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1 Introduction

The Minimal Standard Model includes a few sectors that are consistent theories in their own

right. The best-known of these are QED and QCD, but in addition we have the ZH sector:

it contains only the Z and the H bosons, with their interactions. This is, in fact, nothing

but the Abelian Higgs model [1], the simplest example of a spontaneously broken gauge

symmetry in quantum field theory. The internal consistency of such models is of course

uncontroversial [2]. In particular they respect unitarity, with which we mean the behaviour

of on-shell scattering amplitudes with energy when all masses and scattering angles are kept

constant: it implies unitarity in each partial wave separately. This is not trivial, especially

because of the longitudinal degrees of freedom present in massive spin-1 particles. The best-

known proof of perturbative unitarity of the Abelian Higgs model is presented [3]. In that

paper, the authors point out that unphysical fields must be involved in the case of a general

gauge, and the main issue is to get rid of these fields, and of the gauge dependence, in the

finally resulting S-matrix elements. Other proofs, like that of the equivalence theorem [4]

also typically rely on the Feynman-’t Hooft gauge. There is, however, another way to view

the Abelian Higgs model. Rather than starting with the unbroken theory, which is a gauge

theory, we may as well simply regard the broken Lagrangian ‘as given’, that is a theory

containing two massive particles, with spins 0 and 1, without worrying where it came from.

Massive spin-1 theories do not suffer from the necessity of fixing a gauge, since there is

no gauge symmetry. It ought therefore to be possible to prove unitarity of the amplitudes

directly using only the physical fields, with the Proca propagator,1 at least at the tree level.

In higher loops (which we do not consider here), the effect of the Faddeev-Popov ghosts

can be implemented by introducing counterterms proportional to the space-time volume,

1In gauge theory language, the unitary gauge.
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as described e.g. in [5].2 This is the approach we adopt here: we shall use only the physical

Z and H fields, and the unitary-gauge propagator for the Z.

The study of multi-leg amplitudes is a flourishing field. Excellent didactic reviews are

for instance [6, 7]. These mainly discuss theories with a high degree of symmetry (with

N = 4 super-Yang-Mills as an extreme example), whereas we are dealing with a theory

with very little symmetry, and with explicitly massive particles. In addition, the approach

of choice is to express all fields in terms of massless (Weyl) spinors and employ the arsenal

of techniques available for such formulations. In the spirit of the previous paragraph, we

hold that it ought to be possible to restrict ourselves to (scalar and) vector fields only: no

spinors will intrude in our derivations.

Partial-wave unitarity requires cross sections at some energy scale E to decrease as E−2

when E becomes large, and all angles are kept fixed [8, 9]. Since for an n-point amplitude

Mn, relevant to 2 → (n − 2) processes, the concomitant phase space has dimensionality3

E2n−8, acceptable unitarity (high-energy) behaviour implies

Mn ∼ E4−n (1.1)

at high energies. As we shall show, power counting gives us a behaviour up to E+2 for

amplitudes in the ZH sector, so cancellations over many orders of magnitude (powers of E

over some mass) must occur for large-n amplitudes. At the tree level, an amplitude like

that for ZZ → 4Z+6H is based on 649,271,700 diagrams and calls for a cancellation over

10 orders of magnitude: clearly we must be as systematic as possible.

Our strategy in this paper will be as follows. We shall first establish effective Feynman

rules that describe off -shell amplitudes at the E2 level, that is, the most dangerous be-

haviour with energy. The Schwinger-Dyson equations (SDe) of the model provide recursion

relations between these amplitudes which have surprisingly simple solutions. The vanishing

of the E2 terms is then immediately obvious. The E0 terms can be obtained from these

off-shell amplitudes by including the effects of nonzero masses in a perturbative approach,

and we shall show that in first order these vanish as well, provided that the Higgs self-

interactions are correctly chosen. We then turn to on-shell recursion relations, that deal

with the splitting-up of amplitudes into products of lesser on-shell amplitudes connected

by off-shell propagators. The less-than-E0 behaviour of these amplitudes then allows us to

prove the unitarity of all tree-level amplitudes. For this it will turn out to be necessary to

deform the momenta (and polarisations) of the particles by extending the four-dimensional

phase space of actual physics to a higher-dimensional one; fortunately, since no spinors are

involved the technicalities of this deformation are fairly straightforward.

