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1 Introduction

The old minimal formulation for N = 1 supergravity in four dimensions, first presented in

superspace [1] and soon after developed in the component setting [2, 3], is probably the most

famous off-shell supergravity theory.1 The field content of this theory is known to everyone

who studied supersymmetric field theory from the book by Wess and Bagger [4] (part of

which is a review and extension of the approach pursued by Wess and Zumino [1]). Its

physical fields are the vielbein em
a and the Majorana gravitino (ψm

α, ψ̄mα̇). Its auxiliary

fields are the vector ba, the complex scalar M and its conjugate M̄ . The Ferrara-van

Nieuwenhuizen formulation [3] made use of the two real auxiliary scalars contained in

M = ReM + i ImM . However, the work by Stelle and West [2] also provided a variant

supergravity formulation in which each of the two real auxiliary scalars, ReM and ImM ,

was replaced by the field strength of a gauge three-form. Three years later, Gates and

Siegel [5] pointed out the existence of one more variant formulation of supergravity in which

just one of the two real scalars in M = ReM + i ImM was replaced by the field strength

of a gauge three-form. The resulting variant formulations of old minimal supergravity are

known nowadays as three-form supergravity [5] and complex three-form supergravity [2].2

We will often refer to the off-shell theory presented in [1, 3] as the standard formulation or

simlpy old minimal supergravity.

The difference between the standard formulation for supergravity and its variant reali-

sations discussed above can be seen from the corresponding superfield equations of motion.

1It is quite remarkable that the superspace [1] and the component [2, 3] formulations of old minimal

supergravity were published in the same volume of Physics Letters B with an interval of one month.
2There is a plausible explanation as to why Stelle and West did not describe explicitly the three-form

supergravity in [2]. The point is that their set of auxiliary fields was inspired by the structure of the

gravitational vector superfield and its gauge freedom at the linearised level [6–8].
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In terms of the Grimm-Wess-Zumino superspace geometry [9, 10] (see, e.g., [4, 11] for ped-

agogical reviews), the supergravity equations corresponding to the standard formulation

were given in [1]. They are:

Ga = 0 , (1.1a)

R = 0 . (1.1b)

In the case of three-form supergravity, equation (1.1b) is replaced with

R+ R̄ = 0 =⇒ R− R̄ = const , (1.2)

while for complex three-form supergravity it turns into

R = const , (1.3)

in accordance with [5]. Equation (1.1a) remains the same for the variant formulations. Even

without introducing a supersymmetric cosmological term (which does not exist for complex

three-form supergravity, see section 3.3), a negative cosmological constant is generated

dynamically in the real and complex three-form supergravity theories for vacuum solutions

with R 6= 0.3

As is well known, every off-shell formulation for N = 1 supergravity can be realised as

N = 1 conformal supergravity coupled to a compensating multiplet (see, e.g., [11, 18, 19]

for reviews). Different off-shell formulations correspond to choosing different compensators.

This leads to another conceptual way to understand the difference between the standard

formulation of old minimal supergravity and its two variants, as was pointed out in [5].

In the standard formulation, the compensator is a general chiral scalar superfield [20]. In

Minkowski superspace, it obeys the chirality constraint D̄α̇Φ = 0 and can be represented as4

Φ = −1

4
D̄2U , (1.4)

where the prepotential U is an unconstrained complex superfield. The auxiliary field of Φ,

defined by F (x) := −1
4D

2Φ(x, θ)|θ=0, is a complex scalar. In the case of three-form super-

gravity [5], the compensator is a three-form multiplet originally proposed by Gates [21]. It

is described by a chiral superfield of the form

Π = −1

4
D̄2P , P̄ = P , (1.5)

where P is a real but otherwise unconstrained prepotential. Since the prepotential P is

real, Π is no longer a general chiral superfield, for it obeys the condition

D2Π− D̄2Π̄ = i∂apa , pa = (σ̃a)
α̇α[Dα, D̄α̇]P , (1.6)

which implies that the imaginary part of the auxiliary field F of Π is the field strength of

a gauge three-form. In the case of complex three-form supergravity, the compensator is

3The idea that the use of massless gauge three-forms makes it possible to generate a cosmological constant

dynamically, has attracted much interest since the early 1980s, see, e.g., [12–17].
4As in [4, 11], we make use of the definitions D2 = DαDα and D̄2 = D̄α̇D̄

α̇.
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a complex three-form multiplet proposed in [5].5 It is described by a chiral superfield of

the form

Υ = −1

4
D̄2Σ̄ , D2Σ̄ = 0 . (1.7)

A complex scalar Σ constrained by D̄2Σ = 0 is called a complex linear superfield [5].6 Since

the prepotential Σ̄ in (1.7) is complex antilinear, Υ is no longer a general chiral superfield,

for it obeys the condition

D2Υ = i∂aqa , qa = (σ̃a)
α̇α[Dα, D̄α̇]Σ̄ . (1.8)

This property tells us that the auxiliary field F of Υ is the field strength of a gauge complex

three-form.

Unlike the standard formulation of old minimal supergravity, the remarkable feature of

three-form supergravity is that it allows a consistent coupling to the four-dimensional su-

permembrane [23] (the d = 4 cousin of the d = 11 supermembrane [24, 25]) as demonstrated

by Ovrut and Waldram [26]. Since consistency of the supermembrane action requires the

presence of a Wess-Zumino term associated with a real gauge three-form in the target su-

perspace [24], it is not surprising that this supergravity formulation plays a special role in

this context. It is natural to wonder whether complex three-form supergravity also allows

a consistent coupling to the supermembrane. The main goal of this paper is indeed to show

that this question has an affirmative answer.

