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1 Introduction

Measures of quantum entanglement, and especially entanglement entropy, have been an

inspirational and unifying theme in theoretical physics in recent years. Invented largely in

the quantum information community, they have been successfully applied in a much broader

context. That entanglement entropy and black hole entropy both have an area law [1, 2]

has been a source of inspiration in the quantum gravity community. Certain types of

entanglement entropy are believed to order quantum field theories under renormalization
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group flow [3–6]. These entanglement measures can also serve as order parameters for

certain exotic phase transitions [7–10].

In our field theory context, we are interested in the entanglement between a spatial

region A and its complement Ā. We assume, for now, that the Hilbert space may be

factorized with respect to these spatial regions: H = HA ⊗ HĀ. Given this nontrivial

assumption, one may construct the reduced density matirx ρA = trĀ ρ by tracing over the

degrees of freedom in the complementary region Ā, where ρ is the initial density matrix.

The Rényi entropies are then moments of the reduced density matrix,

Sα ≡
1

1− α
log tr[(ρA)α] , (1.1)

while the entanglement entropy itself can alternately be defined as the limα→1 Sα of the

analytically continued Rényi entropies or as the von Neumann entropy with respect to the

reduced density matrix:

SE ≡ − tr(ρA log ρA) . (1.2)

The modular Hamiltonian is defined to be the logarithm of the reduced density matrix,

H ≡ − log ρA , (1.3)

and plays a key role in computing entanglement and Rényi entropies as well as other

measures of quantum entanglement such as the mutual information and the relative entropy.

In general, H is non-local. One simple and important case where H is believed to

be known is in computations of the entanglement across a planar interface x1 = 0 in flat

space coordinatized by xµ, µ = 0, 1, . . . , d − 1. In this case, by the Bisognano-Wichmann

theorem [11, 12], the modular Hamiltonian is given by the generator of boosts in the

direction x1 perpendicular to the interface. In the Euclidean setting, where x1 and the

Euclidean time coordinate ix0 form a plane, these boosts are simply rotations about the

origin. In terms of the stress tensor Tµν (defined by varying the action with respect to an

external metric), we then naively should be able to claim that the modular Hamiltonian is

Hcov = 2π

∫
dd−1xx1 T00(x) . (1.4)

We use the subscript “cov” for covariant. For conformal field theories, this result has

additional implications for geometries related to a planar interface in flat space by Weyl

rescaling of the metric. For instance, the modular Hamiltonian for entanglement across

a spherical interface in flat space would then also be known (as described for example in

refs. [13, 14]).

The problem with the definition (1.4) is that the charge H can be modified by a

boundary term [15–17]. More generally, given a conserved current Jµ, such that ∂µJ
µ = 0,

we are free to introduce an antisymmetric tensor field qµν = −qνµ and add a derivative

of it to the current Jµ → Jµ + ∂νq
νµ without spoiling the conservation condition. The

conserved charge is then modified by the boundary integral
∫

dd−2x q01. (With regards to

H, qµν could for example be a time component of the Belinfante tensor.)

– 2 –
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In the case of the conformally coupled scalar field φ, refs. [18, 19] proposed seemingly

distinct methods for fixing the ambiguity. Ref. [18]’s proposal, which we henceforth adopt

in this paper, is to add a boundary term such that

H = 2π

∫
x1>ε

dd−1xx1 T00(x) + 2πξ

∫
x1=ε

dd−2xφ2 , (1.5)

where Tµν is the usual “improved” stress tensor for a conformally coupled scalar field,

derived by varying the action with respect to the metric, and ξ = d−2
4(d−1) is the conformal

coupling. A nice feature of this expression is that each term is separately Weyl invariant;

it is straightforward to construct H for geometries related by Weyl rescaling. In contrast,

ref. [19] proposed that one should use the “unimproved” stress tensor, dropping the ∇2φ2

term from the T00 component of the “improved” stress tensor. In this case, it is less clear

how to apply a Weyl rescaling. Ref. [20] later partially clarified the situation by pointing

out that at least in flat space, the ∇2φ2 contribution could be integrated by parts to yield

the boundary term in (1.5). In section 2, we present two partially independent arguments

for the choice of boundary term in (1.5).1

As suggested by refs. [18, 19] and as we further clarify here, the φ2 boundary term

resolves a number of puzzles in the literature concerning various perturbative corrections

to entanglement entropy of a conformally coupled scalar. The unifying feature of these

puzzles is that the perturbative result depends on correlation functions involving H. If the

boundary term in (1.5) is not included, these correlation functions take the wrong value,

and the perturbative result will disagree with other independent computational methods.

Ref. [18] discovered this boundary term affected thermal corrections to entanglement en-

tropy. Ref. [19] noted the importance of this term for computing the entanglement entropy

of a massive scalar perturbatively in the mass. Ref. [19] also noted its importance for com-

puting Rényi entropies in the α→ 1 limit, or equivalently the dimension of twist operators

perturbatively in an α → 1 limit. (The discrepancy in the α → 1 limit of twist operators

was noted but not explained in ref. [22].) In sections 3 and 6, we extend to all dimension

d ≥ 3 the perturbative mass and twist operator calculations presented in ref. [19] for the

case of a dimension d = 3 scalar. (For d = 2, the conformal coupling vanishes, ξ = 0, and

there is no discrepancy to be explained.)

Indeed we claim for a massive scalar with an arbitrary non-minimal coupling, ξ 6= d−2
4(d−1) ,

the improved modular Hamiltonian (1.5) continues to be the correct one to use in “half-

space” entanglement calculations. With a mass, we lose the ability to perform Weyl trans-

formations, but we may still consider the mass dependence of the entanglement across the

x1 = 0 interface. The operator algebra for a non-minimally coupled scalar field in flat

space cannot depend on ξ because the curvature vanishes. Therefore, it seems reasonable

to assume that the entanglement entropy cannot depend on ξ [20]. For instance in flat

space, standard numerical methods which depend on the operator algebra [2] cannot de-

tect a nonzero value of ξ. We show that the boundary term in (1.5) acts precisely to cancel

1In related work discussing Wilson-Fisher fixed points and the O(N) model, ref. [21] found evidence

that such a boundary term could be dynamically generated through renormalization group flow. This

paper focuses on the Gaussian fixed point, and we have little to say about the effect of interactions on

entanglement entropy.
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any naive ξ dependence in the area law term of the entanglement entropy for a massive

scalar. In this context, the calculations we present are very similar to those in ref. [20],

but our interpretation is somewhat different. The possibility and attendant difficulties

of ξ-dependence in entanglement entropy is a twenty year old subject [23–26] which has

still not been successfully resolved [27]. We hope our arguments may finally help put the

debate to rest.

The paper is organized as follows. In section 2, we give two independent arguments

for the necessity of the boundary term in the modular Hamiltonian (1.5). Both arguments

rely on specifying appropriate boundary conditions for the entangling surface. The first

argument uses the modular Hamiltonian, while the second uses the path integral on a

conical space. The next three sections discuss mass contributions to the entanglement

entropy of a non-minimally coupled scalar; we discuss in order the small mass limit, the

large mass limit, and the case of arbitrary mass. In section 3, we explain how the boundary

term resolves a discrepancy in perturbative calculations of the mass dependence of the

entanglement entropy for a conformally coupled scalar. As we are in the business of clearing

up puzzles in the calculation of entanglement entropy for non-minimally coupled scalars,

we decided to resolve a puzzle [28] that turns out not to be associated with boundary

terms. This puzzle concerns the large mass limit in 2+1 dimensions. As we describe

in section 4, the resolution of this puzzle has a more mundane origin in the dimensional

dependence of the conformal coupling. Third, we discuss the mass dependence of the

area law contribution for an arbitrary mass, non-minimally coupled scalar in section 5,

arguing that the prescription (1.5) should hold also away from the conformal coupling

ξ = d−2
4(d−1) . Moving on, in section 6, we use the boundary term to clear up a discrepancy

in the calculation of twist operator dimensions (or equivalently Rényi entropy in the limit

α→ 1). The Discussion in section 7 is an attempt to apply the lessons learned here about

boundary terms to gauge fields and more general quantum field theories. Appendix A

contains details of the numerical algorithms we use to check our results. Appendix B has

two additional versions of the perturbative mass calculations described in section 3.

2 Fixing the boundary term ambiguity

The action for a non-minimally coupled, massive scalar field φ in a d-dimensional curved

space time M with boundary ∂M is

I = −1

2

∫
M

ddx
√
−g [(∂φ)2 +m2φ2 + ξRφ2]− ξ

∫
∂M

dd−1x
√
−γK φ2 . (2.1)

The action is Weyl invariant for the choices m2 = 0 and

ξ = ξc ≡
d− 2

4(d− 1)
. (2.2)

The quantities R and K are the Ricci scalar curvature and the trace of the extrinsic

curvature respectively. We have also introduced the induced metric γµν on the boundary

∂M. The usual action has been supplemented by a boundary term K φ2 that preserves the

– 4 –



J
H
E
P
1
2
(
2
0
1
6
)
1
3
8

Weyl invariance in the presence of ∂M. The boundary term also improves the behavior of

the action under variations with respect to the metric, which yields the usual “improved”

stress tensor with a less well-known boundary contribution:

Tµν ≡ 2√
−g

δI

δgµν
,

= (∂µφ)(∂νφ)− 1

2
gµν

[
(∂φ)2 +m2

]
+ ξ

(
Rµν − 1

2
R gµν −∇µ∇ν + gµν∇2

)
φ2

+ ξδ(x⊥)
[
(Kµν −K γµν)φ2 − (∂σφ

2)nσγµν
]
. (2.3)

Here nµ is an outward pointing unit normal vector to ∂M and Kµν is the extrinsic

curvature.

2.1 Hamiltonian approach

We begin our entanglement entropy computations with the case where M is the Rindler

wedge of Minkowski space, (x1)2 − (x0)2 > ε2. The cut-off ε > 0 is introduced to control

singular behavior in the entanglement entropy in the limit ε → 0. We would like to

compute the entanglement entropy of the half space x1 > ε at x0 = 0. This quantity

is controlled by the modular Hamiltonian H, also known as the boost generator in the

01-plane. Starting from the stress tensor and the naive definition (1.4) of the modular

Hamiltonian, H should be

Hcov = π

∫
x1>ε

dd−1xx1
[
Π2 + (∂iφ)2 +m2φ2

]
− 2πξ

∫
x1>ε

dd−1xx1~∇2φ2 , (2.4)

= π

∫
x1>ε

dd−1xx1
[
Π2 + (∂iφ)2 +m2φ2

]
− 2πξ

∫
x1=ε

dd−2xφ2 , (2.5)

where the canonical momentum Π = ∂0φ and ~∇2 = �2 + ∂2
0 . In deriving the first line, we

have used that Kµν −Kγµν vanishes, because Kµν has only one nonzero component on the

boundary. We have also assumed that φ is not divergent at x1 = 0, allowing us to drop

a x1∂x1φ2 term at the boundary. This modular Hamiltonian evolves the theory not in x0

but in τ = tanh−1(x0/x1). We have multiplied Hcov by a factor of 2π associated with the

periodicity of the Euclidean time τE = iτ or correspondingly the inverse temperature. In

moving from the first line to the second line, we have integrated by parts twice and again

assumed that φ is not divergent at x1 = 0.

