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1 Introduction

Among all resummation theories, high energy (or small-x) resummation certainly stands

out by its complexity. Indeed, while other resummation techniques — such as soft resum-

mation — have been pushed up to N3LL accuracy by now, high energy resummation is only

available up to the first non-trivial logarithmic order. Furthermore, we have only been able

to perform this kind of resummation with final states which are not strong interacting so far.

It is now more than forty years since the first pioneering works [1, 2] made it possible

to determine the singular small-x contributions to the DGLAP evolution at all orders in

the strong coupling αs(Q
2), where Q2 is the so-called hard scale of the process, and x is

the ratio of the latter to the partonic center-of-mass energy ŝ

x =
Q2

ŝ
. (1.1)

It was only several years later that high energy resummation reached the first non-trivial

logarithmic order accuracy [3–5], and anyway for inclusive cross sections alone.
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Recently, however, a new, but equivalent, approach to high energy factorization [6] has

led to the extension of this formalism to less inclusive observables: rapidity distributions

first [6], and then transverse momentum distributions [7]. Besides the mere theoretical

interest, these results opened up the possibility of describing final states in a more exclusive

way in the context of high energy resummation, thus making this theory more appealing

from the phenomenological point of view.

Moreover, the last few years have also seen significant developments in the study of

coloured final states within the high energy resummation formalism. A few techniques have

been proposed (e.g. see refs. [8–10]), which allow calculations of processes with coloured

final states to be performed in a much more efficient way than the general framework given

in terms of Lipatov’s effective action [11]. Given all such achievements, the time is ripe to

tackle the extension of high energy resummation to jet observables.

This paper represents the first step towards this goal: our target will be the evaluation

of the LLx behaviour of the gluon or quark transverse momentum distribution in the

partonic processes

g(q) + g(q)→ g +X, (1.2)

g(q) + q → q +X, (1.3)

where X is any extra partonic radiation. Note however that, since in the high energy limit

only gluon emission is not suppressed at LLx, the number of quarks (or anti-quarks) must

be the same in both the initial and the final state. Moreover, throughout all this paper,

we shall denote by q the singlet quark combination, which is the only combination coupled

to gluons and thus the only one exhibiting singular small-x behaviour. For a discussion

of the relation between singlet/non-singlet basis and standard quark/anti-quark basis we

refer for instance to refs. [12, 13].

All these partonic processes have been computed at fixed order up to NNLO in refs. [14–

16] in a fully exclusive calculation. Here, however, we are going to cross-check our LLx

predictions against fixed order results only up to NLO. At NNLO, in fact, the comparison

is not yet possible, since the evaluation of ref. [16] is only performed numerically, and no

partonic distribution can be extracted in analytic form.

It is worth noting that our parton level result could in principle be used to resum

several jet observables, such as the one-jet inclusive cross section or the leading jet pT
distribution. Furthermore, by using the definition of fragmentation functions, even the one-

hadron inclusive cross section is suited to be investigated by means of this technique. Here,

however, we will only be concerned with the theoretical development: we will highlight and

solve the technical and computational problems arising from the final state being coloured;

any phenomenological analysis is left to future research.

The interest in the generalization of high energy resummation to coloured final state

is not only theoretical. Indeed, the main motivation is currently the improvement of PDFs

fits. It has recently been shown that supplying fixed-order calculations with resummation

effects leads to a general improvement in the theoretical accuracy of the PDF fits in the rele-

vant kinematical region [19, 27]. On top of that, historically, the gluon distribution function
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is known to be most constrained by data coming from jet production and DIS. Since high

energy resummation for DIS is up to now well established [4, 20], high energy resummation

of jet production will represent a crucial step towards small-x resummed global PDFs fits.

This kind of resummation has also proven to be a very powerful tool to infer general

properties of a certain process, e.g. the effect of quark masses on the Higgs transverse

momentum spectrum [21]. Moreover, small-x resummed observables predict parts of the

exact results, which might even be still unknown at fixed order; given the complexity of

such calculations, any cross-check is most precious.

The paper is organized as follows. After a brief review of high energy resummation

of transverse momentum distributions in section 2, in section 3 we will present a new

simplified approach to the evaluation of the off-shell processes, and discuss the issue of

their gauge invariance. Then, section 4 will be devoted to the evaluation of all the required

off-shell cross sections. The computation will be performed using three different techniques

as a matter of cross-check. Finally, the impact factors of all the parton processes will

be collected in section 5, together with the corresponding small-x resummed transverse

momentum distributions, which will be cross-checked with the exact fixed-order results up

to order α3
s. Finally, conclusions are drawn in section 6.

2 High energy resummation of transverse momentum distributions

In this section we shall review the high energy factorization theorem for transverse mo-

mentum distributions in the leading-logarithms (LLx for short) approximation. Here we

will only present the most relevant aspects, basically in order to define the notation and

to set the theoretical background for the following arguments. For a thorough discussion

of this topic we refer the interested reader to the original paper ref. [7].

Let us consider the production of a certain state S with momentum pµ in an hadronic

collision characterized by some hard scale Q and partonic center-of-mass energy ŝ. Without

loss of generality, we are first going to consider the gluon-initiated process

g(p1) + g(p2)→ S(p) +X, (2.1)

where X stands for any possible final state, and pµ1 and pµ2 are the momenta of the incoming

gluons. In this section we will limit ourselves to the case where S is a colourless system.

The extension to coloured final states will be discussed in the next section.

The main insight of refs. [4–7, 22], as is well known, is that, on top of collinear fac-

torization of the hadronic observable, the partonic observable can in turn be factorized at

LLx accuracy. This is done by rearranging the cut diagrams contributing to the partonic

observable in order to single out the so-called hard part Hµνµ̄ν̄ , i.e. the 2GI kernel which

is connected to the desired final state S and is thus process-dependent. What is left of the

cut diagrams can be cast in the form of two generally 2GR kernels L
(1)
µν and L

(2)
µ̄ν̄ , called

ladder parts, which are built by iterative insertion of a suitable kernel, in the spirit of the

generalized ladder expansion of ref. [23]. The kernel is nothing but the DGLAP anomalous

dimension resummed at all orders in αs at LLx. A practical implementation of this object

can be obtained by exploiting the duality relation between BFKL and DGLAP evolution
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Figure 1. High energy factorization of gluon-initiated hadro-production.

(see refs. [20, 24–27] for further details). The ensuing diagrammatic structure is depicted

in figure 1.

The resulting factorized expression of the dimensionless transverse momentum distri-

bution at LLx accuracy is

Q2 dσ̄

dp2
T

=

∫
Q2

2ŝ
Hµνµ̄ν̄L(1)

µνL
(2)
µ̄ν̄ δ


 p2

T

Q2
−
k2

1,T

Q2
−
k2

2,T

Q2
− 2

√
k2

1,Tk
2
2,T

Q2
cos θ


 [dk1] [dk2] ,

(2.2)

where σ̄ = Q2σ̂ is the dimensionless partonic inclusive cross section, and all dependencies

have been dropped in order to simplify the notation.

A few comments on eq. (2.2) are in order: [dk1] and [dk2] denote the relevant volume

elements of the loop integrations over the gluon lines connecting the ladders to the hard

part, 1/(2ŝ) is the conventional flux factor, and the apparent factors of Q2 are simply

meant to make the observable dimensionless. Then, kµ1,T and kµ2,T are the purely transverse

spacelike components of kµ1 and kµ2 , and θ is the angle between their directions. Finally, it

is worth stressing that the phase space volume element of S is included in the hard part

Hµνµ̄ν̄ , whereas L
(1)
µν and L

(2)
µ̄ν̄ contain the phase space of the ladder emissions.

Before discussing the ensuing resummation formula, it is convenient to simplify the

notation. The all-order resummation of the LLx contributions is performed in Mellin

space. Then, by a slight abuse of notation, we shall denote the Mellin transform of some

suitable function f(z) with the same symbol

f (N) ≡Mz [f ] (N) =

∫ 1

0
dz zN−1f (z) , (2.3)

and we shall distinguish between the two objects by their arguments.
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The factorized expression eq. (2.2) would in principle be dependent on the renormaliza-

tion and factorization scales. At LLx accuracy, however, the αs coupling can be considered

as fixed, as all the dependence on µ2
R turns out to be subleading.

On the other hand, IR collinear divergences are present in both the hard and the ladder

parts, and must thus be subtracted at all orders into renormalized PDFs. Factorization of

IR collinear divergences in the hard part is straightforward, although not trivial, and will

not be discussed in this paper. For details about this topic we refer the interested reader to

ref. [28]. Here, in fact, we shall only consider hard parts which are 2PI, rather than 2GI, and

thus finite. The iterative subtraction of IR collinear divergences in the ladders is performed

using the generalized ladder expansion of refs. [6, 23], and ultimately allows the resumma-

tion of the LLx contributions. Once again we refer to the original references [6, 7], and we

present only the final resummed formula for a generic transverse momentum distribution.

