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1 Introduction

One particular and useful type of non-perturbative solitonic objects in superstring theories

(for example, see [1]) is the so-called D-branes [2]. When two such D-branes are placed

parallel to each other at a separation, the corresponding lowest order stringy interaction can

be computed either as an open string one-loop annulus diagram with one end of the open

string located at one D-brane and the other end at the other D-brane or as a closed string

tree-level cylinder diagram with one D-brane, represented by a closed string boundary state,

emitting one closed string, propagating for certain amount of time and finally absorbed by

the other D-brane, also represented by a closed string boundary state.

When the two D-branes are at rest, there are two separated contributions to the total

net interaction, due to different charges of the D-branes. The so-called NSNS contribution,

due to the masses of the two D-branes, is as expected attractive, while the so-called RR

contribution, due to their RR charges, is repulsive. Roughly speaking, this is just the analog

of the interaction between two point masses or between two point electric charges of the

same sign, respectively. The difference here is that the NSNS contribution cancels exactly

the RR contribution, giving a zero net interaction, by making use of the usual ‘abstruse

identity’ [2]. This goes by the name of “no-force” condition, indicating the preservation of

certain amount of spacetime supersymmetry for the underlying system considered.

When each D-brane carries electric or both electric and magnetic fluxes,1 the inter-

action is in general non-vanishing. From the open string perspective, the two ends of the

virtual open string pairs connecting the two D-branes, due to vacuum fluctuations, appear

just as virtual charge and anti-charge pair. So the electric flux on each D-brane can pull

the virtual pair apart and can provide the energy needed to make them become real, i.e.,

the analog of the Schwinger pair production. So we expect the interaction amplitude not

1The electric flux on a D-brane stands for the presence of F-strings while a magnetic flux stands for that

of co-dimension 2 D-branes inside the original D-brane from the spacetime perspective. These fluxes are in

general quantized. We will not discuss their quantizations in the text for simplicity due to their irrelevance

for the purpose of this paper.
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only to be non-vanishing but also to have an imaginary part. In general, the pair produc-

tion rate is vanishing small and suppressed exponentially by the brane separation. So this

pair production has no practical use even if string theories are relevant to our real world.

However, when the magnetic fluxes are also present in a certain way, this open string pair

production rate is greatly enhanced and becomes significant.

The purpose of this paper is to reveal this and to discuss its potential use and applica-

tion. In section 2, we provide the basis for the computation of the real part of interaction

amplitude for the system of two stacks of D3 branes with each stack carrying both electric

and magnetic fluxes in a certain way. In section 3, we compute explicitly this amplitude

and analyze the nature of the interaction. In section 4, we first analyze the small separation

behavior of the amplitude computed in the previous section, then give the open string pair

production rate and discuss its enhancement and significance. We conclude this paper in

section 5.

2 The basic setup

In this section, we will provide the basis for computing the real part of the amplitude

mentioned above. For this, we consider first the closed string cylinder digram with D-

branes represented by their respective boundary state |B〉 [3–6]. For such a description,

there are two sectors, namely NS-NS and R-R sectors. In each sector, we have two

implementations for the boundary conditions of a D-brane, giving two boundary states

|B, η〉, with η = ±. However, only the combinations |B〉NS = [|B,+〉NS − |B,−〉NS] /2

and |B〉R = [|B,+〉R + |B,−〉R] /2 are selected by the Gliozzi-Scherk-Olive (GSO) pro-

jection in NS-NS and R-R sectors, respectively. The boundary state |B, η〉 for a Dp-

brane can be expressed as the product of a matter part and a ghost part [7, 8], i.e.

|B, η〉 = cp|Bmat, η〉|Bg, η〉/2 with |Bmat, η〉 = |BX〉|Bψ, η〉, |Bg, η〉 = |Bgh〉|Bsgh, η〉 and

the overall normalization cp =
√
π
(

2π
√
α′
)3−p

.