The ambiguity in H can be seen by instead starting in flat space and deriving the

modular Hamiltonian using Noether’s theorem and boost symmetry. The Noether charge

is basically the canonical Hamiltonian multiplied by an extra factor of x1:

Hcan = π

∫
x1>ε

dd−1xx1
[
Π2 + (∂iφ)2 +m2φ2

]
+ 2πξ

∫
x1=ε

dd−2xφ2 , (2.6)

where we need to be careful to evaluate εK = 1 before taking the limit ε → 0. The

subscript “can” here means canonical. Clearly the expressions (2.4) and (2.6) differ by a

boundary term.

– 5 –
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The claim of refs. [18–20] can be paraphrased thus — the modular Hamiltonian relevant

for an entanglement entropy computation is the one with no boundary term at all,

H = π

∫
x1>ε

dd−1xx1
[
Π2 + (∂iφ)2 +m2φ2

]
, (2.7)

or equivalently eq. (1.5).

One way of justifying this choice is through a consideration of boundary conditions.

Hamilton’s equations reduce to

φ̇ = zΠ , (2.8)

Π̇ = ∂z(z∂zφ) + z∂2
i φ+ z m2φ2 , (2.9)

where for ease of notation we have set x1 = z. The dot means a derivative with respect to

the time associated with H, i.e. the modular time τ , not x0. In deriving the Π̇ equation of

motion, we have assumed that a boundary term vanishes,

(z∂zφ+ cφ)|z=ε = 0 , (2.10)

where we have allowed for a constant c depending on the strength of the φ2 boundary term.

Our assumption that φ is finite at the entangling surface sets the z∂zφ combination to zero.

If c 6= 0, then the value of φ at the entangling surface is fixed. Such a Dirichlet condition is

not compatible with the notion of an entanglement entropy computation where the value

of the field φ should be free to fluctuate at the entangling surface. The remaining option is

to set c = 0 and choose the modular Hamiltonian (2.7). A similar argument was presented

in ref. [18] but using a Lagrangian framework and the Weyl rescaled geometries: Hd−1×S1

where Hd is d-dimensional hyperbolic space and also Sd−1 × R.

We would like to elevate these boundary condition considerations to a more general

principle: to compute entanglement entropy, we must choose a modular Hamiltonian which

has sensible boundary conditions for the quantum fields at the entangling surface. For the

case of the scalar, that meant the fields should be free to fluctuate but should also not

be divergent at z = 0. If a naively computed modular Hamiltonian, for example Hcov or

Hcan above, does not have sensible boundary conditions, one may be able to improve it by

adding boundary terms.

2.2 Path integral approach

We now present an alternate derivation of the same boundary term, using instead a path

integral (or replica trick) approach. The Rényi entropy Sα across a planar interface is

related to the Euclidean partition function on the conical space Cα×Rd−2 where Cα is an

α-sheeted cover of R2, branched over the origin:

Sα =
1

1− α
log

[
Zα

(Z1)α

]
. (2.11)

The codimension-two conical singularity allows one to consider adding codimension-two

boundary terms to the action for a conformally coupled scalar, in particular

δI = c

∫
x1=x0=0

dd−2x⊥ φ
2 , (2.12)

– 6 –
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where c is an as yet undetermined constant and ~x⊥ are the transverse coordinates on

Rd−2 parametrizing the entangling surface. Note that such a term does not spoil the Weyl

invariance of the theory.

On Cα, the Ricci scalar has a delta function distribution at the conical singularity

R = 4π(1 − α)δ2(x). If we put a metric ds2
Cα

= dr2 + r2dθ2 on Cα where 0 ≤ θ < 2πα,

then the distribution can be written as R = −2(1− 1/α)δ(r)/r. The differential operator

in the equation of motion is then

�− ξR =
1

r
∂rr∂r − 2ξ

1− 1/α

r
δ(r) +

1

r2
∂2
θ + ∂2

~x⊥
+m2 . (2.13)

(There is in principle also a distributional contribution to �, proportional to δ(r)r∂r.

However, with our choice of boundary condition, this contribution will vanish.) To carry

out the path integral, we look for eigenfunctions of this operator using a separation of

variables ansatz, φ(t, ~x⊥, r) ∼ einθ/α+ikix
i
⊥ϕ(r). We find

ϕ′′ +
ϕ′

r
− 2ξ(1− 1/α)

r
δ(r)ϕ− n2

α2r2
ϕ = −λ2ϕ . (2.14)

This ordinary differential equation has been well studied both in the context of cosmic

strings and conformal quantum mechanics (see for example ref. [29]). The general solution is

ϕ = c1J|n/α|(rλ) + c2Y|n/α|(rλ) . (2.15)

Normalizability implies that if c2 6= 0, then n < α. An additional constraint comes from

integrating the differential equation near the origin. For the n > 0 case, the simplest

solution is to set c2 = 0 in which case ϕ(0) = 0 and the effect of the delta function

vanishes. For the n = 0 case, the delta function produces the constraint

lim
r→0

rϕ′(r) = 2ξ(1− 1/α)ϕ(0) . (2.16)

We can try to use this constraint to find a relation between c1 and c2. One finds how-

ever that the relation can only be solved at a small cut-off scale r? and not in the strict

limit r → 0:
c1

c2
=

2

π

(
1

C
− γ − log(r?λ/2)

)
, (2.17)

where C = 2ξ(1−1/α). Using this procedure, one will find also a bound state (or tachyon)

K0(irλ) (λ is pure imaginary) with energy proportional to 1/r? when α < 1:

iλr? = 2 exp

(
−γ +

1

C

)
. (2.18)

In the conformal case m = 0 and ξ = ξc, the introduction of such a scale breaks

conformal invariance. The bound state also implies the theory is not stable. One could

imagine truncating the n = 0 modes from the spectrum. But that will have the awkward

consequence of forcing the field to vanish at the origin, a sort of Dirichlet condition on

an entanglement problem where the origin is not a special point and the field should be

– 7 –
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free to fluctuate there. We propose a different resolution. We use the freedom to add a

codimension-two boundary term to the action to remove the delta function distribution

from the Laplacian and restore scale invariance to the solutions:

δIE = −2π(1− α)ξ

∫
r=0

dd−2xφ2 . (2.19)

The sign is a bit tricky. Eq. (2.19) correctly cancels the contribution from the tip to the

Ricci scalar in the Euclidean signature we use in this section. In Lorentzian signature, δI

would have the opposite sign.

It seems most natural to define theories with arbitrary values of m and ξ as a smooth

deformation of the Weyl invariant case. Thus, we should keep the codimension-two bound-

ary term (2.19), with coefficient ξ, that cancels the delta function contribution from the

Ricci scalar. On the cone then, our action reduces to

IE =
1

2

∫
ddx

[
(∂φ)2 +m2φ2

]
, (2.20)

and, using boosts and Noether’s theorem, the modular Hamiltonian to (2.7). (Note that

the space Cα × Rd−2 has no codimension-one boundary.)

The procedure we are advocating here is equivalent to the so-called Friedrichs exten-

sion [29] of the Laplacian on the cone. Such an extension is typically used in heat kernel

calculations on the cone. See for example ref. [30]. We are arguing that the Friedrichs

extension implicitly involves adding a codimension-two boundary term to the action for a

non-minimally coupled scalar.

3 Conformal perturbation theory and the massive scalar

In this section, we consider how the mass of a scalar field affects the entanglement entropy

in the limit where the mass is kept small. We will use conformal perturbation theory.

Let O(x) be a relevant operator of dimension ∆(≤ d) in d-dimensional QFT. The

relevant perturbation by the operator

IE = IUV + gO

∫
ddx
√
gO(x) , (3.1)

induces an RG flow from the UV fixed point described by the CFT with the action IUV

to an IR fixed point. Perturbative studies around the UV fixed point (gO = 0) show

entanglement entropy has an expansion in the relevant coupling gO of the form [14, 31, 32]

(see also [33–35] for related works)

S(λ) = S(0) + s1 gO + s2 g
2
O +O

(
g3
O
)
, (3.2)

where the first order term is given by the integrated two-point function of the modular

Hamiltonian H and the relevant operator

s1 = −
∫

ddx
√
g 〈H O(x)〉 . (3.3)

– 8 –
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If we consider half-space entanglement and were to adopt the naive expression (1.4) for the

modular Hamiltonian, the first order term should vanish, s1 = 0. It would vanish because

the two-point function of the stress tensor and a scalar operator is zero in CFT, as noted in

this context in ref. [32]. However, as we have already discussed, the modular Hamiltonian

is not simply an integral over the stress tensor. It also involves a boundary term (1.5).

This boundary term can generically give a nonzero result for s1.

If the conformal perturbation theory calculation described above is to give the correct

answer, it should agree with an equivalent replica trick approach to the computation. In

order to reduce the complexity of the problem, we place the CFT on a compact space to

remove the IR divergence. Among many choices of the IR regulator, we employ a cylinder

type manifold R× Sd−1 whose Euclidean metric is

ds2
R×Sd−1 = dt2 +R2(dθ2 + sin2 θ dΩ2

d−2) , (3.4)

and take the entangling surface Σ dividing Sd−1 into two subregions at t = 0 and θ = θ0

as in [28]. Using the replica trick, the entanglement entropy can be extracted from the

partition function Z[Mα] on the α-fold cover Mα of the manifold (3.4) branched over the

codimension-two hypersurface Σ. In particular, we find

S = lim
α→1

∂α(Fα − αF1) , (3.5)

where Fα ≡ − logZ[Mα] is the free energy.

Instead of working on the intricate geometry Mα, it is easier to make use of a Weyl

rescaling to a simpler space S1 ×Hd−1 with metric

ds2
S1×Hd−1 = R2

[
dτ2 + du2 + sinh2 u dΩ2

d−2

]
, (3.6)

whose relation to the original one (3.4) is given by ds2
R×Sd−1 = e−2σds2

S1×Hd−1 with the

conformal factor [13]2

e−2σ =
sin2 θ0

(cos τ + cos θ0 coshu)2 + sin2 θ0 sinh2 u
. (3.8)

Accordingly, the α-fold cover Mα is mapped to the space (3.6) with the α times larger

period τ ∼ τ + 2πα. The perturbative expansion of the free energy for the relevant

perturbation (3.1) is easily seen to take the form of

Fα(λ) = Fα(0) +
∞∑
l=1

glO
l!

∫
· · ·
∫
S1
α×Hd−1

e(∆−d)σ(x1) · · · e(∆−d)σ(xl)〈O(x1) · · · O(xl)〉S1
α×Hd−1 .

(3.9)

2The map follows from the coordinate transformation

tanh(t/R) =
sin θ0 sin τ

coshu+ cos θ0 cos τ
, tan θ =

sin θ0 sinhu

cos τ + cos θ0 coshu
. (3.7)

– 9 –
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Here S1
α stands for a circle parametrized by τ of the period 2πα. Formal substitution

of (3.9) into the formula (3.5) will calculate the entanglement entropy, the first order

term (3.3) being3

s1 =

∫
S1×Hd−1

e(∆−d)σ(x) lim
α→1

∂α

[
〈O(x)〉S1

α×Hd−1 − 〈O(x)〉S1×Hd−1

]
. (3.10)

In this form, there is no particular reason for s1 to vanish.

