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and the HQET relations (with the known corrections included) amongst the form factors,

and parameterizing the unknown higher order corrections (in the ratios of HQET form
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1 Introduction

One of the primary goals of the study of B meson decays and mixing is to construct the

unitarity triangle (UT). In this regard, the CKM elements Vub and Vcb play an important

role. Hence, precise measurements of these elements are of utmost importance.

The tree level semileptonic decays b→ c`ν` (` = e, µ) are crucial for the determination

of |Vcb|. It can be extracted from both exclusive decays, like B → D(∗)`ν, and inclusive

decays, like B → Xc`ν`. The inclusive channels are relatively clean, and the decay rates

have a solid description via operator product expansion (OPE) or heavy quark expansion

(HQE) [1–3]. The exclusive semileptonic decays have similar solid descriptions in terms

of heavy quark effective theory (HQET) [4, 5]. Contrary to the inclusive decays, the non-

perturbative unknowns in the exclusive decays can not be extracted experimentally. One

needs to calculate them and that is where the major challenges lie. At the moment, the

most precise determinations of |Vcb| from inclusive [6, 7] and exclusive decays [8] differ from

each other at ≈ 3σ confidence level (CL). Recently it has been shown that the Caprini-

Lellouch-Neubert (CLN) [9] and Boyd-Grinstein-Lebed (BGL) [10] parameterizations lead

to different results for the exclusive determinations of |Vcb| [11, 12]. In their analysis

they have used up-to-date lattice calculations of the form factors along with the available

experimental results from Belle [13].

Form factors, fitted from the decays B → D(∗)`ν, play a crucial role in the Standard

Model (SM) predictions of R(D(∗)) = Br(B → D(∗)τντ )/Br(B → D(∗)`ν). In the decays

B → D(∗)τντ , there are additional form factors that can not be extracted directly from the
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available data on B → D(∗)`ν. Therefore, one needs to rely on various theory inputs, the

HQET relations between the form factors in particular. The SM predictions of R(D(∗))

using the CLN parametrization of the form factors and the inputs from lattice and HQET

are given by [14, 15]

R(D) = 0.300± 0.008, R(D∗) = 0.252± 0.003. (1.1)

Recently, the SM prediction of R(D) has been updated [16] using the lattice input on

the form factors in B → D`ν` beyond the zero recoil [17, 18]. The updated value is

R(D) = 0.299±0.003 [16], which is the most precise estimate so far. Also, R(D∗) and |Vcb|
have been updated from a combined fit to the B → D(∗)`ν differential rates and angular

distributions, including O(ΛQCD/mb,c, αs) terms in HQET form factors [19]. They have

obtained

|Vcb| = (39.3± 1.0)× 10−3, R(D∗) = 0.257± 0.003 (1.2)

using the lattice results on the form factors and the QCD sum rule (QCDSR) predic-

tions [20, 21] for the HQET parameter as inputs in their analysis. The ratio of the form

factors R0(w) [9, 15], where w is the recoil angle between B and D∗, and its value at zero

recoil, R0(1), play a crucial role in the determination of R(D∗). The estimate of R0(1)

depends on the HQET parameter η(1), for which the QCDSR prediction is available [19].

However, it is also possible to fit it directly from the available experimental data and the

lattice inputs. As an example, we can see the table II of ref. [19], and note that the fit re-

sults for η(1) (with lattice as input) deviates from that predicted in QCDSR by more than

1σ. Also, the ratio of the form factors in B → D(∗)`ν` differ from that predicted by lat-

tice [16, 22]. Therefore, the legitimate query is whether this is due to the missing pieces in

the HQET relations between the form factors (i.e. corrections at order α2
s and Λ2

QCD/m
2
b,c).

In this article, we have extracted |Vcb| independently from the fits to the available data

on the differential rates and angular distributions in B → D`ν` and B → D∗`ν`, using the

CLN and BGL parameterization of the form factors. We have then performed a combined

analysis of the complete data set in both the parameterizations of the form factors and

extracted |Vcb|, R(D) and R(D∗). In this analysis, along with the experimental data, we

use the lattice predictions for the form factors as inputs [17, 18].

As mentioned earlier, we have an additional form factor in R(D∗), that cannot be

constrained from experimental data alone and we need additional theory inputs. In order

to predict R(D∗), we define the HQET relations between the form factors with the known

corrections [9, 19], which are represented in terms of the sub-leading Isgur-Wise functions.

We constrain those functions (HQET parameters) from a fit to the ratios of the form factors

used in our analysis, and the synthetic data for these ratios are obtained using directly our

fit results or from lattice and light cone sum rule (LCSR). We repeat the analysis by

considering additional parameters (∆) parameterizing the missing higher order corrections

in the ratios of the HQET form factors, and have made a rough estimate of the probable

size of these ∆s in different ways with the available resources. We have considered the

additional errors conservatively while predicting the SM value of R(D∗).
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f+(w) Value from Correlation

& f0(w) HPQCD

f+(1) 1.178(46) 1. 0.994 0.975 0.507 0.515 0.522

f+(1.06) 1.105(42) 1. 0.993 0.563 0.576 0.587

f+(1.12) 1.037(39) 1. 0.617 0.634 0.649

f0(1) 0.902(41) 1. 0.997 0.988

f0(1.06) 0.870(39) 1. 0.997

f0(1.12) 0.840(37) 1.

Value from

MILC

f+(1) 1.1994(95) 1. 0.967 0.881 0.829 0.853 0.803

f+(1.08) 1.0941(104) 1. 0.952 0.824 0.899 0.886

f+(1.16) 1.0047(123) 1. 0.789 0.890 0.953

f0(1) 0.9026(72) 1. 0.965 0.868

f0(1.08) 0.8609(77) 1. 0.952

f0(1.16) 0.8254(94) 1.

Table 1. Lattice QCD results of f+ and f0 for different values of w. The upper half of the table

have been obtained using the fit results from the HPQCD collaboration [18], and the lower half are

the results obtained by the Fermilab MILC collaboration [17].

2 Inputs

For B → D`ν` data, we depend on the latest fully reconstructed measurement from

Belle [23], but instead of the combined result of 10 w bins (in table II of that paper),

we use the full dataset including all the four subsamples B+ → D̄0e+νe, B
+ → D̄0µ+νµ,

B0 → D−e+νe, and B0 → D−µ+νµ, with 40 data-points, along with their statistical and

systematic uncertainties and the full systematic correlation matrix. These are available

in.1 We also use the values of the form factors f+ and f0 at w values 1, 1.08, and 1.16

with the full covariance matrix supplied by MILC [17]. On the other hand, the HPQCD

collaboration uses BCL parametrization to present their results. While using the HPQCD

results [18], we recognize (following the observation made by ref. [16]) that their simula-

tions extend to a maximal value of z = 0.013 (w ≈ 1.11), and thus use synthetic data

for f+,0 at w = 1.00, 1.06, and 1.12. These are listed in table 1, with their uncertainties

and correlation matrix. Belle, however, has used the same w points as MILC to calculate

HPQCD synthetic data in their analysis. We will explicitly mention our inputs whenever

we are using them.