2These counterterms arise from the infinite-momentum limit of 1PI diagrams where a closed Z loop

couples to an arbitrary number of H legs, thus giving rise to a non-polynomial Higgs counterterm Lagrangian.
3Each of the n−2 final-state momenta contributes E2, and the delta function imposing four-momentum

conservation scales as E−4.
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2 The ZH sector in the unitary gauge

The propagator of the Z and H bosons are given by, respectively,

µ ν
p

=
i

p2 −m2

(
−gµν +

1

m2
pµpν

)
=

−i
p2 −m2

Tµν(p) +
i

m2
Lµν(p) ,

p
=

i

p2 −M2
. (2.1)

Here

Tµν(p) = gµν − pµpν/p2 , Lµν(p) = pµpν/p2 (2.2)

are the two purely transverse and longitudinal projection tensors, with T 2 = T , L2 = L

and TL = 0. The mass of the Z and of the Higgs are denoted by m and M , respectively.

By either reading them off from the electroweak Lagrangian,4 or by insisting on correct

high-energy behaviour of the amplitudes5 M(2Z,2H), M(2Z,3H) and M(4Z,1H) [11],6 we

establish the Feynman rules for the vertices:

α

β

= 2ig m2 gαβ ,
α

β

= 2ig2m2 gαβ ,

= −3igM2 , = −3ig2M2 , (2.3)

where

g2 = GF
√

2 , (2.4)

and GF is the Fermi coupling constant. For an external Z the longitudinal polarisation

vector can be constructed as

εL
µ =

1

m

(
qµ − m2

(q · t)
tµ
)
, (2.5)

where t is a lightlike vector which we shall choose to be the same for all Z’s in the amplitude.

For an arbitrary Minkowski vector r, the projection

rµ → rµ +
m2(r · t)− (r · q)(q · t)

(q · t)2
tµ − (r · t)

(q · t)
qµ (2.6)

gives an vector orthogonal to both q and t, that can then be normalized to a transverse

polarisation vector εT . This is especially useful for Monte Carlo investigation of the am-

plitudes.

4A most complete set of Feynman rules is given in e.g. ref. [10].
5By M(pZ, qH) we denote the tree-level amplitude with p external Z bosons and q external H bosons.
6This approach follows that of refs. [12, 13].
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3 Recursion relations for off-shell amplitudes

In order to maximize the power-counting behaviour with E for any amplitude in the ZH

sector, we must choose all external Z’s to have longitudinal polarisation; we must use the L

part of the Z propagators; and we must reduce the number of H propagators to a minimum.

This implies that diagrams with Higgs self-interactions are always of lower order in E. It

is then easily checked that the highest possible E dependence in any tree amplitude is E2.

Since all diagrams in an n-point tree amplitude have the same power gn−2 we may put

g = 1 for simplicity. If we adopt the convention that all external on-shell momenta are

counted outgoing, we may replace the original Feynman rules by the following ones:

p
=

p
=

i

p2
,

p q

=

p q

= 2i(p · q) . (3.1)

All external (on-shell) lines carry a trivial factor 1 in this formulation; also implied is an

overall factor (−)n/2 in an on-shell amplitude with n external Z bosons. The ZH model in

this limit is a theory with two massless scalars and a derivative coupling. We shall compute

the off-shell amplitude for a Z or a H going to n Z’s and k H’s:

p
,

p

which we denote by Zn,k and Hn,k, respectively. The amplitude includes the off-shell

propagator, and the momentum p is counted going into the diagrams. The outgoing Higgs

momenta are denoted hi, i = 1, . . . , k, and h = h1 + · · ·+ hk; the outgoing Z momenta are

denoted by qi, i = 1, . . . , n, and q = q1 + · · ·+ qn.

