, then we typically
expect good results. It can be used a specialized way of reducing the variance
of estimators.

– Drawbacks. If we do not have varπ(w(x)) < +∞, then typically ÎN (f)
can be a poor estimator since its variance is large. This poses the problem
of the choice of q (x)? Where are the modes of π (x)? Importance sampling
is typically limited to small dimensions for the parameter space, say nx =
10−50 depending on the application.

Despite the possible drawbacks, importance sampling has proved to be ex-
tremely useful in the context of sequential importance sampling.

2 Classical “Exact” Simulation Methods

In this section we review some classical simulation techniques. We call those
techniques “exact” as they allow one to generate samples in a finite number of
iterations of a procedure. Note that the instant when a sample from the distri-
bution of interest is produced is identifiable, that is we can stop the procedure
and be sure that we have generated a sample from the distribution of interest.
As we shall see in the next section this is not always the case. Unfortunately
the simulation techniques presented in this chapter cannot typically be used in
order to sample from complex distributions as they tend not to scale well with
the dimension nx and cases where little is known about π. However these tech-
niques can be thought of as being building blocks of more complex algorithms
that will be presented in the next chapter.
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From now on we will assume that a computer can generate independent uni-
formly distributed random variables, or at least that it can generate a good
approximation of such random variables (indeed computers should usually fol-
low a deterministic behavior, and one must find ways around in order to produce
something that looks random).

2.1 The cdf Inversion Method

We present here this method in the case where X = R for simplicity. The multi-
variate generalization is not difficult. First we consider a simple discrete example
where X ∈ X = {1, 2, 3} and such that

P(X = 1) =
1
6
, P(X = 2) =

2
6
, P(X = 3) =

1
2
.

Define the cumulative probability distribution (cdf) of X as

FX(x) = P(X ≤ x) =
3∑

i=1

P(X = i)I(i ≤ x)

for x ∈ [0, 3] and its inverse

F−1
X (u) = inf {x ∈ X; FX (x) ≥ u} ,

for u ∈ [0, 1]. The cdf corresponding to our example is represented in Figure 8. A
method of sampling from this distribution consists of sampling u ∼ U(0, 1) and
find x = F−1

X (u). The probability of u falling in the vertical interval i is precisely
equal to the probability P(X = i). The method indeed produces samples from
the distribution of interest.

Now in the continuous case, and assuming that the distribution has a density
the cdf takes the form

FX (x) = P (X≤x) =
∫ +∞

−∞
π (u) I(u ≤ x)du =

∫ x

−∞
π (u) du.

A normal distribution and its cdf are presented in Figure 9. Intuitively the
algorithm suggested in the discrete case should be valid here, since modes of
π mean large variations of FX and therefore a large probability for a uniform
distribution to fall in these regions.

More rigorously, consider the algorithm

Sample u ∼ U(0, 1) and set Y =F−1
π (u).

We prove that this algorithm produces samples from π. We calculate the cdf
of X produced by the algorithm above. For any y ∈ X we have

P (Y ≤y) = P
(
Y =F−1

X (u) ≤y
)

= P (u≤FX (y)) since FX is non decreasing

=
∫ 1

0
I(u≤FX (y)) × 1du =

∫ FX(y)

0
du = FX (y) ,
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which shows that the cdf of Y produced by the algorithm above is precisely the
cdf of X ∼ π.

Example 3. Consider the exponential distribution with parameter 1, i.e. X ∼
π (x) = exp (−x) I[0,+∞) (x). The cdf of X is FX (x) = 1 − exp (−x). Now the
inverse cdf is F−1

X (u) = − log (1 − u), and for u ∼ U(0, 1) then − log (1 − u) ∼ π.

This example is interesting as it illustrates one of the fundamental idea of
most simulation methods: sample from a distribution from which it is easy to
sample (here the uniform distribution) and then transform this random variable

Fig. 8. The distribution and cdf of a discrete random variable

Fig. 9. The distribution and cdf of a normal distribution
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(here through F−1
X ). However this method is only applicable to a limited number

of cases as it requires a closed form expression of the inverse of the cdf, which
is not explicit even for a distribution as simple and common as the normal
distribution.

2.2 The Rejection Method

The rejection method allows one to sample according to a distribution π which
is only known up to a proportionality constant, say π∗ ∝ π. It relies again on the
assumption that samples can be generated from a so-called proposal distribution
q defined on X, which might as well be known only up to a normalizing constant,
say q∗ ∝ q. Then, instead of being transformed by a deterministic function as
in the inverse cdf method, the samples produced from π are either rejected or
accepted. More precisely, assume that for any x ∈ X, C = supx∈X

π∗(x)
q∗(x) < +∞

(note that this imposes that for any x ∈ X, π∗(x) > 0 ⇒ q∗(x) > 0) and consider
C ′ ≥ C. Then the accept/reject procedure proceeds as follows:

Accept/Reject procedure
1. Sample Y ∼q and u ∼ U (0, 1).
2. If u < π∗(Y )

C′q∗(Y ) then return Y ; otherwise return to step 1.

The intuition behind the method can be understood from Figure 10.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5
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2.5

3

Beta(1.5,5) 

x~q=U(0,1) 

Reject 

Accept 
cq(x)u where u~U(0,1) 

c U(0,1) 

Now we prove that P(Y ≤ x|Y accepted) = P(X ≤ x). We will extensively
use the trivial identity

q(x) =
q∗(x)

∫
X q∗(y)dy

.

Fig. 10. The idea behind the rejection method



Monte Carlo Methods for Absolute Beginners 131

For any x ∈ X, consider the joint distribution

P (Y ≤ x and Y accepted) =
∫ 1

0

∫ x

−∞
I(u ≤ π∗(y)

C ′q∗(y)
)q(y) × 1dydu

=
∫ x

−∞

π∗(y)
C ′q∗(y)

q(y)dy

=

∫ x

−∞ π∗(y)dy

C ′ ∫
X q∗(y)dy

,

and the probability of being accepted is the marginal of P (Y ≤ x andY accepted),
that is

P (Y accepted) =
∫

X

π∗ (y)
C ′q∗ (y)

q (y) dy=

∫
X π∗ (y) dy

C ′ ∫
X q∗ (y) dy

. (3)

Consequently

P(Y ≤ x|Y accepted) =

∫ x

−∞ π∗ (y) dy
∫
X π∗ (y) dy

=
∫ x

−∞
π (y) dy.

The expression for the probability of being accepted in Eq. (3) tells us that in
order to design an efficient algorithm, C ′ should be chosen as small as possible,
and that the optimal choice corresponds to C. However this constant might be
very large, in particular for large nx and C might not even be known. In the
most favorable scenarios, at best an upper bound might be known.

Example 4. We want to sample from a Be(x; α, β) ∝ xα−1(1 − x)β−1 distribu-
tion. We can generate samples from U(0, 1). One can find supx∈[0,1]

xα−1(1−x)β−1

1
analytically for α, β > 1! Note that we do not assume known the normalizing
constant!

Example 5. Let us assume that one wants to simulate samples from π (θ) �
p(θ|y) ∝ p(y|θ)p (θ). We assume that p(y|θ) is known analytically and p(y|θ) ≤ C
for any θ, where C is known. We also assume that we are able to simulate from
p (θ). Thus one can choose q (θ) = p (θ) and use the accept/reject procedure to
sample from p(θ|y). Indeed

p(θ|y)
p (θ)

=
p(y|θ)
p(y)

≤ C

p(y)
= M (4)

is bounded and
π (θ)

Mq (θ)
=

p(θ|y)
C

p(y)p (θ)
=

p(y|θ)
C

(5)

can be evaluated analytically. However, the acceptance rate 1/M is usually
unknown as it involves p(y) which is itself usually unknown.
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We can summaries the pros and cons of the accept/reject procedure:

– Advantages:
1. seems rather universal, and compared to the inverse cdf method requires

less algebraic properties.
2. in principle neither the normalization constant of π nor that of q are

needed.
– Drawbacks:

1. how to construct the proposal q (x) to minimize C?
2. typically C increases exponentially with nx.

2.3 Deterministic Transformations

These methods rely on clever changes of variables, which transform one distri-
bution to another. A typical setup is the following: consider Y ∼ q from which
it is easy to sample, and consider g : X → X a differentiable and one-to-one
transformation. Now define the transformed random variable

X = g(Y ).

We know that the density, say π, of X can be expressed in terms of q and
the Jacobian

∣
∣
∣
∂g−1(x)

∂x

∣
∣
∣ of the transformation g as follows

π(x) = q
(
g−1(x)

)
∣
∣
∣
∣
∂g−1(x)

∂x

∣
∣
∣
∣ .

Naturally for a predefined π it is not always obvious to find proper g and
q, but we present here a celebrated example. The Box-Muller transformation is
a method of transforming two i.i.d. uniformly distributed random variables Y1
and Y2 on [0, 1] into two i.i.d. normally distributed random variables X1 and X2
with distribution N (0, 1). The transformation is as follows

X1 =
√

−2 log (Y1) cos (2πY2)

X2 =
√

−2 log (Y1) sin (2πY2) . (6)

We compute the inverse transformation and find that

Y1 = exp
(−(X2

1 + X2
2 )/2

)

Y2 =
1
4

+
1
2π

arctan
(

X2

X1

)

Now one can check that the Jacobian of the transformation is
1

(√
2π

)2 exp
(−(x2

1 + x2
2)/2

)
.

Consequently

π(x1, x2) =
1

(√
2π

)2 exp
(−(x2

1 + x2
2)/2

) × 1,
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which proves the result. This method is simple to implement on a computer,
and is to a certain extent efficient in the sense that two uniformly distributed
random variables Y1 and Y2 give two normally distributed random variables X1
and X2 through the deterministic transformation in Eq. (6). In this sense no
computation is wasted in producing samples that are ultimately rejected. Note
however that this transformation requires the evaluation of log and cos which
can be costly in terms of computer time, and even more efficient alternatives
have been proposed in the literature.

Although apparently limited, this type of transformation can be very useful in
practice to sample from simple distributions that are then fed into more complex
algorithms. Most of the efficient algorithms to sample from gamma’s, beta’s etc.
are a mixture of such deterministic transformations and the accept/rejection
method.

3 MCMC Methods

3.1 Motivation

So far we have seen methods of sampling from relatively low dimensional dis-
tributions, which in fact collapse for even modest dimensions. For example con-
sider the following -over-used- Bayesian example, the nuclear pump data example
(Gaver and O’Muircheartaigh, 1987). This example describes multiple failures
in a nuclear plant with the data, say y, given in the following table:

Pump 1 2 3 4 5 6 7 8 9 10
Failures 5 1 5 14 3 19 1 1 4 22
Times 94.32 15.72 62.88 125.76 5.24 31.44 1.05 1.05 2.10 10.48

The modeling is based on the assumption that the failures of the i−th pump
follow a Poisson process with parameter λi (1 ≤ i ≤ 10). For an observed time
ti, the number of failures pi is thus a Poisson P(λiti) random variable. The
unknowns here consist therefore of θ := (λ1, . . . , λ10, β) and the aim here is to
estimate quantities related to p(θ|y). For reasons invoked by the authors one
chooses the following prior distributions,

λi
iid∼ Ga(α, β) and β ∼ Ga(γ, δ)

with α = 1.8 and γ = 0.01 and δ = 1. Note that this introduces a hierarchical
parameterization of the problem, as the hyperparameter β is considered unknown
here. A prior distribution is therefore ascribed to this hyperparameter, therefore
robustifying the inference. The posterior distribution is proportional to

10∏

i=1

{(λiti)pi exp(−λiti)λα−1
i exp(−βλi)}β10αβγ−1 exp(−δβ)

∝
10∏

i=1

{λpi+α−1
i exp(−(ti + β)λi)}β10α+γ−1 exp(−δβ).
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This multidimensional distribution is rather complex, and it is not obvious
how the inverse cdf method, the rejection method or importance sampling could
be used in this context. However one notices that the following conditionals have
a familiar form,

λi|(β, ti, pi) ∼ Ga(pi + α, ti + β) for 1 ≤ i ≤ 10

β|(λ1, . . . , λ10) ∼ Ga(γ + 10α, δ +
10∑

i=1

λi), (7)

and instead of directly sampling the vector θ = (λ1, . . . , λ10, β) at once, one could
suggest sampling it progressively and iteratively, starting for example with the
λi’s for a given guess of β, followed by an update of β given the new samples
λ1, . . . , λ10. More precisely, given a sample, at iteration t, θt := (λt

1, . . . , λ
t
10, β

t)
one could proceed as follows at iteration t + 1,

1. λt+1
i |(βt, ti, pi) ∼ Ga(pi + α, ti + βt) for 1 ≤ i ≤ 10,

2. βt+1|(λt+1
1 , . . . , λt+1

10 ) ∼ Ga(γ + 10α, δ +
∑10

i=1 λt+1
i ).

This suggestion is of great interest: indeed instead of directly sampling in
a space with 11 dimensions one samples in spaces of dimension 1, which can
be achieved using either of the methods reviewed in previous sections. However
the structure of the algorithm calls for many questions: by sampling from these
conditional distributions are we sampling from the desired joint distribution? If
yes, how many times should the iteration above be repeated? In fact the validity
of the approach described here stems from the fact that the sequence {θt} defined
above is a Markov chain and, as we shall see, some Markov chains have very nice
properties.

3.2 Intuitive Approach to MCMC

Basic Concepts. Assume that we wish to sample from a distribution π. The
idea of MCMC consists of running an ergodic Markov chain. In order to illustrate
this intuitively, consider Figure 11. The target distribution corresponds to the
continuous line. It is a normal distribution. We consider here 1000 Markov chains
run in parallel, and independent. We assume that the initial distribution of these
Markov chains is a uniform distribution on [0, 20]. We then apply a (specially
designed) Markov transition probability to all of the 1000 samples, in an inde-
pendent manner. Observe how the histograms of these samples evolve with the
iterations. Obviously the normal distribution seems to “attract” the distribution
of the samples and even to be a fixed point of the algorithm. This is is what we
wanted to achieve, i.e. it seems that we have produced 1000 independent sam-
ples from the normal distribution. The numbers 1, 2, 3, 4 and 5 correspond to
the location of samples 1, 2, 3, 4 and 5 along the iterations. In fact one can show
that in many situations of interest it is not necessary to run N Markov chains
in parallel in order to obtain 1000 samples, but that one can consider a unique
Markov chain, and build the histogram from this single Markov chain by forming
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Fig. 11. From top left to bottom right: histograms of 1000 independent Markov chains
with a normal distribution as target distribution

histograms from one trajectory. This idea is illustrated in Figure 12. The target
distribution is here a mixture of normal distributions. Notice that the estimate
of the target distribution, through the series of histograms, improves with the
number of iterations. Assume that we have stored {Xi, 1 ≤ i ≤ N} for N large
and wish to estimate

∫
X f(x)π(x)dx. In the light of the numerical experiments

above, one can suggest the estimator

1
N

N∑

i=1

f(Xi),

which is exactly the estimator that we would use if {Xi, 1 ≤ i ≤ N} were
independent. In fact, it can be proved, under relatively mild conditions, that
such an estimator is consistent despite the fact that the samples are NOT in-
dependent! Under additional conditions, a central limit theorem also holds for
this estimator, and the rate of convergence is again 1/

√
N . Note however that

the constant involved in the CLT will be different from the constant in the in-
dependent case, as it will take into account the fact that the samples are not
independent.
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Fig. 12. Sampling from a mixture of normal distributions following the path of a single
Markov chain. Full line: the target distribution - Dashed line: histogram of the path.
Top: 1000 iterations only. Bottom: 10000 iterations

Unfortunately not all Markov chains, with transition probability say P , will
have the following three important properties observed above:

1. The desired distribution π is a “fixed point” of the algorithm or, in more
appropriate terms, an invariant distribution of the Markov chain, i.e.

∫

X
π(x)P (x, y) = π(y).
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2. The successive distributions of the Markov chains are “attracted” by π, or
converge towards π.

3. The estimator
1
N

N∑

i=1

f(Xi)

is consistent, and converges towards Eπ(f(X)).

The first point is easily solved: the Metropolis-Hastings algorithm provides
us with a generic mechanism of building Markov chains that admit a given dis-
tribution π as invariant distribution, whose density is known only up to a nor-
malizing constant. Note that this later property is very convenient in a Bayesian
framework! The reason for which the Metropolis-Hastings algorithm admits any
desired distribution π as invariant distributions stems from the fact that it is
reversible with respect to π, i.e. for any x, y ∈ X,

π(x)P (x, y) = π(y)P (y, x)

and therefore automatically admits π as invariant distribution (indeed integrate
the equality above with respect to x over X). In order to answer the second and
third points one needs to introduce two notions: irreducibility and aperiodic-
ity. The notion of reducibility (i.e. non-irreducibility) is illustrated in Figure 13:
the Markov chain cannot reach a region of the space X where the distribution
π has positive mass. Therefore irreducibility means that two arbitrarily chosen
points in X with positive densities, can always communicate in a finite number
of iterations. It is quit remarkable that under this simple condition, provided
that π is an invariant distribution of the Markov chain and Eπ(|f(x)|) < +∞,
then N−1 ∑N

i=1 f(xi) is consistent (see [24]). In order to ensure that the se-
ries of distributions of the Markov chain converges it is furthermore necessary
to ensure aperiodicity. To illustrate this, consider the following toy example.
X = {1, 2} and P (1, 2) = 1 and P (2, 1) = 1. One easily checks that

πTP = πT

(
0 1
1 0

)

= πT,

admits the solution π = (1/2, 1/2)T, i.e. π is an invariant distribution of the
Markov chain. Clearly this chain has a periodic behavior, with period 2, so that
if at iteration i = 0 the chain always starts in 1, i.e. µ = (1, 0)T, then the
distributions of the Markov chain are

µTP 2k = µT

µTP 2k+1 = (0, 1)T k ≥ 0,

that is the distributions do not converge. On the other hand the proportions of
time spent in state 1 and 2 converge to 1/2, 1/2 and we expect N−1 ∑N

i=1 f(Xi)
to be consistent.
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Fig. 13. In this case the Markov chain cannot explore the complete distribution: this
is an illustration of reducibility (or in fact here quasi-reducibility)

The Gibbs Sampler. In the light of the appendix on Markov chains, one can
ask if the following algorithm is likely to produce samples from the required
posterior distribution,

λi|(β, ti, pi) ∼ Ga(pi + α, ti + β) for 1 ≤ i ≤ 10

β|(λ1, . . . , λ10) ∼ Ga(γ + 10α, δ +
10∑

i=1

λi).

There are many ways of sampling from these unidimensional distribution (in-
cluding rejection sampling, but there are even much more efficient ways). The
idea of the Gibbs sampler consists of replacing a difficult global update of θ,
with successive updates of the components of θ (or in fact in general groups of
components of θ). Given the simple and familiar expressions of the conditional
distributions above, one can suggest the following algorithm

1. λt+1
i |(βt, ti, pi) ∼ Ga(pi + α, ti + βt) for 1 ≤ i ≤ 10,

2. βt+1|(λt+1
1 , . . . , λt+1

10 ) ∼ Ga(γ + 10α, δ +
∑10

i=1 λt+1
i ).

Maybe surprisingly, this algorithm produces samples from the posterior dis-
tribution p(θ|y), provided that the required distribution is invariant and the
Markov chain irreducibility and aperiodicity are satisfied. We start with a re-
sult, in a simple case for simplicity. The generalization is trivial.

Proposition 1. Let p(a, b) be a probability density. Consider the Gibbs sampler
which updates (a, b) using the conditional distributions p(a|b) and p(b|a). The
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Markov chain generated by this algorithm admits p(a, b) as invariant distribu-
tion.

Proof. From the definition of invariance, we want to prove that for any a′, b′,
∫

X
p(a, b)p(a′|b)p(b′|a′)dadb

?= p(a′, b′).

We start from the left hand side, and apply basic probability rules
∫

X
p(a, b)p(a′|b)p(b′|a′)dadb =

∫

X
p(b)p(a′|b)p(b′|a′)db

=
∫

X
p(a′, b)p(b′|a′)db

=
∫

X
p(b|a′)p(a′)p(b′|a′)db

= p(a′, b′) × 1.

Now, in order to ensure the convergence of estimators of the type N−1 ∑N
i=1

f(Xi), it is sufficient to ensure irreducibility. This is not automatically veri-
fied for a Gibbs sampler, as illustrated in Figure 14 with a simple example.
However in the nuclear pumps failure data, irreducibility is automatic: all the
conditional distributions are strictly positive on the domain of definition of the
parameters ((0, +∞) for each of them). One can therefore reach any set A from
any starting point x with positive probability in one iteration of the Gibbs
sampler.
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It is relatively easy to prove aperiodicity as well, but we will not stress
on this here, as we are in practice mostly interested in estimators of the type
N−1 ∑N

i=1 f(Xi).

Fig. 14. A distribution that can lead to a reducible Gibbs sampler
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Although natural, generally easy to implement, the Gibbs sampler does not
come without problems. First it is clear that it requires one to be able to iden-
tify conditional distributions in the model, from which it is routine to sample.
This is in fact rarely the case with realistic models. It is however generally the
case when distributions from an exponential family are involved in the mod-
eling. Another problem of the Gibbs sampler, is that its speed of convergence
is directly influenced by the correlation properties of the target distribution
π. Indeed, consider the toy two-dimensional example in Figure 15. This is a
bidimensional normal distribution with strong correlation between x and y. A
Gibbs sampler along the x and y axis will require many iterations to go from
one point to another point that is far apart, and is somehow strongly con-
strained by the properties (both in terms of shape and algebraic properties)
of π.

In contrast the Metropolis-Hastings algorithm which is presented in the next
subsection possesses an extra degree of freedom, its proposal distribution which
will determine how π is explored. This is illustrated in Figure 16, where for a
good choice of the proposal distribution, the distribution π is better explored
than in Figure 15, for the same number of iterations.
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Fig. 15. A distribution for which the Gibbs sampler along the x and y axis might be
very slow

The Metropolis-Hastings Algorithm. Let π be the density of a probabil-
ity distribution on X and let {θ ∈ X : q (θ, ·)} be a family of probability densities
from which it is possible to sample. The Metropolis-Hastings algorithm proceeds
as follows.
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Fig. 16. A distribution for which the Gibbs sampler might be very slow, but here
explored with an appropriate Metropolis-Hastings algorithm

Metropolis-Hastings Algorithm
1. Initialization, i = 0. Set randomly or deterministically θ0.
2. Iteration i, i ≥ 1.

– Propose a candidate θ ∼ q(θi−1, ·).
– Evaluate the acceptance probability

α(θi−1, θ) = min
{

1,
π(θ)/q(θi−1, θ)

π(θi−1)/q(θ, θi−1)

}

(8)

– Then θi = θ with probability α(θi−1, θ) otherwise θi = θi−1.
�

Example 6. Let us assume that we want to simulate a set of samples from p(θ|y).
Using Bayes’ theorem we have p(θ|y) ∝ p(y|θ)p (θ). A MH procedure consists
of simulating some candidates θ′ according to q (θ,θ′), evaluating some quanti-

ties α (θ, θ′) = min
{

1,
p(y|θ′)p(θ′)q(θ′,θ)
p(y|θ)p(θ)q(θ,θ′)

}

, and accepting these candidates with

probability α (θ,θ′).

As pointed out earlier, q is to a certain extent an extra degree of freedom
compared to the Gibbs sampler and an infinite number of possible choices for q
is possible. We here briefly review two classical choices.
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Random Walk: A simple choice consists of proposing as candidate a perturba-
tion of the current state, i.e. θ′ = θ+z where z is a random increment of density
ϕ (z).

– This algorithm corresponds to the particular case q (θ, θ′) = ϕ (θ′ − θ). We
obtain the following acceptance probability:

α (θ, θ′) = min
{

1,
π (θ′) ϕ (θ − θ′)
π (θ) ϕ (θ′ − θ)

}

(9)

– If q (θ, θ′) = ϕ (θ − θ′) = ϕ (θ′ − θ) then we obtain

α (θ, θ′) = min
{

1,
π (θ′)
π (θ)

}

(10)

This algorithm is called the Metropolis algorithm [15].

Independent Metropolis-Hastings: In this case, we select the candidate
independently of the current state according to a distribution ϕ (θ′). Thus
q (θ, θ′) = ϕ (θ′) and we obtain the following acceptance probability:

α (θ, θ′) = min
{

1,
π (θ′) ϕ (θ)
π (θ) ϕ (θ′)

}

(11)

In the case where π (θ) /ϕ (θ) is bounded, i.e. we could also apply the ac-
cept/reject procedure, this procedure shows (fortunately) better asymptotic per-
formance in terms of variance of ergodic averages.

Example 7. In a Bayesian framework, if we want to sample from p(θ|y) ∝
p(y|θ)p (θ) then one can take p (θ) as candidate distribution. Then the acceptance
reduces to

α (θ, θ′) = min
{

p(y|θ′)
p(y|θ) , 1

}

(12)

There are many possible variations on this theme, see [24] and [2].