As discussed in [9], the operator structure of the boundary state holds true even with

the presence of external fluxes on the worldvolume and is always of the form |BX〉 =

exp(−
∑∞

n=1
1
nα−n ·S · α̃−n)|BX〉0 and |Bψ, η〉NS = −i exp(iη

∑∞
m=1/2 ψ−m ·S · ψ̃−m)|0〉 for

the NS-NS sector and |Bψ, η〉R = −exp(iη
∑∞

m=1 ψ−m ·S · ψ̃−m)|B, η〉0R for the R-R sector.

The ghost boundary states are the standard ones as given in [7], independent of the fluxes,

which we will not present here. The matrix S and the zero-modes |BX〉0 and |B, η〉0R

encode all information about the overlap equations that the string coordinates have to

satisfy. They can be determined respectively [3–5, 9] as S = ([(η − F̂ )(η + F̂ )−1]αβ ,−δij),
|BX〉0 = [− det(η+F̂ )]1/2 δ9−p(qi−yi)

∏9
µ=0 |kµ = 0〉 for the bosonic sector, and |Bψ, η〉0R =

(CΓ0Γ1 · · ·Γp 1+iηΓ11

1+iη U)AB|A〉|B̃〉 for the R sector. In the above, the Greek indices α, β, · · ·
label the world-volume directions 0, 1, · · · , p along which the Dp brane extends, while the

Latin indices i, j, · · · label the directions transverse to the brane, i.e., p + 1, · · · , 9. We

define F̂ = 2πα′F with F the external worldvolume field. We also have denoted by yi

the positions of the D-brane along the transverse directions, by C the charge conjugation

matrix and by U the matrix U(F̂ ) = [− det(η+F̂ )]−1/2; exp(−F̂αβΓαΓβ/2); with the symbol
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; ; denoting the indices of the Γ-matrices completely anti-symmetrized in each term of the

exponential expansion. |A〉|B̃〉 stands for the spinor vacuum of the R-R sector. Note that

the η in the above denotes either sign ± or the worldvolume Minkowski flat metric and

should be clear from the content.

The vacuum amplitude can be calculated via Γ = 〈B(f1, g1)|D|B(f2, g2)〉, where fa, ga
with a = 1, 2 denote the corresponding electric and magnetic fluxes, and D is the closed

string propagator defined as

D =
α′

4π

∫
|z|≤1

d2z

|z|2
zL0 z̄L̃0 . (2.1)

Here L0 and L̃0 are the respective left and right mover total zero-mode Virasoro generators

of matter fields, ghosts and superghosts. For example, L0 = LX0 + Lψ0 + Lgh
0 + Lsgh

0 where

LX0 , L
ψ
0 , L

gh
0 and Lsgh

0 represent contributions from matter fields Xµ, matter fields ψµ,

ghosts b and c, and superghosts β and γ, respectively, and their explicit expressions can be

found in any standard discussion of superstring theories, for example in [11], therefore will

not be presented here. The above total vacuum amplitude has contributions from both NS-

NS and R-R sectors, respectively, and can be written as Γ = ΓNSNS + ΓRR. In calculating

either ΓNSNS or ΓRR, we need to keep in mind that the boundary state used should be

the GSO projected one as given earlier. For this purpose, we need to calculate first the

amplitude Γ(η′, η) = 〈B1, η′|D|B2, η〉 in each sector with η′η = + or− and Ba = B(fa, ga).

In doing so, we can set L̃0 = L0 in the above propagator due to the fact that L̃0|B〉 = L0|B〉,
which can be used to simplify the calculations. Given the structure of the boundary state,

the amplitude Γ(η′, η) can be factorized as

Γ(η′, η) =
n1n2c

2
p

4

α′

4π

∫
|z|≤1

d2z

|z|2
AX AbcAψ(η′, η)Aβγ(η′, η), (2.2)

where we have replaced the cp in the boundary state by ncp with n an integer to count

the multiplicity of Dp branes. In the above, we have AX = 〈B1
X ||z|2L

X
0 |B2

X〉, Aψ(η′, η) =

〈B1
ψ, η

′||z|2L
ψ
0 |B2

ψ, η〉, Abc = 〈B1
gh||z|2L

gh
0 |B2

gh〉 and Aβγ(η′, η) = 〈B1
sgh, η

′||z|2L
sgh
0 |B2

sgh, η〉. In

order to perform the calculations using the boundary states given earlier, we need to specify

the D3 brane worldvolume gauge field.

