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1 Introduction

The discovery of a new scalar resonance with mass around 125 GeV at the Large Hadron

Collider (LHC) [1, 2] opened a new era in high-energy particle physics. The study of the

properties of this particle provides strong evidence that it is the Higgs boson of the Standard

Model (SM), i.e., a scalar CP-even state whose couplings to the other known particles have

a SM-like structure and strengths proportional to their masses. In particular, ATLAS and

CMS performed both independent [3, 4] and combined [5] studies on the Higgs couplings

in the so-called κ-framework [6, 7], where the predicted SM Higgs strengths ci are rescaled

by overall factors κi. In the combined analysis based on 7 and 8 TeV data sets [5] the

couplings with the vector bosons have been found to be compatible with those expected

from the SM, i.e., κV = 1 (V = W,Z), within a ∼ 10% uncertainty, while in the case of

the heaviest SM fermions (the top, the bottom quarks and the τ lepton) the uncertainty

is of order ∼ 15 − 20%. However, at this stage, additional relations among the different

κi that improve the sensitivity of experimental analyses are often assumed, yet lead to a

loss of generality. The precision of the current measurements therefore still leaves room for

Beyond-the-Standard-Model (BSM) scenarios involving modifications of the Higgs boson

couplings to the vector bosons and fermions.

Besides the direct search of new particles, one of the main tasks of the second run of

the LHC at
√
s = 13 TeV centre-of-mass energy will be the precise determination of the

properties and the interactions of the SM particles, in particular those of the Higgs boson,
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in order to constrain effects from New Physics (NP). The increase of the production cross

sections together with a larger integrated luminosity, which is expected to reach 300 fb−1

per experiment at the end of the Run II and up to 3000 fb−1 in the case of the following

High Luminosity (HL) option, will allow to probe the couplings of the Higgs boson with

the other SM particles with much higher accuracy. In particular, present estimates [8, 9],

suggest that at the end of Run II the Higgs boson couplings to the vector bosons are

expected to reach a ∼ 5% precision with 300 fb−1 luminosity, while the couplings to the

heavy fermions could reach ∼ 10− 15% precision. Similar estimates for the end of the HL

option indicate a reduction of these numbers by at least a factor ∼ 2.

The study of the trilinear (λ3) and quartic (λ4) Higgs self couplings in the scalar

potential

V (H) =
m2

H

2
H2 + λ3vH

3 + λ4H
4

is in a completely different situation. In the SM, the potential is fully determined by only

two parameters, v = (
√

2Gµ)−1/2 and the coefficient of the (Φ†Φ)2 interaction λ, where

Φ is the Higgs doublet field. Thus, the mass and the self couplings of the Higgs boson

depend only on λ and v (m2
H = 2λv2, λSM

3 = λ, λSM
4 = λ/4). On the contrary, in the case

of extended scalar sectors or in presence of new dynamics at higher scales the trilinear and

quartic couplings, λ3 and λ4, typically depend on additional parameters and their values

can depart from the SM predictions [10, 11].

At the Leading Order (LO) the Higgs decay widths and the cross sections of the

main single Higgs production processes, i.e., gluon-gluon fusion (ggF), vector-boson fusion

(VBF), W and Z associated production (WH, ZH) and the production in association with

a top-quark pair (tt̄H), depend on the couplings of the Higgs boson to the other particles of

the SM, yet they are insensitive to λ3 and λ4. Information on λ3 can be directly obtained

at LO only from final states featuring at least two Higgs bosons. However, the cross

sections of these processes are much smaller than those of single Higgs production, due

to the suppression induced by a heavier final state and an additional weak coupling. At√
s = 13 TeV the single Higgs gluon-gluon-fusion production cross section in the SM is

around 50 pb [12], while the double Higgs cross section is around 35 fb in the gluon-gluon-

fusion channel [13–15] and even smaller in other production mechanisms [16, 17].

A plethora of perspective studies performed at
√
s = 13 TeV suggest that it should

be possible to detect the production of a Higgs pair via bb̄γγ [16, 18–22], bb̄ττ [16, 23],

bb̄W+W− [24] and bb̄bb̄ [25–27] final states, and also via signatures emerging from tt̄HH [28,

29] and HV V [30] production channels. However, the ultimate precision that could be

achieved on the determination of λ3 is much less clear. Even with an integrated luminosity

of 3000 fb−1, experimental analyses suggest that it will be possible to exclude at the LHC

only values in the range λ3 < −1.3 λSM
3 and λ3 > 8.7 λSM

3 via the bb̄γγ signatures [31] or

λ3 < −4 λSM
3 and λ3 > 12 λSM

3 even including also bb̄ττ signatures [32], i.e., a much more

pessimistic perspective than the results reported in the phenomenological explorations.

The current experimental bounds on non-resonant Higgs pair production cross sections

as obtained at 8 TeV are rather weak. ATLAS has been able to exclude only a signal

up to 70 times larger than the SM one [33, 34], which can be roughly translated to the
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λ3 < −12 λSM
3 and λ3 > 17 λSM

3 exclusion limits, while CMS puts a 95% C.L. exclusion

limit on λ3 < −17.5 λSM
3 and λ3 > 22.5 λSM

3 assuming changes only in the trilinear Higgs

boson coupling, with all other parameters fixed to their SM values [35]. Thus, additional

strategies in the determination of the trilinear Higgs self coupling λ3 that are alternative

and complementary to the constrains from Higgs pair production would be certainly helpful.

Finally, the perspectives of determining the quartic Higgs self coupling λ4 via measurements

in triple Higgs production seems quite bleak at the LHC [36, 37], due to the smallness of

the corresponding cross section [14].

In this work we explore the possibility of constraining the trilinear Higgs self coupling

with a different approach, namely, via precise measurements of processes featuring single

Higgs production and decay at the LHC. Indeed, although single Higgs production does

not depend on λ3 at LO or at higher orders in QCD, it does depend on λ3 via weak loops,

namely at Next-to-Leading (NLO) in the electroweak (EW) interactions. We therefore

extract the λ3-dependent part from the NLO EW corrections to all phenomenologically

relevant single Higgs production cross sections (ggF, VBF, WH, ZH, tt̄H) and branching

ratios, (H → γγ, H → ZZ∗,WW ∗ → 4f , H → ff̄ , H → gg). By varying the value of

λ3, we evaluate the impact of an anomalous trilinear Higgs self coupling on the predictions

for the aforementioned cross sections and decay widths. We obtain a distinctive pattern

of deformations of the SM predictions for the rates (σ(i) ·BR(f)), which can be compared

to the experimental data. A similar investigation, specific to ZH production at an e+e−

collider, was presented in ref. [38].

Our approach builds on the assumption that NP couples to the SM via the Higgs poten-

tial and dominantly affects only the Higgs self couplings. In other words, the lowest-order

Higgs couplings to the other fields of the SM (and in particular to the top quark and vec-

tor bosons) are still given by the SM prescriptions or, equivalently, modifications to these

couplings are so small that do not swamp the NLO effects we are considering. While this

assumption needs always to be kept in mind, we stress that all the current experimental

limits or estimates of limits on λ3 obtained from Higgs pair production implicitly rely on it,

too. In particular, the top-quark-Higgs coupling is assumed to be the one of the SM. Per-

spectives on measurements of λ3 via Higgs pair production relaxing this assumption have

been studied at the phenomenological level, e.g., in refs. [21, 39] leading, in general, to much

weaker bounds. Within the assumption that NP modifies only λ3, we investigate the reach

of our approach in the determination of λ3 by considering the current 8 TeV Higgs data [5]

and the expected performances of the forthcoming runs of the LHC [8, 9]. We demonstrate

the potential of single Higgs production channels in setting bounds on λ3 that are compet-

itive and complementary to those achievable via the searches for double Higgs production.

The paper is organised as follows. In section 2 we present the theoretical framework and

discuss the λ3-dependent part of the NLO EW corrections to the single Higgs processes.

In the following section we present the calculation of such contributions to the various

observables. Section 4 is devoted to study the impact of the λ3-dependent contribution in

the single Higgs production and decay modes at the LHC, while in the following section

we discuss the constraints on λ3 that can be obtained from the current data and also from

future measurements. In the last section we summarise and draw our conclusions.
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Figure 1. One-loop λ3-dependent diagram in the Higgs self-energy.

2 λ3-dependent contributions in single Higgs processes

As basic assumption, we consider a BSM scenario where the only (or dominant) modifica-

tion of the SM Lagrangian at low energy appears in the scalar potential. In other words,

we assume that the only relevant effect induced at the weak scale by unknown NP at

a high scale is a modification of the self couplings of the 125 GeV boson. In particular,

we concentrate on the trilinear self-coupling of the Higgs boson, making the assumption

that modifications of λ4 and of possible other self-couplings in the potential lead to much

smaller effects and that the strength of tree-level interactions of the Higgs field with the

vector bosons and with the fermions is not (or very weakly) modified with respect to the

SM case. We therefore simply parametrise the effect of NP at the weak scale via a sin-

gle parameter κλ, i.e., the rescaling of the SM trilinear coupling, λSM
3 . Thereby, the H3

interaction in the potential, where H is the physical Higgs field, is given by

VH3 = λ3 v H
3 ≡ κλλSM

3 v H3, λSM
3 =

Gµ√
2
m2

H , (2.1)

with the vacuum expectation value, v, related to the Fermi constant at the tree-level by

v = (
√

2Gµ)−1/2.

