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Rényi entropy for general higher derivative gravity

Chong-Sun Chua,b and Rong-Xin Miaob

aPhysics Division, National Center for Theoretical Sciences, National Tsing-Hua University,

101 Section 2 Kuang Fu Road, Hsinchu 30013, Taiwan
bDepartment of Physics, National Tsing-Hua University,

101 Section 2 Kuang Fu Road, Hsinchu 30013, Taiwan

E-mail: cschu@phys.nthu.edu.tw, miaorongxin.physics@gmail.com

Abstract: We consider higher derivative gravity and obtain universal relations for the

shape coefficients (fa, fb, fc) of the shape dependent universal part of the Rényi entropy for
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holographic relations also apply to weakly coupled conformal field theories such as theories

of free fermions and vectors but are violated by theories of free scalars. The mismatch of

fa for scalars has been observed in the literature and is due to certain delicate boundary

contributions to the modular Hamiltonian. Interestingly, we find a combination of our holo-

graphic relations which are satisfied by all free CFTs including scalars. We conjecture that

this combined relation is universal for general CFTs in four dimensional spacetime. Finally,

we find there are similar universal laws for holographic Rényi entropy in general dimensions.
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1 Introduction

One of the most mysterious features of quantum mechanics is the phenomena of entan-

glement. For system described by a density matrix ρ, entanglement can be conveniently

measured in terms of the entanglement entropy and the Rényi entropy

SEE = −Tr(ρ log ρ), (1.1)

Sn =
1

1− n
log Tr(ρn). (1.2)

For any integer n > 1, the Rényi entropy Sn may be obtained from

Sn =
logZn − n logZ1

1− n
, (1.3)
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where Zn is the partition function of the field theory on a certain n-fold branched cover man-

ifold. The Rényi entropy provides a one parameter family of entanglememt measurement

labeled by an integer n, from which entanglement entropy SEE can be obtained as a limit

SEE = lim
n→1

Sn (1.4)

if Sn is continued to real n.

The study of entanglement entropy and the nature of quantum nonlocality has brought

new insights into our understandings of gravity. It is found that entanglement plays an

important role in the emergence of space-time and gravitational dynamics [1–5]. In addition

to entanglement entropy, Rényi entropy has drawn much attention recently, including the

holographic formula of Rényi entropy [6, 7], the shape dependence of Rényi entropy [8–10],

the holographic dual of boundary cones [11] and Rényi twist displacement operator [12, 13].

Generally, for a spatial region A in a d-dimensional spacetime, the Rényi entropy for A

is UV divergent. If one organizes in terms of the short distance cutoff ǫ, one finds it contain

a universal term in the sense that it is independent on the UV regularization scheme one

choose. In odd spacetime dimensions, the universal term is ǫ independent. In even space-

time dimensions, the universal term is proportional to log ǫ and its coefficient can be written

in terms of geometric invariant of the entangling surface Σ = ∂A. In four dimensions, the

universal term of the Rényi entropy has the following geometric expansion [14, 15],

Suniv
n = log ǫ

(

fa(n)

2π
RΣ +

fb(n)

2π
KΣ − fc(n)

2π
CΣ
)

. (1.5)

Here the conformal invariants are

RΣ ≡
∫

Σ
d2y

√
σRΣ, CΣ ≡

∫

Σ
d2y

√
σCab

ab, KΣ ≡
∫

Σ
d2y

√
σtr(K̄2), (1.6)

where σ,RΣ, K̄îĵ , C
ab
ab are, respectively, the induced metric, intrinsic Ricci scalar, trace-less

part of extrinsic curvature and the contraction of the Weyl tensor projected to directions

orthogonal to the entangling surface Σ. The shape dependence of the Rényi entropy is

described by the coefficients fa, fb, fc, which depend on n and the details of CFTs in

general. The coefficient fa can be obtained by studying the thermal free energy of CFTs

on a hyperboloid [6]. The coefficients fc and fb are determined by the stress tensor one-

point function and two-point function on the hyperboloid background [12, 16]. Remarkably,

it is found in [16] that fc is completely determined by fa:

fc(n) =
n

n− 1

[

fa(1)− fa(n)− (n− 1)f ′
a(n)