The enhanced open string pair production rate occurs when we take, without loss of

generality, the electric flux F̂ a01 = −F̂ a10 = −fa with |fa| < 1, the magnetic flux F̂ a23 =

−F̂ a32 = −ga with |ga| < ∞, and the rest F̂ aαβ = 0. In other words, the electric flux

and the magnetic one share no common field strength index. The corresponding matrix

S is then (Sa)0
0 = (Sa)1

1 = (1 + f2
a )/(1 − f2

a ), (Sa)2
2 = (Sa)3

3 = (1 − g2
a)/(1 + g2

a),

(Sa)0
1 = (Sa)1

0 = −2fa/(1 − f2
a ), (Sa)2

3 = −(Sa)3
2 = 2ga/(1 + g2

a), (Sa)i j = −δij , and

the rest (Sa)µ ν = 0.

3 The real part of the amplitude

Our computations of the real part of the amplitude follow [7, 8, 10]. With the preparation

given in the previous section, the matrix elements in both NSNS and RR sectors can be
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computed to give, for the ghosts,

Abc = |z|−2
∞∏
n=1

(1− |z|2n)2, AβγNSNS(η′, η) = |z|
∞∏
n=1

1

(1 + η′η|z|2n−1)2
,

AβγRR(η′, η) = |z|3/4 0〈Bsgh, η
′|Bsgh, η〉0

∞∏
n=1

1

(1 + η′η|z|2n)2
, (3.1)

which are independent of the fluxes, while for matters,

AX = V4[(1− f2
1 )(1− f2

2 )(1 + g2
1)(1 + g2

2)]1/2(2π2t)−3

×
∞∏
n=1

[
(1−λ|z|2n)(1−λ−1|z|2n)(1−λ′|z|2n)(1−λ′−1|z|2n)(1−|z|2n)6

]−1
,

AψRR(η,′ η) = |z|5/4 0〈Bψ, η′|Bψ, η〉0
∞∏
n=1

(1 + η′η|z|2n)6

×(1 + η′ηλ|z|2n)(1 + η′ηλ−1|z|2n)(1 + η′ηλ′|z|2n)(1 + η′ηλ′−1|z|2n),

AψNSNS(η′, η) =

∞∏
n=1

(1 + η′η |z|2n−1)6(1 + η′η λ|z|2n−1)(1 + η′η λ−1|z|2n−1)

×(1 + η′η λ′|z|2n−1)(1 + η′η λ′−1|z|2n−1). (3.2)

In the above, |z| = e−πt, V4 denotes the D3 worldvolume, we have used the matrix S

property (ST )µ ρS
ρ
ν = δµ ν to simplify the computations, and

λ+ λ−1 = 2
(1 + f2

1 )(1 + f2
2 )− 4f1f2

(1− f2
1 )(1− f2

2 )
, λ′ + λ′−1 = 2

(1− g2
1)(1− g2

2) + 4g1g2

(1 + g2
1)(1 + g2

2)
. (3.3)

Following the regularization scheme given in [7, 12], we can have in RR sector

0〈Bsgh, η
′|Bsgh, η〉0 0〈Bψ, η′|Bψ, η〉0 =

−23(1− f1f2)(1 + g1g2)√
(1− f2

1 )(1− f2
2 )(1 + g2

1)(1 + g2
2)
δη′η,+. (3.4)