In addition to using the dispersions relations, CLN parametrization [9] uses Heavy

Quark Effective Theory (HQET) to strengthen the unitarity bounds and as a consequence

1See the supplemental material at the APS site, or in the ancilliary files of arXiv preprint of ref. [23].
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Source G(1)

Fermilab/MILC [17] 1.0541(83)

HPQCD [18] 1.035(40)

HQE(BPS Expansion) [25] 1.04(2)

Table 2. Different values of G(1) used in B → D`ν` fits.

this establishes approximate relations between the slope and the higher power coefficients

of the form factors (valid within ≈ 2%). Other than |Vcb|, only two parameters parametrize

the form factors under this scenario: ρ2D and G(1). The form factor normalization G(1)

is predicted by both HPQCD and Fermilab/MILC. There is one HQE result based on

Bogomol’nyi-Prasad-Sommerfield (BPS) symmetry (partially) [25] as well. These are listed

in table 2 and G(1) is used as a nuisance parameter in some of our fits.

In our analysis, for the B → D∗`ν` data, we mainly depend on the unfolded binned

differential decay rates by Belle. For four kinematic variables w, cos θv, cos θl and χ, with

10 bins each, this amounts to a total of 40 data points, their uncertainties and the full

correlation matrix [13]. Other than these, we make use of the zero-recoil value of the form

factor hA1(w) from unquenched Fermilab/MILC lattice data [26]:

hA1(1) = 0.906± 0.013 . (2.1)

In addition to these, we have used, in few cases, the inputs from light cone sum rule

(LCSR) [27]:

hA1(wmax) = 0.65(18), R1(wmax) = 1.32(4), R2(wmax) = 0.91(17), (2.2)

and the following inputs throughout our analysis:

m̄b(m̄b) = 4.163± 0.016 GeV, mc(3 GeV) = 0.986± 0.013 GeV,

αS(m̄b(m̄b)) = 0.2268± 0.0023. (2.3)

3 CLN parameterization: fit results

3.1 Fit from B → D`ν` data

As shown in table 3, when we fit the available data using CLN parameterization for the

form factors, we use different combinations of the predicted values of G(1). The best results

are obtained when all the inputs are combined together, and the corresponding extracted

values of |Vcb| and R(D) are shown in table 3. To do a preliminary cross-check of the

validity of the fits, we have completely reproduced the table V of ref. [23], except the last

column, where the authors quote the fit results after averaging the separate samples. We

have instead used the whole 40-data-point-long sample with the full correlation matrix and

have considered values of me and mµ to incorporate the correct values of wmax consistent

with experimental results. The reason for doing this is two-fold: (a) The increased number
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Constraints |Vcb| χ2
min/d.o.f p-value R(D)

(×103) (%)

Using only G(1)

HPQCD+MILC 39.97(1.34) 23.04/39 98.02 0.299(6)

HPQCD+MILC+BPS 40.04(1.33) 23.42/40 98.30 0.299(6)

Belle [23] 39.86(1.33) 4.57/8 80 0.298(6)

Using only f+(w)

HPQCD + MILC 40.84(1.15) 31.22/43 90.91 0.305(3)

Table 3. Result of the fit to the experimental data in B → D`ν` using only G(1) (first two rows),

and using f+(w) (w = 1 and w 6= 1) from lattice (MILC and HPQCD listed in table 1) with the

CLN parametrization of the form factors.

of degrees of freedom improves the quality of fit considerably. Even with d.o.f increased

by a factor of 5, χ2
min/d.o.f hardly increases. However, as can be seen from the p-values for

our results in table 3, there is a considerable improvement in the goodness-of-fit. (b) We

wanted to use the full correlation in the data. The fact that our results match with Belle

for all sub-samples separately up to the second decimal place, while the full fit very slightly

differs from the averaged result, makes the importance of considering the correlations even

more pertinent. Using G(1) from HPQCD and MILC with or without the constraint from

BPS gives us our obtained result, given in bold-faced font. For a comparison, in the

third row of table 3, we quote the experimental results too. The experimental analysis

fits the quantity ηEWG(1)|Vcb| and then uses the MILC value of G(1) and the electroweak

correction factor ηEW = 1.0066 to calculate |Vcb|. We note a little increase in the central

values of our estimates of |Vcb| with respect to that of Belle, however, the percentage error

in the estimate does not change. Also, as we have fitted G(1) separately under the above-

mentioned constraints, it has a non-zero correlation with |Vcb|. With the increased number

of data points, we obtain a better fit than [23], as can be seen from the p-values. The

extracted values of R(D) are also consistent with that extracted in [23].

The last row of the same table represents the results obtained from a fit to the available

experimental data along with the lattice inputs on f+(w) (table 1). We note that the

central value of the fitted Vcb is increased by ≈ 2% while the percentage error has reduced

from 3.3% to 2.8%. Also, now we can compare the predicted values of R(D), which are

obtained from the fit with and without the lattice inputs on f+(w). The central value

of the predicted R(D) has increased due to the use of f+(w), and there is a considerable

reduction in the percentage error of the estimate. Our result is in agreement with the

prediction of the earlier analysis [16]. In our fit, we do not include the inputs on f0(w)

from lattice, inclusion of which makes the fit worse (with a p-value < 1%). However, the

fit is not that bad (p-value ≈ 55%) if we drop all the available inputs from MILC and just

use the inputs from HPQCD along with the experimantal data.

– 5 –



J
H
E
P
1
2
(
2
0
1
7
)
0
6
0

Data+Lattice Data+Lattice+LCSR

Parameters/ Best Fit ± Err. Best Fit ± Err.

Observables Values Values

|Vcb| × 103 38.23± 1.46 38.15± 1.43

ρ2D∗ 1.17± 0.15 1.16± 0.14

R1(1) 1.39± 0.09 1.37± 0.04

R2(1) 0.91± 0.08 0.91± 0.07

hA1(1) 0.91± 0.01 0.91± 0.01

χ2
min 34.14 34.62

dof 36 39

p-value 55.73% 69.10%

R0(1) 1.191± 0.017 1.195± 0.017

R(D∗) 0.255± 0.004 0.255± 0.004

Table 4. Fit results with CLN for B → D∗`ν`, combined with constraint from eq. (2.1).