]

. (1.7)

It was conjectured in [17] that

fb(n) = fc(n) (1.8)

holds for general 4d CFTs. This conjecture has passed numerical test for free scalar and

free fermion [17]. According to [12], it seems that the relation (1.8) holds only for free

CFTs. Evidence includes an analytic proof for free scalar. However, it is found to be

violated by strongly coupled CFTs with Einstein gravity duals [9].
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In this paper, we apply the holographic approach developed in [9, 10, 13] to study the

universal terms of the Rényi entropy for CFTs in general spacetime dimensions that admit

general higher derivative gravity duals. For 4d CFTs, expanding the coefficients (fa, fb, fc)

in powers of (n − 1), we find the leading and sub-leading terms are related to parameters

(c, t2, t4) of two point and three point functions of stress tensors [18, 19]:

fa(n) = a− c

2
(n− 1) + c

(

35

54
+

7

324
t2 +

1

81
t4

)

(n− 1)2 +O(n− 1)3 (1.9)

fb(n) = c− c

(

11

12
+

1

18
t2 +

1

45
t4

)

(n− 1) +O(n− 1)2 (1.10)

fc(n) = c− c

(

17

18
+

7

108
t2 +

1

27
t4

)

(n− 1) +O(n− 1)2. (1.11)

It should be mentioned that the expansion (1.9) of fa has been obtained in [20] by using two-

point and three-point function of the modular Hamiltonian. Here we provide a holographic

proof of it. We note that (1.9) and (1.11) satisfy the relation (1.7). This can be regarded as

a check of our holographic calculations. We also note that t2 = t4 = 0 for Einstein gravity

and the eqs. (1.10), (1.11) reduce to the results obtained in [9] in this case. To the best of

our knowledge, the universal dependence of fb on the coefficients t2, t4 as obtained in the

relation (1.10) is new. This is one of the main results of this paper.

We remark that our holographic relations eqs. (1.9)–(1.11) are also satisfied by free

fermions and vectors.1 However, mismatch appears for free scalars. Actually, the discrep-

ancy of fa in scalars has been observed in [20], which is due to the boundary contributions

to the modular Hamiltonian. It was found that the boundary terms in the stress tensor of

scalars are important at weak coupling and are suppressed in the strong coupling limit [20].

Although eqs. (1.9), (1.10), (1.11) are not satisfied by theories of free scalars, we find that

the following combinations

2f ′
b(1)− 3f ′

c(1) = c

(

1 +
1

12
t2 +

1

15
t4

)

, (1.12)

2f ′
b(1) +

9

2
f ′′
a (1) = c

(

4 +
1

12
t2 +

1

15
t4

)

, (1.13)

are satisfied by all CFTs with holographic dual and all free CFTs including free scalars. We

conjecture they are universal relations for all CFTs in four dimensions. Note that we have

f ′
c(1) +

3
2f

′′
a (1) = c from eq. (1.7), therefore eq. (1.12) and eq. (1.13) are not independent.

Without loss of generality, we focus on the conjecture eq. (1.12) in the rest of this paper.

In the notation of [12], our conjecture (1.12) for 4d CFTs can be written in the form

πC ′′
D(1)− 36h′′n(1) =

2π3

5
CT

(

1 +
1

12
t2 +

1

15
t4

)

, (1.14)

where CT = 40
π4 c, hn(n) and CD(n) are CFT data associated with the presence of the

entangling surface. In general, for a d-dimensional CFT and an entangling surface Σ

1We have assume f ′′

b (1) = f ′′

c (1) for free fermions and vectors. Numerical calculations support this

assumption for free fermions [17].
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(codimension 2), one denotes the coordinates orthogonal and parallel to the entangling

surface by xa and yî. The breaking of translational invariance in the directions transverse

to Σ can be characterized by the displacement operators Da(yî). As a result, one has the

following correlation functions [12]:

〈Tîĵ〉n = −hn(n)

2πn

δîĵ

|xa|d , (1.15)

〈Da(yî)Db(0)〉n = CD(n)
δab

|yî|2(d−1)
. (1.16)

Here hn(n) is the coefficient fixing the normalization of the one-point function for the stress

tensor in the presence of the twisted operator for the n-fold replicated QFT, and CD(n)

is the normalization coefficient for the two-points correlation function of the displacement

operators. In 4-dimensions, CD(n) and hn(n) related to the dependence of Rényi and

entanglement entropy on smooth or shape deformations [8, 21–23]. The specific relation

can be found in eqs. (2.12), (3.15), (3.19) of [12].