With the above, we can have ΓNSNS = (ΓNSNS(+) − ΓNSNS(−))/2 in the NSNS sector

and ΓRR = ΓRR(+)/2 in the RR sector. Here ΓNSNS(±) ( ΓRR(±)) are the respective

amplitude (2.2) in the NSNS (RR) sector when η′η = ±. The explicit total real part of the

amplitude Γ = ΓNSNS + ΓRR is

Γ =
n1n2V4

∏2
a=1(1− f2

a )
1
2 (1 + g2

a)
1
2

2(8π2α′)2

∫ ∞
0

dt

t3
e−

y2

2πα′t

[
|z|−1

( ∞∏
n=1

An −
∞∏
n=1

Bn

)

−24 cosπν cosπν ′
∞∏
n=1

Cn

]
, (3.5)

where we have

An =

(
1 + |z|2n−1

1− |z|2n

)4
(1 + λ|z|2n−1)(1 + λ−1|z|2n−1)

(1− λ|z|2n)(1− λ−1|z|2n)

(1 + λ′|z|2n−1)(1 + λ′−1|z|2n−1)

(1− λ′|z|2n)(1− λ′−1|z|2n)
,

Bn =

(
1− |z|2n−1

1− |z|2n

)4
(1− λ|z|2n−1)(1− λ−1|z|2n−1)

(1− λ|z|2n)(1− λ−1|z|2n)

(1− λ′|z|2n−1)(1− λ′−1|z|2n−1)

(1− λ′|z|2n)(1− λ′−1|z|2n)
,

Cn =

(
1 + |z|2n

1− |z|2n

)4
(1 + λ|z|2n)(1 + λ−1|z|2n)

(1− λ|z|2n)(1− λ−1|z|2n)

(1 + λ′|z|2n)(1 + λ′−1|z|2n)

(1− λ′|z|2n)(1− λ′−1|z|2n)
. (3.6)

– 4 –
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Here we have defined λ = e2πiν , λ′ = e2πiν′ and used

c2
p

32π(2π2α′)
7−p
2

=
1

(8π2α′)
p+1
2

× 1

2
,

∫
|z|≤1

d2z

|z|2
= 2π2

∫ ∞
0

dt. (3.7)

This amplitude can be expressed nicely in terms of θ-functions and the Dedekind η-function

with their standard definitions as given, for example, in [13] and is

Γ =
4in1n2V4|f1 − f2||g1 − g2|

(8π2α′)2

∫ ∞
0

dt

t3
e−

y2

2πα′t
θ2

1

(
iν0−ν′0

2

∣∣∣ it) θ2
1

(
iν0+ν′0

2

∣∣∣ it)
η6(it)θ1(iν0|it)θ1(ν ′0|it)

, (3.8)

where the following identity has been used

2 θ2
1

(
ν − ν ′

2

∣∣∣∣ τ) θ2
1

(
ν + ν ′

2

∣∣∣∣ τ) = θ2
3(0|τ)θ3(ν|τ)θ3(ν ′|τ)− θ2

4(0|τ)θ4(ν|τ)θ4(ν ′|τ)

−θ2
2(0|τ)θ2(ν|τ)θ2(ν ′|τ), (3.9)

which is a special case of more general identity given in [14].

In (3.8), we have set ν = iν0 with 0 < ν0 < ∞ and ν ′ = ν ′0 with 0 < ν ′0 < 1 and in

terms of ν0 and ν ′0, we have

coshπν0 =
1− f1f2√

(1− f2
1 )(1− f2

2 )
, sinhπν0 =

|f1 − f2|√
(1− f2

1 )(1− f2
2 )
,

cosπν ′0 =
1 + g1g2√

(1 + g2
1)(1 + g2

2)
, sinπν ′0 =

|g1 − g2|√
(1 + g2

1)(1 + g2
2)
, (3.10)

where |fa| < 1 and |ga| <∞ (a = 1, 2). The amplitude (3.8) can be further expressed as

