
J
H
E
P
1
2
(
2
0
1
7
)
0
8
4

Published for SISSA by Springer

Received: October 16, 2017

Accepted: December 7, 2017

Published: December 15, 2017

Flavour alignment in multi-Higgs-doublet models
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1 Introduction

Scalar multiplets transforming as doublets or singlets under the SU(2)L gauge group are the

favoured candidates for building extended models of perturbative electroweak symmetry

breaking (EWSB), beyond the Standard Model (SM) framework [1]. Assigning a zero

hypercharge to the singlets and Y = Q − T3 = 1
2 to the doublet scalars, these models

automatically satisfy the successful mass relation MW = MZ cos θW and can then be

easily adjusted to fulfil all precision electroweak tests. The observable signals of the singlet

scalar fields are quite restricted because they do not have Yukawa interactions with the SM

fermions, nor they couple to the gauge bosons. Therefore, they can only communicate with

those SM particles through their mixing with other neutral scalars in non-singlet multiplets.

Doublet fields give rise to a much more interesting phenomenology with non-trivial

implications for the fermionic flavour dynamics. In addition to the three electroweak Gold-

stone bosons, the spectrum of a scalar sector composed by N doublets contains N − 1

charged fields H± and 2N − 1 neutral scalars, with a rich variety of possible interactions.

In general, these include Yukawa couplings of the neutral scalars that are not diagonal in
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flavour, implying dangerous flavour-changing neutral-current (FCNC) transitions, which

are tightly constrained experimentally [2].

To avoid the presence of unwanted FCNC phenomena, one must impose ad-hoc dy-

namical restrictions, suppressing these effects below the empirically forbidden level. The

models most frequently considered in the literature [3–5] assume that only one single scalar

doublet can couple to a given type of right-handed fermion fR. This guarantees identical

flavour structures for the Yukawa interactions and the fermion mass matrices, so that FCNC

vertices are absent as in the SM. While this assumption is quite strong, it can be easily

implemented in the models, enforcing appropriately defined discrete Z2 symmetries which

forbid the Yukawa couplings of all other scalar doublets to fR [6–15] and keep the resulting

flavour structure stable under quantum corrections (natural flavour conservation) [16, 17].

Flavour alignment [18, 19] is a much more general possibility, based on the weaker as-

sumption that the couplings of all scalar doublets to a given right-handed fermion have the

same flavour structure [18–20]. All Yukawas can then be diagonalized simultaneously, elimi-

nating the FCNC vertices from the tree-level Lagrangian. FCNCs effects reappear at higher

perturbative orders because quantum corrections misalign the different Yukawas [21–23].

However, the build-in flavour symmetries strongly constrain the possible FCNC operators

that can be generated at the quantum level [18, 19], implying an effective theory with

minimal flavour violation [24, 25].

The induced one-loop FCNC Yukawas have been explicitly analysed within the aligned

two-Higgs-doublet model (A2HDM) [18, 19, 22, 26–30], and their effects have been found

to be small and well below all known experimental constraints, giving further support to

the successful phenomenology of this particular new-physics scenario [22, 28–54]. However,

some recent flavour anomalies observed in B → D(∗)τν data [55–62] have triggered the

consideration of flavour non-universal aligned-like structures [63–72], which have not been

explored at the quantum level.

In the following, we present a detailed study of the stability of flavour alignment under

quantum corrections. We analyse the FCNC operators generated at one loop for a generic

scalar sector with N doublets, both for the flavour-aligned model and for its generalization

with non-universal aligned-like structures. We want to understand the quantum struc-

ture of these models and their phenomenological viability. We discuss first in section 2

the general Yukava Lagrangian of the N-Higgs-doublet model, and briefly describe in sec-

tion 3 the usual models with natural flavour conservation. The alignment assumption is

implemented in section 4, where its possible generalizations are discussed. The one-loop

renormalization-group equations (RGEs) of the model are used in section 5 to pin down

the induced FCNC operators in the most general case. The result is then particularized to

the different situations we are interested in, and the usual scenarios with Z2 symmetries

are easily recovered. Section 6 analyses the underlying symmetries governing the specific

flavour structures obtained through the RGEs. The phenomenological implications are

discussed in sections 7, 8 and 9, and a brief summary is finally given in section 10. Some

technical details are relegated to the appendix.

– 2 –



J
H
E
P
1
2
(
2
0
1
7
)
0
8
4

2 Multi-Higgs-doublet models

Let us consider an electroweak model with the SM fermion content and gauge group, and

an extended scalar sector involving N doublets with hypercharge Y = 1
2 ,

φa = eiθa

 φ+
a

1√
2

(va + ρa + i ηa)

 . (2.1)

Their neutral components acquire vacuum expectation values 〈φ0
a〉 = eiθa va/

√
2, which in

full generality could be complex (va ≥ 0). One global phase can always be rotated away

through a U(1)Y transformation; we choose θ1 = 0, leaving the relative phases θ̃a = θa−θ1.

For our discussion, it is not necessary to specify the scalar potential and gauge couplings.

We are only interested in the Yukawa interactions which take the generic form

LY = −
N∑
a=1

{
Q̄′L

(
Γaφa d

′
R + ∆aφ̃a u

′
R

)
+ L̄′L Πaφa `

′
R + h.c.

}
, (2.2)

where φ̃a ≡ iτ2φ
∗
a are the charge-conjugated scalar fields, Q′L and L′L the left-handed quark

and lepton doublets, and d′R, u′R, `′R the corresponding right-handed fermion singlets. All

fermion fields denote NG = 3 vectors in flavour space; for instance, d′R = (d′R, s
′
R, b
′
R)T .

The Yukawa couplings Γa, ∆a and Πa are NG ×NG complex flavour matrices.

It is convenient to perform a global SU(N) transformation in the space of scalar fields,

Φa =

N∑
b=1

Ωab e−iθ̃b φb , φb = eiθ̃b
N∑
a=1

Ωab Φa , Ω · ΩT = ΩT · Ω = 1 , (2.3)

such that only the first doublet acquires a vacuum expectation value. The needed transfor-

mation is characterized by the condition Ω1a = va/v, with v =
(∑

a v
2
a

)1/2
> 0, and defines

the Higgs basis

Φ1 =

 G+

1√
2

(v + S0
1 + iG0)

 , Φa>1 =

 S+
a

1√
2

(S0
a + i P 0

a )

 . (2.4)

The EWSB is then fully associated with the doublet Φ1, which incorporates the electroweak

Goldstone fields G0 and G+, and plays the role of the SM Higgs doublet.

The physical mass-eigenstate charged (neutral) scalars are linear combinations of the

S+
a (S0

a and P 0
a ) fields. The 2N−1 neutral scalar mass eigenstates, ϕ0

i = RijS0
j , are related

with the scalar-doublet field components S0
i = {S0

1 , S
0
2 , P

0
2 , · · · , S0

N , P
0
N} through an orthog-

onal transformation R which depends on the parameters of the scalar potential. With a

CP-conserving potential, the neutral scalar mixing matrix splits into two separate CP-even

(S0
a) and CP-odd (P 0

a ) mixing structures. CP-violation mixes the two scalar sectors and the

resulting mass eigenstates do not have, in general, definite CP quantum numbers. Similarly,

the N − 1 charged fields S+
i = {S+

2 , S
+
3 , · · · , S

+
N} mix among themselves giving rise to the

charged mass eigenstates ϕ+
i = R(+)

ij S
+
j , with R(+) a (N − 1)× (N − 1) orthogonal matrix.
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In the Higgs basis the Yukawa structures in eq. (2.2) take the form

N∑
a=1

Γaφa =
N∑
b=1

Γ̂bΦb ,
N∑
a=1

∆aφ̃a =
N∑
b=1

∆̂bΦ̃b ,
N∑
a=1

Πaφa =
N∑
b=1

Π̂bΦb , (2.5)

with

Γ̂b =
N∑
a=1

Ωba eiθ̃a Γa , ∆̂b =
N∑
a=1

Ωba e−iθ̃a ∆a , Π̂b =
N∑
a=1

Ωba eiθ̃a Πa . (2.6)

The EWSB mechanism generates the mass matrices

M ′d =
v√
2

Γ̂1 , M ′u =
v√
2

∆̂1 , M ′` =
v√
2

Π̂1 , (2.7)

which only involve the Yukawa structures associated with the doublet field Φ1. Their

diagonalization determines the fermion mass eigenstates

Uf†L M ′f U
f
R = Mf , f ′L = UfL fL , f ′R = UfR fR , (2.8)

and the fermion masses

Md = diag(md,ms,mb) , Mu = diag(mu,mc,mt) , M` = diag(me,mµ,mτ ) . (2.9)

Neutrinos remain massless because the model does not include νR fields.

In terms of the fermion mass eigenstates, the Yukawa Lagrangian is given by

LY = −
(

1 +
S0

1

v

) {
d̄LMddR + ūLMuuR + ¯̀

LM``R
}

− 1

v

N∑
a=2

(
S0
a + i P 0

a

){
d̄LY

(a)
d dR + ūRY

(a)†
u uL + ¯̀

LY
(a)
` `R

}
−
√

2

v

N∑
a=2

S+
a

{
ūLVCKMY

(a)
d dR − ūRY (a)†

u VCKMdL + ν̄LY
(a)
` `R

}
+ h.c. , (2.10)

where VCKM = Uu†L UdL is the usual Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing

matrix [73, 74]. The analogous mixing matrix in the charged-current leptonic Yukawa,

VL = Uν†L U
`
L, has been reabsorbed through a redefinition of the massless neutrino fields,

ν̄L · VL → ν̄L, so that the leptonic W± interactions are flavour diagonal. For a 6= 1, the

Yukawa structures

Y
(a)
d =

v√
2
Ud†L Γ̂a U

d
R , Y (a)

u =
v√
2
Uu†L ∆̂a U

u
R , Y

(a)
` =

v√
2
U `†L Π̂a U

`
R , (2.11)

are not related to the mass matrices and their elements could take arbitrary complex values.