3.2 Fit from B → D∗`ν` data

For the decay B → D∗`ν`, details of the parametrization of the form factors can be seen in

refs. [9, 15]. In addition to |Vcb|, there are 4 other parameters to fit in this case, of which

hA1(1) is put into the fit as a nuisance parameter with input from eq. (2.1). Fit results

are listed in table 4. |Vcb| obtained from this fit has slightly larger uncertainty than that

has been obtained from the B → D`ν` fit, although there is a small decrease in the central

value. The overall multiplicative parameter here is hA1(1)|Vcb|, so hA1(1) has a correlation

with |Vcb| in our fit. Our fit values agree with those obtained in earlier analyses [11–13], and

in [24].2 Results obtained from a similar kind of fit, where, in addition to lattice, inputs

from LCSR (eq. (2.2)) have been incorporated, are shown in the right panel of table 4. We

note that although there are no considerable changes in the fitted values of |Vcb|, the error

in the extracted value of R1(1) has reduced from 6.5% to 3%. The uncertainties in all the

other fit parameters have reduced (though not considerably).

The calculation of R(D) in CLN parametrization is straightforward. However, as

mentioned earlier, calculation of R(D∗) depends on an additional form factor ratio R0(w)

and its value calculated at zero-recoil, which can not be fitted from B → D∗`ν`. The form

factor ratios Ri(w)s are expressed as the ratios of the HQET form factors [9, 19] his, like

R1(w) =
hv
hA1

, R2(w) =
hA3

hA1

+ rD∗
hA2

hA1

,

R0(w) =
(w + 1)

(1 + rD∗)
− (w − rD∗)

(1 + rD∗)

hA3

hA1

− (1− wrD∗)
(1 + rD∗)

hA2

hA1

, (3.1)

2The preprint of a parallel work shares a similar publication timeline with our work.
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Cases Inputs for the fits

case-1 R1(1), R2(1), f+(w)/f0(w)

for w=1, 1.08, 1.16 (MILC)

and w= 1.03, 1.06, 1.09, 1.12 (HPQCD)

case-2 case-1 with R1(wmax), R2(wmax) from LCSR.

Table 5. Different cases for the fit of sub-leading Isgur-Wise functions.

where rD∗ = mD∗/mB. The his, and hence the form factor ratios include the corrections

at order αs and ΛQCD/mb,c. They are expressed in terms of a few sub-leading Isgur-Wise

functions (HQET parameters), like η(1), η′(1), χ2(1), χ′2(1), and χ′3(1). We note that both

R2(w) and R0(w) are sensitive to the ratios hA3/hA1 and hA2/hA1 . In the HQET, the

R1(1), R2(1) and R0(1) are obtained from eq. (3.1) by taking the limit w → 1, and all of

them are functions of the above mentioned HQET parameters. Hence, the R0(1) can be

estimated only after the extractions of these HQET parameters.

Also, the form factor ratios f+(w)/f0(w) can be expressed in terms of the ratios of the

HQET form factors, like

f+(w)

f0(w)
=

(1 + rD)2

2rD(w + 1)

( h−
h+

1−rD
1+rD

− 1

h−
h+

1+rD
1−rD

w−1
w+1 − 1

)
, (3.2)

with rD = mD/mB. The HQET form factors h+ and h− are also known at order αs and

ΛQCD/mb,c, and can be expressed in terms of the above mentioned five HQET parameters.

In the CLN parameterization of the form factors, we have expressed Ri(w) as given in

eq. (B7) of ref. [15] and fit R2(1) and R1(1) from the available data. Using these fit results

and the inputs from lattice, we then estimate R0(1) after extracting the HQET parameters

for the cases mentioned in table 5. The predictions of R(D∗) in both the cases are shown

in table 4.

3.3 Combined fit from B → D`ν` and B → D∗`ν` data:

Combining the full set of w-binned data from all subsamples for B → D`ν` and the full

data-set with all four variables for B → D∗`ν` gives us the unique opportunity to not

only simultaneously fit all the form factor parameters along with |Vcb|, but also predict the

values and correlated uncertainties of R(D) and R(D∗) together. The fit results are listed

in table 6. The combined fit of the data in B → D`ν` and B → D∗`ν` shows considerable

improvement over that obtained from the analysis of only the decay B → D∗`ν`. Though

changes in the fitted values of R1(1) and R2(1) are small, extracted uncertainties of |Vcb|
reduces to≈ 2% and the central value of ρ2D∗ increases by approximately 8% in the combined

analysis. Using the fit results given in table 6 and the inputs from lattice and LCSR, we

obtain R0(1) and hence R(D∗) for the cases given in table 5. For details, see 2nd (case-1)

and 4th (case-2) columns of table 7. Also in the combined analysis of all datasets, the

central values of the predicted R(D∗) increase by approximately 2%, and the uncertainties

are about 1%.
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Data+Lattice Data+Lattice+LCSR

Parameters Best Fit ± Err. Best Fit ± Err.

Values Values

|Vcb| × 103 39.82± 0.90 39.77± 0.89

ρ2D 1.138± 0.023 1.138± 0.023

G(1) 1.058± 0.007 1.058± 0.007

ρ2D∗ 1.269± 0.123 1.251± 0.113

R1(1) 1.386± 0.087 1.371± 0.036

R2(1) 0.880± 0.073 0.888± 0.065

hA1(1) 0.900± 0.012 0.900± 0.012

χ2
min 67.34 67.99

dof 79 82

p-value 82.21% 86.66%

Table 6. Results of the combined fit to the data in B → D(∗)`ν` with CLN.

Param- case-1 case-1 case-2 case-2

eters/ with with

Obser- ∆31 & ∆21 ∆31 & ∆21

vables = 1.00(20) = 1.00(20)

R0(1) 1.192(17) 1.192(101) 1.196(17) 1.196(102)

R(D) 0.304(3) 0.304(3) 0.304(3) 0.304(3)

R(D∗) 0.259(3) 0.259(6) 0.259(3) 0.259(6)

Corr(R(D) 0.21 0.12 0.20 0.11

−R(D∗))

Table 7. The SM predictions for R(D) and R(D∗).