Before we turn to the main body of the paper, a few comments on the literature are in

order. The quantum properties of a massless three-form multiplet coupled to supergravity

were studied in [27] (see [11] for a review). The superform formulation for the three-

form multiplet in supergravity was developed by Binétruy et al. [28] and used in [26] to

work out the complete component action for three-form supergravity. The super-Weyl

invariant formulation for three-form supergravity was given in [29], as an extension of

similar formulations for the non-minimal and new minimal supergravity theories given in

section 6.6 of [11]. The formulations described in [11] and [29] were generalised in [30]

to construct the super-Weyl invariant formulation for complex three-form supergravity.

Various aspects of the dynamics of three-form supergravity coupled to the supermembrane

were studied in [31].

This paper is organised as follows. In section 2 we recall the key results concerning the

formulation of N = 1 conformal supergravity and its couplings to matter using the geomet-

ric framework of [9, 10]. Section 3 elaborates on the super-Weyl invariant formulations for

the three versions of old minimal supergravity discussed above. In particular, for both the

real and complex three-form multiplets we provide a super-Weyl invariant description of

the gauge super 3-forms and gauge-invariant field strengths. Section 4 describes consistent

couplings of the real and complex three-form supergravity theories to the supermembrane.

Concluding comments are given in section 5.

5The name “complex three-form multiplet” was coined in [18].
6Such a superfield was first discussed by Zumino [22]. It is primarily used to describe the so-called

non-minimal scalar multiplet [5].
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2 Conformal supergravity

As reviewed in [11], conformal supergravity can be described using the superspace geometry

of [9, 10], which underlies the Wess-Zumino approach to old minimal supergravity [1]. Here

we briefly recall the main definitions and conceptual results. The notation and conventions

of [11] are used throughout this paper.

Conformal supergravity is formulated in a curved superspace M4|4 parametrised by lo-

cal bosonic (xm) and fermionic (θµ, θ̄µ̇) coordinates z
M = (xm, θµ, θ̄µ̇), where m = 0, 1, 2, 3,

µ = 1, 2 and µ̇ = 1, 2. The Grassmann variables θµ and θ̄µ̇ are related to each other by

complex conjugation: θµ = θ̄µ̇. We will often make use of a preferred basis of one-forms

EA = (Ea, Eα, Ēα̇) with dual basis EA = (Ea, Eα, Ē
α̇),

EA = dzMEM
A , EA = EA

M∂M , (2.1)

which will be referred to as the supervielbein and its inverse, respectively. The superspace

structure group is SL(2,C). The covariant derivatives have the form

DA = (Da,Dα, D̄α̇) = EA +ΩA , (2.2)

where ΩA stands for the Lorentz connection,

ΩA =
1

2
ΩA

bcMbc = ΩA
βγMβγ +ΩA

β̇γ̇M̄β̇γ̇ , (2.3)

with Mbc = −Mcb, Mβγ = 1
2(σ

bc)βγMbc and M̄β̇γ̇ = −1
2(σ̃

bc)β̇γ̇Mbc the Lorentz generators.

These act on a covariant vector Vc and two-component spinors Ψγ and Ψγ̇ as follows:

Mab Vc = 2ηc[aVb] , Mαβ Ψγ = εγ(αΨβ) , M̄α̇β̇ Ψγ̇ = εγ̇(α̇Ψβ̇) . (2.4)

In general, the covariant derivatives enjoy graded commutation relations of the form

[DA,DB} = TAB
CDC +

1

2
RAB

cdMcd , (2.5)

where TAB
C and RAB

cd are the torsion and curvature tensors, respectively. To describe

supergravity, the covariant derivatives have to obey certain torsion constraints [1, 9, 10]

such that their algebra is as follows (the expression for [Da,Db] is given in [11]):

{Dα, D̄α̇} = −2iDαα̇ , (2.6a)

{Dα,Dβ} = −4R̄Mαβ , {D̄α̇, D̄β̇} = 4RM̄α̇β̇ , (2.6b)
[

Dα,Dββ̇

]

= iεαβ

(

R̄ D̄β̇ +Gγ
β̇Dγ −DγGδ

β̇Mγδ + 2W̄β̇
γ̇δ̇M̄γ̇δ̇

)

+ iD̄β̇R̄Mαβ , (2.6c)
[

D̄α̇,Dββ̇

]

= −iεα̇β̇

(

RDβ +Gβ
γ̇D̄γ̇ − D̄γ̇Gβ

δ̇M̄γ̇δ̇ + 2Wβ
γδMγδ

)

− iDβRM̄α̇β̇ . (2.6d)

The torsion tensors R, Ga = Ḡa and Wαβγ = W(αβγ) satisfy the Bianchi identities:

D̄α̇R = 0 , D̄α̇Wαβγ = 0 , (2.7a)

D̄γ̇Gαγ̇ = DαR , DγWαβγ = iD(α
γ̇Gβ)γ̇ . (2.7b)
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The definition of the torsion and curvature tensors given by eq. (2.5) can be recast in

the language of superforms. Starting from the Lorentz connection ΩA defined by (2.3), we

introduce the connection one-form

Ω = ECΩC , ΩVA = ΩA
BVB = ECΩCA

BVB , VA = (Va,Ψα,Ψ
α̇) . (2.8)

Then the torsion and curvature two-forms are

TC :=
1

2
EB ∧ EATAB

C = −dEC + EB ∧ ΩB
C , (2.9a)

RC
D :=

1

2
EB ∧ EARABC

D = dΩC
D − ΩC

E ∧ ΩE
D . (2.9b)

The gauge group of conformal supergravity includes superspace general coordinate

transformations and local Lorentz ones. Such a transformation acts on the covariant deriva-

tives and any tensor superfield U (with its indices suppressed) by the rule

δKDA = [K,DA] , δKU = KU , (2.10a)

where the gauge parameter K has form

K = ξBDB +
1

2
KbcMbc = ξBDB +KβγMβγ + K̄ β̇γ̇M̄β̇γ̇ = K̄ (2.10b)

and describes a coordinate transformation generated by the supervector field ξ = ξBEB

and a local Lorentz transformation generated by Kbc.