Then, by introducing the dimensionless variables

ξp =
p2
T

Q2
, ξ1 =

k2
1,T

Q2
, ξ2 =

k2
2,T

Q2
, (2.4)

the resummed transverse momentum distribution can be expressed as

Q2 dσ̄

dp2
T

(
N, ξp, αs,

µ2
F

Q2

)
= γ (N,αs)

2R (γ (N,αs))
2 e

2γ(N,αs) ln
µ2F
Q2 (2.5)

×
∫ ∞

0
dξ1 ξ

γ(N,αs)−1
1

∫ ∞

0
dξ2 ξ

γ(N,αs)−1
2 CpT (N, ξ1, ξ2, ξp, αs) ,

where we denote by γ (N,αs) the LLx DGLAP anomalous dimension and we define

CpT (N, ξ1, ξ2, ξp, αs) ≡
∫

dθ

2π

dθ̄

2π

[
PµνP µ̄ν̄Hµνµ̄ν̄

]

× δ
(
ξp − ξ1 − ξ2 − 2

√
ξ1ξ2 cos θ

)
, (2.6)

with

Pµν =
kµ1,Tk

ν
1,T

k2
1,T

, P µ̄ν̄ =
kµ̄2,Tk

ν̄
2,T

k2
2,T

. (2.7)

The hard coefficient function CpT owns a very natural physical interpretation. Indeed,

it is nothing but the (dimensionless) transverse momentum distribution of the tree-level

off-shell partonic process

g∗(k1) + g∗(k2)→ S(p), (2.8)

namely the production of the desired final state S by fusion of two off-shell gluons. In

eq. (2.6) the momenta of the incoming gluons are parametrized in terms of longitudinal

and transverse components as

kµi = zin
µ
i + kµi,T, ∀i = 1, 2, (2.9)

with

n2
i = 0, k2

i = −k2
i,T < 0, ni · kj,T = 0 ∀i, j = 1, 2. (2.10)
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The longitudinal projectors eqs. (2.7) can thus be viewed as the polarization sums for the

incoming off-shell gluons, namely

1

2

∑

off-shell

εµ(k)εν∗(k) ≡ Pµν(k) =
kµTk

ν
T

k2
T

, (2.11)

where εµ(k) denotes the polarization vector of some off-shell incoming gluon carrying mo-

mentum kµ parametrized as in eq. (2.9).

Usually, in literature, eq. (2.5) is more conveniently expressed in terms of the so-called

impact factor

h

(
N,M1,M2, ξp, αs,

µ2
F

Q2

)
= M1M2R(M1)R(M2)e

(M1+M2) ln
µ2F
Q2 (2.12)

×
∫ ∞

0
dξ1ξ

M1−1
1

∫ ∞

0
dξ2ξ

M2−1
2 CpT(N, ξ1, ξ2, ξp, αs),

so that

Q2 dσ̄

dp2
T

(
N, ξp, αs,

µ2
F

Q2

)
= hpT

(
N, γ (N,αs) , γ (N,αs) , ξp, αs,

µ2
F

Q2

)
. (2.13)

The factor R(M) in eqs. (2.5) and (2.12) is a function which contains the entire depen-

dence on the factorization scheme. In particular, R(M) was calculated in the MS scheme

in ref. [4], and reads

R(M) =

{
Γ(1−M)χ0(M)

Γ(1 +M) [−Mχ′0(M)]

} 1
2

exp

{
Mψ(1) +

CA

π

∫ M

0
dM ′

ψ′(1)− ψ′(1−M ′)
χ0(M ′)

}
=

= 1 +
8

3
ζ(3)M3 +O

(
M4
)
, (2.14)

where CA = 3, χ0(M) is the LO BFKL kernel

χ0(M) =
CA

π
(2ψ(1)− ψ(M)− ψ(1−M)) , (2.15)

ψ(M) the Digamma function, and ζ(n) the Riemann ζ-function.

Up to now, we have only considered gluon initiated channels. However, due to the fact

that the quark entries of the full resummed anomalous dimension matrix only give NLLx

contributions [24], the high energy resummed distributions of the other partonic channels

of production of S can be derived at LLx accuracy from that of the purely gluonic channel

through the trivial relations

dσ̄res

dξp

∣∣∣∣
qg

=
CF

CA

[
h
(
N,γs

(αs
N

)
,γs

(αs
N

)
,ξp,αs

)
−h
(
N,γs

(αs
N

)
,0,ξp,αs

)]
, (2.16)

dσ̄res

dξp

∣∣∣∣
qq

=

(
CF

CA

)2[
h
(
N,γs

(αs
N

)
,γs

(αs
N

)
,ξp,αs

)
−2h

(
N,γs

(αs
N

)
,0,ξp,αs

)]
, (2.17)

with CA = 3 and CF = 4/3.1

1See ref. [7] for details.
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3 A new prospective on off-shell calculations

In the previous section we have seen that, in the case of hadro-production, the partonic

observables we are interested in — namely inclusive cross sections and transverse momen-

tum distributions — can be decomposed into a hard part and two ladders at LLx accuracy.

The hard part is formed by the LO observable evaluated with the two initial gluons put

off-shell, whereas the ladder parts are computed by iteration of a proper emission kernel.

This picture was derived for colourless final states, but no change is necessary if the final

state is instead coloured. However, calculations become more difficult from the technical

point of view, and some caution is needed.

First we have to properly define the off-shell quantity required in order to perform

high energy resummation with the desired coloured final state. Then, we need to present

an efficient procedure to actually compute it.

For simplicity, we shall for now limit ourselves to the pure gluonic channel. Therefore,

we want to evaluate at all orders in αs the high energy behaviour of the process

g + g → g +X, (3.1)

where X is a bunch of extra emitted gluons. Since the first non-trivial contribution to this

process is

g + g → g + g, (3.2)

one could naively think that its off-shell version, namely

g∗ + g∗ → g + g, (3.3)

would be the best candidate for the evaluation of the hard part.

However, this turns out not to be the case. This picture, which is a legacy of the first

applications of high energy resummation to inclusive cross sections, is in fact in contrast

with the theoretical derivation based on the generalized ladder expansion of refs. [6, 7],

sketched out in the previous section.

Following the general treatment of section 2, in fact, the hard coefficient function CpT
has to be computed by considering the tree level process which produces the desired final

state S — either colourless or coloured — by fusion of two initial off-shell gluons. In our

case, then, it is clear that the relevant off-shell process should be

g∗ + g∗ → g, (3.4)

rather than eq. (3.2).

Even if, at first sight, this principle could seem not very straightforward, it has already

been applied in some sense in the high energy differential calculation of refs. [6, 7] for the

Higgs boson production. In ref. [7], for example, the authors use the off-shell process

g∗ + g∗ → H (3.5)

to evaluate the hard coefficient function, even though the corresponding transverse momen-

tum distribution is trivial in the on-shell limit. Indeed, in order for the Higgs boson to have

– 7 –
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a non-vanishing transverse momentum, the final state has to include at least a second recoil-

ing particle, which at LLx accuracy can only be a gluon. Thus, the series expansion of the

resummed result in powers of αs vanishes at O(α2
s), and the first non-trivial prediction only

appears at O(α3
s), with the LLx contribution to the transverse momentum distribution of

g + g → H + g. (3.6)

Therefore, we shall present a new criterion for high energy calculations, based on new

analysis carried out in the context of high energy resummation of transverse momentum

distributions. The hard part has to be identified with the LO off-shell observable, even

if the corresponding on-shell limit is vanishing or trivial. In such cases, the resummation

procedure will guarantee that at least one extra emission from the ladders is present. This

criterion will substantially simplify our calculations, enabling us to reach a very compact

final result.

A last remark is however necessary. Note that, in general, the inclusion of extra

radiation in the hard part is not a priori incorrect, but only highly disadvantageous. In fact,

it would lead to a new resummed prediction, different only for subleading contributions,

but at the cost of raising considerably the difficulty of the actual computation.

This point is closely linked to the second issue we need to tackle when we want to

evaluate off-shell quantities with coloured final states: the intrinsic computational difficulty

of these calculations.

It is indeed well known that, in certain cases, computation by means of standard Feyn-

man diagrams might be unnecessarily cumbersome, since the cancellation between physical

and unphysical gluon polarizations only occur at the level of the squared modulus, and not

directly in the amplitude. For this reason, in recent years, modern and more efficient tech-

niques — such as the helicity formalism reviewed e.g. in refs. [29, 30] — have been proposed,

in order to take into account in the actual computation only the physical degrees of freedom.