3.3.1 R(D∗) with the additional error ∆

For completeness, as was mentioned in the introduction, we have also introduced additional

parameters (∆), which parametrize the unknown higher order corrections in the ratios

of the HQET form factors, such as hv/hA1 , hA3/hA1 , hA2/hA1 and h−/h+. In order

to estimate the probable size of those missing corrections, we have made the following

replacements in eqs. (3.1) and (3.2):

hv
hA1

→ hv
hA1

∆v,
hA3

hA1

→ hA3

hA1

∆31,
hA2

hA1

→ hA2

hA1

∆21,
h−
h+
→ h−

h+
∆∓. (3.3)

Though these ∆s could be w dependent in general, for values of w very close to 1, these

dependencies can be neglected. Thus we assume these ∆s to be w independent for sim-
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Para- case-1 case-1 case-2 case-2

meters with ∆s with ∆s

η(1) 0.39(3) 0.40(5) 0.39(3) 0.40(5)

η′(1) −0.002(100) 0.004(101) −0.03(9) 0.001(101)

χ2(1) −0.08(1) −0.06(1) −0.08(1) −0.06(1)

χ2
′(1) −0.003(2) −0.003(2) −0.001(2) −0.002(2)

χ3
′(1) 0.04(2) 0.04(2) 0.05(2) 0.04(2)

∆v — 1.05(6) — 1.05(2)

∆21 — 1.00(20) — 1.00(20)

∆31 — 1.04(8) — 1.04(7)

∆∓ 1.00(20) — 1.00(20)

χ2
min 4.34 3.36 9.20 3.62

dof 7 7 9 9

p-value 73.95% 85.00% 41.90% 93.46%

Table 8. The fit results for the subleading Isgur-Wise functions and the ∆s (see text).

plicity. Following the above-mentioned methods, we then fit these additional parameters

along with the HQET sub-leading Isgur-Wise functions using all the available datasets as

mentioned in table 5, with a goal to find out the size of these newly introduced param-

eters. In our analysis, ∆s are treated as normally distributed nuisance parameters with

∆ = 1.0± 0.2, i.e. we have allowed these missing corrections to vary at most by 20%.

Table 8 (3rd and 5th column) shows the fit results of the HQET parameters and the

∆s with the corresponding 1σ errors, for the scenarios listed in table 5. We note that ∆∓
and ∆21 could be as large as 20%, while ∆v and ∆31 are < 15%. The set of parameter

values thus obtained is used to estimate the best-fit values and uncertainties in R1(1)

and R2(1). In figure 1, these fitted results for R1(2)(1) are compared with those obtained

previously from the CLN fit and with the QCDSR predictions. Our CLN fit results of

R1(1) and R2(1) have large uncertainties, and are marginally consistent with the QCDSR

predictions, whereas those obtained using our fit results for the HQET parameters without

∆s (i.e. cases 1 and 2 of 8) have small errors (shown as solid black bars) and lie in between

the CLN fit results and QCDSR predictions. In the same plot, the solid red bars represent

the best fit values and the error bars of R1(1) and R2(1), which are obtained using the

parameter values of the ∆v, ∆21, and ∆31 and the other HQET parameters as given in

table 8. With these sets of parameters, we can now fully reproduce the CLN fit results,

and hence, will be marginally consistent with the QCDSR predictions. However, if we take

∆v = 1± 0.1, ∆21 = 1± 0.2, and ∆31 = 1± 0.2 (conservative estimates3) then we can fully

3Here, we have used the maximum attainable values of the ∆s, which are allowed by the data. From

the fit, the allowed values of ∆31 is < 15%, however, for the conservative estimates we have allowed it to

be as large as 20%.
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Figure 1. Comparisions between different R1(1) and R2(1) which are obtained from different fits,

with (right) and without (left) the inputs from LCSR, and QCDSR. For the conservative estimates

of R1(2)(w = 1), ∆v is taken as 1± 0.1 and each of ∆21 and ∆31 is considered as 1± 0.2.

reproduce the CLN fit results, as well as the QCDSR predictions; the results are shown

as dot-dashed red bars in figure 1. Using the results given in table 8, we estimate R0(1)

for the above mentioned different cases. With these R0(1)s and the CLN fit results given

in table 6, we obtain R(D∗) which are presented in table 7. The errors in the estimated

R(D∗) have increased from 1.16% to 2.32% due to introduction of an additional error of

about 20% in the HQET form factor ratios.

4 BGL parametrization

4.1 Formalism and results for |Vcb|

The BGL parameterization of the form factors rely on a Taylor series expansion about

z = 0. The key ingredient in this approach is the transformation that maps the complex

q2,4 plane onto the unit disc |z| ≤ 1. The most general form of the expansion of the form

factors is given as [10]

Fi(z) =
1

Pi(z)φi(z)

N∑
n=0

aFin zn, (4.1)

where

z =

√
w + 1−

√
2

√
w + 1 +

√
2
. (4.2)

Here, Fi(z) include f+(z), f0(z), associated with the decays B → D, and those associated

with B → D∗ are given by F1(z), f(z), g(z) and F2(z) respectively. The coefficients aFin
follow weak as well as strong unitarity constraints [10]. However, along the lines of refs. [10–

12, 16], we have used the weak unitarity constraints for the coefficients a
f+
n , af0n , aF1

n , afn,

agn and aF2
n , and considered the form factors with N = 2 in our analysis. The weighting

4In our case, q2 = (p` + pν)2.
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Data+Lattice (HPQCD & MILC)

Parameters/ Best Fit ± Err Err. from

Observables Values ∆χ2 = ±1

|Vcb| × 103 41.04 1.13
(
+1.12
−1.13

)
a
f+
0 0.0141 0.0001 (0.0001)

a
f+
1 −0.0318 0.0028 (0.0028)

a
f+
2 −0.0819 0.0199 (0.0199)

af01 −0.1961 0.0136 (0.0136)

af02 −0.2274 0.0942 (0.0942)

χ2
min 33.37

dof 46

p-value 91.77%

R(D) 0.302 ±0.003

Table 9. The fit results obtained from the analysis of the decay B → D`ν` with the BGL param-

eterization of the form factors for N = 2.

functions φi(z) contain the Jacobian of the variable transformation and the physics of the

perturbative QCD (PQCD). It is also analytic on the unit disc. The mathematical forms of

these φi’s, corresponding to various spin states, can be seen from [10]. Another important

ingredient in this form of parameterization is the Blaschke factor, which is defined as

P (z) =
∏
p

z − zp
1− zzp

, (4.3)

where

zp =

√
t+ −m2

p −
√
t+ − t0√

t+ −m2
p +
√
t+ − t0

, (4.4)

with

t+ = (mB +mD(∗))2, t− = (mB −mD(∗))2, t0 = t− . (4.5)

Here, z = zp represents the location of a pole i.e. Bc narrow resonance. The P (z) is

analytic on the unit disc for |zp| ≤ 1. In general, the form factors Fi(q
2) have poles, and

the Blaschke factor is useful to eliminate those poles of Fi’s at z = zp, such that PiFi is

analytic on the unit disc |z| ≤ 1.

In our analysis, the various inputs relevant to the BGL parameterization of the form

factors associated with the decays B → D`ν` and B → D∗`ν` (` = µ and e) are taken

from the references [10–12, 16]. The fit results are shown in tables 9 and 10 respectively.