Metropolis-Hastings One-at-a-Time. It should not be surprising if the prob-
lems encountered with classical sampling techniques are also problems with the
plain MH algorithm. In particular, when θ is high-dimensional, it typically be-
comes very difficult to select a good proposal distribution: either the acceptance
probability is very low or very large and the chain does not explore π very
rapidly, or the chain explores only one mode of the distribution. To solve this
problem one can use the strategy adopted by the Gibbs sampler. Define a par-
tition of θ := (θ1, . . . , θp). Then each component θk can be updated according
to a MH update with proposal distribution, say qk which admits the conditional
distribution π (θk|θ−k) (where θ−k := (θ1, . . . , θk−1, θk+1, . . . , θp)) as invariant
distribution.
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MH One-at-a-Time

1. Initialization, i = 0. Set randomly or deterministically θ(0) = θ0.
2. Iteration i, i ≥ 1.

– For k = 1 to p

– Sample θ
(i)
k according to a MH step with proposal distribution

qk((θ(i)
−k, θ

(i−1)
k ), θk) (13)

and invariant distribution π(θk|θ(i)
−k).

End For.

�

This algorithm includes the Gibbs sampler as a special case. Indeed, this lat-
ter corresponds to the particular case where the proposal distributions of the MH
steps are equal to the full conditional distributions, i.e. qk((θ(i)

−k, θ
(i−1)
k ), θk) =

π(θk|θ(i)
−k), so that the acceptance probabilities are equal to 1 and no candidate

is rejected.

Theoretical Aspects of the MH Algorithm. In this subsection we establish
that the MH transition probability admits π as invariant distribution, and then
briefly discuss the irreducibility and aperiodicity issues. The transition proba-
bility of the Metropolis-Hastings algorithm is for x, A ∈ X,B(X)

P (x, A) =
∫

A

α(x, y)q(x, y)dy + IA(x)
∫

X
(1 − α(x, y))q(x, y)dy

=
∫

A

α(x, y)q(x, y)dy + IA(x)[1 −
∫

X
α(x, y)q(x, y)dy].

We now prove that P is reversible with respect to π. First notice that

α(x, y)π(x)q(x, y) = min{1,
π(y)q(y, x)
π(x)q(x, y)

}π(x)q(x, y)

= min{π(x)q(x, y), π(y)q(y, x)}

= π(y)q(y, x) min{π(x)q(x, y)
π(y)q(y, x)

, 1}

= π(y)q(y, x)α(y, x).
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Consequently for any A, B ∈ B(X),
∫

B

π(x)P (x, A)dx =
∫

B

∫

A

π(x)α(x, y)q(x, y)dxdy

+
∫

B

IA(x)π(x)[1 −
∫

X
α(x, y)q(x, y)dy]dx

=
∫

A

∫

B

π(y)q(y, x)α(y, x)dxdy

+
∫

X
IA∩B(x)π(x)[1 −

∫

X
α(x, y)q(x, y)dy]dx

=
∫

A

∫

B

π(y)q(y, x)α(y, x)dxdy

+
∫

A

IB(x)π(x)[1 −
∫

X
α(x, y)q(x, y)dy]dx

=
∫

A

π(y)P (y, B)dy.

A simple condition which ensures the irreducibility and the aperiodicity of the
MH algorithm is that q (x,y) is continuous and strictly positive on the support
of π for any x [20].
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Abstract. This contribution presents an overview of the theoretical and
practical aspects of the broad family of learning algorithms based on
Stochastic Gradient Descent, including Perceptrons, Adalines, K-Means,
LVQ, Multi-Layer Networks, and Graph Transformer Networks.

1 Introduction

This contribution reviews some material presented during the “Stochastic Learn-
ing” lecture given at the 2003 Machine Learning Summer School in Tübingen. It
defines a broad family of learning algorithms that can be formalized as stochas-
tic gradient descent algorithms and describes their common properties. This in-
cludes numerous well known algorithms such as Perceptrons, Adalines, K-Means,
LVQ, and Multi-Layer Networks.

Stochastic learning algorithms are also effective for training large systems
with rich structure, such as Graph Transformer Networks [8, 24]. Such large
scale systems have been designed and industrially deployed with considerable
success.

– Section 2 presents the basic framework and illustrates it with a number of
well known learning algorithms.

– Section 3 presents the basic mathematical tools for establishing the conver-
gence of stochastic learning algorithms.

– Section 4 discusses the learning speed of stochastic learning algorithms ap-
plied to large datasets. This discussion covers both statistical efficiency and
computational requirements.

These concepts were previously discussed in [9, 10, 14, 12]. Readers inter-
ested by the practice of stochastic gradient algorithms should also read [25] and
investigate applied contributions such as [39, 37, 46, 6, 24, 26].

2 Foundations

Almost all of the early work on Learning Systems focused on online algorithms
[18, 34, 44, 2, 19]. In these early days, the algorithmic simplicity of online algo-
rithms was a requirement. This is still the case when it comes to handling large,
real-life training sets [23, 30, 25, 26].

O. Bousquet et al. (Eds.): Machine Learning 2003, LNAI 3176, pp. 146–168, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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The early Recursive Adaptive Algorithms were introduced during the same
years [33] and very often by the same people [45]. First developed in the engi-
neering world, recursive adaptation algorithms have turned into a mathematical
discipline, namely Stochastic Approximations [22, 27, 7].

2.1 Expected Risk Function

In [40, 41], the goal of a learning system consists of finding the minimum of a
function C(w) named the expected risk function1. This function is decomposed
as follows:

C(w)
�
= Ez Q(z, w)

�
=

∫

Q(z, w) dP (z) (1)

The minimization variable w is meant to represent the part of the learning
system which must be adapted as a response to observing events z occurring
in the real world. The loss function Q(z, w) measures the performance of the
learning system with parameter w under the circumstances described by event z.
Common mathematical practice suggests to represent both w and z by elements
of adequately chosen spaces W and Z.

2.2 Gradient Based Learning

The expected risk function (1) cannot be minimized directly because the grand
truth distribution is unknown. It is however possible to compute an approxima-
tion of C(w) by simply using a finite training set of independent observations
z1, . . . , zL.

C(w) ≈ ĈL(w)
�
=

1
L

L∑

n=1

Q(zn, w) (2)

General theorems [42] show that minimizing the empirical risk ĈL(w) can
provide a good estimate of the minimum of the expected risk C(w) when the
training set is large enough. This line of work has provided a way to understand
the generalization phenomenon, i.e. the ability of a system to learn from a finite
training set and yet provide results that are valid in general.

Batch Gradient Descent. Minimizing the empirical risk ĈL(w) can be achieved
using a batch gradient descent algorithm. Successive estimates wt of the optimal
parameter are computed using the following formula

wt+1 = wt − γt∇w ĈL(wt) = wt − γt
1
L

L∑

i=1

∇w Q(zn, wt) (3)

where the learning rate γt is a positive number.

1 The origin of this statistical framework is unclear. It has been popularized by Vap-
nik’s work [42] but was already discussed in Tsypkin’s work [40] or even [16]. Vapnik
told me that “someone wrote this on the blackboard during a seminar”; he does not
remember who did.
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The properties of this optimization algorithm are well known: When the
learning rate γt are small enough2, the algorithm converges towards a local min-
imum of the empirical risk ĈL(w). Each iteration of the batch gradient descent
algorithm however involves a burdening computation of the average of the gra-
dients of the loss function ∇w Q(zn, w) over the entire training set. Significant
computer resources must be allocated in order to store a large enough training
set and compute this average.

Online Gradient Descent. The elementary online gradient descent algorithm
is obtained by dropping the averaging operation in the batch gradient descent
algorithm (3). Instead of averaging the gradient of the loss over the complete
training set, each iteration of the online gradient descent consists of choosing an
example zt at random, and updating the parameter wt according to the following
formula.

wt+1 = wt − γt∇w Q(zt, wt) (4)

Averaging this update over all possible choices of the training example zt

would restore the batch gradient descent algorithm. The online gradient descent
simplification relies on the hope that the random noise introduced by this pro-
cedure will not perturbate the average behavior of the algorithm. Significant
empirical evidence substantiate this hope.

delay
wt

wt+1

tz
World −γ∆

Q

Fig. 1. Online Gradient Descent. The parameters of the learning system are updated
using information extracted from real world observations

Many variants of (4) have been defined. Parts of this contribution discuss two
significant variants: Section 2.4 replaces the gradient ∇w Q(z, w) by a general
term U(z, w) satisfying Ez U(z, w) = ∇w C(w). Section 4 replaces the learning
rates γt by positive symmetric matrices (equation (27).)

Online gradient descent can also be described without reference to a training
set. Instead of drawing examples from a training set, we can directly use the
events zt observed in the real world, as shown in Figure 1. This formulation
is particularly adequate for describing adaptive algorithms that simultaneously

2 Convergence occurs for constant learning rates, smaller than a critical learning rate
related to the maximal curvature of the cost function. See [25] for instance.
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process an observation and learn to perform better. Such adaptive algorithms
are very useful for tracking a phenomenon that evolves in time.

Formulating online gradient descent without reference to a training set also
presents a theoretical interest. Each iteration of the algorithm uses an example
zt drawn from the grand truth distribution instead of a finite training set. The
average update therefore is a gradient descent algorithm which directly opti-
mizes the expected risk. This shortcuts the usual discussion about differences
between optimizing the empirical risk and the expected risk [42, 43]. Proving
the convergence of an online algorithm towards the minimum of the expected
risk provides an alternative to the Vapnik proofs of the consistency of learning
algorithms. Non-asymptotic bounds for online algorithms are rare.

2.3 Examples: Online Least Mean Squares

Widrow’s Adaline. The Adaline [44] is one of the few learning systems de-
signed at the very beginning of the computer age. Online gradient descent was
then a very attractive proposition requiring little hardware. The adaline could fit
in a refrigerator sized cabinet containing a forest of potentiometers and electrical
motors.

The Adaline (Figure 2) learning algorithm adapts the parameters of a sin-
gle threshold unit. Input patterns x are recognized as class y = +1 or y = −1
according to the sign of w′x + β. It is practical to consider an augmented in-
put pattern x containing an extra constant coefficient equal to 1. The bias β
then is represented as an extra coefficient in the parameter vector w. With this
convention, the output of the threshold unit can be written as

ŷw(x)
�
= sign(w′x) = sign

∑

i

wixi (5)

World

w’.x
x

y(x)^

y

γ

Fig. 2. Widrow’s Adaline. The adaline computes a binary indicator by thresholding a
linear combination of its input. Learning is achieved using the delta rule

During training, the Adaline is provided with pairs z = (x, y) representing
input patterns and desired output for the Adaline. The parameter w is adjusted
after using the delta rule (the “prime” denotes transposed vectors):

wt+1 = wt − γt(yt − w′
txt)′xt (6)
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This delta rule is nothing more than an iteration of the online gradient descent
algorithm (4) with the following loss function:

Qadaline(z, w)
�
= (y − w′x)2 (7)

This loss function does not take the discontinuity of the threshold unit (5)
into account. This linear approximation is a real breakthrough over the appar-
ently more natural loss function (y − ŷw(x))2. This discontinuous loss function
is difficult to minimize because its gradient is zero almost everywhere. Further-
more, all solutions achieving the same misclassification rate would have the same
cost C(w), regardless of the margins separating the examples from the decision
boundary implemented by the threshold unit.

Multi-layer Networks. Multi-Layer Networks were initially designed to over-
come the computational limitation of the threshold units [29]. Arbitrary binary
mappings can be implemented by stacking several layers of threshold units, each
layer using the outputs of the previous layers as inputs. The Adaline linear
approximation could not be used in this framework, because ignoring the dis-
continuities would make the entire system linear regardless of the number of
layers. The key of a learning algorithm for multi-layer networks [35] consisted of
noticing that the discontinuity of the threshold unit could be represented by a
smooth non-linear approximation.

sign(w′x) ≈ tanh(w′x) (8)

Using such sigmoid units does not reduce the computational capabilities of a
multi-layer network, because the approximation of a step function by a sigmoid
can be made arbitrarily good by scaling the coefficients of the parameter vector
w.

A multi-layer network of sigmoidal units implements a differentiable function
f(x, w) of the input pattern x and the parameters w. Given an input pattern x
and the desired network output y, the back-propagation algorithm, [35] provides
an efficient way to compute the gradients of the mean square loss function.

Qmse(z, w) =
1
2

(y − f(x, w))2 (9)

Both the batch gradient descent (3) and the online gradient descent (4) have
been used with considerable success. On large, redundant data sets, the online
version converges much faster then the batch version, sometimes by orders of
magnitude [30]. An intuitive explanation can be found in the following extreme
example. Consider a training set composed of two copies of the same subset.
The batch algorithm (3) averages the gradient of the loss function over the
whole training set, causing redundant computations. On the other hand, running
online gradient descent (4) on all examples of the training set would amount to
performing two complete learning iterations over the duplicated subset.
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2.4 Examples: Non Differentiable Loss Functions

Many interesting examples involve a loss function Q(z, w) which is not differen-
tiable on a subset of points with probability zero. Intuition suggests that this is
a minor problems because the iterations of the online gradient descent have zero
probability to reach one of these points. Even if we reach one of these points, we
can just draw another example z.

This can be formalized as replacing the gradient ∇wQ(z, w) in equation (4)
by an update term U(z, w) defined as follows:

U(z, w) =
{∇wQ(z, w) when differentiable

0 otherwise (10)

The convergence study (Section 3) shows that this works if the expectation
of the update term U(z, w) is equal to gradient of the cost C(w):

EzU(z, w) ?= ∇wC(w)
∫

∇wQ(z, w) dP (z) ?= ∇w

∫

Q(z, w) dP (z) (11)

The Lebesgue integration theory provides a sufficient condition for swap-
ping the integration (

∫
) and differentiation (∇w) operators as in (11). For each

parameter value w reached by the online algorithm, it is sufficient to find an
integrable function Φ(z, w) and a neighborhood ϑ(w) of w such that:

∀z, ∀ v∈ ϑ(w), |Q(z, v) − Q(z, w)| ≤ |w − v|Φ(z, w) (12)

This condition (12) tests that the maximal slope of the loss function Q(z, w)
is conveniently bounded. This is obviously true when the loss function Q(z, w)
is differentiable and has an integrable gradient. This is obviously false when the
loss function is not continuous. Given our previous assumption concerning the
zero probability of the non differentiable points, condition (12) is a sufficient
condition for safely ignoring a few non differentiable points.

Rosenblatt’s Perceptron. During the early days of the computer age, the
Perceptron [34] generated considerable interest as a possible architecture for
general purpose computers. This interest faded after the disclosure of its com-
putational limitations [29]. Figure 3 represents the perceptron architecture. An
associative area produces a feature vector x by applying predefined transforma-
tions to the retina input. The feature vector is then processed by a threshold
unit (cd. Adaline).

The perceptron learning algorithm adapts the parameters w of the threshold
unit. Whenever a misclassification occurs, the parameters are updated according
to the perceptron rule.

wt+1 = wt + 2γtyt xt (13)

This learning rule can be derived as an online gradient descent applied to the
following loss function:

Qperceptron(z, w) = (sign(w′x) − y) w′x (14)
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Retina
Associative area

x

w’ x

(w’ x)sign

Treshold element

Fig. 3. Rosenblatt’s Perceptron is composed of a fixed preprocessing and of a trainable
threshold unit

Although this loss function is non differentiable when w′x is null, is meets
condition (12) as soon as the expectation E(x) is defined. We can therefore ignore
the non differentiability and apply the online gradient descent algorithm:

wt+1 = wt − γt(sign(w′
txt) − yt) xt (15)

Since the desired class is either +1 or −1, the weights are not modified when
the pattern x is correctly classified. Therefore this parameter update (15) is
equivalent to the perceptron rule (13).

The perceptron loss function (14) is zero when the pattern x is correctly
recognized as a member of class y = ±1. Otherwise its value is positive and
proportional to the dot product w′x. The corresponding cost function reaches
its minimal value zero when all examples are properly recognized or when the
weight vector w is null.

Such hinge loss functions [17, 36] have recently drawn much interest because
of their links with the Support Vector Machines and the AdaBoost algorithm.

K-Means. The K-Means algorithm [28] is a popular clustering method which
dispatches K centroids w(k) in order to find clusters in a set of points x1, . . . , xL.
This algorithm can be derived by performing the online gradient descent with
the following loss function.

Qkmeans(x, w)
�
=

K
min
k=1

(x − w(k))2 (16)

This loss function measures the quantification error, that is to say the er-
ror on the position of point x when we replace it by the closest centroid. The
corresponding cost function measures the average quantification error.

This loss function is not differentiable on points located on the Voronöı
boundaries of the set of centroids, but meets condition (12) as soon as the ex-
pectations E(x) and E(x2) are defined. On the remaining points, the derivative
of the loss is the derivative of the distance to the nearest centroid w−. We can
therefore ignore the non-differentiable points and apply the online gradient de-
scent algorithm.
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W(1)
W(2)

W(3)

Fig. 4. K-Means dispatches a predefined number of cluster centroids in a way that
minimizes the quantification error

w−
t+1 = w−

t + γt(xt − w−
t ) (17)

This formula describes an elementary iteration of the K-Means algorithm. A
very efficient choice of learning rates γt will be suggested in Section 4.6.

Decision
boundary

Class 1 centroids

Class 2 centroids

Fig. 5. Kohonen’s LVQ2 pattern recognition scheme outputs the class associated with
the closest reference point to the input pattern

Learning Vector Quantization 2. Kohonen’s Learning Vector Quantization
2 (LVQ2) rule [20] is a powerful pattern recognition algorithm. Like K-Means,
it uses a fixed set of reference points w(k). A class y(k) is associated with each
reference point. As shown in Figure 5, an unknown pattern x is then recognized
as a member of the class associated with the nearest reference point.

Given a training pattern x, let us denote w− the nearest reference point and
denote w+ the nearest reference point among those associated with the correct
class y. Adaptation only occurs when the closest reference point w− is associated
with an incorrect class while the closest correct reference point w+ is not too far
away:
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if
{

x is misclassified (w− �= w+)
and (x − w+)2 < (1 + δ)(x − w−)2

then
{

w−
t+1 = w−

t − εt(x − w−
t )

w+
t+1 = w+

t + εt(x − w+
t )

(18)

Reference points are only updated when the pattern x is misclassified. Fur-
thermore, the distance to the closest correct reference point w+ must not exceed
the distance to the closest (incorrect) reference point w− by more than a per-
centage defined by parameter δ. When both conditions are met, the algorithm
pushes the closest (incorrect) reference point w− away from the pattern x, and
pulls the closest correct reference point w+ towards the pattern x.

This intuitive algorithm can be derived by performing an online gradient
descent with the following loss function:

Qlvq2(z, w)
�
=

⎧
⎪⎨

⎪⎩

0 if x is well classified (w+ = w−)
1 if (x − w+)2 ≥ (1 + δ)(x − w−)2

(x−w+)2−(x−w−)2

δ(x−w−)2 otherwise
(19)

This function is a continuous approximation to a binary variable indicating
whether pattern x is misclassified. The corresponding cost function therefore is a
continuous approximation of the system misclassification rate [9]. This analysis
helps understanding how the LVQ2 algorithm works.

Although the above loss function is not differentiable for some values of w, it
meets condition (12) as soon as the expectations E(x) and E(x2) are defined. We
can therefore ignore the non-differentiable points and apply the online gradient
descent algorithm:

if
{

x is misclassified (w− �= w+)
and (x − w+)2 < (1 + δ)(x − w−)2

then
{

w−
t+1 = w−

t − γtk1(x − w−
t )

w+
t+1 = w+

t + γtk2(x − w+
t )

(20)

with k2 =
1

δ(x − w−)2
and k1 = k2

(x − w+)2

(x − w−)2
(21)

This online gradient descent algorithm (20) is similar to the usual LVQ2
learning algorithm (18). The difference between the two scalar coefficients k1
and k2 can be viewed as a minor variation on the learning rates.

3 Convergence

Given a suitable choice of the learning rates γt, the batch gradient descent al-
gorithm (3) is known to converge to a local minimum of the cost function. This
local minimum is a function of the initial parameters w0. The parameter trajec-
tory follows the meanders of the local attraction basin and eventually reaches
the corresponding minimum.
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The random noise introduced by stochastic gradient descent (4) disrupts this
deterministic picture. The parameter trajectory can jump from basin to basin.
One usually distinguish a search phase that explores the parameter space and a
final phase that takes place in the vicinity of a minimum.

– The final phase takes place in the vicinity of a single local minimum w∗ where
the cost function is essentially convex. This is discussed in Section 3.1.

– Our understanding of the search phase is still very spotty. Section 3.2 presents
sufficient conditions to guarantee that the convergence process will eventu-
ally reach the final phase.

3.1 Final Convergence Phase

The following discussion rely on the general convexity assumption3. Everywhere
in the parameter space, the opposite of the gradient must point toward a unique
minimum w∗.

∀ε > 0, inf
(w−w∗)2>ε

(w − w∗) ∇wC(w) > 0 (22)

Such a strong assumption is only valid for a few simple learning algorithms
such as the Adaline, Section 2.3). Nevertheless these results are useful for un-
derstanding the final convergence phase. The assumption usually holds within
the final convergence region because the cost function is locally convex.

The parameter updates γt∇wQ(z, w) must become smaller and smaller when
the parameter vector w approaches the optimum w∗. This implies that either
the gradients or the learning rates must vanish in the vicinity of the optimum.

More specifically one can write:

Ez

[∇wQ(z, w)2
]

= Ez

[
(∇wQ(z, w) − ∇wC(w))2

]
+ ‖∇wC(w)‖2

The first term is the variance of the stochastic gradient. It is reasonable to
assume that it does not grow faster than the norm of the real gradient itself. In
the vicinity of w∗ we can write:

‖∇wC(w)‖2 = ‖∇wC(w) − ∇wC(w∗)‖2 ≤ 1
2

‖∇∇wC(w∗)‖2 ‖w − w∗‖2

It is therefore reasonable to assume that ||∇wC(w)||2 behaves quadratically
within the final convergence region. Both assumptions are conveniently expressed
as follows:

Ez

[∇wQ(z, w)2
]

< A + B (w − w∗)2 with A ≥ 0, B ≥ 0 (23)

The constant A must be greater than the residual variance Ez

[∇wQ(z, w∗)2
]

of the gradients at the optimum. This residual variance can be zero for certain

3 The optimization literature often defines such extended notions of convexity. Small
details are important. For instance, in (22), one cannot simply replace the infimum
by ∀w �= w∗. Consider function C(w) = 1 − exp(−||w||2) as a counter-example.
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rare noiseless problems where w∗ simultaneously optimizes the loss for every
examples. It is strictly positive in most practical cases. The average norm of
the gradients then does not vanish when the parameter vector w approaches the
optimum. Therefore one must use decreasing learning rates, e.g.:

∑
γ2

t < ∞ (24)

The presence of constant A in (23) marks a critical difference between stochas-
tic and ordinary gradient descent. There is no such constant in the case of the
ordinary gradient descent. A simple analysis then yields an expression for the
maximal constant learning rate [25]. In the stochastic gradient case, this analysis
suggests that the parameter vector eventually hovers around the minimum w∗

at a distance roughly proportional to γt. Quickly decreasing the learning rate
is therefore tempting. Suppose however that the learning rates decrease so fast
that

∑
γt = R < ∞. This would effectively maintain the parameters within

a certain radius of their initial value. It is therefore necessary to enforce the
following condition:

∑
γt = ∞ (25)

Convex Convergence Theorem. The general convexity (22) and the three
conditions (23), (24) and (25) are sufficient conditions for the almost sure con-
vergence of the stochastic gradient descent (4) to the optimum w∗.

The following discussion provides a sketch of the proof. This proof is simply
an extension of the convergence proofs for the continuous gradient descent and
the discrete gradient descent.

The continuous gradient descent proof studies the convergence of the function
w(t) defined by the following differential equation:

dw

dt
= −∇wC(w)

This proof follows three steps:

A) Definition of a Lyapunov function — A Lyapunov function is a function
whose convergence to zero implies the convergence of w(t) to w∗ when t grows
to the infinity. For the continuous gradient we simply use h(t) = (w − w∗)2.

B) Convergence of the Lyapunov function — Using (22), it is easy to see that
dh/dt = 2(w − w∗)∇wC(w) ≤ 0. Function h(t) converges because it is both
positive and decreasing.

C) The limit of the Lyapunov function must be zero. We know that dh/dt → 0
because h(t) converges. Assumption (22) then implies that (w − w∗)2 → 0.

The convergence proofs for both the discrete (3) and stochastic (4) gradient
descents follow the same three steps. Each step requires increasingly sophisti-
cated mathematical tools summarized in the following table.
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Continuous Discrete Stochastic

Step A
Define Lyapunov

criterion.

Function
h(t) = (w(t) − w∗)2

Sequence
ht = (wt − w∗)2

Random Process
ht = (wt − w∗)2

Step B
Lyapunov criterion

converges.

Decreasing positive
function

Positive sequence
with bounded

positive increments

Positive
quasi-martingales

Step C
Lyapunov criterion
converges to zero.

General Convexity

Full details can be found in [9, 10].