Such techniques basically rely on the gauge invariance of the observable which has

to be computed. However, while for on-shell observables gauge invariance is immediately

verified, the same is no longer true in general when working with off-shell quantities, such

as the hard part in the high-energy resummation procedure. This issue is of particular

importance, and certainly deserves a separate subsection.

3.1 Restoring gauge invariance in the hard part

First of all, it is important to stress that, from now on, what we actually mean by saying

that some n-gluon amplitude M(ε1, . . . , εn), dependent on the polarization vectors εi with

i = 1, . . . , n, is gauge-invariant is that it satisfies the Abelian Ward identities, namely

M (ε1, . . . , εi−1, ki, εi+1, . . . , εn) = 0 ∀i = 1, . . . , n. (3.7)

Indeed, these are the relations we need to be true in order to be able to exploit the modern

and more efficient techniques relying on gauge invariance.

It is well known that eq. (3.7) holds in a non-Abelian gauge theory such as QCD when

all but at most one of the external gluons are on-shell. It is therefore clear why this might

– 8 –
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represent an issue in the context of high energy resummation: when working with off-shell

external gluons as required by the resummation procedure, gauge invariance in the sense

of eq. (3.7) might be lost, and we might thus be forced to use the inefficient standard

evaluation technique. If that were the case, complicated processes such as those involved

in multi-jets observables might be beyond the reach of high energy resummation.

Our issue is essentially related to the computation of the hard part. Since it involves

four external gluons (see figure 1), it turns out that the underlying off-shell amplitude does

not fulfil eq. (3.7) in general. However, we can use the general studies on gauge invariance

of off-shell amplitudes of refs. [8–10] to restore eq. (3.7) in the case of our hard coefficient

function CpT .

We are thus going to change our definition of the off-shell scattering amplitude by

adding gauge-dependent terms so that it fulfils eq. (3.7). It is worth stressing that, obvi-

ously, all these extra terms will cancel each other out in any physical observable, thanks

to gauge symmetry.

In the following we will use two general set of prescriptions, presented in refs. [8]

and [10] respectively. We shall see that the off-shell process has to be evaluated by con-

sidering the off-shell gluons as radiated off eikonal quarks in the former technique, and

straight infinite Wilson lines in the latter. In particular, we find that this last approach

is very suitable to the extension to more complicated multi-jet processes, and we are thus

going to briefly review its most relevant features in appendix A.

The process described by eq. (3.4) is indeed rather simple, and even computation by

means of Feynman diagrams is in principle affordable. However, limiting ourselves only to

the standard technique would result in restricting the scope of high energy resummation

just to very simple processes. Instead, we are going to exploit the relative simplicity of the

process considered in this paper as a cross-check for the more complicated gauge invariant

construction of the hard part. Indeed, since no observable with coloured final state has

been resummed in the high energy limit as yet, having different ways of carrying out the

calculations to cross-check the results is fundamental, in order to provide a strong ground

for the theory.

This we will do in the next section, where the calculation of the cross section of the off-

shell process g∗ + g∗ → g will be presented using three different techniques: the standard

QCD Feynman rules in the Feynman Gauge,2 and the two gauge-restoring procedures

proposed in refs. [10] and [8] respectively.

We also recall that, in order to evaluate the LLx transverse momentum dependence of

the outgoing quark in processes of the form g(q) + q → q+X, we also need to compute the

cross section of the off-shell process g∗ + q → q. This calculation will be postponed until

section 4.4.

2We are forced to select the Feynman Gauge, because it is the particular gauge choice we use to perform

the IR subtraction of the ladders.
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4 Calculation of the hard off-shell cross sections

The basic object we need to evaluate in order to resum all gluon production channels

g(q) + g(q)→ g+X in the small-x limit is the scattering amplitude of the off-shell process

g∗c1(k1) + g∗c2(k2)→ gc(p), (4.1)

where the subscripts denote the colour of each gluon, and the kinematics is parametrized

as in eq. (2.9). As explained in section 3.1, this result can be achieved in a number of ways,

depending on whether — and how — we want gauge invariance to be restored.

We once again stress that there is no practical need for gauge invariance to be restored,

because the calculation can be carried out with the usual QCD Feynman rules, as we

shall do in section 4.1. Although straightforward, we shall see that even this standard

calculation features some non-trivial simplifications, a priori not expected, which lead to a

very compact result. Then, in order to provide a solid cross-check, we will repeat the same

calculation first with the Wilson lines technique of ref. [10] in section 4.2, and next with

the eikonal quark prescriptions of ref. [8] in section 4.3.

It will be apparent that these methods, although different in both principle and prac-

tice, all lead to the same result, thus substantiating not only its correctness, but also the

explicit consistency of the gauge-restoring techniques of refs. [8, 10].

Once the validity of our method has been attested in the pure gluonic channel, we can

move on to consider more swiftly the last ingredient needed in the resummation recipe,

namely the cross section of the quark-production off-shell process g∗q → q. This we shall

present in section 4.4, were the calculation will be carried out only with the standard QCD

Feynman rules. Since there is now only one external off-shell gluon leg, the consistency

with the two gauge-restoring techniques is immediate, and thus shall not be discussed.

4.1 g∗g∗ → g calculation using QCD Feynman rules

Using the standard QCD Feynman rules only, it is trivial to see that the process described

by eq. (4.1) receives contributions from just one diagram at tree level, namely the three-

gluon vertex. The corresponding amplitude then simply reads

MF = −gsfCAcBcVµνγ(k1, k1,−p)eµ1eν2ε∗γ , (4.2)

where eµ1 and eµ2 are the polarization vectors of the incoming off-shell gluons, εµ is the po-

larization vector of the outgoing on-shell gluon, and Vαβγ(k1, k2, k3) is the tensor structure

of the three-gluon coupling with all momenta entering the vertex, namely

Vαβγ(k1, k2, k3) = gαβ(k1 − k2)γ + gβγ(k2 − k3)α + gγα(k3 − k1)β . (4.3)

Note that the incoming off-shell momenta kµ1 and kµ2 have to be written in the usual high

energy parametrization, given by eq. (2.9).

The calculation of the squared matrix element is then rather lengthy, but completely

straightforward. One only has to make sure that the sum over the polarizations of the
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off-shell gluons is carried out according to eq. (2.11). The sum over the polarizations of

the outgoing on-shell gluon, on the other hand, is performed as usual.

Squaring eq. (4.2), averaging over colour and polarization of the incoming particles,

and summing over those of the outgoing one thus gives

|MF|2 = −g2
s

CA

8

∣∣∣~k1,T + ~k2,T

∣∣∣
2 (

(~k1,T · ~k2,T)2 − k2
1,Tk

2
2,T

)
− (~k1,T · ~k2,T)2z1z2ŝ

k2
1,Tk

2
2,T

, (4.4)

where ŝ is the partonic center-of-mass energy

ŝ = (n1 + n2)2 = 2n1 · n2. (4.5)

Indeed, eq. (4.4) is a complicated expression for a really simple result. In order to

make the simplification apparent, it is first convenient to introduce the angle θ between

the directions of the spatial vectors ~k1,T and ~k2,T, so that

(~k1,T · ~k2,T) = k1,Tk2,T cos θ. (4.6)

Substituting eq. (4.6) into eq. (4.4) then gives

|MF|2 = g2
s

CA

8
z1z2ŝ

(
τ sin2 θ + cos2 θ

)
, (4.7)

where we have introduced the useful dimensionless variable τ

τ =
p2
T

z1z2ŝ
, (4.8)

which will be used throughout the rest of this paper. Moreover, momentum conservation

sets τ = 1, so that we are simply left with

|MF|2 = g2
s

CA

8
z1z2ŝ, (4.9)

which is our final expression.

Putting together the squared matrix element eq. (4.9), the phase space volume element

dΦ1 =
2π

|~pT |2
δ

(
1

τ
− 1

)
, (4.10)

and the flux factor

φ = 2z1z2ŝ (4.11)

finally gives the cross section of the off-shell process g∗g∗ → g

σ
∣∣
g∗g∗→g =

σ0

|~pT |2
δ(1− τ), (4.12)

where we have defined

σ0 =
CAπ

2

2
αs (4.13)

in order to simplify the notation.

As we shall see in the next sections, although the corresponding scattering amplitudes

will differ from eq. (4.2), both the gauge-restoring techniques will lead to this same cross

section, thus providing the desired cross-check.
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Figure 2. Feynman diagrams contributing to the gauge-invariant tree-level scattering amplitude

of g∗ + g∗ → g in the Wilson lines formalism (see appendix A). The first diagram represents the

standard QCD contribution; the other four have to be added in order to restore gauge invariance.