For a concrete example, we consider a free scalar theory (2.1) with mass term m2φ2/2.

The theory becomes conformal when ξ = ξc and m = 0 and we regard the mass term as a

relevant perturbation with gO = m2 and O = φ2/2 of ∆ = d− 2. Indeed, we will see below

that for a mass perturbation, s1 does not vanish and that the replica trick agrees with the

modular Hamiltonian approach, provided we include the φ2 boundary term in H.

3.1 Free energy method

We use the replica trick to compute the O(m2) correction to the entanglement entropy of

a free massive scalar field in d ≥ 3. We assume that the one-point function 〈O(x)〉S1
α×Hd−1

does not depend on the position x as the space has translational invariance S1
α and the

homogeneity on Hd−1. Then one can factorize (3.10) to

s1 = Vd lim
α→1

∂α

[
〈O(x)〉S1

α×Hd−1 − 〈O(x)〉S1×Hd−1

]
, (3.11)

where Vd is the integral of the conformal factor

Vd =

∫
S1×Hd−1

ddx
√
g e(∆−d)σ(x) . (3.12)

We need the expectation value of the one-point function to evaluate s1, which can be read

off from the partition function of the theory perturbed by the relevant operator defined on

S1
α × Hd−1. Namely, the one-point function is obtained by taking a derivative of the free

energy Fα ≡ − logZ[S1
α ×Hd−1]:

〈O(x)〉S1
α×Hd−1 − 〈O(x)〉S1×Hd−1 = Vol

(
S1
α ×Hd−1

)−1
∂gO(Fα − αF1)

∣∣
gO=0

, (3.13)

where we again used the homogeneity assumption. Putting all together, we end up with

s1 =
Vd

Vol (S1 ×Hd−1)
lim
α→1

∂α∂gO(Fα − αF1)
∣∣
gO=0

. (3.14)

For the mass deformation of the free scalar, we choose O = φ2/2 and gO = m2.

The partition function of a conformally coupled real massive scalar field on S1
α×Hd−1

is given by [36]

Fα =

∫ ∞
0

dλµs(λ)
[
log
(

1− e−2πα
√
λ+(mR)2

)
+ πα

√
λ+ (mR)2

]
, (3.15)

3To recast the term in this form, we utilized the replica Zα symmetry that manifests itself in the domain

of integration as
∫
S1α×Hd−1 · · · = α

∫
S1×Hd−1 · · · .
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where µs(λ) is the Plancherel measure of the real scalar field on Hd−1 of unit radius [37, 38]4

µs(λ) =
Vol(Hd−1)

2d−1π
d+1

2 Γ
(
d−1

2

) sinh(π
√
λ)

∣∣∣∣Γ(d2 − 1 + i
√
λ

)∣∣∣∣2 . (3.16)

This representation of the free energy leads to

lim
α→1

∂α∂(mR)2(Fα − αF1)
∣∣
(mR)2=0

= −π
2

2

∫ ∞
0

dλµs(λ)
1

sinh2(π
√
λ)
. (3.17)

The λ integral may be evaluated, making the change of variables u2 = λ and using the

relation u sinh(πu)|Γ(iu)|2 = π and the first Barnes lemma (see (D.1) of [39]),

1

2π

∫ ∞
−∞

duΓ(λ1 + iu)Γ(λ2 + iu)Γ(λ3 − iu)Γ(λ4 − iu)

=
Γ(λ1 + λ3)Γ(λ1 + λ4)Γ(λ2 + λ3)Γ(λ2 + λ4)

Γ(λ1 + λ2 + λ3 + λ4)
, (3.18)

with λ1 = λ3 = 1 and λ2 = λ4 = d/2− 1. The answer is

lim
α→1

∂α∂(mR)2(Fα − αF1)|(mR)2=0 = −Vol(Hd−1)
(d− 2)Γ(d/2− 1)2

2d+2π(d−3)/2Γ((d+ 1)/2)
. (3.19)

Next we need to evaluate Vd which is the integral over the conformal factor (3.8)

Vd = Vol(Sd−2)

∫ 2π

0
dτ

∫ ∞
0

du sinhd−2 u
sin2 θ0

(cos τ+cos θ0 coshu)2+sin2 θ0 sinh2 u
. (3.20)

A similar integral was carried out in appendix C of ref. [28]. The τ integral can be done

by contour integration, and after a change of variables s = tanhu, the remaining integral

can be put in the form

Vd = 2πVol(Sd−2)

∫ 1

0
ds

sd−3

(1− s2)d/2−1(s2 cot2 θ0 + 1)
. (3.21)

Where it converges, this integral reduces to5

Vd = − 2π(d+3)/2 sind−2 θ0

sin(πd/2)Γ((d− 1)/2)
. (3.22)

Putting the pieces together, we find that

s1 =
R2

(d− 2)2

π3/2Γ(d/2)3 csc(πd/2)

4Γ(d− 2)Γ((d+ 1)/2)
sind−2 θ0 . (3.23)

4The volume Vol(Hd−1) used in the Plancherel measure (3.16) is dimensionless.
5We used the volume Vol(Sd−1) = 2πd/2/Γ (d/2).
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d ∆S

3 −π3(mR)2

32 sin θ0

4 (mR)2

6 sin2 θ0 log(δθ) +O(1)

5 −3π2(mR)2

1024 sin3 θ0

(
2
δθ − π

)
6 − (mR)2

90 sin4 θ0

(
1
δθ2 + 2 log δθ +O(1)

)
Table 1. Table of ∆S ≡ s1m2 for several d.

For d > 3, there is a divergence in the s integral from the region near s = 1. Instead

of the dimensional regularization we just employed above, we may regulate the divergence

by inserting a cut-off ε = 1− smax. In the sphere to hyperbolic space mapping, the angular

cut-off is related to the cut-off in s via δθ2 = 2ε sin2 θ0. It is useful to make a table of the

results for small d to see what is going on (see table 1). In even dimensions, the coefficient

of the log is related to the result from dimensional regularization, while in odd dimensions,

the δθ independent term is the result from dimensional regularization.

The result in d = 4 dimensions can be written as an area law contribution

∆S =
1

24π
AΣm

2 log ε , (3.24)

where Σ = S2 is the entangling surface and AΣ = 4πR2 is its area. This result matches

the computation in ref. [40] for a minimally coupled scalar. More generally, as we review

in section 5, the area law contribution scales as md−2 log ε. Thus only in d = 4 is there an

overlap region where we can compare the results.

In appendix B, we describe two additional methods for computing s1 (3.14). Both

methods rely on identifying the right hand side of eq. (3.14) as the expectation value

〈:φ(x)2:〉α on the conical space Cα × Rd−2. The first method builds on the method of

images employed by Cardy in ref. [41] to compute the mutual information of a conformally

coupled scalar in the limit where the two regions are far apart. A key quantity in that paper

was 〈φ(x)φ(y)〉α. Using some results from refs. [18, 42], it is straightforward to compute

〈φ(x)φ(y)〉α in the limit x→ y and α→ 1. The second method computes 〈:φ(x)2:〉α directly

from the path integral, assuming the boundary term (2.19) is present in the action. This

second method is remarkably efficient.

3.2 Modular Hamiltonian method

We now compare this free energy computation with the modular Hamiltonian method. As

noted at the beginning of this section, 〈Tµν(x):φ(y)2:〉 will vanish, and the contribution to

s1 comes entirely from the boundary term in the modular Hamiltonian (1.5):

s1 = −πξ
∫
∂Hd−1

dd−2x
√
γ

∫
R×Sd−1

ddy
√
g 〈φ2(x)φ2(y)〉 ,

= −2πξ

∫
∂Hd−1

dd−2x
√
γ

∫
S1×Hd−1

ddy
√
g e−2σ(y) 〈φ(x)φ(y)〉2 ,

(3.25)
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where we used the conformal map from R× Sd−1 to S1 ×Hd−1 and Wick’s theorem in the

second equality. We will now derive this two-point function on S1 ×Hd−1, that appears in

the second line.

We derive the two-point function on S1 × Hd−1 by using a Weyl transformation. We

start with the line element (3.6) on S1 × Hd−1. This metric is related to flat space with

line element

ds2
Rd = dt2 + dr2 + r2dΩ2

d−2 , (3.26)

via

ds2
Rd = Ω−2 ds2

S1×Hd−1 , (3.27)

where the Weyl factor is

Ω = cos τ + coshu . (3.28)

The explicit coordinate transformations are

t = RΩ−1 sin τ , r = RΩ−1 sinhu . (3.29)

The two-point function of a free scalar field of dimension ∆ = (d − 2)/2 on Rd takes

the usual form

〈φ(x)φ(y)〉Rd =
N

|x− y|2∆
, (3.30)

where we use a standard normalization,

N =
1

(d− 2) Vol(Sd−1)
. (3.31)

This normalization insures that the Laplacian acting on the two-point function gives a

Dirac delta function with unit strength.

The Weyl and coordinate transformations map this two-point function to6

〈φ(u,Ωi)φ(u′,Ω′i)〉S1×Hd−1

= Ω(x)−∆Ω(y)−∆〈φ(x)φ(y)〉Rd ,

=
N

(2R2)∆
(

coshu coshu′ − sinhu sinhu′
∑d−1

i=1 Ωi Ω′i − cos(τ − τ ′)
)∆

. (3.32)

With the two-point function on S1 × Hd−1 in hand, we can now evaluate the ex-

pression (3.25) for s1. We make use of the symmetry on S1 × Hd−1 to fix the point

6The invariant distance on Hd−1 is known to be

dHd−1(u,Ωi;u
′,Ω′i) = coshu coshu′ − sinhu sinhu′

d−1∑
i=1

Ωi Ω′i − 1 ,

where Ωi (i = 1, · · · , d− 1) are the embedding coordinates of Sd−2 satisfying
∑d−1
i=1 Ω2

i = 1.
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x ∈ ∂Hd−1 = Sd−2 to the “north pole”, Ωi = δi1. This choice significantly simplifies the

calculation. Plugging (3.32) into (3.25) with (3.8), we get

s1 = −2πξ Vol(Sd−2)R2d−2 sinhd−2 u

·
∫
S1×Hd−1

sinhd−2 u′ du′ dτ ′ dΩ′d−2

sin2 θ0

(cos τ ′ + cos θ0 coshu′)2 + sin2 θ0 sinh2 u′

· N 2

(2R2)d−2 (coshu coshu′ − sinhu sinhu′ cos θ′ − cos(τ − τ ′))d−2

∣∣∣∣∣
u→∞

,

= − R2

(d− 2)2

π
1
2 Γ(d/2)3

2Γ(d− 2)Γ((d+ 1)/2)

∫ 1

0
ds

sd−3

(1− s2)d/2−1(s2 cot2 θ0 + 1)
. (3.33)

The τ ′ integral can be done by contour integration. The s-integral is related to the u′-

integral by the change of variables s = tanh(u′). This expression is identical to what we

obtained using the free energy, (3.23).