As we will discuss and quantify in more detail in the following, the “deformation” of

the Higgs trilinear coupling induces modifications of the Higgs couplings to fermions and to

vector bosons at one loop. However, since such loop-induced λ3-dependent contributions

are energy- and observable-dependent, the resulting modifications cannot be parameterised

via a rescaling of the tree-level couplings of the single Higgs production and decay processes

considered. Thus, it is important to keep in mind that the effects discussed in this work

cannot be correctly captured by the standard κ-framework [6, 7].

Let us now start by classifying the λ3-dependent contributions that come from the

O(α) corrections to single Higgs production and decay processes. These contributions can

be divided into two categories: a universal part, i.e., common to all processes, quadratically

dependent on λ3 and a process-dependent part linearly proportional to λ3.

The universal O(λ3
2) corrections originate from the diagram in the wave function

renormalisation constant of the external Higgs field, see figure 1. This contribution repre-

sents a renormalisation factor common to all the vertices where the Higgs couples to vector

bosons or fermions. Thus, for on-shell Higgs boson production and decay, it induces the
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same effect for all processes, without any dependence on the kinematics. Denoting as M
a generic amplitude for single Higgs production or a Higgs decay width, the correction to

M induced by the λ3-dependent diagram of figure 1 can be written as

(δM)ZH
=
(√

ZH − 1
)
M0, ZH =

1

1− κ2
λ δZH

, (2.2)

where M0 is the lowest-order amplitude and

δZH = − 9

16

Gµm
2
H√

2π2

(
2π

3
√

3
− 1

)
. (2.3)

In order to extend the range of convergence of the perturbative expansion to large

values of κλ, the one-loop contribution in ZH has been resummed. In so doing, terms of

O((κ2
λα)n) which are expected to be the dominant higher-order corrections at large κλ are

correctly accounted for.

In addition to the λ3
2 universal term above, amplitudes depend linearly on λ3 dif-

ferently for each process and kinematics. Let M0 be the Born amplitude corresponding

to a given process (production or decay). At the level of cross section or decay width,

the linear dependence on λ3 originates from the interference of the Born amplitude M0

and the virtual EW amplitude M1, besides the wave function renormalisation constant.

The amplitude M1 involves one-loop diagrams when the process at LO is described by

tree-level diagrams, like, e.g., vector boson fusion production, while it involves two-loop

diagrams when the LO contribution is given by one-loop diagrams, like, e.g., gluon-gluon-

fusion production. The λ3-linearly-dependent contributions in M1, which we denote as

M1
λ3

, can be obtained for any process by evaluating in the SM the diagrams that contain

one trilinear Higgs coupling (M1
λSM

3
) and then rescaling them by a factor κλ. In order

to correctly identify M1
λSM

3
(the contributions related to the H3 interaction) in the M1

amplitude in the SM, it is convenient to choose a specific gauge, namely the unitary gauge.

In a renormalisable Rξ gauge, λSM
3 -dependent diagrams are due not only to the interaction

among three physical Higgs fields but also to the interaction among one physical Higgs and

two unphysical scalars, making the identification less straightforward.

Once all the contributions from M1
λ3

and ZH are taken into account, denoting as Σ

a generic cross section for single Higgs production or a Higgs decay width, the corrections

induced by an anomalous trilinear coupling modify the LO prediction (ΣLO) according to

ΣNLO = ZH ΣLO (1 + κλC1) , (2.4)

where the coefficient C1, which originates from M1
λSM

3
, depends on the process and the

kinematical observable considered, while ZH is universal, see eq. (2.2). Here and in the

following the LO contribution is understood as including QCD corrections so that the labels

LO and NLO refer to EW corrections. We remind that among all terms contributing to

the complete EW corrections we consider only the part relevant for our discussion, i.e., the

one related to the Higgs trilinear interaction. The ΣNLO in the SM can be obtained from

eq. (2.4) setting κλ = 1 and expanding the ZH factor, or

ΣSM
NLO = ΣLO (1 + C1 + δZH) . (2.5)
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Thus, the relative corrections induced by an anomalous trilinear Higgs self-coupling can be

expressed as

δΣλ3 ≡
ΣNLO − ΣSM

NLO

ΣLO
= ZH − (1 + δZH) + (ZHκλ − 1)C1 , (2.6)

which, neglecting O(κ3
λ α

2) terms in the r.h.s, can be compactly written as

δΣλ3 = (κλ − 1)C1 + (κ2
λ − 1)C2 , (2.7)

with

C2 =
δZH

(1− κ2
λδZH)

. (2.8)

Before describing the method and results of the calculation of the C1 coefficients, we

scrutinise the theoretical robustness of eq. (2.6) and its range of validity. Our aim is to

employ eq. (2.6) to evaluate the LHC sensitivity on λ3 without making “a priori” any

assumptions on the value of the parameter κλ. We will, however, demand as a consistency

constraint that, for large values of κλ, λ3-dependent terms from O(αj) corrections with

j > 1 do not overwhelm the effects from the Ci coefficients. In order to take into account

all the O((κ2
λα)n) contributions and perform a resummation of the κ2

λ δZH terms in ZH we

need to impose that κ2
λ δZH . 1, i.e., |κλ| . 25. The corresponding parametric uncertainty

in ΣNLO is therefore given by O((κ3
λα

2)) terms that can be sizeable for large values of

κλ. The size of such missing terms can be estimated by calculating the difference between

δΣλ3 computed using eq. (2.6) and eq. (2.7), or equivalently δ(ΣNLO/ΣLO) ' κ3
λC1δZH .

Requiring this uncertainty to be . 10% and assuming as an order of magnitude of the

two-loop contribution C1δZH ∼ 10−5, we find |κλ| . 20, which we take as the range of

validity of our perturbative calculation.

At variance with the SM, where the Higgs self coupling and the Higgs mass are related,

in our setup they are two independent parameters. This in general spoils the renormalis-

ability of the model and makes its parameters sensitive to the UV scales. However, one

knows a priori that the λ3-dependent O(α) corrections to Σ in eq. (2.6) are finite. The

reason is twofold:

i) the LO result does not depend on λ3 and therefore no renormalisation of λ3 at NLO

is either needed nor possible.

ii) All the counterterms needed at NLO do not contain divergent contributions propor-

tional to the trilinear coupling.

This last point can be understood as follows: the only counterterm that contains

divergent contributions proportional to λ3 is the Higgs mass counterterm. However, the

mH dependence in ΣLO is all of kinematical origin. Therefore, when the NLO corrections

are calculated, no renormalisation of mH is needed.

The arguments above are sufficient for all the processes except for H → γγ, which

deserves a dedicated discussion. In a Rξ gauge the LO dependence of Γ(H → γγ) upon

mH is not purely kinematical, but it also comes from diagrams containing unphysical

– 6 –
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charged scalars. Therefore one expects that in these gauges at NLO there is no clear way

to disentangle the contributions that can be assigned as due to a trilinear coupling from

the ones related to the kinematical parameter mH . In order to overcome this difficulty, as

we already said, we employed the unitary gauge. In this gauge all the LO mH dependence

of Γ(H → γγ) is kinematical, similarly to all the other observables we considered, and the

argument discussed above about the finiteness of the NLO λ3-dependent corrections applies.

In general, an anomalous coupling ci is a free parameter that does not satisfy the SM

relations that can be crucial for the renormalisability of the model. In the calculation of

radiative corrections, the substitution of an electroweak coupling with an anomalous one,

cSM
i → ci ≡ κic

SM
i gives a finite result in two cases. First, when the renormalisation of ci

does not involve EW corrections. Second, when the renormalisation of the other regular

couplings cj involves ci via EW corrections, but ci itself is not renormalised. The first

case corresponds to what happens in the context of the κ−formalism where couplings are

rescaled by overall factors. It also applies to many phenomenological and experimental

studies on the dependence of double Higgs production cross sections on λ3 as done, e.g,

in [16] or in the experimental studies [31, 32]. In this case only QCD higher-order correc-

tions can be consistently included. The second case corresponds to the study presented

here: Σ at LO does not depend on λ3 and the NLO EW corrections, which do depend on

λ3, are finite because do not involve the renormalisation of λ3. At this point, it is worth

stressing that studies analogous in spirit and philosophy to ours have been performed for

the case of the top-Higgs Yukawa coupling yt, where, by looking at the dependence of NLO

EW corrections, bounds on anomalous yt ≡ κtySM
t can be set via the analysis of top-quark

pair production measurements [40, 41].

It should be said that, while the O(αisα) corrections to the physical observables Σ due

to an anomalous trilinear Higgs coupling are finite, and therefore they do not provide us

with direct information about the scale Λ of NP, one expects that the O(αisα
j) corrections

with j > 1 will instead show at least a logarithmic sensitivity to Λ. For our analysis to be

trustworthy, one has to therefore make the further assumption that the scale Λ is not too

far from the EW scale, such that potentially large logarithmic corrections that would spoil

the perturbativity of our analysis are not there.