4.2 g∗g∗ → g calculation using Wilson lines

With the addition of the Wilson lines Feynman rules, which we have summarised in figure 4

for the convenience of the reader, the gauge-invariant scattering amplitude of the off-shell

process (4.1) receives contributions from the five diagrams depicted in figure 2. It is worth

noting that, in this formalism, the outgoing gluon can be radiated directly off the Wilson

lines representing the off-shell incoming gluons. Indeed, gauge invariance is restored from

exactly this kind of diagrams, whose contributions can all be inferred, by exploiting the

apparent symmetries, from that of the prototype diagram shown in figure 3, given by

M2 = −2igs
(e1 · e2)(e1 · ε∗)
k2

2 (p · e1)
Tr
[
T c1T c2T c

]
, (4.14)

where we have retained the same notation of the previous section for the polarization

vectors, and we denote by T a the generators of the SU(3) colour group in the fundamental

representation, normalized as Tr
[
T aT b

]
= δab/2.

Adding up all five contributions depicted in figure 2 gives the full scattering amplitude,

which is most conveniently written as

MW(ε) = gsf
c1c2cMγε

∗γ , (4.15)

with

Mγ = −e
µ
1e
ν
2

k2
1k

2
2

Vµνγ(k1, k2,−p) +
(e1 · e2)

k2
2 (p · e1)

e1γ −
(e1 · e2)

k2
1 (p · e2)

e2γ , (4.16)

where Vαβγ(k1, k2, k3) is given by eq. (4.3).

Equation (4.15) is clearly different from the scattering amplitude obtained by means

of the standard QCD Feynman rules eq. (4.2), but it is straightforward to check that it

indeed fulfils eq. (3.7), namely that

MW(p) = 0. (4.17)
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Figure 3. One of the non-QCD Feynman diagrams which restore gauge invariance in the scattering

amplitude of g∗c1(k1)+g∗c2(k2)→ gc(p) in the Wilson lines formalism. The outgoing gluon is radiated

directly off one of the straight infinite Wilson lines associated with the incoming off-shell gluons.

Note that, as explained in appendix A, the polarization vectors of the off-shell gluons

eµi have to treated as eikonal couplings in the Wilson lines formalism. Their explicit

expression, given by

eµi = ziki,Tn
µ
i , ∀i = 1, 2, (4.18)

automatically implements the average rule eq. (2.11), without the need of any additional

averaging factor.

Thus, we just need to average over colour of the incoming gluons, and to sum over

colour and polarization of the outgoing gluon, obtaining

|MW|2 = 8παs
CA

8

1

k2
1k

2
2

(e1 · e2)3

(k1 · e2)(k2 · e1)
. (4.19)

Substituting eq. (4.18) for eµ1 and eµ2 into eq. (4.19) then gives the final expression of the

unpolarized and colour-averaged squared matrix element of the off-shell process g∗g∗ → g

|MW|2 = αs
CAπ

2
z1z2ŝ ≡ |MF|2. (4.20)

It is now apparent, if we compare eq. (4.20) to eq. (4.9), that the standard QCD

Feynman rules in the Feynman Gauge and the Wilson lines formalism both lead to the

same result at the level of the squared matrix element. As anticipated, thus, the additional

terms allowing for the scattering amplitude to fulfil the Abelian Ward identity cancel each

other out when considering a physical observable. In the next section we shall see that, as

expected, this holds also for the technique of ref. [8].

4.3 g∗g∗ → g calculation using eikonal quark lines

The basic idea at the heart of the procedure presented in ref. [8] is that the off-shell process

given by eq. (4.1) has to be embedded into a quark-scattering process qi+qm → qj+qn+gc.

The off-shell gluons are thus to be thought of as radiated off eikonal quarks, i.e. quarks

to which they are attached via the eikonal coupling given by eq. (4.18). As a result, the

relevant diagrams have the same topologies as those depicted in figure 2, the only difference

being that the Wilson lines have to be traded for eikonal quarks.
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Several other adjustments need to be made in order to write down the analytic expres-

sion of the diagrams, but a full discussion of this method is beyond our scope, and we thus

refer to the original paper ref. [8], where a thorough list of the prescriptions to be followed

is given. Here, instead, we just show the ensuing scattering amplitude

MQ(ε) = −iFg3
sf

c1c2c(T c1)ij(T
c2)mnM

′
γε
∗γ , (4.21)

where we have defined

M′
γ = −n

α
1n

β
2Vαβγ(k1, k2,−p)

k2
1k

2
2

+
(n1 · n2) n1γ

(n1 · k2) k2
2

− (n1 · n2) n2γ

(n2 · k1) k2
1

, (4.22)

and the factor F is given by ref. [8], and reads

F =
iz1

√
2k2

1,T

gs

iz2

√
2k2

2,T

gs
. (4.23)

Comparing eqs. (4.21) and (4.22) to eqs. (4.15) and (4.16), it is no surprise that, unlike

the case of the standard QCD Feynman rules, there is a strong resemblance between the

two gauge-restoring techniques already at the level of the scattering amplitudes. Indeed,

we note that the tensor structure is precisely the same, since

Mγ = z1z2k1,Tk2,TM
′
γ . (4.24)

Then, substituting eq. (4.24) and the explicit expression of the factor F into eq. (4.21)

gives

MQ(ε) = gs

[
2if c1c2c (T c1)ij (T c2)mn

]
Mγε

∗γ , (4.25)

which only differs from eq. (4.15) in the colour factor.

A bit of colour algebra then shows that full equality emerges after squaring

|MQ|2 = g2
s

CA

8

(
−M∗γMγ

)
≡ |MW|2 ≡ |MF|2. (4.26)

Note that, while the averaging factors associated with the incoming eikonal quarks are

already included in F [8], the overall factor of 1/(N2
c − 1)2 corresponding to the average

over the colours of the incoming gluons has to be put by hand.

We can thus conclude that the three techniques employed in this paper all lead to

the same expression for the cross section of the off-shell process g∗ + g∗ → g, given by

eq. (4.12). This solid result will then allow, in section 5, the resummation of all partonic

channels g(q) + g(q)→ g +X in the small-x limit. Before moving on to that, however, let

us briefly consider quark production.

4.4 g∗q → q calculation

The other off-shell process we need to consider is quark production. As gluon fusion can

not give rise to just a quark in the final state, one of the incoming partons has to be a
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quark. In this section, thus, we shall discuss the calculation of the unpolarized squared

matrix element of the off-shell process

qi(k1) + g∗a(k2)→ qj(p), (4.27)

where, again, the subscripts denote the parton colours.

The momentum of the off-shell gluon kµ2 has the usual high energy parametrization

given by eq. (2.9). On the other hand, since the incoming quark is on-shell, its momentum

kµ1 has no transverse component and is thus parametrized as

kµ1 = z1n
µ
1 , n2

1 = 0. (4.28)

Since there is no gluon in the final state, the Abelian Ward identities are in this case

automatically fulfilled. Nonetheless, one could still carry out the calculation by means of

the gauge-restoring techniques, and indeed the cross-check turns out to be successful in this

case, too. Since there is now only one external off-shell gluon, however, such computations

are far less interesting then those presented in sections 4.2 and 4.3. Here, therefore, we

shall only briefly review the calculation using the standard QCD Feynman rules in the

Feynman Gauge.

The tree-level scattering amplitude then receives contributions just from the quark-

gluon vertex, and simply reads

M = −gs (T a)ij ūj(p)γαui(k1)eα(k2), (4.29)

where eα(k2) is the polarization vector of the off-shell incoming gluon. Squaring eq. (4.29),

averaging over colour and polarization of the incoming particles, and summing over those

of the outgoing one, gives

|M|2 =
CFπαs

2
z1z2ŝ. (4.30)

where CF = (N2
c − 1)/(2Nc). The only comment which might be worth making on this

simple calculation is that, as we have done in section 4.1, the average over the polarization

states of the off-shell gluon has to be performed according to eq. (2.11).

Then, supplying the squared matrix element eq. (4.30) with the phase space volume

element and the flux factor, given by eqs. (4.10) and (4.11) respectively, leads to the cross

section of the off-shell process qg∗ → q

σ
∣∣
qg∗→q =

CF

CA

σ0

|~pT |2
δ(1− τ), (4.31)

where σ0 is given by eq. (4.13). Note that this result is related to the cross section of

g∗g∗ → g eq. (4.12) by a simple change of the colour charge prefactor.

Finally, equipped with the results given by eqs. (4.12) and (4.31), we are now able to

perform high-energy resummation of all partonic channels, to which topic the next section

shall be devoted.
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5 Impact factors and resummed results

Thanks to the relations given by eqs. (2.16) and (2.17), the off-shell cross sections calcu-

lated in the previous section allow the evaluation of the high energy resummed transverse

momentum distribution for all the following partonic processes:

g (p1) + g (p2)→ g (p) +X, (5.1a)

g (p1) + q (p2)→ g (p) +X, (5.1b)

q (p1) + q (p2)→ g (p) +X, (5.1c)

g (p1) + q (p2)→ q (p) +X, (5.1d)

q (p1) + q (p2)→ q (p) +X. (5.1e)

To be specific, we shall calculate the dimensionless partonic differential distribution with

respect to the transverse component pT of the momentum p, usually denoted by p4
Tdσ̂/dp

2
T.

Such a computation, as explained in section 2, goes through the evaluation of particular

impact factors, which in turn yield the resummed transverse momentum distributions via

eq. (2.13). However, when dealing with coloured final states, we need to take into account

an extra subtlety: if the final state of the hard part contains gluons, in fact, we have to

make sure that such gluons are indistinguishable from those contained in the ladders.