3.2 Search Phase

This section discusses the convergence of the stochastic gradient algorithm (4)
without the general convexity assumption (22). Since the cost function C(w)
can have several local minima, this discussion encompasses the search phase.
Although our understanding of the search phase is still very incomplete, empir-
ical and theoretical evidence indicate that stochastic gradient algorithms enjoy
significant advantages over batch algorithms. Stochastic gradient descent benefit
from the redundancies of the training set. Consider the extreme case where a
training set of size 1000 is inadvertently composed of 10 identical copies of a
set with 100 samples. Averaging the gradient over all 1000 patterns gives the
exact same result as computing the gradient based on just the first 100. Batch
gradient descent is wasteful because it re-computes the same quantity 10 times
before one parameter update. On the other hand, stochastic gradient will see a
full epoch as 10 iterations through a 100-long training set.

In the case of the continuous and discrete gradient descent, it is usually
sufficient to partition the parameter space into several attraction basins, discuss
the conditions under which the algorithm confines the parameters wt in a single
attraction basin, define a suitable Lyapunov criterion [21], and proceed as in the
convex case. This approach does not work well with stochastic gradient because
the parameter trajectory can always jump from basin to basin.

Let us instead assume that the cost function becomes large when one wanders
far from the origin. The global landscape then looks like a single large attraction
basin. The local minima structure only shows when one gives a closer look to in
the vicinity of the apparent minimum.

This situation can be expressed by the following assumptions:

i.) inf C(w) > −∞
ii.) ∃D > 0, inf

w2>D
w ∇wC(w) > 0

iii.) Ez(∇wQ(z, w))2 ≤ A + Bw2

iv.) ∃E > D, ∀z, sup
w2<E

||∇wQ(z, w)|| ≤ Constant
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Assumption (i) indicates that the cost is bounded from below. Assumption
(ii) indicates that the gradient far away from the origin always drives us back
towards the origin. Assumptions (iii) and (iv) limit the variance of the stochastic
gradient and the asymptotic growth of the real gradients4.

Global Confinement Theorem: The four assumptions (i) to (iv) above, and
the two learning rate assumptions (24) and (25) guarantee that the parameter wt

defined by the stochastic gradient update (4) will almost surely remain confined
within distance

√
E of the origin.

This global confinement result [10] is obtained using the same proof tech-
nique as in the convex case. The Lyapunov criterion is simply defined as ht =
max(E, w2

t ).
Global confinement shows that wt evolves in a compact domain where nothing

dramatic can happen. In fact, it even implies that the stochastic gradient descent
will soon or later reach the final convergence phase. This is formalized by the
following result:

Gradient Convergence Theorem. The four assumptions (i) to (iv) above,
and the two learning rate assumptions (24) and (25) guarantee that the gradients
∇wC(wt) converges almost surely to zero.

The proof of this final convergence result [10] again is very similar to the con-
vergence proofs for the convex case with suitable choices for the Lyapunov crite-
rion. The details of the proof extensively rely on the global confinement result.

4 Convergence Speed and Learning Speed

The main purpose of this section is to illustrate a critical difference between op-
timization algorithms and learning algorithm. It will then appear that stochastic
gradient descent is simultaneously a very poor optimization algorithm and a very
effective learning algorithm.

4.1 Convergence Speed for Batch Gradient Descent

Simple batch gradient descent enjoy linear5 convergence speed (see for instance
Section 5 of [25]). The convergence speed of batch gradient descent drastically
improves when one replaces the scalar learning rates γt by a definite positive
symmetric matrix Φt that approximates the inverse of the Hessian of the cost
function.

Φt ≈ H−1(wt), H(w) = ∇∇wC(w) (26)

This leads to very effective optimization algorithms such as Newton’s al-
gorithm, Levemberg-Marquardt, Conjugate Gradient and BFGS (see [15] for a

4 See also the discussion for convex assumption (23).
5 Linear convergence speed: (log 1/(wt − w∗)2) grows linearly with t.
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review). These algorithms achieve superlinear or even quadratic6 convergence
speeds.

4.2 Convergence Speed for Stochastic Algorithms

Whereas online algorithms may converge to the general area of the optimum at
least as fast as batch algorithms [25], the optimization proceeds rather slowly
during the final convergence phase [14]. The noisy gradient estimate causes the
parameter vector to fluctuate around the optimum in a bowl whose size depends
on the decreasing learning rates and is therefore constrained by (25). It can be
shown that this size decreases like 1/t at best7.

Stochastic gradient descent nevertheless benefits from using similar second
order methods. The gradient vector is rescaled using a positive symmetric matrix
Φt that approximates the inverse hessian (26) in a manner analogous to Newton’s
algorithm8. The same convergence results apply as long as the eigenvalues of the
scaling matrix Φt are bounded.

wt+1 = wt − 1
t

Φt ∇w Q(zt, wt) (27)

For simplicity, this section only addresses the case γt = 1/t which satisfies
both conditions (24) and (25). It is however important to understand that the
second order stochastic algorithm (27) still experiences the stochastic noise re-
sulting from the random selection of the examples zt. Its convergence speed still
depends on the choice of decreasing learning rates γt and is therefore constrained
by condition (25). This is a sharp contrast with the case of batch algorithms
where the same scaling matrix yields superlinear convergence.

Stochastic gradient descent is a hopeless optimization algorithm. It is tempt-
ing to conclude that it is also a very poor learning algorithm. Yet experience
suggests otherwise [4].

4.3 Optimization Versus Learning

This apparent contradiction is resolved when one considers that the above dis-
cussion compares the speed of two different convergences:

– Batch algorithms converge towards a minimum of the empirical risk ĈL(w),
which is defined as an average on L training examples (2).

– Stochastic algorithms converge towards a minimum of the expected risk
C(w), which is defined as an expectation with respect to the probability
distribution from which we draw the examples (1).

6 Quadratic convergence speed: (log log 1/(wt − w∗)2) grows linearly with t.
7 Convergence speed of stochastic gradient: (1/(wt − w∗)2) grows linearly with t.
8 Such second order stochastic approximations are standard practice in the Stochastic

Approximation literature [22, 27, 7].
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In a learning problem, we are interested in knowing the speed of convergence
towards the minimum of the expected risk C(w) because it reflects the gener-
alization error. Replacing the expected risk C(w) by the empirical risk ĈL(w)
is by itself an approximation. As shown in the next section, this approximation
spoils the potential benefits of running an optimization algorithm with ambitious
convergence speed.

4.4 Optimizing the Empirical Risk Is a Stochastic Process

We consider in this section an infinite sequence of independent training examples
(z1, . . . , zt, . . . ). Let w∗

t be the minimum of the empirical risk Ĉt(w) defined on
a training set composed of the first t examples (z1, . . . , zt). We assume that all
the w∗

t are located in the vicinity of the minimum w∗ of the expected risk C(w).
Manipulating a Taylor expansion of the gradient of Ĉt+1(w) in the vicinity

of w∗
t provides the following recursive relation:

w∗
t+1 = w∗

t − 1
t + 1

Ψt∇wQ(zt, w
∗
t ) + O

(
1
t2

)

(28)

with

Ψt
�
=

(
1

t + 1

t+1∑

i=1

∇∇wQ(zi, w
∗
t )

)−1

−→
t→∞ H−1(w∗

t )

The similarity between (28) and (27) suggests that both the batch sequence
(w∗

t ) and online sequence (wt) converge at the same speed for adequate choices
of the scaling matrix Φt. Theoretical analysis indeed shows that [31, 13]:

E
[
(w∗

t − w∗)2
]

=
K

t
+ o

(
1
t

)

(29)

Φt −→
t→∞ H−1(w∗) =⇒ E

[
(wt − w∗)2

]
=

K

t
+ o

(
1
t

)

(30)

where

K = trace
(
H−1(w∗) · Ez

[
(∇wQ(z, w∗)) (∇wQ(z, w∗))′] · H−1(w∗)

)

Not only does this result establish that both sequences have O (1/t) conver-
gence, but also it provides the value of the common constant K. This constant is
neither affected by the second order terms of (28) nor by the convergence speed
of the scaling matrix Φt towards the inverse Hessian [13].

Following [40], we say that a second order stochastic algorithm is optimal
when Φt converges to H−1(w∗). Figure 6 summarizes the behavior of such opti-
mal algorithms. After t iterations on fresh examples, the point wt reached by an
optimal stochastic learning algorithm is asymptotically as good as the solution
w∗

t of a batch algorithm trained on the same t examples.
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t

t
*

*

ONLINE

BATCH1 Best training 
set error.

True solution,
Best generalization.

≅ K/t

w

w

w

w

E
[
(wt − w∗)2

] ∼ E
[
(w∗

t − w∗)2
] ∼ K

t

Fig. 6. After t iterations on fresh examples, the point wt reached by an optimal
stochastic learning algorithm is asymptotically as good as the solution w∗

t of a batch
algorithm trained on the same t examples

4.5 Comparing Computational Complexities

The discussion so far has established that a properly designed online learning
algorithm performs as well as any batch learning algorithm for a same number
of examples. We now establish that, given the same computing resources, a
stochastic learning algorithm can asymptotically process more examples than a
batch learning algorithm.

Each iteration of a batch learning algorithm running on N training examples
requires a time K1N + K2. Constants K1 and K2 respectively represent the
time required to process each example, and the time required to update the
parameters. Result (29) provides the following asymptotic equivalence:

E
[
(w∗

N − w∗)2
] ∼ 1

N

The batch algorithm must perform enough iterations to approach the em-
pirical optimum w∗

N with at least the same accuracy (∼ 1/N). A very efficient
algorithm with quadratic convergence achieves this after a number of iterations
asymptotically proportional to (log log N).

Running a stochastic learning algorithm requires a constant time K3 per
processed example. Let us call T the number of examples processed by the
stochastic learning algorithm using the same computing resources as the batch
algorithm. We then have:

K3T ∼ (K1N + K2) log log N =⇒ T ∼ N log log N

The parameter wT of the stochastic algorithm also converges according to
(30). Comparing the accuracies of both algorithms shows that the stochastic
algorithm asymptotically provides a better solution by a factor ∼ (log log N).

E
[
(wT − w∗)2

] ∼ 1
N log log N

� 1
N

∼ E
[
(w∗

N − w∗)2
]

(31)

This (log log N) factor corresponds to the number of iterations required by
the batch algorithm. This number increases slowly with the desired accuracy
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of the solution. In practice, this factor is much less significant than the actual
value of the constants K1, K2 and K3. Experience shows however that stochastic
algorithms are considerably easier to implement. Each iteration of the batch
algorithm involves a large summation over all the available examples. Memory
must be allocated to hold these examples. On the other hand, each iteration of
the stochastic algorithm only involves one random example which can then be
discarded.

4.6 Examples

Optimal Learning Rate for K-Means. Second derivative information can
be used to determine very efficient learning rates for the K-Means algorithm
(Section 2.4). A simple analysis of the loss function (16) shows that the Hessian
of the cost function is a diagonal matrix [11] whose coefficients λ(k) are equal to
the probabilities that an example x is associated with the corresponding centroid
w(k).

These probabilities can be estimated by simply counting how many examples
n(k) have been associated with each centroid w(k). Each iteration of the corre-
sponding stochastic algorithm consists in drawing a random example xt, finding
the closest centroid w(k), and updating both the count and the centroid with the
following equations:

[
nt+1(k) = nt(k) + 1
wt+1(k) = wt(k) + 1

nt+1(k) (xt − wt(k)) (32)

Algorithm (32) very quickly locates the relative position of clusters in the
data. Terminal convergence however is slowed down by the noise implied by the
random choice of the examples. Experimental evidence [11] suggest that the best
optimization speed is achieved by first using the stochastic algorithm (32) and
then switching to a batch super-linear version of K-means.

Kalman Algorithms. The Kalman filter theory has introduced an efficient
way to compute an approximation of the inverse of the Hessian of certain cost
functions. This idea is easily demonstrated in the case of linear algorithms such
as the Adaline (Section 2.3). Consider stochastic gradient descent applied to the
minimization of the following mean square cost function:

C(w) =
∫

Q(z, w) dP (z) with Q(z, w)
�
= (y − w′x)2 (33)

Each iteration of this algorithm consists of drawing a new pair zt = (xt, yt)
from the distribution dP (z) and applying a parameter update formula similar
to (27):

wt+1 = wt − H−1
t ∇wQ(zt, wt) = wt − H−1

t (yt − w′
txt)′xt (34)

where Ht denotes the Hessian of an empirical estimate Ct(w) of the cost function
C(w) based on the examples z1, . . . , zt observed so far.
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Ct(w)
�
=

1
2

t∑

i=1

Q(zi, w) =
1
2

t∑

i=1

(yi − w′xi)2 (35)

Ht
�
= ∇2

wCt(w) =
t∑

i=1

xix
′
i (36)

Directly computing the matrix H−1
t at each iteration would be very expen-

sive. We can take advantage however of the recursion Ht = Ht−1 + xtx
′
t using

the well known matrix equality:

(A + BB′)−1 = A−1 − (A−1B) (I + B′A−1B)−1 (A−1B)′ (37)

Algorithm (34) then can be rewritten recursively using the Kalman matrix
Kt = H−1

t−1. The resulting algorithm (38) converges much faster than the delta
rule (6) and yet remains quite easy to implement:

⎡

⎢
⎣

Kt+1 = Kt − (Ktxt)(Ktxt)′

1 + x′
tKtxt

wt+1 = wt − Kt+1 (yt − w′
txt)′xt

(38)

Gauss Newton Algorithms. Non linear least mean square algorithms, such as
the multi-layer networks (Section 2.3) can also benefit from non-scalar learning
rates. The idea consists of using an approximation of the Hessian matrix. The
second derivatives of the loss function (9) can be written as:

1
2
∇2

w (y − f(x, w))2 = ∇wf(x, w) ∇′
wf(x, w) − (y − f(x, w))∇2

wf(x, w)

≈ ∇wf(x, w) ∇′
wf(x, w) (39)

Approximation (39), known as the Gauss Newton Approximation, neglects
the impact of the non linear function f on the curvature of the cost function.
With this approximation, the Hessian of the empirical stochastic cost takes a
very simple form.

Ht(w) ≈
t∑

i=1

∇wf(xi, w) ∇′
wf(xi, w) (40)

Although the real Hessian can be negative, this approximated Hessian is
always positive, a useful property for convergence. Its expression (40) is reminis-
cent of the linear case (36). Its inverse can be computed using similar recursive
equations.

Natural Gradient. Information geometry [1] provides an elegant description
of the geometry of the cost function. It is best introduced by casting the learning
problem as a density estimation problem. A multilayer perceptron f(x, w), for
instance, can be regarded as a parametric regression model y = f(x, w) + ε



164 L. Bottou

where ε represents an additive Gaussian noise. The network function f(x, w)
then becomes part of the Gaussian location model:

p(z|w) = Cσ exp
(

− (y − f(x, w))2

2σ2

)

(41)

The optimal parameters are found by minimizing the Kullback-Leibler di-
vergence between p(z|w) and the ground truth P (z). This is equivalent to the
familiar optimization of the mean square loss (9):

Ez log
P (z)

p(z|w)
=

1
σ2 EzQmse(z, w) + Constant (42)

The essential idea consists of endowing the space of the parameters w with
a distance that reflects the proximity of the distributions p(z|w) instead of the
proximity of the parameters w. Multilayer networks, for instance, can implement
the same function with very different weights vectors. The new distance distorts
the geometry of the parameter space in order to represent the closeness of these
weight vectors.

The infinitesimal distance between distributions p(z|w) and p(z|w + dw) can
be written as follows:

D(w||w + dw) ≈ dw′G(w)dw (43)

where G(w) is the Fisher Information matrix:

G(w)
�
=

∫

(∇w log p(z|w)∇w log p(z|w)′) p(z|w)dz

The determinant |G(w)| of the Fisher information matrix usually is a smooth
function of the parameter w. The parameter space is therefore composed of
Riemannian domains where |G(w)| �= 0 separated by critical sub-spaces where
|G(w)| = 0.

The Natural Gradient algorithm [3] provides a principled way to search a
Riemannian domain. The gradient ∇wC(w) defines the steepest descent direction
in the Euclidean space. The steepest descent direction in a Riemannian domain
differs from the Euclidexan one. It is defined as the vector dw which maximizes
C(w) − C(w + dw) in the δ-neighborhood:

D(w||w + dw) ≈ dw′G(w)dw ≤ δ. (44)

A simple derivation then shows that multiplying the gradient by the inverse
of the Fisher Information matrix yields the steepest Riemannian direction. The
Natural Gradient algorithm applies the same correction to the stochastic gradi-
ent descent algorithm (4):

wt+1 = wt − γtG−1(wt)∇w Q(z, wt), (45)

The similarity between the update rules (27) and (45) is obvious. This link
becomes clearer when the Fisher Information matrix is written in Hessian form,
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G(w)
�
=

∫

− (∇2
w log p(z|w)

)
p(z|w)dz

where ∇2
w denotes a second derivative. When the parameter approaches the

optimum, distribution p(z|w) becomes closer to the ground truth dP (z), and the
Fisher Information matrix G(w) aligns with the Hessian matrix ∇2

wEzQ(z, w).
The natural gradient asymptotically behaves like a second order algorithm.

Remark. The above algorithms are all derived from (27) and suffer from the
same limitation. The number of coefficients in matrix Φt scales like the square
of the number of parameters. Manipulating such large matrices often requires
excessive computer time and memory.

Result (30) holds when Φt −→ H−1(w∗). This implies that Φt must be a full
rank approximation of H−1. Suppose instead that Φt converges to a more eco-
nomical approximation of H−1 involving a limited number of coefficients. With
a proper choice of learning rates γt, such an approximate second order stochas-
tic gradient algorithm keeps the O (1/t) behavior (30) with a worse constant
KA > K. Such a stochastic algorithm will eventually outperform batch algo-
rithms because (log log N) will eventually become larger than the ratio KA/K.
In practice this can take a very long time. . .

Approximate second order stochastic algorithms are still desirable because it
might be simply impossible to simply store a full rank matrix Φt, and because
manipulating the approximation of the Hessian might bring computational gains
that compare well with ratio KA/K. The simplest approximation [5] involves a
diagonal approximation of Φt. More sophisticated schemes [32, 38] attempt to
approximate the average value of Φt∇wQ(z, wt) using simpler calculations for
each example.

5 Conclusion

A broad family of learning algorithms can be formalized as stochastic gradient
descent algorithms. It includes numerous well known algorithms such as Per-
ceptrons, Adalines, K-Means, LVQ, and Multi-Layer Networks as well as more
ambitious learning systems such as Graph Transformer Networks.

All these algorithms share common convergence properties. In particular,
stochastic gradient descent simultaneously is a very poor optimization algorithm
and a very effective learning algorithm.
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Abstract. The goal of statistical learning theory is to study, in a sta-
tistical framework, the properties of learning algorithms. In particular,
most results take the form of so-called error bounds. This tutorial intro-
duces the techniques that are used to obtain such results.

1 Introduction

The main goal of statistical learning theory is to provide a framework for study-
ing the problem of inference, that is of gaining knowledge, making predictions,
making decisions or constructing models from a set of data. This is studied in a
statistical framework, that is there are assumptions of statistical nature about
the underlying phenomena (in the way the data is generated).

As a motivation for the need of such a theory, let us just quote V. Vapnik:

(Vapnik, [1]) Nothing is more practical than a good theory.

Indeed, a theory of inference should be able to give a formal definition of
words like learning, generalization, overfitting, and also to characterize the per-
formance of learning algorithms so that, ultimately, it may help design better
learning algorithms.

There are thus two goals: make things more precise and derive new or im-
proved algorithms.

1.1 Learning and Inference

What is under study here is the process of inductive inference which can roughly
be summarized as the following steps:

O. Bousquet et al. (Eds.): Machine Learning 2003, LNAI 3176, pp. 169–207, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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1. Observe a phenomenon
2. Construct a model of that phenomenon
3. Make predictions using this model

Of course, this definition is very general and could be taken more or less
as the goal of Natural Sciences. The goal of Machine Learning is to actually
automate this process and the goal of Learning Theory is to formalize it.

In this tutorial we consider a special case of the above process which is the
supervised learning framework for pattern recognition. In this framework, the
data consists of instance-label pairs, where the label is either +1 or −1. Given a
set of such pairs, a learning algorithm constructs a function mapping instances to
labels. This function should be such that it makes few mistakes when predicting
the label of unseen instances.

Of course, given some training data, it is always possible to build a function
that fits exactly the data. But, in the presence of noise, this may not be the
best thing to do as it would lead to a poor performance on unseen instances
(this is usually referred to as overfitting). The general idea behind the design of
learning algorithms is thus to look for regularities (in a sense to be defined later)
in the observed phenomenon (i.e. training data). These can then be generalized
from the observed past to the future. Typically, one would look, in a collection
of possible models, for one which fits well the data, but at the same time is as
simple as possible (see Figure 1). This immediately raises the question of how
to measure and quantify simplicity of a model (i.e. a {−1, +1}-valued function).

0 0.5 1 1.5
0

0.5

1

1.5

It turns out that there are many ways to do so, but no best one. For example
in Physics, people tend to prefer models which have a small number of constants

Fig. 1. Trade-off between fit and complexity
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and that correspond to simple mathematical formulas. Often, the length of de-
scription of a model in a coding language can be an indication of its complexity.
In classical statistics, the number of free parameters of a model is usually a
measure of its complexity. Surprisingly as it may seem, there is no universal way
of measuring simplicity (or its counterpart complexity) and the choice of a spe-
cific measure inherently depends on the problem at hand. It is actually in this
choice that the designer of the learning algorithm introduces knowledge about
the specific phenomenon under study.

This lack of universally best choice can actually be formalized in what is
called the No Free Lunch theorem, which in essence says that, if there is no
assumption on how the past (i.e. training data) is related to the future (i.e. test
data), prediction is impossible. Even more, if there is no a priori restriction on
the possible phenomena that are expected, it is impossible to generalize and
there is thus no better algorithm (any algorithm would be beaten by another
one on some phenomenon).

Hence the need to make assumptions, like the fact that the phenomenon we
observe can be explained by a simple model. However, as we said, simplicity is
not an absolute notion, and this leads to the statement that data cannot replace
knowledge, or in pseudo-mathematical terms:

Generalization = Data + Knowledge

1.2 Assumptions

We now make more precise the assumptions that are made by the Statistical
Learning Theory framework. Indeed, as we said before we need to assume that
the future (i.e. test) observations are related to the past (i.e. training) ones, so
that the phenomenon is somewhat stationary.

At the core of the theory is a probabilistic model of the phenomenon (or data
generation process). Within this model, the relationship between past and future
observations is that they both are sampled independently from the same distri-
bution (i.i.d.). The independence assumption means that each new observation
yields maximum information. The identical distribution means that the obser-
vations give information about the underlying phenomenon (here a probability
distribution).

An immediate consequence of this very general setting is that one can con-
struct algorithms (e.g. k-nearest neighbors with appropriate k) that are consis-
tent, which means that, as one gets more and more data, the predictions of the
algorithm are closer and closer to the optimal ones. So this seems to indicate that
we can have some sort of universal algorithm. Unfortunately, any (consistent)
algorithm can have an arbitrarily bad behavior when given a finite training set.
These notions are formalized in Appendix B.

Again, this discussion indicates that generalization can only come when one
adds specific knowledge to the data. Each learning algorithm encodes specific
knowledge (or a specific assumption about how the optimal classifier looks like),
and works best when this assumption is satisfied by the problem to which it is
applied.



172 O. Bousquet et al.

Bibliographical Remarks. Several textbooks, surveys, and research mono-
graphs have been written on pattern classification and statistical learning the-
ory. A partial list includes Anthony and Bartlett [2], Breiman, Friedman, Olshen,
and Stone [3], Devroye, Györfi, and Lugosi [4], Duda and Hart [5], Fukunaga [6],
Kearns and Vazirani [7], Kulkarni, Lugosi, and Venkatesh [8], Lugosi [9], McLach-
lan [10], Mendelson [11], Natarajan [12], Vapnik [13, 14, 1], and Vapnik and
Chervonenkis [15].

2 Formalization

We consider an input space X and output space Y. Since we restrict ourselves
to binary classification, we choose Y = {−1, 1}. Formally, we assume that the
pairs (X, Y ) ∈ X ×Y are random variables distributed according to an unknown
distribution P . We observe a sequence of n i.i.d. pairs (Xi, Yi) sampled according
to P and the goal is to construct a function g : X → Y which predicts Y from
X.

We need a criterion to choose this function g. This criterion is a low proba-
bility of error P (g(X) �= Y ). We thus define the risk of g as

R(g) = P (g(X) �= Y ) = E
[
1g(X) �=Y

]
.

Notice that P can be decomposed as PX ×P (Y |X). We introduce the regres-
sion function η(x) = E [Y |X = x] = 2P [Y = 1|X = x]−1 and the target function
(or Bayes classifier) t(x) = sgn η(x). This function achieves the minimum risk
over all possible measurable functions:

R(t) = inf
g

R(g) .

We will denote the value R(t) by R∗, called the Bayes risk. In the determin-
istic case, one has Y = t(X) almost surely (P [Y = 1|X] ∈ {0, 1}) and R∗ = 0. In
the general case we can define the noise level as s(x) = min(P [Y = 1|X = x] , 1−
P [Y = 1|X = x]) = (1 − η(x))/2 (s(X) = 0 almost surely in the deterministic
case) and this gives R∗ = Es(X).