In summary, we have argued that loop-induced dependence of single Higgs processes on

λ3 can be seen in the same spirit as, for example, the dependence of Higgs pair production

cross sections on λ3 or the general fits of the anomalous Higgs couplings at the LHC in the

κ-framework. The variable κλ in eq. (2.6) is a parameter that can be directly probed at

the experimental level, looking for discrepancies from SM predictions. The value of κλ is a

priori unconstrained, besides the limits imposed by perturbativity; constraints on its value

can be set via experimental data. Clearly, if an UV-completed BSM model is specified or

an EFT approach is used then different range of validity should be set on the parameter κλ.

Finally, let us stress that our investigation probes a larger range of κλ with respect to

an Effective-Field-Theory approach based on the addition of the dimension six operator

(Φ†Φ)3, as proposed for instance in ref. [42]. In this case the requirement that the potential

is bounded from below and v being the absolute minimum sets the constraints 1 < κλ < 3

as shown in appendix A.
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3 Computation of the C1 coefficients

At variance with the C2 coefficient, which is universal, the C1 coefficients are process- and

kinematic-dependent and therefore need separate calculations. In this work we focus on

the main production and decay channels:

• σggF, the gluon-gluon-fusion cross section;

• σVBF, the VBF cross section;

• σWH , σZH , the cross section for associate production with W and Z bosons;

• σtt̄H , the cross section for tt̄H production;

• Γγγ , the decay width into photons;

• ΓZZ and ΓWW , the decay widths into ZZ∗ and WW ∗ subsequently decaying into

fermions;

• Γff̄ , the decay width into fermions;

• Γgg, the decay width into gluons.

For each observable, the corresponding C1 coefficient is identified as the contribution

linearly proportional to λSM
3 in the NLO EW corrections and normalised to the LO result

as evaluated in the SM.

For any given single Higgs process, in principle C1 could be evaluated directly at the

level of matrix element in a fully differential way, i.e., point by point in phase space

C1({pn}) =
2<(M0∗M1

λSM
3

)

|M0|2
, (3.1)

where we have explicitly shown in parentheses the dependence on the external momenta

{pn} in the Born configuration and understood the sum/average over helicities and colour

states. By integrating over the phase space the differential ratio in eq. (3.1) one would

achieve the maximal discriminating power between the κλ = 1 hypothesis and the κλ 6= 1

ones. However, as first step, it is both useful and convenient to work at the more inclusive

level and directly compute C1 for cross sections or decay rates integrated over the entire

phase space or a portion of it.

For example, in the case of the decays, in this work we limit the discussion to total

rates and define CΓ
1 as

CΓ
1 =

∫
dΦ 2<

(
M0∗M1

λSM
3

)
∫
dΦ |M0|2

, (3.2)

where the integration in dΦ is over the phase space of the final-state particles.

The computation of (total or differential) hadronic cross sections is more involved

than that of the decay widths, because hadronic cross sections receive contributions from

different partonic process, which have to be convoluted with the corresponding parton

– 8 –
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Figure 2. Structure of the λSM
3 -dependent part in M1

λSM
3

for processes involving massive vector

bosons in the final or in the intermediate states (VBF, HV and H → V V ∗ → 4f).
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H

t
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Figure 3. Sample of λSM
3 -dependent diagrams in tt̄H production.

luminosities and in principle can have different C1 terms at the level of matrix elements.

For production cross section, Cσ1 reads

Cσ1 =

∑
i,j

∫
dx1dx2fi(x1)fj(x2) 2<

(
M0∗

ijM1
λSM

3 ,ij

)
dΦ∑

i,j

∫
dx1dx2fi(x1)fj(x2) |M0

ij |2dΦ
, (3.3)

where the sum is over all the possible i, j partonic initial states of the process, which are

convoluted with the corresponding parton distribution functions.

A few comments on the C1 for the various observables considered here are in order

before showing the results. Assuming that all the fermions but the top quark are massless,

the CΓ
1 for H → ZZ∗ → 4f does not depend on the fermions in the final state. The

same applies to H → WW ∗ → 4f . In the case of hadronic production, different partonic

processes can have different C1’s at the level of matrix elements. One example is tt̄H

production, which receives contributions from qq̄ → tt̄H and gg → tt̄H. Another is VBF,

where both W -boson-fusion and Z-boson-fusion contribute. Moreover, each subprocess

contributes in proportion to the parton distribution weights.

In order to evaluate the C1 coefficients of the various processes, we generated the

relevant amplitudes using the Mathematica package FeynArts [43]. For all the cases

involving only one-loop amplitudes, we computed the cross sections and decay rates with

the help of FormCalc interfaced to LoopTools [44] and we checked the partonic cross

sections at specific points in the phase space with FeynCalc [45, 46]. In processes involving

massive vector bosons in the final or in the intermediate states (VBF, HV and H →
V V ∗ → 4f), the λ3-dependent parts in M1

λSM
3

have a common structure, see figure 2. In

the case of the tt̄H production the sensitivity to λ3 comes from the one-loop corrections

to the tt̄H vertex and from one-loop box and pentagon diagrams. A sample of diagrams

containing these λ3-dependent contributions is shown in figure 3.

The presence of not only triangles but also boxes and pentagons in the case of tt̄H

production provides an intuitive explanation of why the λ3 contributions cannot be cap-

tured by a local rescaling of the type that a standard κ-framework would assume for the
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Figure 4. Diagrams contributing to the C1 coefficient in the gluon-gluon-fusion Higgs production.

The one on the right has a multiplicity factor 2.
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Figure 5. Diagrams contributing to the C1 coefficient in Γ(H → γγ). The diagrams in the second

row have multiplicity 2.

top-Higgs coupling. Similarly, not all the contributions given by the corrections to the

HV V vertex can be described by a scalar modification of its SM value via a κV factor, due

to the different Lorentz structure at one loop and at the tree level.

The computation of σ(gg → H), the related Γ(H → gg), and of Γ(H → γγ) is much

more challenging and deserves a more detailed discussion. These observables receive the

first non-zero contributions from one-loop diagrams, which do not feature λ3, so that the

computation of C1 requires the evaluation of two-loop diagrams.

The two-loop EW corrections to σ(gg → H) in the SM were obtained in refs. [47–49].

In our computation of the C1 coefficient we followed the approach of ref. [48] where the cor-

rections have been computed via a Taylor expansion in the parameters q2/(4m2
t ), q

2/(4m2
H)

where q2 is the virtuality of the external Higgs momentum, to be set to m2
H at the end

of the computation. However, at variance with ref. [48], we computed the diagrams con-

tributing to C1, see figure 4, via an asymptotic expansion in the large top mass up to and

including O(m6
H/m

6
t ) terms. The two expansions are equivalent up to the first threshold

encountered in the diagrams that defines the range of validity of the Taylor expansion. In

our case, the first threshold in the diagrams of figure 4 occurs at q2 = 4m2
H and both ex-

pansions are valid for mH ' 125 GeV. The asymptotic expansion was performed following

the strategy described in ref. [50] and the result for C1 is presented in appendix B. We

checked our asymptotic expansion against the corresponding expression obtained by the

Taylor expansion finding, as expected, very good numerical agreement.

The computation of the EW corrections to the partial decay width of a Higgs boson

into two photons in the SM was performed in a Rξ gauge in refs. [51, 52]. As mentioned

above, the identification of the contributions to the C1 coefficient is straightforward in
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the unitary gauge. In this gauge, neither unphysical scalars nor ghosts are present and

the propagator of the massive vector bosons is i(−gµν + kµkν/M
2
V )/(k2 −M2

V + iε). The

unitary gauge is a very special gauge. It can be defined as the limit when the gauge

parameter ξ is sent to infinity of a Rξ gauge. When a calculation is performed in the

unitary gauge, one is actually interchanging the order of the operations limit ξ →∞ with

the integration, i.e., the limit ξ →∞ is performed first and then one does the integration

while the correct order is the opposite. Because some of the vertices that arise from the

gauge-fixing function contain a ξ factor, this exchange is not always an allowed operation

and in order to check the correctness of our approach we recomputed1 the full two-loop

EW corrections to Γ(H → γγ) in the unitary gauge. The corrections were computed as

in ref. [51] via a Taylor expansion in the parameters q2/(4m2
t ), q

2/(4m2
W ), q2/(4m2

H) up to

and including O(q6/m6) terms finding perfect agreement with the result of ref. [51].

Once we verified that in the SM the calculation in the unitary gauge is equivalent

to the one in a Rξ gauge, the coefficient C1 is obtained evaluating the diagrams in the

unitary gauge that contain one trilinear Higgs interaction. The latter amounts to add to

the contribution of the diagrams in figure 4, with the gluons replaced by photons, the

contribution of the diagrams in figure 5. The result is presented in appendix B. We would

like to remark that the sum of the diagrams in figure 5 is finite in the unitary gauge but it

is not finite in a generic Rξ gauge.

4 Results

In this section we discuss the numerical impact of the λ3-dependent contributions on the

most important observables in single Higgs production and decay at the LHC. We begin

by listing and commenting the size of the C1 and C2 factors in eq. (2.7), which parametrise

the λ3-dependent contributions.

