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1 Introduction

The cosmological Big Bang description of our Universe suffers from (at least) two major

problems. The first one concerns our misunderstanding of gravitation on galactic and extra

galactic scales. Indeed, the observation of galaxies rotation curves and cluster collisions at

present time remains unexplained by general relativity [1–5]. The second one is the puz-

zling quasi-homogeneity of the Cosmological Microwave Background (CMB) suggesting an

unexplained fine-tuning of initial conditions of the metric fluctuations and curvature at the

Big Bang time. The first problem has been addressed by invoking the existence of dark

matter (DM) [1, 2] while the second problem is usually assumed to be circumvented by

the existence of an inflationary phase of cosmology driven by another new (scalar) parti-

cle, the inflaton [6–18]. If both particles are usually considered to play a role at radically

different time scales, they may nevertheless interact when the inflaton decays to produce

our thermal bath.

The usual description of dark matter dynamics can be generically divided in thermal

and non-thermal scenarios [19]. The latters assume that after reheating, dark matter and

the standard model have sufficient interactions to enter into thermal equilibrium before

dark matter particles decouple from the thermal bath and constitute a cosmological relic.

The second class of scenarios considers on the contrary that such an equilibrium never

occurred and that dark matter is non-thermally produced through annihilation or decay of

the visible bath, out of equilibrium. On the one hand, in both cases the interaction required

to generate a quantity of dark matter at present time in agreement with astrophysical

measurement should be reasonably small and usually leads to invoke the existence of an

extra mediator, whose role is to encode such low interactions between the dark and the

visible sectors (see e.g. [20–29]). On the other hand, if thermal scenarios can ignore the

physics of the reheating, non thermal scenario usually assume that no dark matter has been
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produced by inflaton decay at the time of the reheating, therefore secluding the inflationary

sector from the dark sector.

Surprisingly, the study of explicit interactions of the inflaton with low energy phe-

nomenology has been rather poorly studied in the literature or to some extent fine-tuned

through an extensive use of non minimal coupling to gravity or gauge corrections [30–41].

Attempts to incorporate inflation within a context of low scale supersymmetry breaking [44]

has however shown that a complete description of low energy phenomenology of an inflation

model can lead to rich constraints relating primordial cosmology to LHC physics. Further-

more interactions of the inflaton with the Brout-Englert-Higgs boson has been shown to

be able to solve the question of the stability of the electroweak vacuum [45–47]. However

the question of the role played by the inflaton as a mediator in the dark matter production

mechanism has never been explored so far. In this paper we would like to question the

possibility that the inflationary sector provides a natural portal between the dark and the

visible sectors without such non minimal coupling. We will for this follow as an illustra-

tive example the steps of [42, 43] in which dark matter is encapsulated together with the

inflaton in a single complex field and interacts with the standard model through a por-

tal interaction and show that constraints coming from both aspects of cosmology can be

intimately related.

In section 2 we will start by making general comments about inflation and reheating,

estimating the amount of dark matter which could be produced by decay of the inflaton

and sketching the difficulty of building an inflaton portal to annihilate or produce efficiently

dark matter at late time. In section 3 we will present the model we consider, deriving the

physical spectrum and interactions of the theory. We will describe in details the inflationary

potential and show that it closely constrains the coupling of the inflaton to dark matter.

We will then study the non thermal production of dark matter through the inflaton portal

and show that the model provides naturally a regime in which dark matter is dominantly

produced by the Freeze-In mechanism rather than by direct decay of the inflaton. We will

in addition compute the number of e-folds necessary to fit such a scenario with observations.

Finally we will conclude and make some comments in section 4 about possible implications

of the model.

2 General comments

In order to dilute the metric fluctuations as well as the curvature of our Universe in sufficient

proportions to match with present observations of the CMB without any initial conditions

fine-tuning, the idea of single field inflation was proposed [8–11, 13–16]. The inflationary

action can simply be written

S =

∫
d4x
√
−g
[

1

2
R+

1

2
gµν∂µφ∂νφ− V (φ)

]
, (2.1)

In this paradigm, the classical rolling of a scalar field φ — called the inflaton — along

its potential V (φ) triggers the acceleration of the Universe expansion until it falls down

into the vacuum. While the field rolls towards its minimum φ0, the value of the potential
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V (φ) dominates the energy density of the Universe and behaves as a friction term in the