The results of the combined analysis of data in B → D(∗)`ν` are shown in table 11. In the
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Data+Lattice Data+Lattice+LCSR

Parameters Best Fit Err. from Best Fit Err. from

Values ∆χ2 = 1 Values ∆χ2 = 1

|Vcb| × 103 41.7
(
+2.0
−2.1

)
40.6 (1.7)

af0 0.0109 (0.0002) 0.0109 (0.0002)

af1 −0.0459
(
+0.0527
−0.0429

)
−0.0518

(
+0.0267
−0.0131

)
af2 0.1513

(
0.8457
−1.1508

)
0.9942

(
+0.0047
−0.5019

)
aF1
1 −0.0092

(
+0.0054
−0.0050

)
−0.0070

(
+0.0048
−0.0046

)
aF1
2 0.1150

(
+0.0877
−0.0921

)
0.0932

(
+0.0850
−0.0883

)
ag0 0.0111

(
+0.0104
−0.0075

)
0.0257

(
+0.0054
−0.0034

)
ag1 0.5786

(
+0.3351
−0.4007

)
0.0836

(
+0.0753
−0.2157

)
ag2 0.8155

(
+0.1683
−1.7701

)
−0.9962

(
+1.9958
−0.0036

)
χ2
min 27.81 30.93

dof 32 35

p-value 67.87% 66.51%

Table 10. Fit results with BGL parameterization of the form factors (N = 2) in B → D∗`ν`.

combined analysis, we use the following weak unitarity constraints:

(ag0)2 + (ag1)2 + (ag2)2 + (a
f+
0 )2 + (a

f+
1 )2 + (a

f+
2 )2 < 1,

(aF1
0 )2 + (aF1

1 )2 + (aF1
2 )2 + (af0)2 + (af1)2 + (af2)2 < 1,

(af00 )2 + (af01 )2 + (af02 )2 < 1. (4.6)

We note that the uncertainties of the extracted |Vcb| have reduced to ≈ 2%. This

is the most precise estimate obtained so far from a combined analysis. In addition, we

observe that the central values of the |Vcb| obtained from BGL analysis is increased by

approximately 3.5% for combined fit without LCSR and 3% for combined fit with LCSR

than those obtained using the CLN parameterizations for the form factors.

4.2 Predictions for R(D(∗))

As mentioned earlier, the decay B → D∗τντ is sensitive to an additional form factor [10]

F2(z) =
1

P2(z)φ2(z)

N∑
n=0

aF2
n zn (4.7)

with

P2(z) =

3∏
p=1

z − zp
1− zzp

, (4.8)
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Data+Lattice Data+Lattice+LCSR

Parameters Best Fit Err. from Best Fit Err. from

Values ∆χ2 = 1 Values ∆χ2 = 1

|Vcb| × 103 41.2 (1.0) 40.9 (0.9)

af0 0.0109 (0.0002) 0.0109 (0.0001)

af1 −0.0366
(
+0.0409
−0.0422

)
−0.0534

(
+0.0194
−0.0112

)
af2 −0.0340

(
+1.0312
−0.9652

)
0.9936

(
+0.0049
−0.4022

)
aF1
1 −0.0084

(
+0.0045
−0.0044

)
−0.0074

(
+0.0043
−0.0042

)
aF1
2 0.1054

(
+0.0846
−0.0855

)
0.0983

(
+0.0821
−0.0830

)
ag0 0.0112

(
+0.0108
−0.0075

)
0.0256

(
+0.0052
−0.0033

)
ag1 0.5882

(
+0.3320
−0.4233

)
0.0800

(
+0.0722
−0.2131

)
ag2 0.8038

(
+0.1783
−1.7582

)
−0.9925

(
+1.9887
−0.0038

)
a
f+
0 0.0141 (0.0001) 0.0141 (0.0001)

a
f+
1 −0.0320 (0.0027) −0.0317 (0.0027)

a
f+
2 −0.0816 (0.0199) −0.0822 (0.0198)

af01 −0.1967 (0.0134) −0.1956 (0.0134)

af02 −0.2291 (0.0941) −0.2259 (0.0940)

χ2
min 61.26 64.35

dof 79 82

p-value 93.04% 88.35%

Table 11. The fit results obtained from the combined analysis of the available data in the decays

B → D`ν` and B → D∗`ν` with the BGL parameterization of the form factors with N = 2.

and

φ2(z) =

√
2nI
πχ̃0−

23(r)2(1 + z)2(1− z)−
1
2

[(1 + r)(1− z) + 2
√
r(1 + z)]4

. (4.9)

Here, nI represents the number of light valence quarks or the effective iso-spin factor, as

given in [16]. We use nI = 2.6. The functions χ̃0− are defined as [9]

χ̃0−(0) = χ0−(0)−
∑
n=1

f2n(Bc)

M2
n(Bc)

, (4.10)

where χ0−(0) are the perturbatively calculable functions and associated with the once-

subtracted QCD dispersion relation (for details see [10]). The second term represents the

contribution to the dispersion relations from the 0− Bc-type resonances below the BD∗
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type pair production. The decay widths and masses of those resonances are given by fn
and Mn respectively, and their respective values are given in table 12.

Expressions of χ0−(0) include the corrections at order αs. We obtain χ0− = (1.807 ±
0.009) × 10−2 using the inputs given in eq. (2.3). However, incorporating the corrections

of order α2
s, one will obtain χ0− = 1.942× 10−2 [24].

In eq. (4.7), the unknowns are the various coefficients aF2
n . For N = 2 these are,

respectively, aF2
0 , aF2

1 and aF2
2 . Hence, in order to predict R(D∗) one needs to extract these

coefficients, and HQET relations between the form factors are very useful in this regard.

In order to extract these coefficients, we use the following equations

F2(w) =

(
F2(w)

Fi(w)

)
HQET

Fi(w), i 6= 2. (4.11)

Here, Fi(w)’s can be anyone of f+(w), f0(w), F1(w) and f(w). As mentioned earlier,

the HQET form factors at order αs and ΛQCD/mb,c are given in terms of the five HQET

parameters (for details see [19]). For the known values of these parameters, the r.h.s. of

eq. (4.11) are different numbers for different values of w (≥ 1), since Fi(w) are known,

either from our fits or from the lattice. Hence, we can create synthetic data points for

F2(w) for different values of w.

In the HQET, the form factor ratios F1(w)/f(w) and F2(w)/f(w) are given by

F1(w)

f(w)
= mB(w − 1)

(
w − rD∗
w − 1

− hA2

hA1

rD∗ −
hA3

hA1

)
,

F2(w)

f(w)
=

1

mBrD∗

(
1− hA2

hA1

1− rD∗w
1 + w

− hA3

hA1

w − rD∗
1 + w

)
.