Γ =
4n1n2V4(coshπν0 − cosπν ′0)2

∏2
a=1(1− f2

a )
1
2 (1 + g2

a)
1
2

(8π2α′)2

∫ ∞
0

dt

t3
e−

y2

2πα′t

∞∏
n=1

Dn, (3.11)

where we have used the explicit expressions for θ1(ν|τ) and η(τ) and

Dn =
[1− 2e−πν0 |z|2n cosπν ′0 + e−2πν0 |z|4n]2[1− 2eπν0 |z|2n cosπν ′0 + e2πν0 |z|4n]2

(1− |z|4n)4(1− 2|z|2n cosh 2πν0 + |z|4n)(1− 2|z|2n cosπν ′0 + |z|4n)
. (3.12)

The large y amplitude comes from the large t integration for which Dn ≈ 1 and can be

checked to give the expected attractive interaction (Γ > 0). The small t contribution to

the amplitude becomes important only for small y. The numerator and the factor in the

denominator, (1 − 2|z|2n cosπν ′0 + |z|4n) > (1 − |z|2n)2, in Dn are both positive while the

factor (1− 2|z|2n cosh 2πν0 + |z|4n) in the denominator is positive for large t but it can be

negative for small enough t. Therefore the nature of the small y interaction (attractive or

repulsive) is unclear in terms of the integration variable t since the infinite product involves

an infinite number of such factors even if each of them is negative in the integrand. So we

expect some interesting physics to appear for small y.

– 5 –
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4 The enhanced open string pair production

The appropriate frame for exploring the small y physics and the analytic structure of the

amplitude (3.11) in the short cylinder limit t→ 0 is in terms of the annulus variable t′ of

opens string description. This can be achieved via the Jacobi transformation t→ t′ = 1/t.

So in terms of the annulus variable t′, noting η(τ) = η(−1/τ)/(−iτ)1/2 and θ1(ν|τ) =

ie−iπν
2/τθ1(ν/τ | − 1/τ)/(−iτ)1/2, we can re-express the amplitude (3.11) as

Γ = −4in1n2V4|f1 − f2||g1 − g2|
(8π2α′)2

∫ ∞
0

dt′

t′
e−

y2t′
2πα′

θ2
1

(
ν0+iν′0

2 t′
∣∣∣ it′) θ2

1

(
ν0−iν′0

2 t′
∣∣∣ it′)

η(it′)θ1(ν0t′|it′)θ1(−iν ′0t′|it′)
,

=
4n1n2V4|f1 − f2||g1 − g2|

(8π2α′)2

∫ ∞
0

dt

t
e−

y2t
2πα′

(coshπν ′0t− cosπν0t)
2

sinπν0t sinhπν ′0t

∞∏
n=1

En, (4.1)

where in the second equality we have dropped the prime on t and

En =

∏2
j=1[1− 2 e(−)jπν′0t|z|2n cosπν0t+ e(−)j2πν′0t|z|4n]2

(1− |z|2n)4(1− 2 |z|2n cos 2πν0t+ |z|4n)
∏2
j=1(1− e(−)(j−1)2πν′0t|z|2n)

. (4.2)

In the above, |z| = e−πt and for n ≥ 1, En > 0 since 0 < ν ′0 < 1. The amplitude vanishes

when f1 = f2 and g1 = g2 and this has to be true since the underlying system is just

like each stack of the D3 branes, preserving one half of spacetime supersymmetry. The

factor sin πν0t in the integrand of (4.1) once again makes it unclear about the nature of

the interaction though all other ones are positive for 0 < t < ∞. In spite of this, we

do have a new feature showing up. Note that this factor sin πν0t vanishes at tk = k/ν0

with k = 1, 2, · · · and the integrand blows up at these points. So we have an infinite

number of simple poles of the integrand and the natural interpretation of these simple

poles are the creations of various open string pairs due to the electric flux [15, 16], the

analog of Schwinger pair production in QED. The rate of open string pair production per

unit worldvolume is the imaginary part of the amplitude, which can be obtained as the

sum of the residues of the poles of the integrand in (4.1) times π following [15, 16] and is