Friedmann-Lemâıtre equations, such that the rolling is slowed down. This slow-roll regime

is crucial to suppress kinetic energy as compared to potential energy — rendering the effect

of inflation similar to the one of a cosmological constant — and to ensure that inflation

lasts long enough before the scalar field starts oscillating around the vacuum. This regime

is ensured as long as

εV ≡
M2
p

2

(
V, φ
V

)2

< 1 , (2.2)

|ηV | ≡
∣∣∣∣M2

p

V, φφ
V

∣∣∣∣ < 1 , (2.3)

where εV and ηV are called the slow roll parameters. These parameters are the key in-

gredients, being given an inflationary model, to compute the observables measured by the

Planck collaboration, that are the tensor-to-scalar ratio r and the spectral index ns. These

are computed at the time of horizon crossing (denoted by a star), usually taken to happen

50 and 60 e-folds before the slow roll regime ends

ns ≈ 1− 6 ε?V + 2 η?V

r ≈ 16 ε?V . (2.4)

Furthermore, the energy scale of inflation is strongly constrained by the normalization of

the scalar perturbations power spectrum amplitude [48]

As ≡
V (φ?)

24π2 ε?VM
4
p

≈ 2.198× 10−9 , (2.5)

where Mp denotes the reduced Planck mass. In the simplest models of inflation, such

as the chaotic scenario V (φ) = m2φ2/2, such condition fixes the mass of the inflaton

to m ∼ 1013 GeV and asking for 50-60 efolds of inflation requires the inflaton to roll

over transplanckian values ∆φ ∼ O(10Mp). These are generic features of a wide class

of inflationary models called large field inflation models. Although a plethora of other

inflation models exist in the literature we will focus in the following on this class of scenarios.

After the inflation era ends (once the slow roll parameters reach unity) the friction term

becomes subdominant and the field φ starts rolling down his potential classically thus oscil-

lating around the vacuum. Once the Hubble scale is of order the decay width of the inflaton

H ∼ Γφ , (2.6)

the decay of the inflaton becomes efficient enough to reheat the Universe, by populating a

thermal bath of relativistic particles with g? degrees of freedoms. The reheating tempera-

ture is thus defined as

ρφ = 3H2M2
p = 3Γ2

φM
2
p =

π2g∗
30

T 4
R . (2.7)

For g? of order a hundred this provides the estimation TR ∼ 0.5
√

ΓφMp. Therefore, having

a complete and explicit description of the interactions between the inflaton, dark matter and

the standard model fixes the reheating temperature as a function of the model parameters.
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We can at this point make a few important remarks concerning the production of dark

matter. On the one hand the very high mass of the inflaton favoured by large field inflation

models will inevitably suppress any cross section of annihilation through exchange of an

inflaton particle. In order to produce thermally (or non thermally) dark matter, one is thus

constrained to use large values of the couplings not to overclose the universe (or to produce

enough dark matter). On the other hand, pushing up the couplings of the inflaton to the

visible or dark sector will automatically increase the reheating temperature. Even if no

generic bound is known about the reheating temperature, a too low or too high reheating

temperature can have implications for the upcoming cosmological history of the Universe.

A thermal description of leptogenesis [50] can for instance only be realized for large reheat-

ing temperatures TR & 109 [51] GeV whereas in a supersymmetric framework the thermal

production of gravitinos or the emergence of long lived particles destroying the Big Bang

nucleosynthesis lead to various upper bounds on the reheating temperatures [54–66]. Ask-

ing for a reheating temperature lower than the inflation scale, we will focus in the following

on non-thermal dark matter production, since it requires lower interactions of DM with

the standard model.

Finally, opening the possibility that the inflaton interacts with both sectors permits

that the inflaton decays directly into dark matter during the reheating. Assuming that this

happens instantaneously, and that the inflaton couples to pairs of dark matter particles

with a branching ratio

Br(φ→ DM,DM) =
Γ(φ→ DM,DM)

Γtot
φ

, (2.8)

one can estimate the amount of dark matter produced immediately after the reheating by

ρDM

mDM
(T = TR) = 2Br(φ→ DM,DM)

ρφ
mφ

(T = TR) . (2.9)

Using entropy conservation, one can derive the relic density corresponding to this produc-

tion during the reheating to be

ΩDMh
2 ≈ 10−4mDM

mφ
Br(φ→ DM,DM)

