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Abstract: Static configurations and a dynamical evolution of the system composed of

a higher-dimensional spherically symmetric dilaton black hole and the Dirac-Goto-Nambu

brane were investigated. The studies were conducted for three values of the dilaton coupling

constant, describing the uncoupled case, the low-energy limit of the string theory and

dimensionally reduced Klein-Kaluza theories. When the black hole is nonextremal, two

types of static configurations are observed, a brane which intersects the black hole horizon

and a brane not having any common points with the accompanying black hole. As the

number of spacetime dimensions increases, the brane bend in the vicinity of the black

hole disappears closer to its horizon. Dynamical evolution of the system results in an

expulsion of the black hole from the brane. It proceeds faster for bigger values of the bulk

spacetime dimension and thicker branes. The value of the dilatonic coupling constant does

not influence neither the static configurations nor the dynamical behavior of the examined

nonextremal system. In the extremal dilaton black hole case one obtains expulsion of the

brane which is independent on the spacetime dimensionality and the value of the coupling

constant. Dynamical studies of the configurations in the extremal case reveal that the

course of evolution of the system is similar to the nonextremal one, except for a slightly

earlier expulsion of the black hole from the brane.
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1 Introduction

A resurgence of studies of higher-dimensional black holes, black branes and their mutual

interactions has been observed recently. These subjects are valid in several different ar-

eas of modern theoretical physics. Contemporary candidates of quantum gravity such

as the string/M-theory predict that our universe can be described as a brane embedded

in a higher-dimensional spacetime. This idea was incorporated in the so-called brane-

world models which are composed of a higher-dimensional bulk and a lower-dimensional

embedded brane. The first brane-world models were built with a tensionless brane and

compactified flat extra dimensions [1, 2]. Later on, they were extended to the case of a

non-zero tension brane and a warped (negatively curved) spacetime [3, 4]. The Standard

Model particles are confined to the brane, while gravity can penetrate the other addi-

tional dimensions. In such theories interactions between the brane and black holes were

intensively investigated [5]. Especially, much attention was paid to the problem of higher-

dimensional black holes/black objects crossing the brane and the expulsion problem for

such systems. In [6] a toy model for studying a process of merging within the brane-black

hole system and a topology change was considered. The higher-dimensional generalizations

both in classical general relativity and in certain strongly coupled gauge theories were pre-

sented in [7–10]. Axisymmetric higher-dimensional systems consisting of stationary test

branes interacting with Myers-Perry bulk black holes were examined for arbitrary brane

and bulk dimensions [11].

One of the predictions of the theories with large extra dimensions is the conjecture that

mini black holes with masses of 1 TeV can be in principle observed in LHC [12, 13]. Namely,
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when two particles on the brane collide at the center of mass energy larger than 1 TeV, the

system collapses and the formation of mini black hole begins. With the passage of time

the black hole starts to emit Hawking radiation into lower dimensional fields localized on

the brane and partly into the higher-dimensional mode, i.e., into the bulk.

The early stages of the evolution of our Universe are also the arenas where primordial

black holes and domain walls could have been born. Cosmological density perturbations

may have collapsed and led to the formation of small black holes. Next, when the Universe

underwent several cooling processes series of phase transitions might occurred leading to

the domain wall and other cosmological defects formation [14]. In principle, the interaction

of black holes with branes (domain walls) should be taken into account when discussing

the aforementioned period of the Universe evolution.

In the past few decades, the interactions between black holes and domain walls have

been an object of serious studies, both analytical and numerical. A Nambu-Goto membrane

in the Reissner-Nordström-de Sitter spacetime was studied in [15], while the gravitational

system of the Schwarzschild static black hole and a thick domain wall was examined in [16,

17]. The domain walls were simulated by a scalar field with an adequate potential like

φ4 or the sine-Gordon ones. The dilaton black hole-domain wall system was elaborated

in [18, 19]. Among all, it was shown that in the extremal case the expulsion of the scalar

field connected with a domain wall took place. In [20] it was revealed that there was a

parameter depending on the black hole mass and the width of a domain wall, which turned

out to be an upper limit for the expulsion process. The thick domain wall problem in the

anti-de Sitter spacetime was treated in [21], while the cosmological brane-black hole system

in [22]. By using the C-metric construction the line element describing an infinitely thin

brane intersected by a cosmological black hole was derived.

In [23] the black hole whose size was small when compared to the extra dimensions

was considered (the tension of the brane was negligible). The simulation was conducted by

looking for the dynamical evolution of the brane in the fixed background of the black hole.