We have also computed these mass corrections on the sphere by conformally mapping

them to a conical space rather than hyperbolic space. The calculation is far lengthier, and

involves Feynman parameters. At the end of the day, the relation between the UV cut-offs

in the two calculations is obscured. However, we can still match the universal terms. We

will not include the details of this calculation.

3.3 Lattice calculation

As a third independent check, we calculate the entanglement entropy of a massive scalar

numerically, using a variant of Srednicki’s method [2]. Further details of our approach can

be found in appendix A. In brief, we begin with the canonical Hamiltonian for a massive

scalar on a sphere Sd−1. As the sphere has no boundary, issues about codimension one

and two boundary terms will not arise. We decompose this Hamiltonian into spherical

harmonics on Sd−2, leaving an overall dependence on the polar angle θ of Sd−1. We then

compute discretized two-point functions of the field φ and conjugate momentum Π for each

angular momentum mode, as a function of the polar angle θ. Given the Gaussian nature of

the ground state wave function, from these two-point functions, restricted to a cap on the

sphere with opening angle 2θ0, we can reconstruct the eigenvalues of the reduced density

matrix and thus compute the entanglement entropy.

Given the results of the previous subsections, there is an obvious issue with UV di-

vergences for all d ≥ 4. Only in d = 3 is the check straightforward. In figure 1a, we see

that the corrections to the entanglement entropy are indeed linear in m2 for small m2. A

more careful analysis of the data, shown in figure 1b, reveals that the linear term has a

sin θ0 dependence, and that the corrections to the linear scaling are O(m4), in agreement

with the expectation from conformal perturbation theory. We can do even better and try

to compute the π3/32 coefficient of the entanglement change numerically. Computing the

entanglement entropy for several different grid sizes and extrapolating to get a continuum

limit, we are able to obtain the numerical value π3/32 = 0.968946 to about four parts in

105. The results are shown in figure 1c.
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(c) Lattice spacing dependence

Figure 1. Entanglement entropy plots for the massive scalar in d = 3. The data points are

numerically determined while the straight lines are fits. From top to bottom in (a) and (b) and

from bottom to top in (c), the three lines in each graph correspond to θ0 = 41.4◦, 60◦ and 90◦. The

mass is measured in units where the radius of the sphere R = 1. In plots (a) and (b), a grid of 200

points in cos θ was used to discretize the sphere, where θ is the polar angle, while in (c), the number

of grid points was varied. Panel (a) shows the linearity in m2 of the change in entanglement entropy.

Panel (b) demonstrates that the angular dependence of the change in entropy is well approximated

by sin θ0, as predicted. Additionally, the linearity indicates that the next higher order correction

to the change in entropy scales as m4. In panel (c), the x-axis is the inverse of the number of grid

points on the sphere. The data points were computed from the y-intercept of fits like in panel (b),

but for a variety of different grid sizes. The black dot corresponds to the expected coefficient π3/32

of the change in entanglement entropy in the continuum limit. The error in the linear extrapolation

is about 4 parts in 105.

Already in d = 4, there is a log dependence on the cut-off which makes extracting

precise results from the numerics more involved. Figure 2a indicates that the corrections

are still linear in m2, as predicted. Figure 2b shows that the corrections additionally obey

a sin2 θ0 dependence, as predicted by table 1. Having varied the lattice spacing, we also get

a rough fit for the coefficient of the log. The answer depends slightly on θ0. For θ0 = π/2,

we get the best fit of 0.1659 which is very close to the analytic prediction of 1/6. For

θ = 41.4◦, we get the worst fit value of 0.158.
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(b) Lattice spacing dependence

Figure 2. Entanglement entropy plots for the massive scalar in d = 4. Different lines correspond

to different opening angles 2θ0. From top to bottom in (a) and bottom to top in (b), θ0 = 41.4◦,

60◦ and 90◦. The mass is measured in units where the radius of the sphere R = 1. The points are

numerically computed, and the lines are linear fits. Panel (a) demonstrates the linear dependence

in m2 of the entanglement entropy correction. A grid of 200 points in cos θ was used to discretize

the sphere, where θ is the polar angle. In panel (b), N is the number of points used to discretize

the sphere. The data points were obtained from fits to data like in panel (a), but varying the grid

size. The dashed lines with the expected slope of 1/6 are a guide to the eye. The slope of the fits

are a bit low, and range from bottom to top, from 0.158 to 0.1659.

4 Large mass expansion

Entanglement entropy of an entangling (closed) curve Σ in a gapped (2 + 1)-dimensional

system is expected to have a large gap expansion

SΣ = α
`Σ
ε

+ β m`Σ − γ +

∞∑
n=0

cΣ
2n+1

m2n+1
, (4.1)

where m is a gap scale and `Σ is the length of Σ [43]. An algorithm to fix the coefficients

cΣ
2n+1 for free fields was proposed in [44], which relates cΣ

2n+1 to a conformal anomaly in

a (2n + 4)-dimensional theory compactified on T2n+1. The authors of ref. [44] focused

on the flat space case R2,1. Attempting to extend the proposal to the cylinder R × S2,

ref. [28] found a small discrepancy for conformally coupled scalars. The purpose of this

section is to explain and remove the discrepancy. The resolution has no direct connection

to the boundary terms that form the main topic of this paper; it is instead related to the

dimension dependence of the conformal coupling parameter ξ.

Nevertheless, we will be able to perform an interesting cross-check as a result of the

computation here. The value

β = − 1

12
, (4.2)

was established for a minimally coupled scalar field in refs. [40, 45]. One interpretation of

the results here is as evidence that β remains equal to −1/12 in the presence of a non-

minimal coupling ξ to curvature, consistent with our discussion of area law contributions

in the next section.
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We begin by reviewing how cΣ
1 can be determined for a free massive scalar on R2,1. We

start with a free massless scalar field in 3+1 dimensions and compactify a spatial direction

to a circle of circumference L. Then the theory reduces to an infinite tower of free massive

scalars in 2 + 1 dimensions with masses

m2
n =

(
2π

L

)2

n2 , n ∈ Z . (4.3)

If the entangling surface in 3+1 dimensions is topologically a torus Σ2 = Σ×S1, the entan-

glement entropy S
(3+1)
Σ2

becomes a sum over the entropies S
(2+1)
Σ (mn) across the entangling

curve Σ for the massive free scalars:

S
(3+1)
Σ2

=
∑
n∈Z

S
(2+1)
Σ (mn) . (4.4)

Taking the L → ∞ limit, the Kaluza-Klein mass becomes continuous (mn → p) and the

entropy turns out to be

S
(3+1)
Σ2

=
L

2π
· 2
∫ 1/ε

0
dpS

(2+1)
Σ (p) , (4.5)

where we introduced a UV cutoff ε for the KK mass. On the left hand side, there is a

logarithmic divergence s0 log ε whose coefficient s0 is fixed by a conformal anomaly, while

the corresponding term arises from the order 1/m term in (4.1). Matching these terms,

we find

cΣ
1 = −π

L
s0 . (4.6)

Given an entangling surface in CFT4, s0 can be fixed by Solodukhin’s formula [5, 46]

sSolodukhin
0 =

a

2
χ[Σ2] +

c

2π

∫
Σ2

[
Raa −Rabab −

R
3

+ kaµνk
µν
a −

1

2
(kaµµ )2

]
, (4.7)

where a and c are theory dependent central charges, chosen here for the scalar theory, and

normalized such that (a, c) = ( 1
180 ,

1
120) respectively. χ[Σ2] is the Euler characteristic of Σ2,

R the Ricci scalar, and Raa ≡
∑

aRµνnaµnaν , Rabab ≡
∑

a,bRµνρσnaµnbνnaρnbσ are projected

Riemann tensors by the normal vectors naµ (a = 1, 2) to Σ2. kaµν ≡ γ ρµ γ σν ∇ρnaσ is the

extrinsic curvature with the induced metric γµν ≡ gµν −
∑

a n
a
µn

a
ν . Applying the formula

to the entangling surface Σ that is topologically a torus χ[Σ2] = 0 and reducing the theory

on S1, one can determine cΣ
1 as a function of the extrinsic curvature of the entangling curve

Σ on a plane, which is consistent with a numerical calculation [44].

Superficially, nothing about the above argument seems restricted to R2,1. We may try

to use Solodukhin’s formula (4.7) and the relation (4.6) to determine cΣ
1 for an arbitrary

entangling surface Σ in an arbitrary two-dimensional manifold M2 for a spacetime of the

form R1×M2. Ref. [28] made just such an attempt when M2 = S2. Parametrizing a curve

Σ by θ = Θ(φ) on S2 with line element ds2
S2 = R2(dθ2 + sin2 θdφ2), one finds

cΣ
1 = − c

2

∫
Σ

[
1

3R2
+ κ2

]
, (4.8)
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Figure 3. Plots of the Liu-Mezei type renormalized entanglement entropy FLM(θ0,mR) ≡ (R∂R−
1)S(θ0,mR) for a free massive scalar field. From top to bottom, the three curves correspond to

entangling regions with opening angles 2θ0 = π/3, π/2 and π, respectively. The green dotted lines

represent the leading large mass expansions calculated with the coefficient ccap1 in (4.10), while the

orange dashed lines take into account the shift δccap1 (4.11) to the coefficient and show better fits

to the numerical results.

where the extrinsic curvature κ of Σ is

κ2 ≡ kaµνkµνa −
1

2
(kaµµ )2 =

[
2 cos Θ Θ′2 + sin Θ(sin Θ cos Θ−Θ′′)

]2
2R2(sin2 Θ + Θ′2)3

. (4.9)

(We used the curvatures R = 2/R2, Raa = 1/R2 and Rabab = 0.)

To make a numerical check, it is useful to restrict to the simple case Θ(φ) = θ0 of a

cap-like entangling region with opening angle 2θ0. The coefficient (4.8) for a free scalar

simplifies to

ccap
1 = − π

120R
sin θ0

(
1

3
+

cot2 θ0

2

)
. (4.10)

However, a discrepancy was found between the analytic and numerical calculations in

the large mass expansion [28]. The numerics suggests an additional contribution to the

coefficient (see figure 3)

δccap
1 =

π sin θ0

144R
. (4.11)

4.1 Resolution by conformal coupling

The issue is that in fact the conformal coupling cannot be ignored on a general spatial

manifold M2. The discrepancy comes from the dimension dependence of the conformal

coupling. In flat space, the mass contribution from the conformal coupling is zero, and

there is no discrepancy. On the sphere, however, the dimension dependence leads to mixing

between the O(m) and O(1/m) terms in the expansion (4.1). The essential point is that
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in the expansion (4.1), the mass gap m is defined with reference to the three-dimensional

coupling ξ3 = 1/8 while in the integral (4.5), the mass p should be defined with respect to

the coupling ξ4 = 1/6. We have in general that

m2 + ξ3R(2+1) = p2 + ξ4R(3+1) . (4.12)

Given this relation, we can rewrite two terms in the large m expansion in terms of p:

β m`Σ +
cΣ

1

m
= β p `Σ +

1

p

[
cΣ

1 +
1

2

(
ξ4R(3+1) − ξ3R(2+1)

)
β `Σ

]
+O(p−3) . (4.13)

In our setup, R(3+1) = R(2+1) = R(S2) = 2/R2, `Σ = 2πR sin θ0, while β = −1/12 for a

free scalar field [40, 45]. Assembling the pieces, we find that the second term in the square

bracket in (4.13) agrees with (4.11) and resolves the discrepancy found in [28]. That a value

of β = −1/12 is required for the discrepancy to be resolved can be viewed as evidence that

the value of β is independent of the conformal coupling ξ.