(
TR
T0

)
,

≈ 0.1×
(

1013 GeV

mφ

)(mDM

MeV

)(eV

T0

)(
TR

1010 GeV

)
× Br(φ→ DM,DM) . (2.10)

Thus it is straightforward to note that, even for a rather small mass of dark matter and

a reasonable value of the reheating temperature, a direct decay of the inflaton into dark

matter may overclose the universe in certain regimes. While this would produce dark

matter which would be far too warm to explain structure formation, such a production at

the reheating time would render inappropriate a non thermal description of dark matter

production. We will thus in what follows systematically take care that the decay production

during reheating is sub-dominant as compared to the non thermal process. We will hence
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require that the branching ratio into dark matter is sufficiently small to suppress the

reheating contribution to the relic density at low energy

Br(φ→ DM,DM)� 1 . (2.11)

3 The inflaton portal model

In this section we propose a model in which the visible and invisible sectors are constituted

of two complex scalar fields charged under different global U(1)’s. The breaking of these

U(1)’s — at scales which will be made explicit in the following — will give birth to two

Nambu-Goldstone bosons both in the visible and the dark sectors whose masses will be

protected by the latter approximate symmetries. Finally the inflaton — the scalar field in

the dark sector — will interact with dark matter (the pseudo Nambu Goldstone boson of

the hidden sector) through its quartic coupling and vacuum expectation value (vev) λφvφ
whose value will be constrained by inflationary observables to be highly suppressed. Such

suppression will guarantee that dark matter is safely produced by a non thermal Freeze-In

and not by the reheating itself.

The lagrangian we consider is1

−L ⊃
λφ
2

(
Φ†Φ−

v2
φ

2

)2

+
λσ
2

(
Σ†Σ− v2

σ

2

)2

+ δ

(
Φ†Φ−

v2
φ

2

)(
Σ†Σ− v2

σ

2

)
, (3.1)

in which one can expand fields around there minimum of potential

Φ =
1√
2

(vφ + φ+ iSd) ,

Σ =
1√
2

(vσ + σ + iSv) . (3.2)

Under these notations, the scalar φ will be playing the role of the inflaton whereas the

pseudo scalar Sd is the dark matter constituent and (σ, Sv) are assumed to be in thermal

equilibrium with the standard model after reheating.

The masses of φ and σ are related to the vacuum expectation values vφ and vσ according

to the equations of motion

m2
φ = λφv

2
φ − δv2

σ , and m2
σ = λσv

2
σ − δv2

φ . (3.3)

Expanding the lagrangian around the vacuum, one can write

−L ⊃
λφ
8

(
φ4 + 4v2

φφ
2 + 4vφφ

3 + S4
d + 4vφφS

2
d + 2φ2S2

d

)
+
λσ
8

(
σ4 + 4v2

σσ
2 + 4vσσ

3 + S4
v + 4vσσS

2
v + 2σ2S2

v

)
+
δ

4

(
(φ+ vφ)2(σ + vσ)2 + S2

vS
2
d + S2

v(φ+ vφ)2 + S2
d(σ + vσ)2

)
, (3.4)

1Note that the choice of the last term where the vev’s cancel after spontaneous breaking is equivalent,

after a field redefinition, to a term δ(Φ†Φ)(Σ†Σ), as long as the bare masses are related to the vev’s as in (3.3).
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Sd
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φ̃

Sv

Sv

Sd

Sd

σ̃

Sv

Sv

Sd

Sd

Sv

Sv

δ

Sd

Sd

φ

Sv

Sv

cvcd

Sd

Sd

φ

Sv

Sv

cvcd

1

Figure 1. Diagrams after rotation into the physical basis (φ̃, σ̃) leading to annihilation of dark

matter into the visible sector.

in which the inflaton portal interaction δ(Φ†Φ− v2φ
2 )(Σ†Σ− v2σ

2 ) generates three possible chan-

nels of annihilation Sd, Sd → Sv, Sv as depicted in figure 1. Diagonalizing the mass matrix

1

2
M2 =

1

2

(
m2
φ m2

φσ

m2
φσ m2

σ

)
, (3.5)

where we defined m2
φσ = δvφvσ, one obtains the masses

m2
φ̃,σ̃

=
m2
φ +m2

σ

2
∓

(m2
φ −m2

σ

2

)2

+m4
φσ

1/2

(3.6)

associated to the eigenvectors

φ = cθ φ̃− sθ σ̃ ,
σ = cθ σ̃ + sθ φ̃ , (3.7)

where the diagonalizing cosines, defining the parameter a = (m2
φ−m2

σ)/2m2
φσ, are given by

cθ =
1√
2

(
1− a√

1 + a2

)1/2

,

sθ =
1√
2

(
1 +

a√
1 + a2

)1/2

. (3.8)