In general, they remain non-diagonal in the fermion mass-eigenstate basis, giving rise to

unwanted flavour-changing couplings of the neutral scalar fields.
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3 Natural flavour conservation

The simplest way to avoid flavour non-diagonal Yukawa matrices Y
(a)
f is minimizing dras-

tically the number of flavour structures in the Lagrangian (2.2) so that, for a given type

of right-handed fermion f ′R, only one single scalar doublet φaf is allowed to have non-zero

Yukawa coupling. A given choice of three fields {φad , φau , φa`} defines a particular model

with Γa = δada Γad , ∆a = δaua ∆au and Πa = δa`a Πa` .

In the Higgs basis, this implies

Γ̂a = Ωaad eiθ̃ad Γad , ∆̂a = Ωaau e−iθ̃au ∆au , Π̂a = Ωaa` eiθ̃a` Πa` . (3.1)

Since there are only three flavour structures, one for each type of fermion, the diagonaliza-

tion of the mass matrices Γ̂1, ∆̂1 and Π̂1 also diagonalizes all Yukawas with a 6= 1 [18, 19].

One obtains:

Y
(a)
f = ς

(a)
f Mf , ς

(a)
f =

Ωaaf

Ω1af

. (3.2)

This particular form of the Yukawa Lagrangian could be enforced through a discrete

symmetry Zd2 ⊗Zu2 ⊗Z`2, where each separate Zf2 transformation is defined so that f ′R and

φaf reverse sign,

Zf2 : f ′R → −f ′R , φaf → −φaf , (3.3)

while all other fields remain unchanged [75]. The symmetry guarantees that the resulting

flavour structure is stable under quantum corrections, ensuring that FCNC local inter-

actions cannot reappear at higher orders. Notice that the assumption of natural flavour

conservation singles out a particular basis of scalar fields where the discrete symmetry is

defined.

For N = 2, one can choose four different inequivalent options for {ad, au, a`}, where af
labels the doublet to which the fermion f ′R is coupled (the remaining possibilities amount

to a permutation of φ1 and φ2), which are usually taken as

Type I : {2, 2, 2} , ςd = ςu = ς` = cotβ ,

Type II : {1, 2, 1} , ςd = ς` = − tanβ , ςu = cotβ ,

Type X : {2, 2, 1} , ςd = ςu = cotβ , ς` = − tanβ ,

Type Y : {1, 2, 2} , ςd = − tanβ , ςu = ς` = cotβ ,

(3.4)

with ςf ≡ ς
(2)
f and tan β ≡ v2/v1. A single Z2 transformation is enough in this case to define

the model: φ1 is odd, while φ2, Q′L, L′L and u′R are all even. The four different types of mod-

els are obtained defining different transformations of the d′R and `′R fields under Z2. In type

I the two fields are even [6, 7], they are both odd in type II [7, 8] d′R → d′R and `′R → −`′R in

type X [9], and d′R → −d′R and `′R → `′R in type Y [9]. If the Z2 symmetry is imposed in the

Higgs basis, all fermions must couple to Φ1 in order to get their masses and the doublet Φ2

necessarily decouples from the fermion sector. One gets then a type-I structure (exchanging

the labels 1 and 2) with ςf = 0, known as the inert two-Higgs-doublet model [10].

– 5 –
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With N = 3 there are five inequivalent possibilities, up to permutations of the three

scalar-field labels, which we define through the following choices of {ad, au, a`}:

TypeA: {1,1,1}, ς
(a)
d = ς(a)

u = ς
(a)
` =Ωa1/Ω11

TypeB: {1,2,1}, ς
(a)
d = ς

(a)
` =Ωa1/Ω11 , ς(a)

u =Ωa2/Ω12 ,

TypeC: {1,1,2}, ς
(a)
d = ς(a)

u =Ωa1/Ω11 , ς
(a)
` =Ωa2/Ω12 , (3.5)

TypeD: {1,2,2}, ς
(a)
d =Ωa1/Ω11 , ς(a)

u = ς
(a)
` =Ωa2/Ω12 ,

TypeE: {1,2,3}. ς
(a)
d =Ωa1/Ω11 , ς(a)

u =Ωa2/Ω12 , ς
(a)
` =Ωa3/Ω13 .

One can easily check that each one of these structures can be enforced by using only two

Z2 symmetries.

For N > 3, natural flavour conservation implies that three scalar doublets, which can

always be chosen as φ1,2,3, couple to the fermions following one of the five allowed N = 3

types, while the remaining N − 3 doublets decouple.

4 Flavour alignment

Natural flavour conservation is a very strong assumption, which for N > 3 involves N − 3

fermiophobic scalar doublets (in the scalar basis where the Zf2 symmetries are imposed).

In order to avoid FCNC interacting vertices in LY , what is really needed is that only a

single flavour structure is present for each fR type, i.e., the alignment condition [18, 19]:

Γa = e−iθ̃a ξ
(a)
d Γ1 , ∆a = eiθ̃a ξ(a)†

u ∆1 , Πa = e−iθ̃a ξ
(a)
` Π1 , (4.1)

where ξ
(1)
f = 1 while ξ

(a 6=1)
f can be arbitrary complex parameters. All Yukawa matrices are

then simultaneously diagonalized in the fermion mass-eigenstate basis, with the result

Y
(a)
d,` = ς

(a)
d,` Md,` , Y (a)

u = ς(a)†
u Mu , (4.2)

where the alignment proportionality parameters are given by

ς
(a)
f =

∑N
b=1 Ωab ξ

(b)
f∑N

b=1 Ω1b ξ
(b)
f

. (4.3)

Natural flavour conservation corresponds to the particular cases where the alignment pa-

rameters ξ
(b 6=1)
f are either all zero (ς

(a)
f = Ωa1/Ω11) or one of them, ξ

(af )
f , takes an infinite

value (ς
(a)
f = Ωaaf /Ω1af ).

The hypothesis of flavour alignment leads to a very appealing structure for the Yukawa

Lagrangian in eq. (2.10): i) all fermion-scalar interactions are proportional to the corre-

sponding fermion mass matrices, ii) FCNCs vertices are absent at tree level, and iii) the

only source of flavour-changing transitions is the charged-current quark mixing matrix

VCKM , which appears in the W± and H± fermionic couplings. In addition to the fermion

masses, the only new parameters introduced by the Yukawa interactions are the 3(N − 1)

– 6 –
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complex alignment factors ς
(a)
f (a 6= 1), which provide additional sources of CP violation

beyond the SM quark-mixing phase.

The flavour-alignment condition does not exhaust all possibilities for a tree-level La-

grangian without FCNC interactions. The most general structure is obtained with a set

of N simultaneously-diagonalizable matrices Y
′(a)
f , for each type of fermion f . One can

also describe this generic possibility with the parametrization (4.2) through the alignment

matrices

ς
(a)
d,` ≡ Y

(a)
d,` M

−1
d,` , ς(a)†

u ≡ Y (a)
u M−1

u . (4.4)

These expressions are completely general because all charged fermion masses are known to

be non vanishing; therefore, detMf 6= 0 and M−1
f is well defined. Since all Y

(a)
f matrices

are assumed to be diagonal, the alignment factors become now diagonal matrices (in the

fermion mass-eigenstate basis):

ς
(a)
d = diag(ς

(a)
d , ς(a)

s , ς
(a)
b ) , ς(a)

u = diag(ς(a)
u , ς(a)

c , ς
(a)
t ) , ς

(a)
` = diag(ς(a)

e , ς(a)
µ , ς(a)

τ ) .

(4.5)

The structure of the resulting Yukawa Lagrangian in eq. (2.10) is formally the same than

for normal alignment (provided one takes care of not commuting the matrix factors ς
(a)
f and

VCKM). However, one loses the hierarchies dictated by the fermion mass spectrum because

there is really no connection between the numerical values of the Yukawa couplings and the

corresponding masses. Small (large) values of mf can be compensated with large (small)

ς
(a)
f factors so that y

(a)
f = ς

(a)
f mf have acceptable magnitudes in the perturbative regime.

In the fermion weak-eigenstate basis, the relation between the Yukawa matrices Y
′(a)
f

and M ′f involves the alignment factors

ς
′(a)
f = UfL ς

(a)
f Uf†L , (4.6)

which, in general, are no-longer diagonal. Therefore, Y
′(a)
f and M ′f do not necessarily

commute. The absence of FCNC interactions only requires this commutator to be zero in

the fermion mass-eigenstate basis.

