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1 Introduction and outline

The AdS/CFT correspondence is a conjectured duality relating certain quantum field the-

ories (QFTs) to quantum gravity [1]. This typically relates a strong coupling limit in field

theory to semi-classical gravity, and quantitative comparisons between the two sides usu-

ally rely on additional symmetries, such as supersymmetry or integrability. Starting with

the work of [2], recently localization techniques in supersymmetric gauge theories defined

on rigid supersymmetric backgrounds have led to new exact computations. Moreover, the

appropriate strong coupling limits have been successfully matched to semi-classical gravity
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calculations, in a variety of different set-ups.1 On the other hand, localization in QFT orig-

inated in [4], where the topological twist was introduced to define a topological quantum

field theory (TQFT). It is natural to then ask whether one can define and study holography

in this topological setting. Indeed, what does gravity tells us about TQFT, and vice versa?

In this paper, we take some first steps in this direction.

1.1 Background

In [4], Witten gave a physical construction of Donaldson invariants of four-manifolds [5–7]

as certain correlation functions in a TQFT. This theory is constructed by taking pure

N = 2 Yang-Mills gauge theory and applying a topological twist: identifying a back-

ground SU(2) R-symmetry gauge field with the right-handed spin connection results in a

conserved scalar supercharge Q, on any oriented Riemannian four-manifold (M4, g). The

path integral localizes onto Yang-Mills instantons, and correlation functions of Q-invariant

operators localize to integrals of certain forms over the instanton moduli space M. These

are precisely Donaldson’s invariants of M4. They are, under certain general conditions,

independent of the choice of metric g on M4, but in general depend on the diffeomorphism

type of M4. In particular, Donaldson invariants can sometimes distinguish manifolds which

are homeomorphic but not diffeomorphic. That this is possible is because the instanton

equations are PDEs, which depend on the differentiable structure. From the TQFT point

of view, independence of the choice of metric follows by showing that metric deformations

lead to Q-exact changes in the integrand of the path integral. For example, the stress-

energy tensor is Q-exact, implying that the partition function is invariant under arbitrary

metric deformations, and hence (formally at least) is a diffeomorphism invariant.

Donaldson-Witten theory is typically studied for pure N = 2 Yang-Mills, with gauge

group G = SU(2) or G = SO(3). However, the topological twist may be applied to

any N = 2 theory with matter, and also for any gauge group G . For example, G =

SU(N) Donaldson invariants were first studied in [8], with further mathematical work in [9].

In particular the latter reference contains some explicit large N results for the partition

function on certain four-manifolds. The procedure of topological twisting may also be

applied to theories with different amounts of supersymmetry, and in various dimensions.

For example, the larger SU(4) R-symmetry of four-dimensional N = 4 Yang-Mills leads to

three inequivalent twists [10]. Viewing the N = 4 theory as an N = 2 theory coupled to

an adjoint matter multiplet, applying the Donaldson-Witten twist leads to a TQFT that is

referred to as the “half-twisted” N = 4 theory. This theory is relevant for the construction

in the present paper. The other two twists are the Vafa-Witten twist [11], and the twist

studied by Kapustin-Witten in [12], relevant for the Geometric Langlands programme.

Historically the development of Donaldson-like invariants took a rather different direction

after the introduction of Seiberg-Witten invariants in [13]. The former may be expressed

(conjecturally) in terms of the latter, but Seiberg-Witten theory is simpler and easier to

compute with.

1A review of some of these results appears in [3], although many more results have appeared since.
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The Donaldson-Witten twist of N = 2 gauge theories can be understood as a special

case of rigid supersymmetry. Soon after Witten’s paper, Karlhede-Roček interpreted the

construction as coupling the gauge theory to a background (i.e. non-dynamical) N = 2

conformal gravity [14]. The background SU(2) R-symmetry gauge field is part of this grav-

ity multiplet, and is embedded into the spin connection in such a way that the Killing

spinor equations of the theory admit a constant solution, leading to the conserved scalar

supercharge Q. There is also an auxiliary scalar field turned on in this background gravity

multiplet, proportional to the Ricci scalar curvature of (M4, g). Motivated by the work of

Pestun in [2], the last few years have seen considerable interest in defining rigid supersym-

metry more generally on Riemannian manifolds. Unlike the topological twist, this generally

requires the background d-manifold (Md, g) to possess some additional geometric structure,

and correlation functions of Q-invariant observables then usually depend on this structure.

For example, one can couple four-dimensional N = 1 theories with a U(1) R-symmetry to

a background new minimal supergravity. Geometrically this construction requires (M4, g)

to be a Hermitian four-manifold, with an integrable complex structure [15, 16]. General-

izing [14], similarly N = 2 theories may be coupled to a background N = 2 conformal

supergravity [17]. Generically this requires the existence of a conformal Killing vector on

(M4, g), but the topological twist arises as a degenerate special case, in which (M4, g)

is arbitrary.

An interesting application of these constructions is to the AdS/CFT correspondence.

Here strong coupling (typically large rank N) gauge theory computations are related to

semi-classical gravity. The general idea is as follows. Rigid supersymmetry generically

equips the background manifold (Md, g), on which the gauge theory is defined, with certain

additional geometric structure, such as the integrable complex structure mentioned for

four-dimensional N = 1 theories above. In the gravitational dual description one seeks

solutions to an appropriate supergravity theory in d + 1 dimensions, where (Md, g) arises

as a conformal boundary. That is, the (d+1)-dimensional metric is asymptotically locally

hyperbolic, approximated by dz2

z2
+ 1

z2
g to leading order in z near the conformal boundary

at z = 0. A saddle point approximation to quantum gravity in this bulk then identifies

Z[Md] =
∑

e−S[Yd+1] . (1.1)

Here Z[Md] denotes the partition function of the gauge theory defined on Md, while S[Yd+1]

is the holographically renormalized supergravity action, evaluated on an asymptotically

locally hyperbolic solution to the equations of motion of the (d + 1)-dimensional theory.

The manifold Md = ∂Yd+1 is the conformal boundary, with the boundary conditions for

supergravity fields on Yd+1 fixed by the rigid background structure of Md.

The general AdS/CFT relation (1.1) is somewhat schematic, and both sides must

be interpreted appropriately. For example, in order to make sense of the left hand side

for topologically twisted four-dimensional N = 2 SCFTs it can be refined, as discussed

in section 6.1. On the other hand, the sum on the right hand side of (1.1) is not well

understood. One should certainly include all saddle point solutions on smooth manifolds

Yd+1. However, the existence of such a filling immediately implies that Md has trivial
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class in the oriented bordism group ΩSO
d , in general constraining the choice of Md.

2 That

said, various explicit examples (see, for example, [18–20]) suggest that requiring Yd+1 to

be smooth is in any case too strong: one should allow for certain types of singular fillings

of (Md, g), and indeed these may even be the dominant contribution in (1.1) (especially

for non-trivial topologies of Md). There are some clear constraints, although no general

prescription.3 The supergravity action S typically scales with a positive power of N , and

in the N → ∞ limit only the solution of least action contributes to (1.1) at leading order,

with contributions from other solutions being exponentially suppressed.

1.2 Outline

In this paper we construct a holographic dual to the Donaldson-Witten twist of four-

dimensional N = 2 gauge theories. As already mentioned, this twist may be interpreted as

coupling the theory to a particular background N = 2 conformal gravity multiplet. On the

other hand, four-dimensional N = 2 conformal gravity arises on the conformal boundary of

asymptotically locally hyperbolic solutions to the Romans [22]N = 4+ gauged supergravity

in five dimensions [23]. The real Euclidean signature version of this theory described in

section 2 has, in addition to the bulk metric Gµν , an SU(2) R-symmetry gauge field AI
µ

(I = 1, 2, 3), a one-form C, and a scalar field X. (In general there is also a doublet of

B-fields, but this is zero for the topological twist boundary condition, and moreover may

be consistently set to zero in the Romans theory.)

The main property of a topological field theory is that appropriate correlation func-

tions, including the partition function, are independent of any choice of metric. Assuming

one is given an appropriate solution to the Romans theory with (M4, g) as conformal bound-

ary, we therefore expect the holographically renormalized action to be independent of g.

Here one can mimic the field theory argument in [4], and attempt to show that arbitrary

deformations gij → gij + δgij leave this action invariant. We have the general holographic

Ward identity formula

δS =

∫

M4

d4x
√

det g

(

1

2
Tij δg

ij + J i
I δA

I
i + Ξ δX1

)

. (1.2)

Here S is the renormalized supergravity action of the Euclidean Romans theory, defined

in section 2, while (gij , A
I
i , X1) are the non-zero background fields in the N = 2 conformal

gravity multiplet for the topological twist. Equivalently, these arise as boundary values

of the Romans fields: in particular AI
i is simply the restriction of the bulk SU(2) R-

symmetry gauge field to the boundary at z = 0, while X1 = limz→0(X − 1)/z2 log z. For

the topological twist these quantities are all fixed by the choice of metric gij : AI
i is fixed

to be the right-handed spin connection, while X1 = −R/12, where R = R(g) is the Ricci

scalar for g. Thus the variations of these fields appearing in (1.2) are all determined by the

2For example, in the case of interest in this paper d = 4, and ΩSO
4

∼= Z with the map to the integers being

given by the signature σ(M4) = b+2 (M4) − b−2 (M4) =
1

3

∫
M4

p1(M4), where p1 denotes the first Pontryagin

class. A generator of ΩSO
4

∼= Z is the complex projective plane.
3One might also speculate that the dominant contribution may come from complex saddle points; that

is, from complex-valued metrics — see, for example, [21]. In this paper we focus on real solutions.
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metric variation δgij . On the other hand, Tij , J i
I and Ξ are respectively the holographic

vacuum expectation values (VEVs) of the operators for which these boundary fields are

the sources. In particular Tij is the holographic stress-energy tensor. As is well-known,

the expansion of the equations of motion near z = 0 does not fix these VEVs in terms of

boundary data on M4, but rather they are only determined by regularity of the solution

in the interior. Determining these quantities for fixed boundary data is thus an extremely

non-linear problem. What allows progress in this case is supersymmetry: the partition

function should be described by a supersymmetric solution to the Romans theory.4 By

similarly solving the Killing spinor equations in a Fefferman-Graham-like expansion, we

are able to compute these VEVs for a general supersymmetric solution. This still leaves

certain unknown data, ultimately determined by regularity in the interior, but remarkably

these constraints are sufficient to prove that (1.2) is indeed zero, for arbitrary δgij ! More

precisely, we show that the integrand on the right hand side is a total derivative, and its

integral is then zero provided M4 is closed, without boundary. The computation, although

in principle straightforward, is not entirely trivial, and along the way we require some

interesting identities that are specific to Riemannian four-manifolds (notably the quadratic

curvature identity of Berger [24]). This is the main result of the paper, but it immediately

raises a number of interesting questions. We postpone our discussion of these until later

in the paper, notably at the end of section 4, and in sections 5 and 6.

The outline of the paper is as follows. In section 2 we define the relevant five-

dimensional Euclidean N = 4+ gauged supergravity theory, and holographically renormal-

ize its action S. In section 3 we show that on the conformal boundary of an asymptotically

locally hyperbolic solution to this theory one obtains the supersymmetry equations [17]

of Euclidean N = 2 conformal supergravity, which admits [14] the topological twist as a

solution. We then expand the bulk supersymmetry equations in a Fefferman-Graham-like

expansion. Section 4 contains the main proof that δS/δgij = 0, while in section 5 we

reformulate the supersymmetry equations in terms of a first order differential system for

a twisted Sp(1) structure. On the conformal boundary this induces the canonical quater-

nionic Kähler structrure that exists on any oriented Riemannian four-manifold. This paper

raises a number of interesting questions, prompting further computations, and the results

may potentially be extended and generalized in a number of different directions. We com-

ment on some of these issues in section 6.

2 Holographic supergravity theory

We begin in section 2.1 by defining a real Euclidean section of N = 4+ gauged supergravity

in five dimensions. A Fefferman-Graham expansion of asymptotically locally hyperbolic

solutions to this theory is constructed in section 2.2, for arbitrary conformal boundary

four-manifold (M4, g). Using this, in section 2.3 we holographically renormalize the action.

4If the dominant saddle point in (1.1) were non-supersymmetric, this would presumably be interpreted

as spontaneous breaking of supersymmetry in the dual TQFT. This is certainly not expected in the case at

hand, but would be interesting to investigate further.
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2.1 Euclidean Romans N = 4+ theory

The Lorentzian signature Romans N = 4+ theory [22] is a five-dimensional SU(2) × U(1)

gauged supergravity which admits a supersymmetric AdS5 vacuum. It is a consistent trun-

cation of both Type IIB supergravity on S5 [25], and also eleven-dimensional supergravity

on an appropriate class of six-manifolds N6 [26]. The bosonic sector comprises the metric

Gµν , a dilaton φ, an SU(2)R Yang-Mills gauge field AI
µ (I = 1, 2, 3), a U(1)R gauge field

Aµ, and two real anti-symmetric tensors Bα
µν , α = 4, 5, which transform as a charged dou-

blet under U(1)R ∼= SO(2)R. It is convenient to introduce the scalar field X ≡ e
− 1√

6
φ
and

the complex combinations B± ≡ B4 ± iB5. The associated field strengths are F = dA,

FI = dAI− 1
2ǫ

I
JKAJ∧AK , and H± = dB±∓iA∧B±. We have set the gauged supergravity

gauge coupling to 1.5

The bosonic action and equations of motion in Lorentzian signature appear in [25].