We recall from section 2 that the derivation of high energy factorization of refs. [6, 7]

relies on the decomposition of the relevant observable of some final state S into hard

and ladder parts. In so doing, the phase space of all ladder-radiated gluons is entirely

contained in the ladder parts, whereas the hard part includes the phase space of S. The

indistinguishability of the ladder-radiated gluons is thus already accounted for: with n− 1

emissions, for instance, is associated a factor of 1/(n− 1)! in the ladder parts.

If the final state S contains one or more gluons as well, however, such decomposition

eventually makes them distinguishable from those radiated off the ladders. For example,

in the case where all the outgoing particles are gluons, each O (αns ) term of the resummed

observable should contain an overall combinatory factor of 1/n!. As the hard part and

ladders decomposition only accounts for a factor of 1/(n − 1)!, each O(αns ) term has to

be multiplied by an extra factor of 1/n, so that the right gluon statistics is restored. In

general, some complications arise if quarks are also present in the ladders, or if the hard

part is not starting at O (αs), and hence contains particles which are different from gluons.

We have proven a general formula, which allows the correction of the resummed result

at all orders in αs by acting on the impact factor h, evaluated keeping the particles produced

in the hard part distinguishable from those radiated off the ladders, as

h̃m,s(N,M,M,αs) = −
∫ M

0
dM ′

[
χ0(M)

χ0(M ′)

]m−s d lnχ0(M ′)
dM ′

h(N,M ′,M ′, αs), (5.2)

where χ0(M) is the LO BFKL kernel eq. (2.15). This correction is controlled by two

natural numbers m and s, which vary owing to the particular process under investigation.

In particular, m is the order in αs of the hard part, whereas s counts the number of quarks

in the ladder emissions. Moreover, note that the simplifying choice M1 = M2 = M in
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eq. (5.2) is motivated by the fact that, in the applications of interest to us, both Ms

ultimately have to be identified with the LLx DGLAP anomalous dimension γ (N,αs). For

more details, as well as a complete derivation of eq. (5.2), see appendix C.

With this tool in hand, we are now ready to compute the impact factors for all the

processes of eqs. (5.1). We shall first use the general definition eq. (2.12) to evaluate h,

and then correct it according to eq. (5.2) on a case by case basis. Particularly compact

expressions for various hs could be obtained by selecting as hard scale Q2 precisely the

transverse modulus p2
T of the momentum pµ of the tagged parton in eqs. (5.1). In this

case, the uncorrected impact factor h can be defined, using σ definitions eq. (4.12) and

eq. (4.31), and setting µ2
F = p2

T, as

h (N,M1,M2, αs)|gg→g = M1M2R (M1)R (M2) (5.3)

×
∫ ∞

0
dξ1 ξ

M1−1
1

∫ ∞

0
dξ2 ξ

M2−1
2

∫ 2π

0

dθ

2π
p2
T σ|g∗+g∗→g

× δ
(

1− ξ1 − ξ2 − 2
√
ξ1

√
ξ2 cos θ

)

in the g + g → g +X case, and

h (N,M, 0, αs)|gq→q = MR (M)

∫ ∞

0
dξ1 ξ

M−1
1 p2

T σ|g∗+q→q δ (1− ξ1) (5.4)

in the g + q → q +X case respectively. We denote by θ in eq. (5.3) the angle between the

directions of the transverse momenta k1,T and k2,T (see eq. (2.9)). The impact factors for the

other channels in eqs. (5.1) are recovered from these two by exploiting eqs. (2.16) and (2.17).

Before we go any further, however, a clarification about this hard scale choice is due.

At LLx accuracy, the particular value of the hard scale is in fact meaningless, since any

variation would only produce subleading effects. All the expressions we are going to present

are thus valid all the same for any other choice of the hard scale. Note however that, even

if at LLx accuracy the consequences of such a choice are formally subleading, this does

not mean that they should be negligible from a phenomenological point of view as well.

Indeed, many phenomenological studies on fixed order expansions [16, 17] show that jet

production is particularly sensitive to the choice of this central scale. Nonetheless, since

such effects are subleading in the high energy regime, our choice is only motivated by the

relative simplicity of the presentation.

Then, by inserting eqs. (4.12) and (4.31) for the off-shell cross sections into eqs. (5.3)

and (5.4), performing the integrations, and finally applying the relations eqs. (2.16)

and (2.17), we obtain the uncorrected impact factors for all the processes listed in eqs. (5.1):

h (N,M,M,αs)|gg→g = σ0M
2 [R(M)]2

[Γ(M)]2 Γ(1− 2M)

[Γ(1−M)]2 Γ(2M)
, (5.5a)

h (N,M,M,αs)|gq→g =

(
CF

CA

)
σ0MR(M)

[
MR(M)

[Γ(M)]2 Γ(1− 2M)

[Γ(1−M)]2 Γ(2M)
− 1

]
, (5.5b)

h (N,M,M,αs)|qq→g =

(
CF

CA

)2

σ0MR(M)

[
MR(M)

[Γ(M)]2 Γ(1− 2M)

[Γ(1−M)]2 Γ(2M)
− 2

]
, (5.5c)
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h (N,M, 0, αs)|qg→q =
CF

CA

σ0MR (M) , (5.5d)

h (N,M, 0, αs)|qq→q =

(
CF

CA

)2

σ0MR (M) , (5.5e)

where we have put M1 = M2 = M for the sake of simplicity.

From these expressions for the impact factors we can finally derive the small-x re-

summed transverse momentum distributions for the processes listed in eqs. (5.1), namely

p4
T

dσ

dp2
T

(N,αs)

∣∣∣∣
g+g→g+X

= h̃1,0 (N, γ (N,αs) , γ (N,αs) , αs)
∣∣∣
gg→g

, (5.6a)

p4
T

dσ

dp2
T

(N,αs)

∣∣∣∣
g+q→g+X

= h̃1,1 (N, γ (N,αs) , γ (N,αs) , αs)
∣∣∣
gq→g

, (5.6b)

p4
T

dσ

dp2
T

(N,αs)

∣∣∣∣
q+q→g+X

= h̃1,2 (N, γ (N,αs) , γ (N,αs) , αs)
∣∣∣
qq→g

, (5.6c)

p4
T

dσ

dp2
T

(N,αs)

∣∣∣∣
g+q→q+X

= h (N, γ (N,αs) , 0, αs)|gq→q , (5.6d)

p4
T

dσ

dp2
T

(N,αs)

∣∣∣∣
q+q→q+X

= h (N, γ (N,αs) , 0, αs)|qq→q , (5.6e)

where h̃m,s is defined according to eq. (5.2), and γ (N,αs) is again the LLx DGLAP anoma-

lous dimension. Note that quark transverse momentum distributions eqs. (5.6d) and (5.6e)

have not to be corrected, since no gluon is present in the final state of the hard part.

Moreover, we recall that N is always the Mellin variable conjugated to

x =
p2
T

ŝ
. (5.7)

Equations. (5.5) and (5.6) allow the high-energy resummation at LLx accuracy of

the transverse momentum distribution of a generic gluon or quark in the final state, and

ultimately represent the main results of this paper. In the following subsection we are

going to present the series expansion of eqs. (5.6) at the first orders in αs, and discuss the

analytic cross-checks against the corresponding fixed order evaluations.