Further studies of the interaction of a black hole with a scalar field domain wall confirm the

previously drawn conclusions [24]. The evolution of the system was also analyzed during

the separation process. In [25] the problem of the influence of the brane tension on the

escaping black hole was elaborated. The new challenge was to find if the brane tension

might prevent the black hole from escaping for a small recoil velocity. The numerical studies

of the interaction of black holes with the field theoretical domain wall, i.e., described by an

axion-like field theory with an approximate U(1)-gauge symmetry, exploring the topology

changing process of a brane perforation was conducted in [26]. It was revealed that the

perforation process depends on the collision velocity and there was a critical value of

velocity which suppressed the domain wall perforation.

In [27, 28] the studies of the domain walls perforation by black holes envisaged that

the mechanism is more or less relevant to the cosmological domain wall case. On the

other hand, the curvature corrections to the static axisymmetric membrane evolution in

the spherically symmetric spacetime of an arbitrary dimensional black hole, were given

in [29]. The problem of a thick brane-black hole system was explored in a series of pa-

pers, where perturbative and non-perturbative solutions including the case of a two-brane
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were studied [29–31]. The last moments of a mini black hole escaping from a brane were

examined in [32]. Among all, it was shown that the world sheet becomes isotropic at the

reconnection point. It turns out that the higher dimension we examine, the faster the

brane becomes isotropic.

A collision of a point particle with an infinitely thin planar domain wall interacting

within the linearized gravity in the Minkowski spacetime of an arbitrary dimension was

analyzed in [33]. The energy momentum balance in this system was found in [34].

The motivation standing behind our studies is the fact that the classical black hole

solutions of Einstein-Maxwell gravity in four or higher dimensions have quite new features

when the underlying theory is modified by the introduction of the low-energy string correc-

tions. The key property of the aforementioned correction in the action is connected with

the nontrivial coupling of the dilaton field (as well as the other ones like, e.g., axions) with

the field strength of the gauge field or gauge fields. There are some models which admit

n-gauge fields.

In our paper we shall consider static configurations and a dynamical evolution of the

higher dimensional spherically symmetric black hole and the Dirac-Goto-Nambu brane (a

brane-dilaton black hole (BDBH) system), paying attention to the new features of the

system in question. The dilaton black hole was briefly described in section 2 to establish

the notations for the bulk spacetime. The studied brane embedded in the black hole

spacetime was codimension-one. The theoretical frameworks of the above-mentioned static

and dynamical setups, along with computational details and results were presented in

sections 3 and 4, respectively. The summary of our findings was presented in section 5.

2 Bulk spacetime containing a higher-dimensional dilaton black hole

The considered black hole was a d-dimensional dilaton black hole, whose metric in (t, r, θi)

coordinates, where i = 1, . . . , d− 2, is given by [35]

ds2 = −

[
1−

(
r+
r

)d−3][
1−

(
r−
r

)d−3]1−γ(d−3)
dt2+

+

[
1−

(
r+
r

)d−3]−1[
1−

(
r−
r

)d−3]γ−1
dr2 + r2

[
1−

(
r−
r

)d−3]γ
dΩ2

d−2 , (2.1)

where r+ and r− are the radii of two horizons, the outer and inner ones, r+ > r−. The case

when r+ = r− is reserved for the extremal higher-dimensional dilaton black hole. Ω2
d−2 is

the line element of the d− 2-dimensional unit sphere with coordinates θi, i = 1, . . . , d− 2,

defined on it by the relations dΩ2
i+1 = dθ2i+1 + sin2 θi+1dΩ2

i . γ is an auxiliary constant

related to the dilaton coupling constant α and the dimension of the considered spacetime

d by the following relation:

γ =
2α2(d− 2)

(d− 3) [2(d− 3) + α2(d− 2)]
. (2.2)

For the brevity, two functions f1 = 1 −
(
r+
r

)d−3
and f2 = 1 −

(
r−
r

)d−3
will be used

throughout the paper.
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3 Static brane-dilaton black hole system

3.1 Theoretical setup

In this section we shall pay attention to a static brane - higher dimensional static spherically

symmetric black hole system. A brane (D−1)-dimensional configuration in a gravitational

field of a black object will be analyzed having in mind the Dirac-Nambu-Goto action [36–38]

S =

∫
dDζ

√
−detγij , (3.1)

where ζi, i = 0, . . . , D − 1, are the coordinates on the brane world sheet and the

D-dimensional metric induced on the world sheet is given by

γij = gµνX
µ
,iX

ν
,j (3.2)

with Xµ, µ = 0, . . . , d − 1, being the bulk spacetime coordinates. In the case of a

codimension-one brane D = d − 1. The introduced action (3.1) describes an infinitely

thin brane. Thus, the analysis of the static configurations of the studied system is rel-

evant for such a brane present within it. The problem of thick branes within the geo-

metric construction is a subtle one and would require calculations based on perturbative

corrections [29–31].