However, as we are interested in holographic duals to TQFTs defined on Riemannian four-

manifolds, we require the Euclidean signature version of this theory. The Wick rotation

in particular introduces a factor of i into the Chern-Simons couplings, leading to the Eu-

clidean action

I =− 1

2κ25

∫
[

R ∗1− 3X−2dX ∧ ∗dX + 4(X2 + 2X−1) ∗1− 1

2
X4F ∧ ∗F (2.1)

− 1

4
X−2 (FI ∧ ∗FI + B− ∧ ∗B+) +

1

8
B− ∧H+ − 1

8
B+ ∧H− − i

4
FI ∧ FI ∧ A

]

.

Here R = R(G) denotes the Ricci scalar of the metric Gµν , and ∗ is the Hodge duality

operator acting on forms. The associated equations of motion are:6

d(X−1 ∗ dX) =
1

3
X4F ∧ ∗F − 1

12
X−2 (FI ∧ ∗FI + B− ∧ ∗B+)

− 4

3
(X2 −X−1) ∗ 1 , (2.2)

d(X−2 ∗ FI) = ǫIJKX−2 ∗ FJ ∧ AK − iFI ∧ F , (2.3)

d(X4 ∗ F) =− i

4
FI ∧ FI − i

4
B− ∧ B+ , (2.4)

H± =±X−2 ∗ B± , (2.5)

Rµν = 3X−2∂µX∂νX − 4

3
(X2 + 2X−1)Gµν +

1

2
X4

(

Fµ
ρFνρ −

1

6
GµνF2

)

+
1

4
X−2

(

FI
µ
ρFI

νρ −
1

6
Gµν(FI)2 + B−

(µ
ρB+

ν)ρ −
1

6
GµνB−

ρσB+ρσ

)

. (2.6)

Here F2 ≡ FµνFµν , (FI)2 ≡∑3
I=1FI

µνFIµν . In general equations (2.2)–(2.6) are complex,

and solutions will likewise be complex. However, note that setting iA ≡ C effectively

5In addition we have rescaled the SU(2)R gauge field and the anti-symmetric tensors by a factor of 1/
√
2,

compared to [25].
6Equation (2.3) incorporates a correction to the Lorentzian equation, in line with [26].
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removes all factors of i. We may then consistently define a real section of this Euclidean

theory in which all fields, and in particular C and B± = B4 ± iB5, are real. We henceforth

impose these reality conditions. Although globally A is a U(1)R gauge field in the original

Lorentzian theory, after the above Wick rotation the real field C = iA effectively becomes

an SO(1, 1)R gauge field. We may then think of C as a global one-form, but for which the

theory has a symmetry C → C−dλ, for any global function λ. We denote the corresponding

field strength as G ≡ dC = iF .

In the Lorentzian theory the fermionic sector contains four gravitini and four dilatini,

which together with the spinor parameters ǫ all transform in the fundamental 4 representa-

tion of the Sp(2)R global R-symmetry group. The SU(2)×U(1) ⊂ Sp(2) gauge symmetry

arises as a gauged subgroup. Since Sp(2) ∼= Spin(5) it is natural to introduce the associated

Clifford algebra Cliff(5, 0), with generators ΓA, A = 1, . . . , 5, satisfying {ΓA,ΓB} = 2δAB.

We then decompose I, J,K = 1, 2, 3, transforming in the 3 of SU(2), and α, β = 4, 5 in

the 2 of U(1). In Euclidean signature the conditions for preserving supersymmetry are

then the vanishing of the following supersymmetry variations of the gravitini and dilatini,

respectively:

0 = Dµǫ+
i

3
γµ

(

X +
1

2
X−2

)

Γ45ǫ

+
i

24
(γµ

νρ − 4δνµγ
ρ)
(

X−1
(

FI
νρΓI +Bα

νρΓα

)

+X2Fνρ

)

ǫ , (2.7)

0 =

√
3

2
iγµX−1∂µXǫ+

1√
3

(

X −X−2
)

Γ45ǫ

+
1

8
√
3
γµν
(

X−1
(

FI
µνΓI +Bα

µνΓα

)

− 2X2Fµν

)

ǫ , (2.8)

where the covariant derivative is

Dµǫ ≡ ∇µǫ+
1

2
AµΓ45ǫ+

1

2
AI

µΓI45ǫ . (2.9)

Here γµ, µ = 1, . . . , 5, are generators of the Euclidean spacetime Clifford algebra, satisfying

{γµ, γν} = 2Gµν , where recallGµν is the metric. Given the gauging it is natural to introduce

the following choice of generators:

ΓI = σ3 ⊗ σI , I = 1, 2, 3 , Γ4 = σ1 ⊗ 12 , Γ5 = σ2 ⊗ 12 , (2.10)

where σI are the Pauli matrices, and 12 denotes the 2 × 2 identity matrix. In particular

notice that Γ45 = iσ3 ⊗ 12 squares to −14, and we may write

ǫ =

(

ǫ+

ǫ−

)

, (2.11)

where the spinor doublets ǫ± denote projections onto the ±i eigenspaces of Γ45, respectively.

One then has

ΓIǫ =

(

σIǫ
+

−σIǫ
−

)

, Bα
µνΓαǫ =

(

B−
µνǫ

−

B+
µνǫ

+

)

. (2.12)

– 7 –
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We next introduce the charge conjuguation matrix C for the Euclidean spacetime Clifford

algebra. By definition γ∗µ = C−1γµC , and one may choose Hermitian generators γ†µ = γµ
together with the conditions C = C ∗ = −C T , C 2 = −1. We may then define the following

charge conjugate spinor in Euclidean signature

ǫc ≡ (σ3 ⊗ iσ2)C ǫ∗ . (2.13)

It is straightforward to check that (ǫc)c = ǫ. Moreover, provided C = iA and B± (and all

other bosonic fields) are real, then one can show that ǫ satisfies the gravitini and dilatini

equations (2.7), (2.8) if and only if its charge conjugate ǫc satisfies the same equations.

Given this property, we may consistently impose the symplectic Majorana condition ǫc = ǫ.

We will be interested in solutions that satisfy these reality conditions.

2.2 Fefferman-Graham expansion

In this section we determine the Fefferman-Graham expansion [27] of asymptotically locally

hyperbolic solutions to this Euclidean Romans theory. This is the general solution to the

bosonic equations of motions (2.2)–(2.6), expressed as a perturbative expansion in a radial

coordinate near the conformal boundary.

We take the form of the metric to be [27]

Gµνdx
µdxν =

1

z2
dz2 +

1

z2
gijdx

idxj =
1

z2
dz2 + hijdx

idxj . (2.14)

where the AdS radius ℓ = 1, and in turn we have the expansion

gij = g0ij + z2g2ij + z4
(

g4ij + h0ij(log z)
2 + h1ij log z

)

+ o(z4) . (2.15)

Here g0ij = gij is the boundary metric induced on the conformal boundary M4 at z = 0.

It is convenient to introduce the inner product 〈α, β〉 between two p-forms α, β via

α ∧ ∗β =
1

p!
αµ1···µpβ

µ1···µp vol =
1

p!
〈α, β〉 vol , (2.16)

where vol denotes the volume form, with associated Hodge duality operator ∗. The volume

form for the five-dimensional bulk metric (2.14) is

vol5 =
1

z5
dz ∧ volg =

1

z5
dz ∧

√

det g dx1 ∧ · · · ∧ dx4 . (2.17)

The determinant may then be expanded in a series in z, around that for g0, as follows

√

det g =
√

det g0
[

1 +
z2

2
t(2) +

z4

2

(

t(4) − 1

2
t(2,2) +

1

4
(t(2))2

+ u(0)(log z)2 + u(1) log z

)]

+ o(z4) . (2.18)

Here we have denoted t(n) ≡ Tr
[

(g0)−1gn
]

, u(n) ≡ Tr
[

(g0)−1hn
]

and t(2,2) ≡ Tr
[

(g0)−1g2
]2
.

– 8 –
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The remaining bosonic fields are likewise expanded as follows:

X = 1 + z2 (X1 log z +X2) + z4(X3 log z +X4) + o(z4) , (2.19)

AI = AI + z2(aI1 log z + aI2) + o(z2) , (2.20)

A = a + z2(a1 log z + a2) + o(z2) , (2.21)

B± =
1

z
b± + dz ∧ b±1 + z(b±2 log z + b±3 ) + o(z) , (2.22)

A priori there are additional terms that appear in these expansions. However, these may

either be gauged away, or turn out to be set to zero by the equations of motion, and we

have thus removed them in order to streamline the presentation.

We now substitute the above expansions into the equations of motion (2.2)–(2.6) and

solve them order by order in the radial coordinate z in terms of the boundary data g0 =

g,X1, A
I , a and b±. This will leave a number of terms undetermined. For the Einstein

equation (2.6) we will need the Ricci tensor of the metric (2.14):

Rzz =− 4

z2
− 1

2

(

Tr
[

g−1∂2
zg
]

− 1

z
Tr
[

g−1∂zg
]

− 1

2
Tr
[

g−1∂zg
]2
)

, (2.23)

Rij =− 4

z2
gij −

(

1

2
∂2
zg−

3

2z
∂zg−

1

2
(∂zg)g

−1(∂zg) +
1

4
(∂zg)Tr

[

g−1∂zg
]

−R(g)− 1

2z
gTr

[

g−1∂zg
]

)

ij

, (2.24)

Rzi =− 1

2
(g−1)jk

(

∇igjk,z −∇kgij,z

)

. (2.25)

Here ∇ is the covariant derivative for g, and we have corrected the sign of R(g)ij and the

right hand side of (2.25) compared to [28].

Examining first the equation (2.5) gives at leading order

∗g0 b± = ∓b± , (2.26)

so that the boundary B-fields b+, b− are required to be anti-self-dual and self-dual, respec-

tively. At subleading orders one finds

b±1 = ∓ ∗g0
(

db± ∓ ia ∧ b±
)

, ∗g0 b±2 = ±(b±2 − 2X1 b
±) . (2.27)

In particular notice that the first equation fixes b±1 in terms of boundary data, while the

second equation determines only the anti-self-dual/self-dual parts of b±2 , respectively. An

equation may also be derived for b±3 , although we will not need this in what follows.

Next the gauge field equations (2.3), (2.4) determine

a1 =− 1

2
∗g0 d ∗g0 f +

i

8
∗g0
(

b− ∧ b+1 + b+ ∧ b−1
)

,

aI1 =− 1

2
∗g0 D ∗g0 F I , (2.28)
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in terms of boundary data, where the curvatures are f ≡ da, F I ≡ dAI − 1
2ǫ

I
JKAJ ∧ AK ,

and we have introduced a gauge covariant derivative with respect to the boundary SU(2)

field: DαI ≡ dαI − ǫIJKAJ ∧ αK . In addition we have the constraints

d ∗g0 a2 =− i

8
F I ∧ F I , D ∗g0 aI2 = 0 , (2.29)

which leave a2 and aI2 partially undetermined.

Turning next to the scalar equation of motion (2.2) we find

4X3 = −∇2X1 − 2
(

t(2)X1 − 2X2
1

)

− 1

24

(

〈b+, b−2 〉g0 + 〈b−, b+2 〉g0
)

, (2.30)

4X4 = −∇2X2 −
(

t(2)X1 + 2t(2)X2 −X2
1 − 4X1X2 + 4X3

)

− 1

24
〈F I , F I〉g0 +

1

6
〈f, f〉g0

− 1

12
〈b+1 , b−1 〉g0 +

1

12
〈b−, g2 ◦ b+〉g0 −

1

24

(

〈b+, b−3 〉g0 + 〈b−, b+3 〉g0
)

. (2.31)

We regard these as determining X3, X4 in terms of X1 (a boundary field), and X2 (which is

undetermined by the equations of motion), together with the other fields in the expansion.

In the second equation we have used the definition

(g2 ◦ α)i1···ip ≡ (g2)[i1
jα|j|i2···ip] , (2.32)

where α is a p-form on M4. Here indices are always raised with g0, so (g2)i
j ≡ (g2)ik(g

0)kj .