It was first realised by Howe and Tucker [32] that the algebra (2.6) is invariant under

super-Weyl transformations of the form

δσDα =

(

σ̄ − 1

2
σ

)

Dα +DβσMαβ , (2.11a)

δσDαα̇ =
1

2
(σ + σ̄)Dαα̇ +

i

2
D̄α̇σ̄Dα +

i

2
Dασ D̄α̇ +Dβ

α̇σMαβ +Dα
β̇σ̄ M̄α̇β̇ , (2.11b)

accompanied by the following transformations of the torsion superfields

δσR = 2σR+
1

4
(D̄2 − 4R)σ̄ , (2.12a)

δσGαα̇ =
1

2
(σ + σ̄)Gαα̇ + iDαα̇(σ − σ̄) , (2.12b)

δσWαβγ =
3

2
σWαβγ . (2.12c)

Here the super-Weyl parameter σ is a covariantly chiral scalar superfield, D̄α̇σ = 0.

The gauge group of conformal supergravity is defined to be generated by the local

transformations (2.10) and (2.11). It may be shown that this gauge freedom indeed leads

to the multiplet of N = 1 conformal supergravity at the component level (see, e.g., [11] for

a review).

Of special importance in conformal supergravity are super-Weyl primary multiplets

(here we follow the terminology recently used in [33]). A tensor superfield T (with its

– 5 –
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indices suppressed) is said to be (super-Weyl) primary of weight (p, q) if its super-Weyl

transformation law is

δσT =
(

p σ + q σ̄
)

T , (2.13)

for some parameters p and q. The conformal dimension of T is given by (p+ q).

An important class of tensor superfields are covariantly chiral superfields Φ constrained

by D̄α̇Φ = 0. Due to the integrability condition {D̄α̇, D̄β̇}Φ = 4RM̄α̇β̇Φ = 0, such super-

fields may carry only undotted indices [34]. If Φ is covariantly chiral and super-Weyl pri-

mary, its weight is necessarily (p, 0). We will call Φ a chiral primary superfield of weight p.

Covariantly chiral tensor superfields may be constructed using the chiral projection

operator [1, 34]

∆̄ := −1

4

(

D̄2 − 4R
)

. (2.14)

Given a tensor superfield T with undotted spinor indices only, ∆̄T is covariantly chiral,

D̄α̇∆̄T = 0. If T is a super-Weyl primary superfield of weight (p − 2, 1), then ∆̄T is

a chiral primary superfield of weight p. This may be checked by using the super-Weyl

transformation of the chiral projection operator

δσ∆̄ = (2σ − σ̄)∆̄ +
1

2
(D̄α̇σ̄)D̄α̇ +

1

4
(D̄2σ̄)− 1

2
(D̄α̇σ̄)D̄β̇M̄α̇β̇ , (2.15)

which follows from (2.11).

Given a matter dynamical system coupled to conformal supergravity, its action func-

tional must be invariant under the local transformations (2.10) and (2.11). There are two

general action principles. Given a primary real scalar Lagrangian L = L̄ of weight (1, 1),

the action

S =

∫

d4xd2θd2θ̄ E L , E = Ber(EM
A) , (2.16)

is invariant under the supergravity gauge group. Its super-Weyl invariance follows from

the transformation law δσE = −(σ+ σ̄)E. Given a scalar chiral primary Lagrangian Lc of

weight +3, the chiral action

Sc =

∫

d4xd2θ E Lc (2.17)

is invariant under the supergravity gauge group. Its super-Weyl invariance follows from the

transformation law δσE = −3E of the chiral density E . The latter may be defined in terms

of a chiral prepotential [20]. Alternatively, the chiral density can be read off using the

general formalism of integrating out fermionic dimensions, which was developed in [35].7

The full superspace action (2.16) can be represented as an integral over the chiral subspace,

∫

d4xd2θd2θ̄ E L =

∫

d4xd2θ E ∆̄L . (2.18)

7This formalism naturally leads to the appearance of the Θ variables postulated in [4].

– 6 –



J
H
E
P
1
2
(
2
0
1
7
)
0
0
5

The chiral action (2.17) can be represented as an integral over the full superspace,

Sc =

∫

d4xd2θd2θ̄ E CLc , (2.19)

where C is an improved complex linear superfield8 that is defined by the following properties:

(i) C obeys the constraint

∆̄C = 1 ; (2.20a)

(ii) C is super-Weyl primary of weight (−2, 1),

δσC = (σ̄ − 2σ)C . (2.20b)

A possible choice for C is

C =
η̄

∆̄η̄
, D̄α̇η = 0 , δση = ση , (2.21)

for some covariantly chiral superfield η such that ∆η is nowhere vanishing. In case C is not

required to be super-Weyl primary, it can be identified with R−1,

Sc =

∫

d4xd2θd2θ̄ E
Lc

R
, (2.22)

provided R is nowhere vanishing. This representation was discovered in [20, 34].