By explicit calculation for several modest values of n and k we can arrive at the

following conjecture, which we shall prove:

Zn,k =

{
(−)k (n− 1 + k)! , n odd

0 , n even
,

Hn,k =


1 , n = 0, k = 1

(−)k+1 (n− 2 + k)! γn , n ≥ 2 even

0 , n odd

,

γn =

{
1 , n = 2

(n− 1)!! (n− 3)!! / (n− 2)! , n ≥ 4 even
. (3.2)

These values can conveniently be gathered into two generating functions:

ζ = ζ(x, y) =
∑
k,n≥0

xnyk

n!k!
Zn,k =

1

2
log

(
1 + y + x

1 + y − x

)
,

χ = χ(x, y) =
∑
k,n≥0

xnyk

n!k!
Hn,k = −1 +

√
(1 + y)2 − x2 . (3.3)
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The SDe for the simplified model giving the E2 terms read

= + + ,

= + + , (3.4)

The best calculational strategy is to realise that, in any of our off-shell amplitudes, the

coefficient of (q1 · q2) must be equal to that of q2/2 in the final expression owing to the

symmetry between the Z’s. Similarly the coefficient of (h1 · h2) gives that of h2/2, and the

coefficient of (q1 · h1) gives that of (q · h). We therefore only have to keep track of a few

momentum products to be able to reproduce the whole off-shell amplitude Hn,k. Similarly,

the coefficient of (p · q1) is that of (p · q), and the coefficient of (p · h1) is that of (p · h) in

the Zn,k. We can write the off-shell amplitudes as7

Zn,k = θ
(
(n, k) = (1, 0)

)
− 2

p2

(
(p · q)A(1)

n,k + (p · h)A
(2)
n,k

)
,

Hn,k = θ
(
(n, k) = (0, 1)

)
− 2

p2

(
1

2
q2A

(3)
n,k +

1

2
h2A

(4)
n,k + (q.h)A

(5)
n,k

)
. (3.5)

The several A’s are given by

A
(1)
n,k =

∑
m,`

(
n− 1

m− 1

)(
k

`

)
Zm,`Hn−m,k−`

+
1

2

∑
m,t,`,r

(
n− 1

m− 1 , t

)(
k

` , r

)
Zm,`Ht,rHn−m−t,k−`−r ,

A
(2)
n,k =

∑
m,`

(
n

m

)(
k − 1

`− 1

)
Zm,`Hn−m,k−`

+
1

2

∑
m,`,t,r

(
n

m , t

)(
k − 1

`− 1 , r

)
Zm,`Ht,rHn−m−t,k−`−r ,

A
(3)
n,k =

∑
m,`

(
n− 2

m− 1

)(
k

`

)
Zm,` Zn−m,k−`

+
∑
m,`,t,r

(
n− 2

m− 1 , t− 1

)(
k

` , r

)
Zm,` Zt,rHn−m−t,k−`−r ,

7The logical step function θ(P) is 1 if P is true, 0 if P is false.
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A
(4)
n,k =

∑
m,`

(
n

m

)(
k − 2

`− 1

)
Zm,` Zn−m,k−`

+
∑
m,`,t,r

(
n

m , t

)(
k − 2

`− 1 , r − 1

)
Zm,` Zt,rHn−m−t,k−`−r ,

A
(5)
n,k =

∑
m,`

(
n− 1

m− 1

)(
k − 1

`− 1

)
Zm,` Zn−m,k−`

+
∑
m,`,t,r

(
n− 1

m− 1 , t

)(
k − 1

` , r − 1

)
Zm,` Zt,rHn−m−t,k−`−r . (3.6)

The summations run from 0 to infinity. Throughout this paper we use the convention(
a

b

)
= 0 for b < 0 or b > a (3.7)

since (−n)! diverges for natural numbers n > 0, and the definitions(
a

b , c

)
=

(
a

b

)(
a− b
c

)
,

(
a

b , c , d

)
=

(
a

b

)(
a− b
c

)(
a− b− c

d

)
. (3.8)

To illustrate how the combinatorial factors come about, let us look at the first term in the

recursive expression for A(1) in eq. (3.6). The coefficient of (p · q) is, as we have argued,

that of (p ·q1). Now the vector q1 can only come from the Z. In the object Zm,` we therefore

single out the vector q1, and then there are m − 1 other external Z momenta left, to be

chosen from n− 1 available ones; this gives the first binomial. The second binomial comes

from the number of ways to choose ` H momenta out of k. We stress that we do not assume

the momenta qj to be all equal, as is done in studies of threshold amplitudes;8,9 rather, we

use the fact that amplitudes must be symmetric in the q’s as well as in the h’s.