The input parameters of our calculation are [53]

Gµ = 1.1663787 · 10−5 GeV−2 , mW = 80.385 GeV , mZ = 91.1876 GeV , (4.1)

with the Higgs boson and the top-quark masses set to

mH = 125 GeV , mt = 172.5 GeV . (4.2)

All the other fermions are treated as massless. In the production cross sections, the renor-

malisation and factorisation scales are both set equal to

µ ≡ 1

2

∑
i

mi , (4.3)

where mi are the masses of the particle in the final state. As PDF set, we use the

PDF4LHC2015 set [54–57].

The process-independent factor C2 defined in eq. (2.8) depends upon δZH , as defined

in eq. (2.3), and also κλ. With the parameter inputs used, δZH = −1.536 · 10−3, thus C2

can range from C2 = −1.536 · 10−3 for κλ = 1 up to C2 = −9.514 · 10−4 for κλ = ±20.

1To our knowledge this is the first-ever two-loop computation of a physical observable performed in the

unitary gauge.
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CΓ
1 [%] γγ ZZ WW ff̄ gg

on-shell H 0.49 0.83 0.73 0 0.66

Table 1. Values of the C1 factor in units 10−2 for the most relevant decay modes of the Higgs

boson.

Cσ1 [%] ggF VBF WH ZH tt̄H

7 TeV 0.66 0.65 1.06 1.23 3.87

8 TeV 0.66 0.65 1.05 1.22 3.78

13 TeV 0.66 0.64 1.03 1.19 3.51

14 TeV 0.66 0.64 1.03 1.18 3.47

Table 2. Same as table 1 for the production modes for pp collisions at centre-of-mass energies

relevant for the LHC.

In table 1 we report the values of the CΓ
1 term for the most relevant Higgs decay modes

at the LHC, namely, WW , ZZ, γγ, ff̄ and also gg, which yields a non-negligible fraction

of the total decay width. In the analyses of section 5, CΓ
1 (ff̄) = 0 is used for the bb̄ and

ττ decays. The Cσ1 factors for the different single Higgs production modes are presented

in table 2 for different centre-of-mass energies of Run-I and Run-II at the LHC. For all the

processes, the scale uncertainty obtained by scaling µ with a factor of 2 and 1/2 amounts

to 1% of the value displayed in table 2. The dependence on the factorisation scale largely

cancels in the ratio of eq. (3.3) and the dependence on the renormalisation scale is either

not present (V H, VBF) or also cancels exactly in the ratio.

Few comments can be given about the results in tables 1 and 2. The term CΓ
1 (ff̄) is

proportional to mf for a generic H → ff̄ fermionic decay. We have verified that in the

case of H → bb̄, setting mb = 5 GeV, CΓ
1 (bb̄) = 2.5 × 10−5. Thus it is safe to set CΓ

1 (ff̄)

for any H → ff̄ (and in particular for CΓ
1 (bb̄)) decay to zero. The smallest non-vanishing

C1 corresponds to the H → γγ channel. It is interesting to note that, besides subleading

kinematical effects, the main difference in the determination of CΓ
1 (ZZ) and CΓ

1 (WW ) is

the different coupling of the Higgs boson with the gauge bosons in figure 2. For this reason,

CΓ
1 (ZZ)/CΓ

1 (WW ) ∼ mZ/mW and similarly Cσ1 (ZH)/Cσ1 (WH) ∼ mZ/mW . On the other

hand, CΓ
1 (ZZ) is different form Cσ1 (ZH), although the vertex corrections involved are the

same (see figure 2). In this case the kinematic configurations are not the same, leading to

different values for CΓ
1 (ZZ) and Cσ1 (ZH). A similar argument applies to CΓ

1 (WW ) and

Cσ1 (WH) and for a comparison with Cσ1 (VBF).

Another interesting observation that can be drawn from table 2 regards the dependence

of Cσ1 from the hadronic centre-of-mass energy, which, although it is very mild for all pro-

cesses, points to the fact that the effects become smaller at higher energies. Furthermore,

we note that the tt̄H production receives much larger corrections with respect to the other

processes, while Higgs-strahlung processes, ZH and WH, receive larger corrections than

VBF and gluon-gluon-fusion. The behaviour with energy and the hierarchy can be nicely

understood by considering the Yukawa-type potential induced by the Higgs interaction in
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Cσ1 [%] 25 GeV 50 GeV 100 GeV 200 GeV 500 GeV

WH 1.71 (0.11) 1.56 (0.34) 1.29 (0.72) 1.09 (0.94) 1.03 (0.99)

ZH 2.00 (0.10) 1.83 (0.33) 1.50 (0.71) 1.26 (0.94) 1.19 (0.99)

tt̄H 5.44 (0.04) 5.14 (0.17) 4.66 (0.48) 3.95 (0.84) 3.54 (0.99)

Table 3. Cσ1 at 13 TeV obtained by imposing the cut pT (H) < pT,cut, for several values of pT,cut.

In parentheses the fraction of events left after the quoted cut is applied.

Cσ1 [%] 1.1 1.2 1.5 2 3

WH 1.78 (0.17) 1.60 (0.36) 1.32 (0.70) 1.15 (0.89) 1.06 (0.97)

ZH 2.08 (0.19) 1.86 (0.38) 1.51 (0.72) 1.31 (0.90) 1.22 (0.98)

tt̄H 8.57 (0.02) 7.02 (0.10) 5.11 (0.43) 4.12 (0.76) 3.64 (0.94)

Table 4. Cσ1 at 13 TeV obtained by imposing the cut mtot < K ·mthr, for several values of K. In

parentheses the fraction of events left after the quoted cut is applied.

the non-relativistic regime.2 In tt̄H, WH and ZH production the Higgs can interact with

another final-state particle via an Higgs propagator, thus in the non-relativistic regime

the process receives a Sommerfeld enhancement. On the contrary, this is not possible

in gluon-gluon-fusion, VBF and in the decays into γγ and ZZ(WW ), where the M1
λSM

3

involves always a Higgs propagator connecting the external Higgs with an internal line.

This explains why, although the interactions are the same, Cσ1 (tt̄H) > Cσ1 (ggF) and also

Cσ1 (HV ) > Cσ1 (VBF),CΓ
1 (VV).

In order to support the arguments outlined above, the kinematical dependence of the

C1 coefficients can be studied. To this purpose, we evaluate Cσ1 for these processes imposing

an upper cut on the transverse momentum of the Higgs or on the total invariant mass of the

final state. The results obtained for 13-TeV collisions are shown in tables 3 and 4, for the

cases pT (H) < pT,cut and mtot < K ·mthr, being mthr the threshold of the specific process.

Cσ1 is strongly enhanced when energetic configurations are vetoed. In this respect, boosted

configurations, which feature a smaller cross section and a milder dependence on κλ, are

certainly not optimal to detect deviations in the Higgs trilinear coupling. On the other

hand, the selection of threshold regions may improve the sensitivity on κλ. Results for

VBF have not been included in the table because the dependence on the cuts turns out to

be very mild (very few percentages with respect to the value in table 2), as expected from

the fact that the λ3 dependence involves HV V vertex corrections, which are not connected

with the quark lines.

We turn now to the presentation and discussion of the results for production and decay.

We first consider the corrections δσλ3 to the various channels as defined in eq. (2.6). In

figure 6 we plot δσλ3 as a function of κλ for the relevant production processes at the LHC,

namely, gluon-gluon fusion, vector-boson-fusion, Higgs-strahlung (WH and ZH) and tt̄H

production. In the plot on left we display the δσλ3 corrections for the various processes in

2Similar effects have been discussed, e.g., in the case of tt̄ production in [40].
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Figure 6. Dependence of δσλ3
for the relevant production processes at the LHC as a function of

κλ in the range |κλ| ≤ 20 (left) and zoomed in the region −2 < κλ < 8 (right). The style and colour

conventions of the lines are: ggF = solid black, tt̄H = dash-dotted red, VBF = dotted green, ZH

= dashed blue, WH = long-dashed magenta. The black dashed horizontal lines in the right plot

correspond to ±1%.
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Figure 7. Dependence of δΓλ3
for the relevant decay widths (right) and corresponding δBRλ3

as

defined in eq. (4.4) (left). The solid black line represents Γff̄ , the long-dashed red line ΓWW , the

dashed blue line ΓZZ and the dotted green line Γγγ .

the full range of validity of our calculation, −20 . κλ . 20, while in the plot on the right

we zoom the region −2 < κλ < 8, where corrections are within 5% in absolute value for all

processes but tt̄H.

As can be seen, tt̄H receives positive sizeable corrections (∼ 20% at κλ ∼ 10), thanks

to the large value of Cσ1 (tt̄H). For all the other production processes large corrections can

only be negative and only for large value of |κλ|. The plots on the right of figure 6 shows

that δσλ3 remains at the percent level for a quite extended range for the ggF, VBF and V H

production modes. Moreover, for these processes, δσλ3 can be zero for values of κλ 6= 1,

i.e., different from the SM prediction. In particular, in the case of gluon-gluon fusion and

VBF, the SM is degenerate with κλ ∼ 3, while in the case of V H production the SM is

degenerate with κλ ∼ 6. The fact that the degeneracy appears at different values κλ for

different processes is important in order to be able to lift it.