The assumption that the brane is static and spherically symmetric results in an

O(D − 1) symmetry of its world sheet. The world sheet is thus defined by the function

θD−1 ≡ θ(r), with θi = π
2 for i = D, . . . , d − 2. The metric induced on the brane world

sheet has the form

ds2 = −f1f 1−γ(n−3)
2 dt2 +

[
f γ−1
2

f1
+ r2f γ

2

(
dθ

dr

)2
]
dr2 + r2f γ

2 sin2 θ dΩ2
n , (3.3)

where n = D − 2. The action (3.1) reduces to

S = ∆TA
∫
dr L (3.4)

with the Lagrange density provided by

L = rn sinn θ f
γn
2

2

[
f
γ(4−n)
2 + r2f1f

1−γ(n−4)
2

(
dθ

dr

)2
] 1

2

, (3.5)

where ∆T is the time interval and A is the surface of a unit n-dimensional sphere.

Static configurations of the brane-dilaton black hole system are determined by the

Lagrange equation
d

dr

(
∂L
∂θ′

)
− ∂L
∂θ

= 0, (3.6)

where ′ denotes the differentiation with respect to the r-coordinate. An explicit form of

the equation is provided by

d2θ

dr2
+A1

(
dθ

dr

)3

+A2

(
dθ

dr

)2

+A3

(
dθ

dr

)
+A4 = 0, (3.7)
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where by Ai, i = 1, . . . , 4, we have denoted the following:

A1 = r(n+ 1)f1f2 +
r2

f
γ(4−n)+ γn

2
2

d

dr

(
f1f

1−γ(n−4)+ γn
2

2

)
+

− 1

2

r2

f
γ(4−n)
2

d

dr

(
f1f

1−γ(n−4)
2

)
=

= r(n+ 1)f1f2 +
r2

2
f2
df1
dr

+
r2

2
(1 + 4γ)f1

df2
dr
, (3.8)

A2 = −n cot θ, (3.9)

A3 =
n+ 2

r
+

1

f1f
1− γn

2
+4γ

2

d

dr

(
f1f

1− γn
2
+4γ

2

)
− 1

2 f
γ(4−n)
2

d

dr

(
f
γ(4−n)
2

)
=

=
n+ 2

r
+

1

f1

df1
dr

+ (1 + 2γ)
1

f2

df2
dr
, (3.10)

A4 = −n cot θ

r2f1f2
. (3.11)

The equation (3.7) possesses singular points at the black hole horizon and at infinity.

In order to derive static configurations of the considered system, the behavior of the brane

in the two limiting regions, i.e., r → r+ and r →∞, has to be determined. This behavior

gives appropriate boundary conditions for the θ function, which differ for nonextremal and

extremal black holes. The boundary behavior will be discussed for the nonextremal BDBH

system and then the differences relevant to the extremal case will be pointed out.

3.2 Brane behavior in the limiting regions

In principle, there exist two possible configurations of the brane in the near horizon limit

r → r+, which are the brane penetrating and not touching the black hole event horizon. The

analysis of the penetrating solution reveals the singular coefficients in the equation (3.7)

which are composed of the part of the second expression in (3.10) and the A4 coefficient.

Hence, the singular part of the considered equation is of the form

Ã3 θ
′ +A4 , (3.12)

where Ã3 = f −11 f ′1. It can be written as

f ′1θ
′ − n cot θ

r2f2

f1
∼ 0

0
, (3.13)

where the right-hand side of the above relation is connected with the regularity demand.

The above expression yields (
f ′1θ
′ − ncot θ

r2f2

) ∣∣∣∣
r=r+

= 0 . (3.14)

Postulating that θ|r→r+ ≈ θ0 + θ1(r − r+), we get that θ0 is an arbitrary constant and

θ1 =
n cot θ0
f ′1r

2f2

∣∣∣∣
r=r+

. (3.15)

– 5 –



J
H
E
P
1
2
(
2
0
1
6
)
0
6
4

The above analysis gives both the form of the boundary condition on the horizon θ = const.

and the near horizon behavior of θ which is helpful in a numerical integration of the

discussed equation.