given as

W = −2 ImΓ

V4
=

8n1n2|f1 − f2||g1 − g2|
(8π2α′)2

∞∑
k=1

(−)k−1

[
cosh

πkν′0
ν0
− (−)k

]2

k sinh
πkν′0
ν0

e
− ky2

2πα′ν0

∞∏
n=1

Fk,n

(4.3)

where

Fk,n =

[
1− (−)k e

− 2nkπ
ν0

(1− ν
′
0

2n
)
]4 [

1− (−)k e
− 2nkπ

ν0
(1+

ν′0
2n

)
]4

(
1− e−

2nkπ
ν0

)6 [
1− e

− 2nkπ
ν0

(1−ν′0/n)
] [

1− e
− 2nkπ

ν0
(1+ν′0/n)

] . (4.4)

We come now to examine various instabilities. First for large t in (4.1) or large k in (4.3),

there is a divergent factor exp[−t(y2−2π2ν ′0α
′)/(2πα′)] or exp[−k(y2−2π2ν ′0α

′)/(2πν0α
′)]

when y < π
√

2ν ′0α
′, signaling the onset of tachyonic instability [17, 18]. This instability

is due to the presence of magnetic fluxes. So the computations of the amplitude Γ and

– 6 –
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the rate W are valid only for y ≥ π
√

2ν ′0α
′ [19, 20]. For the two electric fluxes, we can

set fa = 1 − εa with εa ≥ 0. Their respective critical value corresponds to set εa → 0.

When either or both approach their respective critical values but keeping ε1/ε2 → 0 or ∞,

we have ν0 → ∞ from the first two equations in (3.10) and expect the pair production

rate (4.3) to diverge. One can easily check that this is indeed true using (4.3) and (4.4).

The above instabilities are expected. For small enough ν0 and a fixed non-vanishing

ν ′0 such that ν ′0/ν0 � 1, the rate (4.3) becomes

W(ν ′0 6= 0) ≈ 8n1n2|f1 − f2||g1 − g2|
(8π2α′)2

∞∑
k=1

(−)k−1

k
e
− k

2πα′ν0
(y2−2π2ν′0α

′)
, (4.5)

where we have used Fk,n ≈ 1. It is clear from (4.5) that when |g1| and |g2| are fixed,

the largest rate (also largest ν ′0) occurs when the two fluxes are opposite in direction.

From (3.10), small enough ν0 implies small enough |f1 − f2|. This further implies that the

two electric fluxes are almost identical. A very special case of g1 = f2 = 0 was considered

before by the present author and his collaborator in [21]. This corresponds to a system

of one stack of branes carrying an electric flux and the other stack carrying a magnetic

flux. The small enough ν0 gives there |f1| � 1 which is much less generic than the present

|f1− f2| � 1 since in the same physical environment the magnitude of electric flux carried

by any stack of branes should not be much different and is less than unity but cannot be

too small in general. The condition |f1| � 1 considered in [21] is for academic purpose but

quite unnatural in practice. In other words, the present condition |f1 − f2| � 1 is more

useful and more suitable for potentially realistic applications discussed later in section 5.

We now compare the rate (4.5) to the one with the same ν0 but without the magnetic

fluxes as given in [10]. This latter rate can also be obtained from (4.3) via the limits of

ga = 0, ν ′0 = 0 as

W(ν ′0 = 0) ≈ 32n1n2|f1 − f2|ν0

(8π2α′)2

∞∑
l=1

1

(2l − 1)2
e
− (2l−1)y2

2πα′ν0 , (4.6)

where we have set k = 2l − 1 and the even k doesn’t contribute to this rate. So it is clear

for each odd k = 2l − 1, there is a greatly enhanced factor

W l(ν ′0 6= 0)