In order to get positive physical masses, the mass scale mφσ should satisfy the condition

mφσ <
√
mφmχ.
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Figure 2. Left panel: inflation observables for various numbers of e-folds and arbitrary value

of the vev vφ (colorbar). Right panel: value of the quartic coupling λφ imposed by the COBE

normalization, as a function of the tilt ns and the inflaton vev vφ (colorbar).

3.1 Inflation

During inflation, the field σ is imposed to be sufficiently massive not to interfere with the

single field dynamics of inflation

m2
σ & H2 . (3.9)

Furthermore, one has to check that the other degrees of freedom Sd, Sv, as well as the

standard model scalar remain stabilized during inflation. In eq. (3.4) one can read the

inflaton dependant masses of Sd and Sv, namely m2
d ∼ λφvφφ ∼ H2 and m2

v ∼ δφ2 & H2

ensuring that the two pseudo-Goldstone (massless in the true vacuum) remain stabilized

during inflation and don’t destabilize the inflation trajectory. Regarding the standard

model fields, since they are coupled to the inflaton only through the exchange of Sv and σ

during inflation, which are of a very high (inflaton-dependant) mass, we don’t expect the

correction to their mass to be relevant during inflation. Oscillations of the Higgs scalar

in this context are thus frozen by the Hubble scale friction and don’t contribute to the

energy density. In other words, very light fields in the vacuum acquire large masses during

inflation or get immediately diluted by inflation and never populate the universe before

fast expansion ends.

Under such assumption one can integrate out the field Σ in the lagrangian (3.1) and

set the goldstones to zero to obtain the inflation potential

Vinf(φ) =
λφ − δ2/λσ

8

(
φ4 + 4v2

φφ
2 + 4vφφ

3
)
. (3.10)

This potential is similar to those of so called new inflation scenario studied in [68–70]

in which the inflaton can roll down its potential from the origin Φ & 0 to the vacuum

Φ ≈ vφ. Such scenarios, sometime denominated by “quartic hilltop” can lead to a tensor

to scalar ratio r and a spectral tilt ns in agreement with Planck measurements [49], as is

depicted in figure 2 asking for 50 to 60 e-folds of inflation.

Generically, asking that the model prediction lay inside the 2-σ contour of such con-

straints impose that λφ ∼ 10−13 and vφ ∼ 20Mp, such that the potential is nearly quadratic,
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suppressing the quartic and cubic terms. We will use these parameter values as a reference

point in the following analysis.

As we will see in the next section, asking for the model to produce the right amount

of dark matter will impose that δ ∼ 10−11. For a coupling constant λσ of order O(0.1) this

leads to a correction of the quartic coupling of order 10−21 . λφ.

Finally these numbers will be refined in the last section after a proper study of the

reheating temperature and the number of e-folds necessary to release inflation.

3.2 Dark matter production

As announced, our model will provide a natural way to produce dark matter non-thermally,

thanks to the inflaton portal interaction.

In our set up, the two scalars φ and σ have masses well above the reheating temperature

mσ � mφ & TR such that their dynamics doesn’t influence the cosmological history once

reheating occurs. The two pseudo-scalars Sv and Sd, as Nambu Goldstone bosons of the

theory, have masses protected by the (approximate) global U(1) symmetries under which

they are charged. As they acquire tiny masses through gravitational effects, we will consider

their masses mv and md as — arbitrarily small — free parameters of the model.