5 Renormalization group equations

The renormalization flow of the Yukawa couplings in a generic two-Higgs-doublet model was

studied in refs. [76, 77]. The extension to a multi-Higgs-doublet model was first analysed

in the lepton sector, neglecting all quark contributions (Γa = ∆a = 0) [78], and later

extended to the most general case in ref. [21]. At the one-loop level, the Yukawa structures

– 7 –
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φb φa

(a)

QL, qR QL, qR

φb

qR, QL

(b)

φa
φb

QL

uR, dR

(c)

Figure 1. One-loop topologies generating the flavour structures in eqs. (5.1), (5.2) and (5.3):

scalar self-energies (a), QL and qR self energies (b), and vertex corrections (c).

in eq. (2.2) satisfy the RGEs [21, 27]:

DΓa = aΓ Γa +

N∑
b=1

[
NC Tr

(
ΓaΓ

†
b + ∆†a∆b

)
+ Tr

(
ΠaΠ

†
b

)]
Γb

+
N∑
b=1

(
−2 ∆b∆

†
aΓb + ΓaΓ

†
bΓb +

1

2
∆b∆

†
bΓa +

1

2
ΓbΓ

†
bΓa

)
, (5.1)

D∆a = a∆ ∆a +

N∑
b=1

[
NC Tr

(
∆a∆

†
b + Γ†aΓb

)
+ Tr

(
Π†aΠb

)]
∆b

+

N∑
b=1

(
−2 ΓbΓ

†
a∆b + ∆a∆

†
b∆b +

1

2
ΓbΓ

†
b∆a +

1

2
∆b∆

†
b∆a

)
, (5.2)

DΠa = aΠ Πa +

N∑
b=1

[
NC Tr

(
ΓaΓ

†
b + ∆†a∆b

)
+ Tr

(
ΠaΠ

†
b

)]
Πb

+
N∑
b=1

(
ΠaΠ

†
bΠb +

1

2
ΠbΠ

†
bΠa

)
, (5.3)

where D ≡ 16π2µ (d/dµ), being µ the renormalization scale, and NC = 3 is the number of

quark colours.

The gauge-boson corrections are incorporated through the factors

aΓ = −8 g2
s −

9

4
g2 − 5

12
g′

2
, a∆ = aΓ − g′

2
, aΠ = −9

4
g2 − 15

4
g′

2
, (5.4)

where gs, g and g′ are the SU(3)C , SU(2)L and U(1)Y couplings, respectively. These

contributions do not change the flavour structure and only amount to a multiplicative

global factor.

One-loop diagrams involving scalar propagators introduce two additional Yukawa ma-

trices. The terms where these two matrices are traced (first lines in the right-hand sides

of eqs. (5.1), (5.2) and (5.3)) originate in the scalar self-energies (figure 1a). They correct

each Yukawa vertex Γb, ∆b, Πb with a different multiplicative factor, leaving untouched

its own flavour configuration, and mix the different ‘b’ structures. The additional flavour-

dependent quantum corrections in the second lines arise from fermion self-energies and

vertex contributions. The QL self-energy (figure 1b) generates the (ΓbΓ
†
b + ∆b∆

†
b) terms

– 8 –
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multiplying the left-hand sides of Γa in (5.1) and ∆a in (5.2), while the dR and uR self-

energies (figure 1b) give rise to the ΓaΓ
†
bΓb and ∆a∆

†
b∆b contributions, respectively. The

vertex topology (figure 1c) introduces the remaining structures ∆b∆
†
aΓb and ΓbΓ

†
a∆b, with

‘b’ indices in both sides of the primary ‘a’ Yukawa. The corresponding terms in DΠa

are easily obtained with the changes Γa → Πa, ∆a → 0. We have recalculated all these

topologies, finding complete agreement with refs. [21, 27].

Let us now consider a tree-level Yukawa structure having the generalized aligned-like

form of eq. (4.2) with ς
(a)
f diagonal matrices. Focusing for the moment on the Γa couplings,

one can rewrite eq. (5.1) as

DΓa = e−iθ̃a
{
ξ

(a)
d DΓ1 +

[
δξ

(a)
d + Θ

(a)
d,FC + Θ

(a)
d,FV

]
Γ1

}
. (5.5)

The parameters δξ
(a)
d contain those terms in the first line of eq. (5.1) which do not fit in

ξ
(a)
d DΓ1. Since they are constants without flavour structure, these contributions can be re-

absorbed into a quantum redefinition of the alignment factors, e−iθ̃a δξ
(a)
d = D

(
e−iθ̃a ξ

(a)
d

)
,

promoting them to µ-dependent quantities. The contributions from the second line of

eq. (5.1) have been split in two parts: Θ
(a)
d,FC incorporates the flavour-conserving terms

with Γb structures, while Θ
(a)
d,FV contains the flavour-violating pieces with ∆b matrices.

A similar decomposition can be performed for D∆a and DΠa. Obviously, one does not

generate any FCNC couplings through DΠa because there is only one flavour structure in

the second line of (5.3) (in aligned-like models), i.e., Θ
(a)
`,FV = 0.

Since we are only interested in the flavour-violating structures, we can neglect the

quantum corrections to the vacuum expectation values and work directly in the Higgs

basis where all expressions simplify considerably. Dropping all flavour-conserving contri-

butions, the integration of the RGEs is quite straightforward. At leading order, one gets

the following local FCNC interactions (in the neutral scalar mass eigenstates basis):

LFCNC=
1

4π2v3

2N−1∑
k=1

ϕ0
k

N−1∑
a=1

{
C(a+1)
d (Rk,2a + iRk,2a+1) d̄LΘ̃

(a+1)
d MddR (5.6)

+ C(a+1)
u (Rk,2a − iRk,2a+1) ūLΘ̃(a+1)

u MuuR

}
+ h.c. ,

where each quark vertex is proportional to the corresponding mass. The structures

Θ̃
(a)
d =−V †

CKM

N∑
b=1

ς(b)†
u MuM

†
uς

(a)
u V

CKM
ς

(b)
d +ς

(a)
d V †

CKM

N∑
b=1

ς(b)†
u MuM

†
uVCKM

ς
(b)
d +∆Θ̃

(a)
d , (5.7)

Θ̃(a)
u =−V

CKM

N∑
b=1

ς
(b)
d MdM

†
dς

(a)†
d V †

CKM
ς(b)†
u +ς(a)†

u V
CKM

N∑
b=1

ς
(b)
d MdM

†
dV
†
CKM

ς(b)†
u +∆Θ̃(a)

u ,

involve two additional quark mass matrices, two CKM mixing matrices and three alignment

factors. Thus, the generated FCNC operators have dimension seven and are strongly
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suppressed by CKM mixings. The last terms in (5.7),

∆Θ̃
(a)
d =

1

4

[
V †

CKM

(
N∑
b=1

ς(b)†
u MuM

†
uς

(b)
u

)
V

CKM
, ς

(a)
d

]
=
N

4

[
V †

CKM
MuM

†
uVCKM

, ς
(a)
d

]
, (5.8)

∆Θ̃(a)
u =

1

4

[
V

CKM

(
N∑
b=1

ς
(b)
d MdM

†
dς

(b)†
d

)
V †

CKM
, ς(a)†
u

]
=
N

4

[
V

CKM
MdM

†
dVCKM

, ς
(a)
d

]
,

are only present in the most general aligned-like scenario with diagonal matrices ς
(a)
f ,

otherwise the commutators would vanish identically.

In the simpler case of normal alignment, where the factors ς
(a)
f are just family-universal

parameters, these expressions adopt the much simpler forms:

Θ̃
(a)
d =

(
ς

(a)
d − ς

(a)
u

) ( N∑
b=1

ς(b)†
u ς

(b)
d

)
V †

CKM
MuM

†
uVCKM

, (5.9)

Θ̃(a)
u =

(
ς(a)†
u − ς(a)†

d

) ( N∑
b=1

ς(b)†
u ς

(b)
d

)
V

CKM
MdM

†
dV
†
CKM

. (5.10)

For N = 2, these results agree with the previously known one-loop misalignment of the

A2HDM [21–23, 26–30].

The RGEs determine the µ dependence of the Wilson coefficients C(a)
d,u(µ). At leading

order, one finds (f = d, u)

C(a)
f (µ) = C(a)

f (µ0)− log (µ/µ0) . (5.11)

One can easily check that LFCNC vanishes identically for all models with natural flavour

conservation, discussed in section 3. Each of these models is characterized by three numbers

{ad, au, a`}, specifying the choice of three scalar fields coupling to the different types of

right-handed fermions, and real alignment parameters ς
(a)
f = Ωaaf /Ω1af . Therefore,

(
ς

(a)
d − ς

(a)
u

) N∑
b=1

ς(b)
u ς

(b)
d = (Ωaad − Ωaau)

∑N
b=1 ΩbauΩbad

(Ω1auΩ1ad)
2

= (Ωaad − Ωaau)
δauad

(Ω1auΩ1ad)
2 = 0 , (5.12)

which implies Θ̃
(a)
d = Θ̃

(a)
u = 0.

The one-loop FCNC local interactions also disappear if the Yukawa matrices satisfy

the relations
N∑
b=1

∆b∆
†
aΓb = λΓ Γa ,

N∑
b=1

∆b∆
†
bΓa = λ′Γ Γa ,

N∑
b=1

ΓbΓ
†
a∆b = λ∆ ∆a ,

N∑
b=1

ΓbΓ
†
b∆a = λ′∆ ∆a ,

(5.13)

with λΓ, λ′Γ, λ∆, λ′∆ arbitrary complex parameters. In this very particular case, LFCNC be-

comes flavour conserving. The conditions (5.13) have been analysed in ref. [23], within the
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A2HDM, finding a phenomenologically viable solution with all Yukawa matrices propor-

tional to the “democratic” matrix Yij = 1 , ∀i, j. This stable aligned solution is protected

by a Z3 ⊗Z ′3 symmetry and corresponds to the limit where only one generation of quarks

(top and bottom) acquires mass, while VCKM is the identity matrix.

6 Flavour symmetries

The flavour structure of LFCNC can be easily understood with symmetry considerations [18].