Finally, we introduce the matter modified boundary Ricci tensor

Rij = Rij(g
0) ≡ Rij(g

0)− 1

4
(b+)(i

k(b−)j)k . (2.33)

Notice the scalar curvature is R(g0) = R(g0), due to the opposite duality properties (2.26)

of b±. From the ij component of the Einstein equation (2.6), using (2.24) gives

g2ij =− 1

2

(

Rij −
1

6
g0ijR

)

. (2.34)

The right hand side is a matter modified form of the Schouten tensor. From this expression

we immediately deduce the traces

t(2) =− 1

6
R , t(2,2) =

1

4

(

RijR
ij − 2

9
R2

)

. (2.35)

The zz component of the Einstein equation in (2.6), together with (2.23), determines the

traces of higher order components in the expansion of the bulk metric:

u(0) =− 2X2
1 , (2.36)

u(1) =− 4X1X2 +
1

96

(

〈b+, b−2 〉g0 + 〈b−, b+2 〉g0
)

, (2.37)

4t(4) = t(2,2) − u(0) − 3u(1) − 3X2
1 − 8X2

2 − 12X1X2 +
1

12

(

〈f, f〉g0 +
1

2
〈F I , F I〉g0

)

− 1

6
〈b+1 , b−1 〉g0 −

1

12
〈b−, (g2 ◦ b+)〉g0 +

1

24

(

〈b+, b−3 〉g0 + 〈b−, b+3 〉g0
)

. (2.38)
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Returning to the ij component we may determine the logarithmic terms in (2.15):

h0ij =
1

4
g0ij(u

(0) + 2u(1) + 8X1X2)

− 1

16

[

(b+)(i
k(b−2 )j)k + (b−)(i

k(b+2 )j)k −
1

6
g0ij
(

〈b+, b−2 〉g0 + 〈b−, b+2 〉g0
)

]

, (2.39)

h1ij =− 1

2
h0ij + g2ik(g

0)klg2lj +
1

4
g0ij
(

4t(4) − 2t(2,2) + u(1) + 8X2
2

)

+
1

4

(

∇k∇ig
2
jk +∇k∇jg

2
ik −∇2g2ij −∇i∇jt

(2)
)

− 1

8

(

(b+1 )(i(b
−
1 )j) −

1

3
g0ij〈b+1 , b−1 〉g0

)

+
1

8

[

(b−)(i|k|(g
2)kl(b+)j)l −

1

3
g0ij(b

−)k
m(g2)kl(b+)lm

]

− 1

8

[

(b+)(i
k(b−3 )j)k + (b−)(i

k(b+3 )j)k −
1

6
g0ij
(

〈b+, b−3 〉g0 + 〈b−, b+3 〉g0
)

]

− 1

4

[

fikfj
k +

1

2
F I
ikF

I
j
k − 1

6
g0ij

(

〈f, f〉g0 +
1

2
〈F I , F I〉g0

)]

. (2.40)

The structure of the ij component of the Einstein equation in four dimensions is such

that g4 always appears with zero coefficient, and so is left undetermined. In the original

literature [29] the iz component has been used to determine g4 up to an arbitrary symmetric

divergence-free tensor. However, in the supergravity we are considering the presence of a

(log z)2 contribution to the bulk scalar field expansion means that X2 appears without a

derivative, which hence spoils this approach. In section 3.4 we will see that by imposing

supersymmetry we obtain further constraints on the fields, and in particular this leads to

an expression for g4 in terms of other data.

2.3 Holographic renormalization

Having solved the bulk equations of motion to the relevant order, we are now in a position

to holographically renormalize the Euclidean Romans theory. The bulk action (2.1) is

divergent for an asymptotically locally hyperbolic solution, but can be rendered finite

by the addition of appropriate local counterterms. The corresponding computations in

Lorentzian signature have been carried out in [23].

We begin by taking the trace of the Einstein equation (2.6). Substituting the result

together with (2.5) into the Euclidean action (2.1), we arrive at the bulk on-shell action

Ion-shell =
1

2κ25

∫

Y5

[

8

3
(X2 + 2X−1) ∗1 + 1

3
X4F ∧ ∗F +

1

6
X−2FI ∧ ∗FI

− 1

12
X−2B− ∧ ∗B+ +

i

4
FI ∧ FI ∧ A

]

. (2.41)

Here Y5 is the bulk five-manifold, with boundary ∂Y5 = M4. In order to obtain the

equations of motion (2.2)–(2.6) from the original bulk action (2.1) on a manifold with

boundary, one has to add the Gibbons-Hawking term

IGH =− 1

κ25

∫

∂Y5

d4x
√
dethK =

1

κ25

∫

∂Y5

d4x z∂z
√
deth . (2.42)
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Here, more precisely, one cuts Y5 off at some finite radial distance, or equivalently non-

zero z > 0, and (M4, h) is the resulting four-manifold boundary, with trace of the second

fundamental form being K. Recall from (2.14) that hij =
1
z2
gij .

The combined action Ion-shell+IGH suffers from divergences as the conformal boundary

is approached. To remove these divergences we use the standard method of holographic

renormalization [28–30]. Namely, we introduce a small cut-off z = δ > 0, and expand all

fields via the Fefferman-Graham expansion of section 2.2 to identify the divergences. These

may be cancelled by adding local boundary counterterms. We find

Icounterterm =
1

κ25

∫

∂Y5

d4x
√
deth

{

3 +
1

4
R(h) + 3(X − 1)2 − 1

32
〈B−,B+〉h

+ log δ

[

− 1

8

(

Rij(h)R
ij(h)− 1

3
R(h)2

)

+
3

2
(log δ)−2(X − 1)2

+
1

48
〈H−, H+〉h +

1

8
〈F ,F〉h +

1

16
〈FI ,FI〉h

]}

. (2.43)

Notice the somewhat unusual form of the logarithmic term for the scalar field X, but cf. the

expansion (2.19). As is standard, we have written the counterterm action (2.43) covariantly

in terms of the induced metric hij on M4 = ∂Y5. The total renormalized action is then

S = lim
δ→0

(Ion-shell + IGH + Icounterterm) , (2.44)

which by construction is finite.

The choice of local counterterms (2.43) defines a particular renormalization scheme,

that is in some sense a “minimal scheme” in the case at hand. However, we are free

to consider a non-minimal scheme where we add local counterterms to the action which

remain finite as δ → 0. For the supergravity theory we are considering, the following are an

independent set of finite counterterms that are both diffeomorphism and gauge invariant:7

Ict, finite = − 1

κ25

∫

∂Y5

d4x
√
deth

[

ζ1R
2 + ζ2CijklC

ijkl + ζ3FijF ij + ζ4FI
ijFIij

+ ζ5E + ζ6P + ζ7ǫ
ijklFijFkl + ζ8ǫ

ijklFI
ijFI

kl

]

. (2.45)

Here ζ1, . . . , ζ8 are arbitrary constant coefficients, Cijkl denotes the Weyl tensor of the

metric hij , while the Euler scalar E and Pontryagin scalar P are respectively

E = RijklR
ijkl − 4RijR

ij +R2 , P =
1

2
ǫijklRijmnRkl

mn . (2.46)

In particular, notice that for compactM4 = ∂Y5 without boundary, the second line of (2.45)

are all topological invariants: they are proportional to the Euler number χ(M4), the sig-

nature σ(M4), and the Chern numbers
∫

M4
c1(L)2,

∫

M4
c2(V) respectively, where L and V

denote the rank 1 and rank 2 complex vector bundles associated to the U(1)R and SU(2)R

7Wemay also add finite local counterterms constructed from theB-field. For example, terms proportional

to
∫
∂Y5

d4x
√
deth 〈H−, H+〉h, or

∫
∂Y5

d4x
√
dethR(h)〈B−,B+〉h. However, for the topological twist we will

later set the B-field to zero, and these terms will not be relevant to our discussion.
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gauge bundles, respectively. In the real Euclidean theory in which we are working, recall

that F = dA is globally exact (and purely imaginary), and in any case for the topological

twist studied later in the paper we will have A |M4
= 0. Being topological invariants, the

variation of the action we shall compute in section 4 will be insensitive to the choice of

constants ζ5, . . . , ζ8.

As emphasized in [31], in order to make quantitative comparisons in AdS/CFT it is

important to match choices of renormalization schemes on the two sides. In particular,

localization calculations in QFT make a (somewhat implicit) choice of scheme. In the

case at hand, we note that in [32] a supersymmetric Rényi entropy, computed in field

theory using localization, was successfully matched to a gravity calculation involving a

supersymmetric black hole in the N = 4+ Romans theory. Here the supergravity action

was computed using the minimal scheme. Our computation in section 4 will imply that

this minimal scheme is indeed the correct one to compare to the topological twist of [4].

We shall make further comments on this, and the relation to recent papers [31, 33–35], in

section 4.2.

Given the renormalized action we may compute the following VEVs:

〈Tij〉 =
2√
g

δS

δgij
, 〈Ξ〉 = 1√

g

δS

δX1
,

〈J i
I 〉 =

1√
g

δS

δAI
i

, 〈 Ji〉 = 1√
g

δS

δai
. (2.47)

Here, as usual in AdS/CFT, the boundary fields g0ij = gij , X1, A
I
i and ai act as sources for

operators, and the expressions in (2.47) compute the vacuum expectation values of these

operators. Similar expressions may also be written for the boundary fields b± for B±, but

these will be zero for the topological twist of interest and play no role in the present paper.

Using the above holographic renormalization we may write (2.47) as the following limits:

〈Tij〉 =
1

κ25
lim
δ→0

1

δ2

[

−Kij +Khij −
(

3 + 3(X − 1)2
)

hij +
1

2

(

Rij(h)−
1

2
R(h)hij

)

+ log δ

(

1

4
Bij(h) +

1

2
FikFj

k − 1

8
hij〈F ,F〉h +

1

4
FI
ikFI

j
k − 1

16
hij〈FI ,FI〉h

+
1

8
H−

iklH
+
j
kl − 1

48
hij〈H−, H+〉h −

3

2
(log δ)−2(X − 1)2hij

)]

, (2.48)

where Kij is the second fundamental form of the cut-off hypersurface (M4, hij) and the

B-field modified Bach tensor is (cf. (2.33))

Bij =− 2

3
∇i∇jR −∇2

(

Rij −
1

6
hijR

)

+ 2∇k∇(iR
k
j) − 2RikR

k
j +

2

3
RRij

+
1

2
hij

(

RklR
kl − 1

3
R2

)

, (2.49)
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together with

〈Ξ〉 = 1

κ25
lim
δ→0

log δ

δ2

[

− 3X−2δ∂δX + 6(X − 1) + 3(log δ)−1(X − 1)
]

,

〈J Ii〉 = 1

4κ25
lim
δ→0

1

δ4

{

− ∗h
[

dxi ∧ (X−2 ∗5 FI + iFI ∧ A)
]

+ log δDjFIij
}

,

〈 Ji〉 = 1

2κ25
lim
δ→0

1

δ4

[

− ∗h
(

dxi ∧X4 ∗5 F
)

+ log δ∇jF ij
]

. (2.50)

Here ∗h denotes the Hodge duality operator for the metric hij . A computation then gives

the finite expressions

〈Tij〉 =
1

κ25

[

2g4ij +
1

2
h1ij −

1

2
(4t(4) − 2t(2,2) − 1

2
u(1))g0ij − 3g0ijX

2
2 − g2ijt

(2)

+
1

4

(

∇k∇ig
2
jk +∇k∇jg

2
ik −∇2g2ij −∇i∇jt

(2)
)

+
1

4
g0ij
(

g2klR
kl
)

− 1

4
g2ijR

− 1

8

[

(b+)(i
k(b−3 )j)k + (b−)(i

k(b+3 )j)k −
1

2
g0ij
(

〈b+, b−3 〉g0 + 〈b−, b+3 〉g0
)

]

+
1

8

[

(b+)(i|k|(g
2)kl(b−)j)l −

1

2
g0ij〈b−, (g2 ◦ b+)〉g0

]]

, (2.51)

〈Ξ〉 = 3

κ25
X2 , (2.52)

〈J I
i 〉 =− 1

4κ25

[

(aI1)i + 2(aI2)i − i
(

∗4 (a ∧ F I)
)

i

]

, (2.53)

〈 Ji〉 =− 1

2κ25
[(a1)i + 2(a2)i] . (2.54)

Notice that these expressions contain a number of terms that are not determined, in terms

of boundary data, by the Fefferman-Graham expansion of the bosonic equations of motion.

In particular the g4ij term in the stress-energy tensor Tij , the scalar X2 that determines

Ξ, and aI2, a2 appearing in the SU(2)R and U(1)R current, respectively. The general

holographic Ward identity corresponding to the first three variations of the action is given

by equation (1.2). We will need the expressions (2.51)–(2.53) in section 4.