By computer algebra the relations (3.5) can be checked for different values of (n, k);

but it is more profitable to inspect the generating functions of the A’s,

A(j)(x, y) =
∑
n,k≥0

xnyk

n!k!
A

(j)
n,k , j = 1, . . . , 5 . (3.9)

The functions A(1,2) must be odd in x, the functions A(3,4,5) even. The SDe take the

following forms:

ζ = x− 2A(1) (p · q)
p2

− 2A(2) (p · h)

p2
, (3.10)

χ = y −A(3) q
2

p2
−A(4)h

2

p2
− 2A(5) (q · h)

p2
. (3.11)

Since we already have our conjecture on the form of ζ and χ we only need to establish

the consistency of these equations rather than provide an all-out proof, because given the

8For example in refs. [14–16].
9For a recent application see for instance ref. [17].
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correct starting points the recursion relations lead to unique answers. We can easily derive

the following differential relations:

−2
∂

∂x
A(1) = −2

(
∂

∂x
ζ

) (
χ+

1

2
χ2

)
=

∂

∂x
ζ − 1− y ,

−2
∂

∂y
A(2) = −2

(
∂

∂y
ζ

) (
χ+

1

2
χ2

)
=

∂

∂y
ζ + x ,

− ∂2

(∂x)2
A(3) = −

(
∂

∂x
ζ

)2(
1 + χ

)
=

∂2

(∂x)2
χ ,

− ∂2

(∂y)2
A(4) = −

(
∂

∂y
ζ

)2(
1 + χ

)
=

∂2

(∂y)2
χ ,

−2
∂

∂x

∂

∂y
A(5) = −2

(
∂

∂x
ζ

)(
∂

∂y
ζ

)(
1 + χ

)
= 2

∂

∂x

∂

∂y
χ . (3.12)

Using the even/odd properties of the A’s we arrive at

−2A(1) = ζ − x− xy ,
−2A(2) = ζ + xy + f1(x) ,

−A(3) = χ+ f2(y) ,

−A(4) = χ+ yf3(x) + f4(x) ,

−2A(5) = 2χ+ f5(x) + f6(y) . (3.13)

Here the functions fj (j = 1, . . . , 6) are undetermined. Note, however, that the terms

with f1,3,4,5 correspond to either hµ = 0 or h2 = 0, while those with f2,6 correspond

to qµ = 0. These terms therefore effectively vanish. A sole exception is the possibility

f3(x) =constant. The starting value H0,1 = 1 tells us to take f3(x) = −1, so eq. (3.11) is

satisfied. The right-hand side of eq. (3.10) reads

ζ + x

(
1− (p · q)

p2

)
+ xy

(
(p · q)
p2

− (p · h)

p2

)
.

For (n, k) = (1, 0) we have p · q = p2, and for (n, k) = (1, 1) we have p · q = p · h = p2/2,

so that the extra terms also effectively vanish. This establishes the correctness of the

conjecture (3.2). Since the off-shell amplitudes do not depend on p2 we have now proven

that in all on-shell amplitudes the E2 terms vanish.

4 Mass effects and transversality

So far we have taken the Z and H bosons to be massless, which was appropriate for

examining the E2 terms. In the next order, E0, we have to consider the effects of nonzero

masses. These come from different sources. For the Z mass m we have the effect of q2j = m2

for external Z’s; the correction term with tµ for longitudinally polarised bosons in eq. (2.6);

and the T term in the Z propagator. Another possible source of E1 or E0 terms is the

occurrence of one or two transversely polarised Z bosons. For the Higgs mass M we have

– 7 –
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the effect of h2j = M2 for external Higgses; the correction to the Higgs propagator; and

the so-far neglected H self-interactions. To leading order we may inspect all these different

effects separately, while keeping to the E2 approximation in the rest of the amplitude.