In the absence of Yukawa couplings, the Lagrangian of the N-Higgs-doublet model has a

huge SU(3)5 flavour symmetry, corresponding to independent transformations of the QL,

LL, dR, uR and `R fermion fields in the 3-generation flavour space: fX → SfX fX , SfX ∈
SU(3)fX . One can formally extend this symmetry to the Yukawa sector, assigning appro-

priate transformation properties to the flavour matrices Γa, ∆a and Πa, which are then

treated as spurion fields [24, 25]:

Γa → SQL Γa S
†
dR
, ∆a → SQL ∆a S

†
uR
, Πa → SLL Πa S

†
`R
. (6.1)

These auxiliary fictitious fields allow for an easy bookkeeping of operators invariant under

the enlarged symmetry, and encode the explicit symmetry breakings introduced by the

Yukawa interactions. Obviously, the renormalization group equations (5.1), (5.2) and (5.3)

transform homogeneously under (6.1) because quantum corrections respect the Lagrangian

symmetries (modulo anomalies). Only those structures which are invariant under this

formal flavour symmetry can be generated at higher orders.

Once the symmetry breakings are explicitly included, the Yukawa Lagrangian (2.10)

remains still invariant under flavour-dependent phase transformations of the fermion mass

eigenstates, provided one performs appropriate rephasings of all flavour structures (masses,

Yukawa couplings and quark-mixing factors) [18, 19, 22]:

f iX → eiα
f,X
i f iX , Y

(a),ij
f → eiα

f,L
i Y

(a),ij
f e−iα

f,R
j ,

M ij
f → eiα

f,L
i M ij

f e−iα
f,R
j , V ij

CKM
→ eiα

u,L
i V ij

CKM
e−iα

d,L
j .

(6.2)

Here, f = d, u, `, X = L,R and i, j refer to the three different fermion families. The

generalized alignment condition (4.4) implies then

ς
(a),ij
f → eiα

f,L
i ς

(a),ij
f e−iα

f,L
j . (6.3)

Since quantum corrections preserve these flavour symmetries, they can only give rise

to FCNC operators of the form

On,md = d̄L(ςd)
p1V †

CKM
(ς†u)pn(MuM

†
u)n(ςu)p

′
nV

CKM
(ςd)

pm(MdM
†
d)m(ς†d)

p′m(ςd)
p′1MddR , (6.4)

On,mu = ūL(ςu)p1V
CKM

(ςd)
pn(MdM

†
d)n(ς†d)

p′nV †
CKM

(ς†u)pm(MuM
†
u)m(ςu)p

′
m(ς†u)p

′
1MuuR ,

or similar structures with additional factors of V
CKM

, V †
CKM

, (MfM
†
f ) and alignment matri-

ces. To generate a FCNC operator one needs at least two insertions of the CKM mixing ma-

trix, and the unitarity of V
CKM

requires the presence of quark mass matrices between these
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two insertions, i.e., a product (MfM
†
f )n with n ≥ 1. An additional (single) mass factor is

needed at the end of the chain to preserve chirality. Thus, the lowest-order operators must

contain two quark-mixing matrices and three mass matrices, as explicitly shown in eq. (5.6).

The alignment factors originate in the Yukawa matrices Y
(a)
f = ς

(a)
f Mf . Since ς

(1)
f =

1, the terms (ςf )pk,p
′
k and (ς†f )pk,p

′
k in (6.4) refer to the possible presence of pk, pk′ ≤

k non-trivial alignment parameters with possibly different values of the superindex (a).

To simplify notation, we have loosely skipped this superindex and have made use of the

commutation property of the diagonal matrices Mf and ς
(a)
f (in the fermion-mass eigenstate

basis) to collect together alignment factors of a given type. Thus, the operators Θ̃
(a)
d and

Θ̃
(a)
u in eq. (5.7) contain up to three alignment factors. Notice that alignment structures

with b 6= a can only appear pairwise, ς
(b)
f ς

(b)†
f ′ , since they are generated through the exchange

of a scalar propagator between two ‘b’ Yukawa vertices.

The first possible alignment factor in the r.h.s. of eqs. (6.4), just before the first CKM

matrix, has a more subtle origin. It compensates the ς
(a)
d DΓ1 terms in eq. (5.5) which are

not present in DΓ2, and the ς
(a)†
u D∆1 terms not present in D∆2. Therefore, in this position

there is at most a single alignment factor which must be either ς
(a)
d or ς

(a)†
u , for On,md and

On,mu , respectively, as explicitly shown in eqs. (5.7).

7 Phenomenological constraints

In the absence of protecting Z2 symmetries, the alignment hypothesis can only be ex-

actly fulfilled at a single value of the renormalization scale µ = ΛA. Quantum corrections

unavoidably misalign the Yukawa matrices at µ 6= ΛA, generating FCNC vertices that

contribute to processes which are very suppressed in the SM. However, the flavour sym-

metries embodied in the tree-level aligned Lagrangian restrict very efficiently the possible

structures that can be generated at higher perturbative orders. At the one-loop level, the

resulting FCNC local interaction in eq. (5.6) only contains two operators, one for each

quark sector, up or down. Both operators contain two insertions of the CKM matrix and

three Yukawa matrices, which entails a strong phenomenological suppression of FCNC ef-

fects. Nevertheless, it is worth to investigate whether any interesting contributions could

still show up at a level relevant for present or forthcoming experiments.

For simplicity, from now on we will restrict the analysis to the usual A2HDM frame-

work, i.e., a two-Higgs-doublet Lagrangian with aligned Yukawa structures, parametrized

with three alignment constants ςd,u,`. The one-loop FCNC effective Lagrangian (5.6) re-

duces in this case to [22]

LFCNC =
1

4π2v3
(1+ς∗uςd)

3∑
k=1

ϕ0
k

{
Cd(µ)(Rk2 +iRk3)(ςd−ςu) d̄LV

†
CKM

MuM
†
uVCKM

MddR

−Cu(µ)(Rk2−iRk3)(ς∗d−ς∗u) ūLVCKM
MdM

†
dV
†
CKM

MuuR

}
+ h.c. (7.1)

with Cd,u(µ) encoding the renormalization-scale dependence, which at leading order takes

the simple form: Cd,u(µ) = Cd,u(µ0)− log (µ/µ0).
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The sum runs over the three neutral scalars of the model. Assuming that CP is a

symmetry of the scalar potential (and vacuum), there are two CP-even neutral scalars

(ϕ0
1 = h, ϕ0

2 = H) which mix through a two-dimensional rotation matrix, while the third

neutral scalar ϕ0
3 = A is CP-odd and does not mix with the others. Therefore:

R11 = R22 = cos α̃ , R12 = −R21 = sin α̃ , R33 = 1 , R13 = R23 = R31 = R32 = 0 .

(7.2)

We adopt the convention 0 ≤ α̃ ≤ π, so that sin α̃ is always positive, and will identify

the CP-even neutral state h with the Higgs particle found at LHC, i.e., Mh = (125.09 ±
0.24)GeV [79]. The data shows that h behaves like the SM Higgs boson, within the current

experimental uncertainties, which constraints the mixing angle to satisfy | cos α̃| > 0.90

(68% CL) [33, 34].

One could speculate that flavour alignment originates in some underlying new-physics

dynamics at a high-energy scale ΛA, where alignment is exact due to a flavour symmetry

of the new-physics Lagrangian, i.e., Cf (ΛA) = 0. Several models with this property have

been discussed in the literature [52, 53, 80–82]. In that case, the RGEs determine Cf (µ) =

log (ΛA/µ) at an arbitrary renormalization scale µ. Taking ΛA ≤ MPlanck ∼ 1019 GeV,

one gets Cf (MW ) ≤ 40, which puts an upper bound on the size of any possible FCNC

effects. Tree-level implications of LFCNC have been already analysed in refs. [26, 30], with

the extreme choice ΛA = MPlanck, while different values of the high-energy scale ΛA were

investigated in ref. [27].

While being illustrative of the possible phenomenological relevance of the Yukawa mis-

alignment, the simplified tree-level analyses completely neglect the non-local FCNC loop

contributions generated by the A2HDM Lagrangian [22, 28, 29, 31, 32, 39–42, 48], which

are usually dominant. The most important FCNC processes originate in one-loop diagrams

(penguins and boxes) involving charged-current flavour-changing vertices, through the ex-

change of W± gauge bosons and the unique charged scalar (ϕ±1 = H±) present in the model.

Most of these loop contributions generate finite amplitudes (also at higher orders) because

symmetry considerations forbid the presence of the relevant FCNC counterterms in the La-

grangian. This is no-longer true for the effective FCNC interactions of the neutral scalars;

the loop contributions generate in this case ultraviolet (UV) divergences that get exactly

cancelled through the renormalization of the Cf couplings in eq. (7.1) (and similar coun-

terterms at higher orders). The renormalization-scale dependence of the loop contributions

cancels also the µ dependence of the Cf (µ) misalignment parameters. Complete one-loop

calculations, including the proper renormalization of the misalignment Lagrangian LFCNC

have been already published for the FCNC transitions B0
d,s → `+`− [28] and t→ ϕ0

kc [29].

Owing to the quark-mass and CKM suppressions of LFCNC the potentially largest

misalignment effects should appear in the ϕ0
ks̄LbR effective vertex, with a top contribution

proportional to V ∗tsVtbm
2
tmb/(4π

2v3). In the absence of any direct evidence of FCNC Higgs

decays, this singles out B0
s → µ+µ− and B0

s -B̄0
s mixing as prime candidates to test the local

FCNC interaction. As shown in figure 2, both processes get tree-level contributions from

LFCNC, through ϕ0
k exchange. There is, however, an important difference between the two

transitions. The leptonic B0
s → µ+µ− decay occurs with a single insertion of the effective
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b

d̄, s̄ µ+

µ−

ϕ0
k

b

d̄, s̄ b̄

d, s

ϕ0
k

Figure 2. Feynman diagrams contributing to B̄0 → µ+µ− (left) and B0-B̄0 mixing (right). The

crossed vertex represents the one-loop effective FCNC neutral interaction in eq. (5.6).