To conclude this section, we point out that there is an alternative way to define the

chiral action (2.17) that follows from the superform approach to the construction of super-

symmetric invariants [37–41]. It is based on the use of the following super 4-form

Ξ4[Lc] = 2iĒδ̇ ∧ Ēγ̇ ∧ Eb ∧ Ea(σ̃ab)
γ̇δ̇Lc +

i

6
εabcdĒδ̇ ∧ Ec ∧ Eb ∧ Ea(σ̃d)δ̇δDαLc

− 1

96
εabcdE

d ∧ Ec ∧ Eb ∧ Ea
(

D2 − 12R̄
)

Lc , (2.23)

which was constructed by Binétruy et al. [28] and independently by Gates et al. [41]. This

superform9 is closed,

dΞ4[Lc] = 0 . (2.24)

The chiral action (2.17) can be recast as an integral of Ξ4[Lc] over a spacetime M4,

Sc =

∫

M4

Ξ4[Lc] , (2.25)

where M4 is the bosonic body of the curved superspace M4|4 obtained by switching off

the Grassmann variables. It turns out that the representation (2.25) provides the simplest

way to reduce the action from superfields to components.

8Such a superfield is the conformal compensator for the non-minimal N = 1 AdS supergravity [36].
9In the flat-superspace limit, the superform (2.23) reduces to the one given in [21].
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Using the super-Weyl transformation law of the supervielbein

δσĒα̇ =

(

1

2
σ̄ − σ

)

Ēα̇ +
i

4
(Dασ)(σb)αα̇E

b , δσE
a = −1

2
(σ + σ̄)Ea , (2.26)

which follows from (2.11), one can check that Ξ4[Lc] is super-Weyl invariant,

δσΞ4[Lc] = 0 . (2.27)

This property also follows from the description of this superform given in appendix B

of [42] where Ξ4[Lc] was formulated in N = 1 conformal superspace [43]. The super-Weyl

invariance of Ξ4[Lc] will be important for our subsequent analysis.

3 Variant formulations of old minimal supergravity

As described in section 6.6 of [11], any off-shell formulation of N = 1 supergravity may

be realised as a super-Weyl invariant coupling of conformal supergravity to a conformal

compensator, with conformal supergravity being described as in section 2 above. Here we

review the relevant realisations for the three versions of old minimal supergravity discussed

in section 1.

3.1 Old minimal supergravity

In the case of the standard formulation, the conformal compensator is a primary chiral

scalar superfield Φ of weight +1,

D̄α̇Φ = 0 , δσΦ = σΦ , (3.1)

which is required to be nowhere vanishing such that Φ−1 exists. The locally supersymmetric

and super-Weyl invariant action for supergravity is

SSG,om = − 3

κ2

∫

d4xd2θd2θ̄ E Φ̄Φ +

{

µ

κ2

∫

d4xd2θ E Φ3 + c.c.

}

, (3.2)

where κ is the gravitational coupling constant, and µ is a complex parameter related to the

cosmological constant. The second term in the action is the supersymmetric cosmological

term which was proposed in [44–46] and then recast in the superspace setting in [20].

The super-Weyl gauge freedom allows us to choose the condition Φ = 1. Then (3.2)

turns into the supergravity action proposed in [1] for µ = 0 and then generalised to the

µ 6= 0 case in [20].

The equation of motion for the chiral compensator is easy to read off from (3.2)

R = µ , R := Φ−2∆̄Φ̄ . (3.3)

It can be shown [11] that the equation of motion for the gravitational superfield can be

written in the form

Gαα̇ = 0 , Gαα̇ :=
(

[Dα, D̄α̇] +Gαα̇

)

(ΦΦ̄)−1/2 . (3.4)

– 8 –
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The superfields R and Gαα̇ are super-Weyl invariant. Equation (3.4) is equivalent to eq.

(6.6.10) in [11]. The latter states that the supercurrent of the chiral superfield Φ, whose

dynamics is described by the action (3.2), vanishes on the mass shell.

In the super-Weyl gauge Φ = 1, the primary superfields R and Gαα̇ turn into the

torsion superfields R and Gαα̇, respectively.

3.2 Three-form supergravity

We now discuss three-form supergravity in some detail. First of all we review the super-

Weyl invariant formulation of this theory given in [29]. The corresponding conformal

compensator is a three-form multiplet coupled to conformal supergravity. It is described

by a covariantly chiral scalar Π and its conjugate Π̄, with Π defined by

Π = ∆̄P P̄ = P , (3.5)

where the scalar prepotential P is real but otherwise unconstrained. The compensator Π

has to be nowhere vanishing so that Π−1 exists. We postulate P to be super-Weyl primary

of weight (1, 1),

δσP = (σ + σ̄)P , (3.6a)

which implies that Π is also primary,

δσΠ = 3σΠ . (3.6b)

As is seen from (3.5), the prepotential P is defined modulo gauge transformations of

the form

δLP = L , ∆̄L = 0 , L̄ = L , (3.7)

with the gauge parameter L being a linear multiplet.10

The action for three-form supergravity is obtained from (3.2) by replacing Φ with Π1/3.

This leads to

SSG,t-f = − 3

κ2

∫

d4xd2θd2θ̄ E

{

(

Π̄Π
)

1

3 − 1

2
mP

}

= − 3

κ2

∫

d4xd2θd2θ̄ E
(

Π̄Π
)

1

3 +

{

m

κ2

∫

d4xd2θ E Π+ c.c.

}

, (3.8)

where m is a real parameter. By construction the action is invariant under gauge transfor-

mations (3.7).

Making use of (3.5), the equation of motion for the compensator can be written as

R+ R̄ = 2m, R := Π−2/3∆̄Π̄1/3 , (3.9)

10In the case of N = 1 Poincaré supersymmetry, the linear multiplet was first introduced in [47]. It is

used to describe the N = 1 tensor multiplet [48].