In the case when the brane does not touch the black hole horizon, the input parameter

dictating the boundary condition is the minimal distance between the brane and the origin

of the coordinate system, r0. Due to the symmetry of the system, this distance should be

attained for θ = 0, which again leads to the singularity of the equation (3.7) in the cot θ

term. Postulating that θ|r→r0 ≈ η0(r−r0)
1
2 +η1(r−r0)

3
2 , plugging it into the relation (3.7)

and expanding the θ-dependent term around r = r0, the following relations for the η0 and

η1 coefficients arise:

η0 = ±
√

2

A1
(1− a2)

∣∣∣∣
r=r0

, (3.16)

η1 = ±
2
√

2 (1− a2)
[
a2 − 2a22 + a32 + 3A1a2A3 − 3A1 (A3 +A1a4)

]
9A

3
2
1

(
3− 4a2 + a22

)
∣∣∣∣∣∣
r=r0

, (3.17)

where a2 and a4 are the θ-independent parts of A2 and A4, respectively.

Having specified the behavior of the investigated function in the near horizon limit,

we will turn to the r → ∞ one. Assuming that the brane behaves in this limit as a

d− 1-dimensional plane we may write

θ =
π

2
+ λ(r). (3.18)

Moreover, it is assumed that the solution approaches θ = π
2 at least as fast as 1

r . An

analysis of the coefficients of the considered equation (3.8)–(3.11) leads to the relations

A1 ∼ r2, (3.19)

A2 ∼ nλ(r), (3.20)

A3 ∼
n+ 2

r
− (n− 1)r n−1+ r−n − (n− 1)(1 + 2γ)r n−1− r−n, (3.21)

A4 ∼
n

r2
λ(r). (3.22)

Since λ decays like 1
r or faster by definition, the equation (3.7) becomes

λ′′ +

[
n+ 2

r
− (n− 1)r n−1+ r−n − (n− 1)(1 + 2γ)r n−1− r−n

]
λ′ +

n

r2
λ = 0. (3.23)

The second and third terms in the square bracket are relevant only for d = 3, as for the

bigger number of dimensions they decay as r−2 or faster and thus are irrelevant. This

implies that for d > 4 a charged brane behaves in the limit of r → ∞ like an uncharged

one. In this case the solution to the equation (3.23) is given by

λ = c1r
−1 + c2r

−n, (3.24)

– 6 –



J
H
E
P
1
2
(
2
0
1
6
)
0
6
4

where c1 and c2 are integration constants. In the case of d = 3 we have n = 1 and despite

the fact that the terms r−n are relevant, the coefficients in front of them vanish. So the

solution is again the same as in the uncharged case and is provided by [6]

λ = c1r
−1 + c2

ln r

r
. (3.25)

After investigation of the behavior of the coefficients Ai of the equation (3.7) we con-

clude that in the discussed limit of r →∞ they differ very little from the uncharged brane

case, which is evident from the relations (3.19)–(3.22). Moreover, this difference is actu-

ally irrelevant in the large r limit. Basing on this, we assume that the decay rate should

be polynomial. Inserting λ ∼ r−α into the equation, where α is a positive number, we

obtain the following conclusions. For any α > 0 the term A2λ
′2 is always subleading. For

α > 1 we have the case discussed above, and on the other hand a closer inspection reveales

that for α > 1
2 the term A1λ

′3 is also always subleading. Stating this, the only remaining

possibility is α ∈ 〈12 , 0), as in this case the A1λ
′3 term becomes relevant and the equation

becomes nonlinear. Moreover, in this case we were unable to find a solution in the form of

the known special functions. The same is true also for the uncharged brane discussed in [6].

When an extremal dilaton black hole is present in the BDBH system, the behavior of

the brane at infinity and near the horizon when the two coexisting objects are separated

is the same as discussed above for the nonextremal case. On the other hand, for the brane

touching the degenerate horizon the regularity condition implies[
f2f
′
1 + (1 + 2γ)f1f

′
2

]
θ′ − n cot θ

r2

f1f2
∼ 0

0
. (3.26)

It was derived analogously to the nonextremal case and it implies that cot θ = 0. Together

with an assumption θ(r) ≈ θ0 + θ1(r − r+) it gives that θ0 = π
2 . Using the L’Hospital rule

once results in the relation[
f2f
′
1 + (1 + 2γ) f1f

′
2

]
θ′′

f ′1f2 + f1f ′2
+ (3.27)

+

[
f ′2f
′
1 + f2f

′′
1 + (1 + 2γ) f ′1f

′
2 + (1 + 2γ) f1f

′′
2

]
θ′ + 2n cot θ

r3
+ n

r2 sin2 θ
θ′

f ′1f2 + f1f ′2
∼ 0

0
.