Our goal is thus to identify this function t, but since P is unknown we cannot
directly measure the risk and we also cannot know directly the value of t at the
data points. We can only measure the agreement of a candidate function with
the data. This is called the empirical risk :

Rn(g) =
1
n

n∑

i=1

1g(Xi) �=Yi
.

It is common to use this quantity as a criterion to select an estimate of t.

2.1 Algorithms

Now that the goal is clearly specified, we review the common strategies to (ap-
proximately) achieve it. We denote by gn the function returned by the algorithm.
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Because one cannot compute R(g) but only approximate it by Rn(g), it would
be unreasonable to look for the function minimizing Rn(g) among all possible
functions. Indeed, when the input space is infinite, one can always construct a
function gn which perfectly predicts the labels of the training data (i.e. gn(Xi) =
Yi, and Rn(gn) = 0), but behaves on the other points as the opposite of the target
function t, i.e. gn(X) = −Y so that R(gn) = 11. So one would have minimum
empirical risk but maximum risk.

It is thus necessary to prevent this overfitting situation. There are essentially
two ways to do this (which can be combined). The first one is to restrict the
class of functions in which the minimization is performed, and the second is to
modify the criterion to be minimized (e.g. adding a penalty for ‘complicated’
functions).

Empirical Risk Minimization. This algorithm is one of the most straight-
forward, yet it is usually efficient. The idea is to choose a model G of possible
functions and to minimize the empirical risk in that model:

gn = arg min
g∈G

Rn(g) .

Of course, this will work best when the target function belongs to G. However,
it is rare to be able to make such an assumption, so one may want to enlarge
the model as much as possible, while preventing overfitting.

Structural Risk Minimization. The idea here is to choose an infinite se-
quence {Gd : d = 1, 2, . . .} of models of increasing size and to minimize the
empirical risk in each model with an added penalty for the size of the model:

gn = arg min
g∈Gd,d∈N

Rn(g) + pen(d, n) .

The penalty pen(d, n) gives preference to models where estimation error is
small and measures the size or capacity of the model.

Regularization. Another, usually easier to implement approach consists in
choosing a large model G (possibly dense in the continuous functions for ex-
ample) and to define on G a regularizer, typically a norm ‖g‖. Then one has to
minimize the regularized empirical risk:

gn = arg min
g∈G

Rn(g) + λ ‖g‖2
.

Compared to SRM, there is here a free parameter λ, called the regularization
parameter which allows to choose the right trade-off between fit and complexity.

1 Strictly speaking this is only possible if the probability distribution satisfies some
mild conditions (e.g. has no atoms). Otherwise, it may not be possible to achieve
R(gn) = 1 but even in this case, provided the support of P contains infinitely many
points, a similar phenomenon occurs.
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Tuning λ is usually a hard problem and most often, one uses extra validation
data for this task.

Most existing (and successful) methods can be thought of as regularization
methods.

Normalized Regularization. There are other possible approaches when the
regularizer can, in some sense, be ‘normalized’, i.e. when it corresponds to some
probability distribution over G.

Given a probability distribution π defined on G (usually called a prior), one
can use as a regularizer − log π(g)2. Reciprocally, from a regularizer of the form
‖g‖2, if there exists a measure µ on G such that

∫
e−λ‖g‖2

dµ(g) < ∞ for some
λ > 0, then one can construct a prior corresponding to this regularizer. For
example, if G is the set of hyperplanes in R

d going through the origin, G can be
identified with R

d and, taking µ as the Lebesgue measure, it is possible to go
from the Euclidean norm regularizer to a spherical Gaussian measure on R

d as
a prior3.

This type of normalized regularizer, or prior, can be used to construct another
probability distribution ρ on G (usually called posterior), as

ρ(g) =
e−γRn(g)

Z(γ)
π(g) ,

where γ ≥ 0 is a free parameter and Z(γ) is a normalization factor.
There are several ways in which this ρ can be used. If we take the function

maximizing it, we recover regularization as

arg max
g∈G

ρ(g) = arg min
g∈G

γRn(g) − log π(g) ,

where the regularizer is −γ−1 log π(g)4.
Also, ρ can be used to randomize the predictions. In that case, before com-

puting the predicted label for an input x, one samples a function g according to
ρ and outputs g(x). This procedure is usually called Gibbs classification.

Another way in which the distribution ρ constructed above can be used is by
taking the expected prediction of the functions in G:

gn(x) = sgn(Eρ(g(x))) .

This is typically called Bayesian averaging.

2 This is fine when G is countable. In the continuous case, one has to consider the
density associated to π. We omit these details.

3 Generalization to infinite dimensional Hilbert spaces can also be done but it requires
more care. One can for example establish a correspondence between the norm of a
reproducing kernel Hilbert space and a Gaussian process prior whose covariance
function is the kernel of this space.

4 Note that minimizing γRn(g) − log π(g) is equivalent to minimizing Rn(g) −
γ−1 log π(g).
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At this point we have to insist again on the fact that the choice of the class G
and of the associated regularizer or prior, has to come from a priori knowledge
about the task at hand, and there is no universally best choice.

2.2 Bounds

We have presented the framework of the theory and the type of algorithms that
it studies, we now introduce the kind of results that it aims at. The overall goal is
to characterize the risk that some algorithm may have in a given situation. More
precisely, a learning algorithm takes as input the data (X1, Y1), . . . , (Xn, Yn) and
produces a function gn which depends on this data. We want to estimate the
risk of gn. However, R(gn) is a random variable (since it depends on the data)
and it cannot be computed from the data (since it also depends on the unknown
P ). Estimates of R(gn) thus usually take the form of probabilistic bounds.

Notice that when the algorithm chooses its output from a model G, it is
possible, by introducing the best function g∗ in G, with R(g∗) = infg∈G R(g), to
write

R(gn) − R∗ = [R(g∗) − R∗] + [R(gn) − R(g∗)] .

The first term on the right hand side is usually called the approximation
error, and measures how well can functions in G approach the target (it would
be zero if t ∈ G). The second term, called estimation error is a random quantity
(it depends on the data) and measures how close is gn to the best possible choice
in G.

Estimating the approximation error is usually hard since it requires knowl-
edge about the target. Classically, in Statistical Learning Theory it is preferable
to avoid making specific assumptions about the target (such as its belonging to
some model), but the assumptions are rather on the value of R∗, or on the noise
function s.

It is also known that for any (consistent) algorithm, the rate of convergence
to zero of the approximation error5 can be arbitrarily slow if one does not make
assumptions about the regularity of the target, while the rate of convergence
of the estimation error can be computed without any such assumption. We will
thus focus on the estimation error.

Another possible decomposition of the risk is the following:

R(gn) = Rn(gn) + [R(gn) − Rn(gn)] .

In this case, one estimates the risk by its empirical counterpart, and some
quantity which approximates (or upper bounds) R(gn) − Rn(gn).

To summarize, we write the three type of results we may be interested in.

– Error bound : R(gn) ≤ Rn(gn)+B(n, G). This corresponds to the estimation
of the risk from an empirical quantity.

5 For this converge to mean anything, one has to consider algorithms which choose
functions from a class which grows with the sample size. This is the case for example
of Structural Risk Minimization or Regularization based algorithms.
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– Error bound relative to the best in the class: R(gn) ≤ R(g∗) + B(n, G). This
tells how ”optimal” is the algorithm given the model it uses.

– Error bound relative to the Bayes risk : R(gn) ≤ R∗ + B(n, G). This gives
theoretical guarantees on the convergence to the Bayes risk.

3 Basic Bounds

In this section we show how to obtain simple error bounds (also called general-
ization bounds). The elementary material from probability theory that is needed
here and in the later sections is summarized in Appendix A.

3.1 Relationship to Empirical Processes

Recall that we want to estimate the risk R(gn) = E
[
1gn(X) �=Y

]
of the function

gn returned by the algorithm after seeing the data (X1, Y1), . . . , (Xn, Yn). This
quantity cannot be observed (P is unknown) and is a random variable (since it
depends on the data). Hence one way to make a statement about this quantity
is to say how it relates to an estimate such as the empirical risk Rn(gn). This
relationship can take the form of upper and lower bounds for

P [R(gn) − Rn(gn) > ε] .

For convenience, let Zi = (Xi, Yi) and Z = (X, Y ). Given G define the loss
class

F = {f : (x, y) �→ 1g(x) �=y : g ∈ G} . (1)

Notice that G contains functions with range in {−1, 1} while F contains non-
negative functions with range in {0, 1}. In the remainder of the tutorial, we will
go back and forth between F and G (as there is a bijection between them),
sometimes stating the results in terms of functions in F and sometimes in terms
of functions in G. It will be clear from the context which classes G and F we
refer to, and F will always be derived from the last mentioned class G in the
way of (1).

We use the shorthand notation Pf =E [f(X, Y )] and Pnf = 1
n

∑n
i=1 f(Xi, Yi).

Pn is usually called the empirical measure associated to the training sample.
With this notation, the quantity of interest (difference between true and empir-
ical risks) can be written as

Pfn − Pnfn . (2)

An empirical process is a collection of random variables indexed by a class
of functions, and such that each random variable is distributed as a sum of i.i.d.
random variables (values taken by the function at the data):

{Pf − Pnf}f∈F .

One of the most studied quantity associated to empirical processes is their
supremum:

sup
f∈F

Pf − Pnf .



Introduction to Statistical Learning Theory 177

It is clear that if we know an upper bound on this quantity, it will be an
upper bound on (2). This shows that the theory of empirical processes is a great
source of tools and techniques for Statistical Learning Theory.

3.2 Hoeffding’s Inequality

Let us rewrite again the quantity we are interested in as follows

R(g) − Rn(g) = E [f(Z)] − 1
n

n∑

i=1

f(Zi) .

It is easy to recognize here the difference between the expectation and the
empirical average of the random variable f(Z). By the law of large numbers, we
immediately obtain that

P

[

lim
n→∞

1
n

n∑

i=1

f(Zi) − E [f(Z)] = 0

]

= 1 .

This indicates that with enough samples, the empirical risk of a function is
a good approximation to its true risk.

It turns out that there exists a quantitative version of the law of large numbers
when the variables are bounded.

Theorem 1 (Hoeffding). Let Z1, . . . , Zn be n i.i.d. random variables with
f(Z) ∈ [a, b]. Then for all ε > 0, we have

P

[∣
∣
∣
∣
∣

1
n

n∑

i=1

f(Zi) − E [f(Z)]

∣
∣
∣
∣
∣
> ε

]

≤ 2 exp
(

− 2nε2

(b − a)2

)

.

Let us rewrite the above formula to better understand its consequences. De-
note the right hand side by δ. Then

P

⎡

⎣|Pnf − Pf | > (b − a)

√

log 2
δ

2n

⎤

⎦ ≤ δ ,

or (by inversion, see Appendix A) with probability at least 1 − δ,

|Pnf − Pf | ≤ (b − a)

√

log 2
δ

2n
.

Applying this to f(Z) = 1g(X) �=Y we get that for any g, and any δ > 0, with
probability at least 1 − δ

R(g) ≤ Rn(g) +

√

log 2
δ

2n
. (3)

Notice that one has to consider a fixed function g and the probability is with
respect to the sampling of the data. If the function depends on the data this
does not apply!
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3.3 Limitations

Although the above result seems very nice (since it applies to any class of
bounded functions), it is actually severely limited. Indeed, what it essentially
says is that for each (fixed) function f ∈ F , there is a set S of samples for which

Pf − Pnf ≤
√

log 2
δ

2n (and this set of samples has measure P [S] ≥ 1 − δ). How-
ever, these sets S may be different for different functions. In other words, for
the observed sample, only some of the functions in F will satisfy this inequal-
ity.

Another way to explain the limitation of Hoeffding’s inequality is the follow-
ing. If we take for G the class of all {−1, 1}-valued (measurable) functions, then
for any fixed sample, there exists a function f ∈ F such that

Pf − Pnf = 1 .

To see this, take the function which is f(Xi) = Yi on the data and f(X) = −Y
everywhere else. This does not contradict Hoeffding’s inequality but shows that
it does not yield what we need.

Risk

Function class

R

Rn

g g g*
n

R(g)

R  (g)n

Fig. 2. Convergence of the empirical risk to the true risk over the class of functions

Figure 2 illustrates the above argumentation. The horizontal axis corresponds
to the functions in the class. The two curves represent the true risk and the em-
pirical risk (for some training sample) of these functions. The true risk is fixed,
while for each different sample, the empirical risk will be a different curve. If
we observe a fixed function g and take several different samples, the point on
the empirical curve will fluctuate around the true risk with fluctuations con-
trolled by Hoeffding’s inequality. However, for a fixed sample, if the class G is
big enough, one can find somewhere along the axis, a function for which the
difference between the two curves will be very large.
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3.4 Uniform Deviations

Before seeing the data, we do not know which function the algorithm will choose.
The idea is to consider uniform deviations

R(fn) − Rn(fn) ≤ sup
f∈F

(R(f) − Rn(f)) (4)

In other words, if we can upper bound the supremum on the right, we are
done. For this, we need a bound which holds simultaneously for all functions in
a class.

Let us explain how one can construct such uniform bounds. Consider two
functions f1, f2 and define

Ci = {(x1, y1), . . . , (xn, yn) : Pfi − Pnfi > ε} .

This set contains all the ‘bad’ samples, i.e. those for which the bound fails.
From Hoeffding’s inequality, for each i

P [Ci] ≤ δ .

We want to measure how many samples are ‘bad’ for i = 1 or i = 2. For this
we use (see Appendix A)

P [C1 ∪ C2] ≤ P [C1] + P [C2] ≤ 2δ .

More generally, if we have N functions in our class, we can write

P [C1 ∪ . . . ∪ CN ] ≤
N∑

i=1

P [Ci]

As a result we obtain

P [∃f ∈ {f1, . . . , fN} : Pf − Pnf > ε]

≤
N∑

i=1

P [Pfi − Pnfi > ε]

≤ N exp
(−2nε2)

Hence, for G = {g1, . . . , gN}, for all δ > 0 with probability at least 1 − δ,

∀g ∈ G, R(g) ≤ Rn(g) +

√

log N + log 1
δ

2n

This is an error bound. Indeed, if we know that our algorithm picks functions
from G, we can apply this result to gn itself.

Notice that the main difference with Hoeffding’s inequality is the extra log N
term on the right hand side. This is the term which accounts for the fact that we
want N bounds to hold simultaneously. Another interpretation of this term is as
the number of bits one would require to specify one function in G. It turns out
that this kind of coding interpretation of generalization bounds is often possible
and can be used to obtain error estimates [16].
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3.5 Estimation Error

Using the same idea as before, and with no additional effort, we can also get a
bound on the estimation error. We start from the inequality

R(g∗) ≤ Rn(g∗) + sup
g∈G

(R(g) − Rn(g)) ,

which we combine with (4) and with the fact that since gn minimizes the em-
pirical risk in G,

Rn(g∗) − Rn(gn) ≥ 0

Thus we obtain

R(gn) = R(gn) − R(g∗) + R(g∗)
≤ Rn(g∗) − Rn(gn) + R(gn) − R(g∗) + R(g∗)
≤ 2 sup

g∈G
|R(g) − Rn(g)| + R(g∗)

We obtain that with probability at least 1 − δ

R(gn) ≤ R(g∗) + 2

√

log N + log 2
δ

2n
.

We notice that in the right hand side, both terms depend on the size of the
class G. If this size increases, the first term will decrease, while the second will
increase.

3.6 Summary and Perspective

At this point, we can summarize what we have exposed so far.

– Inference requires to put assumptions on the process generating the data
(data sampled i.i.d. from an unknown P ), generalization requires knowledge
(e.g. restriction, structure, or prior).

– The error bounds are valid with respect to the repeated sampling of training
sets.

– For a fixed function g, for most of the samples

R(g) − Rn(g) ≈ 1/
√

n

– For most of the samples if |G| = N

sup
g∈G

R(g) − Rn(g) ≈
√

log N/n

The extra variability comes from the fact that the chosen gn changes with
the data.



Introduction to Statistical Learning Theory 181

So the result we have obtained so far is that with high probability, for a finite
class of size N ,

sup
g∈G

(R(g) − Rn(g)) ≤
√

log N + log 1
δ

2n
.

There are several things that can be improved:

– Hoeffding’s inequality only uses the boundedness of the functions, not their
variance.

– The union bound is as bad as if all the functions in the class were independent
(i.e. if f1(Z) and f2(Z) were independent).

– The supremum over G of R(g)−Rn(g) is not necessarily what the algorithm
would choose, so that upper bounding R(gn) − Rn(gn) by the supremum
might be loose.

4 Infinite Case: Vapnik-Chervonenkis Theory

In this section we show how to extend the previous results to the case where the
class G is infinite. This requires, in the non-countable case, the introduction of
tools from Vapnik-Chervonenkis Theory.

4.1 Refined Union Bound and Countable Case

We first start with a simple refinement of the union bound that allows to extend
the previous results to the (countably) infinite case.

Recall that by Hoeffding’s inequality, for each f ∈ F , for each δ > 0 (possibly
depending on f , which we write δ(f)),

P

⎡

⎣Pf − Pnf >

√
log 1

δ(f)

2n

⎤

⎦ ≤ δ(f) .

Hence, if we have a countable set F , the union bound immediately yields

P

⎡

⎣∃f ∈ F : Pf − Pnf >

√
log 1

δ(f)

2n

⎤

⎦ ≤
∑

f∈F
δ(f) .

Choosing δ(f) = δp(f) with
∑

f∈F p(f) = 1, this makes the right-hand side
equal to δ and we get the following result. With probability at least 1 − δ,

∀f ∈ F , Pf ≤ Pnf +

√
log 1

p(f) + log 1
δ

2n
.

We notice that if F is finite (with size N), taking a uniform p gives the log N
as before.
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Using this approach, it is possible to put knowledge about the algorithm into
p(f), but p should be chosen before seeing the data, so it is not possible to
‘cheat’ by setting all the weight to the function returned by the algorithm after
seeing the data (which would give the smallest possible bound). But, in general,
if p is well-chosen, the bound will have a small value. Hence, the bound can be
improved if one knows ahead of time the functions that the algorithm is likely
to pick (i.e. knowledge improves the bound).

4.2 General Case

When the set G is uncountable, the previous approach does not directly work.
The general idea is to look at the function class ‘projected’ on the sample. More
precisely, given a sample z1, . . . , zn, we consider

Fz1,...,zn = {(f(z1), . . . , f(zn)) : f ∈ F}
The size of this set is the number of possible ways in which the data (z1, . . . , zn)

can be classified. Since the functions f can only take two values, this set will
always be finite, no matter how big F is.

Definition 1 (Growth Function). The growth function is the maximum num-
ber of ways into which n points can be classified by the function class:

SF (n) = sup
(z1,...,zn)

|Fz1,...,zn | .

We have defined the growth function in terms of the loss class F but we can
do the same with the initial class G and notice that SF (n) = SG(n).

It turns out that this growth function can be used as a measure of the ‘size’
of a class of function as demonstrated by the following result.

Theorem 2 (Vapnik-Chervonenkis). For any δ > 0, with probability at least
1 − δ,

∀g ∈ G, R(g) ≤ Rn(g) + 2

√

2
log SG(2n) + log 2

δ

n
.

Notice that, in the finite case where |G| = N , we have SG(n) ≤ N so that this
bound is always better than the one we had before (except for the constants).

But the problem becomes now one of computing SG(n).

4.3 VC Dimension

Since g ∈ {−1, 1}, it is clear that SG(n) ≤ 2n. If SG(n) = 2n, there is a set of
size n such that the class of functions can generate any classification on these
points (we say that G shatters the set).

Definition 2 (VC Dimension). The VC dimension of a class G is the largest
n such that

SG(n) = 2n .
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In other words, the VC dimension of a class G is the size of the largest set
that it can shatter.

In order to illustrate this definition, we give some examples. The first one is
the set of half-planes in R

d (see Figure 3). In this case, as depicted for the case
d = 2, one can shatter a set of d + 1 points but no set of d + 2 points, which
means that the VC dimension is d + 1.

Fig. 3. Computing the VC dimension of hyperplanes in dimension 2: a set of 3 points
can be shattered, but no set of four points

It is interesting to notice that the number of parameters needed to define
half-spaces in R

d is d, so that a natural question is whether the VC dimension
is related to the number of parameters of the function class. The next example,
depicted in Figure 4, is a family of functions with one parameter only:

{sgn(sin(tx)) : t ∈ R}
which actually has infinite VC dimension (this is an exercise left to the reader).

It remains to show how the notion of VC dimension can bring a solution
to the problem of computing the growth function. Indeed, at first glance, if we

Fig. 4. VC dimension of sinusoids
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know that a class has VC dimension h, it entails that for all n ≤ h, SG(n) = 2n

and SG(n) < 2n otherwise. This seems of little use, but actually, an intriguing
phenomenon occurs for n ≥ h as depicted in Figure 5. The growth function

n

log(S(n))

h

which is exponential (its logarithm is linear) up until the VC dimension, becomes
polynomial afterwards.

This behavior is captured in the following lemma.

Lemma 1 (Vapnik and Chervonenkis, Sauer, Shelah). Let G be a class
of functions with finite VC-dimension h. Then for all n ∈ N,

SG(n) ≤
h∑

i=0

(
n

i

)

,

and for all n ≥ h,

SG(n) ≤
(en

h

)h

.

Using this lemma along with Theorem 2 we immediately obtain that if G has
VC dimension h, with probability at least 1 − δ,

∀g ∈ G, R(g) ≤ Rn(g) + 2

√

2
h log 2en

h + log 2
δ

n
.

What is important to recall from this result, is that the difference between
the true and empirical risk is at most of order

√
h log n

n
.

An interpretation of VC dimension and growth functions is that they mea-
sure the effective size of the class, that is the size of the projection of the class

Fig. 5. Typical behavior of the log growth function
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onto finite samples. In addition, this measure does not just ‘count’ the number
of functions in the class but depends on the geometry of the class (rather its pro-
jections). Finally, the finiteness of the VC dimension ensures that the empirical
risk will converge uniformly over the class to the true risk.

4.4 Symmetrization

We now indicate how to prove Theorem 2. The key ingredient to the proof is the
so-called symmetrization lemma. The idea is to replace the true risk by an esti-
mate computed on an independent set of data. This is of course a mathematical
technique and does not mean one needs to have more data to be able to apply
the result. The extra data set is usually called ‘virtual’ or ‘ghost sample’.

We will denote by Z ′
1, . . . , Z

′
n an independent (ghost) sample and by P ′

n the
corresponding empirical measure.

Lemma 2 (Symmetrization). For any t > 0, such that nt2 ≥ 2,

P

[

sup
f∈F

(P − Pn)f ≥ t

]

≤ 2P

[

sup
f∈F

(P ′
n − Pn)f ≥ t/2

]

.

Proof. Let fn be the function achieving the supremum (note that it depends
on Z1, . . . , Zn). One has (with ∧ denoting the conjunction of two events),

1(P−Pn)fn>t1(P−P ′
n)fn<t/2 = 1(P−Pn)fn>t ∧ (P ′

n−P )fn≥−t/2

≤ 1(P ′
n−Pn)fn>t/2 .

Taking expectations with respect to the second sample gives

1(P−Pn)fn>tP
′ [(P − P ′

n)fn < t/2] ≤ P
′ [(P ′

n − Pn)fn > t/2] .

By Chebyshev’s inequality (see Appendix A),

P
′ [(P − P ′

n)fn ≥ t/2] ≤ 4Varfn

nt2
≤ 1

nt2
.

Indeed, a random variable with range in [0, 1] has variance less than 1/4.
Hence

1(P−Pn)fn>t(1 − 1
nt2

) ≤ P
′ [(P ′

n − Pn)fn > t/2] .

Taking expectation with respect to first sample gives the result. �

This lemma allows to replace the expectation Pf by an empirical average
over the ghost sample. As a result, the right hand side only depends on the
projection of the class F on the double sample:

FZ1,...,Zn,Z′
1,...,Z′

n
,
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which contains finitely many different vectors. One can thus use the simple union
bound that was presented before in the finite case. The other ingredient that is
needed to obtain Theorem 2 is again Hoeffding’s inequality in the following form:

P [Pnf − P ′
nf > t] ≤ e−nt2/2 .

We now just have to put the pieces together:

P
[
supf∈F (P − Pn)f ≥ t

]

≤ 2P
[
supf∈F (P ′

n − Pn)f ≥ t/2
]

= 2P

[
supf∈FZ1,...,Zn,Z′

1,...,Z′
n

(P ′
n − Pn)f ≥ t/2

]

≤ 2SF (2n)P [(P ′
n − Pn)f ≥ t/2]

≤ 4SF (2n)e−nt2/8 .

Using inversion finishes the proof of Theorem 2.

4.5 VC Entropy

One important aspect of the VC dimension is that it is distribution independent.
Hence, it allows to get bounds that do not depend on the problem at hand:
the same bound holds for any distribution. Although this may be seen as an
advantage, it can also be a drawback since, as a result, the bound may be loose
for most distributions.