5.1 Fixed order expansion

Starting from eqs. (5.6), we perform the expansion in powers of αs, and compute the

Mellin inverse transformation term by term, so as to reach an analytic result up to O
(
α4
s

)
in

momentum space. Recalling the definition of x, given by eq. (5.7), and exploiting the results

R (M) = 1 +
8

3
ζ(3)M3 +O

(
M4
)
, (5.8)

γ (N,αs) =
CA

π

αs
N

+ 2ζ(3)
C4

A

π4

α4
s

N4
+O

(
α5
s

)
, (5.9)
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we obtain the following series expansions for the different partonic channel contributions:

p4
T

dσ

dp2
T

(x, αs)

∣∣∣∣
g+g→g+X

= σ0

(
CA

π
αs +

34

45

C4
A

π4
ζ(3)α4

s ln3 1

x
+O

(
α5
s

))
, (5.10a)

p4
T

dσ

dp2
T

(x, αs)

∣∣∣∣
g+q→g+X

= σ0

(
CF

π
αs +

3

4

CFC
3
A

π4
ζ(3)α4

s ln3 1

x
+O

(
α5
s

))
, (5.10b)

p4
T

dσ

dp2
T

(x, αs)

∣∣∣∣
q+q→g+X

= σ0

(
20

27

C2
FC

2
A

π4
ζ(3)α4

s ln3 1

x
+O

(
α5
s

))
, (5.10c)

p4
T

dσ

dp2
T

(x, αs)

∣∣∣∣
g+q→q+X

= σ0

(
CF

π
αs +

7

9

CFC
3
A

π4
ζ(3)α4

s ln3 1

x
+O

(
α5
s

))
, (5.10d)

p4
T

dσ

dp2
T

(x, αs)

∣∣∣∣
q+q→q+X

=
CF

CA

σ0

(
CF

π
αs +

7

9

CFC
3
A

π4
ζ(3)α4

s ln3 1

x
+O

(
α5
s

))
. (5.10e)

We have cross-checked our predictions at O
(
α2
s

)
and O

(
α3
s

)
3 against the LLx be-

haviour of LO and NLO fixed order calculations. In particular, we highlight that, at LO,

the predictions coming from g+q → g+X and g+q → q+X are identical as expected, since

at O
(
α2
s

)
the quark and the gluon in the final state are back-to-back, and thus share the

same transverse momentum behaviour. Instead, in the quark-quark channel, q+q → g+X

and q+q → q+X predict different behaviours already at LO. This is well understood, since

there are two possible final states in this case: q + q → g + g and q + q → q + q. We have

checked that the former matches the LO high energy prediction coming from q+q → g+X,

whereas the latter matches the LO high energy prediction coming from q + q → q +X.

The comparison at O
(
α3
s

)
is far less trivial than at O

(
α2
s

)
, since we have to consider

more particles in the final state. To this end, we follow a technique similar to the one

presented in ref. [31] in the case of Higgs boson production. The basic idea is that we

compute directly the leading contributions in the high energy limit by retaining only the

relevant Feynman diagrams. We present in details the comparison at O
(
α3
s

)
for the g+g →

g +X case in appendix B. We have applied the same technique to check also all the other

channels at O
(
α3
s

)
.

6 Conclusions and outlook

In this paper we have discussed the generalization of high energy resummation to processes

with strong-interacting final states. As a first application, we have worked out the high

energy resummed transverse momentum distribution of the outgoing parton in all partonic

processes of the form g(q)+g(q)→ g(q)+X at LLx accuracy. The main results are thus the

impact factors given by eqs. (5.5), and the resummed transverse momentum distributions

given by eqs. (5.6). In order to reach this result, several new techniques have been exploited,

together with the general analysis for the treatment of coloured final states discussed in

section 3.1.

We have shown in section 3 that high energy resummation at LLx accuracy can be

achieved by exponentiating the LO matrix element of the off-shell hard process even in

3Note that σ0 contains an extra power of αs, see eq. (4.13).
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the case where such process is trivial or — what is more — forbidden in conditions of

on-shellness. Besides giving an insight into the theory of high energy resummation, this

concept leads to a substantial simplification of the calculations, and we expect it will have

future impact on the evaluation of high energy contributions to processes with jets in the

final state.

Another key aspect of our analysis was colour management. Not only we have shown

that working with coloured final states in a systematic and efficient way is possible, but we

have also provided an explicit consistency cross-check of two recent techniques (presented

in refs. [8, 10]) and the conventional method. Moreover, we have derived a general formula,

given by eq. (5.2), by means of which the indistinguishability of the outgoing gluons con-

tained in the hard part from those radiated off the ladders can be restored systematically

at all orders in αs.

However, it is important to stress that the results achieved in this paper do not al-

low the evaluation of the LLx behaviour of all the possible jet observables. Indeed, full

inclusivity over the ladder emissions is for now mandatory in the derivation of high en-

ergy factorization, whereas some control over their kinematics as well would in general be

required in the definition of many jet observables.

The natural next step is phenomenology. To this end, since we have only worked at

parton level so far, the future plan consists in a thorough analysis of the effects of the

various jet clustering algorithms and fragmentation functions, essential in order to build

hadronic observables.

Nevertheless, we wish to point out that for some observables, such as one-jet inclusive

cross section and leading-jet transverse momentum distribution, jet cluster analysis is in

principle possible at high energy even requiring inclusiveness on the ladders phase space.

It is worth saying a few more words about this point. Consider an emission diagram

at LLx with n and m emissions from the two initial legs respectively. Let us denote by

k2
Ti

, k̄2
Tj

and by yi, ȳj the transverse momenta and the rapidities of the ladder radiated

particles in the upper and bottom leg respectively. Then, at LLx, this kinematics features

a particular ordering in both rapidity and transverse momentum, namely

k2
T1
< k2

T2
< · · · < k2

Tn
= k2

T, (6.1a)

y1 � y2 � · · · � yn = y, (6.1b)

k̄2
T1
< k̄2

T2
< · · · < k̄2

Tm
= k̄2

T, (6.1c)

ȳ1 � ȳ2 � · · · � ȳm = ȳ. (6.1d)

As a result, for some jet observables, such as the one-jet inclusive cross section or the

leading-jet pT distribution, the mere knowledge of the rapidities and the transverse mo-

menta of the last emissions, controlled by the hard part, is sufficient to completely define

the whole kinematics.

For example, in the one-jet inclusive case, if we associate to the two hard part initial

off-shell gluons and to the final tagged parton a transverse momentum, a rapidity and an

azimuthal angle, distribuited according to the off-shell coefficient function, we will be able to
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apply on these three particles a particular jet algorithm (a kT or anti-kT one, for instance),

so as to construct possible final state jets. Then, if none of these particles is going to

produce a jet, none of the others can, because of the ordering given by eqs. (6.1). Therefore,

all further radiation can be generated inclusively in the whole phase space preserving the

leading logarithmic accuracy and anyway obtaining the correct LLx prediction for the

one-jet inclusive cross section.

This opens up the possibility of studying in the high energy regime certain jet observ-

ables, for which eqs. (6.1) assure that ladder interference is subleading. Further studies are

however needed, and are considered as a primary outlook.

Nonetheless, our partonic results are straight away applicable in PDFs fits thanks to

recent developments in matched LLx code implementation [20, 27], and we expect them to

be used in the next small-x resummed global fit.

Acknowledgments

We are particularly grateful to Stefano Forte for many useful discussions in the early stages

of this project and for a critical reading of the manuscript. This project has received

funding from the European Research Council (ERC) under the European Union’s Horizon

2020 research and innovation programme (grant agreement No 725110).

A Wilson lines

We provide here a practical guide to diagrammatic calculation of gauge-invariant scattering

amplitudes with external off-shell gluon legs in the Wilson lines formalism. We recall that

by gauge invariance we mean that the matrix element fulfils the Abelian Ward identities

eq. (3.7). For a thorough discussion we refer to the original paper ref. [10].

As well known, off-shell scattering amplitudes fail to be gauge-invariant in the sense of

eq. (3.7) when the final state is strong-interacting, if the calculation is performed by means

of the standard QCD Feynman rules alone. In order for gauge invariance to be restored,

additional contributions are thus to be added, which can only come from additional, non-

QCD Feynman rules. In this formalism, the new set of rules is derived from the insertion in

the QCD matrix element of a suitably regularised and normalised straight infinite Wilson

line operator.

The calculation proceeds as follows. First, with each incoming off-shell gluon with

momentum kµX and colour cX is associated a so-called “skeleton”, namely the ends of the

corresponding Wilson line, depicted on top of figure 4. We recall that the incoming off-shell

gluon momenta must have the usual high energy parametrization given by eq. (2.9).

The skeleton is the most complicated object of this formalism: great care must be

taken to ensure the right momentum and colour flow, so that the proper colour traces are

recovered overall. In the skeleton diagram depicted in figure 4, for instance, momentum

and colour flow to the right, so that the left-most side carries momentum kµX , whereas the

right-most one has momentum zero. When more external off-shell gluon lines are involved,

things get a little tricky. For our purposes, suffice it to say that, in the case of two off-shell
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A B C
cX

kX 0· · ·
2

gs
(T cX)ABδAC

A B

µ, c

igsn
µ
X(T

c)AB

A Bk iδAB
k · nX + iǫ

Figure 4. Feynman rules for the insertion of a Wilson line operator corresponding to an incoming

off-shell gluon with colour cX , carrying momentum kµX = zXn
µ
X + kµX,T. The top-most diagram is

the so-called skeleton of the Wilson line; the dots denote potential gluon attachments according

to the middle diagram, which represents the Wilson line-gluon coupling. The bottom diagram

represents the Wilson line propagator.

incoming gluons, the direction of momentum and colour flow has to be reversed in one of

the Wilson lines, as shown e.g. in figure 3. The general case of an arbitrary number of

off-shell gluons is beyond the scope of this paper; see ref. [10] for the details.