The results for the decay widths and branching ratios are shown figure 7. We plot

(left) δΣλ3 as a function of κλ for the decay widths of the relevant modes at the LHC,
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which we denote as δΓλ3 , and we show (right) the analogous quantity (δBRλ3) for the

Branching Ratios (BRs). The quantity δBRλ3(i) for the Higgs decay into the final-state i

can be conveniently written as

δBRλ3(i) =
(κλ − 1)(CΓ

1 (i)− CΓtot
1 )

1 + (κλ − 1)CΓtot
1

, (4.4)

where we have defined CΓtot
1 ≡

∑
j BRSM(j)CΓ

1 (j) and with our input parameters CΓtot
1 =

2.3 · 10−3. The quantity CΓtot
1 , which actually is the C1 term for the total decay width, is

very small since CΓ
1 (bb̄) = 0 and bb̄ is the dominant decay channel. Note that, although

the H → gg decay is not phenomenologically relevant, the total decay width does depend

on δΓλ3(gg), since Γgg yields a non-negligible fraction (8.5 %) of Γtot.

Figure 7 shows that the corrections to the partial widths can reach up to −40% or

−50% for κλ ∼ −20, while for κλ > 0 the corrections are smaller due to the different sign

of the contributions depending on CΓ
1 and C2. The only exception is δΓλ3(ff̄), which is

symmetric since CΓ
1 (ff̄)=0. On the other hand, the corrections to the branching ratios

δBRλ3 , which are more important than δΓλ3 from a phenomenological point of view, are

much smaller, reaching up to ∼ 10% for BR(ZZ). The reasons behind the smallness of the

δBRλ3 are two. First, as explicitly shown in eq. (4.4) δBRλ3 depends only linearly upon κλ,

since the contribution of the wave function renormalisation constant cancels in the ratio.

Second, the C1 coefficients have the same sign and therefore there is a partial cancellation

in the ratio. In any case, it is interesting to note that in the range of κλ shown in the

right-hand plot of figure 6, apart from tt̄H, the terms δBRλ3 are of the same size or larger

than δσλ3 . In other words, in the range close to the SM predictions, the decays modes are

more sensitive to κλ than the production processes.

5 Constrains on λ3: present and future

In this section we describe the method and the results of a simplified fit we have performed

in order to estimate the limits that can be set on κλ with our approach. Our analysis is

based on the experimental results presented in table 8 of ref. [5]. We also estimate the ex-

pected limits that could be obtained at LHC Run-II at 300 fb−1 and 3000 fb−1 of luminosity.

The key aspect of our approach is that the predictions for all the available production

and decay channels depend on a single parameter (κλ) and therefore a global fit can be in

principle very powerful in constraining the Higgs trilinear coupling. As our aim is mostly

illustrative, we want to assess the competitiveness of our method rather than trying to

obtain the best and most robust bounds. To this purpose, we make a series of simplifying

approximations. For example, being usually quite small (see figure 7 of ref. [5]), we ignore

correlations between the different uncertainties of a single measurement or between the

measurements of the different observables.

The basic inputs of our analysis are the signal strength parameters µfi , which are

defined for any specific combination of production and decay channel i→ H → f as

µfi ≡ µi × µ
f =

σ(i)

σ(i)SM
× BR(f)

BRSM(f)
. (5.1)
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H → γγ H → ZZ H →WW H → ττ H → bb̄

ggF P1,2,3,4; F1,2 P1,2,3,4; F1,2 P1,2,3,4; F1,2 P1,2,3,4; F1 —

VBF P2,3,4; F1,2 P2,3,4; F1,2 P2,3,4; F1,2 P2,3,4; F1,2 —

WH P3,4 — P3,4 P3,4 P3,4;F1,2

ZH P3,4 — P3,4 P3,4 P3,4

tt̄H P4; F1,2 — P4 P4 P3,4;F1,2

Table 5. Combinations of production and decay modes used in the different analyses. Each Pn
identifies one of our four different sets of present data taken from ref. [5]. F1 and F2 respectively

correspond to the future scenarios “CMS-II” (300 fb−1) and “CMS-HL-II” (3000 fb−1) as presented

in table 1 of ref. [9].

The quantities µi and µf are the production cross section σ(i) (i = ggF, VBF, WH, ZH,

tt̄H) and the BR(f) (f = γγ, ZZ,WW, bb̄, ττ) normalised to their SM values, respectively.

Assuming on-shell production, the product µi×µf is therefore the rate for the i→ H → f

process normalised to the corresponding SM prediction.

Using eq. (2.6) and eq. (4.4), µi and µf , which enter the definition of µfi in eq. (5.1),

can be expressed as

µi = 1 + δσλ3(i) ,

µf = 1 + δBRλ3(f) . (5.2)

By definition, µfi = µi = µf = 1 in the SM.

In the following we denote the measured signal strengths as µ̄fi . Given a collection of

µ̄fi measurements {µ̄fi }, we define as best value of κλ the one that minimises the χ2(κλ)

function defined as

χ2(κλ) ≡
∑

µ̄fi ∈{µ̄
f
i }

(µfi (κλ)− µ̄fi )2

(∆f
i (κλ))2

, (5.3)

where µfi (κλ) is obtained using eqs. (5.1) and (5.2), and ∆f
i (κλ) is the total uncertainty

of µfi . Different sources of uncertainties enter in the determination of ∆f
i (κλ), namely, the

experimental uncertainty in the measurement of µfi , the SM theory uncertainties associated

to the particular channel µi × µf (scale, PDFs and αs), and the κλ-dependent uncertainty

associated to missing higher orders, the O(κ3
λα

2) terms discussed in section 2. The first

two types of uncertainty are reported already combined in ref. [5], and divided in exper-

imental and theoretical errors in ref. [9]. For the third type of uncertainty, we adopt the

parametrization 1√
3
κ3
λC1δZH , where the C1 depends on the observable and δZH is defined

in eq. (2.3). It has to be kept in mind, however, that the results of our analysis show a

very mild dependence on this uncertainty.3

3The prefactor 1/
√

3 is included so that the uncertainty very closely corresponds to the difference between

eq. (2.6) and eq. (2.7).
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Figure 8. Left: χ2 for the different sets of observables presented in table 5: the dotted red line

represents P1, the solid black line P2, the dashed magenta line P3, and the blue dash-dotted line

P4. The two horizontal lines represent ∆χ2 = 1 and ∆χ2 = 3.84. Right: corresponding p-value.

The various Pn data sets are colour-coded in the same way. The horizontal line is p = 0.05.

In order to evaluate the impact of the different production channels on the fit to the

present data, we consider four different sets (Pn), with an increasing number of included

production channels:

• P1: ggF,

• P2: ggF+VBF,

• P3: ggF+VBF+V H,

• P4: ggF+VBF+V H+tt̄H.

For the future scenarios (Fn), we consider

• F1: “CMS-II” (300 fb−1),

• F2: “CMS-HL-II” (3000 fb−1),

as presented in table 1 of ref. [9]. A summary of the sets of data used in each fit is presented

in table 5.

As shown in figure 8, we identify the 1σ and 2σ intervals assuming a χ2 distribution.

Following this procedure and using the gluon-gluon-fusion and VBF data from table 8 of

ref. [5] (scenario P2 in table 5) we obtain

κbest
λ = −0.24 , κ1σ

λ = [−5.6, 11.2] , κ2σ
λ = [−9.4, 17.0] , (5.4)

where the κbest
λ is the best value and κ1σ

λ , κ2σ
λ are respectively the 1σ and 2σ intervals.

The choice of P2 as reference set is motivated by the measured significance for the different

production processes, which in the 8 TeV analyses is above 5σ only for ggF and VBF (see

table 14 in ref. [5]). Moreover, P2 returns the most stringent values for κ1σ
λ and κ2σ

λ . The

other data sets presented in table 5 are reported in figure 8. Notice how the minimum of

the distribution in the figure jumps to ∼ 10 when the tt̄H production channel is included.
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Figure 9. In the left and right plots, respectively χ2(κλ) and p-value(κλ) for “CMS-II” (solid black

line) and “CMS-HL-II” (blue dashed line).

This effect originates from the anomalous values presented in ref. [5] for µ̄f
tt̄H

, especially

with f = WW . Similarly, the low compatibility of µ̄fV H with SM predictions is the reason

behind larger κ1σ
λ and κ2σ

λ intervals in P3.

In order to ascertain the goodness of our fit, we computed the p-value as a function of

κλ:

p-value(κλ) = 1− Fχ2
(n)

(χ2(κλ)) , (5.5)

where Fχ2
(n)

(χ2(κλ)) is the cumulative distribution function for a χ2 distribution with n

degrees of freedom, computed at χ2(κλ). In the right-hand side of figure 8 we report the

p-value(κλ) corresponding to different data sets. Requiring that p > 0.05, we are able

to exclude, at more than 2σ, that a model with an anomalous coupling κλ < −14.3 can

explain the data in P2.