It should be mentioned that unlike fc and fb which are defined only in 4 dimensions,

hn and CD have a natural definition in all dimensions. Therefore it is natural to ask if by

using them one can generalize the results (1.12) and (1.13) to other dimensional spacetime.

The holographic dual of hn and CD for Einstein gravity and Gauss-Bonnet Gravity in

general dimensions are studied in recent works [10, 13]. Applying their results, one can

express h′′n(1) and C ′′
D(1) in terms of CT and t2. Recall that we have t4 = 0 for Einstein

gravity and Gauss-Bonnet Gravity. To get the information of t4, one has to study at least

one cubic curvature term such as K7 and K8 in the action (2.43). Following the approach

of [10, 13], we obtain the holographic formulae of hn and CD for a d-dimensional CFT

admiting a general higher curvature gravity dual:

hn
CT

= −2πn
Me

fd
, (1.17)

CD

CT
=

dπ2n

d+ 1

[

(d− 2)(βn − β1)−
Me

2

]

, (1.18)

where Me is the effective mass defined in eq. (4.14) and βn is the coefficient in the function

k(r) in eq.(4.15) which describes a deformation in the extrinsic curvature of the entangling

surface. It is remarkable that these relations take simple and universal form for all the

higher curvature gravity.

By using the holographic formula of hn and CD, we find there are similar uni-

versal laws in general dimensions, which involves linear combinations of the terms

C ′′
D(1), h

′′
n(1), CT , CT t2 and CT t4.

2 In general, we have for a d-dimensional CFT,

h′′n(1)

CT
= − 2π

d
2
+1Γ

(

d
2

)

(d− 1)3d(d+ 1)Γ(d+ 3)

[

d
(

2d5 − 9d3 + 2d2 + 7d− 2
)

(1.19)

+(d− 2)(d− 3)(d+ 1)(d+ 2)(2d− 1)t2 + (d− 2)
(

7d3 − 19d2 − 8d+ 8
)

t4
]

C ′′
D(1)

CT
=

4π2

d+ 1

[

1− d2 + d

d2 − d
− (d− 2)(d− 3)

(d− 1)2d
t2 −

(d− 2)
(

3d2 − 7d− 8
)

(d− 1)2d(d+ 1)(d+ 2)
t4

]

. (1.20)

2In three dimensions, we have t2=0. And we have t2 = t4 = 0 in two dimensions.
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Note that the relation C ′′
D(1) = dΓ(d+1

2 )( 2√
π
)d−1h′′n(1) is obeyed by free fermions and con-

formal tensor fields3 but are violated by free scalars. However similar to the 4 dimensional

case, there exist ‘universal laws’ that include free scalar fields. For example, in three

dimensions, we find

πC ′′
D(1)− 16h′′n(1) =

π3

3
CT

(

1 +
t4
30

)

, (1.21)

works well for free fermions, free scalars and CFTs with gravity dual. As for the ‘universal

laws’ in higher dimensions, please refer to eq. (4.48). It is interesting to study whether

these ‘universal laws’ are obeyed by more general CFTs.

The paper is organized as follows. In section2, we study 4d CFTs which are dual

to general higher curvature gravity and derive the relations between the coefficients

(f ′′
a (1), f

′
b(1), f

′
c(1)) in the universal terms of Rényi entropy and the parameters (c, t2, t4)

of two point and three point functions of the stress tensors in the conformal field theory.