To show more clearly how much the shift term (4.11) improves fitting in the large mass

region, we plot the numerical and analytic results for a few choices of θ0 in figure 3. We

introduced the renormalized entanglement entropy of Liu-Mezei type [47]

FLM(θ0,mR) ≡ (R∂R − 1)S(θ0,mR) , (4.14)

to remove the UV divergence.7 The leading large mass expansions with and without the

shift term (4.11) are shown in the orange dashed and green dotted lines respectively. The

orange lines fit the numerical data beautifully even in the mR ≈ 2 region.

4.2 Alternate resolution

An alternative way to fix the large mass discrepancy is to reduce a free massless scalar

with non-conformal coupling ξ3 in four dimensions to an infinite tower of the KK modes

with masses m = mn (4.3) in three dimensions. Namely, we uplift the theory of a free

massive scalar with conformal coupling in 2 + 1 dimensions to a free scalar theory in 3 + 1

dimensions with the action

I
(3+1)
E =

1

2

∫
M×S1

d4x
√
g
[
(∂φ)2 + ξ3R(3+1)φ2

]
. (4.15)

Note that this action is not conformally invariant as the coefficient of the curvature coupling

differs from the correct value ξ4 = 1/6. A manifold such as a cylinder M = R × S2 has

a constant Ricci scalar, and the conformal mass can be treated on the same footing as

a usual mass. As we discussed already around eq. (3.24) and as we will discuss in more

detail in section 5, one can show that the logarithmic divergence of the entropy for the

theory (4.15) has a contribution additional to Solodukhin’s formula:

s0 = sSolodukhin
0 + δs0 , (4.16)

7This renormalized entanglement entropy does not have a monotonicity property under the RG flow in

contrast to the flat space case [4]. Another type of renormalized entanglement entropy FC ≡ (tan θ0−1)S(θ0)

on the cylinder is proposed and shown to be monotonic numerically for a free massive scalar field in [28].

– 19 –



J
H
E
P
1
2
(
2
0
1
6
)
1
3
8

where δs0 is a universal area term. If one naively regards the action (4.15) as a conformally

coupled scalar with the mass (ξ3 − ξ4) R(3+1), one would get from eq. (3.24)

δs0 =
1

24π

(
ξ3 −

1

6

)
AΣ2R(3+1) , (4.17)

where AΣ2 is the area of the entangling surface Σ2. In our setup, we find

δs0 = −L sin θ0

144R
, (4.18)

which yields a shift for cΣ
1 given by (4.11) using the relation (4.6).

Though the discrepancy has been successfully resolved, we emphasize that the for-

mula (4.17) only works for a manifold with a constant curvature. For a general manifold,

ref. [48] argues a formula based on several examples

δsLMS
0 =

1

24π

(
ξ3 −

1

6

)∫
Σ2

d2σ
√
hR(h) =

1

6

(
ξ3 −

1

6

)
χ[Σ2] , (4.19)

where h is the induced metric on the entangling surface Σ2, and χ[Σ2] is the Euler number.

If this formula were true, we would find δs0 = 0 as our entangling surface is topologically

a torus and come back to the discrepancy. Instead we propose an alternative formula

δsour
0 =

1

24π

(
ξ3 −

1

6

)∫
Σ2

d2σ
√
hR(g) , (4.20)

with the Ricci curvature R(g) of the background metric. Our formula differs from theirs

by the extrinsic curvature terms due to the Gauss-Codazzi relation, and thus correctly

reproduces the result of ref. [48] for the spherical waveguide geometry. Our proposal (4.20)

may be testable by putting the theory on an ellipsoid instead of S2 to see the dependence

on the background curvature.

5 Universal area term

In a field theory with a mass gap m, the entanglement entropy is believed to obey a

universal area law for any shape of an entangling surface on flat spacetime [40]:

m2∂m2S = γdAΣ

{
md−2 log(m/ε) (d : even) ,

md−2 (d : odd) ,
(5.1)

where γd is a dimension-dependent constant and AΣ is the area of the entangling sur-

face. Employing the heat kernel method on the replica manifold, the constants γd were

determined for free massive scalar and fermion fields [40] with minimal couplings to the

background geometry. There are, however, a one-parameter family of non-minimal cou-

plings ξRφ2 for a scalar field when coupled to a curved space and it is not so obvious

whether the universal area term depends on the coupling ξ. Ref. [20] argues the minimal

choice to be natural on physical grounds as the operator algebra on flat space does not

depend on ξ.
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The area law dependence can be derived both from the Adler-Zee formula [49–51] and

from the Rosenhaus-Smolkin formula [52, 53]. With some assumptions, ref. [20] explicitly

demonstrates these two methods are equivalent. Depending on the precise treatment of

boundary terms, contact terms and the equations of motion, both methods can also produce

a dependence of γd on ξ.

In what follows we revisit and address the ξ dependence of γd from the perspective of

the discussion in section 2.

5.1 Adler-Zee formula

In general, the effective action induced by matter coupled to gravity has a derivative

expansion of the metric, respecting diffeomorphism invariance:

Ieff =

∫
ddx
√
g
[
c0 + c1R+O(R2)

]
. (5.2)

The first few expansion coefficients are completely determined by flat space expectation

values of the stress tensor as [49–51, 54]

c0 = −〈Θ〉
d

,

c1 =
1

4d(d− 1)(d− 2)

∫
ddx~x 2 〈Θ(x)Θ(0)〉 − 1

d− 2

〈
δΘ

δR

〉
,

(5.3)

where Θ = T µ
µ and the variation of the stress tensor in the second term of c1 is taken

for a conformally flat metric. The expression for c1 is called the Adler-Zee formula, and

interpreted by them as a renormalization of Newton’s constant.

A familiar process of evaluating the effective action on a conical deficit around the

entangling surface Σ yields the leading area term of the entanglement entropy

S = −4πc1AΣ + · · · . (5.4)

This is a universal area formula valid for any theory defined on any space, but the coefficient

c1 appears to depend on the type of the stress tensor to be used. For the scalar field, in

view of the discussion in section 2.2, we should use the stress tensor derived in flat space

from the minimally coupled Euclidean action (2.20). This action of course does not depend

on ξ and neither as a result will the area contribution to the entropy.

To compare with the literature, we consider a two parameter space of stress tensors.

One parameter is associated with the non-minimal coupling ξ in the improvement term.

The other is associated with the possibility of using the equations of motion. For a non-

minimally coupled scalar with mass, the trace of the stress tensor is

Θ = −d− 2

2
(∂φ)2 + ξ(d− 1)∇2φ2 − d− 2

2
ξRφ2 − d

2
m2φ2 . (5.5)

We can further modify the trace using the equations of motion

Θ(κ) = Θ(x) +
d− 2

2
κφ(−∇2 + ξR+m2)φ , (5.6)
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where κ can be arbitrary. The value κ = ξ/ξc is particularly nice because it removes the

φ∇2φ dependence from the trace in general and in the conformally coupled case (ξ = ξc
and m = 0) sets Θ(1) = 0.

The integral of the correlator of Θ on flat space is performed with Wick contraction∫
ddx~x 2〈Θ(x)Θ(0)〉 =

∫
ddx~x 2

∫
ddp

(2π)d
ddq

(2π)d
ei(p+q)x

2
(
d−2
2 p · q−(d−1)ξ(p+q)2− d

2m
2
)2

(p2+m2)(q2+m2)
,

= −
∫

ddp

(2π)d
∂p∂q

2
(
d−2

2 p · q − (d− 1)ξ(p+ q)2 − d
2m

2
)2

(p2 +m2)(q2 +m2)

∣∣∣∣
q=−p

,

=

∫
ddp

(2π)d

[
− 8m6

(p2 +m2)4
+

8m4

(p2 +m2)3
+

(3d− 2)(d− 2)m2

(p2 +m2)2

+
(d− 1)(d− 2)2

p2 +m2
− 4(d− 1)ξ ∂pµ

pµ

p2 +m2

]
,

= − d(d− 1)(d− 2)md−2

3 · 2dπ
d
2
−1 sin

(
πd
2

)
Γ(d/2)

, (5.7)

where the final result does not depend on ξ as it multiplies a total derivative term in the

third line. For a scalar with a non-minimal coupling to the curvature we find

1

d− 2

〈
δΘ

δR

〉
= −1

2
ξ 〈φ2〉 ,

= − ξ md−2

2d+1π
d
2
−1 sin

(
πd
2

)
Γ(d/2)

.
(5.8)

We would naively then obtain the (incorrect) universal area term

S|univ =
(1− 6ξ)

3 · 2dπ
d
2
−2 sin

(
πd
2

)
Γ(d/2)

md−2AΣ . (5.9)

As we have argued, the correct result should correspond to the choice ξ = 0. Only in

this case do we match the d = 3 (4.2) and d = 4 (3.24) area law results mentioned earlier

in the paper.

We then further compute how the Adler-Zee formula responds to shifting the stress

tensor by the equation of motion. The two-point function shifts by∫
ddx~x 2 〈Θ(κ)(x)Θ(κ)(0)〉 =

∫
ddx~x 2〈Θ(x)Θ(0)〉− d(d−2)2κ(κ−2ξ/ξc)m

d−2

2d+1π
d
2
−1 sin

(
πd
2

)
Γ(d/2)

, (5.10)

while the contact term is modified to

1

d− 2

〈
δΘ(κ)

δR

〉
=
κ− 1

2
ξ 〈φ2〉 . (5.11)

In this prescription, the universal area term is shifted from (5.9) by a κ-dependent term:

δS|on-shell, univ =
ξc κ(κ− ξ/ξc)

2d−1π
d
2
−2 sin

(
πd
2

)
Γ(d/2)

md−2AΣ . (5.12)
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The calculation above duplicates and agrees with one in ref. [20] for the particular

choices κ = 0 and κ = ξ/ξc. Here, however, we see the general κ dependence of the

Adler-Zee formula.

We have gone through the exercise of computing the κ-dependence of the Adler-Zee

formula because of an alternate method of computation that relies on a spectral decompo-

sition of the two-point function of the trace of the stress tensor:

〈Θ(x)Θ(0)〉 =
π
d
2

(d+ 1)2d−2Γ(d)Γ(d/2)

∫ ∞
0

dµ c(0)(µ) (µ2)2G(x, µ) , (5.13)

where G(x, µ) is the Green’s function of a free scalar field on flat space with mass µ

and c(0)(µ) is the spin zero spectral function [55]. The area term involving the two-point

function 〈Θ Θ〉 is nicely written in ref. [20] as

− π
d
2

+1

2d−3(d2 − 1)(d− 2)Γ(d)Γ(d/2)

∫ ∞
0

dµ c(0)(µ) . (5.14)

In this spectral decomposition, for the conformally coupled scalar the equations of motion

are typically [55, 56] used to reduce the stress tensor to a term proportional to m2φ2. In

our notation, these choices correspond to ξ = ξc and κ = 1. Moreover, in the spectral

computation the contact term proportional to δΘ/δR is ignored. One might worry, given

the κ-dependence above, that employing the equations of motion and ignoring the contact

term will lead to further complications. However, precisely for the choices κ = ξ/ξc and

κ = 1, the κ-dependent shift (5.12) vanishes and the contact term (5.11) can be ignored,

respectively. The result then matches the (wrong) calculation (5.9) with ξ = ξc.