We repeat the same procedure for ATLAS and CMS at 300 fb−1 and 3000 fb−1, using

the uncertainties reported in table 1 of [9] and, as a first step, assuming that the central

value of the measurements in every channel coincides with the predictions of the SM. In

figure 9 we report the two cases “CMS-II” (300 fb−1) and “CMS-HL-II” (3000 fb−1).

Within this approach, best values are by definition: κbest
λ = 1. For the 1σ and 2σ

intervals, and for the region where the p-value is larger than 0.05, we find that the “CMS-

II” (300 fb−1) case gives

κ1σ
λ = [−1.8, 7.3] , κ2σ

λ = [−3.5, 9.6] , κp>0.05
λ = [−6.7, 13.8] , (5.6)

while for the “CMS-HL-II” (3000 fb−1) we obtain

κ1σ
λ = [−0.7, 4.2] , κ2σ

λ = [−2.0, 6.8] , κp>0.05
λ = [−4.1, 9.8] . (5.7)

This simplified approach provides a first (rough) idea of the typical intervals that can be

expected. A more reliable approach consists of considering, still within the SM assumption,

all the possible central values that could be measured. To this aim, we produce a collection

of pseudo-measurements {µ̄fi }, where each µ̄fi is randomly generated with a gaussian distri-

bution around the SM with a standard deviation equal to the experimental uncertainty cited

in table 1 of [9]. For each pseudo-experiment we perform a fit and we determine κbest
λ and
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Figure 10. Histograms for “CMS-II” (300 fb−1). The distributions represented are, from left to

right and from top to bottom: 1) best values, 2) 1σ region lower limit, 3) 1σ region upper limit, 4)

2σ region lower limit, 5) 2σ region upper limit, 6) p > 0.05 region lower limit, 7) p > 0.05 region

upper limit, 8) 1σ region width, 9) 2σ region width, 10) p > 0.05 region width.
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Figure 11. As figure 10 for “CMS-HL-II” (3000 fb−1).

the κ1σ
λ , κ2σ

λ and κp>0.05
λ intervals. In figures 10 and 11 we report the results out of a collec-

tion of n = 10000 pseudo-experiment. Frequency histograms together with corresponding

mean and median values are provided for κbest
λ and all the extremes and widths of the κ1σ

λ ,

κ2σ
λ and κp>0.05

λ intervals. From these plots it is clear that most likely the limits written in

eq. (5.6) and (5.7) are pessimistic, and the LHC should be able to put even stronger bounds.

As a last exercise, we consider an optimistic scenario where the quadratic sum of the

experimental and theoretical uncertainties amounts to one percent in total. To this aim

we employ the observables included in the data sets P1,2,3,4, and assume, as first step,

that the measured signal strength is the one of the SM with an associated 0.01 relative

uncertainty. In figure 12 we report the obtained χ2(κλ) and p-value(κλ). As expected,

a precise measurement of the tt̄H would lead to a sizeable improvement in the fit. For

example, we find that for the scenario P4

κ1σ
λ = [0.86, 1.14] , κ2σ

λ = [0.74, 1.28] , κp>0.05
λ = [0.28, 1.80] . (5.8)

Considering as before n = 10000 pseudo-measurements, the histograms analogous to those

in figure 10 and 11 are shown in figure 13. Again, we find the indication that, most-likely,

in this optimistic scenario stronger bounds than those reported in eq. (5.8) could be set.
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Figure 12. In the left and right plots, respectively χ2(κλ) and p-value(κλ) for the P1,2,3,4 scenarios

with relative uncertainties set at 0.01.
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Figure 13. As figure 10 for the P4 scenario with relative uncertainties set to 0.01.

6 Conclusions

The structure and properties of the scalar sector encompassing the observed Higgs boson

are largely unexplored and their determination is one of the major goals of the LHC and

future colliders. In the standard model the Higgs self couplings, trilinear and quartic, are

fixed by the Higgs mass, yet they could be different in scenarios featuring extended scalar

sectors or new strong dynamics. The most-beaten path to determine the trilinear coupling

is via the direct measurement of Higgs pair production total cross sections and differential

distributions. However, the small expected rates, the mild dependence of the cross section

on the trilinear coupling and the difficulty of selecting signal from backgrounds make this

path very arduous.

In this work we have put forward an alternative method, which relies on the effects that

loops featuring an anomalous trilinear coupling would imprint on single Higgs production

channels at the LHC. We have calculated the contributions arising at NLO on all the

phenomenologically relevant single Higgs production (ggF, VBF, WH, ZH, tt̄H) and

decay (γγ, WW ∗/ZZ∗ → 4f , bb̄, ττ) modes at the LHC. Remarkably, we have found

that the λ3 dependence is different for each channel (production times decay) and is also

affected by the final state kinematic configurations. We have then estimated the sensitivity

to the trilinear coupling via a one-parameter fit to the complete set of single Higgs inclusive

measurements at the LHC 8 TeV. The bounds obtained are found to be competitive with the

current ones obtained from Higgs pair production. We have also estimated the constraints
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that can be obtained at the end of the current Run II and also in the HL phase with an

integrated luminosity of 3000 fb−1 expected. In all cases, the determination of the Higgs

self coupling via loop effects is competitive with the direct determination and will provide

complementary information.

We remark that when an analysis based on a single observable is made, the effects

induced by a modification of the trilinear coupling cannot be distinguished from those

induced by an overall rescaling factor of the relevant Higgs coupling, like a κf or κV factor.

Instead, the simultaneous analysis of several observables allows the identification of the

different sources of the various effects. We also note that, even though not exploited in

this first study, differential information from single Higgs production and/or decays could

also be used to improve the sensitivity.

The indirect approach outlined in this work relies on the assumption that the leading

effects from physics beyond the Standard Model affect the Higgs potential only, i.e., the

couplings to fermions and vector bosons are not (or just mildly) affected by new physics at

the tree level. Admittedly, this might be a limitation for studying some specific new physics

scenarios. However, this assumption is not a requirement for our method to be applied. As

information on the Higgs couplings to vector boson and the top quark will become more

accurate, one could think of progressively lift the condition on the other Higgs couplings to

be SM and allow for tree-level deviations in the global fit. A first straightforward step will

be the extension to a three-parameter (κV , κf , κλ) fit, being κV , κf the universal rescaling

factors of the fermion/boson Higgs couplings. A further step will be the study of the

additional sensitivity given by the inclusion of collider energy and differential observable

dependences in the fit. Work in this direction is in progress.

In this work we have chosen to present the results in the context of the κ-framework,

because with the current sensitivities only rather large deviations from the SM can be

probed. Moreover, in this way our results can be straightforwardly implemented in the

experimental global analyses [5], which are also currently based on the κ-framework. The

next step will be the interpretation of our loop calculations in the context of an effective

field theory including at least dimension-6 operators. In this context, issues such as how

many independent observables are needed to lift all possible degeneracies in the effects

induced by different operators (at tree- and one-loop level), need further investigation.
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A Comparison with the EFT approach

The SM potential for the Higgs doublet field reads

V SM(Φ) = −µ2(Φ†Φ) + λ(Φ†Φ)2 , Φ =
1√
2

(
φ+

v +H + iφ0

)
, (A.1)

and can be modified by adding the dimension-6 operators (Φ†Φ)3,

V dim−6(Φ) = V SM(Φ) +
c6

v2
(Φ†Φ)3 , (A.2)

where the normalization of the operator (Φ†Φ)3 is v = (
√

2Gµ)−1/2 = 246 GeV. The rela-

tions among mH , v, µ and λ are different in V SM(Φ) and V dim−6(Φ). We determine λ and µ

as function of the measured quantities, mH and v, and of the new parameter c6. Once all the

dependences are expressed as function of mH , v and c6, we can derive the value of the coef-

ficient in front of H3 which in the paper is called λ3, as well as the coefficient in front of the

quartic term H4, which is denoted as λ4. The SM relations are recovered by setting c6 = 0.

With the condition dV dim−6(Φ)
dΦ

∣∣∣
|Φ|=v/

√
2

= 0 , one obtains

v =
2µ√

4λ+ 3c6
→ µ =

1

2
v
√

4λ+ 3c6 , (A.3)

which after Electroweak Symmetry Breaking implies

m2
H = v2(2λ+ 3c6) → λ =

m2
H

2v2
− 3c6

2
, (A.4)

and

cH3 ≡ vλ3 = v

(
λ+

5

2
c6

)
=
m2

H

2v
+ c6v → κλ = 1 +

2c6v
2

m2
H

. (A.5)

At a first sight, the linear relation in eq. (A.5) seems to imply that with the potential

V dim−6(Φ) any value of λ3 can be obtained. However, one can require that the potential is

bounded from below4 (c6 > 0) and that v is the global minimum. The latter condition had

been already discussed in ref. [58] and can be easily derived substituting in the potential

of eq. (A.2) µ and λ with mH and v via eqs. (A.3) and (A.4):

V dim−6(Φ) =

(
−m

2
H

2
+

3

4
c6v

2

)
Φ†Φ +

(
m2

H

2v2
− 3

2
c6

)
(Φ†Φ)2 +

c6

v2
(Φ†Φ)3 . (A.6)

Since Φ = 0 can be a local minimum, the condition that v is a global minimum requires

V dim−6(v/
√

2) =
c6v

4 −m2
Hv

2

8
< 0 = V dim−6(0) . (A.7)

or c6 < m2
H/v

2. Thus, with the inclusion of only the (Φ†Φ)3 operator in the SM Lagrangian

κλ is constrained to be in the range

1 < κλ < 3 . (A.8)

4Here we are not taking into account Renormalization-Group-Equation (RGE) effects on λ and c6, which

may add additional constraints; only the potential without quantum effects is considered.