– 9 –



J
H
E
P
1
2
(
2
0
1
7
)
0
0
5

compare with (3.3). The chirality of R then implies

R = µ = const , Reµ = m. (3.10)

Unlike (3.2), the action (3.8) for three-form supergravity contains only one real parameter,

m, which determines the corresponding supersymmetric cosmological term. However, on

the mass shell R becomes a complex parameter, µ, as in (3.3). The real part of R is fixed

by the equation (3.9), while its imaginary part is generated dynamically.

The three-form multiplet has a geometric realisation in terms of a gauge super 3-

form [28] that extends the flat-superspace construction of [21]. Following [28], we consider

the real super 3-form

R3[P ] = −iĒγ̇ ∧ Eβ ∧ Ea (σa)β
γ̇P

− 1

2
Eγ ∧ Eb ∧ Ea(σab)γδDδP − 1

2
Ēγ̇ ∧ Eb ∧ Ea(σ̃ab)

γ̇δ̇D̄δ̇P

− 1

48
εabcdE

c ∧ Eb ∧ Ea
(

(σ̃d)γ̇γ [Dγ , D̄γ̇ ] + 12Gd
)

P , (3.11)

which is constructed in terms of the prepotential P . Its exterior derivative, R4 := dR3,

proves to involve P only via the gauge-invariant field strength Π = ∆̄P . For the super

4-form R4 ≡ R4[Π] we obtain

R4[Π] = −Ēδ̇ ∧ Ēγ̇ ∧ Eb ∧ Ea(σ̃ab)
γ̇δ̇Π− Eδ ∧ Eγ ∧ Eb ∧ Ea(σab)γδΠ̄

− 1

12
Ēδ̇ ∧ Ec ∧ Eb ∧ Eaεabcd(σ̃

d)δ̇αDαΠ+
1

12
Eδ ∧ Ec ∧ Eb ∧ Eaεabcd(σ

d)δα̇D̄α̇Π̄

− 1

192
Ed ∧ Ec ∧ Eb ∧ Eaεabcd

{

i
(

D2 − 12R̄
)

Π− i
(

D̄2 − 12R
)

Π̄
}

. (3.12)

Note that the real super 4-form R4 is related to the imaginary part of the complex super

4-form Ξ4 in eq. (2.23) with the chiral Lagrangian Lc replaced with Π, that is

R4[Π] =
i

2

(

Ξ4[Π]− Ξ̄4[Π̄]
)

. (3.13)

The field strength R4[Π] is invariant under gauge transformations of the potential R3[P ]

of the form

δLR3[P ] = R3[L] , (3.14)

where R3[L] is obtained from (3.11) by replacing P with a real linear superfield constrained

as in (3.7). The super 3-form R3[L] coincides, modulo an overall numerical factor, with

the field strength of the linear multiplet, see, e.g., [42, 49].

The important property of R3[P ], which was not noticed in [28], is that this superform

is super-Weyl invariant,

δσR3[P ] = 0 =⇒ δσR4[Π] = 0 . (3.15)
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The above superform realisation of the three-form multiplet may be given a more

geometric setting, in the spirit of [21, 28, 49]. This multiplet can be described by a gauge

super 3-form B3 =
1
6E

C ∧ EB ∧ EABABC defined modulo gauge transformations

δΛB3 = dΛ2 , Λ2 =
1

2
EB ∧ EAΛAB , (3.16)

with the gauge parameter Λ2 being an arbitrary super 2-form. In order to obtain an

irreducible supermultiplet, the gauge invariant field strength H4 = dB3 must be subject to

certain constraints such that their general solution is given by H4 = R4[Π], eq. (3.12). Then

the gauge freedom (3.16) may be used to choose B3 in the form B3 = R3[P ], eq. (3.11). In

this gauge, the residual gauge invariance is described by (3.14).

3.3 Complex three-form supergravity

The super-Weyl invariant formulation for complex three-form supergravity was given in [30].

The conformal compensator for this theory is a complex three-form multiplet coupled to

conformal supergravity. This multiplet is described in terms of a covariantly chiral scalar

Υ and its conjugate Ῡ defined as follows:

Υ = ∆̄Σ̄ , Ῡ = ∆Σ . (3.17)

Here Σ is a covariantly complex linear scalar superfield constrained by

∆̄Σ = 0 . (3.18)

In general, if Σ is chosen to be super-Weyl primary, then its weight has to be (p− 2, 1), for

some p,

δσΣ = [(p− 2)σ + σ̄]Σ , (3.19)

as a consequence of the condition that the constraint (3.18) be super-Weyl invariant [11].

Requiring the chiral scalar Υ = ∆̄Σ̄ to be super-Weyl primary as well, we have to choose

p = 3, which means

δσΣ = (σ + σ̄)Σ =⇒ δσΥ = 3σΥ . (3.20)

In order for Υ to be used as a conformal compensator, Υ−1 must exist.

The general solution to the constraint (3.18) is known [11, 18] to be

Σ = D̄α̇Ψ̄
α̇ , (3.21)

where Ψ̄α̇ is an unconstrained spinor superfield defined modulo gauge transformations

δΛΨ̄
α̇ = D̄β̇Λ̄

(α̇β̇) , (3.22)

which leave Σ invariant. The super-Weyl transformation of the prepotential can be chosen

to be

δσΨ̄
α̇ =

3

2
σ̄Ψ̄α̇ , (3.23)

and this transformation law implies (3.20).11

11More generally, if the super-Weyl transformation of Σ is given by (3.19), then the prepotential Ψ̄α̇

defined by (3.21) transforms as follows: δσΨ̄
α̇ = [(p− 3)σ + 3

2
σ̄]Ψ̄α̇, as shown in [11].
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The superfields Υ and Ῡ defined by (3.17) are invariant under gauge transformations

of the form

δLΣ = L1 − iL2 , ∆̄Li = 0 , L̄i = Li . (3.24)