We first deal with the M2 terms. The M2 corrections in the Higgs propagator can con-

veniently be included by keeping the propagator massless and including a two-point vertex:

= −iM2 . (4.1)

Let us now consider an on-shell amplitude with n Z’s and k Higgses. The occurrence of a sin-

gle 2-,3-, or 4-point vertex gives the M2 contribution to the order we are working in, denoted

by M(n, k). Keeping track of these vertices and dropping an overall factor iM2, we have

Mn,k = + + (4.2)

=
(−1)

2

∑
m,`

(
n

m

)(
k

`

)
Hm,`Hn−m,k−`

+
(−3)

3!

∑
m,`,t,r

(
n

m, t

)(
k

`, r

)
Hm,`Ht,rHn−m−t,k−`−r

+
(−3)

4!

∑
m,t,u,`,r,s

(
n

m, t, u

)(
k

`, r, s

)
Hm,`Ht,rHu,sHn−m−t−u,k−`−r−s .

The M2 contribution from an external Higgs is correctly subsumed in the two-point terms.

We immediately find the generating function∑
n,k

xnyk

n!k!
Mn,k = −1

2
χ2 − 1

2
χ3 − 1

8
χ4

= −1

8
χ2(2 + χ)2 = −1

8

(
2y + y2 − x2

)2
. (4.3)

We find that the M2 terms vanish in all on-shell amplitudes except (correctly) the 3- and

4-point ones, which after all are not required by unitarity to decrease at high energy. We

can read off the leading M2 terms in these amplitudes:

M(3H) : −3iM2 , M(2Z, 1H) : +iM2 ,

M(4H) : −3iM2 , M(4Z) : −3iM2 , M(2Z, 2H) : +iM2 . (4.4)

Explicit calculation confirms these results. The last of these is the least trivial one: of the

4 diagrams,

each of the first two ones give −iM2, while the fourth diagram contributes +3iM2. We

now turn to the m2 terms. To this end another recursion relation is needed, namely that

– 8 –
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for off-shell Z’s without the propagator factor. These we denote by Kµ
n,k(q), where µ is the

uncontracted Lorentz index of the amplitude. We immediately have, at the E2 level,

Kµ
1,0(q) = qµ , Kµ

1,1 = 2iqµ . (4.5)

For the other values of (n, k) the recursion relation is diagrammatically also given by the

first line of eq. (3.4). Algebraically we therefore have

Kµ
n,k(q) = qµθ(n = 1, k = 0) + 2iqµθ(n = 1, k = 1)

+ 2i
(
qµA

(1)
n,k + hµA

(2)
n,k

)
θ(n > 1 or k > 1) . (4.6)

In terms of generating functions this reads

K =
∑
n,k

xnyk

n!k!
Kµ
n,k(q) = xqµ + 2ixyqµ

+ 2iqµ
(
A(1) − (x, xy)

)
+ 2ihµ

(
A(2) − (x, xy)

)
, (4.7)

where the notation “−(x, xy)” means that the coefficients of both x and xy are to be put

to zero. We have

A(1) − (x, xy) = ζ − (x, y) ,

A(2) − (x, xy) = ζ + f7(x)− (x, xy) , (4.8)

where, as before, f7(x) is undetermined but refers to cases with hµ = 0 anyway. We arrive at

K = xpµ + 2ixyqµ + 2i
(
ζ − (x, xy)

)
pµ . (4.9)

With the single exception of the case n = k = 1, all the amplitudes Kµ
n,k are seen to be

proportional to the momentum pµ of the off-shell Z boson. This has two consequences. In

the first place, to this order contracting the amplitude Kµ with the Z polarisation vector εµ
gives a vanishing result. The only other source of m2 terms, the T part of the propagator,

is contracted at each end with a Kµ amplitude. This means that it can only survive if it

has Kµ
1,1 at both ends; this implies that the amplitude M(2Z,2H) is the only one that has

m2E0 terms.

From eq. (4.9) we see that potential E1 terms in amplitudes with one transversely

polarised Z vanish. If two Z bosons are transversely polarised the leading terms go as E0

by powercounting, and we shall now investigate these by considering amplitudes having two

off-shell legs with momenta qa and qb, and unresolved Lorentz indices α and β, respectively,

the n − 2 other Z’s being longitudinally polarized. By Lorentz covariance and power

counting, such amplitudes must be of the form

iQ gαβ + i
∑

Rj
aj
αbj

β

∆j

where Q and the Rj are numbers, aj and bj are (combinations of) momenta, and ∆j is the

denominator of some propagator.