We now show how to modify the proof above to get a distribution-dependent
result. We use the following notation N (F , zn

1 ) := |Fz1,...,zn |.
Definition 3 (VC Entropy). The (annealed) VC entropy is defined as

HF (n) = log E [N (F , Zn
1 )] .

Theorem 3. For any δ > 0, with probability at least 1 − δ,

∀g ∈ G, R(g) ≤ Rn(g) + 2

√

2
HG(2n) + log 2

δ

n
.

Proof. We again begin with the symmetrization lemma so that we have to
upper bound the quantity

I = P

[
supf∈FZn

1 ,Zn
1

′ (P
′
n − Pn)f ≥ t/2

]
.

Let σ1, . . . , σn be n independent random variables such that P (σi = 1) =
P (σi = −1) = 1/2 (they are called Rademacher variables). We notice that the
quantities (P ′

n − Pn)f and 1
n

∑n
i=1 σi(f(Z ′

i) − f(Zi)) have the same distribution
since changing one σi corresponds to exchanging Zi and Z ′

i. Hence we have



Introduction to Statistical Learning Theory 187

I ≤ E

[

Pσ

[

supf∈FZn
1 ,Zn

1
′

1
n

n∑

i=1

σi(f(Z ′
i) − f(Zi)) ≥ t/2

]]

,

and the union bound leads to

I ≤ E

[

N
(F , Zn

1 , Zn
1

′) max
f

P

[
1
n

n∑

i=1

σi(f(Z ′
i) − f(Zi)) ≥ t/2

]]

.

Since σi(f(Z ′
i) − f(Zi)) ∈ [−1, 1], Hoeffding’s inequality finally gives

I ≤ E [N (F , Z, Z ′)] e−nt2/8 .

The rest of the proof is as before. �

5 Capacity Measures

We have seen so far three measures of capacity or size of classes of function: the
VC dimension and growth function both distribution independent, and the VC
entropy which depends on the distribution. Apart from the VC dimension, they
are usually hard or impossible to compute. There are however other measures
which not only may give sharper estimates, but also have properties that make
their computation possible from the data only.

5.1 Covering Numbers

We start by endowing the function class F with the following (random) metric

dn(f, f ′) =
1
n

|{f(Zi) �= f ′(Zi) : i = 1, . . . , n}| .

This is the normalized Hamming distance of the ‘projections’ on the sample.
Given such a metric, we say that a set f1, . . . , fN covers F at radius ε if

F ⊂ ∪N
i=1B(fi, ε) .

We then define the covering numbers of F as follows.

Definition 4 (Covering Number). The covering number of F at radius ε,
with respect to dn, denoted by N(F , ε, n) is the minimum size of a cover of
radius ε.

Notice that it does not matter if we apply this definition to the original class
G or the loss class F , since N(F , ε, n) = N(G, ε, n).

The covering numbers characterize the size of a function class as measured by
the metric dn. The rate of growth of the logarithm of N(G, ε, n) usually called the
metric entropy, is related to the classical concept of vector dimension. Indeed, if
G is a compact set in a d-dimensional Euclidean space, N(G, ε, n) ≈ ε−d.
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When the covering numbers are finite, it is possible to approximate the class
G by a finite set of functions (which cover G). Which again allows to use the
finite union bound, provided we can relate the behavior of all functions in G to
that of functions in the cover. A typical result, which we provide without proof,
is the following.

Theorem 4. For any t > 0,

P [∃g ∈ G : R(g) > Rn(g) + t] ≤ 8E [N(G, t, n)] e−nt2/128 .

Covering numbers can also be defined for classes of real-valued functions.
We now relate the covering numbers to the VC dimension. Notice that, be-

cause the functions in G can only take two values, for all ε > 0, N(G, ε, n) ≤
|GZn

1
| = N(G, Zn

1 ). Hence the VC entropy corresponds to log covering numbers
at minimal scale, which implies N(G, ε, n) ≤ h log en

h , but one can have a con-
siderably better result.

Lemma 3 (Haussler). Let G be a class of VC dimension h. Then, for all ε > 0,
all n, and any sample,

N(G, ε, n) ≤ Ch(4e)hε−h .

The interest of this result is that the upper bound does not depend on the
sample size n.

The covering number bound is a generalization of the VC entropy bound
where the scale is adapted to the error. It turns out that this result can be
improved by considering all scales (see Section 5.2).

5.2 Rademacher Averages

Recall that we used in the proof of Theorem 3 Rademacher random variables,
i.e. independent {−1, 1}-valued random variables with probability 1/2 of taking
either value.

For convenience we introduce the following notation (signed empirical mea-
sure) Rnf = 1

n

∑n
i=1 σif(Zi). We will denote by Eσ the expectation taken with

respect to the Rademacher variables (i.e. conditionally to the data) while E will
denote the expectation with respect to all the random variables (i.e. the data,
the ghost sample and the Rademacher variables).

Definition 5 (Rademacher Averages). For a class F of functions, the Rade-
macher average is defined as

R(F) = E sup
f∈F

Rnf ,

and the conditional Rademacher average is defined as

Rn(F) = Eσ sup
f∈F

Rnf .

We now state the fundamental result involving Rademacher averages.
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Theorem 5. For all δ > 0, with probability at least 1 − δ,

∀f ∈ F , Pf ≤ Pnf + 2R(F) +

√

log 1
δ

2n
,

and also, with probability at least 1 − δ,

∀f ∈ F , Pf ≤ Pnf + 2Rn(F) +

√

2 log 2
δ

n
.

It is remarkable that one can obtain a bound (second part of the theorem)
which depends solely on the data.

The proof of the above result requires a powerful tool called a concentration
inequality for empirical processes.

Actually, Hoeffding’s inequality is a (simple) concentration inequality, in the
sense that when n increases, the empirical average is concentrated around the
expectation. It is possible to generalize this result to functions that depend on
i.i.d. random variables as shown in the theorem below.

Theorem 6 (McDiarmid [17]). Assume for all i = 1, . . . , n,

sup
z1,...,zn,z′

i

|F (z1, . . . , zi, . . . , zn) − F (z1, . . . , z
′
i, . . . , zn)| ≤ c ,

then for all ε > 0,

P [|F − E [F ] | > ε] ≤ 2 exp
(

− 2ε2

nc2

)

.

The meaning of this result is thus that, as soon as one has a function of n
independent random variables, which is such that its variation is bounded when
one variable is modified, the function will satisfy a Hoeffding-like inequality.

Proof of Theorem 5. To prove Theorem 5, we will have to follow the following
three steps:

1. Use concentration to relate supf∈F Pf − Pnf to its expectation,
2. use symmetrization to relate the expectation to the Rademacher average,
3. use concentration again to relate the Rademacher average to the conditional

one.

We first show that McDiarmid’s inequality can be applied to supf∈F Pf −
Pnf . We denote temporarily by P i

n the empirical measure obtained by modifying
one element (e.g. Zi is replaced by Z ′

i) of the sample. It is easy to check that
the following holds

| sup
f∈F

(Pf − Pnf) − sup
f∈F

(Pf − P i
nf)| ≤ sup

f∈F
|P i

nf − Pnf | .
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Since f ∈ {0, 1} we obtain

|P i
nf − Pnf | =

1
n

|f(Z ′
i) − f(Zi)| ≤ 1

n
,

and thus McDiarmid’s inequality can be applied with c = 1/n. This concludes
the first step of the proof.

We next prove the (first part of the) following symmetrization lemma.

Lemma 4. For any class F ,

E sup
f∈F

Pf − Pnf ≤ 2E sup
f∈F

Rnf ,

and

E sup
f∈F

|Pf − Pnf | ≥ 1
2

E sup
f∈F

Rnf − 1
2
√

n
.

Proof. We only prove the first part. We introduce a ghost sample and its
corresponding measure P ′

n. We successively use the fact that EP ′
nf = Pf and

the supremum is a convex function (hence we can apply Jensen’s inequality, see
Appendix A):

E sup
f∈F

Pf − Pnf

= E sup
f∈F

E [P ′
nf ] − Pnf

≤ Esup
f∈F

P ′
nf − Pnf

= EσE

[

sup
f∈F

1
n

n∑

i=1

σi(f(Z ′
i) − f(Zi))

]

≤ EσE

[

sup
f∈F

1
n

n∑

i=1

σif(Z ′
i)

]

+ EσE

[

sup
f∈F

1
n

n∑

i=1

−σif(Zi))

]

= 2E sup
f∈F

Rnf .

where the third step uses the fact that f(Zi) − f(Z ′
i) and σi(f(Zi) − f(Z ′

i))
have the same distribution and the last step uses the fact that the σif(Zi) and
−σif(Z ′

i) have the same distribution. �

The above already establishes the first part of Theorem 5. For the second part,
we need to use concentration again. For this we apply McDiarmid’s inequality
to the following functional

F (Z1, . . . , Zn) = Rn(F) .

It is easy to check that F satisfies McDiarmid’s assumptions with c = 1
n . As

a result, EF = R(F) can be sharply estimated by F = Rn(F).
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Loss Class and Initial Class. In order to make use of Theorem 5 we have to
relate the Rademacher average of the loss class to those of the initial class. This
can be done with the following derivation where one uses the fact that σi and
σiYi have the same distribution.

R(F) = E

[

sup
g∈G

1
n

n∑

i=1

σi1g(Xi) �=Yi

]

= E

[

sup
g∈G

1
n

n∑

i=1

σi
1
2
(1 − Yig(Xi))

]

=
1
2

E

[

sup
g∈G

1
n

n∑

i=1

σiYig(Xi)

]

=
1
2
R(G) .

Notice that the same is valid for conditional Rademacher averages, so that
we obtain that with probability at least 1 − δ,

∀g ∈ G, R(g) ≤ Rn(g) + Rn(G) +

√

2 log 2
δ

n
.

Computing the Rademacher Averages. We now assess the difficulty of
actually computing the Rademacher averages. We write the following.

1
2

E

[

sup
g∈G

1
n

n∑

i=1

σig(Xi)

]

=
1
2

+ E

[

sup
g∈G

1
n

n∑

i=1

−1 − σig(Xi)
2

]

=
1
2

− E

[

inf
g∈G

1
n

n∑

i=1

1 − σig(Xi)
2

]

=
1
2

− E

[

inf
g∈G

Rn(g, σ)
]

.

This indicates that, given a sample and a choice of the random variables
σ1, . . . , σn, computing Rn(G) is not harder than computing the empirical risk
minimizer in G. Indeed, the procedure would be to generate the σi randomly
and minimize the empirical error in G with respect to the labels σi.

An advantage of rewriting Rn(G) as above is that it gives an intuition of what
it actually measures: it measures how much the class G can fit random noise. If
the class G is very large, there will always be a function which can perfectly fit
the σi and then Rn(G) = 1/2, so that there is no hope of uniform convergence
to zero of the difference between true and empirical risks.

For a finite set with |G| = N , one can show that

Rn(G) ≤ 2
√

log N/n ,
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where we again see the logarithmic factor log N . A consequence of this is that,
by considering the projection on the sample of a class G with VC dimension h,
and using Lemma 1, we have

R(G) ≤ 2

√
h log en

h

n
.

This result along with Theorem 5 allows to recover the Vapnik Chervonenkis
bound with a concentration-based proof.

Although the benefit of using concentration may not be entirely clear at that
point, let us just mention that one can actually improve the dependence on n
of the above bound. This is based on the so-called chaining technique. The idea
is to use covering numbers at all scales in order to capture the geometry of the
class in a better way than the VC entropy does.

One has the following result, called Dudley’s entropy bound

Rn(F) ≤ C√
n

∫ ∞

0

√
log N(F , t, n) dt .

As a consequence, along with Haussler’s upper bound, we can get the follow-
ing result

Rn(F) ≤ C

√
h

n
.

We can thus, with this approach, remove the unnecessary log n factor of the
VC bound.

6 Advanced Topics

In this section, we point out several ways in which the results presented so far
can be improved. The main source of improvement actually comes, as mentioned
earlier, from the fact that Hoeffding and McDiarmid inequalities do not make
use of the variance of the functions.

6.1 Binomial Tails

We recall that the functions we consider are binary valued. So, if we consider a
fixed function f , the distribution of Pnf is actually a binomial law of parameters
Pf and n (since we are summing n i.i.d. random variables f(Zi) which can either
be 0 or 1 and are equal to 1 with probability Ef(Zi) = Pf). Denoting p = Pf ,
we can have an exact expression for the deviations of Pnf from Pf :

P [Pf − Pnf ≥ t] =
�n(p−t)�∑

k=0

(
n

k

)

pk(1 − p)n−k .
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Since this expression is not easy to manipulate, we have used an upper bound
provided by Hoeffding’s inequality. However, there exist other (sharper) upper
bounds. The following quantities are an upper bound on P [Pf − Pnf ≥ t],

(
1−p

1−p−t

)n(1−p−t) (
p

p+t

)n(p+t)
(exponential)

e− np
1−p ((1−t/p) log(1−t/p)+t/p) (Bennett)

e− nt2
2p(1−p)+2t/3 (Bernstein)

e−2nt2 (Hoeffding)

Examining the above bounds (and using inversion), we can say that roughly
speaking, the small deviations of Pf − Pnf have a Gaussian behavior of the
form exp(−nt2/2p(1 − p)) (i.e. Gaussian with variance p(1 − p)) while the large
deviations have a Poisson behavior of the form exp(−3nt/2).

So the tails are heavier than Gaussian, and Hoeffding’s inequality consists in
upper bounding the tails with a Gaussian with maximum variance, hence the
term exp(−2nt2).

Each function f ∈ F has a different variance Pf(1 − Pf) ≤ Pf . Moreover,
for each f ∈ F , by Bernstein’s inequality, with probability at least 1 − δ,

Pf ≤ Pnf +

√

2Pf log 1
δ

n
+

2 log 1
δ

3n
.

The Gaussian part (second term in the right hand side) dominates (for Pf
not too small, or n large enough), and it depends on Pf . We thus want to
combine Bernstein’s inequality with the union bound and the symmetrization.

6.2 Normalization

The idea is to consider the ratio

Pf − Pnf√
Pf

.

Here (f ∈ {0, 1}), Varf ≤ Pf2 = Pf
The reason for considering this ration is that after normalization, fluctuations

are more ‘uniform’ in the class F . Hence the supremum in

sup
f∈F

Pf − Pnf√
Pf

not necessarily attained at functions with large variance as it was the case pre-
viously.

Moreover, we know that our goal is to find functions with small error Pf
(hence small variance). The normalized supremum takes this into account.

We now state a result similar to Theorem 2 for the normalized supremum.
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Theorem 7 (Vapnik-Chervonenkis, [18]). For δ > 0 with probability at least
1 − δ,

∀f ∈ F ,
Pf − Pnf√

Pf
≤ 2

√

log SF (2n) + log 4
δ

n
,

and also with probability at least 1 − δ,

∀f ∈ F ,
Pnf − Pf√

Pnf
≤ 2

√

log SF (2n) + log 4
δ

n
.

Proof. We only give a sketch of the proof. The first step is a variation of the
symmetrization lemma

P

[

sup
f∈F

Pf − Pnf√
Pf

≥ t

]

≤ 2P

[

sup
f∈F

P ′
nf − Pnf

√
(Pnf + P ′

nf)/2
≥ t

]

.

The second step consists in randomization (with Rademacher variables)

· · · = 2E

[

Pσ

[

sup
f∈F

1
n

∑n
i=1 σi(f(Z ′

i) − f(Zi))
√

(Pnf + P ′
nf)/2

≥ t

]]

.

Finally, one uses a tail bound of Bernstein type. �

Let us explore the consequences of this result.
From the fact that for non-negative numbers A, B, C,

A ≤ B + C
√

A ⇒ A ≤ B + C2 +
√

BC ,

we easily get for example

∀f ∈ F , Pf ≤ Pnf + 2

√

Pnf
log SF (2n) + log 4

δ

n

+4
log SF (2n) + log 4

δ

n
.

In the ideal situation where there is no noise (i.e. Y = t(X) almost surely),
and t ∈ G, denoting by gn the empirical risk minimizer, we have R∗ = 0 and
also Rn(gn) = 0. In particular, when G is a class of VC dimension h, we obtain

R(gn) = O

(
h log n

n

)

.

So, in a way, Theorem 7 allows to interpolate between the best case where
the rate of convergence is O(h log n/n) and the worst case where the rate is
O(

√
h log n/n) (it does not allow to remove the log n factor in this case).
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It is also possible to derive from Theorem 7 relative error bounds for the
minimizer of the empirical error. With probability at least 1 − δ,

R(gn) ≤ R(g∗) + 2

√

R(g∗)
log SG(2n) + log 4

δ

n

+4
log SG(2n) + log 4

δ

n
.

We notice here that when R(g∗) = 0 (i.e. t ∈ G and R∗ = 0), the rate is again
of order 1/n while, as soon as R(g∗) > 0, the rate is of order 1/

√
n. Therefore,

it is not possible to obtain a rate with a power of n in between −1/2 and −1.
The main reason is that the factor of the square root term R(g∗) is not the

right quantity to use here since it does not vary with n. We will see later that
one can have instead R(gn) − R(g∗) as a factor, which is usually converging to
zero with n increasing. Unfortunately, Theorem 7 cannot be applied to functions
of the type f − f∗ (which would be needed to have the mentioned factor), so we
will need a refined approach.

6.3 Noise Conditions

The refinement we seek to obtain requires certain specific assumptions about the
noise function s(x). The ideal case being when s(x) = 0 everywhere (which cor-
responds to R∗ = 0 and Y = t(X)). We now introduce quantities that measure
how well-behaved the noise function is.

The situation is favorable when the regression function η(x) is not too close
to 0, or at least not too often close to 1/2. Indeed, η(x) = 0 means that the noise
is maximum at x (s(x) = 1/2) and that the label is completely undetermined
(any prediction would yield an error with probability 1/2).

Definitions. There are two types of conditions.

Definition 6 (Massart’s Noise Condition). For some c > 0, assume

|η(X)| >
1
c

almost surely .

This condition implies that there is no region where the decision is completely
random, or the noise is bounded away from 1/2.

Definition 7 (Tsybakov’s Noise Condition). Let α ∈ [0, 1], assume that
one the following equivalent conditions is satisfied

(i) ∃c > 0, ∀g ∈ {−1, 1}X ,

P [g(X)η(X) ≤ 0] ≤ c(R(g) − R∗)α

(ii) ∃c > 0, ∀A ⊂ X ,

∫

A

dP (x) ≤ c(
∫

A

|η(x)|dP (x))α

(iii) ∃B > 0, ∀t ≥ 0, P [|η(X)| ≤ t] ≤ Bt
α

1−α
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Condition (iii) is probably the easiest to interpret: it means that η(x) is close
to the critical value 0 with low probability.

We indicate how to prove that conditions (i), (ii) and (iii) are indeed equiv-
alent:

(i) ⇔ (ii) It is easy to check that R(g)−R∗ = E [|η(X)|1gη≤0]. For each function
g, there exists a set A such that 1A = 1gη≤0

(ii) ⇒ (iii) Let A = {x : |η(x)| ≤ t}

P [|η| ≤ t] =
∫

A

dP (x) ≤ c(
∫

A

|η(x)|dP (x))α

≤ ctα(
∫

A

dP (x))α

⇒ P [|η| ≤ t] ≤ c
1

1−α t
α

1−α

(iii) ⇒ (i) We write

R(g) − R∗ = E [|η(X)| gη ≤ 0]
≥ tE

[
1gη≤01|η|t

]

= tP [|η| t] − tE
[
1gη>01|η|t

]

≥ t(1 − Bt
α

1−α ) − tP [gη > 0] = t(P [gη ≤ 0] − Bt
α

1−α ) .

Taking t =
(

(1−α)P[gη≤0]
B

)(1−α)/α

finally gives

P [gη ≤ 0] ≤ B1−α

(1 − α)(1 − α)αα
(R(g) − R∗)α .

We notice that the parameter α has to be in [0, 1]. Indeed, one has the
opposite inequality

R(g) − R∗ = E [|η(X)|1gη≤0] ≤ E [1gη≤0] = P [g(X)η(X) ≤ 0] ,

which is incompatible with condition (i) if α > 1.
We also notice that when α = 0, Tsybakov’s condition is void, and when

α = 1, it is equivalent to Massart’s condition.

Consequences. The conditions we impose on the noise yield a crucial rela-
tionship between the variance and the expectation of functions in the so-called
relative loss class defined as

F̃ = {(x, y) �→ f(x, y) − 1t(x) �=y : f ∈ F} .

This relationship will allow to exploit Bernstein type inequalities applied to
this latter class.

Under Massart’s condition, one has (written in terms of the initial class) for
g ∈ G,

E
[
(1g(X) �=Y − 1t(X) �=Y )2

] ≤ c(R(g) − R∗) ,
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or, equivalently, for f ∈ F̃ , Varf ≤ Pf2 ≤ cPf . Under Tsybakov’s condition
this becomes for g ∈ G,

E
[
(1g(X) �=Y − 1t(X) �=Y )2

] ≤ c(R(g) − R∗)α ,

and for f ∈ F̃ , Varf ≤ Pf2 ≤ c(Pf)α.
In the finite case, with |G| = N , one can easily apply Bernstein’s inequality

to F̃ and the finite union bound to get that with probability at least 1 − δ, for
all g ∈ G,

R(g) − R∗ ≤ Rn(g) − Rn(t) +

√

8c(R(g) − R∗)α log N
δ

n
+

4 log N
δ

3n
.

As a consequence, when t ∈ G, and gn is the minimizer of the empirical error
(hence Rn(g) ≤ Rn(t)), one has

R(gn) − R∗ ≤ C

(
log N

δ

n

) 1
2−α

,

which always better than n−1/2 for α > 0 and is valid even if R∗ > 0.

6.4 Local Rademacher Averages

In this section we generalize the above result by introducing a localized version
of the Rademacher averages. Going from the finite to the general case is more in-
volved than what has been seen before. We first give the appropriate definitions,
then state the result and give a proof sketch.

Definitions. Local Rademacher averages refer to Rademacher averages of sub-
sets of the function class determined by a condition on the variance of the func-
tion.

Definition 8 (Local Rademacher Average). The local Rademacher average
at radius r ≥ 0 for the class F is defined as

R(F , r) = E sup
f∈F :Pf2≤r

Rnf .

The reason for this definition is that, as we have seen before, the crucial
ingredient to obtain better rates of convergence is to use the variance of the
functions. Localizing the Rademacher average allows to focus on the part of the
function class where the fast rate phenomenon occurs, that are functions with
small variance.

Next we introduce the concept of a sub-root function, a real-valued function
with certain monotony properties.
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Definition 9 (Sub-root Function). A function ψ : R → R is sub-root if
(i) ψ is non-decreasing,
(ii) ψ is non negative,
(iii) ψ(r)/

√
r is non-increasing .

An immediate consequence of this definition is the following result.
Lemma 5. A sub-root function

(i) is continuous,
(ii) has a unique (non-zero) fixed point r∗ satisfying ψ(r∗) = r∗ .

Figure 6 shows a typical sub-root function and its fixed point.
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Before seeing the rationale for introducing the sub-root concept, we need yet
another definition, that of a ‘star-hull’ (somewhat similar to a convex hull).

Definition 10 (Star-Hull). Let F be a set of functions. Its star-hull is defined
as

�F = {αf : f ∈ F , α ∈ [0, 1]} .

Now, we state a lemma that indicates that by taking the star-hull of a class
of functions, we are guaranteed that the local Rademacher average behaves like
a sub-root function, and thus has a unique fixed point. This fixed point will turn
out to be the key quantity in the relative error bounds.

Lemma 6. For any class of functions F ,

Rn(�F , r) is sub-root .

One legitimate question is whether taking the star-hull does not enlarge the
class too much. One way to see what the effect is on the size of the class is to
compare the metric entropy (log covering numbers) of F and of �F . It is possible
to see that the entropy increases only by a logarithmic factor, which is essentially
negligible.

Fig. 6. An example of a sub-root function and its fixed point
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Result. We now state the main result involving local Rademacher averages and
their fixed point.

Theorem 8. Let F be a class of bounded functions (e.g. f ∈ [−1, 1]) and r∗

be the fixed point of R(�F , r). There exists a constant C > 0 such that with
probability at least 1 − δ,

∀f ∈ F , Pf − Pnf ≤ C

(
√

r∗Varf +
log 1

δ + log log n

n

)

.

If in addition the functions in F satisfy Varf ≤ c(Pf)β, then one obtains
that with probability at least 1 − δ,

∀f ∈ F , Pf ≤ C

(

Pnf + (r∗)
1

2−β +
log 1

δ + log log n

n

)

.

Proof. We only give the main steps of the proof.