ϕ0
ks̄LbR vertex which, therefore, renormalizes the corresponding one-loop scalar-penguin

contribution [28]. On the other side, to generate a B0
s -B̄0

s mixing transition through neutral

scalar exchange, one needs to insert two FCNC effective vertices. This contribution is then

of a higher-perturbative order and should be considered together with the relevant two-

loop contributions to the meson-mixing amplitude, since it renormalizes the UV divergence

from diagrams with two (one-loop) scalar-penguin triangles. The one-loop diagrammatic

calculation of the meson-antimeson transition is in fact UV convergent [22].

7.1 Inputs and numerical treatment

We are interested in a scalar sector testable at the LHC, with the masses of the additional

scalars not too far from the electroweak scale. A lower bound MH± ≥ 78.6GeV (95% CL) is

imposed by LEP searches [83], with the only assumption that the charged scalar decays into

fermions. In addition, the precise measurements of the Z and W± self-energies, usually en-

coded through the so-called oblique parameters S, T and U [84], impose strong constraints

on the scalar mass splittings. Together with the requirement of perturbativity and pertur-

bative unitary bounds on the scalar potential couplings [85], this implies that the additional

neutral scalars H and A should have masses below the TeV, if MH± < 500 GeV [34].

In order to illustrate the possible phenomenological scenarios, we will adopt the fol-

lowing benchmark configurations for the unknown scalar masses:

A : MH± = 100 GeV , MH = 50 GeV , MA = 50 GeV ,

B : MH± = 100 GeV , MH = 200 GeV , MA = 200 GeV ,

C : MH± = 500 GeV , MH = 500 GeV , MA = 200 GeV ,

D : MH± = 500 GeV , MH = 200 GeV , MA = 500 GeV ,

E : MH± = 1000 GeV , MH = 500 GeV , MA = 1000 GeV ,

F : MH± = 1000 GeV , MH = 1000 GeV , MA = 1000 GeV .

(7.3)

These mass configurations satisfy the present experimental constraints on the oblique pa-

rameters [34, 86]. The first four choices are representative of a plausible nearby scalar

spectrum, while the last two approach the decoupling regime.

The up-type alignment parameter is strongly constrained by the measured Z → bb̄

decay width, which leads to an upper bound that scales linearly with the charged scalar

mass [22]:

|ςu| < 0.72 + 0.0024 MH±/GeV (95% CL) . (7.4)
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With MH± ≤ 500 GeV, this gives |ςu| < 1.9 at 95% CL. For the other two alignment param-

eters we require the Yukawa couplings to remain in the perturbative regime, i.e.,
√

2
v ςfmf <

1. This implies the absolute upper bounds |ςd| < 50 and |ς`| < 100. Our numerical analysis

will be performed in the CP-conserving limit to reduce the number of free parameters.

The choice of CKM parameters is subtle because global CKM fits assume the SM. We

have performed a specific fit to obtain the CKM elements needed for our analysis, taking as

entries determinations which are not sensitive to new physics. First of all Vud is extracted

from the (0+ → 0+) nuclear β decays [87] and CKM unitarity is used to determine Vus ≡ λ.

The value of Vub is obtained combining the exclusive and inclusive averages from b→ ulν̄l
decays, performed by the Heavy Flavor Averaging Group (HFLAV) [88], and increasing the

error with the usual PDG scale factor to account for their present discrepancy [89]. For Vcb
we adopt the most recent inclusive fit to semileptonic b→ clν̄l data [90], which turns out to

be consistent with the latest exclusive determinations, once the uncertainties related with

the adopted form-factor parametrizations are properly assessed [91–96]. Then, combining

Vcb with the previous value of λ, the Wolfenstein A parameter is obtained. The apex (ρ̄, η̄)

of the ‘bd’ unitarity triangle is determined from Vub/Vcb, λ and the ratio ∆mB0
s
/∆mB0

d
,

which fixes Vtd/Vts [88], by performing a χ2 minimization. These ratios are related to ρ̄

and η̄ through:∣∣∣∣VubVcb

∣∣∣∣ =
λ

1− λ2

2

|ρ̄− iη̄| ,
∣∣∣∣VtdVts

∣∣∣∣ =
λ

1− λ2

2

∣∣∣∣1− λ2

2
− ρ̄− iη̄

∣∣∣∣ . (7.5)

With that we find |V ∗tsVtb| = 0.0420 ± 0.0011. The rest of the inputs used in the analysis

are given in table 1.

8 B0
s → µ+µ−

A complete one-loop calculation of the B0
d,s → `+`− decay amplitudes within the A2HDM

was performed in ref. [28],1 including the effective one-loop FCNC local interaction of

eq. (7.1), which is needed to properly reabsorb the UV divergences. The phenomenological

study needs to be updated in view of the more precise LHCb measurement [100] of the

time-integrated B0
s → µ+µ− branching ratio. Moreover, in ref. [28] Cd(µ) was taken to be

zero at µ = MW , in order to simplify the numerical analysis, while we are now interested

in finding out how large this parameter could be. The decay B0
d → µ+µ− is also sensitive

to the A2HDM contributions, but it leads to much weaker constraints at present, so we

will concentrate in the B0
s decay mode.

At the B0
q meson mass scale, the decay B0

q → `+`− can be described with the effective

low-energy Hamiltonian

Heff = − GFα√
2π sin2 θW

VtbV
∗
tq {C10O10 + CS OS + CP OP } , (8.1)

1The one-loop computation has been recently checked within (softly-broken) Z2 models [101]. The two

calculations are in good agreement, except for a small difference in the Z-penguin contribution to CP which

is numerically insignificant and originates in a different matching prescription.
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Parameter Value Comment

fB0
d

(192.0± 4.3) MeV [97]

fB0
s

(228.4± 3.7) MeV [97]

fK (155.6± 0.4) MeV [89]

τB0
d

(1.520± 0.004) ps [88]

τBs (1.505± 0.005) ps [88]

1
ΓsH

(1.609± 0.010) ps [88]

1
ΓsL

(1.413± 0.006) ps [88]

∆Γs (0.086± 0.006) ps−1 [88]

∆mB0
d

(0.5064± 0.0019) ps−1 [88]

∆mB0
s

(17.757± 0.021) ps−1 [88]

mt(mt) (165.9± 2.1) GeV [98, 99]

|Vud| 0.97417± 0.00021 [87]

λ 0.2258± 0.0009 (1− |Vud|2)1/2

|Vub| (3.98± 0.41) · 10−3 [88]

|Vcb| (42.00± 0.65) · 10−3 [90]

A 0.824± 0.019 From Vcb and λ

ρ̄ 0.170± 0.002 Our fit

η̄ 0.377± 0.005 Our fit

Br(B0
s → µ+µ−) (3.0± 0.6+0.3

−0.2) · 10−9 [100]

Br(B0
d → µ+µ−) (1.5+1.2 +0.2

−1.0−0.1) · 10−10 [100]

Table 1. Inputs used in our analysis. Other masses and constants are taken from ref. [89].

where

O10 = (q̄γµPLb)(¯̀γµγ5`) , OS =
mbm`

M2
W

(q̄PRb)(¯̀̀ ) , OP =
mbm`

M2
W

(q̄PRb)(¯̀γ5`) ,

(8.2)

with mb = mb(µ) the running b-quark mass and PL/R = (1∓γ5)/2 the chirality projectors.

Operators with the opposite quark chiralities are neglected because their contributions are

very suppressed, being proportional to the light-quark mass mq.

In the SM the scalar and pseudo-scalar Wilson coefficients are so tiny, that only the

operator O10 is numerically relevant. However CS and CP can be much more sizeable in

models with extended scalar sectors. Neglecting any additional sources of CP violation
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beyond the CKM phase, the time-integrated branching ratio can be written as

B(B0
q → `+`−) = B(B0

q → `+`−)SM

{
|P |2 +

(
1− ∆Γq

ΓqL

)
|S|2

}
, (8.3)

where

P ≡ C10

CSM
10

+
M2
Bq

2M2
W

(
mb

mb +mq

)
CP − CSM

P

CSM
10

, (8.4)

S ≡

√
1−

4m2
`

M2
Bq

M2
Bq

2M2
W

(
mb

mb +mq

)
CS − CSM

S

CSM
10

. (8.5)

Complete analytical expressions for C10, CP and CS are given in ref. [28]. In the CP-

conserving limit, they depend on ten A2HDM parameters: 3 Yukawa alignment factors

(ςu, ςd, ς`), 3 scalar masses (MH ,MA,MH±), 2 scalar potential couplings (λ3, λ7), the mixing

angle α̃ and the misalignment coefficient Cd(MW ).

The only new-physics contribution to C10 comes from Z-penguin diagrams (Z exchange

between the leptonic current and an effective q̄bZ vertex generated through one-loop dia-

grams with internal H± propagators):

∆CA2HDM
10 = |ςu|2

x2
t

8

[
1

xH+ − xt
+

xH+

(xH+ − xt)2
(lnxt − lnxH+)

]
. (8.6)

It only depends on |ςu|2 and the mass ratios xt ≡ m2
t /M

2
W and xH+ ≡M2

H±/M
2
W .