(4.12)

We can also define
F2(w)

F1(w)
=
F2(w)

f(w)

f(w)

F1(w)
, (4.13)

such that all these form factor ratios are sensitive to hA2/hA1 and hA3/hA1 . The other

form factor ratios, which can also be used in the extractions of R(D∗) are given by

F2(w)

f+(w)
= 2

(
1 + w − hA2

hA1
(1− rD∗w) +

hA3
hA1

(rD∗ − w)
)

√
rD∗√
rD

h+
hA1

(
h−
h+

(rD − 1) + (1 + rD)
) ,

F2(w)

f0(w)
=

(
1− hA2

hA1
(1− rD∗w) +

hA3
hA1

(rD∗ − w)
)

√
rD∗
√
rD

rD+1
h+
hA1

(
h−
h+

(rD+1)(w−1)
(rD−1)(w+1) + 1

) . (4.14)

Apart from hA2/hA1 and hA3/hA1 , these ratios are sensitive to h−/h+ and h+/hA1 .

Using the fit results given in table 11, we generate the synthetic data points for the

ratios F1(w)/f(w) and f+(w)/f0(w), for different values of w(≥ 1). We first fit the sub-

leading Isgur-Wise functions using those synthetic data points. In the analysis, the different

benchmark cases are defined in table 13 and the respective fit results are shown in table 14.
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Form- Resonance Mass, Decay constant,

factor type Mn in GeV fn in GeV

6.275 0.427

F2 0− 6.842

7.250

Table 12. The decay widths and the masses of the Bc resonances.

Cases Inputs for the fits

case-3 F1(w)/f(w) for w=1.03, 1.06, 1.09 and

f+(w)/f0(w) for w=1, 1.03, 1.06, 1.09

from BGL fit results (table 11)

case-4 case-3 with R1(wmax) and R2(wmax)

from LCSR

case-5 f+(w)/f0(w) for w=1, 1.08, 1.16 (MILC)

and w=1.03, 1.06, 1.09, 1.12 (HPQCD)

case-6 case-5 with R1(wmax) and R2(wmax)

from LCSR

Table 13. Different cases for the fit of sub-leading Isgur-Wise functions.

The lattice inputs are playing the major role in all the fits, and all the fits are good with

physically plausible values for the HQET parameters. We note here that in general, the

ratios of the form factors are more sensitive to η(1) than the other HQET parameters. The

values of the HQET parameters predicted in QCDSR have large errors (& 30%). For all of

our intents and purposes, while taking the range of these parameters seriously, we do not

regard their central values with similar import. Therefore, we had initially tried to fit all

the HQET parameters from the data and lattice. In general, the fits were not good, and

on top of that the error values of the parameters χ2(1), χ′2(1) and χ′3(1) were very large,

in some cases, the errors were almost eight times the corresponding best fit values. Also,

the best fit values of these parameters were almost & 3σ away than the respective QCDSR

predictions. In all those fits, the parameter η(1) had small errors. However, η′(1) had large

errors but it was in accordance with the QCDSR prediction.

Thus, in order to get a good fit of the data with reasonable and conservative uncertain-

ties in the extracted parameters, we have considered χ2(1), χ′2(1) and χ′3(1) as nuisance

parameters, but varied them as gaussians in a broader range of three times the uncertainties

associated with QCDSR predictions [19–21], which means our inputs for the fits are

χ2(1) = −0.06± 0.06, χ′2(1) = 0± 0.06, χ′3(1) = 0.04± 0.06. (4.15)

The corresponding results are given in table 14. For completeness, we have also provided

the set of results with the parameters varied as a nuisance gaussian over their predicted
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Para- case-3 case-3 case-4 case-4 case-5 case-5 case-6 case-6

meters with ∆s with ∆s with ∆s with ∆s

η(1) 0.39(3) 0.39(5) 0.38(3) 0.40(5) 0.39(4) 0.40(5) 0.40(3) 0.40(5)

η′(1) 0.10(7) 0.12(5) 0.08(7) 0.14(7) 0.01(12) 0.004(101) −0.02(10) 0.003(101)

χ2(1) −0.07(6) −0.05(6) −0.11(5) −0.08(6) −0.06(6) −0.06(6) −0.06(6) −0.06(6)

χ2
′(1) 0.007(60) −0.02(4) 0.006(59) −0.004(30) −0.003(60) −0.003(60) −0.002(59) −0.003(60)

χ3
′(1) 0.06(5) 0.06(4) 0.06(5) 0.04(4) 0.04(6) 0.04(6) 0.05(6) 0.04(6)

∆v — — — 1.06(3) — — — 1.06(3)

∆∓ — 0.98(20) — 1.00(20) — 1.00(20) — 1.00(20)

∆21 — 1.05(20) — 1.02(20) — — — 1.00(20))

∆31 — 1.03(10) — 1.07(7) — — — 1.01(13)

χ2
min 1.71 1.73 7.63 1.88 3.84 3.26 7.05 3.36

dof 5 5 7 7 5 5 7 7

p-value 88.77% 88.54% 36.62% 96.60% 57.25% 66.02% 42.36% 84.97%

Table 14. The fit results for the subleading Isgur-Wise parameters with χ2(1), χ′2(1) and χ′3(1)

varied within their QCDSR 3 σ range.

Para- case-3 case-3 case-4 case-4 case-5 case-5 case-6 case-6

meters with ∆s with ∆s with ∆s with ∆s

η(1) 0.39(3) 0.40(4) 0.37(3) 0.40(4) 0.39(3) 0.40(5) 0.39(3) 0.40(5)

η′(1) 0.13(4) 0.13(4) 0.11(4) 0.14(4) 0.005(105) 0.003(92) −0.02(10) 0.002(92)

χ2(1) −0.06(2) −0.06(2) −0.07(2) −0.06(2) −0.06(2) −0.06(2) −0.06(2) −0.06(2)

χ2
′(1) 0.001(20) −0.003(14) 0.001(20) −0.004(14) −0.000(20) −0.000(20) −0.000(20) −0.000(20)

χ3
′(1) 0.04(2) 0.04(2) 0.04(2) 0.04(2) 0.04(2) 0.04(2) 0.04(2) 0.04(2)

∆v — — — 1.06(3) — — — 1.06(3)

∆∓ — 1.00(19) — 0.98(19) — 1.00(20) — 1.00(20)

∆21 — 1.00(20) — 0.98(20) — — — 1.00(20)

∆31 — 1.03(10) — 1.08(6) — — — 1.01(13)

χ2
min 1.92 1.68 8.58 1.80 3.84 3.26 7.36 3.36

dof 5 5 7 7 5 5 7 7

p-value 85.97% 89.07% 28.39% 97.02% 57.19% 65.96% 39.26% 84.94%

Table 15. The fit results for the subleading Isgur-Wise parameters with χ2(1), χ′2(1) and χ′3(1)

varied within their QCDSR 1 σ range.