3 Supersymmetric solutions

In this section we study supersymmetric solutions to the Euclidean N = 4+ theory. We

begin in section 3.1 by deriving the Killing spinor equations on the conformal boundary,

starting from the bulk equations (2.7), (2.8). We precisely recover the Euclidean N = 2

conformal supergravity equations of [17]. In section 3.2 we then recall from [14] how the

topological twist arises as a special solution to these Killing spinor equations, that exists

on any Riemannian four-manifold (M4, g). We rephrase this in terms of the quaternionic

Kähler structure that exists on any such manifold, involving (locally) a triplet of self-dual

two-forms JI . Finally, in section 3.4 we expand solutions to the bulk spinor equations in a

Fefferman-Graham-like expansion.
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3.1 Boundary spinor equations

We begin by expanding the bulk Killing spinor equations (2.7), (2.8) to leading order near

the conformal boundary at z = 0. We will consequently need the Fefferman-Graham ex-

pansion of an orthonormal frame for the metric (2.14), (2.15), together with the associated

spin connection. The following is a choice of frame Eµ
µ for the metric (2.14):

Ez
z =

1

z
, Ez

i = Ei
z = 0, Ei

i =
1

z
eii , (3.1)

where eii is a frame for the z-dependent metric g. The latter then has the expansion (2.15),

but for the present subsection we shall only need that

eii = eii +O(z2) , (3.2)

where eii is a frame for the boundary metric g0 = g. The non-zero components of the spin

connection Ω νρ
µ at this order are correspondingly

Ω zj
i =

1

z
e ji +O(z) , Ω jk

i = (ω(0)) jk
i +O(z2) , (3.3)

where (ω(0)) jk
i denotes the boundary spin connection.

The generators γµ̄ of the Clifford algebra Cliff(5, 0) in this frame are chosen to obey

γz̄ = γ1̄2̄3̄4̄ . (3.4)

It follows that γ2z̄ = 1, and we may identify −γz̄ with the boundary chirality operator. The

bulk Killing spinor is then expanded as

ǫ = z−1/2ε+ z1/2η + o(z1/2) . (3.5)

As in (2.11), we may further decompose the spinors ε, η into their projections ε±, η±

onto the ±i eigenspaces of Γ45. At leading order in the z-component of the gravitino

equation (2.7) one then finds

− γz̄ε
± = ±ε± , (3.6)

so that the Γ45 eigenvalue of the leading order spinor ε is correlated with its boundary

chirality. Similarly, at the next order in the gravitino equation one finds the opposite

correlation for the spinor η:

− γz̄η
± = ∓η± . (3.7)

Recall that the boundary B-fields satisfy ∗4b± = ∓b± (see (2.26)). This together with

the chirality conditions (3.6) implies that

b± · ε± = 0 , (3.8)

where · denotes the Clifford product (using the boundary frame). Using this, the leading

order term in the i-component of the gravitino equation is then seen to be identically

satisfied. The next order gives the pair of boundary Killing spinor equations:

D(0)
i ε± − i

4
b∓ijγ

jε∓ ∓ γiη
± = 0 , (3.9)
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where we have defined the covariant derivative

D(0)
i ≡ ∇(0)

i ± i

2
ai +

i

2
AI

i σI . (3.10)

Here ∇(0)
i denotes the Levi-Civita spin connection of the boundary metric g0ij = gij , and

γi = γī e
ī
i, so that {γi, γj} = 2gij .

Turning to the bulk dilatino equation (2.8), the leading order term is in fact equivalent

to the duality properties of b±, given the chiralities of ε±. At the next order we obtain the

boundary dilatino equation

− f · ε± ± 1

2
F IσI · ε± ∓ 3iX1 ε

± +
1

2
b∓ · η∓ ∓ 1

2
b∓1 · ε∓ = 0 . (3.11)

The supersymmetry equations for four-dimensional Euclidean off-shell N = 2 con-

formal supergravity have been studied8 in [17], and our equations (3.9), (3.11) precisely

reproduce the equations in this reference.9 Notice in particular that one can solve for the

(conformal) spinor η by taking the trace of (3.9) with γi, to obtain

η± = ±1

4
6D(0)ε± , (3.12)

where 6D(0) ≡ γiD(0)
i is the Dirac operator. Taking the covariant derivative of (3.9) and

using the integrability condition for [D(0)
i ,D(0)

j ] then leads to the following form of the

dilatino equation

6D(0) 6D(0)ε± − iDi(b
±)ijγ

jε∓ +

(

4X1 +
1

3
R

)

ε± ∓ 2i f · ε± = 0 , (3.13)

where R = R(g) is the Ricci scalar of the boundary metric. Requiring the boundary

fields gij , X1, a, A
I , b± to solve the spinor equations (3.9), (3.11) for ε± in general imposes

geometric constraints. Remarkably, in [17] it is shown that generically these conditions

are equivalent to the boundary manifold (M4, g) admitting a conformal Killing vector.

However, the topological twist background of [14] arises as a very degenerate case, where

in fact (M4, g) may be an arbitrary Riemannian four-manifold. We turn to this case in the

next subsection.

3.2 Topological twist

The topological twist background of [14] is obtained by setting

ε− = 0 , a = 0 , b± = 0 , η± = 0 . (3.14)

The boundary Killing spinor equation (3.9) immediately implies that ε+ is covariantly

constant

D(0)
i ε+ = 0 . (3.15)

8See [36] for related earlier work and [37] for a recent construction of Euclidean N = 2 conformal

supergravity from a timelike reduction of a five-dimensional theory.
9The explicit notation change is AKZ

4 = −ia, AI
KZ = AI , T±

KZ
= −b±, ǫKZ

± = ε∓, d̃KZ = 2X1.
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The dilatino equation, in the form (3.13), then fixes

X1 = − 1

12
R . (3.16)

Recall that ε+ is a doublet of positive chirality spinors: the Pauli matrices σI act

on these doublet indices, while the Clifford matrices γī act on the spinor indices. We may

write out the covariant derivative in (3.15) more explicitly by first introducing the following

explicit Hermitian representation

γā =

(

0 iσā
−iσā 0

)

, γ4̄ =

(

0 −12
−12 0

)

, γz̄ =

(

12 0

0 −12

)

. (3.17)

Here ā = 1, 2, 3. Since γz̄ε
+ = −ε+, we may identify each of the two spinors in the

doublet ε+ with a two-component spinor, acted on by the second 2× 2 block. With these

choices (3.15) reads

D(0)
i ε+ = ∂iε

+ +
i

4
ηā
jk
(ω(0)) jk

i σāε
+ +

i

2
AI

i σIε
+ = 0 , (3.18)

where ηā
ij
are the self-dual ’t Hooft symbols, and recall that (ω(0)) jk

i is the spin connection

for the boundary metric gij . One may then solve (3.18) by taking

AI
i =

1

2
ηI
jk
(ω(0)) jk

i , (ε+)iα = (iσ2)
i
α c . (3.19)

Here i = 1, 2 labels the doublet indices, while α = 1, 2 labels the positive chirality spinor

indices, and notice that the frame index ā = 1, 2, 3 is identified with the gauge indices

I = 1, 2, 3. It is straightforward to check that (3.19) solves (3.18), for any constant c.

The SU(2)R gauge field AI given by (3.19) is precisely the right-handed part of the spin

connection, where recall that Spin(4) = SU(2)− × SU(2)+. Thus the SU(2)R gauge bundle

is identified with SU(2)+.

More invariantly, ε+ is a section of S+ ⊗ V , where S+ denotes the positive chirality

spinor bundle over M4, while V is the rank 2 complex vector bundle for which AI is an

associated SU(2) connection. A priori this makes sense globally only when M4 is a spin

manifold, when S+ and V both exist as genuine vector bundles. However, the topological

twist (3.19) identifies V with S+, and their tensor product then always exists globally, even

when M4 is not spin.10 This topological construction of a spin-type bundle on a manifold

which is not necessarily spin was first suggested in [38], and is sometimes referred to as

a SpinG structure, where here the group G = SU(2). Perhaps more familiar are Spinc

structures, where instead G = U(1). (For example, this arises in Seiberg-Witten theory.)

It will be convenient later to introduce the triplet of self-dual two-forms

JIij ≡ ηI
ij
eii e

j
j , (3.20)

10There are various ways to see this. For example, the lack of a spin structure on M4 is detected by a

non-zero second Stiefel-Whitney class w2(M4) ∈ H2(M4,Z2). Concretely this means the cocycle condition

for the spin lift of the frame bundle fails up to some minus signs. However, if two copies are tensored

together all such signs square to +1, and the tensor product is a well-defined bundle.
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where recall that eii is the boundary frame for gij . More explicitly, these read

J1 = e2 ∧ e3 + e1 ∧ e4 , J2 = e3 ∧ e1 + e2 ∧ e4 , J3 = e1 ∧ e2 + e3 ∧ e4 . (3.21)

Of course, in general a frame eii is only defined locally on M4, in an appropriate open set,

and likewise the JI in (3.21) are then well-defined forms only locally. More globally, local

frames are patched together with SO(4). The spin cover is Spin(4) ∼= SU(2)− × SU(2)+,

and the self-dual/anti-self-dual two-forms are precisely the representations associated to

SO(3)± = SU(2)±/Z2. In particular, the {JI} rotate as a 3-vector under SO(3)+ ⊂ SO(4).

In this sense the JI in general don’t exist individually as global two-forms on M4, but

instead as a triplet of forms that rotate appropriately. We comment further on this below.

One can also write the JI in terms of spinor bilinears. Recall from the end of section 2.1

that the bulk spinors satisfy a symplectic Majorana reality condition. In particular the

boundary spinor ε+ satisfies

(ε+)c ≡ iσ2C (ε+)∗ = ε+ , (3.22)

where recall that C is the charge conjugation matrix for the spacetime Clifford algebra. In

the explicit basis (3.17) we may take

C =

(

iσ2 0

0 iσ2

)

. (3.23)

Given the solution (3.19) one finds that the reality condition (3.22) is satisfied provided

the constant c ∈ R. Explicitly, the components of the doublet ε+ are

(ε+)1 = (0, 0, 0, c)T , (ε+)2 = (0, 0,−c, 0)T . (3.24)

We then define the boundary spinor

χ ≡ (ε+)1 . (3.25)

This has square norm χ̄χ = c2, where the bar denotes Hermitian conjugate, and χ of course

has positive chirality, −γz̄χ = χ. One easily checks that

J2 + iJ1 =
1

χ̄χ
χ̄cγ(2)χ , J3 =

i

χ̄χ
χ̄γ(2)χ , (3.26)

where χc ≡ Cχ∗.

From the original definition (3.20), the JI inherit a number of algebraic identities from

those for the ’t Hooft symbols. For example,

JIijJ
I
kl = gikgjl − gilgjk + ǫijkl . (3.27)

Using the metric to raise an index, one obtains a triplet (II)ij ≡ gik(JI)kj of endomorphisms

of the tangent bundle of M4. These satisfy the quaternionic algebra

II ◦ IJ = −δIJ − ǫIJKIK . (3.28)
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One also finds that

∇iJ
I
jk = ǫIJKAJ

i J
K
jk , (3.29)

where the R-symmetry gauge field AI here is precisely the right-handed spin connection

given by the topological twist (3.19). Notice that we may correspondingly write the cur-

vature as

F I
ij =

1

2
JIklR

kl
ij , (3.30)

where Rijkl is the boundary Riemann tensor.

In general a quaternionic Kähler manifold is a Riemannian manifold of dimension 4n

with holonomy Sp(n) · Sp(1) ⊂ SO(4n).11 Such manifolds admit, locally, a triplet of skew

endomorphisms II of the tangent bundle satisfying (3.28), for which the corresponding

triplet of two-forms JI satisfy (3.29). Here AI is the Riemannian connection corresponding

to the Sp(1) part of this holonomy group. For n = 1 notice that Sp(1) · Sp(1) = SO(4),

and such a structure exists on any Riemannian four-manifold (M4, g) (as we have just

seen). Crucially, the two-forms (3.21) are not in general defined globally, but are (in

our language) twisted by the R-symmetry gauge field, transforming as a vector under

SO(3)R = SU(2)R/Z2. As such, they don’t define a reduction of the structure group to

SU(2)−, as a global set of such forms would do. Indeed, the globally defined tensor on

a quaternionic Kähler manifold is the four-form Ψ ≡ JI ∧ JI (summed over I), and in

four dimensions (n = 1) this is proportional to the volume form. The stabiliser of Ψ is

Sp(n) · Sp(1), which is SO(4) when n = 1.

In dimensions n ≥ 2 irreducible quaternionic Kähler manifolds are automatically Ein-

stein. Some authors choose to define a quaternionic Kähler four-manifold to be an Einstein

manifold with self-dual Weyl tensor, but we shall not use this terminology.