In section 3, we compare these holographic relations with those of free CFTs and find a

combined relation which agrees with all the known results of the free CFTs. We conjecture

this combined relation is a universal law for all the CFTs in four dimensions. In section

4, we consider three and higher general spacetime dimensions and derive the holographic

dual of hn and CD for general higher curvature gravity and discuss the universal behaves

of h′′n(1) and C ′′
D(1). Finally, we conclude in section5.

Notations: we use xµ (yi) and gµν (γij) to denote the coordinates and metric in the

bulk (on the boundary). xa and yî are the orthogonal and parallel coordinates on the

entangling surface. σîĵ is the induced metric on the entangling surface. For simplicity, we

focus on Euclidean signature in this paper.

2 Holographic Rényi entropy for higher derivative gravity

In this section, we investigate the universal terms of Rényi entropy for 4d CFTs that

are dual to general higher derivative gravity. We firstly take Gauss-Bonnet gravity as

an example and then generalize the results to general higher curvature gravity. Some

interesting relations between the universal terms of holographic Rényi entropy (HRE) and

the parameters of two point and three point functions of stress tensors are found.

2.1 Gauss-Bonnet gravity

For simplicity, we consider the following Gauss-Bonnet Gravity which is slightly different

from the standard form

I =
1

16πGN

∫

M

[

R+
12

l2
+ α(R̄µνρσR̄

µνρσ − 4R̄µνR̄
µν + R̄2)

]

+ IB, (2.1)

3The conformal tensor fields appear only in even dimensions.

– 5 –



J
H
E
P
1
2
(
2
0
1
6
)
0
3
6

where
∫

M ≡
∫

M dd+1x
√
g (d = 4 here), the quantities R̄···

··· are given by

R̄µνρσ = Rµνρσ − 1

l2
(gµσgνρ − gµρgνσ), (2.2)

R̄µν = Rµν +
4

l2
gµν , (2.3)

R̄ = R+
20

l2
(2.4)

and IB denotes the Gibbons-Hawking-York terms which make a well-defined variational

principle and the counter terms which make the total action finite.

An advantage of the above action is that, similar to Einstein gravity, the radius of AdS

is exactly l. While in the standard GB and higher derivative gravity, the effective radius

of AdS is a complicated function of l, which makes the calculations complicated. Below we

set l = 1 for simplicity.

2.1.1 fa(n)

Let us briefly review the method to derive fa(n) [6]. We focus on the spherical entangling

surface, where trK̄2 and Cab
ab vanish. Thus only fa appears in the universal terms of Rényi

entropy eq. (1.5). The main idea is to map the vacuum state of the CFTs in a spherical

entangling region to the thermal state of CFTs on a hyperboloid. The later has a natural

holographic dual in the bulk, the black hole that asymptotes to the hyperboloid. Using

the free energy of black hole, we can derive Rényi entropy as

Sn =
n

1− n

1

T0
[F (T0)− F (T0/n)] (2.5)

where T0 is the temperature of hyperbolic black hole for n = 1. Further using the thermo-

dynamic identity, S = −∂F/∂T , we can rewrite the above expression as

Sn =
n

n− 1

1

T0

∫ T0

T0/n
SBH(T )dT (2.6)

where SBH(T ) is the black hole entropy. For our revised GB gravity (2.1), it takes the form

SBH =
1

4GN

∫

H
dy3

√
h[1 + 2α(RH + 6)] (2.7)

where H denotes horizon and RH is the intrinsic Ricci scalar on horizon.

The key point in this approach is finding the black hole solution that asymptotes to

the hyperboloid on the boundary. We get

ds2bulk =
dr2

f(r)
+ f(r)dτ2 + r2dΣ2

3 (2.8)

where dΣ2
3 is the line element for hyperbolic plane H3 with unit curvature, and f(r) is

given by

f(r) =
(1 + 12α)r2 −

√

8αM + (1 + 8α)2r4

4α
− 1. (2.9)

– 6 –



J
H
E
P
1
2
(
2
0
1
6
)
0
3
6

Here

M =
(

r2H − 1
) (

(1 + 10α)r2H − 2α
)

, (2.10)

and rH denotes the position of horizon, f(rH) = 0. Note that f(r) has the correct limit:

it becomes that of hyperbolic black hole (black hole in Einstein gravity) when M → 0

(α → 0). In the large r limit, the boundary metric is conformal equivalent to

ds2boun = dτ2 + dΣ2
3, (2.11)

which is the expected metric on manifold S1 ×H3.