QCDSR range, in table 15. The relaxed ranges of χ2(1), χ′2(1) and χ′3(1) of the former

fit normally produces larger uncertainties on the fitted parameters (table 14). This, while

having virtually no effect on the R(D∗) calculation (this fact can be checked by comparing

tables 16 and 17), increases the quality of the fits somewhat and we have used them in

our analysis. In the upper half panel of the figure 2, various fit results of F1/f (1σ bars)

as well as the predictions from QCDSR for different values of w are compared. The BGL

fit results (table 11) have large uncertainties, while uncertainties obtained using the fitted

HQET parameters (cases 3 and 4 from table 14) are very small. As can be understood from

the lower-half panel of figure 2, the tight constraints on the HQET parameters are mainly
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with (right) and without (left) the inputs from LCSR. Lower half panel: the ratio f+/f0 obtain

from different fits, and from lattice. The fit results are also compared with the QCDSR predictions.

coming from the lattice results, in particular from the MILC collaboration, on f+(w)/f0(w).

Apart from the high w values, the BGL fit results of F1/f are fully consistent with that

of QCDSR predictions. However, the same ratios obtained using the HQET fit parameters

are marginally consistent with the QCDSR predictions.

We define a few more cases in addition to those given in table 13 where we have

introduced additional parameters ∆∓, ∆31, ∆21, and ∆v as before. Note that we have

not used g(w) in the extraction of HQET parameters, as the uncertainties in the fitted

values of g(w) are large compared to other form factors. However, the parameter ∆v will

appear in the calculation while using R1(wmax) as input. In order to fit these ∆s along with

the HQET parameters, we have to use synthetic data points on these form factors ratios.

The fit results are shown in table 14, and the allowed values of the ∆s are same as those

obtained previously in the analysis of the CLN fit results along with the lattice (table 8).

Upon incorporating these results in eqs. (4.12), we get the estimates of the probable size

of the additional errors in F1/f , F2/f and F2/F1. For the ratios F2(w)/f+/0(w), we need
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Fi(w) in eq. (4.11): Fi(w) in eq. (4.11): Fi(w) in eq. (4.11): Fi(w) in eq. (4.11):

F1(w) & f(w) F1(w) & f(w) f+(w) & f0(w) f+(w) & f0(w)

Parameters/ case-3 case-3 case-4 case-4 case-5 case-5 case-6 case-6

Observables with with with with

∆s ∆s ∆s ∆s

aF2
0 0.053(1) 0.053(4) 0.053(1) 0.053(5) 0.058(1) 0.058(8) 0.058(1) 0.058(8)

aF2
2 0.21(6) 0.21(8) −0.14(3) −0.17(10) −0.48(1) −0.42(2) −0.39(1) −0.33(1)

R(D) 0.302(3) 0.302(3) 0.302(3) 0.302(3) 0.302(3) 0.302(3) 0.302(3) 0.302(3)

R(D∗) 0.255(5) 0.255(5) 0.257(5) 0.257(5) 0.258(5) 0.258(7) 0.260(5) 0.260(7)

Corr(R(D) 0.12 0.11 0.12 0.10 0.14 0.10 0.13 0.09

−R(D∗))

Table 16. The predictions for R(D(∗)) using the fit results of the HQET parameters given in

table 14. aF2
1 is fixed using eq. (4.19). The additional error (∆) in the ratio h+/hA1

(eq. (4.14)) are

considered as 1 ± 0.1 (for detail, see the text). Also, wherever applicable, the ∆31, ∆21 and ∆∓,

they all are taken as 1± 0.2. The details of the choices of Fi(w) in different cases can be seen from

the text.

Fi(w) in eq. (4.11): Fi(w) in eq. (4.11): Fi(w) in eq. (4.11): Fi(w) in eq. (4.11):

F1(w) & f(w) F1(w) & f(w) f+(w) & f0(w) f+(w) & f0(w)

Parameters/ case-3 case-3 case-4 case-4 case-5 case-5 case-6 case-6

Observables with with with with

∆s ∆s ∆s ∆s

aF2
0 0.053(1) 0.053(4) 0.053(1) 0.053(4) 0.058(1) 0.058(8) 0.058(1) 0.058(8)

aF2
2 0.19(3) 0.02(9) 0.18(6) 0.08(19) −0.72(1) −0.46(15) −0.73(12) −0.46(15)

R(D) 0.302(3) 0.302(3) 0.302(3) 0.302(3) 0.302(3) 0.302(3) 0.302(3) 0.302(3)

R(D∗) 0.255(5) 0.255(5) 0.257(5) 0.257(5) 0.258(5) 0.258(7) 0.260(5) 0.260(7)

Corr(R(D) 0.12 0.11 0.12 0.10 0.14 0.10 0.13 0.09

−R(D∗))

Table 17. The predictions for R(D(∗)) using the fit results of the HQET parameters given in

table 15. The rest of the assumptions are same as that given in the caption of table 16.

to know the probable size of the additional error in h+/hA1 , which can be obtained from a

comparison of lattice result of f0(1)/f(1) with that obtained from the HQET fit results or

QCDSR. We find it to be approximately 10%, and assume it to be same for all other values

of w. We propagate all these errors and estimate the overall size of the ∆ in F2(w)/f+/0(w).

In order to be conservative in further analysis, we choose ∆31 = 1± 0.2 and ∆21 = 1± 0.2,

and reproduce the ratios F1(w)/f(w) which are shown in the upper pannel of figure 2 by

the dot-dashed red bars. As expected, we can now fully reproduce the QCDSR results and

most parts of the BGL fit results.

After the extraction of the HQET parameters, we use eq. (4.11) to generate synthetic

data points for F2(w) for different values of w (≥ 1). In order to generate these synthetic

data points one needs to find out F2(w)/Fi(w) for different values of w. As mentioned

– 18 –
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earlier, Fi(w) could be anyone of f(w), F1(w), and f+/0(w). The ratios (F2(w)/f(w)) and

(F2(w)/F1(w)) are less sensitive to the HQET parameters as compared to (F2(w)/f+/0(w)).

Therefore, for case 3 (table 13), we have replaced Fi(w) in eq. (4.11) by both f(w) and

F1(w) and created the above mentioned synthetic data points for F2(w). In case 4, the

synthetic data points for F2(w) have been generated following the similar methods as

are used in case 3. For completeness, we have replaced Fi(w) by f+(w) and f0(w) for

creating the synthetic data points in case 5, and the similar normalizations are used in case

6. These synthetic data points for F2(w) are used in eq. (4.7) to extract the coefficients

aF2
n (n = 0, 1, 2).