This may be recast as a gauge transformation of the prepotential Ψ̄α̇ defined by (3.21),

δLΨ̄
α̇ = η̄α̇ , Dαη̄

α̇ = 0 . (3.25)

The action for complex three-form supergravity is obtained from (3.2) by replacing Φ

with Υ1/3, which leads to

SSG,ct-f = − 3

κ2

∫

d4xd2θd2θ̄ E (ῩΥ)1/3 . (3.26)

No contribution comes from the cosmological term in (3.2) since the replacement

Φ3 → Υ = ∆̄Σ̄ and the integration rule (2.18) give a total derivative. In other words,

complex three-form supergravity possesses no supersymmetric cosmological term. This is

similar to the new minimal formulation for N = 1 supergravity [50–52]. However, un-

like new minimal supergravity, a negative cosmological constant is generated dynamically

in the case of complex three-form supergravity. Indeed, the equation of motion for the

prepotential Ψα, which originates in Σ̄ = DαΨα, is

DαR = 0 , R := Υ−2/3∆̄Ῡ1/3 . (3.27)

Its general solution is R = µ = const, where µ is an arbitrary complex constant.

The complex three-form multiplet has a geometric superform realisation that extends

the flat-superspace formulation of [18]. Let us consider the following complex super 3-form

C3[Σ̄] = −2Ēγ̇ ∧ Eβ ∧ Ea (σa)β
γ̇Σ̄

+ iEγ ∧ Eb ∧ Ea(σab)γδDδΣ̄ + iĒγ̇ ∧ Eb ∧ Ea(σ̃ab)
γ̇δ̇D̄δ̇Σ̄

+
i

24
εabcdE

c ∧ Eb ∧ Ea
(

(σ̃d)γ̇γ [Dγ , D̄γ̇ ] + 12Gd
)

Σ̄ . (3.28)

Its exterior derivative, dC3[Σ̄], proves to be constructed entirely in terms of the field

strength Υ = ∆̄Σ̄. More precisely, it holds that

dC3[Σ̄] = Ξ4[Υ] , (3.29)

where Ξ4[Υ] is the complex super 4-form in eq. (2.23) with Lc replaced by Υ. Similar to

the super 3-form (3.11), C3[Σ̄] is super-Weyl invariant,

δσC3[Σ̄] = 0 =⇒ δσΞ4[Υ] = 0 . (3.30)

The field strength Ξ4[Υ] is invariant under gauge transformations of the potential C3[Σ̄]

of the form

δLC3[Σ̄] = C3[L1 + iL2] , (3.31)

where C3[L1 + iL2] is obtained from (3.28) by replacing Σ̄ → L1 + iL2, with the gauge

parameters Li constrained as in (3.24).
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4 Supermembrane coupled to supergravity

We are now in a position to formulate consistent dynamics of a supermembrane propagating

in a three-form supergravity background. Our construction will be valid for both the

real and complex three-form supergravity theories. We will draw heavily on the results

of [24, 26].

The action for a supermembrane propagating in a three-form supergravity background

is proposed to be

S = T3

∫

d3ξ

{

1

2

√−γγijΦΦ̄Ei
aEj

bηab +
1

6
ǫijkEi

CEj
BEk

ABABC − 1

2

√−γ

}

. (4.1)

Here ξi, with i = 1, 2, 3, are the coordinates of the world volume with metric γij ,

γ = det(γij) =
1
6ǫ

ijkǫi
′j′k′γii′γjj′γkk′ , and the Levi-Civita symbol ǫijk is normalised as

ǫ123 = 1. As usual, γij denotes the inverse metric such that γikγkj = δij . In (4.1) we

have used the notation

Ei
A = ∂iz

M (ξ)EM
A (4.2)

for the pull-back supervielbein.

Our action (4.1) involves a composite dilaton ΦΦ̄, where Φ is a chiral primary superfield

of weight +1 such that Φ−1 exists. The superfield Φ is assumed to be the compensator

of one of the two three-form supergravity theories. In the case of three-form supergravity,

we choose Φ to be Π1/3. The presence of Φ in (4.1) distinguishes our action from that

considered in [26]. In the case of complex three-form supergravity, Φ = Υ1/3. The inclusion

of the dilaton is necessary since we are working with the super-Weyl invariant formulation

for supergravity. The super-Weyl freedom may be fixed by choosing the condition Φ = 1.

The Wess-Zumino term in (4.1) involves the components of a gauge super 3-form

B3 = 1
6E

C ∧ EB ∧ EABABC . This superform is chosen as follows: (i) for three-form

supergravity, B3 = R3[P ], with R3[P ] defined by eq. (3.11); and (ii) in the case of complex

three-form supergravity, B3 = i
2(C3[Σ̄] − C̄3[Σ]), with C3[Σ̄] given by (3.28). The latter

super 3-form, B3[Σ, Σ̄], turns out to coincide with the superform R3[Σ + Σ̄], which is

obtained from (3.11) by replacing P with (Σ+ Σ̄). In both cases, the gauge-invariant field

strength H4 = dB3 is such that

H4 =
i

2

(

Ξ4[Φ
3]− Ξ̄4[Φ̄

3]
)

, (4.3)

where Ξ4 is the superform in eq. (2.23) with Lc replaced either with Φ3 = Π or Φ3 = Υ.

Consistent supermembrane actions must possess a local fermionic κ-symmetry [24].12

This gauge symmetry ensures that half of the fermionic degrees of freedom can be gauged

away and that spacetime and world-volume supersymmetry can be linked to each other.

Let us now show that the action (4.1) is consistently κ-symmetric in arbitrary three-form

supergravity backgrounds.