Since f1(r+) = f2(r+) = 0, the coefficient in the front of the second derivative of θ, trivially

vanishes. Vanishing of the nominator of the second component yields

θ1 = −2n cot θ0
r2+

[
n

r2+ sin2 θ0
+ 2 (1 + γ) f ′1f

′
2

]−1
, (3.28)

where the expansion θ|r→r+ ≈ θ0 + θ1(r − r+) was employed. The trigonometric functions

of θ were also expanded and only the leading terms were kept. Since θ0 is already fixed to

be equal to π
2 , we conclude that θ1 = 0. Hence, in the extremal case the brane will either

not touch the black hole horizon or will touch it precisely at one point on the equator.

Moreover, in the last case the brane configuration is given by θ = π
2 . Due to the near

horizon behavior of the brane this is true for any spacetime dimension d and an arbitrary

dilatonic coupling constant α.
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3.3 Spatial configurations

The static spatial arrangements of the BDBH system were investigated for the bulk space-

time dimensions 5, 6, 7 and 8 and the dilatonic coupling constant equal to 0, −1 and

−
√

3. The studied values of α-coupling constant referred to the uncoupled dilaton field,

the low energy limit of the string theory and the dimensionally reduced Kaluza-Klein the-

ory, respectively. Each brane configuration in the black hole spacetime will be depicted as

a function θ (r) via cylindrical coordinates Z = r cos θ, R = r sin θ.

We would like to stress that the numerical solutions of the full equation (3.7) were

obtained without any assumptions on the behavior of the solution in the limit r →∞. In

other words, integrating this equation from the black hole horizon to very large values of

the r coordinate (rmax = 104r+), we found out that it indeed approaches π
2 .

The configurations of the static nonextremal brane-dilaton black hole system are pre-

sented in figures 1 and 2. The nonextremal black hole admits a brane which intersects its

horizon and hence both near horizon configurations mentioned in the previous section are

observed in this case. The non-penetrating configurations correspond to various values of

the parameter r0, and the intersecting branes are related to different values of θ0. The

value of the dilatonic coupling constant does not impact the static configurations. The

number of spacetime dimensions influences the brane location in the black hole spacetime

such that the brane bend in the vicinity of the black hole horizon disappears closer to it as d

increases. It will be interesting to propose the physical interpretation of the observed prop-

erty. Because of the fact that gravity can penetrate the additional dimensions, its strength

is weaker in the case of the growth of the dimensionality of the underlying spacetime,

comparing to the gravity force exerted by black hole in four-dimensions. Therefore the

increase of the spacetime dimensions (decrease of the gravity force which should penetrate

the additional dimensions) is responsible for the closer to the event horizon disappearance

of the brane. The very similar situation was revealed in [39–41], where it was found that

the absorption probability of massive Dirac fermions in the spacetime of higher-dimensional

Schwarzschild black hole and a tense brane black hole, decreased with the increase of the

spacetime dimensionality.

The static configurations of an extremal brane-dilaton black hole system are depicted

in figure 3. Disregarding the values of d and α, there exists only one brane location which

penetrates the horizon and it corresponds to the brane situated on the equator plane of

the black hole, with θ0 = π
2 and hence θ = π

2 . The remaining arrangements represent

branes which do not have any common points with the horizon. Each of these branes

is described by a different value of r0. Similarly to the nonextremal case, the bend of

the brane disconnected with a black hole becomes smaller nearby its event horizon as the

dimensionality of the considered spacetime d increases. The above facts are in accord

with the conclusions gained in four-dimensions, where the dilaton black hole-domain wall

(brane) system was studied [19]. Using the scalar field with various potentials, i.e., φ4 and

sine-Gordon ones, the domain wall behavior in the spacetime of charged dilaton black hole

was simulated numerically. The conclusion was that for the extremal charged dilaton black

hole one always obtained the expulsion of the domain wall.
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Figure 1. Static configurations of the BDBH system with a nonextremal black hole for d equal to

5 and 6. The spacetime dimension and the value of the coupling constant α are presented above

each diagram. The parameters r0 and θ0 corresponding to the particular brane locations are listed

on the plots.

4 Evolution of the brane-dilaton black hole system

Our further investigations concentrated on the dynamics of the BDBH system. The ten-

sion of the domain wall was assumed to be small which allowed us to ignore its self-

gravitation effect.

4.1 Theoretical model

When describing the brane, we confined our attention to a scalar effective field theory with

a quadratic potential of the scalar field Φ given by the relation

V (Φ) =
λ

4

(
Φ2 − η2

)2
, (4.1)
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Figure 2. Static configurations of the BDBH system with a nonextremal black hole for d equal to

7 and 8. The spacetime dimension and the value of the coupling constant α are presented above

each diagram. The parameters r0 and θ0 corresponding to the particular brane locations are listed

on the plots.

where the parameters are related to the tension of a domain wall solution in a flat space

σ ≈
√
λη3 and its thickness l ≈ (

√
λη)−1. In contrast to the analysis of the static con-

figurations of the examined system conducted in the preceding section, the effective field

theory approach employed in investigations of the dynamical case allowed us to study not

only an infinitely thin brane, but also branes of bigger thicknesses.