3.3 U(1)R current

Before continuing to expand the spinor equations into the bulk, in this subsection we pause

briefly to consider the VEV of the U(1)R current given by (2.54). In the topological twist

background equation, (2.28) gives a1 = 0, so that 〈 J〉 = −a2/κ
2
5. On the other hand,

from (2.29) we obtain the U(1)R anomaly equation

d ∗4 〈 J〉 =
i

8κ25
F I ∧ F I , (3.31)

where ∗4 denotes the Hodge duality operator on (M4, g). Using equations (3.30) and (3.27)

this may be rewritten as

d ∗4 〈 J〉 =
i

32κ25
(E + P) vol4 , (3.32)

where E and P are the Euler and Pontryagin densities, (2.46). On a compact M4 without

boundary these integrate to
∫

M4
E vol4 = 32π2χ(M4),

∫

M4
P vol4 = 48π2σ(M4), so that

11See, for example, [39].
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integrating (3.32) over M4 gives12

∫

M4

d ∗4 〈 J〉 =
iπ2

2κ25
[2χ(M4) + 3σ(M4)] . (3.33)

It follows that if a2, or equivalently 〈 J〉, is a global one-form onM4, then by Stokes’ theorem

the left hand side of (3.33) is zero, implying the topological constraint

2χ(M4) + 3σ(M4) = 0 . (3.34)

Indeed, in section 2.1 we noted that we are studying gravitational saddle points in the

real Euclidean Romans theory, where the U(1)R gauge field A is a (purely imaginary)

global one-form. Related to this, the U(1)R symmetry effectively becomes an SO(1, 1)R
symmetry after Wick rotation, as also emphasized in [17] (see also [2]). A number of

gravity expressions that we shall obtain below only make sense if a2 is interpreted as

a global one-form on M4, at least in the set-up we have defined. Thus (3.34) already

restricts the topology of M4. Interestingly, in section 6.1 we shall see that (3.34) also plays

an important role in the dual TQFT. Specifically, if (3.34) does not hold, the partition

function is zero!13

3.4 Supersymmetric expansion

In this section we continue to expand the bulk spinor equations to higher order in z.

From this we extract further information about some of the fields which are not fixed, in

terms of boundary data, by the bosonic equations of motion. We will continue to use the

boundary conditions appropriate to the topological twist. In particular we note that the

boundary B-fields b± = 0 in this case, and that setting the bulk B± = 0 is a consistent

truncation of the Euclidean N = 4+ theory. Moreover, in this case the bulk spinors

ǫ± satisfy decoupled equations, and since the leading order term ε− = 0 it is then also

consistent to set the bulk ǫ− = 0. We henceforth work in this truncated theory. This

subsection is somewhat technical. All of the relevant formulas that we need in section 4

are in any case summarized in that section, and a reader uninterested in the details may

safely skip the present subsection.

The frame, spin connection and spinor expansions beyond the leading order given in

section 3.1 will be needed, so we first give details of these. The frame expansion is

eii = eii + z2(e(2))ii + z4
[

(log z)2(̊e(4))ii + log z(ẽ(4))ii + (e(4))ii

]

+ o(z4) , (3.35)

12A little less laboriously we can instead note that F I is the curvature of the bundle of self-dual two-

forms Λ+

2 M4, and the integral of the right hand side of (3.31) is proportional to the first Pontryagin class

p1(Λ
+

2 M4) = 2χ(M4) + 3σ(M4).
13In passing we note that (3.34) corresponds (with an appropriate choice of orientation) to equality in

the Hitchin-Thorpe inequality. In particular the only Einstein manifolds satisfying this condition are the

flat torus, a K3 surface, or a quotient thereof [40]. A non-example is S4, for which 2χ(S4) + 3σ(S4) = 4.

On the other hand, for a complex surface (3.34) is equivalent to
∫
M4

c1 ∧ c1 = 0, where c1 = c1(M4) is the

first Chern class of the holomorphic tangent bundle (the anti-canonical class).
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where in particular eii is a frame for the boundary metric. The additional spin connection

components we will need are

Ωi
zi =

1

z
eii −

1

2
gjkeij∂zgik Ωz

ij = gije
[i
i ∂ze

j]
j . (3.36)

The bulk spinor has ǫ− = 0 in our truncated theory, and we thus henceforth drop the

superscript on ǫ+ → ǫ, ε+ → ε (we hope this abuse of notation won’t lead to any confusion).

The bulk spinor then has the following expansion

ǫ = z−1/2ε+ z3/2ε3 + z5/2(log z ε̃5 + ε5) + z7/2
(

(log z)2 ε̊7 + log z ε̃7 + ε7
)

+ o(z7/2) , (3.37)

where ε is constant with positive chirality under −γz̄. As in equation (3.22) the bulk spinor

ǫ satisfies the reality condition

ǫc ≡ iσ2C ǫ∗ = ǫ . (3.38)

We start by analysing the bulk dilatino equation. At lowest order we find

0 = X1 ε+
i

6
F I · (σIε) =

(

X1 +
1

12
R

)

ε , (3.39)

which is satisfied identically, where we have used (3.16) and (3.30). At the next order

we find

iaI1 · (σIε) = −1

4
(dR) · ε . (3.40)

This is effectively a matrix equation, of which we shall see many more. Components of

such equations may be extracted by first noting that

ε =

(

χ

−Cχ∗

)

, (3.41)

in the notation of section 3.2. For example, one can then take the first component of (3.40),

and apply χ̄γj on the left. Taking the real part, and using the definitions (3.26) of JI in

terms of spinor bilinears, one obtains

(aI1)
i JIij =

1

4
∇jR . (3.42)

We shall make use of similar manipulations throughout this subsection. Focusing on (3.42),

recall that aI1 is already fixed in terms of the SU(2) covariant divergence of F I , via equa-

tion (2.28). The latter reads (aI1)i =
1
2DjF I

ij . Starting from this and (3.30), and using the

identity αpqJ
I
m

pJIn
q = αmn−2(∗α)mn, where αpq is any two-form, one can show that (3.42)

is an identity. We may then differentiate (3.42) and, upon using the quaternionic Kähler

equation (3.29), we obtain

(DaI1)
ijJIij = −1

4
∇2R . (3.43)

This relation appears frequently hereafter.

At the next order in the dilatino equation we find an equation involving several unde-

termined fields:

iaI2 · (σIε) =
(

2ia2 + 3dX2 +
1

8
dR

)

· ε , (3.44)
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from which we similarly extract

(aI2)
iJIij = −2i(a2)j − 3∇jX2 −

1

8
∇jR . (3.45)

From this expression, taking a covariant derivative and symmetrizing indices gives

3∇i∇jX2 = D(i(a
I
2)

kJIj)k − 2i∇(i(a2)j) −
1

8
∇i∇jR . (3.46)

At higher order still we have

X3 ε = X1(1 + γz)ε
3 − i

12
DaI1 · (σIε) . (3.47)

As ε has positive chirality we can act with P− = 1
2(1 + γz̄) to deduce that ε3 also has

positive chirality. It then follows that

X3 = − 1

12
(DaI1)

ijJIij =
1

48
∇2R . (3.48)

where we have used (3.43). This expression for X3 is equivalent to that in (2.30), for the

topological twist. Finally, at order O(z7/2) we have

X4 ε =− 1

2
X3 ε−

1

2
X1 ε

3 − i

12

[

(DaI2) · (σIε)− 2f2 · ε+ F I · (σIε3)
]

− i

12
ei
i
(e(2))j

j
F I
ijγ

ij(σIε) . (3.49)

Here ei
i
is the inverse frame to eii, with ei

i
and (e(2))i

i
being coefficients in its expansion,

precisely as in (3.35). We have also defined f2 = da2. Since ε3 is so far undetermined, we

cannot yet extract an expression for X4. This concludes the expansion of the bulk dilatino

equation.

Turning next to the bulk gravitino equation, at lowest order in the z direction we find,

after using the fact that ε3 has positive chirality, that

ε3 =
1

48
Rε− 1

4
gij eii (e

(2))jjγij ε . (3.50)

As a metric defines the frame only up to an arbitrary local SO(4) rotation, it is conve-

nient to gauge fix this arbitrariness. A consistent gauge choice is (e(2))īi =
1
2(g

2)ī j̄ e
j̄
i and

(e(2))i
ī
= −1

2e
i
j̄
(g2)j̄ ī, where recall that g

2 is fixed in terms of the boundary Schouten tensor

via (2.34). This then implies that

gij e
i
i
(e(2))j

j
= −1

2
g2
ij
, gij eii (e

(2))jj =
1

2
(g2)ij , (3.51)

and, being symmetric, their contraction with any anti-symmetric tensor automatically

vanishes. Consequently, this gauge choice reduces the relation between the spinors ε and

ε3 to simply

ε3 =
1

48
Rε . (3.52)
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Having found this relation we may substitute for ε3 into the right hand side of (3.49),

extract X4 and then substitute for g2, X1, X3 and F I to obtain

X4 =
1

288
R2 − 1

48
RklR

kl − 1

96
∇2R− 1

24

(

DaI2
)ij

JIij . (3.53)

Here strictly speaking we have taken the real part of this equation, where the term involving

f2 is purely imaginary, and thus doesn’t appear. Using the trace of (3.46), together with

several other equations derived so far, one can check that the expression (3.53) for X4

agrees with the expression (2.31), obtained from the equations of motion.

At the next orders we find

(5− γz) ε
5 =− 2 ε̃5 + 2(ia2 + dX2) · ε , (3.54)

(5− γz) ε̃
5 =

2i

3
aI1 · (σIε) = −1

6
dR · ε . (3.55)

We could continue and analyse higher order terms in this z component of the gravitino

equation, but the subsequent expressions are not required, nor particularly enlightening,

and so we stop here.

The remaining equation to study is the i direction of the gravitino equation. Crucially

this involves the spin connection components Ωi
zi, which introduce the metric expansion

fields from (2.15). Of course, the leading order equation is satisfied by construction. Re-

markably, at the next order we find a non-trivial equation which is also identically satisfied

given the chirality of ε3 and the algebraic properties of the Riemann tensor. At the follow-

ing order we find another condition on ε̃5:

γi
[

3i(1 + γz)ε̃
5 + aI1 · (σIε)

]

= 0 , (3.56)

which, used in conjunction with (3.55), allows us to determine

γz ε̃
5 = ε̃5 , ε̃5 = − 1

24
dR · ε . (3.57)

We now substitute ε̃5 into equation (3.54):

(5− γz)ε
5 =

(

2ia2 + 2dX2 +
1

12
dR

)

· ε . (3.58)

Acting on this last equation with γz̄, and taking the difference, implies that ε5 is a negative

chirality spinor: γz̄ε
5 = ε5. We thus find

ε5 =

(

i

2
a2 +

1

2
dX2 +

1

48
dR

)

· ε . (3.59)

At the next order we begin to see the metric fields appearing:

h0
ij
γjε = − 1

288
R2γiε−

1

2
γi(1 + γz)ε̊

7 . (3.60)

Using the chiral projector P− again we see that ε̊7 has positive chirality, and we may

extract h0:

h0ij = − 1

288
R2gij . (3.61)
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This agrees with the expression h0ij = −1
2gijX

2
1 , given by equation (2.39), derived from the

expansion of the bosonic field equations. The next order gives

h1
ij
γjε =− 1

2
γī(1 + γz̄) ε̃

7 − 1

2
h0
ij
γ j̄ε−X1X2γi ε+∇iε̃

5 +
i

2
AI

i
(σI ε̃

5)

− i

24
X1(γi

jk − 4δj
i
γk)F I

jk
(σIε) +

i

24
(γi

jk − 4δj
i
γk)(DaI1)jk(σIε) . (3.62)

As before, we can show that ε̃7 has positive chirality and hence drops out of (3.62). Now

using the definition of ε̃5 in (3.57) allows us to write everything acting on the spinor ε.

After using the intermediate result

− 1

4
JI (i

k(DaI1)j)k = −1

8

(

Ri
kRjk +RikljR

kl −∇2Rij +
1

2
ǫ(j|kmn|R

klRmn
i)l

)

, (3.63)

and substituting for the known expressions, we can then read off h1ij :

h1ij =
1

192
gijR

2 +
1

12
gijRX2 −

1

48
RRij −

1

24
∇i∇jR− 1

48
gij∇2R

− 1

8

(

Ri
kRjk +RikljR

kl −∇2Rij +
1

2
ǫ(j|kmn|R

klRmn
i)l

)

. (3.64)

Once again, we have found another expression for something we have already derived:

h1ij is also given by equation (2.40). However, in this instance the equality of the two

expressions (3.64) and (2.40) is non-trivial. It is equivalent to the equation

0 =
(

RRij − 2Ri
kRjk + 2RikljR

kl +RmnikR
mn

j
k
)

− 1

4
gij
(

R2 − 4RklR
kl +RmnklR

mnkl
)

+
1

2

[

ǫmnpq

(

− 1

4
gijR

mn
klR

pqkl + gjkR
mn

ilR
pqkl

)

− 2ǫ(j|kmn|R
klRmn

i)l

]

. (3.65)

The first line quite remarkably is known to be zero for any Riemannian four-manifold, and

is called Berger’s identity [24]. One can also show that the second line is equal to zero,

which amounts to an algebraic identity that holds for any tensor sharing the algebraic

symmetries of the Riemann tensor.