1. The starting point is Talagrand’s inequality for empirical processes, a gen-
eralization of McDiarmid’s inequality of Bernstein type (i.e. which includes
the variance). This inequality tells that with high probability,

sup
f∈F

Pf − Pnf ≤ E

[

sup
f∈F

Pf − Pnf

]

+ c
√

sup
f∈F

Varf/n + c′/n ,

for some constants c, c′.
2. The second step consists in ‘peeling’ the class, that is splitting the class into

subclasses according to the variance of the functions

Fk = {f : Varf ∈ [xk, xk+1)} ,

3. We can then apply Talagrand’s inequality to each of the sub-classes sepa-
rately to get with high probability

sup
f∈Fk

Pf − Pnf ≤ E

[

sup
f∈Fk

Pf − Pnf

]

+ c
√

xVarf/n + c′/n ,

4. Then the symmetrization lemma allows to introduce local Rademacher av-
erages. We get that with high probability

∀f ∈ F , Pf − Pnf ≤ 2R(F , xVarf) + c
√

xVarf/n + c′/n .

5. We then have to ‘solve’ this inequality. Things are simple if R behaves like a
square root function since we can upper bound the local Rademacher average
by the value of its fixed point. With high probability,

Pf − Pnf ≤ 2
√

r∗Varf + c
√

xVarf/n + c′/n .
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6. Finally, we use the relationship between variance and expectation

Varf ≤ c(Pf)α ,

and solve the inequality in Pf to get the result.

�

We will not got into the details of how to apply the above result, but we give
some remarks about its use.

An important example is the case where the class F is of finite VC dimension
h. In that case, one has

R(F , r) ≤ C

√
rh log n

n
,

so that r∗ ≤ C h log n
n . As a consequence, we obtain, under Tsybakov condition, a

rate of convergence of Pfn to Pf∗ is O(1/n1/(2−α)). It is important to note that
in this case, the rate of convergence of Pnf to Pf in O(1/

√
n). So we obtain

a fast rate by looking at the relative error. These fast rates can be obtained
provided t ∈ G (but it is not needed that R∗ = 0). This requirement can be
removed if one uses structural risk minimization or regularization.

Another related result is that, as in the global case, one can obtain a bound
with data-dependent (i.e. conditional) local Rademacher averages

Rn(F , r) = Eσ sup
f∈F :Pf2≤r

Rnf .

The result is the same as before (with different constants) under the same
conditions as in Theorem 8. With probability at least 1 − δ,

Pf ≤ C

(

Pnf + (r∗
n)

1
2−α +

log 1
δ + log log n

n

)

where r∗
n is the fixed point of a sub-root upper bound of Rn(F , r).

Hence, we can get improved rates when the noise is well-behaved and these
rates interpolate between n−1/2 and n−1. However, it is not in general possible
to estimate the parameters (c and α) entering in the noise conditions, but we will
not discuss this issue further here. Another point is that although the capacity
measure that we use seems ‘local’, it does depend on all the functions in the
class, but each of them is implicitly appropriately rescaled. Indeed, in R(�F , r),
each function f ∈ F with Pf2 ≥ r is considered at scale r/Pf2.

Bibliographical Remarks. Hoeffding’s inequality appears in [19]. For a proof
of the contraction principle we refer to Ledoux and Talagrand [20].
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[62], Panchenko [63, 64, 65]) and the so-called “entropy method”, based on loga-
rithmic Sobolev inequalities, developed by Ledoux [66],[67], see also Bobkov and
Ledoux [68], Massart [69], Rio [57], Boucheron, Lugosi, and Massart [70], [71],
Boucheron, Bousquet, Lugosi, and Massart [72], and Bousquet [73].
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A Probability Tools

This section recalls some basic facts from probability theory that are used
throughout this tutorial (sometimes without explicitly mentioning it).

We denote by A and B some events (i.e. elements of a σ-algebra), and by X
some real-valued random variable.
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A.1 Basic Facts

– Union:
P [A or B] ≤ P [A] + P [B] .

– Inclusion: If A ⇒ B, then P [A] ≤ P [B].
– Inversion: If P [X > t] ≤ F (t) then with probability at least 1 − δ,

X ≤ F−1(δ) .

– Expectation: If X ≥ 0,

E [X] =
∫ ∞

0
P [X ≥ t] dt .

A.2 Basic Inequalities

All the inequalities below are valid as soon as the right-hand side exists.

– Jensen: for f convex,
f(E [X]) ≤ E [f(X)] .

– Markov: If X ≥ 0 then for all t > 0,

P [X ≥ t] ≤ E [X]
t

.

– Chebyshev: for t > 0,

P [|X − E [X] | ≥ t] ≤ VarX
t2

.

– Chernoff: for all t ∈ R,

P [X ≥ t] ≤ inf
λ≥0

E

[
eλ(X−t)

]
.

B No Free Lunch

We can now give a formal definition of consistency and state the core results
about the impossibility of universally good algorithms.

Definition 11 (Consistency). An algorithm is consistent if for any probability
measure P ,

lim
n→∞ R(gn) = R∗ almost surely.

It is important to understand the reasons that make possible the existence of
consistent algorithms. In the case where the input space X is countable, things
are somehow easy since even if there is no relationship at all between inputs and
outputs, by repeatedly sampling data independently from P , one will get to see
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an increasing number of different inputs which will eventually converge to all
the inputs. So, in the countable case, an algorithm which would simply learn ‘by
heart’ (i.e. makes a majority vote when the instance has been seen before, and
produces an arbitrary prediction otherwise) would be consistent.

In the case where X is not countable (e.g. X = R), things are more sub-
tle. Indeed, in that case, there is a seemingly innocent assumption that be-
comes crucial: to be able to define a probability measure P on X , one needs
a σ-algebra on that space, which is typically the Borel σ-algebra. So the hid-
den assumption is that P is a Borel measure. This means that the topology
of R plays a role here, and thus, the target function t will be Borel measur-
able. In a sense this guarantees that it is possible to approximate t from its
value (or approximate value) at a finite number of points. The algorithms that
will achieve consistency are thus those who use the topology in the sense of
‘generalizing’ the observed values to neighborhoods (e.g. local classifiers). In a
way, the measurability of t is one of the crudest notions of smoothness of func-
tions.

We now cite two important results. The first one tells that for a fixed sample
size, one can construct arbitrarily bad problems for a given algorithm.

Theorem 9 (No Free Lunch, see e.g. [4]). For any algorithm, any n and
any ε > 0, there exists a distribution P such that R∗ = 0 and

P

[

R(gn) ≥ 1
2

− ε

]

= 1 .

The second result is more subtle and indicates that given an algorithm, one
can construct a problem for which this algorithm will converge as slowly as one
wishes.

Theorem 10 (No Free Lunch at All, see e.g. [4]). For any algorithm, and
any sequence (an) that converges to 0, there exists a probability distribution P
such that R∗ = 0 and

R(gn) ≥ an .

In the above theorem, the ‘bad’ probability measure is constructed on a
countable set (where the outputs are not related at all to the inputs so that no
generalization is possible), and is such that the rate at which one gets to see new
inputs is as slow as the convergence of an.

Finally we mention other notions of consistency.

Definition 12 (VC Consistency of ERM). The ERM algorithm is consistent
if for any probability measure P ,

R(gn) → R(g∗) in probability,

and
Rn(gn) → R(g∗) in probability.
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Definition 13 (VC Non-trivial Consistency of ERM). The ERM algo-
rithm is non-trivially consistent for the set G and the probability distribution P
if for any c ∈ R,

inf
f∈F :Pf>c

Pn(f) → inf
f∈F :Pf>c

P (f) in probability.
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57. Rio, E.: Inégalités de concentration pour les processus empiriques de classes de
parties. Probability Theory and Related Fields 119 (2001) 163–175

58. Talagrand, M.: A new look at independence. Annals of Probability 24 (1996) 1–34
(Special Invited Paper).

59. Talagrand, M.: Concentration of measure and isoperimetric inequalities in product
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Abstract. Concentration inequalities deal with deviations of functions
of independent random variables from their expectation. In the last
decade new tools have been introduced making it possible to establish
simple and powerful inequalities. These inequalities are at the heart of
the mathematical analysis of various problems in machine learning and
made it possible to derive new efficient algorithms. This text attempts
to summarize some of the basic tools.

1 Introduction

The laws of large numbers of classical probability theory state that sums of
independent random variables are, under very mild conditions, close to their
expectation with a large probability. Such sums are the most basic examples
of random variables concentrated around their mean. More recent results reveal
that such a behavior is shared by a large class of general functions of independent
random variables. The purpose of these notes is to give an introduction to some
of these general concentration inequalities.

The inequalities discussed in these notes bound tail probabilities of general
functions of independent random variables. Several methods have been known to
prove such inequalities, including martingale methods (see Milman and Schecht-
man [1] and the surveys of McDiarmid [2, 3]), information-theoretic methods (see
Alhswede, Gács, and Körner [4], Marton [5, 6, 7], Dembo [8], Massart [9] and Rio
[10]), Talagrand’s induction method [11, 12, 13] (see also Luczak and McDiarmid
[14], McDiarmid [15] and Panchenko [16, 17, 18]), the decoupling method sur-
veyed by de la Peña and Giné [19], and the so-called “entropy method”, based on
logarithmic Sobolev inequalities, developed by Ledoux [20, 21], see also Bobkov

O. Bousquet et al. (Eds.): Machine Learning 2003, LNAI 3176, pp. 208–240, 2004.
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and Ledoux [22], Massart [23], Rio [10], Klein [24], Boucheron, Lugosi, and Mas-
sart [25, 26], Bousquet [27, 28], and Boucheron, Bousquet, Lugosi, and Massart
[29]. Also, various problem-specific methods have been worked out in random
graph theory, see Janson, �Luczak, and Ruciński [30] for a survey.

First of all we recall some of the essential basic tools needed in the rest of
these notes. For any nonnegative random variable X,

EX =
∫ ∞

0
P{X ≥ t}dt .

This implies Markov’s inequality: for any nonnegative random variable X,
and t > 0,

P{X ≥ t} ≤ EX

t
.

If follows from Markov’s inequality that if φ is a strictly monotonically in-
creasing nonnegative-valued function then for any random variable X and real
number t,

P{X ≥ t} = P{φ(X) ≥ φ(t)} ≤ Eφ(X)
φ(t)

.

An application of this with φ(x) = x2 is Chebyshev’s inequality: if X is an
arbitrary random variable and t > 0, then

P{|X − EX| ≥ t} = P
{|X − EX|2 ≥ t2

} ≤ E
[|X − EX|2]

t2
=

Var{X}
t2

.

More generally taking φ(x) = xq (x ≥ 0), for any q > 0 we have

P{|X − EX| ≥ t} ≤ E [|X − EX|q]
tq

.

In specific examples one may choose the value of q to optimize the obtained
upper bound. Such moment bounds often provide with very sharp estimates
of the tail probabilities. A related idea is at the basis of Chernoff’s bounding
method. Taking φ(x) = esx where s is an arbitrary positive number, for any
random variable X, and any t > 0, we have

P{X ≥ t} = P{esX ≥ est} ≤ EesX

est
.

In Chernoff’s method, we find an s > 0 that minimizes the upper bound or
makes the upper bound small.

Next we recall some simple inequalities for sums of independent random vari-
ables. Here we are primarily concerned with upper bounds for the probabilities
of deviations from the mean, that is, to obtain inequalities for P{Sn −ESn ≥ t},
with Sn =

∑n
i=1 Xi, where X1, . . . , Xn are independent real-valued random vari-

ables.
Chebyshev’s inequality and independence immediately imply

P{|Sn − ESn| ≥ t} ≤ Var{Sn}
t2

=
∑n

i=1 Var{Xi}
t2

.
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In other words, writing σ2 = 1
n

∑n
i=1 Var{Xi},

P

{∣
∣
∣
∣
∣

1
n

n∑

i=1

Xi − EXi

∣
∣
∣
∣
∣
≥ ε

}

≤ σ2

nε2
.

Chernoff’s bounding method is especially convenient for bounding tail prob-
abilities of sums of independent random variables. The reason is that since the
expected value of a product of independent random variables equals the product
of the expected values, Chernoff’s bound becomes

P{Sn − ESn ≥ t} ≤ e−st
E

[

exp

(

s

n∑

i=1

(Xi − EXi)

)]

= e−st
n∏

i=1

E

[
es(Xi−EXi)

]
(by independence). (1)

Now the problem of finding tight bounds comes down to finding a good upper
bound for the moment generating function of the random variables Xi − EXi.
There are many ways of doing this. For bounded random variables perhaps the
most elegant version is due to Hoeffding [31] which we state without proof.

Lemma 1. hoeffding’s inequality. Let X be a random variable with EX =
0, a ≤ X ≤ b. Then for s > 0,

E
[
esX

] ≤ es2(b−a)2/8.

This lemma, combined with (1) immediately implies Hoeffding’s tail inequal-
ity [31]:

Theorem 1. Let X1, . . . , Xn be independent bounded random variables such
that Xi falls in the interval [ai, bi] with probability one. Then for any t > 0
we have

P{Sn − ESn ≥ t} ≤ e−2t2/
∑n

i=1(bi−ai)2

and

P{Sn − ESn ≤ −t} ≤ e−2t2/
∑n

i=1(bi−ai)2 .

The theorem above is generally known as Hoeffding’s inequality. For binomial
random variables it was proved by Chernoff [32] and Okamoto [33].

A disadvantage of Hoeffding’s inequality is that it ignores information about
the variance of the Xi’s. The inequalities discussed next provide an improvement
in this respect.

Assume now without loss of generality that EXi = 0 for all i = 1, . . . , n. Our
starting point is again (1), that is, we need bounds for E

[
esXi

]
. Introduce the

notation σ2
i = E[X2

i ], and

Fi = E[ψ(sXi)] =
∞∑

r=2

sr−2
E[Xr

i ]
r!σ2

i

.
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Also, let ψ(x) = exp(x) − x − 1, and observe that ψ(x) ≤ x2/2 for x ≤ 0 and
ψ(sx) ≤ x2ψ(s) for s ≥ 0 and x ∈ [0, 1]. Since esx = 1 + sx + ψ(sx), we may
write

E
[
esXi

]
= 1 + sE[Xi] + E[ψ(sXi)]
= 1 + E[ψ(sXi)] (since E[Xi] = 0.)
≤ 1 + E[ψ(s(Xi)+) + ψ(−s(Xi)−)]

(where x+ = max(0, x) and x− = max(0,−x))

≤ 1 + E[ψ(s(Xi)+) +
s2

2
(Xi)2−] (using ψ(x) ≤ x2/2 for x ≤ 0. ) .

Now assume that the Xi’s are bounded such that Xi ≤ 1. Thus, we have
obtained

E
[
esXi

] ≤ 1 + E[ψ(s)(Xi)2+ +
s2

2
(Xi)2−] ≤ 1 + ψ(s)E[X2

i ] ≤ exp
(
ψ(s)E[X2

i ]
)

Returning to (1) and using the notation σ2 = (1/n)
∑

σ2
i , we get

P

{
n∑

i=1

Xi > t

}

≤ enσ2ψ(s)−st.

Now we are free to choose s. The upper bound is minimized for

s = log
(

1 +
t

nσ2

)

.

Resubstituting this value, we obtain Bennett’s inequality [34]:

Theorem 2. bennett’s inequality.Let X1, . . .,Xn be independent real-valued
random variables with zero mean, and assume that Xi ≤ 1 with probability one.
Let

σ2 =
1
n

n∑

i=1

Var{Xi}.

Then for any t > 0,

P

{
n∑

i=1

Xi > t

}

≤ exp
(

−nσ2h

(
t

nσ2

))

.

where h(u) = (1 + u) log(1 + u) − u for u ≥ 0.

The message of this inequality is perhaps best seen if we do some further
bounding. Applying the elementary inequality h(u) ≥ u2/(2 + 2u/3), u ≥ 0
(which may be seen by comparing the derivatives of both sides) we obtain a
classical inequality of Bernstein [35]:
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Theorem 3. bernstein’s inequality. Under the conditions of the previous
theorem, for any ε > 0,

P

{
1
n

n∑

i=1

Xi > ε

}

≤ exp
(

− nε2

2(σ2 + ε/3)

)

.

Bernstein’s inequality points out an interesting phenomenon: if σ2 < ε,
then the upper bound behaves like e−nε instead of the e−nε2 guaranteed by
Hoeffding’s inequality. This might be intuitively explained by recalling that a
Binomial(n, λ/n) distribution can be approximated, for large n, by a Poisson(λ)
distribution, whose tail decreases as e−λ.

2 The Efron-Stein Inequality

The main purpose of these notes is to show how many of the tail inequalities for
sums of independent random variables can be extended to general functions of
independent random variables. The simplest, yet surprisingly powerful inequality
of this kind is known as the Efron-Stein inequality. It bounds the variance of
a general function. To obtain tail inequalities, one may simply use Chebyshev’s
inequality.

Let X be some set, and let g : X n → R be a measurable function of n
variables. We derive inequalities for the difference between the random variable
Z = g(X1, . . . , Xn) and its expected value EZ when X1, . . . , Xn are arbitrary
independent (not necessarily identically distributed!) random variables taking
values in X .

The main inequalities of this section follow from the next simple result. To
simplify notation, we write Ei for the expected value with respect to the variable
Xi, that is, EiZ = E[Z|X1, . . . , Xi−1, Xi+1, . . . , Xn].

Theorem 4.

Var(Z) ≤
n∑

i=1

E

[
(Z − EiZ)2

]
.

Proof. The proof is based on elementary properties of conditional expectation.
Recall that if X and Y are arbitrary bounded random variables, then E[XY ] =
E[E[XY |Y ]] = E[Y E[X|Y ]].

Introduce the notation V = Z − EZ, and define

Vi = E[Z|X1, . . . , Xi] − E[Z|X1, . . . , Xi−1], i = 1, . . . , n.

Clearly, V =
∑n

i=1 Vi. (Thus, V is written as a sum of martingale differences.)
Then
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Var(Z) = E

⎡

⎣

(
n∑

i=1

Vi

)2
⎤

⎦

= E

n∑

i=1

V 2
i + 2E

∑

i>j

ViVj

= E

n∑

i=1

V 2
i ,

since, for any i > j,

EViVj = EE [ViVj |X1, . . . , Xj ] = E [VjE [Vi|X1, . . . , Xj ]] = 0 .

To bound EV 2
i , note that, by Jensen’s inequality,

V 2
i = (E[Z|X1, . . . , Xi] − E[Z|X1, . . . , Xi−1])

2

=
(
E

[
E[Z|X1, . . . , Xn] − E[Z|X1, . . . , Xi−1, Xi+1, . . . , Xn]

∣
∣
∣X1, . . . , Xi

])2

≤ E

[
(E[Z|X1, . . . , Xn] − E[Z|X1, . . . , Xi−1, Xi+1, . . . , Xn])2

∣
∣
∣X1, . . . , Xi

]

= E

[
(Z − EiZ)2

∣
∣
∣X1, . . . , Xi

]
.

Taking expected values on both sides, we obtain the statement. �

Now the Efron-Stein inequality follows easily. To state the theorem, let X ′
1,

. . . , X ′
n form an independent copy of X1, . . . , Xn and write

Z ′
i = g(X1, . . . , X

′
i, . . . , Xn) .

Theorem 5. efron-stein inequality (efron and stein [36], steele [37]).

Var(Z) ≤ 1
2

n∑

i=1

E
[
(Z − Z ′

i)
2]

Proof. The statement follows by Theorem 4 simply by using (conditionally)
the elementary fact that if X and Y are independent and identically distributed
random variables, then Var(X) = (1/2)E[(X − Y )2], and therefore

Ei

[
(Z − EiZ)2

]
=

1
2

Ei

[
(Z − Z ′

i)
2
]

. �

Remark. Observe that in the case when Z =
∑n

i=1 Xi is a sum of independent
random variables (of finite variance) then the inequality in Theorem 5 becomes
an equality. Thus, the bound in the Efron-Stein inequality is, in a sense, not
improvable. This example also shows that, among all functions of independent
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random variables, sums, in some sense, are the least concentrated. Below we will
see other evidences for this extremal property of sums.

Another useful corollary of Theorem 4 is obtained by recalling that, for any
random variable X, Var(X) ≤ E[(X − a)2] for any constant a ∈ R. Using this
fact conditionally, we have, for every i = 1, . . . , n,

Ei

[
(Z − EiZ)2

]
≤ Ei

[
(Z − Zi)

2
]

where Zi = gi(X1, . . . , Xi−1, Xi+1, . . . , Xn) for arbitrary measurable functions
gi : X n−1 → R of n − 1 variables. Taking expected values and using Theorem 4
we have the following.

Theorem 6.

Var(Z) ≤
n∑

i=1

E
[
(Z − Zi)2

]
.

In the next two sections we specialize the Efron-Stein inequality and its vari-
ant Theorem 6 to functions which satisfy some simple easy-to-verify properties.

2.1 Functions with Bounded Differences

We say that a function g : X n → R has the bounded differences property if for
some nonnegative constants c1, . . . , cn,

sup
x1,...,xn,

x′
i∈X

|g(x1, . . . , xn) − g(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)| ≤ ci , 1 ≤ i ≤ n .

In other words, if we change the i-th variable of g while keeping all the others
fixed, the value of the function cannot change by more than ci. Then the Efron-
Stein inequality implies the following:

Corollary 1. If g has the bounded differences property with constants c1, . . . , cn,
then

Var(Z) ≤ 1
2

n∑

i=1

c2
i .

Next we list some interesting applications of this corollary. In all cases the
bound for the variance is obtained effortlessly, while a direct estimation of the
variance may be quite involved.

Example. uniform deviations. One of the central quantities of statistical
learning theory and empirical process theory is the following: let X1, . . . , Xn be
i.i.d. random variables taking their values in some set X , and let A be a collection
of subsets of X . Let µ denote the distribution of X1, that is, µ(A) = P{X1 ∈ A},
and let µn denote the empirical distribution:

µn(A) =
1
n

n∑

i=1

1{Xn∈A} .
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The quantity of interest is

Z = sup
A∈A

|µn(A) − µ(A)|.

If limn→∞ EZ = 0 for every distribution of the Xi’s, then A is called a uni-
form Glivenko-Cantelli class, and Vapnik and Chervonenkis [38] gave a beautiful
combinatorial characterization of such classes. But regardless of what A is, by
changing one Xi, Z can change by at most 1/n, so regardless of the behavior of
EZ, we always have

Var(Z) ≤ 1
2n

.

For more information on the behavior of Z and its role in learning theory
see, for example, Devroye, Györfi, and Lugosi [39], Vapnik [40], van der Vaart
and Wellner [41], Dudley [42].

Next we show how a closer look at the the Efron-Stein inequality implies a
significantly better bound for the variance of Z. We do this in a slightly more gen-
eral framework of empirical processes. Let F be a class of real-valued functions
and define Z = g(X1, . . . , Xn) = supf∈F

∑n
j=1 f(Xj). Assume that the functions

f ∈ F are such that E[f(Xi)] = 0 and take values in [−1, 1]. Let Zi be defined as

Zi = sup
f∈F

∑

j �=i

f(Xj) .

Let f̂ be the function achieving the supremum1 in the definition of Z, that
is Z =

∑n
i=1 f̂(Xi) and similarly f̂i be such that Zi =

∑
j �=i f̂i(Xj). We have

f̂i(Xi) ≤ Z − Zi ≤ f̂(Xi) ,

and thus
∑n

i=1 Z − Zi ≤ Z. As f̂i and Xi are independent, Ei[f̂i(Xi)] = 0. On
the other hand,

(Z − Zi)2 − f̂2
i (Xi) = (Z − Zi + f̂i(Xi))(Z − Zi − f̂i(Xi))

≤ 2(Z − Zi + f̂i(Xi)) .

Summing over all i and taking expectations,

E

[
n∑

i=1

(Z − Zi)2
]

≤ E

[
n∑

i=1

f̂2
i (Xi) + 2(Z − Zi) + 2f̂i(Xi)

]

≤ n sup
f∈F

E[f2(X1)] + 2E[Z]

where at the last step we used the facts that E[f̂i(Xi)2] ≤ supf∈F E[f2(X1)],
∑n

i=1(Z − Zi) ≤ Z, and Ef̂i(Xi) = 0. Thus, by the Efron-Stein inequality

Var(Z) ≤ n sup
f∈F

E[f2(X1)] + 2E[Z]

1 If the supremum is not attained the proof can be modified to yield the same result.
We omit the details here.
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From just the bounded differences property we derived Var(Z) ≤ 2n. The new
bound may be a significant improvement whenever the maximum of Ef(Xi)2

over f ∈ F is small. (Note that if the class F is not too large, EZ is typically of
the order of

√
n.) The exponential tail inequality due to Talagrand [12] extends

this variance inequality, and is one of the most important recent results of the
theory of empirical processes, see also Ledoux [20], Massart [23], Rio [10], Klein
[24], and Bousquet [27, 28].

Example. minimum of the empirical loss. Concentration inequalities have
been used as a key tool in recent developments of model selection methods in
statistical learning theory. For the background we refer to the the recent work of
Koltchinskii and Panchenko [43], Massart [44], Bartlett, Boucheron, and Lugosi
[45], Lugosi and Wegkamp [46], Bousquet [47].

Let F denote a class of {0, 1}-valued functions on some space X . For sim-
plicity of the exposition we assume that F is finite. The results remain true for
general classes as long as the measurability issues are taken care of. Given an
i.i.d. sample Dn = (〈Xi, Yi〉)i≤n of n pairs of random variables 〈Xi, Yi〉 taking
values in X × {0, 1}, for each f ∈ F we define the empirical loss

Ln(f) =
1
n

n∑

i=1

�(f(Xi), Yi)

where the loss function � is defined on {0, 1}2 by

�(y, y′) = 1y �=y′ .