Next, the dots in the skeleton diagram in figure 4 represent potential gluon attach-

ments, which can be placed between the beginning and the end of the Wilson line according

to the middle rule of figure 4. To these gluon lines, then, the standard QCD Feynman rules

have to be applied as required in order to produce the desired final state. Also note that,

as for the standard vertices, each Wilson line-gluon coupling comes with a momentum

conservation constraint.

Finally, the proper Wilson line propagator has to be placed between subsequent gluon

attachments, according to the lowest rule of figure 4. The +iε (ε > 0) term in the propa-

gator denominator is used, as usual, to implement the Feynman boundary conditions.

One last remark on the analytic expressions of these Feynman rules is mandatory.

Beware: the approach to the polarization vectors eµX of the external off-shell gluons adopted

in the Wilson lines formalism is different from the standard one presented in section 2.

Rather than treating them as proper polarization vectors, which have to be averaged over

according to eq. (2.11), they here have the precise form

eµX = zXkX,Tn
µ
X , (A.1)

where zX , kX,T and nµX are defined by the high energy parametrization of the off-shell gluon

momentum kµX , given by eq. (2.9). The explicit expression of the off-shell polarization

vectors given by eq. (A.1) is devised so as to automatically implement the average rule

eq. (2.11), without the need of extra averaging factors.
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B High energy calculations: an efficient approach

The cross-check between the O(α3
s) term of the high energy resummed transverse momen-

tum distribution of g + g → g + X eq. (5.10b) and the exact fixed-order calculation for

gg → ggg is much more complicated than the O(α2
s) case, as it would also require the

1-loop corrections to gg → gg to be taken into account. The O(α3
s) squared scattering

amplitudes for all (2→ 2) and (2→ 3) parton processes can be found in ref. [14].

The squared matrix element, however, consists of hundreds of terms, which need to be

integrated over a complicated phase space. Since an analytical cross-check would be prefer-

able, a straightforward comparison with the exact result would be exceedingly cumbersome.

A possible solution comes from an alternative approach proposed in refs. [6, 31]: instead

of taking the x→ 0 limit of the complete exact result, we are able to calculate directly the

leading contributions in such limit, which we expect to be not only much simpler than the

full expression, but indeed vanishing.

The basic insights at the heart of this technique are the same underlying the high

energy factorization theorem: in an axial gauge, only t-channel gluon emissions contribute

at LLx accuracy [22], and interference and quark radiation are subleading effects [7]. The

modus operandi basically consists in supplementing the fully differential cross section of the

off-shell hard process with the small-x enhanced phase space volume elements associated

with as many ladder gluon emissions as desired.

Let us first consider single gluon emission. The diagrams contributing at LLx accuracy,

together with the relevant kinematics, are depicted in figure 5. Up to power-suppressed

terms in z and k2
T/ŝ, the LLx contribution to the (dimensionless) transverse momentum

distribution coming from single gluon radiation off the lower leg is

p4
T

dσ̃1−down

dp2
T

(x; ε)=
1

2!

∫ [
σ0δ

(
1− x

z

)] [
ᾱs
dz

z

dξ

ξ1+ε

(4π)ε

Γ(1− ε)

]
δ(1− ξ) =

1

2
σ0ᾱs

[
(4π)ε

Γ(1− ε)

]
,

(B.1)

where ᾱs = CAαs/π, ξ is defined similarly to eq. (2.4), and σ0 is given by eq. (4.13).

Some remarks about eq. (B.1) are in order. The tilde in eq. (B.1) indicates that this

observable might contain unsubtracted collinear singularities; the calculation is thus per-

formed in d = 4−2ε dimensions. In the first square bracket we recognize the dimensionless

cross section of the hard interaction gg → g with only the lower incoming gluon left off-

shell, which can be read from eq. (4.12). The second square bracket, instead, contains the

small-x enhanced phase space associated with gluon emission. The factors of (4π)ε/Γ(1−ε)
coming from angular integrations are always subtracted in the MS subtraction scheme [6],

and shall therefore be omitted hereafter. Lastly, the momentum conservation delta makes

the observable a transverse momentum distribution, and the factor of 1/2! accounts for

the two outgoing gluons being indistinguishable. Also in this case we define x according to

eq. (5.7) by selecting as hard scale Q2 = p2
T.

Due to simmetry, it is apparent that the contribution coming from the upper leg

emission is the same as eq. (B.1). Thus, since interference is a subleading effect, the LLx

contribution in the small-x limit to the unsubtracted (dimensionless) transverse momentum

– 23 –



J
H
E
P
1
2
(
2
0
1
7
)
0
9
7

Hard interaction

Hard interaction

n =
(
0,

√
ŝ
2
,~0

)

q =
(
− k̄2T

2ŝ(1−z̄)
,
√
ŝ
2
(1− z̄),−~̄kT

)

nL =
(

k̄2T
2ŝ(1−z̄)

,
√
ŝ
2
z̄, ~̄kT

)

p =
(√

ŝ
2
, 0,~0

)

n =
(
0,

√
ŝ
2
,~0

)

p =
(√

ŝ
2
, 0,~0

)

r =
(√

ŝ
2
(1− z),− k2T

2ŝ(1−z)
,−~kT

)

pL =
(√

ŝ
2
z,

k2T
2ŝ(1−z)

, ~kT

)

Figure 5. Feynman diagrams giving the LLx contributions to the single emission process in the

small-x limit. The relevant kinematics is displayed in terms of light-cone Sudakov components.

Hard interaction

Hard interaction

Hard interaction

n =
(
0,

√
ŝ
2
,~0

)
n =

(
0,

√
ŝ
2
,~0

)
n =

(
0,

√
ŝ
2
,~0

)

p =
(√

ŝ
2
, 0,~0

)
p =

(√
ŝ
2
, 0,~0

)
p =

(√
ŝ
2
, 0,~0

)

q =
(
0,

√
ŝ
2
,−~̄kT

)

nL =
(
0,

√
ŝ
2
z̄, ~̄kT

)

r =
(√

ŝ
2
, 0,−~kT

)pL =
(√

ŝ
2
z, 0, ~kT

)

q1 =
(
0,

√
ŝ
2
z̄2z̄1,−~̄kT,1

)

q2 =
(
0,

√
ŝ
2
,−~̄kT,2

)

n1 =
(
0,

√
ŝ
2
z̄2z̄1,

~̄kT,1

)

n2 =
(
0,

√
ŝ
2
z̄2,

~̄kT,2

)

r1 =
(√

ŝ
2
z1, 0,−~kT,1

)

r2 =
(√

ŝ
2
, 0,−~kT,2

)

p1 =
(√

ŝ
2
z2z1, 0, ~kT,1

)

p2 =
(√

ŝ
2
z2, 0, ~kT,2

)

Figure 6. Feynman diagrams giving the LLx contributions to the double emission process in the

small-x limit. Crossed diagrams are omitted. The relevant kinematics is displayed in terms of

light-cone Sudakov components in the high energy regime.

distribution of gg → gg simply reads

p4
T

dσ̃1

dp2
T

(x; ε) = p4
T

dσ̃1−up

dp2
T

(x; ε) + p4
T

dσ̃1−low

dp2
T

(x; ε) = σ0ᾱs. (B.2)

It is trivial, in this case, to take the ε → 0 limit, and check that eq. (B.2) matches both

the O(α2
s) term of the resummed observable eq. (5.10b) and the small-x limit of the full

exact result, which can be found in any standard textbook.

Let us now tackle double emission. In figure 6 we can see the ladder-type diagrams

contributing to this process at LLx accuracy with the relevant kinematics. Note that the

legs of the two emitted gluons also have to be exchanged, when they are both radiated off

the same leg, thus leading to two crossed diagrams which we have not depicted in figure 6 for
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simplicity; it is however straightforward to prove that they give the same contributions as

the corresponding uncrossed ones. We remember that each gluon emission is accompanied

by a factor of (4π)ε/Γ(1− ε), which is always subtracted in the MS-scheme, and shall thus

be omitted, in line with refs. [6, 31].

Let us first consider double gluon emission from the same leg, say the lower one to

make contact with the previous case. As small-x leading contributions only come from

the strongly ordered region k2
1,T � k2

2,T [3, 6], the momentum conservation delta greatly

simplifies

δ
(

1− ξ1 − ξ2 − 2
√
ξ1

√
ξ2 cos θ

)
≈ δ (1− ξ1) , (B.3)

where ξi = k2
i,T/Q

2, and θ is the angle between the directions of ~k1,T and ~k2,T.

Then, the generalization of eq. (B.1) to double emission from the lower leg is

p4
T

dσ̃2−down

dp2
T

(x; ε) = 2
1

3!