Finally, at the last order we find14

(4g4
ij
+ h1

ij
)γjε =− 2γī(1 + γz̄)ε

7 + 4

(

∇i ε
5 +

i

2
AI

i
(σIε

5)

)

− 2X2
2γi ε− 2g2

ij
γ j̄ε3

+
i

6
(γ jk

i
− 4δ

[j

i
γk])

[

(DaI2)jk(σIε) + (f2)jkε+ F I
jk
(σIε

3)−X2F
I
jk
(σIε)

+ 2ej
j
(e(2))k

k
F I
jk(σIε)

]

− 2
[

ei
i
(e(2))j

j
+ (e(2))i

i
ej
j

]

g2ijγ
j̄ε . (3.66)

14Of course, knowing h1

ij
we could write an expression for g

4

ij
alone, but it is only the combination

4g4
ij
+ h1

ij
which we shall need in the next section.
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Again there is a positive chirality condition on ε7 which removes it from the above equation.

Using the many intermediate results we have derived, we then find

4g4ij + h1ij =2∇i∇j

(

X2 +
1

24
R

)

+ 2i∇(i(a2)j) +

(

X2 −
1

12
R

)

Rij

+ gij

(

−1

6
RX2 − 2X2

2 +
1

12
RklR

kl

)

+
1

4
RikR

k
j

− 1

8
ǫmnk

jRmnliRk
l +

1

4
RikljR

kl +
1

3
[2DaI2 − ∗(DaI2)](i|k|J

Ik
|j) . (3.67)

4 Metric independence

Our aim in this section is to show that, for any supersymmetric asymptotically locally

hyperbolic solution to the Euclidean N = 4+ supergravity theory, with the topologically

twisted boundary conditions on an arbitrary Riemannian four-manifold (M4, g), the varia-

tion (1.2) of the holographically renormalized action is identically zero. As explained in the

introduction, this implies that the right hand side of (1.1) is independent of the choice of

metric g, precisely as expected for the holographic dual of a topological QFT. We find that

this is indeed the case, using the minimal holographic renormalization scheme described in

section 2.3. We comment further on this at the end of section 4.2.

4.1 Variation of the action

As discussed in section 3.2, the Donaldson-Witten topological twist corresponds to the

following boundary conditions on the supergravity fields on M4:

0 = b± = a = ε− , X1 = − 1

12
R , AI =

1

2
ωi

jkJI
jk
dxi . (4.1)

Here the boundary Riemannian metric gij on M4 is arbitrary, with ω jk
i being the spin

connection, R being the Ricci scalar curvature, and the triplet of self-dual two-forms JI

being given by (3.21). The holographic Ward identity for the variation of the renormalized

action (2.44) with respect to general variations of the non-zero boundary fields is

δS = δgS + δAIS + δX1
S =

∫

∂Y5=M4

d4x
√

det g

[

1

2
Tijδg

ij + J i
I δA

I
i + Ξ δX1

]

. (4.2)

It is worth pausing to consider carefully why this equation holds. A variation of the

boundary data on M4 will induce a corresponding variation of the bulk solution that fills

it. However, we are evaluating the action on a solution to the equations of motion, and

by definition these are stationary points of the bulk action. Thus the resulting variation

of the on-shell action is necessarily a boundary term, and this is the expression on the

right hand side of (4.2). This argument requires that the equations of motion are solved

everywhere in the interior of Y5: if the latter has internal boundaries, or singularities,

the above in general breaks down, and one will encounter additional terms around these

boundaries/singularities on the right hand side of (4.2).
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For the topological twist all boundary fields are determined by the metric gij . Since

X1 = − 1
12R, to compute δX1 we need the variation of the Ricci scalar:

δR = Rijδg
ij +∇i

(

gjkδΓi
jk − gijδΓk

jk

)

, (4.3)

with the variation of the Christoffel symbols being

δΓi
jk =

1

2
gil (∇kδglj +∇jδglk −∇lδgjk) . (4.4)

After integrating by parts twice we obtain

δX1
S = − 1

12

∫

∂Y5

[

(

ΞRij + gij∇2Ξ−∇i∇jΞ
)

δgij vol4 +
1

κ25
DX1

vol4

]

, (4.5)

where vol4 ≡ √
det g d4x is the Riemannian volume form on (M4, g), and all geometric

quantities appearing are computed using the boundary metric gij . Substituting the value

of Ξ from (2.52) leads to

δX1
S = − 1

4κ25

∫

∂Y5

[

(

X2Rij + gij∇2X2 −∇i∇jX2

)

δgij vol4 +
1

3
DX1

vol4

]

, (4.6)

where the total derivative term is

DX1
≡ −3∇i

[

∇kX2g
ijδgjk −∇iX2g

jkδgjk −X2g
jkgil(∇kδglj −∇lδgjk)

]

. (4.7)

For δAI
i we first need the variation of the spin connection. After a short calculation

we have

δωi
jk =

1

2
elj emk (∇mδgil −∇lδgim) . (4.8)

Thus

δAI
i =

1

2
δωi

jkJI
jk

=
1

2
(∇kδgij)J

Ijk . (4.9)

After integrating by parts, the SU(2)R current contribution is hence

δAIS =− 1

8κ25

∫

∂Y5

{

[

Dk(aI1 + 2aI2)i J
I
jk

]

δgij vol4 + DAIvol4

}

, (4.10)

where we have substituted for the SU(2)R current using (2.53), and used the quaternionic

Kähler identity (3.29). The object in square brackets is a tensor with indices ij: only the

symmetric part contributes. The total derivative term is

DAI ≡ ∇i

[

(aI1 + 2aI2)
kJIijδgjk

]

. (4.11)

It remains to evaluate the stress-energy tensor contribution (2.51) and combine it

with (4.6) and (4.10). Doing so leads to

δS =
1

4κ25

∫

∂Y5

(

Tij δgij vol4 + DS vol4
)

, (4.12)
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where the total derivative term is

DS ≡ −1

3
DX1

− 1

2
DAI , (4.13)

and

Tij =
[

4g4ij + h1ij − 4gij

(

t(4) − 1

2
t(2,2) − 1

8
u(1)

)

− 2g2ijt
(2) − 6gijX

2
2

+
1

2

(

∇k∇ig
2
jk +∇k∇jg

2
ik −∇2g2ij −∇i∇jt

(2)
)

− 1

2
g2ijR+

1

2
gij
(

g2klR
kl
)

]

−
(

X2Rij + gij∇2X2 −∇i∇jX2

)

− 1

2

[

Dk(aI1 + 2aI2)(i J
I
j)k

]

. (4.14)

Here the first two lines come from the stress-energy tensor (2.51), while the last line com-

bines (4.6) and (4.10). Provided M4 is a closed manifold, without boundary, the integral

of the total derivative term is zero, and we have simply

δS =
1

4κ25

∫

∂Y5=M4

Tij δgij vol4 . (4.15)

The tensor Tij is thus an effective stress-energy tensor, for variations of the renormalized

on-shell action with respect to the boundary metric, all boundary data being determined

by this choice of metric. Our claim that the on-shell action is invariant under an arbitrary

metric deformation δgij is thus equivalent to the statement that Tij ≡ 0, for every Rie-

mannian four-manifold. Remarkably, despite there being several undetermined quantities

in (4.14), using the results of sections 2.3 and 3.4 we will show that indeed Tij ≡ 0 in the

next subsection.

4.2 Proof that δS/δgij = 0

We begin by substituting expressions from section 2.2 into (4.14), which recall follow from

the Fefferman-Graham expansion of the bosonic equations of motion. In particular we

substitute for ∇2X2 using equation (2.31), as well as various metric quantities, except for

the combination 4g4ij +h1ij . With the topological twist boundary conditions (4.1) this leads

to the expression

Tij =
(

1

12
R−X2

)

Rij −
1

2
RikR

k
j −

1

2
RikljR

kl − 1

4
∇i∇jR+∇i∇j

(

X2 +
1

6
R

)

+
1

4
∇2Rij + gij

(

2X2
2 − 1

72
R2 +

1

6
RX2 −

1

24
∇2R+ 4X3 + 4X4

)

+ 4g4ij + h1ij −
1

2

[

Dk(aI1 + 2aI2)(i J
I
j)k

]

. (4.16)

In particular we have used the identity

− 1

2
∇k∇(iR

k
j) = −1

2
RikR

k
j −

1

2
RikljR

kl − 1

4
∇i∇jR , (4.17)

in deriving (4.16).
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The equations of motion, or equivalently supersymmetry conditions, determine

X3 =
1

48
∇2R , X4 =

1

288
R2 − 1

48
RklR

kl − 1

96
∇2R− 1

24

(

DaI2
)ij

JIij . (4.18)

On the other hand, in section 3.4 the expansion of the supersymmetry conditions led to

the expression (3.67), which we repeat here:

4g4ij + h1ij = 2∇i∇j

(

X2 +
1

24
R

)

+ 2i∇(i(a2)j) +

(

X2 −
1

12
R

)

Rij

+ gij

(

−1

6
RX2 − 2X2

2 +
1

12
RklR

kl

)

+
1

4
RikR

k
j

− 1

8
ǫmnk

jRmnliRk
l +

1

4
RikljR

kl +
1

3
[2DaI2 − ∗(DaI2)](i|k|J

Ik
|j) . (4.19)

Substituting into (4.16), after several immediate cancellations we are left with

Tij =
1

4
∇2Rij −

1

8
ǫmnk

jRmnpiRk
p − 1

4
RikR

k
j −

1

4
RikljR

kl + 3∇i∇jX2 −
1

2
Dk(aI1)(iJ

I
j)k

+ 2i∇(i(a2)j)−
1

6
gij
(

DaI2
)kl

JI
kl +

1

3
(2DaI2 − ∗DaI2)(i|k|J

Ik
j) −Dk(aI2)(iJ

I
j)k . (4.20)

Using the expression

(aI1)i = −1

4
JImn∇jR

mnj
i , (4.21)

together with the contracted second Bianchi identity, we find that

Dk(aI1)iJ
I
jk = −1

2
ǫj

kmn∇k∇mRni −
1

2
∇k∇lRjkli . (4.22)

Substituting this expression, together with equation (3.46), into Tij in (4.20), we arrive at

Tij =
1

4
∇2Rij −

1

8
∇i∇jR+

1

4
∇k∇lRjkli −

1

4
RikR

k
j −

1

4
RikljR

kl

− 1

6
gij
(

DaI2
)kl

JI
kl +

1

3

[

2DaI2 − ∗(DaI2)
]

(i|k|
JIkj) − (DaI2)(i|k|J

Ik
j)

+
1

8
ǫj

kmn(2∇k∇mRni −Rmni
lRkl)

= 0 . (4.23)

Here, remarkably, each of the three lines vanishes separately. The first line is zero using

again (4.17) and the contracted second Bianchi identity, whilst the terms in the second line

combine to give zero after using the self-duality property of the JI tensors to remove the

Hodge dual acting on the field strength DaI2. The final line is zero after applying the Ricci

identity for a rank two covariant tensor, followed by the first Bianchi identity and using

the symmetry of the summed indices.

We emphasize again that this proof that δS/δgij = 0 uses the minimal holographic

renormalization scheme defined in section 2.3. Up to finite counterterms in (2.45) that

are topological invariants, which have identically zero variations, another choice of scheme

would spoil the above result. Another important comment is that the original path integral
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arguments in [4] are essentially classical (see footnote 10 of [4]). In particular there might

have been an anomaly, implying that the partition function (and other correlation func-

tions) are not invariant under arbitrary metric deformations. In this case, the topological

twist would not have led to a TQFT. This might seem like a strange comment, given that

the topologically twisted N = 2 Yang-Mills theory of [4] at least formally reproduces Don-

aldson theory, which of course certainly does rigorously define diffeomorphism invariants

of M4. However, it has recently been argued that precisely such an anomaly exists for

four-dimensional rigid N = 1 supersymmetry [34, 35]. The computations in these papers

are in fact holographic, and rely on the fact that in AdS/CFT the semi-classical grav-

ity computation is a fully quantum computation on the QFT side, including any potential

anomalies. Specifically, it is argued that there is an anomalous transformation of the super-

current under rigid supersymmetry on the conformal boundary, implying that the partition

function is not invariant under certain metric deformations that are classically Q-exact.

These particular anomalous transformations were first discovered in [31, 33], via essentially

the same computation we have followed in this paper, although this was not interpreted

as an anomaly in [31, 33]. It remains an open problem to directly derive this anomalous

transformation from the QFT in a new minimal supergravity background. Returning to

our present problem, the QFT is in any case coupled to an N = 2 conformal supergravity

background, and for the N = 2 topological twist we find no anomaly. In particular our

topologically twisted supergravity theory, formally at least, defines a topological theory.

We discuss this further in section 5.3 and section 6.

5 Geometric reformulation

In this section we present a geometric reformulation of the bulk supersymmetry equations.

In section 5.1 we describe how (twisted) differential forms built out of bilinears in the bulk

spinor define a twisted Sp(1) structure on Y5, and in section 5.2 we then derive a set of first

order differential constraints on this structure. On the conformal boundary this restricts

to the quaternionic Kähler structure that exists on any oriented Riemannian four-manifold

(M4, g), described in section 3.2. We also discuss some general aspects of the filling problem

in section 5.3.