12The κ-symmetry was first discovered in the cases of massive [53, 54] and massless [55] superparticles.

See [56, 57] and references therein for reviews of various aspects of the κ-symmetry.
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Defining δκE
A := δκz

MEM
A, we consider the fermionic gauge transformation

δκE
a = 0 , δκE

α = Φ1/2Φ̄−1
(

κβ + κ̄α̇Γ̄
α̇α

)

, κα ≡ κ̄α̇ , (4.4a)

where the gauge parameter κα(ξ) is a two-component undotted SL(2,C) spinor, and a

world-volume scalar. The variation δκĒα̇ is the complex conjugate of δκE
α, while Γαα̇ and

Γ̄α̇α = −εαβεα̇β̇ Γββ̇ are given by

Γαα̇ = − 1

6
√−γ

(ΦΦ̄)3/2 ǫijkEi
aEj

bEk
cεabcd(σ

d)αα̇ , (4.4b)

Γ̄α̇α =
1

6
√−γ

(ΦΦ̄)3/2 ǫijkEi
aEj

bEk
cεabcd(σ̃

d)α̇α . (4.4c)

Following [24], we parametrise the variation of the membrane’s metric as

δκγij = 2(Xij − γijXk
k) , (4.5)

with Xij to be determined below. We now point out the relation

δκEi
A = ∂iδκE

A − 2δκE
CEi

BΩ[BC)
A + δκE

CEi
BTBC

A , (4.6)

where the Lorentz connection ΩBC
A and the torsion tensor TBC

A are given by eqs. (2.8)

and (2.9a), respectively. In conjunction with integration by parts, this relation may be

used to bring the variation of the action to the form:

δκS = T3

∫

d3ξ

{

−√−γXij(Tij − γij) +
1

2

√−γγijTij

(

Φ̄δκE
αDαΦ+ ΦδκĒα̇D̄α̇Φ̄

)

−√−γγij(ΦΦ̄)Ei
DδκE

CTCD
aEj

bηab +
1

6
ǫijkEi

DEj
CEk

BδκE
AHABCD

}

. (4.7)

Here we have denoted Tij := ΦΦ̄Ei
aEj

bηab, and HABCD represents the components of the

closed super 4-form

H4 = dB3 =
1

4!
ED ∧ EC ∧ EB ∧ EA

{

4D[ABBCD) − 6T[AB
EB|E|CD)

}

. (4.8)

Since δκE
a = 0, in accordance with eq. (4.4a), only dimension-0 and dimension-1/2

components of the torsion tensor appear in the κ-variation (4.7). In the case of the super-

space geometry of section 2, no dimension-1/2 torsion is present, and the only dimension-0

torsion is

Tα
β̇c = −2i(σc)α

β̇ . (4.9)

The non-trivial components of the superform H4 defined by (4.3), which appear in the

variation of the Wess-Zumino term in eq. (4.1), are

Habγδ = −4(σab)γδΦ̄
3 , Habcδ =

1

2
εabcd(σ

d)δδ̇D̄δ̇Φ̄3 , (4.10)
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and their complex conjugates. Now, if me make use of the relations (4.4), (4.9) and (4.10),

and also choose

Xij =

{

− 2√−γ
Φ1/2Φ̄2 ǫkl(iγj)pEk

bEl
cEp

α(σbc)αβ

− 6iΦ3/2(T[k
k + δk[k)δ

(i
l Ep]β̇γ

j)lγpqEq
a(σa)β

β̇

+
1

12
√−γ

Φ1/2Φ̄ ǫklpγijEk
aEl

bEp
cεabcd(σ

d)ββ̇D̄β̇Φ̄

+
3

2
Φ−1/2Φ̄−1(T[k

k + δk[k)Tl
lδ

(i
p]γ

j)pDβΦ

}

κβ + c.c. , (4.11)

it may be shown, using some algebra, that the action (4.1) is indeed invariant under the

fermionic gauge transformation.

We emphasise that the Wess-Zumino term in the supermembrane action (4.1) is con-

structed in terms of the gauge three-form, for which our results in eqs. (3.11) and (3.28)

are essential. On the other hand, the proof of κ-invariance, which was first given in [26]

in the gauge Φ = 1, requires only the constraints on the torsion and the field strength

four-form, and for this reason is blind to the concrete three-form supergravity we choose,

real or complex.

5 Concluding comments

The super-Weyl invariant formulation for the real and complex three-form supergravity the-

ories provides a simple description for conformally flat supergravity backgrounds (compare

with section 6.5 of [11]). It is obtained by choosing the supergravity covariant derivatives

DA to coincide with the flat global ones DA = (∂a, Dα, D̄
α̇), while keeping the correspond-

ing compensator, Π or Υ, to be arbitrary. In the case of three-form supergravity, our

action (4.1) then reduces to that describing the supermembrane coupled to a background

three-form multiplet, as constructed by Bandos and Meliveo [58].

Since all supersymmetric actions described in this paper are super-Weyl invariant, our

results may be recast in the framework of 4D N = 1 conformal superspace [43].

Recently, nilpotent three-form multiplets have been used to construct theories for

spontaneously broken localN = 1 supersymmetry [59, 60]. One can also consider Goldstino

models described by a nilpotent complex three-form multiplet. Its off-shell structure is still

given by the relations (3.17)–(3.20). But now it is subject to the nilpotency constraint

Υ2 = 0 , (5.1)

with the additional condition that ∆Υ is nowhere vanishing such that (∆Υ)−1 exists. This

Goldstino superfield may be coupled to every off-shell formulation for supergravity. In

particular, its coupling to old minimal supergravity is described by the action

SGoldstino =

∫

d4xd2θd2θ̄ E
ῩΥ

(Φ̄Φ)2
. (5.2)
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[18] S.J. Gates Jr., M.T. Grisaru, M. Roček and W. Siegel, Superspace Or One Thousand and

One Lessons in Supersymmetry, Front. Phys. 58 (1983) 1 [hep-th/0108200] [INSPIRE].