Once the synthetic data points are generated, in all the cases, the coefficient aF2
0 can be

extracted directly by solving eq. (4.7) for w = 1 or z = 0. Hence, the extracted values will

be sensitive to η(1) only. The extracted values of aF2
0 which are shown in table 16 and 17

are obtained by the use of the following synthetic data points (eq. (4.11) for w = 1):5

F2(1) =


(
F2(1)
f(1)

)
HQET

f(1) for cases 3 and 4,(
F2(1)
f+(1)

)
HQET

f+(1) for cases 5 and 6.
(4.16)

In order to extract the other two coefficients, we have to use eq. (4.7) for values of w other

than 1, and the unitarity constraint

(aF2
0 )2 + (aF2

1 )2 + (aF2
2 )2 < 1. (4.17)

Naturally, the extracted values of aF2
1 and aF2

2 will be sensitive to the other HQET param-

eters along with η(1). However, in order to reduce the impact of the HQET parameters on

the final results, we use the QCD relation between the form factors:

F2(q
2 = 0) =

2F1(q
2 = 0)

m2
B −m2

D∗
. (4.18)

The coefficients of F1(z) are obtained from the BGL fits, and hence one of the coefficients

in F2(z) can be written in terms of the coefficients of F1(z) and the rest of the coefficients

in F2(z) using the above relation, e.g.,

aF2
1 = 71.3906af0 + 23.9092aF1

1 + 1.34087aF1
2 − 17.8312aF2

0 − 0.0560815aF2
2 . (4.19)

Note that, aF2
1 is highly sensitive to the extracted value of aF2

0 . However, for small values

of aF2
2 (� 1), aF2

1 has very little dependency on it. Also, R(D∗) is relatively less sensitive

to the coefficient aF2
2 and its predictions do not change depending on the changes in aF2

2 .

Still, for completeness, we have extracted this coefficient from eq. (4.7) by a fit using the

5We have checked that if we instead use Fi(1) = F1(1) (in cases 3 and 4), the value of F2(1) (and hence

aF2
0 ) remains exactly the same as that obatained with Fi(1) = f(1). This is because both of F1(1) and f(1)

are independent of HQET parameters and, in our BGL fits, we used the relation F1(1) = (mB −mD∗)f(1).

While using Fi(1) = f0(1) (in cases 5 and 6), the values of F2(1) and aF2
0 had changed only slightly

(unchanged at the precision we are quoting our results) with respect to the scenario Fi(1) = f+(1).

– 19 –



J
H
E
P
1
2
(
2
0
1
7
)
0
6
0

synthetic data points for F2(w) for w = 1.03, 1.06, 1.09 and 1.12. As explained earlier,

these F2(w) values are obtained using the following relations:6

F2(w) =


(
F2(w)
f(w)

)
HQET

f(w),(
F2(w)
F1(w)

)
HQET

F1(w)

 for both the cases 3 & 4 (4.20)

and

F2(w) =


(
F2(w)
f+(w)

)
HQET

f+(w),(
F2(w)
f0(w)

)
HQET

f0(w)

 for both the cases 5 & 6. (4.21)

The fitted values of aF2
2 are shown in table 16 and 17. The coefficients obtained in this

way, and hence R(D∗), will be mostly sensitive to η(1). Therefore, the final results will be

less dependent on the HQET parameters.

We present our final results for R(D(∗)) in table 16. The prediction for R(D) is

consistent with the one obtained in an earlier analysis [16]. Our important results are

marked in bold. Amongst these, the one obtained in case-4 (with ∆) can be considered as

our best result. The reasons are following:

• In this case, the HQET parameters are fitted with all available inputs.

• R(D∗) has been extracted using the HQET relations F2(w)/f(w) and F2(w)/F1(w),

which are less sensitive to the HQET parameters (even η(1)) as compared to the

other ratios, like F2(w)/f+/0(w).

We note that across all the cases, the overall uncertainties in predictions of R(D∗) with

the known corrections in HQET, are roughly 2%. However, when we incorporate the

additional unknown corrections (∆s) conservatively in the HQET form factor ratios (from

the fit), the uncertainties in cases 5 and 6 are increased to 3%, while those in cases 3 and

4 remain the same. We have checked that in the cases 5 and 6 (with ∆s), the overall

uncertainties in the predictions of R(D∗) are 4% without using the QCD relation between

the form factors, while those for the cases 3 and 4 (with ∆s) are roughly 3%. Due to

the QCD relation, the errors have reduced by 1% in all these four cases with conservative

∆s, which is due to a negative correlation between aF2
0 and aF2

1 ; for details see eq. (4.19).

The increase in errors for the cases 5 and 6 (with ∆s) with respect to the cases 3 and 4

(with ∆s) can be understood in the following way. The form factor ratios used in cases

5 and 6 have additional sources of errors compared to those used in the cases 3 and 4.

As can be seen from eqs. (4.12), (4.13) and (4.14), in our analysis, the ratios F2(w)/f(w)

6We had also done the analysis using one normalization at a time. As for example, in both the cases

3 and 4, we had choosen Fi(w) to be either of f(w) or F1(w). Similarly, for the cases 5 and 6, we had

replaced Fi(w) either by f+(w) or f0(w). In the specific cases, we did not get any considerable changes in the

predictions of R(D∗) due to the different choices of the normalization of F2(w), also the predictions were in

complete agreement with those given in table 16 and 17 which are obtained from the mixed normalizations.

However, for completeness, we have presented our results using mixed normalizations, it adds more inputs

to the fits.
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and F2(w)/F1(w) are sensitive only to ∆21 and ∆31 while the ratios F2(w)/f+/0(w) are

sensitive to ∆21, ∆31, ∆∓, and the additional unknown corrections associated with the

ratio h−/hA1 . Our predictions for R(D∗) are consistent with the one obtained in [24].

5 Summary

In this article, we analyze the decay modes B → D`ν` and B → D∗`ν` with the complete

sets of available data on the angular (wherever applicable) as well w-bins. The CKM

element Vcb have been extracted from the analysis of the above mentioned decay modes

independently, as well as from a combined analysis. We have done the analysis using

the CLN and BGL parameterizations of the form factors. Our best results are |Vcb| =

39.77± 0.89 in the CLN parameterization of the form factors and that in the case of BGL

is |Vcb| = 40.90± 0.94. These are so far the most precise results obtained in the analysis of

the exclusive decays. In the combined analysis of the data, our prediction for R(D) in the

CLN parameterization of the form factors is given by R(D) = 0.304 ± 0.003, while using

BGL parameterization, we obtain R(D) = 0.302±0.003 forN = 2 and R(D) = 0.299±0.004

for N = 3, without using the strong unitarity constraints. These are all consistent with

earlier predictions.

Also, we predict R(D∗) with the available known corrections at order O(ΛQCD/mb,c, αs)

in the HQET relations between the form factors, and we obtain R(D∗) = 0.259 ± 0.003

in the CLN parameterization, while that in the BGL parameterization of the form factors

is given by R(D∗) = 0.257 ± 0.005. For completeness, we parameterized the unknown

corrections in the ratios of the HQET form factors by introducing additional factors (∆s),

and fit them from the available data and lattice. After incorporating all the fit results, in

the CLN method, we obtain R(D∗) = 0.259 ± 0.006, while in the BGL method, our best

result is R(D∗) = 0.257± 0.005.
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