The equation of motion of the domain wall intersecting the dilaton black hole com-

pletely immersed in the higher-dimensional spacetime yields

∇µ∇µΦ− ∂V

∂Φ
= 0. (4.2)
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Figure 3. Static configurations of the BDBH system with an extremal black hole. The spacetime

dimension d and the value of the coupling constant α are presented above each diagram. The

parameters r0 and θ0 corresponding to the particular brane locations are listed on the plots.

If one assumes an O(d−2)-rotational symmetry around the axis perpendicular to the equa-

torial plane of the considered black hole, then the following explicit form of the equation

of motion arises:

−1

f1f
1−γ(d−3)
2

∂2t Φ +
1

rd−2f γ
2

∂r

(
rd−2f1f2∂rΦ

)
+

1

r2 (sin θ)d−3
∂θ

[
(sin θ)d−3 ∂θΦ

]
− ∂V
∂Φ

= 0.

(4.3)

Our main aim was to examine the potential recoil of the dilaton black hole from the

brane during a dynamical process, at the beginning of which the brane intersecting the

black hole acquires an initial velocity. Therefore, Φ and ∂tΦ for t = 0 are given by a static

kink profile boosted in the direction of the symmetry axis [24]. Namely, one has

Φv = η tanh

(√
λ

2
η
r cos θ − vt√

1− v2

)
, (4.4)

where v is constant.

At infinity, the field describing the brane reduces to the case of a flat spacetime form

given by the relation (4.4), while the regularity conditions at the symmetry axis and on

the black hole event horizon are

∂Φ

∂θ
= 0 at θ = 0, π, (4.5)

∂Φ

∂t
= 0 at r = r+.

4.2 Numerical computations

The equation of motion of the scalar field representing the brane (4.3) was solved using

the collocation spectral method [42] in the spatial directions r and θ. The temporal evo-

lution was conducted via a finite difference scheme based on three adjacent t = const.

hypersurfaces.

The applied pseudospectral method required writing the equation to be solved using

a polynomial expansion of an unknown function at the so-called collocation points. The
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points were spread on a grid, which spanned from −1 to 1 in the spectral directions, which

in the considered case were r and θ.

The general form of Φ was chosen as an expansion in terms of the Chebyshev polyno-

mials of the first kind

Φ
(
t, y(r), x(θ)

)
=

M∑
m=0

N∑
n=0

ϕmn(t) Tm(y) Tn(x), (4.6)

where y = r−2r+−1
r+1 and x = cos θ are the independent spatial variables rescaled to the range

[−1, 1], which is necessary for applying the pseudospectral method. The time dependent

expansion coefficients were denoted as ϕmn. The applied expansion involved 50 Chebyshev

polynomials in each of the two spatial directions. The collocation points were of the Gauss-

Lobatto type, i.e, they were spread on the computational grid, in each of the spectral

directions, according to a prescription

zk = − cos
kπ

K
, (4.7)

where k = 0, . . . ,K, z stands for either y or x and K denotes M or N , respectively.

The equation of motion of Φ (4.3) was reduced by applying the expansion (4.6) to the

evolution equation of the expansion coefficients ϕmn and obtained the form

∑
m

∑
n

ϕ̈mn(t) Tm(y) Tn(x)− (1− y)df1f
1−γ(d−2)
2

2(r+ + 1)(2r+ + 1 + y)d−2

∑
m

∑
n

ϕmn(t) Tn(x) Lm(y)+

− (1− y)2 f1f
1−γ(d−3)
2

(2r+ + 1 + y)2

∑
m

∑
n

ϕmn(t) Tm(y) Ln(x) + f1f
1−γ(d−3)
2

dV

dΦ
= 0, (4.8)

where a dot is a derivative with respect to the t-coordinate and the auxiliary quantities are

the following:

Lm(y) =
(2r+ + 1 + y)d−3

[
d− 2− (d−4)(2r++1+y)

1−y

]
2(r+ + 1)(1− y)d−4

f1f2 ∂yTm(y)+

+
(2r+ + 1 + y)d−2

2(r+ + 1)(1− y)d−4

[
(∂yf1f2 + f1∂yf2) ∂yTm(y) + f1f2 ∂

2
yTm(y)

]
, (4.9)

Ln(x) = (2− d)x ∂xTn(x) +
(
1− x2

)
∂2xTn(x). (4.10)

The equation (4.8) was written at each of the collocation points (4.7) separately. The

resulting system of algebraic equations for the unknown ϕmn was solved on each time step

with the use of the LU decomposition method [43].