– 9 –
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The only diagrams that contribute to gαβ in the amplitudes are those where the two

off-shell Z bosons are connected to the same ZZH or ZZHH vertex. In terms of the

generating functions, we therefore have

α

β
+

α

β
→ 2igαβ

(
χ+

1

2
χ2

)
= igαβ

(
2y + y2 − x2

)
, (4.10)

so that Q = 2 forM(2Z,H) andM(2Z, 2H), Q = −2 forM(4Z), and Q = 0 for all other

amplitudes.

The Rj correspond to the residues of the poles of the propagators 1/∆j . Since nei-

ther the Zn,k nor the Hn,k have poles, ∆’s that contain either none or both the off-shell

Z’s do not contribute to the E0 terms. Let us consider the doubly off-shell amplitude

M(qαa , qbβ, q1, q2, . . . , qn−2, h1, h2, . . . , hk) which has n Z and k H legs. All Z’s except the

first two are on-shell and longitudinally polarised; the Z’s with momenta qa,b are off-shell

and their Lorentz index is not resolved. The residue of the pole (qa+ qj1 + · · ·+ qjm +hi1 +

· · ·+ hi`)
−2 is given, up to a possible sign, by

R = iKα
m+1,`(qa)K

β
n−1−m,k−`(qb) (4.11)

for even m, and by

R = iKα
m,`+1(qa) k

β
n−2−m,k+1−`(qb) (4.12)

for odd m. Since Kµ
n,k(q) is proportional to qµ except when n = k = 1, each term in the

E0 terms of the amplitude is proportional to either qαa or qβb or both. Upon contraction

with polarisation vectors they therefore cancel. The single exception to this behaviour is

K1,1(qa)
αKβ

1,1(qb), that is the 4-point amplitudeM(2Z, 2H) which stands unmasked as the

most irregular amplitude of all in the ZH sector.

5 On-shell recursion relations

We have now proven the following: all E2 contributions cancel in all n-point amplitudes

with n ≥ 4; terms with E0M2 only survive for n = 3 or 4; and terms with E0m2 only occur

in the 2Z,2H amplitude. For n > 4 all amplitudes decrease with E at least as fast as E−1.

To arrive at this conclusion we have used only that the external momenta are on-shell, and

momentum conservation. To proceed further we consider on-shell decomposition relations,

in the spirit of [18].

An n-point tree amplitude M contains 2n−1 − n − 1 internal propagators. Let s be

a set of ns of the external momenta (with 2 ≤ ns ≤ n − 2), and let us call ps the total

momentum of the set s. The corresponding propagator has denominator

∆s = ps
2 −m2 , (5.1)

where m is the Z or Higgs mass, as the case may be. We shall describe a deformation of the

amplitude into a phase space of dimension 7 (a higher number is in principle also possible).
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The metric has signature (+,−,−,−,+,−,−). The external momenta kj (j = 1, . . . , n)

have of course no components in the extra dimension, nor does the auxiliary vector t:

kµ = (k0, k1, k2, k3) → (k0, k1, k2, k3, 0, 0, 0) ,

tµ = (t0, t1, t2, t3) → (t0, t1, t2, t3, 0, 0, 0) . (5.2)

Now, we choose an arbitrary set of vectors ηj (j = 1, . . . , n) having components only in

the extra dimensions:

ηµ = (0, 0, 0, 0, η5, η6, η7) , (5.3)

with the constraints

ηj
2 = 0 ,

∑
j

ηj
µ = 0 . (5.4)

It is this requirement that necessitates the extra dimensions to number at least 3; but then

we can always construct any number of such vectors. We define the following deformation,

depending on a complex parameter z:

kj
µ → k̃µj = kj

µ + z1/2ηj
µ (5.5)

The longitudinal polarization vector of an external Z now automatically gets the deforma-

tion

εj
µ → ε̃µj = εj

µ +
z1/2

m
ηj
µ . (5.6)

Note, however, that there are not 2 but 5 transverse polarisation vectors, with components

in all dimensions. Just like the original kj , the deformed k̃j are on-shell and the total

momentum is conserved.