In nonparametric classification and learning theory it is common to select an
element of F by minimizing the empirical loss. The quantity of interest in this
section is the minimal empirical loss

L̂ = inf
f∈F

Ln(f).

Corollary 1 immediately implies that Var(L̂) ≤ 1/(2n). However, a more
careful application of the Efron-Stein inequality reveals that L̂ may be much
more concentrated than predicted by this simple inequality. Getting tight results
for the fluctuations of L̂ provides better insight into the calibration of penalties
in certain model selection methods.

Let Z = nL̂ and let Z ′
i be defined as in Theorem 5, that is,

Z ′
i = min

f∈F

⎡

⎣
∑

j �=i

�(f(Xj), Yj) + �(f(Xi
′), Yi

′)

⎤

⎦

where 〈Xi
′, Yi

′〉 is independent of Dn and has the same distribution as 〈Xi, Yi〉.
Now the convenient form of the Efron-Stein inequality is the following:

Var(Z) ≤ 1
2

n∑

i=1

E
[
(Z − Z ′

i)
2] =

n∑

i=1

E
[
(Z − Z ′

i)
21Z′

i>Z

]
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Let f∗ denote a (possibly non-unique) minimizer of the empirical risk so that
Z =

∑n
j=1 �(f∗(Xj), Yj). The key observation is that

(Z − Z ′
i)

21Z′
i>Z ≤ (�(f∗(Xi

′), Yi
′) − �(f∗(Xi), Yi))21Z′

i>Z

= �(f∗(X ′
i), Y

′
i )1�(f∗(Xi),Yi)=0 .

Thus,

n∑

i=1

E
[
(Z − Z ′

i)
21Z′

i>Z

] ≤ E

∑

i:�(f∗(Xi),Yi)=0

EX′
i,Y

′
i
[�(f∗(X ′

i), Y
′
i )] ≤ nEL(f∗)

where EX′
i,Y

′
i

denotes expectation with respect to the variables X ′
i, Y

′
i and for

each f ∈ F , L(f) = E�(f(X), Y ) is the true (expected) loss of f . Therefore, the
Efron-Stein inequality implies that

Var(L̂) ≤ EL(f∗)
n

.

This is a significant improvement over the bound 1/(2n) whenever EL(f∗) is
much smaller than 1/2. This is very often the case. For example, we have

L(f∗) = L̂ − (Ln(f∗) − L(f∗)) ≤ Z

n
+ sup

f∈F
(L(f) − Ln(f))

so that we obtain

Var(L̂) ≤ EL̂

n
+

E supf∈F (L(f) − Ln(f))
n

.

In most cases of interest, E supf∈F (L(f) − Ln(f)) may be bounded by a
constant (depending on F) times n−1/2 (see, e.g., Lugosi [48]) and then the
second term on the right-hand side is of the order of n−3/2. For exponential
concentration inequalities for L̂ we refer to Boucheron, Lugosi, and Massart
[26].

Example. kernel density estimation. Let X1, . . . , Xn be i.i.d. samples
drawn according to some (unknown) density f on the real line. The density is
estimated by the kernel estimate

fn(x) =
1

nh

n∑

i=1

K

(
x − Xi

h

)

,

where h > 0 is a smoothing parameter, and K is a nonnegative function with∫
K = 1. The performance of the estimate is measured by the L1 error

Z = g(X1, . . . , Xn) =
∫

|f(x) − fn(x)|dx.
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It is easy to see that

|g(x1, . . . , xn) − g(x1, . . . , x
′
i, . . . , xn)| ≤ 1

nh

∫ ∣
∣
∣
∣K

(
x − xi

h

)

− K

(
x − x′

i

h

)∣
∣
∣
∣ dx

≤ 2
n

,

so without further work we get

Var(Z) ≤ 2
n

.

It is known that for every f ,
√

nEg → ∞ (see Devroye and Györfi [49]) which
implies, by Chebyshev’s inequality, that for every ε > 0

P

{∣
∣
∣
∣

Z

EZ
− 1

∣
∣
∣
∣ ≥ ε

}

= P {|Z − EZ| ≥ εEZ} ≤ Var(Z)
ε2(EZ)2

→ 0

as n → ∞. That is, Z/EZ → 0 in probability, or in other words, Z is relatively
stable. This means that the random L1-error behaves like its expected value.
This result is due to Devroye [50], [51]. For more on the behavior of the L1 error
of the kernel density estimate we refer to Devroye and Györfi [49], Devroye and
Lugosi [52].

2.2 Self-Bounding Functions

Another simple property which is satisfied for many important examples is the
so-called self-bounding property. We say that a nonnegative function g : X n → R

has the self-bounding property if there exist functions gi : X n−1 → R such that
for all x1, . . . , xn ∈ X and all i = 1, . . . , n,

0 ≤ g(x1, . . . , xn) − gi(x1, . . . , xi−1, xi+1, . . . , xn) ≤ 1

and also
n∑

i=1

(g(x1, . . . , xn) − gi(x1, . . . , xi−1, xi+1, . . . , xn)) ≤ g(x1, . . . , xn) .

Concentration properties for such functions have been studied by Boucheron,
Lugosi, and Massart [25], Rio [10], and Bousquet [27, 28]. For self-bounding
functions we clearly have

n∑

i=1

(g(x1, . . . , xn) − gi(x1, . . . , xi−1, xi+1, . . . , xn))2 ≤ g(x1, . . . , xn) .

and therefore Theorem 6 implies

Corollary 2. If g has the self-bounding property, then

Var(Z) ≤ EZ .
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Next we mention some applications of this simple corollary. It turns out that
in many cases the obtained bound is a significant improvement over what we
would obtain by using simply Corollary 1.

Remark. relative stability. Bounding the variance of Z by its expected
value implies, in many cases, the relative stability of Z. A sequence of non-
negative random variables (Zn) is said to be relatively stable if Zn/EZn → 1
in probability. This property guarantees that the random fluctuations of Zn

around its expectation are of negligible size when compared to the expectation,
and therefore most information about the size of Zn is given by EZn. If Zn has
the self-bounding property, then, by Chebyshev’s inequality, for all ε > 0,

P

{∣
∣
∣
∣

Zn

EZn
− 1

∣
∣
∣
∣ > ε

}

≤ Var(Zn)
ε2(EZn)2

≤ 1
ε2EZn

.

Thus, for relative stability, it suffices to have EZn → ∞.

Example. rademacher averages. A less trivial example for self-bounding
functions is the one of Rademacher averages. Let F be a class of functions
with values in [−1, 1]. If σ1, . . . , σn denote independent symmetric {−1, 1}-valued
random variables, independent of the Xi’s (the so-called Rademacher random
variables), then we define the conditional Rademacher average as

Z = E

⎡

⎣sup
f∈F

n∑

j=1

σjf(Xj)|Xn
1

⎤

⎦ ,

where the notation Xn
1 is a shorthand for X1, . . . , Xn. Thus, the expected value

is taken with respect to the Rademacher variables and Z is a function of the Xi’s.
Quantities like Z have been known to measure effectively the complexity of model
classes in statistical learning theory, see, for example, Koltchinskii [53], Bartlett,
Boucheron, and Lugosi [45], Bartlett and Mendelson [54], Bartlett, Bousquet,
and Mendelson [55]. It is immediate that Z has the bounded differences property
and Corollary 1 implies Var(Z) ≤ n/2. However, this bound may be improved
by observing that Z also has the self-bounding property, and therefore Var(Z) ≤
EZ. Indeed, defining

Zi = E

⎡

⎢
⎣sup

f∈F

n∑

j=1
j �=i

σjf(Xj)|Xn
1

⎤

⎥
⎦

it is easy to see that 0 ≤ Z − Zi ≤ 1 and
∑n

i=1(Z − Zi) ≤ Z (the details are
left as an exercise). The improvement provided by Lemma 2 is essential since it
is well-known in empirical process theory and statistical learning theory that in
many cases when F is a relatively small class of functions, EZ may be bounded
by something like Cn1/2 where the constant C depends on the class F , see, e.g.,
Vapnik [40], van der Vaart and Wellner [41], Dudley [42].
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Configuration Functions. An important class of functions satisfying the self-
bounding property consists of the so-called configuration functions defined by
Talagrand [11, section 7]. Our definition, taken from [25] is a slight modification
of Talagrand’s.

Assume that we have a property P defined over the union of finite products
of a set X , that is, a sequence of sets P1 ∈ X , P2 ∈ X ×X , . . . , Pn ∈ X n. We say
that (x1, . . . xm) ∈ X m satisfies the property P if (x1, . . . xm) ∈ Pm. We assume
that P is hereditary in the sense that if (x1, . . . xm) satisfies P then so does any
subsequence (xi1 , . . . xik

) of (x1, . . . xm). The function gn that maps any tuple
(x1, . . . xn) to the size of the largest subsequence satisfying P is the configuration
function associated with property P .

Corollary 2 implies the following result:

Corollary 3. Let gn be a configuration function, and let Z = gn(X1, . . . , Xn),
where X1, . . . , Xn are independent random variables. Then for any t ≥ 0,

Var(Z) ≤ EZ .

Proof. By Corollary 2 it suffices to show that any configuration function is
self bounding. Let Zi = gn−1(X1, . . . , Xi−1, Xi+1, . . . , Xn). The condition 0 ≤
Z − Zi ≤ 1 is trivially satisfied. On the other hand, assume that Z = k and
let {Xi1 , . . . , Xik

} ⊂ {X1, . . . , Xn} be a subsequence of cardinality k such that
fk(Xi1 , . . . , Xik

) = k. (Note that by the definition of a configuration function
such a subsequence exists.) Clearly, if the index i is such that i /∈ {i1, . . . , ik}
then Z = Zi, and therefore

n∑

i=1

(Z − Zi) ≤ Z

is also satisfied, which concludes the proof. �

To illustrate the fact that configuration functions appear rather naturally in
various applications, we describe a prototypical example:

Example. vc dimension. One of the central quantities in statistical learning
theory is the Vapnik-Chervonenkis dimension, see Vapnik and Chervonenkis [38,
56], Blumer, Ehrenfeucht, Haussler, and Warmuth [57], Devroye, Györfi, and
Lugosi [39], Anthony and Bartlett [58], Vapnik [40], etc.

Let A be an arbitrary collection of subsets of X , and let xn
1 = (x1, . . . , xn)

be a vector of n points of X . Define the trace of A on xn
1 by

tr(xn
1 ) = {A ∩ {x1, . . . , xn} : A ∈ A} .

The shatter coefficient, (or Vapnik-Chervonenkis growth function) of A in
xn

1 is T (xn
1 ) = |tr(xn

1 )|, the size of the trace. T (xn
1 ) is the number of different

subsets of the n-point set {x1, . . . , xn} generated by intersecting it with ele-
ments of A. A subset {xi1 , . . . , xik

} of {x1, . . . , xn} is said to be shattered if
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2k = T (xi1 , . . . , xik
). The vc dimension D(xn

1 ) of A (with respect to xn
1 ) is the

cardinality k of the largest shattered subset of xn
1 . From the definition it is obvi-

ous that gn(xn
1 ) = D(xn

1 ) is a configuration function (associated to the property
of “shatteredness”, and therefore if X1, . . . , Xn are independent random vari-
ables, then

Var(D(Xn
1 )) ≤ ED(Xn

1 ) .

3 The Entropy Method

In the previous section we saw that the Efron-Stein inequality serves as a pow-
erful tool for bounding the variance of general functions of independent random
variables. Then, via Chebyshev’s inequality, one may easily bound the tail prob-
abilities of such functions. However, just as in the case of sums of independent
random variables, tail bounds based on inequalities for the variance are often
not satisfactory, and essential improvements are possible. The purpose of this
section is to present a methodology which allows one to obtain exponential tail
inequalities in many cases. The pursuit of such inequalities has been an impor-
tant topics in probability theory in the last few decades. Originally, martingale
methods dominated the research (see, e.g., McDiarmid [2, 3], Rhee and Tala-
grand [59], Shamir and Spencer [60]) but independently information-theoretic
methods were also used with success (see Alhswede, Gács, and Körner [4], Mar-
ton [5, 6, 7], Dembo [8], Massart [9], Rio [10], and Samson [61]). Talagrand’s
induction method [11, 12, 13] caused an important breakthrough both in the
theory and applications of exponential concentration inequalities. In this section
we focus on so-called “entropy method”, based on logarithmic Sobolev inequal-
ities developed by Ledoux [20, 21], see also Bobkov and Ledoux [22], Massart
[23], Rio [10], Boucheron, Lugosi, and Massart [25], [26], and Bousquet [27, 28].
This method makes it possible to derive exponential analogues of the Efron-Stein
inequality perhaps the simplest way.

The method is based on an appropriate modification of the “tensorization”
inequality Theorem 4. In order to prove this modification, we need to recall some
of the basic notions of information theory. To keep the material at an elementary
level, we prove the modified tensorization inequality for discrete random variables
only. The extension to arbitrary distributions is straightforward.

3.1 Basic Information Theory

In this section we summarize some basic properties of the entropy of a discrete-
valued random variable. For a good introductory book on information theory we
refer to Cover and Thomas [62].

Let X be a random variable taking values in the countable set X with dis-
tribution P{X = x} = p(x), x ∈ X . The entropy of X is defined by

H(X) = E[− log p(X)] = −
∑

x∈X
p(x) log p(x)
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(where log denotes natural logarithm and 0 log 0 = 0). If X, Y is a pair of discrete
random variables taking values in X × Y then the joint entropy H(X, Y ) of X
and Y is defined as the entropy of the pair (X, Y ). The conditional entropy
H(X|Y ) is defined as

H(X|Y ) = H(X, Y ) − H(Y ) .

Observe that if we write p(x, y) = P{X = x, Y = y} and p(x|y) = P{X =
x|Y = y} then

H(X|Y ) = −
∑

x∈X ,y∈Y
p(x, y) log p(x|y)

from which we see that H(X|Y ) ≥ 0. It is also easy to see that the defining
identity of the conditional entropy remains true conditionally, that is, for any
three (discrete) random variables X, Y, Z,

H(X, Y |Z) = H(Y |Z) + H(X|Y, Z) .

(Just add H(Z) to both sides and use the definition of the conditional en-
tropy.) A repeated application of this yields the chain rule for entropy: for arbi-
trary discrete random variables X1, . . . , Xn,

H(X1, . . . , Xn)=H(X1)+H(X2|X1)+H(X3|X1, X2)+· · ·+H(Xn|X1, . . . ,Xn−1).

Let P and Q be two probability distributions over a countable set X with
probability mass functions p and q. Then the Kullback-Leibler divergence or
relative entropy of P and Q is

D(P‖Q) =
∑

x∈X
p(x) log

p(x)
q(x)

.

Since log x ≤ x − 1,

D(P‖Q) = −
∑

x∈X
p(x) log

q(x)
p(x)

≥ −
∑

x∈X
p(x)

(
q(x)
p(x)

− 1
)

= 0 ,

so that the relative entropy is always nonnegative, and equals zero if and only if
P = Q. This simple fact has some interesting consequences. For example, if X is
a finite set with N elements and X is a random variable with distribution P and
we take Q to be the uniform distribution over X then D(P‖Q) = log N − H(X)
and therefore the entropy of X never exceeds the logarithm of the cardinality of
its range.

Consider a pair of random variables X, Y with joint distribution PX,Y and
marginal distributions PX and PY . Noting that D(PX,Y ‖PX × PY ) = H(X) −
H(X|Y ), the nonnegativity of the relative entropy implies that H(X) ≥ H(X|Y ),
that is, conditioning reduces entropy. It is similarly easy to see that this fact re-
mains true for conditional entropies as well, that is,

H(X|Y ) ≥ H(X|Y, Z) .
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Now we may prove the following inequality of Han [63]

Theorem 7. han’s inequality. Let X1, . . . , Xn be discrete random variables.
Then

H(X1, . . . , Xn) ≤ 1
n − 1

n∑

i=1

H(X1, . . . , Xi−1, Xi+1, . . . , Xn)

Proof. For any i = 1, . . . , n, by the definition of the conditional entropy and
the fact that conditioning reduces entropy,

H(X1, . . . , Xn)
= H(X1, . . . , Xi−1, Xi+1, . . . , Xn) + H(Xi|X1, . . . , Xi−1, Xi+1, . . . , Xn)
≤ H(X1, . . . , Xi−1, Xi+1, . . . , Xn) + H(Xi|X1, . . . , Xi−1) i = 1, . . . , n .

Summing these n inequalities and using the chain rule for entropy, we get

nH(X1, . . . , Xn) ≤
n∑

i=1

H(X1, . . . , Xi−1, Xi+1, . . . , Xn) + H(X1, . . . , Xn)

which is what we wanted to prove. �

We finish this section by an inequality which may be regarded as a version
of Han’s inequality for relative entropies. As it was pointed out by Massart [44],
this inequality may be used to prove the key tensorization inequality of the next
section.

To this end, let X be a countable set, and let P and Q be probability distri-
butions on X n such that P = P1 ×· · ·×Pn is a product measure. We denote the
elements of X n by xn

1 = (x1, . . . , xn) and write x(i) = (x1, . . . , xi−1, xi+1, . . . , xn)
for the (n − 1)-vector obtained by leaving out the i-th component of xn

1 . Denote
by Q(i) and P (i) the marginal distributions of xn

1 according to Q and P , that is,

Q(i)(x) =
∑

x∈X
Q(x1, . . . , xi−1, x, xi+1, . . . , xn)

and

P (i)(x) =
∑

x∈X
P (x1, . . . , xi−1, x, xi+1, . . . , xn)

=
∑

x∈X
P1(x1) · · ·Pi−1(xi−1)Pi(x)Pi+1(xi+1) · · ·Pn(xn) .

Then we have the following.

Theorem 8. han’s inequality for relative entropies.

D(Q‖P ) ≥ 1
n − 1

n∑

i=1

D(Q(i)‖P (i))

or equivalently,

D(Q‖P ) ≤
n∑

i=1

(
D(Q‖P ) − D(Q(i)‖P (i))

)
.
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Proof. The statement is a straightforward consequence of Han’s inequality.
Indeed, Han’s inequality states that

∑

xn
1 ∈X n

Q(xn
1 ) log Q(xn

1 ) ≥ 1
n − 1

n∑

i=1

∑

x(i)∈X n−1

Q(i)(x(i)) log Q(i)(x(i)) .

Since

D(Q‖P ) =
∑

xn
1 ∈X n

Q(xn
1 ) log Q(xn

1 ) −
∑

xn
1 ∈X n

Q(xn
1 ) log P (xn

1 )

and

D(Q(i)‖P (i)) =
∑

x(i)∈X n−1

(
Q(i)(x(i)) log Q(i)(x(i)) − Q(i)(x(i)) log P (i)(x(i))

)
,

it suffices to show that

∑

xn
1 ∈X n

Q(xn
1 ) log P (xn

1 ) =
1

n − 1

n∑

i=1

∑

x(i)∈X n−1

Q(i)(x(i)) log P (i)(x(i)) .

This may be seen easily by noting that by the product property of P , we have
P (xn

1 ) = P (i)(x(i))Pi(xi) for all i, and also P (xn
1 ) =

∏n
i=1 Pi(xi), and therefore

∑

xn
1 ∈X n

Q(xn
1 ) log P (xn

1 ) =
1
n

n∑

i=1

∑

xn
1 ∈X n

Q(xn
1 )
(
log P (i)(x(i)) + log Pi(xi)

)

=
1
n

n∑

i=1

∑

xn
1 ∈X n

Q(xn
1 ) log P (i)(x(i)) +

1
n

Q(xn
1 ) log P (xn

i ) .

Rearranging, we obtain

∑

xn
1 ∈X n

Q(xn
1 ) log P (xn

1 ) =
1

n − 1

n∑

i=1

∑

xn
1 ∈X n

Q(xn
1 ) log P (i)(x(i))

=
1

n − 1

n∑

i=1

∑

x(i)∈X n−1

Q(i)(x(i)) log P (i)(x(i))

where we used the defining property of Q(i). �

3.2 Tensorization of the Entropy

We are now prepared to prove the main exponential concentration inequalities
of these notes. Just as in Section 2, we let X1, . . . , Xn be independent random
variables, and investigate concentration properties of Z = g(X1, . . . , Xn). The
basis of Ledoux’s entropy method is a powerful extension of Theorem 4. Note
that Theorem 4 may be rewritten as
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Var(Z) ≤
n∑

i=1

E
[
Ei(Z2) − (Ei(Z))2

]

or, putting φ(x) = x2,

Eφ(Z) − φ(EZ) ≤
n∑

i=1

E [Eiφ(Z) − φ(Ei(Z))] .

As it turns out, this inequality remains true for a large class of convex func-
tions φ, see Beckner [64], Lata�la and Oleszkiewicz [65], Ledoux [20], Boucheron,
Bousquet, Lugosi, and Massart [29], and Chafäı [66]. The case of interest in our
case is when φ(x) = x log x. In this case, as seen in the proof below, the left-
hand side of the inequality may be written as the relative entropy between the
distribution induced by Z on X n and the distribution of Xn

1 . Hence the name
“tensorization inequality of the entropy”, (see, e.g., Ledoux [20]).

Theorem 9. Let φ(x) = x log x for x > 0. Let X1 . . . , Xn be independent ran-
dom variables taking values in X and let f be a positive-valued function on X n.
Letting Y = f(X1, . . . , Xn), we have

Eφ(Y ) − φ(EY ) ≤
n∑

i=1

E [Eiφ(Y ) − φ(Ei(Y ))] .

Proof. We only prove the statement for discrete random variables X1 . . . , Xn.
The extension to the general case is technical but straightforward. The theorem
is a direct consequence of Han’s inequality for relative entropies. First note that
if the inequality is true for a random variable Y then it is also true for cY where
c is a positive constant. Hence we may assume that EY = 1. Now define the
probability measure Q on X n by

Q(xn
1 ) = f(xn

1 )P (xn
1 )

where P denotes the distribution of Xn
1 = X1, . . . , Xn. Then clearly,

Eφ(Y ) − φ(EY ) = E[Y log Y ] = D(Q‖P )

which, by Theorem 8, does not exceed
∑n

i=1

(
D(Q‖P ) − D(Q(i)‖P (i))

)
. How-

ever, straightforward calculation shows that

n∑

i=1

(
D(Q‖P ) − D(Q(i)‖P (i))

)
=

n∑

i=1

E [Eiφ(Y ) − φ(Ei(Y ))]

and the statement follows. �

The main idea in Ledoux’s entropy method for proving concentration in-
equalities is to apply Theorem 9 to the positive random variable Y = esZ . Then,
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denoting the moment generating function of Z by F (s) = E[esZ ], the left-hand
side of the inequality in Theorem 9 becomes

sE
[
ZesZ

]− E
[
esZ

]
log E

[
esZ

]
= sF ′(s) − F (s) log F (s) .

Our strategy, then is to derive upper bounds for the derivative of F (s) and
derive tail bounds via Chernoff’s bounding. To do this in a convenient way, we
need some further bounds for the right-hand side of the inequality in Theorem 9.
This is the purpose of the next section.

3.3 Logarithmic Sobolev Inequalities

Recall from Section 2 that we denote Zi = gi(X1, . . . , Xi−1, Xi+1, . . . , Xn) where
gi is some function over X n−1. Below we further develop the right-hand side of
Theorem 9 to obtain important inequalities which serve as the basis in deriving
exponential concentration inequalities. These inequalities are closely related to
the so-called logarithmic Sobolev inequalities of analysis, see Ledoux [20, 67, 68],
Massart [23].

First we need the following technical lemma:

Lemma 2. Let Y denote a positive random variable. Then for any u > 0,

E[Y log Y ] − (EY ) log(EY ) ≤ E[Y log Y − Y log u − (Y − u)] .

Proof. As for any x > 0, log x ≤ x − 1, we have

log
u

EY
≤ u

EY
− 1 ,

hence
EY log

u

EY
≤ u − EY

which is equivalent to the statement. �

Theorem 10. a logarithmic sobolev inequality. Denote ψ(x) = ex −x−
1. Then

sE
[
ZesZ

]− E
[
esZ

]
log E

[
esZ

] ≤
n∑

i=1

E
[
esZψ (−s(Z − Zi))

]
.

Proof. We bound each term on the right-hand side of Theorem 9. Note that
Lemma 2 implies that if Yi is a positive function of X1, . . . , Xi−1, Xi+1, . . . , Xn,
then

Ei(Y log Y ) − Ei(Y ) log Ei(Y ) ≤ Ei [Y (log Y − log Yi) − (Y − Yi)]

Applying the above inequality to the variables Y = esZ and Yi = esZi , one
gets

Ei(Y log Y ) − Ei(Y ) log Ei(Y ) ≤ Ei

[
esZψ(−s(Z − Z(i)))

]

and the proof is completed by Theorem 9. �
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The following symmetrized version, due to Massart [23], will also be useful.
Recall that Z ′

i = g(X1, . . . , X
′
i, . . . , Xn) where the X ′

i are independent copies of
the Xi.