The pseudospectral method provides an exact solution at the collocation points. Since

the overall solution is approximated by a set of polynomials, bumps can appear in the re-

gions between the points. They are an artifact of the numerical scheme. The density of the

grid, i.e., the amount of collocation points used in our setup (50 in each spatial direction),

ensured a very good accuracy of the obtained outcomes and facilitated their interpretation.

It was also sufficient for modeling the step-type profile of the scalar field (4.4), which was

necessary for reflecting the existence of the brane in the spacetime.
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4.3 Dynamical behavior

The location of the brane in the spacetime was determined taking into account the values

of the energy density of the scalar field Φ

T 0
0 =

1

f1f
1−γ(d−3)
2

(
∂tΦ
)2

+
1

4
f1f

1−γ
2

(
∂rΦ

)2
+

1

r2
(
∂θΦ

)2
+

1

2
V (Φ). (4.11)

The results of the computations are presented through series of snapshots of the temporal

evolution of the brane-black hole system. Each of the plots shows the energy density

of the scalar field (4.11) within the black hole spacetime in cylindrical coordinates. The

locations of the black hole horizons and the number of the evolution time step are shown

on each diagram.

The investigated spacetime dimensions were 4, 5, 6, 7 and 8. The brane thickness l

was set as 0.1, 0.3 and 0.4, while its initial velocity v was assumed to be equal to 0.1,

0.3 and 0.7. Similarly to the case of static configurations of the BDBH system described

in section 3, three values of the dilatonic constant α were considered, namely −
√

3, −1

and 0. The constant η was equal to 0.1 in all simulations, which in addition to the value

of l determined the tension of the domain wall in each of the investigated cases.

Figures 4–7 present the dependence of the dynamical behavior of the brane-black

hole system on d, l, v and α, respectively, in the case of a nonextremal black hole with

r− = 0.1 and r+ = 0.5. In all cases, the plane within which the brane was located

initially divided the black hole into two hemispheres. Since the brane acquired a non-zero

velocity at the beginning of the investigated process, with the passage of time it moved in

a specific direction. Such a situation can also be interpreted as a black hole being expelled

from the brane.

The research conducted for a BDBH system containing a nonextremal black hole re-

vealed that the expulsion appears earlier for larger d and the black hole is expelled earlier

from a thicker brane (with bigger l). The radius of the area of the brane deformation is big-

ger for a thicker brane, it moves away from the initial position within a larger distance from

the black hole. The energy density associated with a thick brane is smaller in comparison

to a thin brane. Bigger initial velocity of the brane results in an earlier expulsion of the

black hole and causes an increase of the radius of the area of the brane deformation nearby

the black hole. The dynamics of the studied brane-black hole system does not depend on

the value of α.

The evolution of the examined system was also followed for an extremal black hole

with r− = r+ = 0.5. The outcomes were qualitatively the same as in the nonextremal case,

the only difference was that the expulsion appeared a bit earlier in the extremal case.

5 Conclusions

In our paper we pay attention to static configurations and a dynamical evolution of the

system consisting of a higher-dimensional spherically symmetric dilaton black hole and a

Dirac-Goto-Nambu type brane. Due to the employed theoretical descriptions of the brane

in the static and dynamical cases, the former analysis corresponds to an infinitely thin

brane, while the latter covers also branes of non-negligible thicknesses.
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(a)

(b)

(c)

(d)

Figure 4. The evolution of the BDBH system with the nonextremal black hole for d equal to (a) 4,

(b) 5, (c) 6 and (d) 7. The remaining parameters were set as l = 0.1, v = 0.1 and α = −1.

It has been established [44–47] that the classical black hole solutions of Einstein-

Maxwell gravity have quite new features when the theory is modified by the introduction of

the low-energy string corrections to the underlying action. The key property of the afore-

mentioned actions is bounded with the nontrivial coupling of the dilaton field with gravity
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(a)

(b)

(c)

Figure 5. The evolution of the BDBH system with the nonextremal black hole for l equal to

(a) 0.1, (b) 0.3 and (c) 0.4. The remaining parameters were set as d = 5, v = 0.3 and α = 0.

and the field strength of Maxwell or Yang-Mills gauge fields. The charged black hole or

black brane solutions in the low-energy string theory differ to the great extent in comparison

to those solutions received in ordinary Einstein-Maxwell or Einstein-Yang-Mills theories.