The neutral scalar exchanges contribute to the scalar and pseudo-scalar Wilson coef-

ficients. In the CP-conserving limit:

∆C
ϕ0
i ,A2HDM

S =
xt

2xh
(cα̃ + sα̃ ς`)

{
sα̃ (ςu − ςd) (1 + ςu ςd) Cd(MW )

+ (cα̃ λ3 + sα̃ λ7)
2v2

M2
W

g0 + cα̃ g
(a)
1 + sα̃ g

(a)
2

}

+
xt

2xH
(cα̃ ς` − sα̃)

{
cα̃ (ςu − ςd) (1 + ςu ςd) Cd(MW ) (8.7)

− (sα̃ λ3 − cα̃ λ7)
2v2

M2
W

g0 − sα̃ g
(a)
1 + cα̃ g

(a)
2

}
,

∆C
ϕ0
i ,A2HDM

P = −ς`
xt

2xA

[
(ςu − ςd) (1 + ςu ςd) Cd(MW ) + g

(a)
3

]
, (8.8)

where cα̃ = cos α̃ and sα̃ = sin α̃ are the scalar mixing factors, and xϕ0
i
≡ M2

ϕ0
i
/M2

W with

ϕ0
i = h,H,A. The functions g0(xt, xH+ , ςu, ςd) and g

(a)
i (xt, xH+ , ςu, ςd) (i = 1, 2, 3) can be

found in the appendix of ref. [28]. We do not reproduce them here to avoid reiterating

lengthy formulae. There are, in addition, box-diagram contributions to CS,P and Z-penguin

contributions to CP , which only depend on the three alignment parameters ςf and the mass
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Figure 3. B0
s → µ+µ− constraints on Cd(MW ) and ςd, in the CP-conserving limit, for λ3 = λ7 = 1,

cα̃ = 0.95 and ςu = 0, with ςl = 0 (left) and ςl = 30 (right). The coloured areas show the allowed

regions (95% CL) for different mass configurations defined in eq. (7.3): A (red, dotted), B (green,

solid line), C (blue, dashed) and D (orange, dot-dashed).

ratios xt and xH+ ; their explicit expressions are also given in ref. [28].2 The SM Higgs-

exchange contribution can be easily recovered from eq. (8.7) by taking the appropriate

limit: ςf , sα̃, λ3,7 → 0, xH,H+ →∞.

Once constrained in the range cos α̃ ∈ [0.9, 1], the mixing angle has a very marginal

impact on the predictions. Therefore, we will choose cos α̃ = 0.95 to simplify the numerical

analysis. Since the results are not very sensitive either to the scalar potential parameters,

we will also set λ3 = λ7 = 1.3 The current (95% CL) experimental constraints on Cd(MW )

are displayed in figures 3, 4 and 5, for different choices of the remaining free parameters. The

left and right panels on these three figures correspond to ς` = 0 and ς` = 30, respectively.

Figure 3 exhibits the correlated constraints on the plane Cd(MW ), ςd, taking ςu = 0.

Figure 4 shows the constraints on Cd(MW ) and ςu, taking ςd = 0, while a large value

ςd = 50 is adopted in figure 5. Different assumptions on the scalar mass spectrum are

analysed in all these figures.

The plots take also into account the constraints enforced by the weak radiative decay

B̄ → Xsγ [22, 31, 32, 102–105], which drastically reduce the allowed parameter space,

specially for large values of ς∗uςd. The Wilson coefficients that are relevant for this process

take the form Ceff
i = Ci,SM + |ςu|2Ci,uu − (ς∗uςd)Ci,ud, where Ci,uu and Ci,ud contain the

dominant A2HDM contributions from virtual top and H± propagators [22]. The combined

result is very sensitive to the ratio ςd/ςu, implying a correlated constraint on ςd, ςu and

MH± that becomes very strong for real values of the alignment parameters. This constraint

may be relaxed by including a (CP-violating) relative phase between ςd and ςu [22, 31, 32].

2All gauge-dependent terms have been removed from (8.7) and (8.8) since they must be combined with

boxes and Z-penguin diagrams to get gauge-independent results. See ref. [28] for details.
3By varying λ3,7 in the perturbative allowed region the ratio

Br(B0
s→µ

+µ−)

Br(B0
s→µ+µ−)SM

varies in less than a 1%.
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Figure 4. B0
s → µ+µ− constraints (95% CL) on Cd(MW ) and ςu, in the CP-conserving limit, for

λ3 = λ7 = 1, cα̃ = 0.95 and ςd = 0, with ςl = 0 (left) and ςl = 30 (right). Same colour coding than

figure 3.

Figure 5. B0
s → µ+µ− constraints (95% CL) on Cd(MW ) and ςu, in the CP-conserving limit, for

λ3 = λ7 = 1, cα̃ = 0.95 and ςd = 50, with ςl = 0 (left), ςl = −30 (middle) and ςl = +30 (right) .

Same colour coding than figure 3.

The following generic conclusions can be extracted:

• Since the misalignment contribution is proportional to (ςu − ςd)(1 + ςuςd), there are

no constraints on Cd(MW ) at ςu = ςd or ςu = −1/ςd. These specific values of the

alignment parameters correspond to models with natural flavour conservation, where

LFCNC = 0.

• The comparison of the left and right panels shows the importance of the terms pro-

portional to ς`. At ς` = 0 many A2HDM contributions are eliminated: all box cor-

rections with H± exchanges vanish in this limit and all diagrams mediated through

non-SM scalars are removed, up to small mixing effects proportional to sα̃; only

the Z-penguin and the SM Higgs-exchange diagrams survive. ∆C
ϕ0
i ,A2HDM

P vanishes
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Figure 6. The left (right) panel shows the B0
s → µ+µ− constraints (95% CL) on Cd(MW ) and ςd

(ςu), in the CP-conserving limit, for λ3 = λ7 = 1, cα̃ = 0.95 and ςl = 30, with ςu = 0 (ςd = 50) and

the two heavy-mass configurations in eq. (7.3): E (orange, solid line) and F (violet, dashed).

identically at ς` = 0, while the misalignment contribution to CS is proportional to

cα̃sα̃(xH − xh), disappearing when the mixing angle or the neutral mass splitting

approach zero. Therefore, if ς` = 0, no constraints on Cd(MW ) can be set at cα̃ = 1

or when MH = Mh.

• When ςu = 0, there are no charged-scalar contributions to B̄ → Xsγ. Therefore

the constraints displayed in figure 3 and the left panel of figure 6 fully originate

from the decay B0
s → µ+µ−. Moreover, ∆CA2HDM

10 ∝ |ςu|2 = 0, and the Z-penguin

A2HDM correction to CP is also zero. The misalignment contributions to CS,P
are proportional in this case to ςdCd(MW ), which explains the Cd(MW ) . 1/ςd
scaling exhibited in figures 3 and 6 (left). If additionally ς` = ςu = 0, the only

non-zero scalar contributions are ∆Ch,A2HDM
S and ∆CH,A2HDM

S , which are obviously

independent of MA and generate the strong dependence on MH , roughly scaling as

1/M2
H , displayed on figure 3 (left). The right panel in figure 3 shows that much

stronger constraints are obtained with ς` 6= 0. The allowed regions obviously expand

with increasing scalar masses. Notice, however, how the configurations A (red) and C

(blue), with MA < MH± , generate additional allowed bands, not present for B (green)

and D (orange), which originate in the interference of ∆CA,A2HDM
P with box-diagram

contributions to CP proportional to the product ς`ςd.

• For small values of |ςd,`| ≤ |ςu|, the one-loop contributions to CS,P are negligible

compared to ∆CA2HDM
10 ∝ |ςu|2. The measured rate B(B0

q → µ+µ−) provides then an

upper bound on |ςu| that is stronger than the one extracted from Z → bb̄ and only

depends on MH± [28]. As shown in the left panel of figure 4, this limit (identical for

configurations A and B, and also for C and D) is independent on Cd(MW ). For very

large values of Cd(MW ), such that the misalignment contribution ∼ ςu Cd(MW ) could

be sizeable, the upper bound on |ςu| would obviously become stronger.
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• At large values of ς`, the misalignment contribution to CS,P increases proportion-

ally to ς`. This needs to be compensated with smaller values of both ςu and ςd, in

order to satisfy the B(B0
q → µ+µ−) constraint. Thus, sizeable values of Cd(MW )

imply very small quark alignment parameters. The figures show, however, that this

can be avoided at very specific values of Cd(MW ) where the misalignment and loop

contributions cancel.

• The restrictions imposed by B̄ → Xsγ can completely dominate over constraints

coming from B0
s → µ+µ− at large values of ςd. This is reflected in the horizontal

bands in the left panel of figure 5. The B0
s → µ+µ− data puts nevertheless a limit on

|Cd(MW )| for non-zero values of ςu. Allowing also for large values of |ς`|, the combined

constraints from B̄ → Xsγ and B0
s → µ+µ− become very stringent, as shown in the

middle and right panels of figure 5, which also illustrate the impact of the ςdς` sign.

• When the scalar masses are increased, the new-physics contributions gradually de-

couple and the allowed regions become larger. This is shown in figure 6, tak-

ing ς` = 30 and two different mass configurations: E (MH± = MA = 103 GeV,

MH = 500 GeV; orange) and F (MH± = MH = MA = 103 GeV; violet). Taking

MH± = MH = 103 GeV and MA = 500 GeV gives results similar to the E config-

uration. The left (right) panel shows the constraints on Cd(MW ) and ςd (ςu), for

ςu = 0 (ςd = 50). They should be compared with the analogous plots for lighter mass

configurations in the right panels of figures 3 and 5.