5.1 Twisted Sp(1) structure

Recall from section 2.1 that the bulk spinor ǫ of the Romans N = 4+ theory is originally

a quadruplet of spinors. These split into two doublets ǫ±, with eigenvalues ±i under Γ45

(see equation (2.11)). Beginning in section 3.2, we worked in a truncated theory in which

B± = 0 and ǫ− = 0. We may then define

ǫ+ =

(

ζ

−ζc

)

, (5.1)

where ζ is a spinor on Y5, and recall that ζc ≡ C ζ∗. Equation (5.1) is the solution to

the symplectic Majorana condition (ǫ+)c = ǫ+. More globally, and as on the conformal

boundaryM4, the spinor ǫ
+ in (5.1) is a SpinG spinor, where G = SU(2)R — see section 3.2.
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With this notation we may define the following (local) differential forms

S ≡ ζ̄ζ , K ≡ 1

S
ζ̄γ(1)ζ ,

J 3 ≡ i

S
ζ̄γ(2)ζ, J 2 + iJ 1 ≡ 1

S
ζ̄cγ(2)ζ ,

(5.2)

where in our Hermitian basis of Clifford matrices recall that a bar denotes Hermitian

conjugate. There are a number of global comments to make. First, as in the discussion

in section 3.2, the fact that ζ is globally a twisted spinor, rather than a spinor, means

that (5.2) in general only locally defines an SU(2) ∼= Sp(1) structure.15 More globally, the

J I are twisted via the SU(2)R symmetry, transforming as a triplet. We shall call this a

twisted Sp(1) structure. Another comment is that in any case the structure is well-defined

only where ζ 6= 0. In general there may be solutions to the spinor equations where ζ = 0

on some locus. We should hence more precisely define Y
(0)
5 ≡ Y5 \ {ζ = 0}, so that (5.2)

is well-defined on Y
(0)
5 . One will then need to impose certain boundary conditions on this

structure, near {ζ = 0}, in order that the solution on Y5 is appropriately regular. The

bilinears (5.2) define a twisted Sp(1) structure on Y
(0)
5 .

The expansion of the spinor (3.37) implies that near the conformal boundary

ζ = z−1/2χ+ z3/2
(

1

48
R

)

χ+ z5/2
(

log z dR+
i

2
a2 +

1

2
dX2 +

1

48
dR

)

· χ+ o(z3) , (5.3)

where χ is the boundary spinor defined in section 3.2. In particular for the topological

twist this is constant, with constant square norm χ̄χ = c2 (see equations (3.24), (3.25)).

Without loss of generality we henceforth set c = 1, so that

S =
1

z
+

z

24
R+ o(z5/2) . (5.4)

In particular notice that ζ 6= 0 near to the conformal boundary at z = 0.

5.2 Differential system

Starting from the bulk Killing spinor equations (2.7), (2.8) one can derive a system of

differential equations for the twisted Sp(1) structure (5.2). In the notation (5.1) the spinor

equations read

∇µζ =− i

2
Aµζ +

i

2

(

A1
µ − iA2

µ

)

ζc − i

2
A3

µζ +
1

3

(

X +
1

2
X−2

)

γµζ

+
i

24
X−1(F1

νρ − iF2
νρ)(γµ

νρ − 4δνµγ
ρ)ζc − i

24

(

X−1F3
νρ +X2Fνρ

)

(γµ
νρ − 4δνµγ

ρ)ζ ,

0 =
3

2
iX−1∂µXγµζ + i

(

X −X−2
)

ζ − 1

8
X−1(F1

µν − iF2
µν)γ

µνζc

+
1

8
(X−1F3

µν − 2X2Fµν)γ
µνζ . (5.5)

15A general discussion of global Sp(1) structures on five-manifolds may be found in [41].
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As in section 2.1, it will be convenient to introduce the real one-form

C ≡ iA . (5.6)

Using these equations, a standard calculation16 leads to

X−2K = d log(XS) + C , (5.7)

together with the triplet of equations

d(SJ I) =− C ∧ SJ I + (2X +X−2)K ∧ SJ I + ǫIJKAJ ∧ SJK

+
1

4
X−1S (∗FI +K ∧ FI) . (5.8)

Here the Hodge dual is constructed from the volume form vol5 = −K ∧ vol4, where vol4 ≡
1
2J I∧J I (no sum over I). The sign here is chosen to match our earlier choice of orientation,

via (2.17), as we shall see shortly.

We may read the first equation (5.7) as determining the one-form C in terms of geo-

metric data and the function X:

C = X−2K − d log(XS) . (5.9)

In particular, the associated flux is then

G ≡ dC = iF = d(X−2K) . (5.10)

Substituting (5.9) into (5.8), the latter simplifies to

dJ I = ǫIJKAJ ∧ JK + (d logX + 2XK) ∧ J I +
1

4
X−1(∗FI +K ∧ FI) . (5.11)

Recall that in the original Lorentzian theory A is a U(1)R gauge field. In the real

Euclidean section we have defined C = iA, which is a real one-form, but there is then a

residual part of the (complexified) gauge symmetry C → C − dλ, where λ is a global real

function. The fields transform as follows:

ζ → eλ/2ζ , S → eλS , C → C − dλ , (5.12)

with everything else invariant. In particular it is immediate to see that (5.9), (5.11) are

invariant under these gauge transformations. In our boundary value problem recall that we

fixed C |M4
= 0, and in order to preserve this gauge condition on the conformal boundary

one should restrict to gauge transformations that vanish there, so that λ |M4
= 0. With

this caveat, one might use this gauge freedom to effectively remove one of the functional

degrees of freedom.

16For example, see [19].
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Let us look at the asymptotic form of the differential conditions near the conformal

boundary at z = 0. Recalling the Fefferman-Graham expansion of the fields (2.19)–(2.21),

together with the topological twist boundary conditions (4.1), we have

X = 1− 1

12
z2 log z R+ z2X2 + o(z2) ,

AI = AI − 1

4
z2 log z JImn∇jR

mnj
i dx

i + z2aI2 + o(z2) ,

C = z2 ia2 + o(z2) . (5.13)

Here recall that R is the boundary Ricci scalar, the boundary gauge field is

AI =
1

2
ω jk
i JI

jk
dxi , (5.14)

where ω jk
i is the boundary spin connection, Rmnij is the boundary Riemann tensor, and JI

are the boundary triplet of self-dual two-forms. The one-form ia2 is real. Using also (5.4),

equation (5.7) then implies that

K = −dz

z
+ z2

(

2 log z dR+ ia2 + dX2 +
1

24
dR

)

+ o(z5/2) . (5.15)

Recall that in section 3.2 we defined the triplet of boundary almost complex structures

(II)ij ≡ gik(JI)kj . If we define the boundary (almost) Ricci two-forms

ρIij ≡ Rk[i(I
I)kj] , (5.16)

where Rij is the boundary Ricci tensor, then similarly from the definition (3.26) we have

J I =
1

z2
JI +

1

12
R JI − 1

2
ρI

+ zdz ∧ II
(

2 log z dR+ ia2 + dX2 +
1

24
dR

)

+ o(z3/2) . (5.17)

Here II(η)i = (II)jiηj for a one-form η tangent to the boundary. It is interesting to note that

the O(1) terms in J I above may also be written as 1
12R JI − 1

2ρ
I = (g2 ◦ JI), where recall

from equation (2.34) that g2 is (minus) the Schouten tensor of the conformal boundary.

From (5.11) we hence read off the leading order the boundary equation

dJI = ǫIJKAJ ∧ JK . (5.18)

Equation (5.18) follows from taking the skew symmetric part of (3.29). In fact since the

exterior derivatives of the boundary SU(2) structure JI completely determine the intrinsic

torsion (this is true for an SU(n) structure in real dimension 2n [42]), it follows that (5.18)

also implies (3.29).

We may always choose a frame E µ
µ for the bulk metric on Y5 such that

K = −E 5 , J 1 = E 2 ∧ E 3 + E 1 ∧ E 4 ,

J 2 = E 3 ∧ E 1 + E 2 ∧ E 4 , J 3 = E 1 ∧ E 2 + E 3 ∧ E 4 . (5.19)
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In particular (5.15) identifies E 5 ∼ dz/z to leading order, and the sign for K in (5.19)

follows since −γz̄χ = χ, where Ez = dz/z. The volume form is vol5 = E 12345. Notice

that the expansions (5.15), (5.17) imply that in general we may not identify E µ
µ near the

conformal boundary with the Fefferman-Graham frame Eµ
µ in (3.1), except to leading order.

5.3 Filling problem

As explained in the introduction, given a Riemannian-four manifold (M4, g) as a fixed

conformal boundary, at least to a zeroth order approximation in AdS/CFT one wants to

find the least action supersymmetric solution to the five-dimensional N = 4+ supergravity

theory, with this boundary data. Such a solution will be the dominant saddle point on the

right hand side of (1.1). In this subsection we make some comments on this problem, with

further comments in section 6.1.

As we have seen in the previous subsection, supersymmetric solutions on Y5 are char-

acterized geometrically in terms of a set of first order differential equations (5.9), (5.11)

for a certain twisted Sp(1) structure. In particular there is a triplet of twisted two-forms

J I , I = 1, 2, 3, which locally at the conformal boundary restrict to an orthonormal set

of self-dual two-forms on (M4, g). The differential equations become tautological on the

boundary, and are equivalent to the fact that every oriented Riemannian four-manifold

has a quaternionic Kähler structure, i.e. has holonomy group Sp(1) · Sp(1) ∼= SO(4). This

differential system on Y5, regarded as extending that on (M4, g), clearly deserves closer

study. In particular, these are necessary conditions for a solution, but one would also like

to know whether they are sufficient. It should also be possible to rewrite the renormalized

supergravity action (2.44) in terms of this geometric data. The computation in section 4

implies that, given any one-parameter family of metrics on M4, the action of any family of

fillings of the boundary is independent of the parameter. What type of invariant is this? A

priori it depends on the choice of Y5 filling M4, and on the twisted Sp(1) structure on Y5.

An important question is what are the global constraints on Y5? As mentioned in the

introduction, topologically a smooth filling Y5 of M4 exists if and only if the signature

σ(M4) = 0. Moreover, as explained in section 6.1, for solutions embedded in string theory

one also needs these manifolds to be spin.17 This restriction would seem to rule out many

interesting four-manifolds.18 However, as also mentioned in the introduction, requiring Y5
to be smooth is almost certainly too strong. Already from AdS/CFT in other contexts, it is

clear that the dominant saddle point contribution can be singular, and one might anticipate

that this is somewhat generic, at least for general M4. Perhaps the appropriate question is

then: what are the relevant singularities of Y5, for a givenM4?
19 Mathematically one would

need control over existence and uniqueness of the differential equations for the twisted Sp(1)

structure, for appropriate Y5 (with singularities/appropriate internal boundary conditions)

filling M4. However, one might also anticipate that the supergravity action (2.44) could

17The relevant spin bordism group is ΩSpin
4

∼= Z, generated by a K3 surface, where the map to the integers

is σ(M4)/16.
18Although it leaves, for example, M4 = S1 ×M3, for any oriented three-manifold M3, and products of

Riemann surfaces.
19We thank S. Gukov for discussions on this, and indeed for posing this precise question!
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be evaluated without knowing the detailed form of the solution, but instead in terms of

appropriate global data, and perhaps local data associated to singularities. Notice that

one constraint on such singularities/internal boundaries is that they do not contribute to

the variation of the action (4.2) — see the discussion after this equation.20

Less ambitiously, one might also try to find explicit solutions; for example, via symme-

try reduction so that the equations reduce to coupled ODEs. An obvious case is solutions

with Y5 = S1×B4, where B4 is a four-ball so that ∂Y5 = M4 = S1×S3, and seek solutions

invariant under U(1)× SU(2) (the latter acting on the left on S3 ∼= SU(2)).

Finally, the present problem may be contrasted to the general hyperbolic filling problem

described in [43]. Here one also begins with an arbitrary Riemannian (M4, g), which is a

conformal boundary, but one instead asks for the filling to be an Einstein metric of negative

curvature. This problem is still quite poorly understood: there are in general obstructions

and non-uniqueness, and one should at least impose that g has a conformal representative

with positive scalar curvature [44] (physically, so that the CFT is stable). The geometric

problem in the present paper is likely to be much better behaved: the equations are first

order, not second order, and the solutions should be dual to a TQFT.

6 Discussion

We conclude with a discussion of “topological AdS/CFT” in section 6.1, followed by various

extensions and generalizations in section 6.2.

6.1 Topological AdS/CFT

An application of the ideas developed in this paper would be to a topologically twisted

version of the AdS/CFT correspondence. To make quantitative comparisons between cal-

culations on the two sides, as in (1.1) (appropriately interpreted), the construction needs

embedding in string theory. This is straightforward: the Romans theory is a consistent

truncation of both Type IIB supergravity on S5 [25], and also of eleven-dimensional super-

gravity on N6 [26], where N6 are the geometries classified by Lin-Lunin-Maldacena [45].