– 22 –



J
H
E
P
1
2
(
2
0
1
6
)
0
8
0

It is worth to notice that this bound has been derived without any assumption on the size

c6, which in an EFT approach would be subject to further constraints depending on the

scale of new physics Λ.

In a general EFT approach in principle the value of λ3 can be affected also by another

dimension-6 operator, namely, cΦ
2v2∂

µ(Φ†Φ)∂µ(Φ†Φ). However, other couplings of the Higgs

boson would also be affected by this operator, such as the coupling with the Z boson and

with the fermions. Thus, these effects would be already present at LO in single-Higgs

production and would be in general much larger than the effects induced by an anomalous

λ3 coupling. Only for values 1 < κλ < 3 and assuming cΦ = 0 the results obtained in

this paper can be converted to values of c6 via eq. (A.5). Moreover, in the EFT approach,

Wilson coefficients at the scale Λ are typically expected to be smaller in absolute value

than 4π. This requirement would additionally set the constraint

c6 < 4π
v2

Λ2
→ 1 < κλ < min

(
3 , 1 + 8π

v4

m2
HΛ2

)
. (A.9)

Analogously to what has been done for the trilinear coupling, we can define λ4 ≡
κλ4λ

SM
4 finding

κλ4 = 1 +
12c6v

2

m2
H

, (A.10)

which implies

κλ4 = 6κλ − 5→ 1 < κλ4 < min

(
13 , 1 + 48π

v4

m2
HΛ2

)
, (A.11)

since, with the V dim−6(Φ) potential, λ4 is a prediction fixed by mH , v and λ3.

As last comments concerning the potential in eq. (A.2), we want to stress that the

constraints in eqs. (A.8)–(A.9), the relation between λ3 and λ4 and thus also the constraints

on λ4 in eq. (A.11) are parametrisation independent, i.e., they are not altered by the choice

of normalisation of the (Φ†Φ)3 operator. Using for instance, the normalisation c̄6
λ
v2 of

ref. [42], eqs. (A.3)–(A.5) and eq. (A.10) would change, namely:

m2
H = v2λ(2 + 3c6)→ λ =

m2
H

v2(2 + 3c̄6)
(A.12)

κλ =
2 + 5c̄6

2 + 3c̄6
, (A.13)

κλ4 =
2 + 15c̄6

2 + 3c̄6
. (A.14)

Equations (A.13) and (A.14) can be easily related to (A.5) and (A.10) in the limit c6 or

c̄6 → 0, i.e., κλ, κλ4 ∼ 1. On the other hand, with this parametrisation, it is less obvious

how to determine the maximal and minimal possible values for κλ. In any case, imposing

the conditions that the potential is bounded from below and that v is the global minimum,

it is possible to recover the bound 1 < κλ < 3, confirming its independence on the choice

of normalisation of the (Φ†Φ)3 term.
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As a final exercise, we consider the extension of the SM potential V SM

V dim−8(Φ) = V SM(Φ) +
c6

v2
(Φ†Φ)3 +

c8

v4
(Φ†Φ)4 , (A.15)

where besides the (Φ†Φ)3 term also the (Φ†Φ)4 is included. Relations corresponding to

those in eqs. (A.3)–(A.5) and (A.10) can be derived in a completely analogous way. We

write them directly as function of mH , λ, c6 and c8, where by setting c8 = 0 one recovers

the analogous ones for the potential in eq. (A.2):

µ2 =
m2

H

2
− 3c6

4
v2 − c8v

2 , (A.16)

λ =
m2

H

2v2
− 3c6

2
− 3c8

2
, (A.17)

κλ = 1 +
(2c6 + 4c8)v2

m2
H

, (A.18)

κλ4 = 1 +
(12c6 + 32c8)v2

m2
H

. (A.19)

At variance with the case of V dim−6(Φ), with the inclusion of the c8
v4 (Φ†Φ)4 term the

quantity κλ4 is independent of κλ, i.e., c6 and c8 can be traded off with κλ and κλ4 . The

requirement that the potential is bounded from below implies c8 > 0, which in conjunction

with the requirement that the global minimum is located at Φ = v/
√

2 implies

− 4 + 4κλ + κ2
λ < κλ4 <

−31 + 30κλ + 9κ2
λ

8
. (A.20)

Thus, without any constraint on the size of c6 and c8, such as those coming from an EFT,

κλ is not bounded and κλ4 is constrained by eq. (A.20).

B C1 terms for σ(gg → H) and Γ(H → γγ)

In this appendix we present the results for the C1 factor in the gluon-gluon-fusion Higgs

production and in the Higgs partial decay into two photons.

B.1 σ(gg → H)

We write the SM gluon-gluon-fusion Higgs production partonic cross-section as

σ =
Gµα

2
s

512
√

2π
|G|2, (B.1)

where G = G1l + G2l + . . . with the lowest order contribution given by5

G1l = − 4

ht

(
2− 1− 4/ht

2
log2

[√
1− 4/ht − 1√
1− 4/ht + 1

])
, ht ≡

m2
H

m2
t

. (B.2)

5The analytic continuation is obtained with the replacement −m2
H → −m2

H − iε.
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The two-loop contribution can be written as: G2l = Kr G1l + G2l
1PI with G2l

1PI the con-

tribution of the one-particle irreducible (1PI) vertex diagrams and

Kr ≡
[
AWW

m2
W

− V −B + (δZH)SM

]
, (B.3)

where AWW is the transverse part of the W self-energy at zero momentum transverse, the

quantities V and B represent the vertex and box corrections in the µ-decay amplitude and

(δZH)SM is the Higgs field wave function renormalisation constant in the SM.

In our scenario the modification of the Higgs wave function, represented by the C2

coefficient, will affect the Kr term while C1 is extracted from the diagrams in figure 4 that

contribute to G2l
1PI.

Under the standard approximation of the factorisation of the EW corrections in σ(gg →
H) we have for C1

Cσ1 (ggF) = 2
G2l

1PI, λSM
3

G1l
, (B.4)

where

G2l
1PI, λSM

3
=

Gµm
2
H

2
√

2π2

[
−23 + 4

√
3π

24
+

1

2
log(ht)

+ ht

(
7

480
(−37 + 4

√
3π) +

7

20
log(ht)

)
+ h2

t

(
−464419 + 33810

√
3π

2116800
+

349

2016
log(ht)

)

+ h3
t

(
− 31795373

381024000
+

13π

1050
√

3
+

1741

21600
log(ht)

)]
. (B.5)

B.2 Γ(H → γγ)

For Γ(H → γγ) we have

Γ =
Gµα

2M3
h

128
√

2π3
|F |2, (B.6)

with F = F1l + F2l + . . .. The lowest order contribution is given by

F1l = NcQ
2G1l + 2

(
1 +

6

hW

)
− 6

hW

(
1− 2

hW

)
log2

[√
1− 4/hW − 1√
1− 4/hW + 1

]
, (B.7)

with Q = 2/3, Nc = 3 and hW = m2
H/m

2
W .

The two-loop form factor F2l can be decomposed in the same way as G2l so that C1

can be extracted from the 1PI diagrams in figures 4 and 5) evaluated in the unitary gauge.

We find

CΓ
1 (γγ) = 2

F2l
1PI, λSM

3

F1l
. (B.8)
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where

F2l
1PI, λSM

3
= NcQ

2G2l
λSM

3
+
Gµm

2
W

2
√

2π2

{
p2
w

[
− 36 + 12hW − 15h2

W +
9

2
h3

W

−12(6− 46hW + 13h2
W )Lw + 9(−8− 12hW − 6h2

W + 3h3
W )φw

]
+p4

w

[
1

30
(−38880+98640hW−68384h2

W +15204h3
W +142h4

W−308h5
W +33h6

W )

− 2

15
(19440− 26760hW + 15028h2

W − 7262h3
W + 1522h4

W + 57h5
W )Lw

+8(−324 + 500hW − 323h2
W + 102h3

W − 31h4
W + 7h5

W )φw

]
+p6

w

[
1

945
(−38283840+84825216hW−70055664h2

W +18977592h3
W−2081216h4

W

+252530h5
W − 56436h6

W + 54710h7
W − 9158h8

W + 513h9
W )

− 2

105
(4253760− 9166080hW + 8167712h2

W − 5453632h3
W

+1553124h4
W − 298912h5

W + 78152h6
W − 3992h7

W + 171h8
W )Lw

+
8

3
(−30384 + 70536hW − 69084h2

W + 34642h3
W

−13138h4
W + 2337h5

W − 82h6
W + 43h7

W )φw

]
+p8

w

[
1

4725
(−6078844800 + 15433978560hW

−16158069376h2
W + 9535767472h3

W

−3860103960h4
W + 933792696h5

W − 198236360h6
W + 49562148h7

W

+370584h8
W − 1829312h9

W + 410373h10
W − 40412h11

W + 1566h12
W )