W l(ν ′0 = 0)
=

(2l − 1)|g1 − g2|e(2l−1)πν′0/ν0

4ν0
, (4.7)

where the superscript ‘l’ denotes the l-th term in the corresponding rate summation. For

small enough ν0 and reasonable large magnetic flux, this enhancement can be very signifi-

cant. Now the corresponding rate can be approximated by the first term k = 1 or l = 1 and

the enhancement factor is |g1− g2|eπν
′
0/ν0/4ν0. Let us make a sample numerical estimation

of this enhancement to demonstrate its significance. It has a value of 3.2 × 1035, a very

significant enhancement, for ν0 = 0.02, ν ′0 = 0.5. This can be achieved using (3.10) via a

moderate choice of g1 = −g2 = 1 (noting |ga| < ∞) and f1 = 0.2 with f2 = f1 − ε and

|f1 − f2| = |ε| ≈ πν0(1 − f2
1 ) = 0.06 � 1. To be physically significant, we need the rate
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itself in string units to be large enough, not merely the enhancement factor. The rate in

string units for the above sample case can be estimated to be

(2πα′)2W(ν ′0 = 0.5) ≈ n1n2|f1 − f2||g1 − g2|
2π2

e
− y

2−2π2α′ν′0
2πα′ν0 = 0.61 e−

y2−π2α′
0.04πα′ , (4.8)

with a typical choice of n1 = n2 = 10. So this rate (2πα′)2W(ν ′0 = 0.5) = 0.61, quite

significant, at y = π
√
α′ + 0+ ≈ π

√
α′ , a few times of string scale and before the onset of

tachyon condensation, but decreases exponentially with the separation y2 for y > π
√
α′.

For example, the rate becomes half of its maximal value at y − π
√
α′ ≈ 0.01

√
α′, just 1%

of the string scale. The similar rate for a general p ≥ 3 in string units can be computed

to give2

(2πα′)(1+p)/2W ≈ n1n2|f1 − f2||g1 − g2|
2π2

( ν0

4π

) p−3
2
e
− y

2−2ν′0π
2α′

2πν0α
′ , (4.9)

which gives the rate for p > 3 smaller than that for p = 3 by at least a factor of (ν0/4π)1/2 ≈
0.04 for the above sample case. So for the case of branes carrying one electric flux and one

magnetic flux, the largest rate is for p = 3 and the rate for the other branes with p > 3 is

at least one order of magnitude smaller given the fact that ν ′0/ν0 � 1 and ν ′0 < 1.

5 Conclusion and discussion

It is clear by now that the open string pair production enhancement comes from the

interplay of the non-perturbative Schwinger-type pair production due to the presence of the

electric flux and the stringy tachyon due to that of the magnetic flux. This enhanced rate

can be significant for a brane separation of a few times of string scale and before the onset

of tachyon condensation. This may have potentially realistic observational consequences.

An electric flux can give rise to the Schwinger-type pair production and an additional

magnetic flux can enhance this effect even for an isolated stack of branes carrying these

fluxes [22, 23]. In general, this pair production is too small to be detected. However, the

enhanced pair production discussed in this paper is quite different and purely stringy, and

results from two stacks of branes with each carrying the electric and magnetic fluxes. This

production is very sensitive to the brane separation as described above. An observer on one

stack of branes, though unable to sense the other stack directly, may detect a significant

increase of pair production when the other stack of branes come at separation of the order

of string scale. This is purely stringy and therefore provides a means to detect the existence

of extra dimensions and also a test of this theory. This type of enhanced pair production

occurs only for p ≥ 3 and the largest rate is for p = 3 (at least one order smaller for p > 3).

So this detection can single out D3 branes as the most preferable to its observer, if he/she

just like us knows about string theory. The produced large number of open string pairs

can in turn annihilate to give, for example, highly concentrated high energy photons if the

fluxes are localized on the branes and this may have observational consequence such as the

Gamma-ray burst. This pair production and its subsequent annihilation may also useful

in providing a new mechanism for reheating process after cosmic inflation.

2We will report in detail a systematic study of interaction amplitude and pair production rate for an

interacting system of Dp branes carrying two general fluxes in a forthcoming paper.
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