This means that any solution to the five-dimensional Romans theory uplifts (at least locally

— see below) to a string/M-theory solution.

In order to be concrete, let us focus on the case of N = 4 Yang-Mills theory. Applying

the Donaldson-Witten twist leads to the half-twisted theory referred to in the introduction.

For general gauge group G the path integral localizes [46, 47] onto solutions to a non-

Abelian [48] version of the Seiberg-Witten equations, in which the spinor field is in the

adjoint representation of G . For G = SU(N), AdS/CFT should relate the large N limit

of this theory to an appropriate class of solutions to the Romans N = 4+ theory in five

dimensions, uplifted on S5 to give full solutions of Type IIB string theory. This is where

the restriction that M4 is spin enters: if M4 is not spin then the background SU(2) R-

symmetry gauge field we turn on is not globally a connection on an SU(2) bundle over

20For example, the singularities in the gravity fillings in [18, 19] are isolated conical singularities. Provided

the radial dependence of fields near to the singular point are no worse than for smooth fields in flat space,

such singularities will not spoil the result (4.2).
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M4. On the other hand, the Type IIB solution is an S5 fibration over the filling Y5, where

S5 ⊂ C2 ⊕ C, and SU(2) acts on C2 in the fundamental representation. Thus if M4 is not

spin, this associated bundle is not well-defined. This is also directly visible in the TQFT:

for the half-twist of N = 4 Yang-Mills there are still spinors in the twisted theory, which

only make sense if M4 is spin.

There is some discussion of the half-twisted N = 4 theory for general gauge group G

in [49]. In particular the (virtual) dimension of the the relevant non-Abelian monopole

moduli space M may be computed using index theory, leading to

dimM = −1

4
dimG · [2χ(M4) + 3σ(M4)] . (6.1)

Because of the associated fermion zero modes, the partition function of the theory vanishes

unless the right hand side of (6.1) is also zero. We have already seen precisely this condition

in the holographic dual set-up, namely equation (3.34). In the gravity context this followed

from A being a global one-form, and then integrating the divergence of the VEV of the

U(1)R current (the U(1)R anomaly) over a compact M4 without boundary, as in (3.33). In

fact the two are directly related, since the virtual dimension (6.1) of M computed in field

theory is proportional to this integrated U(1)R anomaly. In the current holographic set-up,

we can see this explicitly by first noting that for the large N limit of the G = SU(N) half-

twisted N = 4 Yang-Mills theory, a standard AdS/CFT formula fixes the dual effective

five-dimensional Newton constant as

1

κ25
=

N2

4π2
. (6.2)

This fixes the overall normalization of the supergravity action. In the large N limit,

using (3.33) we may then write

dimM = 2i

∫

M4

d ∗4 〈 J〉 , (6.3)

in terms of the integrated (holographic) U(1)R anomaly.

Another important observation is that (6.1) is independent of the topology of the gauge

bundle over M4, unlike the corresponding case for Donaldson theory (pure N = 2 Yang-

Mills with gauge group G ). Because of this, all choices of gauge bundle contribute to the

partition function at the same time. The left hand side of (1.1) then needs appropriately

interpreting for such twists of four-dimensional N = 2 SCFTs, as taken at face value it may

be divergent. There is a standard way to deal with this,21 namely to refine the partition

function via the U(1)R charge. For example, this is discussed at the end of section 2

of [50], and in [51]. This should play an important role in making sense also of the right

hand side of (1.1), in addition to the comments on this in section 5.3. For example, a very

concrete case mentioned in the latter subsection is M4 = S1×S3. Here the refined partition

function is closely related to the Coulomb branch index, as explained in [52]. One might

then try to reproduce this from a dual supergravity solution for which Y5 = S1 ×B4, with

21We are again grateful to S. Gukov for pointing this out.
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∂Y5 = S1 × S3. More generally, for a four-manifold S1 ×M3 with product metric both E
and P vanish, and the holographic U(1)R current is conserved, as can be seen from (3.32).

The associated conserved holographic R-charge might then provide a natural holographic

correspondent to the refinement of the partition function for the twisted four-dimensional

SCFT. The AdS/CFT relation (1.1) in particular implies that the logarithm of the TQFT

partition function, appropriately refined as above, scales as N2 as N → ∞, when it is

non-zero. On the other hand, when the right hand side of (6.1) is positive, one obtains

non-zero invariants in the TQFT by inserting appropriate Q-exact operators into the path

integral. We briefly discuss the dual holographic computation in section 6.2. In particular,

such insertions will change the boundary conditions on supergravity fields we have imposed

in this paper.

As far as we are aware, computations of topological observables in the half-twisted

N = 4 theory, for general G = SU(N), have not been done explicitly. However, for

G = SU(2) the partition function and topological correlation functions have been computed

explicitly for simply-connected spin four-manifolds of simple type [47]. This is done by

giving masses, explicitly breaking N = 4 to N = 2, leading to an N = 2 gauge theory

with a massive adjoint hypermultiplet, a twisted version of the N = 2∗ theory. The

twisted theory is still topological, and the relevant observables are written in terms of

Seiberg-Witten invariants using the methods of [53]. Observables for the original theory

are then identified with the massless limit of these formulae (when this makes sense),

although the validity of this assertion is not completely clear. In any case, to compare to

the holographic construction in this paper one should compute the large N limit for gauge

group G = SU(N). We note that an analogous large N limit of Donaldson invariants (for

pure N = 2 SU(N) Yang-Mills) has been computed in [9]. Unlike the formula (6.1), here

the dimension of the moduli space of instantons depends on the topology of the gauge

bundle. One can then choose this bundle in such a way that dimM = 0. The partition

function is a certain signed count of the points that make up M, and the large N limit

was computed for a certain class of four-manifolds in [9].22

We conclude this subsection by noting that similar remarks apply to twists of N = 2

SCFTs with M-theory duals. Indeed, an important restriction on the class of N = 2 gauge

theories to which this holographic description applies is that they are conformal theories.23

A large number of examples arise as class S theories [54], obtained by wrapping M5-branes

over punctured Riemann surfaces, for which the gravity dual was found in [55] using the

construction of [45]. Romans solutions uplift on the corresponding internal spaces N6 to

solutions of M-theory [26]. At the level of the five-dimensional theory, all that changes is

the formula (6.2) for the effective Newton constant, which in general reads [56]

1

κ25
=

a

π2
, (6.4)

22In particular the final section of [9] computes the large N limit of the partition function Z for a four-

manifold with boundary, constructed as S1 ×M3 where M3 is a knot complement. One finds Z ∼ N logα,

where α is a certain knot invariant (the Mahler measure).
23In particular this is not true of pure N = 2 Yang-Mills, from which the original Donaldson invariants

are constructed.

– 36 –



J
H
E
P
1
2
(
2
0
1
7
)
0
3
9

where a is the a central charge. In the supergravity limit recall that a = c. For the above-

mentioned M5-brane theories the central charge scales with N3 as N → ∞. Indeed, the

partition function will a priori depend on both the choice of N = 2 SCFT that is being

twisted, and also on the four-manifold M4 on which it is defined. The choice of theory

corresponds to the choice of internal space in the uplifting to ten or eleven dimensions.

The structure of the dual supergravity solution as a fibration of the internal space over

the spacetime filling of M4 then implies that the large N limits of the partition functions

should also factorize. That is, the dependence on the choice of theory should only be visible

via the central charge a, which via (6.4) fixes the overall normalization of the supergravity

action. On the other hand, the dependence on the choice of M4 is then captured by the

effective five-dimensional Romans theory we have described.24

6.2 Generalizations

We have already discussed a number of open problems and directions for future work. Here

we briefly mention some further generalizations:

• Perhaps the most immediate generalization of the computations in this paper would

be to the so-called Ω-background of [57]. Here (M4, g, ξ) is an arbitrary Riemannian

four-manifold, equipped with a Killing vector field ξ. As for the pure topological

twist, this geometry also arises by coupling an N = 2 gauge theory to a certain

background of N = 2 conformal supergravity, and is briefly mentioned at the end of

section 3 of [17]. The non-zero Killing vector ξ requires turning on a boundary B-field:

specifically one needs to take b− (or b+) proportional to the self-dual (or anti-self-dual)

part of the two-form dξ♭, where ξ♭ is the Killing one-form dual to ξ. Correspondingly,

both boundary spinor doublets ε+ and ε− are now non-zero, and one needs to work

with the full Romans theory, rather than the truncated version with B± = 0 we

used from section 3.2 onwards. Nevertheless, the computations should not be too

much more involved than those in the present paper. One expects the supergravity

action now to depend on the choice of Killing vector ξ on M4, but otherwise not

on the metric. One should thus look at metric deformations gij → gij + δgij , where

Lξ δgij = 0.

• As mentioned in the introduction, there are three inequivalent topological twists of

N = 4 Yang-Mills. The half-twist, relevant to this paper, was discussed in the

previous subsection. The other two twists are the Vafa-Witten twist [11], and the

twist studied by Kapustin-Witten in [12]. In particular in the former theory the

only non-trivial observable is the partition function, and this has been studied for

gauge group G = SU(N) in [58]. These twists require the larger SU(4)R R-symmetry

of the N = 4 theory, meaning for the holographic dual one needs to start with a

24This structure can already be seen in the more general formula for dimM given in [50]. For the general

class of twisted field theories considered there, equation (2.42) of [50] implies that in the large N limit

where a = c, one has dimM = −a[2χ(M4) + 3σ(M4)], generalizing (6.1). The central charge appears as an

overall factor, at large N . Of course, this precisely agrees with our holographic formula (6.3), using (3.33)

and (6.4).
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Euclidean form of N = 8 gauged supergravity theory. Optimistically, one might hope

to embed within the SU(4) ∼ SO(6) truncation of the latter theory studied in [59],

which is a consistent truncation of Type IIB supergravity on S5, and contains the

five-dimensional Romans N = 4+ theory (with zero B-field) as a further truncation.

• Topological twists exist in a variety of dimensions. In three dimensions the R-

symmetry group is Spin(N ). The analogous amount of supersymmetry to that stud-

ied in the present paper is N = 4, leading to a Spin(4) = SU(2)×SU(2) R-symmetry

group. On the other hand Spin(3) = SU(2), and this leads to two inequivalent three-

dimensional N = 4 topological twists — see, for example, the diagram in section 1

of [60]. One of these twists is closely related (by dimensional reduction on a circle)

to the Donaldson-Witten twist. The relevant holographic construction should begin

with four-dimensional N = 4 gauged supergravity. This contains an Spin(4)R gauge

field, as required, and is a consistent truncation of eleven-dimensional supergravity

on S7 [61]. The uplifted solutions should be holographically dual to twists of the

ABJM theory [62] on N M2-branes, in the large N limit. This is currently under

investigation [63].

• Finally, in this paper we have focused exclusively on the partition function. However,

in general TQFTs have non-trivial topological correlation functions, involving the

insertion of Q-invariant operators into the path integral. For example, this is true of

Donaldson theory, where such insertions are required to obtain non-zero invariants

in field theory whenever dimM = d > 0, due to fermion zero modes. Geometrically

these invariants arise as the integral of a d-form over M, where this top form is itself

constructed as a wedge product of certain closed forms. The operators are constructed

via a descent procedure [4]. It would be very interesting to understand the holographic

dual computation of these correlation functions. Of course, correlation functions are

well studied in AdS/CFT. In the present setting one would again hope to be able to

work in a truncated supergravity theory, containing the fields whose boundary values

act as sources for the operators. Being topological, the correlation functions should

be independent of the positions at which the local operators are inserted, and also

independent of the metric. These statements might be proven along similar lines to

the present paper. We leave this, and other interesting questions, for future work.
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[25] H. Lü, C.N. Pope and T.A. Tran, Five-dimensional N = 4, SU(2)×U(1) gauged supergravity

from type IIB, Phys. Lett. B 475 (2000) 261 [hep-th/9909203] [INSPIRE].

[26] J.P. Gauntlett and O. Varela, D = 5 SU(2)×U(1) Gauged Supergravity from D = 11

Supergravity, JHEP 02 (2008) 083 [arXiv:0712.3560] [INSPIRE].

[27] C. Fefferman and C.R. Graham, The ambient metric, arXiv:0710.0919 [INSPIRE].

[28] M. Taylor, More on counterterms in the gravitational action and anomalies,

hep-th/0002125 [INSPIRE].

[29] S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and

renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595

[hep-th/0002230] [INSPIRE].

[30] R. Emparan, C.V. Johnson and R.C. Myers, Surface terms as counterterms in the AdS/CFT

correspondence, Phys. Rev. D 60 (1999) 104001 [hep-th/9903238] [INSPIRE].

[31] P. Benetti Genolini, D. Cassani, D. Martelli and J. Sparks, Holographic renormalization and

supersymmetry, JHEP 02 (2017) 132 [arXiv:1612.06761] [INSPIRE].

[32] M. Crossley, E. Dyer and J. Sonner, Super-Rényi entropy & Wilson loops for N = 4 SYM
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