Considering eq. (3.3), one can immediately make useful remarks about the consistency

of the model construction. On the one hand, asking that the scalar σ can be integrated

out during inflation imposes that

mσ & H ∼ 1014 GeV . (3.11)

Assuming the coupling λσ to be close to unity thus imposes that vσ & 1014 GeV. On the

other hand, since the inflaton mass is fixed by the normalization condition to be of order

mφ ∼ 1013 GeV, we will be able to work in the limit where

δ � 10−9 . λφ
m2
σ

m2
φ

. (3.12)

Under such condition, the physical masses of the fields are related to their vev by the simple

relations

m2
φ̃
≈ m2

φ ≈ λφv2
φ , and m2

σ̃ ≈ m2
σ ≈ λσv2

σ . (3.13)

With such low mixing δ one obtains m2
σ � m2

φ,m
2
φσ. This gives |a| ≈ m2

σ/2m
2
φσ � 1 and

cθ ≈ 1 , and sθ ≈
1

2a
� 1 . (3.14)

After rotation into physical states in the lagrangian (3.4), the couplings of the scalars to

the visible and dark sectors are given by

φ̃S2
d :

λφvφcθ + δvσsθ
2

≈
λφvφ

2

φ̃S2
v :

λσvσsθ + δvφcθ
2

≈ δvφ

σ̃S2
v :

λσvσcθ − δvφsθ
2

≈ λσvσ
2

σ̃S2
d :

−λφvφsθ + δvσcθ
2

≈ δvσ
2
, (3.15)

where the right side approximations are making use of eq. (3.11) and (3.12).
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The mediation between the dark and the visible sector is thus assured by the exchange

of the inflaton φ, as well as the scalar σ, to which is added a contact term (δ/4)S2
dS

2
v . There-

fore, the inflaton portal term generates three different diagrams whose squared amplitude is

|M|2 ≈
(

2× 2

4

)2
[

2δλφv
2
φ

m2
φ̃

+
δλσv

2
σ

m2
σ̃

+ δ

]2

≈ 16 δ2 . (3.16)

Assuming that the pseudo scalar Sv is in thermal equilibrium with the visible bath and

produces dark matter out of equilibirum (at energies lower than mφ), one can compute the

Freeze-In relic density using

〈σv〉n2
eq =

4π

2

T

32(2π)6

∫ ∞
4m2

d

|M|2
√
s− 4m2

dK1(
√
s/T )ds , (3.17)

and the approximate Boltzmann equation for non thermal production2 [19, 71–73]

dY

dx
=

1

xH s
〈σv〉n2

eq =

(
45

π

)3/2 |M|2Mp

(2π)7gs
√
gρ8

x2

md
K1(x)2 . (3.18)

We thus get for the relic density generated by non thermal production

Ωnon-therm.h
2 ≈ 0.12×

(
δ

5.1× 10−12

)2

. (3.19)

Using this value, together with λσ ∼ 0.1 and vφ ∼ vGUT ∼ 1016 GeV, one can check that

the hypothesis (3.11) and (3.12) are verified a posteriori.

3.3 Reheating

The minimality of the set up and explicit coupling of the inflaton to the visible and invisible

sector provides an unambiguous way to derive its partial and total decay width of decay

into dark matter and standard model particles.

Using the couplings (3.15) one gets

Γφ̃→Sd,Sd =
1

32πm2
φ̃

(
λφvφcθ + δvσsθ

2

)2√
m2
φ̃
− 4m2

d ,

≈ 1

32πmφ

(
λφvφ

2

)2

Γφ̃→Sv ,Sv =
1

32πm2
φ̃

(
λσvσsθ + δvφcθ

2

)2√
m2
φ̃
− 4m2

d ,

≈ 1

32πmφ
(δvφ)2 . (3.20)

Thus the branching ratio of decay into dark matter

Br(φ→ Sd, Sd) =
λ2
φ

λ2
φ + 4δ2

≈
λ2
φ

4δ2
∼ 4× 10−4 , (3.21)

2Note that the last equality holds only because the squared amplitude is a constant in our case.
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Figure 3. Inflaton portal mixing δ as a function of the dark matter mass md such that the scalar

Sd constitute the only dark matter constituent of the Universe, where we fixed vσ = 1016 Vev,

λσ = 0.1 and (λφ, vφ) = (10−13, 20Mp) to match with experimental measurement of the inflationary

observables. The purple full line represent the total relic density whereas the purple dotted line

stands for only the non thermal contribution to the latter. The blue line delimits the region where

the non thermal contribution constitute more than 99% of the total relic density (upper part of

the plot). Finally the green dashed line indicate the values of the reheating temperature TR for

different values of the parameters.

is naturally suppressed, due to the constraint imposed on the one hand by inflationary

measurement on λφ ∼ 10−13, and on the other hand by the relic density experimental

value δ ∼ 5× 10−12.