∫
dθ

2π

[
σ0δ

(
1− x

z1z2

)][
ᾱs
dz2

z2

dξ2

ξ1+ε
2

] [
ᾱs
dz1

z1

dξ1

ξ1+ε
1

]
δ(1− ξ1) =

=
1

3
σ0ᾱ

2
s ln

(
1

x

)[
−1

ε

]
, (B.4)

where the overall factor of 2 takes account of the exchange of the emitted gluon legs as

well. Due to symmetry, double emission from the upper leg yields the same contribution

as eq. (B.4).

Single emission from both legs is trickier: in line with eq. (B.4), its contribution at

LLx accuracy reads

p4
T

dσ̃up−down

dp2
T

(x; ε) =
1

3!

∫
dθ

2π

[
σ0δ

(
1− x

zz̄

)] [
ᾱs
dz

z

dξ

ξ1+ε

] [
ᾱs
dz̄

z̄

dξ̄

ξ̄1+ε

]
×

× δ
(

1− ξ − ξ̄ − 2
√
ξ

√
ξ̄ cos θ

)
, (B.5)

where ξ and ξ̄ are defined as usual, but the angular dependence in the momentum conser-

vation delta is not suppressed by strong ordering and has to be handled. Integrations can

still be performed in closed form, yielding

p4
T

dσ̃up−down

dp2
T

(x; ε) =
1

3!
σ0ᾱ

2
s ln

(
1

x

)
Γ(−ε)2Γ(1 + 2ε)

Γ(1 + ε)2Γ(−2ε)
=

1

3
σ0ᾱ

2
s ln

(
1

x

)[
−1

ε
+O

(
ε2
)]
.

(B.6)

It is worth noting that the singular term of eq. (B.6) equals the contributions due to double

emission from the same leg eq. (B.4).

Then, interference being subleading, the complete O(α3
s) unsubtracted (dimensionless)

transverse momentum distribution of gg → ggg at LLx accuracy is obtained by summing

up the three contributions:

p4
T

dσ̃2

dp2
T

(x; ε) = σ0ᾱ
2
s ln

(
1

x

)[
−1

ε
+O(ε2)

]
. (B.7)

The last step consists in performing the MS subtraction of collinear singularities, which

is most conveniently carried out in Mellin space in order to factorize convolutions. Indeed,
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as well known, the collinear radiation of a gluon produces a singular higher-order contri-

bution which in d = 4 − 2ε dimensions has the form of a convolution of the lower order

observable with the relevant splitting function, times a simple pole −1/ε. Having already

neglected the finite terms coming from angular integrations, collinear singularities are re-

moved by subtracting a contribution of such form for each emitted gluon and then taking

the ε→ 0 limit

p4
T

dσ2

dp2
T

(N) = lim
ε→0

{
dσ̃2

dξp
(N ; ε)− 2

[
1

2!

(
−1

ε

)
P (0)
gg (N)

dσ̃1

dξp
(N ; ε)

]}
, (B.8)

where p4
Tdσ̃2/dp

2
T(N ; ε) and p4

Tdσ̃1/dp
2
T(N ; ε) are the Mellin transforms of eqs. (B.7)

and (B.2) respectively, and the factor of 1/2! accounts for gluon indistinguishability. Fi-

nally, performing the Mellin transformations and substituting them into eq. (B.8), and

recalling that at high energy [32]

P (0)
gg (N) = γ(0)

gg (N) =
ᾱs
N
, (B.9)

we see that the small-x limit of the transverse momentum distribution of the outgoing

gluon in the process g + g → g +X at O
(
α3
s

)
is indeed vanishing

p4
T

dσ2

dp2
T

(x) = lim
x→0

p4
T

dσ

dp2
T

(x)

∣∣∣∣
gg→ggg

= 0, (B.10)

in agreement with our prediction.

C Impact factor correction

In this appendix we present the complete derivation of eq. (5.2). Let us consider some

resummed observable in Mellin-space of the form

σ(N,αs) = αms

∞∑

k=1

ck

(αs
N

)k
, (C.1)

which we want to modify so that each O (αns ) term of the sum is divided by a factor of n−s

σ̃(N,αs) = αms

∞∑

k=1

ck
m+ k − s

(αs
N

)k
, (C.2)

in such a way that one does not have to adjust each order separately. Since the sum in

eq. (C.1) starts at O(αm+1
s ), the parameter s is arbitrary apart from the constraint

s < m+ 1. (C.3)

For convenience, we define some reduced observables σ(a) and σ̃(a) by factorizing

σ(N,αs) and σ̃(N,αs) as

σ(N,αs) = αms

(
N

αs

)m−s ∞∑

k=1

ck

(αs
N

)k+m−s
=

αms
am−s

∞∑

k=1

cka
k+m−s ≡ αms

am−s
σ(a),

σ̃(N,αs) =
αms
am−s

∞∑

k=1

ck
m+ k − sa

m+k−s ≡ αms
am−s

σ̃(a), (C.4)
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where we have introduced the variable

a =
αs
N

(C.5)

for the sake of simplicity.

By using the definitions of σ(a) and σ̃(a), it is straightforward to prove that the latter

must be a solution of the differential equation

dσ̃

da
(a) =

1

a
σ(a), (C.6)

with initial condition

σ̃(0) = 0. (C.7)

Furthermore, let us introduce two new functions of M

h(M) := σ

(
a =

1

χ0(M)

)
, (C.8)

h̃(M) := σ̃

(
a =

1

χ0(M)

)
, (C.9)

where χ0(M) is the LO BFKL kernel given by eq. (2.15), which fulfils the BFKL duality

relation [25, 26]

aχ0 (M = γs(a)) = 1. (C.10)

Indeed, these new functions are close relatives of the impact factors. Considering for

instance h(M), from the following chain of equalities

h (M)

∣∣∣∣
M=γs(a)

= σ

(
1

χ0 (M = γs(a))

)
= σ(a) =

am−s

αms
σ(N,αs) =

=
1

αms

1

[χ0(M)]m−s
h(0,M,M,αs)

∣∣∣∣
M=γs(a)

, (C.11)

it follows that

h(M) =
1

αms

1

[χ0(M)]m−s
h(0,M,M,αs). (C.12)

The same relation also holds for h̃(M)

h̃(M) =
1

αms

1

[χ0(M)]m−s
h̃(0,M,M,αs), (C.13)

where we have introduced the corrected impact factor h̃, which will be our final desired

result.

Changing variable from a to 1/χ0(M) into eq. (C.6) and turning the derivative with

respect to 1/χ0(M) into a derivative with respect to M then leads to a differential equation

for h̃(M)
d

dM
h̃(M) = − 1

χ0(M)

dχ0(M)

dM
h(M), (C.14)
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whose solution with some suitable initial condition in M0 is

h̃(M) = h̃(M0)−
∫ M

M0

dM ′
1

χ0(M ′)

(
dχ0(M ′)
dM ′

)
h(M ′). (C.15)

As far as the g∗g∗ → g case is concerned, m = 1 and we know from the explicit

calculation eq. (5.5b) that

h(M) =
1

αs

1

[χ0(M)]1−s
hpT(0,M,M,αs) ∼

M→0
M1−s

(
π

Nc

)1−s [
2
σ0

αs
M +O

(
M4
)]
.

(C.16)

As a result, we can infer the small-M behaviour of h̃(M) to be

h̃(M) ∼
M→0

M1−s
(
π

Nc

)1−s [ 2

2− s
σ0

αs
M +O

(
M4
)]
. (C.17)

Therefore, if s < m+ 1 = 2,

lim
M→0

h̃(M) = 0. (C.18)

It is thus convenient to choose h̃(0) = 0 as the initial condition to solve eq. (C.14).

However, before letting M0 = 0 in eq. (C.15), we have to make sure that the relevant

integration is well defined on the domain [0,M ]. This is immediately done by calculating

the small-M behaviour of the integrand function

− 1

χ0(M ′)
dχ0(M ′)
dM ′

h(M ′) ∼
M ′→0

M ′1−s
(
π

Nc

)1−s [
2
σ0

αs
+O(M ′)

]
, (C.19)

which is integrable on [0,M ], provided that s < 2.

In conclusion, letting M0 = 0 in eq. (C.15) and writing h(M) and h̃(M) in terms of

the corresponding impact factors gives the general correction formula

h̃(0,M,M,αs) = −
∫ M

0
dM ′

[
χ0(M)

χ0(M ′)

]m−s(d lnχ0(M ′)
dM ′

)
h(0,M ′,M ′, αs). (C.20)

Note that, although in this appendix we have set the explicit dependence on N of the

impact factors to 0, since this is the only leading contribution at LLx accuracy [7], the

derivation works for general N as well. We have thus proven the correction formula given

in the text by eq. (5.2).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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