9 Meson mixing

As already commented before, two insertions of LFCNC are needed in order to generate a

misalignment contribution to meson-antimeson mixing. This is a two-loop correction and,

therefore, it is expected to be quite small. Nevertheless, previous tree-level analyses of

LFCNC have focused on the ∆B = 2 transition, owing to the high sensitivity of B0
q -B̄0

q

mixing to new-physics effects,

The one-loop scalar contribution to the neutral meson mixing has been analysed, within

the A2HDM, in refs. [22, 39, 42]. It proceeds through box diagrams with internal H±

propagators and provides stringent constraints on |ςu|, which depend on MH± . Actually

both the B0
s -B̄0

s mass difference and the CP-violating εK parameter provide bounds on |ςu|
which are quite similar to the ones extracted from Z → bb̄ [22]. So far, we did not use

this information because we would like to get constraints on Cd, which was not taken into

account in those one-loop analyses.

While being a second-order effect, the neutral scalar exchange between two LFCNC

vertices could be of a similar size, or even larger, than the one-loop charged scalar contri-

bution, due to a large Cd coupling or a very light neutral scalar. However, the fact that the

analyses of ∆MB0
q

and εK , without any misalignment contribution, give similar constraints

than Z → bb̄ does not seem to favour this possibility. This is also confirmed by our previous

study of B0
s → µ+µ−, although the constraints on Cd obtained there could be avoided for

some specific choices of A2HDM parameters (for instance, ς` = sα̃ = 0).
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The (one-loop) charged-current and (tree-level) misalignment contributions to B0
q -B̄0

q

mixing are roughly proportional to the factors

ωCC =
1

16π2

m4
t

M2
H±v

4

(
V ∗tqVtb

)2
, ωNC =

|Cd(µ)|2

16π4

m2
bm

4
t

M2
ϕ0
k
v6

(
V ∗tqVtb

)2
. (9.1)

Their relative size scales approximately as ωNC/ωCC = |Cd(µ)|2m2
bM

2
H±/(M

2
ϕ0
k
v2π2). In

order to have a ratio ωNC/ωCC ∼ O(1), one needs |Cd(µ)|MH±/Mϕ0
k
∼ O(102). A proper

calculation of the misalignment effects would require in any case the inclusion of two-loop

diagrams in order to cancel the renormalization-scale dependence of Cd(µ).4

To estimate the possible size of the misalignment correction, we will consider the tree-

level scalar exchange in figure 2 (right), taking µ = MW to normalize the coupling Cd. It

contributes to the effective low-energy Hamiltonian,

Heff ⊃
∑

i,j=d,s,b

{
CSRR1,ij OSRR1,ij + CSLL1,ij OSLL1,ij + CLR2,ij OLR2,ij

}
, (9.2)

generating ∆S = 2 and ∆B = 2 transitions through the four-quark operators

OSRR1,ij = (d̄iLdjR)(d̄iLdjR) , OSLL1,ij = (d̄iRdjL)(d̄iRdjL) , OLR2,ij = (d̄iRdjL)(d̄iLdjR) ,

(9.3)

with

CSRR1,ij =
g2
ij

16π4v6

3∑
k=1

E2
k , CSLL1,ij =

g∗2ji
16π4v6

3∑
k=1

E∗2k , CLR2,ij =
gijg

∗
ji

8π4v6

3∑
k=1

|Ek|2 . (9.4)

To simplify the numerical analysis, we have split the Wilson coefficients into a global

constant that reabsorbs all A2HDM parameters,

Ek ≡ Cd(MW )(ςd − ςu)(1 + ςdς
∗
u)

1

Mϕ0
k

(Rk2 + iRk3) , (9.5)

and a flavour structure which is fully determined by the quark masses and mixings,

gij ≡
(
V †CKMMuM

†
uVCKMMd

)
ij
. (9.6)

Neglecting any additional source of CP violation beyond the CKM phase, E1 and E2 are

real, while E3 is imaginary; this implies different relative signs for the CP-even and CP-odd

scalar contributions to CSRR1,ij and CSLL1,ij , while they enter with the same sign in CLR2,ij .

In our phenomenological analysis we have also included the full one-loop charged-

current contribution [22, 39, 42], which is obviously µ-independent. The hadronic matrix

elements of the ∆F = 2 four-quark operators (9.3) are detailed in appendix A. The most

restrictive limits are obtained from B0
s -B̄0

s mixing (slightly weaker bounds result from B0
d-

B̄0
d mixing and εK), taking always into account the correlated restrictions from B̄ → Xsγ.

4In the absence of a complete two-loop computation, one could extract effective µ-independent ϕ0
k q̄b

vertices from the B0
q → `+`− computation presented in ref. [28]. However, they would still contain small

gauge dependences.
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Figure 7. The left (right) panel shows the B0
s -B̄0

s mixing constraints on Cd(MW ) and ςu (ςd) for a

fixed value of ςd = 50 (ςu = 0.5), in the CP-conserving limit and with different mass configurations:

A (red, dotted), B (green, solid line) and C/D (blue, dashed).

The measured mass difference in the B0
s -B̄0

s system imposes stringent constraints on ςu, ςd
and MH± , originating in the one-loop contributions, but the sensitivity to the misalignment

parameter is quite small, except at very large values of |ςd|. This is illustrated in figure 7

which shows two different parametric configurations, ςd = 50 (left) and ςu = 0.5 (right).

In both cases one observes horizontal lines, exhibiting the low sensitivity to Cd(MW ).

Nevertheless, a bound on Cd(MW ) finally emerges when ςdCd(MW ) is large enough to

generate a sizeable misalignment effect. The panels display the same mass configurations

analysed in the previous section (C and D give here equivalent results). Obviously, the

sensitivity to Cd(MW ) is larger for low scalar masses (configurations A and B).

The ∆B = 2 amplitudes are independent of the leptonic alignment parameter ς`.

Therefore, the constraints extracted from the B0
s -B̄0

s mixing may become relevant at small

values of ς` where the B0
s → `+`− limits are somewhat weaker. In figure 8, we display the

B0
s -B̄0

s mixing constraints obtained for ςu = 0 (left) and ςd = 0 (right), to be compared with

figures 3 and 4, respectively. The left panel shows indeed that at ςu = ς` = 0 (the one-loop

charged contributions to the mixing are proportional to ςu and are thus zero) the mixing

constraints on Cd(MW ) are stronger than the limits from B0
s → `+`−. This may be related

to the much better experimental precision on ∆mB0
s

(0.1%), compared with the present

22% relative error of the measured B0
s → µ+µ− branching fraction. At ςd = 0, however,

the previous constraints on figure 4 are stronger. The dominant one-loop contribution to

B0
s → µ+µ− originates then in ∆CA2HDM

10 ∝ |ςu|2 that puts a quite stringent limit on |ςu|.
With ςd = 0 and ςu small, the B0

s -B̄0
s mixing amplitude becomes insensitive to Cd(MW ),

while B0
s → µ+µ− can still constrain this parameter at large values of ς`.
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Figure 8. The left (right) panel shows the B0
s -B̄0

s mixing constraints on Cd(MW ) and ςd (ςu) for

a fixed value of ςu = 0 (ςd = 0), in the CP-conserving limit and with different mass configurations:

A (red, dotted), B (green, solid line) and C/D (blue, dashed).

10 Summary

The simplicity and versatility of multi-Higgs-doublet models make them favourable candi-

dates for building alternative scenarios of EWSB with extended scalar sectors. The physical

spectrum of these models contains a rich variety of bosonic states, with N − 1 charged and

2N−1 neutral scalars. The neutral scalar fields can, in general, couple to fermions through

non-diagonal flavour interactions, generating unwanted FCNC transitions at tree level that

need to be strongly suppressed in order to satisfy the stringent experimental constraints.

One could force these FCNC effects to be unobservable through very small Yukawa

couplings or very large scalar masses, making these models irrelevant for present experi-

ments. A more interesting possibility, allowing for new scalar particles not too far from

the electroweak scale, is a highly non-generic set of Yukawa couplings. The huge SU(3)5

flavour symmetry of the electroweak Lagrangian is only broken by the Yukawa interactions,

but the data clearly indicate that this symmetry breaking only occurs along very specific

directions in the flavour space [24, 25].

The simplest way to avoid tree-level FCNCs is minimizing drastically the number of

flavour couplings, imposing most of them to be zero. Usually, only one scalar doublet is al-

lowed to have Yukawa interactions with a given type of right-handed fermion, fixing in this

way a unique flavour-breaking structure associated with each f ′R field. Since this require-

ment can be always imposed through discrete Zd2⊗Zu2⊗Z`2 symmetries, the resulting flavour

configuration is stable under quantum corrections, leading to the so-called models with nat-

ural flavour conservation [16, 17]. With N > 3 Higgs doublets, this type of models necessar-

ily involves a minimum of N−3 scalar doublets that are decoupled from the fermion sector.

The more general assumption of flavour alignment [18, 19] is based on the simultaneous

diagonalization of all the Yukawa matrices in the fermion-mass eigenstate basis. This
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implies the appearance of 3(N − 1) alignment factors, which in the most general case

are 3 × 3 complex diagonal matrices. In the absence of a specific symmetry protection,

the resulting flavour structure is unstable under quantum corrections, which misalign the

different Yukawa matrices. Nevertheless, the induced misalignment is a quite small effect,

thanks to the residual flavour symmetries of the aligned multi-Higgs Lagrangian, which

tightly constrain the type of FCNC operators that can be generated at higher orders.