5.2 Rosenhaus-Smolkin formula

Recalling the definition of the modular Hamiltonian H ≡ − log ρ, the entanglement entropy

is its expectation value S = 〈H〉. The variation of the entropy with respect to the coupling

gO of a relevant operator O(x) is then given by Rosenhaus-Smolkin in ref. [57]:

gO ∂gOS = −gO
∫

ddx
√
g 〈O(x)H〉 . (5.15)

Note that the expectation value on the right hand side is taken for a state perturbed by

the operator. (Comparing this result to our earlier (3.3), one may draw an analogy to the

relation between time-independent first order perturbation theory in quantum mechanics

and the Feynman-Hellman Theorem.)

As in the preceding sections we add the boundary term in the modular Hamiltonian

that contributes to the right hand side of (5.15)

−gO
∫

ddx
√
g 〈O(x) δH〉 . (5.16)

For a flat entangling surface, the modular Hamiltonian of a non-minimally coupled scalar

is improved to be the minimal one by adding the boundary term:

H = Hcov + δH . (5.17)

Thus the universal area term should not depend on ξ.
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We can be more explicit and see how the boundary term δH acts to cancel the ξ

dependent contribution of the entropy. For the mass perturbation for a conformally coupled

scalar with gO = m2 and O = φ2/2, we find

m2∂m2δS = −πξ m2

∫
ddx dd−2y⊥〈φ2(x)φ2(y)〉 ,

=
d− 2

2

ξ

2d−1π
d
2
−2 sin

(
πd
2

)
Γ(d/2)

md−2AΣ .
(5.18)

Integration of both sides yields

δS =
ξ

2d−1π
d
2
−2 sin

(
πd
2

)
Γ(d/2)

md−2AΣ . (5.19)

Adding it to (5.9), we obtain the same result as the minimally coupled scalar, i.e. (5.9)

with ξ = 0.

Interestingly, the boundary term contributes oppositely to the contact term in the

Adler-Zee formula without imposing the eom:

δS = 2π ξ 〈φ2〉AΣ =
4π

d− 2

〈
δΘ

δR

〉
, (5.20)

Thus our prescription to add the boundary term may be restated as removing the

contact term.

Assuming for the moment the naive definition (1.4) of H that does not include an extra

boundary term, we can relate the result (5.15) directly to the Adler-Zee formula (5.9).

Assuming O is the only relevant operator in the theory, the first step is to make use of a

Ward identity to replace 〈O(x)Hcov〉 with 〈Θ(x)Hcov〉:

gO∂gOS =
1

d−∆

[∫
ddx
√
g 〈Θ(x)Hcov〉 − 4π

∫
ddx
√
g

∫
dd−1y y1

〈
δΘ(x)

δg00(y)

〉]
, (5.21)

where we have kept a contact term dropped in [57] but continued to ignore anomaly terms

as we work in flat space. The correlator 〈Θ(x)Hcov〉 can then be directly related to the

trace-trace correlator in the Adler-Zee formula [20]. The contact term can be rewritten as a

functional derivative of Θ with respect to R on the conical space. The Rosenhaus-Smolkin

formula with the naive Hcov (1.4) actually is then equivalent to the Adler-Zee formula with

the contact term, yielding the same universal area term (5.9) as before [20].

Leaving a more detailed discussion of the equivalence between 〈Θ Θ〉 and 〈ΘHcov〉 to

ref. [20], we discuss instead how to rewrite the contact term.

The variational derivative with respect to g00 will produce terms proportional to

δ(x− y) and ∂1 derivatives acting on it. Terms proportional to ∂1δ(x − y) do not ap-

pear. The term we care about looks like ∂2
1δ(x−y) and will lead, after a double integration

by parts, to a contact term evaluated at the entangling surface y1 = 0. Such a term can

only come from the variation of the Ricci curvature. We know

δR = −Rµνδgµν +∇µ(∇νδgµν − gλρ∇µδgλρ) . (5.22)
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In flat space, we may rewrite (ignoring the δ(x− y) term)

δΘ(x)

δgtt(y)
=

∫
ddz

δΘ(x)

δR(z)

δR(z)

δgtt(y)
= −

∑
i 6=0

∫
ddz

δΘ(x)

δR(z)
∂2
yiδ(z − y) , (5.23)

and find∫
ddx

∫
y1>0

dd−1y y1

〈
δΘ(x)

δg00(y)

〉
= −

∫
ddx

∫
y1=0

dd−2y

〈
δΘ(x)

δR(y)

〉
= −AΣ

〈
δΘ

δR

〉
,

(5.24)

where the second inequality follows from the assumption that the stress tensor has a cur-

vature dependence through the coupling RO to the relevant operator. By dimensional

analysis, 〈δΘ/δR〉 must scale as g
d−2
d−∆

O . Integrating this result with respect to the cou-

pling gO, we produce a factor of d−2
d−∆ and match the contact term contribution to (5.4)

on the nose.

Finally, let us comment on the δ(x−y) term ignored in (5.24). It is independent of the

position from the translational invariance, e.g., δΘ(x)/δg00(y) ∼ c δ(x − y) with constant

c, and contributes to (5.24) an infrared divergent constant. Thus such a divergence cannot

be universal as it needs to be regularized and renormalized in some way.

6 Twist operator of spherical entangling surface

The partition function on the replica manifold can be regarded as a correlation function of a

codimension-two twist operator σα located on an entangling surface. Their characterization

is far from our reach in general though. Some aspects have been investigated [22, 58] for

a planar twist operator in CFT. The tracelessness and conservation of the stress tensor

determine the correlation function 〈Tµν σα〉 to be8

〈Tab σα〉 =
hα
2π

δab
yd

, 〈Tai σα〉 = 0 ,

〈Tij σα〉 = −hα
2π

(d− 1)δij − dninj
yd

,

(6.1)

up to a factor hα which will be called the conformal dimension of the twist operator

spanning over the coordinates xa (a = 3, · · · , d) and sitting on the origin y1 = y2 = 0. ni

(i = 1, 2) is the unit normal vector to the entangling surface.

By the conformal map to S1 ×Hd−1 the conformal dimension takes the form

hα =
2παRd

d− 1
(E1 − Eα) , (6.2)

with the vacuum energy on Hd−1 at temperature T = 1/(2πRα)

Eα = −
Tr
[
Tττe

−αH]
Zα

. (6.3)

8Our convention for the stress tensor in Euclidean signature is Tµν = 2√
g
δIE
δgµν

.
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The minus sign is due to the convention for the Euclidean stress tensor and correspondingly

the bulk modular Hamiltonian has minus sign, H = −2π
∫
Hd−1 dd−1xTττ . As we have

already discussed, the modular Hamiltonian H is not simply an integral over the energy

density Tττ (1.4) but involves also a boundary term (1.5).

Just as in the case of massive perturbation theory considered in the previous section,

we have two methods at our disposal for calculating hα. The first involves the replica trick

and the Plancherel measure on Hd−1. The second involves calculating correlation functions

of H with other fields, in this case Tττ .

In fact we will not compute hα but the first few coefficients in a Taylor series expansion

of hα near α = 1:

hα,a ≡ ∂aαhα|α=1 . (6.4)

The coefficients are closely related to the derivative of the Rényi entropy around α = 1 [59]

Sα,a =
2πR

a+ 1
Eα,a , (6.5)

where we used the same notation as (6.4) and Eα is the integrated energy

Eα ≡
∫
Hd−1

Eα . (6.6)

The homogeneity of Hd−1 allows us to factor out the volume in the right hand side of (6.6).

Then we find a simple relation between hα,a and Sα,a

hα,a = − 1

(d− 1)Vol(Hd−1)

[
(a+ 1)Sα,a + a2(1− δa,1)Sα,a−1

]
. (6.7)

For completeness we give the inverse relation

Sα,a = −a! (d− 1)Vol(Hd−1)

a+ 1

a∑
k=1

(−1)a−k
hα,k
k!

. (6.8)

This is the same relation as the one in [22] up to a = 2 and corrects the expressions for

a ≥ 3. Corrected relationships can be found in appendix E of [60] along with further

discussion of the hα.

With these relations, what we are going to show is equivalent to the extension to

general dimensions of ref. [19] where a related discrepancy was resolved examining Sα,a for

d = 3 and 4 dimensions.

6.1 Free energy method

We can evaluate hα defined by (6.2) using the energy density on S1 × Hd−1 which can be

obtained by taking a derivative of the free energy (3.15) with respect to 1/T = 2πRα:

hα =
α

(d− 1) Vol(Hd−1)
(∂αFα|α=1 − ∂αFα) ,

=
απ

(d− 1) Vol(Hd−1)

∫ ∞
0

dλµs(λ)
√
λ
[
coth(π

√
λ)− coth(απ

√
λ)
]
.

(6.9)
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Here µs(λ) is the Plancherel measure (3.16). It follows immediately that

hα,1 =
1

2dπ
d−3

2 Γ
(
d+1

2

) ∫ ∞
0

dλ
λ

sinh(π
√
λ)

∣∣∣∣Γ(d2 − 1 + i
√
λ

) ∣∣∣∣2 ,
hα,2 = − 1

2d−1π
d−3

2 Γ
(
d+1

2

) ∫ ∞
0

dλ
λ

sinh(π
√
λ)

[
π
√
λ coth(π

√
λ)−1)

] ∣∣∣∣Γ(d2−1+i
√
λ

) ∣∣∣∣2.
(6.10)

These integrals are very similar to one (3.17) that we did before in computing mass correc-

tions to entanglement entropy. Again, it is useful to make a change of variables λ = x2 and

employ the integral formula (3.18). Before applying this integral formula, we have to re-

place the hyperbolic trigonometric functions with Γ-functions. The following two relations

are useful, the first to evaluate hα,1 and the second to evaluate hα,2:

πx3

sinh(πx)
= |Γ(2 + ix)|2 − |Γ(1 + ix)|2 , (6.11)

2πx3

sinh(πx)
[πx coth(πx)−1] =

∂

∂n
[Γ(3− n− ix)Γ(2 + n+ ix)− Γ(3 + n+ ix)Γ(2− n− ix)

+ Γ(2+n+ix)Γ(1−n−ix)− Γ(2− n− ix)Γ(1 + n+ ix)]n=0

+ 6(|Γ(2 + ix)|2 − |Γ(1 + ix)|2) , (6.12)

We obtain then the first two nonzero coefficients of the Taylor series expansion of hα
near α = 1:

hα,1 =
Γ (d/2)2

2dπ
d−3

2 (d2 − 1) Γ ((d+ 1)/2)
, (6.13)

hα,2 = −(3d2 − 2d− 4)Γ(d/2)3

π
d
2
−1(d− 1) Γ(d+ 3)

. (6.14)

Using a related heat kernel approach, ref. [22] computed hα,1 in general and hα,2 for

even d, 4 ≤ d ≤ 14. Our results (6.13) and (6.14) agree with theirs. However, ref. [22]

noted a discrepancy when they attempted to compute hα,2 using the modular Hamiltonian

because they did not include the boundary term. We will now see in detail how the

boundary term fixes the discrepancy.