However, such a suppression may not be sufficient in the case where the dark matter

would be massive enough. Indeed, the relic density produced by a direct decay of the

inflaton is proportional to the dark matter mass, according to eq. (2.10). As is depicted in

figure 3, requiring that the direct production of dark matter through decay of the inflaton

does not represent more than 1% of the total relic density thus leads to an upper bound

on the dark matter mass

Ωdecay

Ωdecay + Ωnon-therm.
< 1% −→ md . 40 keV . (3.22)

The reheating temperature roughly corresponds to the temperature of the relativistic

thermal bath when produced at the time where the decay of the inflaton starts competing

with expansion H ∼ Γφ [67]

ρre = 3H2
reM

2
p = 3Γ2

φM
2
p ≡

π2g∗
30

T 4
R,

⇒ TR ≈ 0.5
√

ΓφMp , (3.23)
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Figure 4. Same legend as figure 3 for a mass mv = 10 MeV.

where g∗ ∼ 100 is the number of relativistic degrees of freedom at the reheating time. As

is depicted in figure 3 the value predicted by our scenario is of order TR ∼ 1010 GeV . mφ,

thus in agreement with the assumptions used while discussing non thermal production. As

indicated in introduction, if sufficiently high regarding thermal leptogenesis [51], note that

in the context of supersymmetric set up, such value of the reheating temperature may be

in tension with other existing bounds [44, 52–66].

Note that for such a light dark matter to be produced non thermally till x≡md/T ≈20,

the visible scalar Sv should be in equilibrium with the thermal bath after the neutrino

decoupling temperature, which would lead to strong deviation of the effective number of

relativistic degrees of freedom as compared to its experimental value [74]. In order to avoid

such problem, one has to assume that the mass of the pseudo scalar Sv is higher than

Tν ∼MeV. Thus the non thermal production is forced to stop before the temperature

reaches the dark matter mass. This effect is taken into account in figure 4 where we fixed

the mass mv = 10 MeV. One can see in this case that the parameter δ should be slightly

higher, but still in agreement with conditions (3.11) and (3.12). This increase of the inflaton

portal interaction therefore leads to an increase of the possible dark matter mass allowed

since the threshold is now fixed by the visible mass md, permitting the dark matter mass

to be as high as md . 250 keV.

3.4 Number of e-folds

So far we have considered the number of e-fold as a free parameter of the model. However,

the latter strongly depends on the physics of the reheating and inflation [75, 76]. In our

set up, the reheating temperature is determined by eq. (3.23) and can be computed for any
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choice of parameters. As we will see, it will constrain the number of e-fold and therefore

the inflationary observables.

Following [75] we can define the number of e-folds between the end of inflation and the

reheating time Nre by

ρre = ρende
−3Nre(1+w̄re) =

π2g∗
30

T 4
re, (3.24)

where ρre is the energy scale after the reheating, g∗ ∼ 100 is the number of relativistic

degrees of freedom of the thermal bath, w̄re refers to the equation of state during the

reheating and ρend stands for the energy density at the end of inflation. To fix ideas we will

stick to the case w̄re = 0, whereas a fully general study could in principle cover the range

−1/3 < w̄re < 1/3. However, note that the idealistic case of an instantaneous reheating

would sit at the crossing of this class of models and that the range 0.25 & w̄re & 0 is

favoured by the literature on reheating [76, 77]. Relating the pivot scale k at which the

CMB is observed to the scale of inflation (akHk), one can write [75]

k

a0H0
=

ak
aend

aend

are

are

aeq

aeqHeq

a0H0

Hk

Heq
, (3.25)

where the subscripts ‘end’, ‘eq’ and ‘0’ denote the end of inflation, matter-radiation equality

and the current time respectively. Using this decomposition, one can relate the total

number of e-folds during inflation to the few e-folds covered till the reheating time [76]

N? =
1

4
Nre − log

k

a0T0
− 1

4
log

30

g∗π2
− 1

3
log

11g∗
43

− 1

4
log

3

2

Vend

M4
p

+
1

2
log

π2rAs
2

. (3.26)

This implicit equation where r depends on N? can be solved numerically to obtain the

number of e-fold N? as a function of the reheating temperature. The latter depends mainly

on three parameters: the inflaton vev and quartic couplings (vφ, λφ) and the inflaton portal

coupling δ. As a matter of fact, the normalization condition relates the coupling λφ to the

vev of the inflaton, and we have seen that the relic density constraint fixes the value of

the coupling δ, depending on the dark matter and visible masses. For a given choice of

δ, the relation (3.26) together with the normalization condition will thus relate the three

parameters (N?, vφ, λφ) and provide one to one relations that we can parametrize by N?.