For instance, their thermodynamical properties are quite unconventional, i.e., extremal

dilaton black holes have zero entropy but its temperature is non-zero [48]. Moreover, their

properties connected with late-time behavior of scalar fields in their backgrounds [49, 50],

decay of hair on them [51, 52], thermodynamical properties and inequalities among mass,

charge and angular momentum [53–60], uniqueness theorems [61–63] and dynamical col-

lapse process and formation of singularities [64–67], are quite not trivial.

In order to have the full insight in the properties of the aforementioned black object

it is interesting to elaborate the problem of a static and dynamical behavior of the simple

brane in the spacetime of higher dimensional dilaton black hole. The first studies of such a

problem were presented in [19], where the existence of a brane (domain wall) was mimicked
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(a)

(b)

(c)

Figure 6. The evolution od the BDBH system with the nonextremal black hole for v equal to

(a) 0.1, (b) 0.3 and (c) 0.7. The remaining parameters were set as d = 5, l = 0.3 and α = −1.

by the real scalar field with the φ4 and sine-Gordon potentials. The previous investigations

were restricted to the four-dimensional case and thick branes. It was revealed that in the

case of the extremal dilaton black hole one always obtained an expulsion of the domain

wall from the black hole in question.

Our studies were conducted for three values of the coupling constant α, which referred

to the uncoupled dilaton field, the low-energy limit of the string theory and dimensionally

reduced Klein-Kaluza theory. It turns out that the value of the dilaton coupling does not

influence the static configurations. However, the brane location in the black object space-

time is connected with the dimensionality of the spacetime in question. The brane bend in

the nearby of the black object event horizon disappears closer to it as the dimensionality

of the bulk increases. The possible explanation of this fact is connected with the gravity

feature which can penetrate the additional dimensions. The same force (bounded with

the black hole mass) ought to act in the additional dimensions and therefore is weaker
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(a)

(b)

Figure 7. The evolution of the BDBH system with the nonextremal black hole for α equal to

(a) −1 and (b) 0. The remaining parameters were set as d = 7, l = 0.1 and v = 0.3.

in comparison to the four-dimensional case. Thus, one can draw a conclusion that, the

larger dimensionality of the spacetime manifold one considers, the weaker force is exerted

on the brane in question. It seems to be the common feature of the higher-dimensional

systems. The very similar behavior was noticed in studies of the absorption cross section,

for massive Dirac field in higher dimensional black hole spacetime. Namely, |A|2 for the

bulk massive Dirac fermions in the spacetime of (n + 4)-dimensional Schwarzschild black

hole decreases with the increase of the dimensionality of the spacetime [68]. For the lower

energy spectrum we have the same conclusion concerning the higher dimensional black

hole luminosity.

In the case of the extremal dilaton black hole-brane configurations, one always gets

expulsion of the brane from the black objects, disregarding dimension of the spacetime and

the coupling constant of the theory under consideration. This fact confirms the previous

results obtained for the four-dimensional dilaton black hole-brane system [19]. In four

dimensions the same effect was also revealed for the Abelian Higgs cosmic strings and

extremal dilaton black holes [69, 70].

The dynamical evolution of the considered system was elaborated as the series of

snapshots of the temporal evolution of the brane-black hole, for nonextremal and extremal

black objects. The energy density of the scalar field was examined in the black hole

spacetime in cylindrical coordinates. We have considered various spacetime dimensions,

i.e., 4, 5, 6, 7 and 8, as well as, the changes of the brane thickness. In the nonextremal

case, it turned out that the black hole is expelled earlier from the brane in the bulk of a

larger dimension and when the brane is thicker. Namely, the radius of the area of the brane
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deformation has a bigger value for a thicker brane. It moves from the initial position to a

larger distance outside the black hole in question. As far as the energy is concerned, the

energy density of the thick brane is smaller than for a thin one. Moreover, it happens that

the bigger initial velocity we examine, the earlier expulsion of the black hole we observe.

The large value of velocity causes the increase of the area of the brane deformation in the

vicinity of the black object. Similarly to the static configurations, the dilatonic coupling

value does not influence the process in question.

On the other hand, for the extremal dilaton black hole all the aforementioned conclu-

sions are also valid. The only difference is that the expulsion takes place a little bit earlier

than in the nonextremal case.

The current studies could be broadened in several directions, the examples of which are

the following. One of them is disregarding the restriction of the codimension-one brane and

investigating other values of the bulk spacetime and the brane relative dimensionalities.

An assumption of spherical symmetry could be also weakened so that static and stationary

axisymmetric spacetimes could be considered.
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