6.2 Modular Hamiltonian method

The boundary term in question amounts to shifting the naive modular Hamiltonian (1.4) by

δH = 2πξ

∫
∂Hd−1

φ2 . (6.15)

We will repeat the analysis done by [22] and see if the shift resolves the puzzle. We are

going to calculate the first and second derivatives of the conformal dimensions at α = 1

hα,1 = −2πRd

d− 1
〈(H0 + δH)Tττ 〉 ,

hα,2 =
2πRd

d− 1
[〈(H0 + δH)(H0 + δH)Tττ 〉 − 2〈(H0 + δH)Tττ 〉] ,

(6.16)
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where H0 = Hcov of the introduction with the opposite sign and the correlators are in

Euclidean signature. The conformal symmetry imposes the constraint

〈Tµν(x)O(y)〉 = 0 , (6.17)

for an (local) operator O, leading to 〈δH Tττ 〉 = 0. Thus the first derivative ∂αhα|α=1 is

not affected by the boundary term. Indeed, ref. [22] compute hα,1 using only H0 and the

result agrees with our replica calculation (6.13). However, the second derivative deviates

from the naive value

hα,2 = h
(0)
α,2 + δhα,2 , (6.18)

where

δhα,2 =
2πRd

d− 1
[2〈δH H0 Tττ 〉+ 〈δH δH Tττ 〉] . (6.19)

To evaluate the three-point functions involving the modular Hamiltonian and the

counter term, we find it convenient to put the stress tensor at (τ, u) = (πR, u1 � 1)

and the others at τ = 0 following [22] where they obtain

h
(0)
α,2 = − 16πd+1

d2 Γ(d+ 3)

[
2(d− 2)(3d2 − 3d− 4)a− 2d(d− 1)b− (3d− 4)(d+ 1)c

]
. (6.20)

For a free conformally coupled real scalar, the parameters are given by [61]

a =
d3

8 Vol(Sd−1)3(d− 1)3
, b = − d4

8 Vol(Sd−1)3(d− 1)3
, c = − d2(d− 2)2

8 Vol(Sd−1)3(d− 1)3
,

(6.21)

and we obtain the corresponding conformal dimension (correcting a typo in (3.26) of

ref. [22])

h
(0)
α,2 = −Γ(d/2)3(11d4 − 33d3 + 16d2 + 28d− 16)

4π
d
2
−1Γ(d+ 3)(d− 1)3

, (6.22)

which evidently does not agree with the result (6.14) from the previous subsection.

We now proceed to evaluate the three-point functions 〈δH H0 Tττ 〉 and 〈δH δH Tττ 〉
on S1 × Hd−1 by using a Weyl transformation from flat space. The first step is then to

calculate the necessary three-point functions in flat space.

The three-point functions for a conformally coupled scalar. It is useful to put

the stress tensor in the form ((5.1) of ref. [61])

Tµν = (∂µφ)(∂νφ) +

[
−ξ∂µ∂ν +

(
ξ − 1

4

)
δµν∂

2

]
φ2 , (6.23)

eliminating the (∂φ)2 term. In general, (∂iφ)(∂jφ) terms are more difficult to deal with

because they require point splitting in the analysis. In this form, in considering Tττ ,
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the (∂τφ)2 term will not contribute to the three point functions because all of the time

coordinates of the insertion points have been set to zero.

As we have done before, we use the normalization of the two-point function

〈φ(x)φ(y)〉 =
1

(d− 2) Vol(Sd−1)

1

|x− y|d−2
. (6.24)

We can then write the three-point functions in the form

〈Tττ (x1)φ2(x2)φ2(x3)〉 =
8

(d− 2)3 Vol(Sd−1)3

[
−ξ∂2

τ1 +

(
ξ − 1

4

)
∂2

1

]
1

xd−2
12 xd−2

13 xd−2
23

,

=
2

(d− 2)(d− 1) Vol(Sd−1)3

1

xd12x
d
13x

d−4
23

, (6.25)

〈Tττ (x1)Tττ (x2)φ2(x3)〉 =
8

(d−2)3 Vol(Sd−1)3

[
2∏
i=1

(
−ξ∂2

τi+

(
ξ− 1

4

)
∂2
i

)]
1

xd−2
12 xd−2

13 xd−2
23

,

=
3d

2(d− 1)2 Vol(Sd−1)3

1

xd+2
12 xd−2

23 xd−2
13

. (6.26)

The factor of 8 comes from contracting the φ fields in various equivalent ways.

Note we have used the equations of motion to eliminate a φ∂2φ term from the stress

tensor (6.23). In general, this substitution could lead to troublesome contact terms in the

three-point functions. In the case here, we will always move x1 far away from x2 and

x3, which eliminates most of the contact term ambiguity. There remains a possible issue

with the limit x2 → x3 in the 〈Tττ (x1)Tττ (x2)φ2(x3)〉 correlation function. However, this

contact term is proportional to 〈Tττ (x1)φ2(x2)〉, which vanishes in CFT.

Evaluation of 〈δH δH Tττ 〉. Starting with the second term, we use a conformal map

from S1 ×Hd−1 to Rd with a spherical entangling ball region B of radius R and reduce it

to an integral of the three-point function on a flat space

〈δH δH Tττ (τ = π, u1)〉 = (2πξ)2 (−Ω(~r1))−d
∫
∂B

dd−2~r2

∫
∂B

dd−2~r3

· 〈Tττ (t = 0, ~r1)φ2(t = 0, ~r2)φ2(t = 0, ~r3)〉 , (6.27)

where Ω is the Weyl factor (3.28) at t = 0

Ω(~r) =
2R2

R2 − r2
. (6.28)

We take a limit of u1 � 1 that corresponds to an r1 � R limit, where the three-point

function (6.25) simplifies

〈Tττ (t = 0, ~r1)φ2(t = 0, ~r2)φ2(t = 0, ~r3)〉 −→
r1→∞

K1

r2d
1 |~r2 − ~r3|d−4

, (6.29)

where

K1 =
2

(d− 1)(d− 2) Vol(Sd−1)3
. (6.30)
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The spherical symmetry allows us to fix one of the positions ~r2 to the north pole on a

sphere and factor out the volume, leading to

〈δH δH Tττ (τ = π, u1)〉 =
π2ξ2K1 Vol(Sd−2) Vol(Sd−3)

2d−2Rd

∫ π

0
dθ

sind−3 θ(
2 sin θ

2

)d−4
,

=
8πdξ2K1

RdΓ(d− 1)
.

(6.31)

Evaluation of 〈δH H0 Tττ 〉. We proceed to evaluate the first term in a similar way

〈δH H0 Tττ (τ = π, u1)〉 = −4π2Rξ (−Ω(~r1))−d
∫
B

dd−1~r2 Ω−1(~r2)

∫
∂B

dd−2~r3

· 〈Tττ (t = 0, ~r1)Tττ (t = 0, ~r2)φ2(t = 0, ~r3)〉 .
(6.32)

In the r1 � R limit, the three-point function (6.26) takes the form

〈Tττ (t = 0, ~r1)Tττ (t = 0, ~r2)φ2(t = 0, ~r3)〉 −→
r1→∞

K2

r2d
1 |~r2 − ~r3|d−2

, (6.33)

where

K2 =
3d

2(d− 1)2 Vol(Sd−1)3
. (6.34)

Plugging into (6.32), we find

〈δH H0 Tττ (τ = π, u1 � 1)〉 = − π
2ξ K2

2d−1Rd

∫
dd−2Ω2

∫
dd−2Ω3

∫ 1

0
dx2

xd−2
2 (1− x2

2)

|~x2 − ~x3|d−2
,

= − 8πdξ K2

3RddΓ(d− 1)
, (6.35)

where we utilized the formulae in appendix A of ref. [22].

Final result δhα,2. Assembling the pieces with (6.19), we find

δhα,2 =
16πd+1ξ

Γ(d)

(
ξK1 −

2K2

3d

)
,

= − (d− 2) Γ(d/2)3

4π
d
2
−1(d− 1)3Γ(d)

.

(6.36)

Adding the correction to the naive result (6.22), we find perfect agreement with the re-

sult (6.14) from the free energy computation.

Our numerics confirm that the twist operator dimensions (6.13) and (6.14) are correct.

See figure 4.
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Figure 4. Linear fits of ∂αSα|α=1 (left) and ∂2αSα|α=1 (right) at different lattice spacings in order

to compare with hα,1 and hα,2. N is the number of lattice points in the entangling region. For all

data points, the entanglement across the equator of S2 was computed. Fitting only the N = 75

and N = 100 data points, the fit values are (−0.671)N + 0.077 (left) and (2.057)N − 0.220 (right).

Analytically, the intercepts should be at π2/128 = 0.0771063 and π2/45 = 0.219325.

7 Discussion

There are a number of entanglement computations in conformal field theory where one

naively might hope to take advantage of the universality of two- and three-point functions

involving the stress tensor. We considered two important examples in this paper. One

was perturbation by a relevant operator O (in our case a mass term). The second was a

computation of the Rényi entropies in the limit α → 1. In both cases, we found that the

boundary term for H, in other words the fact that H was not simply a spatial integral over

T00, spoiled this expectation.

In the case of perturbation by a relevant operator, the first order corrections are

controlled by 〈H O〉. Because 〈Tµν O〉 = 0 in flat space, one might hope to claim in general

that first order corrections due to relevant operators vanish, that entanglement entropy is

in some sense stationary at a UV conformal fixed point [32]. To make this more precise in

3d, we can introduce the quantity F = (L∂L − 1)S(L) for entanglement across a circle of

radius L [47]. At a conformal fixed point, F corresponds to the subleading constant term

in a large L expansion of the entanglement entropy. Ref. [4], assuming sub-additivity of the

entanglement entropy, demonstrated that F decreases monotonically as L increases, like

the Zamolodchikov c-function for 2d-CFTs [62]. However, refs. [63, 64] later pointed out

that, unlike the c-function, F was not stationary at the UV fixed point for a conformally

coupled scalar perturbed by a mass term. Here, we see why. The boundary term in the

modular Hamiltonian means that even though 〈Tµν O〉 is zero, 〈H O〉 is not.

In the case of Rényi entropies, we saw that the first couple of derivatives of Sα in a

Taylor series expansion near α = 1 were controlled by the two- and three-point func-

tions 〈H T00〉 and 〈HH T00〉. Again, since the two- and three-point functions of the

stress tensor are unique up to a couple of undetermined constants, one could hope that

∂αSα|α=1 and ∂2
αSα|α=2 have a universal structure. Since the boundary term does not

contribute to 〈H T00〉 for a conformally coupled scalar, this expectation was born out for
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∂αSα|α=1. On the other hand, for the next derivative, ∂2
αSα|α=2, it was crucial to include

the boundary term.