In this paper, we have studied the misalignment local structure LFCNC induced at

one loop, for the most generic aligned multi-Higgs Lagrangian, using the known RGEs of

these models. We have particularized the result to different scenarios of phenomenological

relevance and have discussed in detail the role of the underlying flavour-dependent phase

symmetries. While the misalignment is a very small effect, being suppressed by at least two

insertions of the CKM matrix, three Yukawa couplings and the one-loop 1/(4π)2 factor, it

could still lead to interesting phenomenological effects through VtbV
∗
tsm

2
tmb contributions

to effective ϕ0
ks̄LbR vertices.

We have investigated the current constraints on the misalignment parameter Cd(MW ),

emerging from the measured B0
s → `+`− branching fraction and B0

s -B̄0
s mixing, taking

into account the strong correlated limits on ςu, ςd and MH± from B̄ → Xsγ. These FCNC

transitions receive non-local one-loop contributions with internal top and H± propaga-

tors [22, 28] that dominate in large regions of the parameter space and were neglected

in previous phenomenological studies of the flavour misalignment [26, 27, 30]. The local

misalignment Lagrangian LFCNC contributes to these processes through tree-level neutral

scalar exchange. For B0
s → `+`−, where only one insertion of LFCNC is needed, this contri-

bution is actually needed to renormalize the effective ϕ0
ks̄LbR vertex and, therefore, appears

at the one-loop level. The contribution to B0
s -B̄0

s mixing involves, however, two insertions

of LFCNC; it is a two-loop effect that should be considered together with two-loop dia-

grams involving two one-loop effective ϕ0
ks̄LbR vertices. We have nevertheless analysed

whether the neutral-scalar-exchange amplitude could lead to relevant phenomenological

signals through very large values of Cd(MW ).

The present phenomenological constraints on Cd(MW ) are shown in figures 3 to 8, with

different choices of ςu,d,` and several benchmark configurations for the scalar mass spectrum.

To simplify the analysis we have assumed the absence of any CP-violation effects beyond the

usual CKM phase. While stringent bounds emerge on the alignment parameters ςu,d,`, the

sensitivity to Cd(MW ) is very small, as expected, exhibiting the strong phenomenological

suppression of the misalignment. The local LFCNC contribution is proportional to the

product (ςu − ςd)(1 + ςuςd)Cd(MW ), which explains the pattern displayed by the obtained

constraints. Only at large values of ςd and/or ς` (|ςu| is bounded to be small) one obtains a

somewhat enhanced misalignment contribution that can result in useful limits on Cd(MW ).

The hypothesis of flavour alignment at a very high scale µ = ΛA, i.e., Cd,u(ΛA) = 0,

survives the phenomenological limits in all cases. With ΛA ≤MPlanck ∼ 1019GeV, it implies

Cd,u(MW ) = log ΛA
MW

≤ 40, which can easily satisfy all present constraints. This simple

relation between Cd,u(MW ) and ΛA has been obtained at the lowest perturbative order.

For very large values of the Yukawa couplings and ΛA � MW , the long running between

the scales ΛA and MW makes necessary to perform a resummation of large logarithmic
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corrections, through a numerical solution of the RGEs [26, 27, 30] that can modify the

high-scale relation by a factor of O(1). While this slightly changes the scale ΛA associated

with a given value of Cd,u(MW ), it does not modify our conclusion that high-scale alignment

is compatible with all known experimental constraints.

Our phenomenological analyses have been restricted to the simplest case of the

A2HDM. Since this is the most constrained scenario of multi-Higgs flavour alignment

(the one with the smallest number of free parameters), our conclusion is obviously also

valid for more generic situations with N > 2 Higgs doublets and/or generalized alignment

structures.

Acknowledgments

This work has been supported in part by the Spanish Government and ERDF funds from

the EU Commission [Grant FPA2014-53631-C2-1-P], and by the Spanish Centro de Ex-

celencia Severo Ochoa Programme [Grant SEV-2014-0398]. The work of Ana Peñuelas is

funded by Ministerio de Educación, Cultura y Deporte, Spain [Grant FPU15/05103].

A Hadronic matrix elements for meson mixing

The Wilson coefficients of the effective Hamiltonian (9.2) have been evaluated at the elec-

troweak scale, µtW ∼ O(MW ,mt,MH± ,Mϕ0
i
), and need to be evolved down to the low-

energy scales where the hadronic matrix elements of the corresponding quark operators

are determined. In addition to the three scalar operators in eq. (9.3), generated through

ϕ0
k-exchange between two LFCNC vertices, one must take also into account the leading

contributions from 1-loop box diagrams with W± and/or H± propagators. Neglecting the

light quark mass (md,s for B0
d,s or md for K0), these charged-current boxes contribute to

CSRR1,ij and to the SM operator [22]

OV LLij = (d̄iLγµdjL)(d̄iLγ
µdjL) . (A.1)

Gluonic corrections give rise to the appearance of additional operators which mix under

renormalization with the previous ones. In general, one must consider a basis of eight

operators including the additional structures [106]:

OV RRij = (d̄iRγµdjR)(d̄iRγ
µdjR) , OLR1,ij = (d̄iLγµdjL)(d̄iRγ

µdjR) ,

OSLL2,ij = (d̄iRσµνdjL)(d̄iRσ
µνdjL) , OSRR2,ij = (d̄iLσµνdjR)(d̄iLσ

µνdjR) ,
(A.2)

with5 σµν ≡ i
2 [γµ, γν ]. The renormalization group evolution of this operator basis factorizes

in five different sectors [106, 107]:[
CX1,ij(µ)

CX2,ij(µ)

]
=

[
[η11(µ)]X [η12(µ)]X

[η21(µ)]X [η22(µ)]X

] [
CX1,ij(µtW )

CX2,ij(µtW )

]
, (A.3)

CY1,ij(µ) = [η(µ)]Y CY1,ij(µtW ) , (A.4)

5Notice that refs. [106, 107] adopt a non-conventional definition of σµν , without the factor ‘i’, and have

then the opposite sign for the operators OSRR2,ij .
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i = 1 2 3 4 5

fBd

√
B
Bd
i 174± 8 MeV 160± 8 MeV 177± 17 MeV 185± 9 MeV 229± 14 MeV

fBs

√
BBs
i 211± 8 MeV 195± 7 MeV 215± 17MeV 220± 9 MeV 285± 14 MeV

BKi 0.506±0.017±0.003 0.46±0.01±0.03 0.79±0.02±0.05 0.78±0.02±0.04 0.49±0.03±0.03

Table 2. Lattice determinations of fM
√
BMi (M = B0

d, B
0
s ) [108] and BKi (M = K0) [109], in the

MS scheme. The B0
q parameters are given at µ = mb, while the K0 values refer to µ = 3 GeV.

where X = SRR, SLL,LR and Y = V LL, V RR. Next-to-leading-order expressions for the

coefficients [ηkl(µ)]X (k, l = 1, 2) and [η(µ)]Y can be found in refs. [106, 107] for the B0
q and

K0 systems. Since in our case the initial conditions are only known at the lowest order,

we have calculated the evolution with leading-order anomalous dimensions and two-loop

running for the strong coupling αs.

The hadronic matrix elements of the ∆F = 2 four-quark operators can be expressed as:〈
M̄0
∣∣OV ZZ1,ij

∣∣M0
〉

=
2

3
f2
M m2

M0 B
V ZZ
1 (µ) , (A.5)

〈
M̄0
∣∣OLR1,ij

∣∣M0
〉

= −1

3

(
fM m2

M0

mi(µ) +mj(µ)

)2

BLR
1 (µ) , (A.6)

〈
M̄0
∣∣OLR2,ij

∣∣M0
〉

=
1

2

(
fM m2

M0

mi(µ) +mj(µ)

)2

BLR
2 (µ) , (A.7)

〈
M̄0
∣∣OSZZ1,ij

∣∣M0
〉

= − 5

12

(
fM m2

M0

mi(µ) +mj(µ)

)2

BSZZ
1 (µ) , (A.8)

〈
M̄0
∣∣OSZZ2,ij

∣∣M0
〉

=

(
fM m2

M0

mi(µ) +mj(µ)

)2

BSZZ
2 (µ) , (A.9)

where Z = L,R denotes the two different operator chiralities, mi,j(µ) are the relevant

running quark masses and the Bi(µ) factors parametrize the deviations from the naive

vacuum-insertion approximation. These parameters have been calculated by the ETM

lattice collaboration, employing the ratio method approach on Nf = 2 ensembles for B0
d

and B0
s [108], and simulations with Nf = 2 + 1 + 1 dynamical sea quarks for K0 [109].

The ETM results are given in a different operator basis; the connection reads:

BV ZZ
1 (µ) = B1(µ) , BLR

1 (µ) = B5(µ) , BLR
2 (µ) = B4(µ) ,

BSZZ
1 (µ) = B2(µ) , BSZZ

2 (µ) =
5

3
B2(µ)− 2

3
B3(µ) .

(A.10)

The numerical values of the Bi parameters are compiled in table 2.

The observables relevant for our phenomenological analyses are

∆mB0
q

=
1

mB0
q

∣∣〈B0
q

∣∣Heff

∣∣B̄0
q

〉∣∣ , εK = kε
eiφε√

2

Im
(〈
K0
∣∣Heff

∣∣K̄0
〉)

2mK ∆mK
, (A.11)

where φε ≈ tan−1 [2(mKL −mKS )/(ΓKS − ΓKL)] = (43.52 ± 0.05)◦ is the so-called super-

weak phase [89] and kε ≈ 0.94 ± 0.02 accounts for small long-distance corrections [110].
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We do not extract new-physics constraints from ∆mK because the kaon mass difference

receives large long-distance contributions that introduce sizeable theoretical uncertainties.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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