− 4

1575
(1013140800− 2714896800hW

+3103464560h2
W − 1987417480h3

W + 754138872h4
W

−219727216h5
W + 5585768h6

W + 15961770h7
W

−1982560h8
W + 349052h9

W − 25056h10
W + 783h11

W )Lw

+
32

15
(−1206120 + 3433040hW − 4226570h2

W + 2964582h3
W − 1314797h4

W

+372126h5
W − 99064h6

W + 16782h7
W + 662h8

W + 121h9
W )φw

]}
,

where p2
w = q2

4m2
W

1
hW (hW−4)2 , with q2 the squared external momentum of the Higgs field

that is put on the mass-shell at the end of the calculation, q2 = m2
H , and Lw = log(hw)

(hW−4) ,

φw = φ(hw4 ) 1
hW (hW−4) , with

φ(z) = 4

√
z

1− z
Im(Li2(ei2 arcsin(

√
z))) . (B.9)
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[45] R. Mertig, M. Böhm and A. Denner, FEYN CALC: computer algebraic calculation of

Feynman amplitudes, Comput. Phys. Commun. 64 (1991) 345 [INSPIRE].

[46] V. Shtabovenko, R. Mertig and F. Orellana, New developments in FeynCalc 9.0, Comput.

Phys. Commun. 207 (2016) 432 [arXiv:1601.01167] [INSPIRE].

[47] U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Two loop light fermion contribution to

Higgs production and decays, Phys. Lett. B 595 (2004) 432 [hep-ph/0404071] [INSPIRE].

[48] G. Degrassi and F. Maltoni, Two-loop electroweak corrections to Higgs production at hadron

colliders, Phys. Lett. B 600 (2004) 255 [hep-ph/0407249] [INSPIRE].

[49] S. Actis, G. Passarino, C. Sturm and S. Uccirati, NLO electroweak corrections to Higgs boson

production at hadron colliders, Phys. Lett. B 670 (2008) 12 [arXiv:0809.1301] [INSPIRE].

[50] G. Degrassi and P. Slavich, NLO QCD bottom corrections to Higgs boson production in the

MSSM, JHEP 11 (2010) 044 [arXiv:1007.3465] [INSPIRE].

– 29 –

http://cds.cern.ch/record/2065974
http://dx.doi.org/10.1103/PhysRevD.92.092004
https://arxiv.org/abs/1509.04670
http://inspirehep.net/search?p=find+EPRINT+arXiv:1509.04670
http://dx.doi.org/10.1140/epjc/s10052-015-3628-x
https://arxiv.org/abs/1506.00285
http://inspirehep.net/search?p=find+EPRINT+arXiv:1506.00285
http://dx.doi.org/10.1103/PhysRevD.94.052012
https://arxiv.org/abs/1603.06896
http://inspirehep.net/search?p=find+EPRINT+arXiv:1603.06896
http://dx.doi.org/10.1103/PhysRevD.72.053008
http://dx.doi.org/10.1103/PhysRevD.72.053008
https://arxiv.org/abs/hep-ph/0507321
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0507321
http://dx.doi.org/10.1103/PhysRevD.74.113008
https://arxiv.org/abs/hep-ph/0608057
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0608057
http://dx.doi.org/10.1103/PhysRevD.90.015001
http://dx.doi.org/10.1103/PhysRevD.90.015001
https://arxiv.org/abs/1312.3322
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.3322
http://dx.doi.org/10.1007/JHEP04(2015)167
https://arxiv.org/abs/1410.3471
http://inspirehep.net/search?p=find+EPRINT+arXiv:1410.3471
http://dx.doi.org/10.1103/PhysRevD.91.014020
https://arxiv.org/abs/1305.5773
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.5773
http://dx.doi.org/10.1016/j.nuclphysb.2015.07.034
https://arxiv.org/abs/1506.06865
http://inspirehep.net/search?p=find+EPRINT+arXiv:1506.06865
http://dx.doi.org/10.1007/JHEP10(2016)094
https://arxiv.org/abs/1607.03773
http://inspirehep.net/search?p=find+EPRINT+arXiv:1607.03773
http://dx.doi.org/10.1016/S0010-4655(01)00290-9
http://dx.doi.org/10.1016/S0010-4655(01)00290-9
https://arxiv.org/abs/hep-ph/0012260
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0012260
http://dx.doi.org/10.1016/S0010-4655(98)00173-8
https://arxiv.org/abs/hep-ph/9807565
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9807565
http://dx.doi.org/10.1016/0010-4655(91)90130-D
http://inspirehep.net/search?p=find+J+%22Comput.Phys.Commun.,64,345%22
http://dx.doi.org/10.1016/j.cpc.2016.06.008
http://dx.doi.org/10.1016/j.cpc.2016.06.008
https://arxiv.org/abs/1601.01167
http://inspirehep.net/search?p=find+EPRINT+arXiv:1601.01167
http://dx.doi.org/10.1016/j.physletb.2004.06.063
https://arxiv.org/abs/hep-ph/0404071
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0404071
http://dx.doi.org/10.1016/j.physletb.2004.09.008
https://arxiv.org/abs/hep-ph/0407249
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0407249
http://dx.doi.org/10.1016/j.physletb.2008.10.018
https://arxiv.org/abs/0809.1301
http://inspirehep.net/search?p=find+EPRINT+arXiv:0809.1301
http://dx.doi.org/10.1007/JHEP11(2010)044
https://arxiv.org/abs/1007.3465
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.3465


J
H
E
P
1
2
(
2
0
1
6
)
0
8
0

[51] G. Degrassi and F. Maltoni, Two-loop electroweak corrections to the Higgs-boson decay

H → γγ, Nucl. Phys. B 724 (2005) 183 [hep-ph/0504137] [INSPIRE].

[52] S. Actis, G. Passarino, C. Sturm and S. Uccirati, NNLO computational techniques: the cases

H → γγ and H → gg, Nucl. Phys. B 811 (2009) 182 [arXiv:0809.3667] [INSPIRE].

[53] B. Mellado Garcia, P. Musella, M. Grazzini and R. Harlander, CERN report 4: part I

Standard Model predictions, LHCHXSWG-DRAFT-INT-2016-008, CERN, Geneva

Switzerland (2016).

[54] J. Butterworth et al., PDF4LHC recommendations for LHC run II, J. Phys. G 43 (2016)

023001 [arXiv:1510.03865] [INSPIRE].

[55] S. Dulat et al., New parton distribution functions from a global analysis of quantum

chromodynamics, Phys. Rev. D 93 (2016) 033006 [arXiv:1506.07443] [INSPIRE].

[56] L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Parton distributions in the

LHC era: MMHT 2014 PDFs, Eur. Phys. J. C 75 (2015) 204 [arXiv:1412.3989] [INSPIRE].

[57] NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC run II, JHEP 04

(2015) 040 [arXiv:1410.8849] [INSPIRE].

[58] C. Grojean, G. Servant and J.D. Wells, First-order electroweak phase transition in the

Standard Model with a low cutoff, Phys. Rev. D 71 (2005) 036001 [hep-ph/0407019]

[INSPIRE].

– 30 –

http://dx.doi.org/10.1016/j.nuclphysb.2005.06.027
https://arxiv.org/abs/hep-ph/0504137
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0504137
http://dx.doi.org/10.1016/j.nuclphysb.2008.11.024
https://arxiv.org/abs/0809.3667
http://inspirehep.net/search?p=find+EPRINT+arXiv:0809.3667
https://cds.cern.ch/record/2150771
http://dx.doi.org/10.1088/0954-3899/43/2/023001
http://dx.doi.org/10.1088/0954-3899/43/2/023001
https://arxiv.org/abs/1510.03865
http://inspirehep.net/search?p=find+EPRINT+arXiv:1510.03865
http://dx.doi.org/10.1103/PhysRevD.93.033006
https://arxiv.org/abs/1506.07443
http://inspirehep.net/search?p=find+EPRINT+arXiv:1506.07443
http://dx.doi.org/10.1140/epjc/s10052-015-3397-6
https://arxiv.org/abs/1412.3989
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.3989
http://dx.doi.org/10.1007/JHEP04(2015)040
http://dx.doi.org/10.1007/JHEP04(2015)040
https://arxiv.org/abs/1410.8849
http://inspirehep.net/search?p=find+EPRINT+arXiv:1410.8849
http://dx.doi.org/10.1103/PhysRevD.71.036001
https://arxiv.org/abs/hep-ph/0407019
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0407019

	Introduction
	lambda(3)-dependent contributions in single Higgs processes
	Computation of the C(1) coefficients 
	Results
	Constrains on lambda(3): present and future
	Conclusions
	Comparison with the EFT approach
	C(1) terms for sigma(gg -> H) and Gamma(H -> gamma gamma)
	sigma(gg -> H)
	Gamma(H -> gamma gamma)