A third example where the boundary term spoils universality is in thermal corrections

to entanglement entropy. We did not discuss that case in detail here because the issue

was already successfully resolved by one of the authors [18]. The correction is governed by

〈H OO〉 where O is a primary operator that creates the first excited state, which in turn

is naively given by a spatial integral over 〈T00OO〉, which has a universal form. However,

in this third case as well, the boundary term changes the result.

A burning question is to what extent these boundary terms could be an issue beyond

the case of a conformally coupled scalar. We saw already in section 5 that the same

boundary term continues to plays a role for a massive scalar with an arbitrary non-minimal

coupling. Ref. [20] takes the point of view that these boundary terms are very special,

that they only can occur when there is an operator in the theory with dimension exactly

∆ = d− 2 that can be added as a contact term on the entangling surface without spoiling

Weyl invariance. Any additional interaction in the scalar case, the argument goes, would

shift the dimension of φ2 away from d− 2 and remove the contact term.

While we are sympathetic to this argument, we are troubled that two of the simplest

conformal field theories have issues with boundary terms. The second example is a U(1)

Maxwell field in 3 + 1 dimensions. If we perform BRST quantization and choose Feynman

gauge, the BRST action can be written (on a manifold M without boundary) as

I = −
∫
M

d4x
√
g

[
1

2
Aµ(gµν�−Rµν)Aν + c� b

]
, (7.1)

where b and c are the usual anti-commuting ghost fields. If we consider a conical space

M = Cα×R2, then the Ricci tensor has a distributional support at the conical singularity,

Rij = 2π(1 − α)δijδ
2(x) where i, j = 1, 2 index the cone Cα. Analogous to the scalar

case we considered in section 2, one can find eigenfunctions of the vector Laplacian on the

cone that involve Bessel functions. To keep the J0(λr) eigenfunctions, one has to eliminate

the delta function at the origin. The simplest way to do so is to add a codimension-two

boundary term to the action

δI = −π(1− α)

∫
r=0

d2x δijAiAj . (7.2)

Such a boundary term has been discussed before, for example in refs. [30, 65]. Like the

boundary term for the scalar, this boundary term for the gauge field is also Weyl invariant.

It is not gauge invariant, but we already broke gauge invariance by choosing Feynman

gauge. Whether the boundary term can be made BRST invariant in a nontrivial way is a

subtle question. In fact boundary conditions in general are a subtle question in computing

entanglement entropy. The usual boundary conditions chosen in quantizing a gauge field

on a manifold with boundary do not appear to be compatible with an entanglement com-

putation [66–69]. More generally, it seems a boundary term |An−1|2 could appear for free

field theories in even dimension d = 2n involving an anti-symmetric n-form Fn = dAn−1

with Lagrangian density F ∧ ?F .
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In the CFT context, modular Hamiltonians can be modified by a boundary counter

term when there exists an operator Od−2 of dimension d − 2 that can have a coupling

ROd−2. Moving away from CFT, one no longer needs to ensure that the boundary term is

Weyl invariant. Conceivably any relevant perturbation of the form RO might necessitate

a boundary counter term. In the case of half-space entanglement, the consequences of such

a boundary term can be dealt with simply — the boundary term simply removes the added

RO bulk term, leaving one with the original theory.
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A Numerics

We use the same numerical algorithm employed in ref. [18]. The Hamiltonian for a massive

scalar on an Sd−1 of radius R can be written as a sum over spherical harmonics on an Sd−2.

H =
∑
~l

H~l , (A.1)

where we index the spherical harmonics by a vector ~l such that |l1| ≤ l2 ≤ · · · ≤ ld−2 ≡ `.

The spectrum of H~l depends only on the largest ld−2 = `:

H~l =
1

2R2

∫ 1

−1
du
[
R2π2

~l
− φ~lDφ~l

]
, (A.2)

where

Dφ~l = ∂u
(
(1− u2)∂uφ~l

)
−
(
`+ d−3

2

)2
1− u2

φ~l +

(
m2 − 1

4

)
φ~l . (A.3)

The scalar field φ has been decomposed into spherical harmonics φ~l as well along with the

canonically conjugate π~l, such that

[φ~l (u), π~l′(u
′)] = iδ~l,~l′ δ(u− u

′) . (A.4)

We have kept the polar angle on the Sd−1 explicit, θ = cos−1 u, in order to be able to

do entanglement computations. Because Sd−1 has no boundary, there is no issue with

possible codimension one or two boundary terms in the definition of the full Hamiltonian

on this space.

The Rényi entropies can then be constructed from two-point functions of φ~l and π~l
restricted to a cap on the sphere. The essential observation is that these two-point functions
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should be the same, whether they are computed with the full or the reduced density

matrix. In this relatively simple case of a scalar field, it is then possible to reconstruct

the eigenvalues of the reduced density matrix from the restricted two-point functions. In

technical detail, we define the matrix

C`(u1, u2)2 ≡
∫ 1

u
du 〈φ~l (u1)φ~l (u)〉〈π~l(u)π~l(u2)〉 , (A.5)

where the range of C` is restricted such that u ≤ ui ≤ 1, i = 1, 2. The Rényi entropy

contribution from H~l to Sα is then

Rα(`) =
1

α− 1
tr

[(
C` +

1

2

)α
−
(
C` −

1

2

)α]
. (A.6)

In practice, we do not use this formula itself, but instead use the first few coefficients in a

Taylor series near α = 1:

Rα(`) = tr

[(
C` +

1

2

)
log

(
C` +

1

2

)
−
(
C` −

1

2

)
log

(
C` −

1

2

)

+
α− 1

8
(1− 4C2

` ) log2 C` −
1
2

C` + 1
2

+
(α− 1)2

12
C`(1− 4C2

` ) log3 C` −
1
2

C` + 1
2

]
. (A.7)

The zeroth order term is the entanglement entropy contribution, which we use in the

numerical check of the mass computations in sections 3 and 4. The first and second order

terms are useful in computing ∂αSα and ∂2
αSα near α = 1 in the numerical check of the

twist operator dimensions in section 6.

The total Rényi entropy is given by the infinite sum

Sα = Rα(0) +

∞∑
`=1

dim(`)Rα(`) , (A.8)

where dim(`) is the number of spherical harmonics ~l with ld−2 = `, e.g. 2 in d = 3, 2`+1 in

d = 4, etc. This infinite sum has to be treated with care. In the numerics, we perform the

sum explicitly up to some `max where dim(`)Rα(`) is of order 10−7. Then we fit a dozen

values of S` with ` > `max to a power law a`b, and compute a correction to the finite sum

by integrating the power law out to ` =∞.

To discretize u, we choose a grid with lattice points at uj = −1+(j− 1
2)ε, j = 1, . . . , N ,

and ε = 2/N . The operator D is discretized using

∂u((1− u2)∂uf) ≈ 1

ε2

[
fj−1

(
1−

(
uj−1 + uj

2

)2
)

+ fj+1

(
1−

(
uj + uj+1

2

)2
)

+ fj

(
−2 +

(
uj−1 + uj

2

)2

+

(
uj + uj+1

2

)2
)]

, (A.9)

valid at second order in ε. With this choice, the contributions from the ghost points u0

and uN+1 vanish.
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B Further methods for computing mass corrections

B.1 Method of images (Cardy’s method)

The quantity
1

Vol(S1 ×Hd−1)
lim
α→1

∂α∂m2(Fα − αF1)|m2=0 , (B.1)

can alternately be interpreted as a two-point function on the hyperbolic space near α = 1:

1

2
lim
α→1

∂α〈:φ(x)2:〉S1×Hd−1 . (B.2)

We have a closely related quantity from [42], namely the two-point function Gα,d(2θ) =

〈φ(y)φ(y′)〉 on the conical space Cα × Rd−2 for particular insertion points. The insertion

points y and y′ are at the origin of Rd−2, at a distance r/2 from the origin of Cα, and

at an angular separation of 2θ. We will add a factor of Vol(Sd−1)(d − 2) to change the

normalization conventions of the two-point function to the one considered here. Near α = 1,

the Green’s function has the form

G(α,d)(θ) = G(1,d)(θ) + (α− 1) δG(d)(θ) +O(α− 1)2 , (B.3)

where

G(1,d)(θ) =
1

(d− 2) Vol(Sd−1)

1(
2r sin θ

2

)d−2
, (B.4)

δG(3)(θ) = − 1

Vol(S2)

π

8r

1

cos2 θ
4

, (B.5)

δG(4)(θ) = −G(1,4)(θ)

(
−2 + θ cot

θ

2

)
. (B.6)

To obtain δG for larger d, we may use the recursion relation

− Vol(Sd+1)

Vol(Sd−1)
(2r sin θ)2δG(d+2)(2θ) + δG(d)(2θ) = −π Vol(Sd−2)

Vol(Sd−1)2

1

(d− 1)(d− 2)

1

rd−2
.

(B.7)

It follows from this recursion relation that

δG(d)(0) = −π Vol(Sd−2)

Vol(Sd−1)2

1

(d− 1)(d− 2)

1

(2r)d−2
. (B.8)

The corresponding two-point function on S1 × Hd−1 should be independent of position.

Therefore, the conformal transformation should act to cancel the 1/r dependence. Indeed

it does. We find from this Green’s function that,

lim
α→1

∂α〈:φ2:〉S1×Hd−1 = −π Vol(Sd−2)

Vol(Sd−1)2

22−d

(d− 1)(d− 2)
, (B.9)

= − 2−dπ(1−d)/2Γ(d/2)2

(d− 2)Γ((d+ 1)/2)
. (B.10)

This result agrees with the earlier free energy computation of this two-point function.
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B.2 Contact term from the path integral

There is yet one more way of deriving limα→1 ∂α〈:φ2:〉S1×Hd−1 . Without the additional

boundary term (2.19), the quantity 〈:φ2:〉S1×Hd−1 should vanish at O(1 − α) for the same

reasons that 〈Tµν :φ2:〉 vanishes on the plane. The O(α−1) correction to 〈:φ2:〉S1×Hd−1 will

thus come purely from this boundary term.

I[Mα] = Iconf [M] + 2πξ (α− 1)

∫
r=0

dd−2y φ2(y) +O
(
(α− 1)2

)
, (B.11)

working with the Euclidean action. Together with the path integral

G(α,d)(θ) = 〈:φ2(x):〉Mα =

∫
Dφφ2(x) e−I[Mα]

/(∫
Dφ e−I[Mα]

)
, (B.12)

we would get then that

δG(d)(0) = −2πξ

∫
Rd−2

dd−2y 〈:φ2(x)::φ2(y):〉 ,

= − 4πξVol(Sd−3)

(d− 2)2 Vol(Sd−1)2

∫ ∞
0

dy
yd−3

(y2 + r2)d−2
,

= −(d− 2)π(1−d)/22−2−dΓ(d/2− 1)2

Γ((1 + d)/2)

1

rd−2
,

(B.13)

in agreement with (B.8).
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