In figure 5 we show these relations together with the associated inflationary observables

for different choices of the parameter δ. Their comparison to the Planck data confirm

our initial choice of benchmark parameters and fixes the number of e-folds to be of order

N? ≈ 53 for δ ∼ 10−11.

4 Conclusion and comments

We have considered a scalar portal scenario between the dark sector, composed of the infla-

ton and a pseudo scalar dark matter, and the visible sector, composed of a complex scalar

field, assumed to be in thermal equilibrium with the standard model at high energies. Simi-

larly to [42, 43] the scalar potential of the dark sector encodes the inflationary potential and

– 12 –
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Figure 5. From Top-left to bottom-right: tensor-to-scalar ratio, reheating temperature, quartic

coupling and inflaton vev, as functions of the spectral tilt ns, and parametrized by the number of

e-folds N? for different choices of δ.

is invariant under a global U(1) which is broken during inflation, whose pseudo-goldstone

boson is assumed to be the dark constituent of our Universe. As setting the energy scale

of inflation the inflaton-dark matter coupling to the inflation observables is constrained

experimentally by astrophysical measurements. The production of dark matter is realized

by annihilation of the visible pseudo-scalar into dark matter out of equilibrium through

the inflaton portal term. We checked explicitly that the direct production of dark matter

through inflaton decay at the reheating time doesn’t dominate the dark matter production

imposing further constraints on the parameter space. Finally we derived a detailed anal-

ysis of the number of e-fold as compared to experimental measurement and the reheating

temperature obtained in our scenario confirming our choice of parameters. To put it in a

nutshell, we obtain a scenario in which: (i) the reheating temperature is of order 1011GeV,

(ii) the dark matter mass is lower than O(100) keV, (iii) the inflaton portal necessary to

get the measured relic density is of order δ ∼ 10−(10−11) and (iv) a number of e-folds during

inflation N? ∼ 53.
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Assuming a quartic coupling in the visible sector of order λσ ∼ 0.1, our scenario

imposes the following hierarchy of scales

mσ & 1014 GeV & mφ , λφ ∼ 10−13 , (4.1)

and thus

vφ ∼ 20Mp , vσ & 1015 GeV . (4.2)

This letters thus opens the possibility that the inflaton provides the natural mediator

between the dark and the visible sectors of our universe in a scenario consistent with

astrophysical measurements and a minimal number of parameters without invoking any

non minimal coupling to gravity.

We should make a few important remarks concerning the consistency of our dark matter

production set up. First we assumed that the complex scalar Σ was in close contact with

the standard model, thus assuming that the pseudo-Goldstone Sv is in thermal equilibrium

with the standard model after the reheating and till rather low energies. We did not

address in this paper how this could be the case. Such scalar could for instance be coupled

to the neutrino sector as it is suggested in [42], thus responsible for a high scale breaking

of a Peccei-Quinn U(1) symmetry. It could as well be responsible for the breaking of a

flipped SU(5) or SO(10) down to SU(5) since its vev is required to be at the GUT scale,

thus coupling directly to the standard model particles as fashioned for instance in [78, 79].

However, in any explicit model of interaction between the field Σ and the standard model,

one has to check that (i) the coupling of the pseudo goldstone to the visible sector is

sufficiently strong to maintain it in equilibrium until low energies, (ii) being given such a

strong coupling, the pseudo goldstone Sv should escape any experimental detection (unless

it is a prediction of the model) and (iii) the coupling of Sv to the SM should not imply a

too high coupling of the scalar σ in a similar manner since it may significantly increase the

reheating temperature.

We did not consider as well the possibility that the dark sector has a portal interaction

to the scalar sector of the standard model since such term would interfere with the mass

of the Higgs in the vacuum, due to the large vev of the inflaton. The coupling of such

term would thus have to be fine-tuned to avoid such constraint, thus we ignored it in our

analysis, although it could have interesting phenomenology at the time of the reheating,

as pointed out in [45–47].

Finally, to be able to produce dark matter down to low energies, we made use of a

visible pseudo scalar of mass of order 10 MeV. Depending on the way such scalar couples

to the standard model, it could have interesting experimental signatures.
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