Theorem 11. symmetrized logarithmic sobolev inequality. If ψ is de-
fined as in Theorem 10 then

sE
[
ZesZ

]− E
[
esZ

]
log E

[
esZ

] ≤
n∑

i=1

E
[
esZψ (−s(Z − Z ′

i))
]
.

Moreover, denote τ(x) = x(ex − 1). Then for all s ∈ R,

sE
[
ZesZ

]− E
[
esZ

]
log E

[
esZ

] ≤
n∑

i=1

E
[
esZτ(−s(Z − Z ′

i))1Z>Z′
i

]
,

sE
[
ZesZ

]− E
[
esZ

]
log E

[
esZ

] ≤
n∑

i=1

E
[
esZτ(s(Z ′

i − Z))1Z<Z′
i

]
.

Proof. The first inequality is proved exactly as Theorem 10, just by noting
that, just like Zi, Z ′

i is also independent of Xi. To prove the second and third
inequalities, write

esZψ (−s(Z − Z ′
i)) = esZψ (−s(Z − Z ′

i)) 1Z>Z′
i
+ esZψ (s(Z ′

i − Z)) 1Z<Z′
i

.

By symmetry, the conditional expectation of the second term may be written
as

Ei

[
esZψ (s(Z ′

i − Z)) 1Z<Z′
i

]
= Ei

[
esZ′

iψ (s(Z − Z ′
i)) 1Z>Z′

i

]

= Ei

[
esZe−s(Z−Z′

i)ψ (s(Z − Z ′
i)) 1Z>Z′

i

]
.

Summarizing, we have

E
[
esZψ (−s(Z − Z ′

i))
]

= Ei

[(
ψ (−s(Z − Z ′

i)) + e−s(Z−Z′
i)ψ (s(Z − Z ′

i))
)

esZ1Z>Z′
i

]
.

The second inequality of the theorem follows simply by noting that
ψ(x) + exψ(−x) = x(ex − 1) = τ(x). The last inequality follows similarly. �

3.4 First Example: Bounded Differences and More

The purpose of this section is to illustrate how the logarithmic Sobolev inequal-
ities shown in the previous section may be used to obtain powerful exponential
concentration inequalities. The first result is rather easy to obtain, yet it turns
out to be very useful. Also, its proof is prototypical, in the sense that it shows,
in a transparent way, the main ideas.
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Theorem 12. Assume that there exists a positive constant C such that, almost
surely,

n∑

i=1

(Z − Z ′
i)

2 ≤ C .

Then for all t > 0,

P [|Z − EZ| > t] ≤ 2e−t2/4C .

Proof. Observe that for x > 0, τ(−x) ≤ x2, and therefore, for any s > 0,
Theorem 11 implies

sE
[
ZesZ

]− E
[
esZ

]
log E

[
esZ

] ≤ E

[

esZ
n∑

i=1

s2(Z − Z ′
i)

21Z>Z′
i

]

≤ s2
E

[

esZ
n∑

i=1

(Z − Z ′
i)

2

]

≤ s2CE
[
esZ

]
,

where at the last step we used the assumption of the theorem. Now denoting the
moment generating function of Z by F (s) = E

[
esZ

]
, the above inequality may

be re-written as

sF ′(s) − F (s) log F (s) ≤ Cs2F (s) .

After dividing both sides by s2F (s), we observe that the left-hand side is just
the derivative of H(s) = s−1 log F (s), that is, we obtain the inequality

H ′(s) ≤ C .

By l’Hospital’s rule we note that lims→0 H(s) = F ′(0)/F (0) = EZ, so by
integrating the above inequality, we get H(s) ≤ EZ + sC, or in other words,

F (s) ≤ esEZ+s2C .

Now by Markov’s inequality,

P [Z > EZ + t] ≤ F (s)e−sEZ−st ≤ es2C−st .

Choosing s = t/2C, the upper bound becomes e−t2/4C . Replace Z by −Z to
obtain the same upper bound for P [Z < EZ − t]. �

Remark. It is easy to see that the condition of Theorem 12 may be relaxed in
the following way: if

E

[
n∑

i=1

(Z − Z ′
i)

21Z>Z′
i

∣
∣
∣X

]

≤ c

then for all t > 0,
P [Z > EZ + t] ≤ e−t2/4c
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and if

E

[
n∑

i=1

(Z − Z ′
i)

21Z′
i>Z

∣
∣
∣X

]

≤ c ,

then

P [Z < EZ − t] ≤ e−t2/4c .

An immediate corollary of Theorem 12 is a subgaussian tail inequality for
functions of bounded differences.

Corollary 4. bounded differences inequality. Assume the function g sat-
isfies the bounded differences assumption with constants c1, . . . , cn, then

P [|Z − EZ| > t] ≤ 2e−t2/4C

where C =
∑n

i=1 c2
i .

We remark here that the constant appearing in this corollary may be im-
proved. Indeed, using the martingale method, McDiarmid [2] showed that under
the conditions of Corollary 4,

P [|Z − EZ| > t] ≤ 2e−2t2/C

(see the exercises). Thus, we have been able to extend Corollary 1 to an expo-
nential concentration inequality. Note that by combining the variance bound of
Corollary 1 with Chebyshev’s inequality, we only obtained

P [|Z − EZ| > t] ≤ C

2t2

and therefore the improvement is essential. Thus the applications of Corollary 1
in all the examples shown in Section 2.1 are now improved in an essential way
without further work.

However, Theorem 12 is much stronger than Corollary 4. To understand why,
just observe that the conditions of Theorem 12 do not require that g has bounded
differences. All that’s required is that

sup
x1,...,xn,

x′
1,...,x′

n∈X

n∑

i=1

|g(x1, . . . , xn) − g(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)|2 ≤

n∑

i=1

c2
i ,

an obviously much milder requirement.

3.5 Exponential Inequalities for Self-Bounding Functions

In this section we prove exponential concentration inequalities for self-bounding
functions discussed in Section 2.2. Recall that a variant of the Efron-Stein in-
equality (Theorem 2) implies that for self-bounding functions Var(Z) ≤ E(Z).
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Based on the logarithmic Sobolev inequality of Theorem 10 we may now obtain
exponential concentration bounds. The theorem appears in Boucheron, Lugosi,
and Massart [25] and builds on techniques developed by Massart [23].

Recall the definition of following two functions that we have already seen in
Bennett’s inequality and in the logarithmic Sobolev inequalities above:

h (u) = (1 + u) log (1 + u) − u (u ≥ −1),
and ψ(v) = sup

u≥−1
[uv − h(u)] = ev − v − 1 .

Theorem 13. Assume that g satisfies the self-bounding property. Then for every
s ∈ R,

log E

[
es(Z−EZ)

]
≤ EZψ(s) .

Moreover, for every t > 0,

P [Z ≥ EZ + t] ≤ exp
[

−EZh

(
t

EZ

)]

and for every 0 < t ≤ EZ,

P [Z ≤ EZ − t] ≤ exp
[

−EZh

(

− t

EZ

)]

By recalling that h(u) ≥ u2/(2 + 2u/3) for u ≥ 0 (we have already used this
in the proof of Bernstein’s inequality) and observing that h(u) ≥ u2/2 for u ≤ 0,
we obtain the following immediate corollaries: for every t > 0,

P [Z ≥ EZ + t] ≤ exp
[

− t2

2EZ + 2t/3

]

and for every 0 < t ≤ EZ,

P [Z ≤ EZ − t] ≤ exp
[

− t2

2EZ

]

.

Proof. We apply Lemma 10. Since the function ψ is convex with ψ (0) = 0, for
any s and any u ∈ [0, 1] , ψ(−su) ≤ uψ(−s). Thus, since Z −Zi ∈ [0, 1], we have
that for every s, ψ(−s (Z − Zi)) ≤ (Z − Zi) ψ(−s) and therefore, Lemma 10 and
the condition

∑n
i=1(Z − Zi) ≤ Z imply that

sE
[
ZesZ

]− E
[
esZ

]
log E

[
esZ

] ≤ E

[

ψ(−s)esZ
n∑

i=1

(Z − Zi)

]

≤ ψ(−s)E
[
ZesZ

]
.

Introduce Z̃ = Z − E [Z] and define, for any s, F̃ (s) = E

[
esZ̃

]
. Then the

inequality above becomes

[s − ψ(−s)]
F̃ ′(s)
F̃ (s)

− log F̃ (s) ≤ EZψ(−s) ,
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which, writing G(s) = log F (s), implies
(
1 − e−s

)
G′ (s) − G (s) ≤ EZψ (−s) .

Now observe that the function G0 = EZψ is a solution of the ordinary dif-
ferential equation (1 − e−s) G′ (s) − G (s) = EZψ (−s). We want to show that
G ≤ G0. In fact, if G1 = G − G0, then

(
1 − e−s

)
G′

1 (s) − G1 (s) ≤ 0. (2)

Hence, defining G̃(s) = G1 (s) /(es − 1), we have
(
1 − e−s

)
(es − 1) G̃′(s) ≤ 0.

Hence G̃′ is non-positive and therefore G̃ is non-increasing. Now, since Z̃ is
centered G′

1 (0) = 0. Using the fact that s(es −1)−1 tends to 1 as s goes to 0, we
conclude that G̃(s) tends to 0 as s goes to 0. This shows that G̃ is non-positive
on (0,∞) and non-negative over (−∞, 0), hence G1 is everywhere non-positive,
therefore G ≤ G0 and we have proved the first inequality of the theorem. The
proof of inequalities for the tail probabilities may be completed by Chernoff’s
bounding:

P [Z − E [Z] ≥ t] ≤ exp
[

− sup
s>0

(ts − EZψ (s))
]

and

P [Z − E [Z] ≤ −t] ≤ exp
[

− sup
s<0

(−ts − EZψ (s))
]

.

The proof is now completed by using the easy-to-check (and well-known)
relations

sup
s>0

[ts − EZψ (s)] = EZh (t/EZ) for t > 0

sup
s<0

[−ts − EZψ(s)] = EZh(−t/EZ) for 0 < t ≤ EZ.

�

3.6 VC Entropy

Theorems 2 and 13 provide concentration inequalities for functions having the
self-bounding property. In Section 2.2 several examples of such functions are
discussed. The purpose of this section is to show that the so-called vc entropy
is a self-bounding function.

The Vapnik-Chervonenkis (or vc) entropy is closely related to the vc dimen-
sion discussed in Section 2.2. Let A be an arbitrary collection of subsets of X ,
and let xn

1 = (x1, . . . , xn) be a vector of n points of X . Recall that the shatter
coefficient is defined as the size of the trace of A on xn

1 , that is,

T (xn
1 ) = |tr(xn

1 )| = |{A ∩ {x1, . . . , xn} : A ∈ A}| .
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The vc entropy is defined as the logarithm of the shatter coefficient, that is,

h(xn
1 ) = log2 T (xn

1 ) .

Lemma 3. The vc entropy has the self-bounding property.

Proof. We need to show that there exists a function h′ of n − 1 variables
such that for all i = 1, . . . , n, writing x(i) = (x1, . . . , xi−1, xi+1, . . . , xn), 0 ≤
h(xn

1 ) − h′(x(i)) ≤ 1 and

n∑

i=1

(
h(xn

1 ) − h′(x(i))
)

≤ h(xn
1 ).

We define h′ the natural way, that is, as the entropy based on the n−1 points
in its arguments. Then clearly, for any i, h′(x(i)) ≤ h(xn

1 ), and the difference
cannot be more than one. The nontrivial part of the proof is to show the second
property. We do this using Han’s inequality (Theorem 7).

Consider the uniform distribution over the set tr(xn
1 ). This defines a random

vector Y = (Y1, . . . , Yn) ∈ Yn. Then clearly,

h(xn
1 ) = log2 |tr(xn

1 )(x)| =
1

ln 2
H(Y1, . . . , Yn)

where H(Y1, . . . , Yn) is the (joint) entropy of Y1, . . . , Yn. Since the uniform dis-
tribution maximizes the entropy, we also have, for all i ≤ n, that

h′(x(i)) ≥ 1
ln 2

H(Y1, . . . , Yi−1, Yi+1, . . . , Yn).

Since by Han’s inequality

H(Y1, . . . , Yn) ≤ 1
n − 1

n∑

i=1

H(Y1, . . . , Yi−1, Yi+1, . . . , Yn),

we have
n∑

i=1

(
h(xn

1 ) − h′(x(i))
)

≤ h(xn
1 )

as desired. �

The above lemma, together with Theorems 2 and 12 immediately implies the
following:

Corollary 5. Let X1, . . . , Xn be independent random variables taking their val-
ues in X and let Z = h(Xn

1 ) denote the random vc entropy. Then Var(Z) ≤
E[Z], for t > 0

P [Z ≥ EZ + t] ≤ exp
[

− t2

2EZ + 2t/3

]

,

and for every 0 < t ≤ EZ,
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P [Z ≤ EZ − t] ≤ exp
[

− t2

2EZ

]

.

Moreover, for the random shatter coefficient T (Xn
1 ), we have

E log2 T (Xn
1 ) ≤ log2 ET (Xn

1 ) ≤ log2 eE log2 T (Xn
1 ) .

Note that the left-hand side of the last statement follows from Jensen’s in-
equality, while the right-hand side by taking s = ln 2 in the first inequality of The-
orem 13. This last statement shows that the expected vc entropy E log2 T (Xn

1 )
and the annealed vc entropy are tightly connected, regardless of the class of sets
A and the distribution of the Xi’s. We note here that this fact answers, in a
positive way, an open question raised by Vapnik [69, pages 53–54]: the empirical
risk minimization procedure is non-trivially consistent and rapidly convergent if
and only if the annealed entropy rate (1/n) log2 E[T (X)] converges to zero. For
the definitions and discussion we refer to [69].

3.7 Variations on the Theme

In this section we show how the techniques of the entropy method for proving
concentration inequalities may be used in various situations not considered so
far. The versions differ in the assumptions on how

∑n
i=1(Z − Z ′

i)
2 is controlled

by different functions of Z. For various other versions with applications we refer
to Boucheron, Lugosi, and Massart [26]. In all cases the upper bound is roughly
of the form e−t2/σ2

where σ2 is the corresponding Efron-Stein upper bound on
Var(Z). The first inequality may be regarded as a generalization of the upper
tail inequality in Theorem 13.

Theorem 14. Assume that there exist positive constants a and b such that
n∑

i=1

(Z − Z ′
i)

21Z>Z′
i
≤ aZ + b .

Then for s ∈ (0, 1/a),

log E[exp(s(Z − E[Z]))] ≤ s2

1 − as
(aEZ + b)

and for all t > 0,

P {Z > EZ + t} ≤ exp
( −t2

4aEZ + 4b + 2at

)

.

Proof. Let s > 0. Just like in the first steps of the proof of Theorem 12, we use
the fact that for x > 0, τ(−x) ≤ x2, and therefore, by Theorem 11 we have

sE
[
ZesZ

]− E
[
esZ

]
log E

[
esZ

] ≤ E

[

esZ
n∑

i=1

(Z − Z ′
i)

21Z>Z′
i

]

≤ s2 (aE
[
ZesZ

]
+ bE

[
esZ

])
,

where at the last step we used the assumption of theorem.
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Denoting, once again, F (s) = E
[
esZ

]
, the above inequality becomes

sF ′(s) − F (s) log F (s) ≤ as2F ′(s) + bs2F (s) .

After dividing both sides by s2F (s), once again we see that the left-hand side
is just the derivative of H(s) = s−1 log F (s), so we obtain

H ′(s) ≤ a(log F (s))′ + b .

Using the fact that lims→0 H(s) = F ′(0)/F (0) = EZ and log F (0) = 0, and
integrating the inequality, we obtain

H(s) ≤ EZ + a log F (s) + bs ,

or, if s < 1/a,

log E[s(Z − E[Z])] ≤ s2

1 − as
(aEZ + b) ,

proving the first inequality. The inequality for the upper tail now follows by
Markov’s inequality and the following technical lemma whose proof is left as an
exercise. �

Lemma 4. Let C and a denote two positive real numbers and denote h1(x) =
1 + x − √

1 + 2x. Then

sup
λ∈[0,1/a)

(

λt − Cλ2

1 − aλ

)

=
2C

a2 h1

(
at

2C

)

≥ t2

2
(
2C + at

)

and the supremum is attained at

λ =
1
a

(

1 −
(

1 +
at

C

)−1/2
)

.

Also,

sup
λ∈[0,∞)

(

λt − Cλ2

1 + aλ

)

=
2C

a2 h1

(−at

2C

)

≥ t2

4C

if t < C/a and the supremum is attained at

λ =
1
a

((

1 − at

C

)−1/2

− 1

)

.

There is a subtle difference between upper and lower tail bounds. Bounds
for the lower tail P {Z < EZ − t} may be easily derived, due to Chebyshev’s
association inequality which states that if X is a real-valued random variable
and f is a nonincreasing and g is a nondecreasing function, then

E[f(X)g(X)] ≤ E[f(X)]E[g(X)]| .
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Theorem 15. Assume that for some nondecreasing function g,

n∑

i=1

(Z − Z ′
i)

21Z<Z′
i
≤ g(Z) .

Then for all t > 0,

P [Z < EZ − t] ≤ exp
( −t2

4E[g(Z)]

)

.

Proof. To prove lower-tail inequalities we obtain upper bounds for F (s) =
E[exp(sZ)] with s < 0. By the third inequality of Theorem 11,

sE
[
ZesZ

]− E
[
esZ

]
log E

[
esZ

]

≤
n∑

i=1

E
[
esZτ(s(Z ′

i − Z))1Z<Z′
i

]

≤
n∑

i=1

E
[
esZs2(Z ′

i − Z)21Z<Z′
i

]

(using s < 0 and that τ(−x) ≤ x2 for x > 0)

= s2
E

[

esZ
n∑

i=1

(Z − Z ′
i)

21Z<Z′
i

]

≤ s2
E
[
esZg(Z)

]
.

Since g(Z) is a nondecreasing and esZ is a decreasing function of Z, Cheby-
shev’s association inequality implies that

E
[
esZg(Z)

] ≤ E
[
esZ

]
E[g(Z)] .

Thus, dividing both sides of the obtained inequality by s2F (s) and writing
H(s) = (1/s) log F (s), we obtain

H ′(s) ≤ E[g(Z)] .

Integrating the inequality in the interval [s, 0) we obtain

F (s) ≤ exp(s2
E[g(Z)] + sE[Z]) .

Markov’s inequality and optimizing in s now implies the theorem. �

The next result is useful when one is interested in lower-tail bounds but∑n
i=1(Z − Z ′

i)
21Z<Z′

i
is difficult to handle. In some cases

∑n
i=1(Z − Z ′

i)
21Z>Z′

i

is easier to bound. In such a situation we need the additional guarantee that
|Z −Z ′

i| remains bounded. Without loss of generality, we assume that the bound
is 1.
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Theorem 16. Assume that there exists a nondecreasing function g such that∑n
i=1(Z − Z ′

i)
21Z>Z′

i
≤ g(Z) and for any value of Xn

1 and Xi
′, |Z − Z ′

i| ≤ 1.
Then for all K > 0, s ∈ [0, 1/K)

log E
[
exp(−s(Z − E[Z]))

] ≤ s2 τ(K)
K2 E[g(Z)] ,

and for all t > 0, with t ≤ (e − 1)E[g(Z)] we have

P [Z < EZ − t] ≤ exp
(

− t2

4(e − 1)E[g(Z)]

)

.

Proof. The key observation is that the function τ(x)/x2 = (ex − 1)/x is in-
creasing if x > 0. Choose K > 0. Thus, for s ∈ (−1/K, 0), the second inequality
of Theorem 11 implies that

sE
[
ZesZ

]− E
[
esZ

]
log E

[
esZ

] ≤
n∑

i=1

E

[
esZτ(−s(Z − Z(i)))1Z>Z′

i

]

≤ s2 τ(K)
K2 E

[

esZ
n∑

i=1

(Z − Z(i))21Z>Z′
i

]

≤ s2 τ(K)
K2 E

[
g(Z)esZ

]
,

where at the last step we used the assumption of the theorem.
Just like in the proof of Theorem 15, we bound E

[
g(Z)esZ

]
by E[g(Z)]E

[
esZ

]
.

The rest of the proof is identical to that of Theorem 15. Here we took K = 1. �

Finally we give, without proof, an inequality (due to Bousquet [28]) for
functions satisfying conditions similar but weaker than the self-bounding con-
ditions. This is very useful for suprema of empirical processes for which the
non-negativity assumption does not hold.

Theorem 17. Assume Z satisfies
∑n

i=1 Z − Zi ≤ Z, and there exist random
variables Yi such that for all i = 1, . . . , n, Yi ≤ Z − Zi ≤ 1, Yi ≤ a for some
a > 0 and EiYi ≥ 0. Also, let σ2 be a real number such that

σ2 ≥ 1
n

n∑

i=1

Ei[Y 2
i ] .

We obtain for all t > 0,

P {Z ≥ EZ + t} ≤ exp
(

−vh

(
t

v

))

,

where v = (1 + a)EZ + nσ2.

An important application of the above theorem is the following version of
Talagrand’s concentration inequality for empirical processes. The constants ap-
pearing here were obtained by Bousquet [27].
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Corollary 6. Let F be a set of functions that satisfy Ef(Xi) = 0 and supf∈F
sup f ≤ 1. We denote

Z = sup
f∈F

n∑

i=1

f(Xi) .

Let σ be a positive real number such that nσ2 ≥ ∑n
i=1 supf∈F E[f2(Xi)], then

for all t ≥ 0, we have

P {Z ≥ EZ + t} ≤ exp
(

−vh

(
t

v

))

,

with v = nσ2 + 2EZ.
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10. Rio, E.: Inégalités de concentration pour les processus empiriques de classes de
parties. Probability Theory and Related Fields 119 (2001) 163–175

11. Talagrand, M.: Concentration of measure and isoperimetric inequalities in product
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22. Bobkov, S., Ledoux, M.: Poincaré’s inequalities and Talagrands’s concentration
phenomenon for the exponential distribution. Probability Theory and Related
Fields 107 (1997) 383–400

23. Massart, P.: About the constants in Talagrand’s concentration inequalities for
empirical processes. Annals of Probability 28 (2000) 863–884
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de la Faculté des Sciencies de Toulouse IX (2000) 245–303
45. Bartlett, P., Boucheron, S., Lugosi, G.: Model selection and error estimation.

Machine Learning 48 (2001) 85–113
46. Lugosi, G., Wegkamp, M.: Complexity regularization via localized random penal-

ties. submitted (2003)
47. Bousquet, O.: New approaches to statistical learning theory. Annals of the Institute

of Statistical Mathematics 55 (2003) 371–389
48. Lugosi, G.: Pattern classification and learning theory. In Györfi, L., ed.: Principles

of Nonparametric Learning, Springer, Viena (2002) 5–62
49. Devroye, L., Györfi, L.: Nonparametric Density Estimation: The L1 View. John

Wiley, New York (1985)
50. Devroye, L.: The kernel estimate is relatively stable. Probability Theory and

Related Fields 77 (1988) 521–536
51. Devroye, L.: Exponential inequalities in nonparametric estimation. In Roussas, G.,

ed.: Nonparametric Functional Estimation and Related Topics, NATO ASI Series,
Kluwer Academic Publishers, Dordrecht (1991) 31–44

52. Devroye, L., Lugosi, G.: Combinatorial Methods in Density Estimation. Springer-
Verlag, New York (2000)

53. Koltchinskii, V.: Rademacher penalties and structural risk minimization. IEEE
Transactions on Information Theory 47 (2001) 1902–1914

54. Bartlett, P., Mendelson, S.: Rademacher and Gaussian complexities: risk bounds
and structural results. Journal of Machine Learning Research 3 (2002) 463–482

55. Bartlett, P., Bousquet, O., Mendelson, S.: Localized Rademacher complexities.
In: Proceedings of the 15th annual conference on Computational Learning Theory.
(2002) 44–48

56. Vapnik, V., Chervonenkis, A.: Theory of Pattern Recognition. Nauka, Moscow
(1974) (in Russian); German translation: Theorie der Zeichenerkennung, Akademie
Verlag, Berlin, 1979.

57. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.: Learnability and the
Vapnik-Chervonenkis dimension. Journal of the ACM 36 (1989) 929–965

58. Anthony, M., Bartlett, P.L.: Neural Network Learning: Theoretical Foundations.
Cambridge University Press, Cambridge (1999)

59. Rhee, W., Talagrand, M.: Martingales, inequalities, and NP-complete problems.
Mathematics of Operations Research 12 (1987) 177–181

60. Shamir, E., Spencer, J.: Sharp concentration of the chromatic number on random
graphs gn,p. Combinatorica 7 (1987) 374–384

61. Samson, P.M.: Concentration of measure inequalities for Markov chains and φ-
mixing processes. Annals of Probability 28 (2000) 416–461

62. Cover, T., Thomas, J.: Elements of Information Theory. John Wiley, New York
(1991)



240 S. Boucheron et al.

63. Han, T.: Nonnegative entropy measures of multivariate symmetric correlations.
Information and Control 36 (1978)
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