The deformed amplitude, M(z), is the original one, M(0), with the momenta and

polarisations replaced by their deformed versions. It has denominators

∆̃s = p̃2s −m2 = ∆s + zηs
2 , (5.7)

which vanish at the z value

zs = −∆s/ηs
2 . (5.8)

The residue at this pole is denoted R(zs). It is easily seen thatM(z) is a rational function

of z. Let us consider the limit z →∞. In this limit, the η dominate the external momenta.

Since the E2 terms vanish, as do the E1,0 terms for n > 4,

M∞ ≡ lim
z→∞

M(z) =

{
constant , n = 4

0 , n > 4
(5.9)
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We are therefore allowed the following contour integral manipulations:

M(0) =
1

2πi

∮
z∼0

dz
M(z)

z

= M∞ −
∑
s

1

2πi

∮
z∼zs

dz
R(zs)

z ∆̃s

= M∞ −
∑
s

1

2πi

∮
z∼zs

dz
R(zs)

z(z − zs)ηs2

= M∞ +
∑
s

R(zs)

∆s
. (5.10)

Since at the pole z = zs the deformed momentum p̃s is exactly on-shell, and since for Z

propagators in the unitary gauge⌊
−gµν +

1

m2
p̃µs p̃

ν
s

⌋
z=zs

=

6∑
λ=1

ε̃s(λ)µε̃s(λ)ν , (5.11)

where λ denotes an enumeration of the (at least) six physical, normalised polarisation vec-

tors, we see that R(zs) is precisely (a spin sum of) the product of two on-shell amplitudes:

R(zs) = Ans+1Bn−ns+1 , (5.12)

where we have indicated the number of external legs in the factor amplitudes, which is

always at most n− 1. This allows us induction in n: if both the on-shell amplitudes A and

B respect unitarity in the sense that they have the correct behaviour with E, then

R(zs)

∆s
∼ 1

E2
E4−(ns+1)E4−(n−ns+1) = E4−n . (5.13)

Thus we have established that in the HZ model all on-shell tree amplitudes obey partial-

wave unitarity.

A final remark is in order here. We want to stress that in this paper we do not aim

at computing the amplitudes, but rather want to study their high-E behaviour. If we

had opted for a two-line deformation, we would in the limit |z| → ∞ have the situation

of two high-energy particles moving in the background of lower-energy ones. The high-

E limit would then be a situation like m,M � q2,...,n, h2,...,n � zq1, zh1, a problem in

which two large ratios of scales occur. By using an all-line deformation we circumvent this

artificial problem because the high-E and high-z limits actually conicide. Other all-line

deformations have been used before [19–21], where the fact that Weyl spinors are used

more or less enforces the restriction to four dimensions. Since we only consider vectors, the

extension to higher dimensions is unproblematic. On the other hand, higher dimensions

imply extra transverse polarisations, which are of course absent in a four-dimensional

deformation. For internal lines, the only rôle of the extra polarisations is to ensure that

the Z propagators remain in the unitary gauge; while for the external lines, only the

‘original’ three polarizations are present, albeit deformed.10

10We thank the referee for drawing our attention to this point.
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6 Conclusions

In this paper we prove the tree-level unitarity of all amplitudes in the Abelian Higgs model.

This is not a new result: rather, it is the method of arriving at it that is of interest here,

and we recapitulate the novelties involved.

• We have used only physical fields. The unitary gauge is widely considered inap-

propriate for studying unitarity (and renormalizability) because of its high-energy

behaviour, but here we have shown that it actually forms the cornerstone of any

treatment that aims at using physical degrees of freedom only: it provides the effec-

tive Feynman rules that led us to Zn,k and Hn,k.

• The Schwinger-Dyson equations of the theory are seen to lead to surprsingly simple

forms for the off-shell amplitudes (cf. eq. (3.2)), which have to our knowledge not

been obtained before.

• We have deformed the amplitudes by extending the dimensionality of phase space

and deforming all lines simultaneously. We deem this all-line deformation necessary

since we are dealing with a massive theory rather than unbroken YM-like theories in

which the problem of relative scales does not enter.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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