[19] D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge University Press, Cambridge

(2012).

[20] W. Siegel, Solution to constraints in Wess-Zumino supergravity formalism,

Nucl. Phys. B 142 (1978) 301 [INSPIRE].

[21] S.J. Gates Jr., Super p-form gauge superfields, Nucl. Phys. B 184 (1981) 381 [INSPIRE].

[22] B. Zumino, Superspace, in Unification of the Fundamental Particle Interactions, S. Ferrara,

J. Ellis and P. van Nieuwenhuizen eds., Plenum Press (1980), pg. 101–117.

[23] A. Achucarro, J.P. Gauntlett, K. Itoh and P.K. Townsend, World volume supersymmetry

from space-time supersymmetry of the four-dimensional supermembrane,

Nucl. Phys. B 314 (1989) 129 [INSPIRE].

[24] E. Bergshoeff, E. Sezgin and P.K. Townsend, Supermembranes and eleven-dimensional

supergravity, Phys. Lett. B 189 (1987) 75 [INSPIRE].

[25] E. Bergshoeff, E. Sezgin and P.K. Townsend, Properties of the eleven-dimensional super

membrane theory, Annals Phys. 185 (1988) 330 [INSPIRE].

[26] B.A. Ovrut and D. Waldram, Membranes and three form supergravity,

Nucl. Phys. B 506 (1997) 236 [hep-th/9704045] [INSPIRE].

[27] I.L. Buchbinder and S.M. Kuzenko, Quantization of the classically equivalent theories in the

superspace of simple supergravity and quantum equivalence, Nucl. Phys. B 308 (1988) 162

[INSPIRE].

[28] P. Binetruy, F. Pillon, G. Girardi and R. Grimm, The three form multiplet in supergravity,

Nucl. Phys. B 477 (1996) 175 [hep-th/9603181] [INSPIRE].

[29] S.M. Kuzenko and S.A. McCarthy, On the component structure of N = 1 supersymmetric

nonlinear electrodynamics, JHEP 05 (2005) 012 [hep-th/0501172] [INSPIRE].

[30] F. Farakos, S. Lanza, L. Martucci and D. Sorokin, Three-forms in supergravity and flux

compactifications, Eur. Phys. J. C 77 (2017) 602 [arXiv:1706.09422] [INSPIRE].

[31] I.A. Bandos and C. Meliveo, Supermembrane interaction with dynamical D = 4 N = 1

supergravity. Superfield Lagrangian description and spacetime equations of motion,

JHEP 08 (2012) 140 [arXiv:1205.5885] [INSPIRE].

[32] P.S. Howe and R.W. Tucker, Scale invariance in superspace, Phys. Lett. B 80 (1978) 138

[INSPIRE].

[33] S.M. Kuzenko, R. Manvelyan and S. Theisen, Off-shell superconformal higher spin multiplets

in four dimensions, JHEP 07 (2017) 034 [arXiv:1701.00682] [INSPIRE].

– 17 –

https://doi.org/10.1016/0370-2693(84)91370-4
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B134,403%22
https://doi.org/10.1016/0370-2693(89)90284-0
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B226,36%22
https://doi.org/10.1088/1126-6708/2000/06/006
https://arxiv.org/abs/hep-th/0004134
https://inspirehep.net/search?p=find+EPRINT+hep-th/0004134
https://arxiv.org/abs/hep-th/0108200
https://inspirehep.net/search?p=find+EPRINT+hep-th/0108200
https://doi.org/10.1016/0550-3213(78)90205-5
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B142,301%22
https://doi.org/10.1016/0550-3213(81)90225-X
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B184,381%22
https://doi.org/10.1016/0550-3213(89)90115-6
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B314,129%22
https://doi.org/10.1016/0370-2693(87)91272-X
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B189,75%22
https://doi.org/10.1016/0003-4916(88)90050-4
https://inspirehep.net/search?p=find+J+%22AnnalsPhys.,185,330%22
https://doi.org/10.1016/S0550-3213(97)00510-5
https://arxiv.org/abs/hep-th/9704045
https://inspirehep.net/search?p=find+EPRINT+hep-th/9704045
https://doi.org/10.1016/0550-3213(88)90047-8
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B308,162%22
https://doi.org/10.1016/0550-3213(96)00370-7
https://arxiv.org/abs/hep-th/9603181
https://inspirehep.net/search?p=find+EPRINT+hep-th/9603181
https://doi.org/10.1088/1126-6708/2005/05/012
https://arxiv.org/abs/hep-th/0501172
https://inspirehep.net/search?p=find+EPRINT+hep-th/0501172
https://doi.org/10.1140/epjc/s10052-017-5185-y
https://arxiv.org/abs/1706.09422
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.09422
https://doi.org/10.1007/JHEP08(2012)140
https://arxiv.org/abs/1205.5885
https://inspirehep.net/search?p=find+EPRINT+arXiv:1205.5885
https://doi.org/10.1016/0370-2693(78)90327-1
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B80,138%22
https://doi.org/10.1007/JHEP07(2017)034
https://arxiv.org/abs/1701.00682
https://inspirehep.net/search?p=find+EPRINT+arXiv:1701.00682


J
H
E
P
1
2
(
2
0
1
7
)
0
0
5

[34] B. Zumino, Supergravity and superspace, in Recent Developments in Gravitation — Cargèse
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