To determine rH , we note that the Hawking temperature on horizon is given by

T =
1

4π
∂rf(r)|r=rH =

1

2πn
. (2.12)

From the above equation, one can easily get T0 = 1
2π for the hyperbolic black hole with

f(r) = r2 − 1 and rH = 1. Now let us solve eq. (2.12) and express rH in terms of (n− 1)

rH = 1− n− 1

3
+
(10 + 96α)

27(1 + 8α)
(n−1)2− 2

(

49 + 912α+ 4224α2
)

243(1 + 8α)2
(n−1)3+O(n−1)4. (2.13)

Substituting eq. (2.13) together with T = 1
2πn , T0 = 1

2π and RH = −6/r2H into

eqs. (2.6), (2.7), we obtain

Sn =
VΣ

4GN

[

1− 1 + 8α

2
(n− 1) +

7

54
(5 + 48α)(n− 1)2 −

(

11856α2 + 2514α+ 133
)

162(8α+ 1)
(n− 1)3

]

+O(n− 1)4, (2.14)

where VΣ is the hyperbolic volume, which contributes a logarithmic term V univ
Σ =

2π log ǫ [6]. Now we can extract fa from eq. (2.14) as

fa(n) = a− c

2
(n− 1) +

7

54
(6c− a)(n− 1)2 +O(n− 1)3

= a− c

2
(n− 1) + c

(

35

54
+

7

324
t2

)

(n− 1)2 +O(n− 1)3, (2.15)

where a = π
8GN

and c = π
8GN

(1 + 8α) [24]. In the above derivation we have used

c− a

c
=

1

6
t2 +

4

45
t4, for 4d CFTs (2.16)

and t4 = 0 for GB gravity. Clearly, eq. (2.15) agrees with eq. (1.9) when t4 = 0. To get the

information of t4, one must consider more general higher derivative gravity. We leave this

problem to next section. Notice that the O(n− 1)3 terms of fa eq. (2.14) is a complicated

function of a and c, which implies that there is no universal relations at this and higher

orders. From the viewpoint of CFTs, terms of fa at order O(n−1)3 are determined by four-

point functions of stress tensor [20]. Unlike two-point and three-point functions, four-point

functions of CFTs are no longer universal. Thus, it is expected that there is no universal

relation at order O(n − 1)3 for fa. It depends on the details of CFTs at this and higher

orders. Similarly, one expects there is no universal relation at order O(n−1)2 for fb and fc.

– 7 –
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2.1.2 fc(n)

Now let us continue to derive fc(n). We take the approach developed in [9]. In general

with a deformation of the field theory metric, the change in the partition function is govern

by one-point function of the field theory stress tensor

δ logZn =
1

2

∫

∂M
dx4

√
γ 〈T ij〉δγij . (2.17)

The main idea of [9] is to consider specific deformation of the metric so that, on using (1.3),

one may isolate the required shape dependent term in the universal part of the Rényi

entropy. For example, fc can be isolated with a deformation that affects CΣ but not KΣ:

δSn = − log ǫ

∫

Σ
d2y

√
σ
fc(n)

2π
Cab

ab + · · · , (2.18)

where · · · are non-universal terms of the Rényi entropy. This can be achieved by considering

on the entangling surface the following metric

ds2boun = dτ2 +
1

ρ2
[

dρ2 + (δîĵ +Qab̂iĵx
axb +O(ρ3))dyîdyĵ

]

(2.19)

where Qab̂iĵ describes a deformation of the metric and give rises to an amount of Cab
ab as

Cab
ab =

1

3
Qa

aî
î. (2.20)

Here in (2.19), we have adopted a local coordinate system (ρ, τ, yî) near Σ, where

for each point on Σ, we introduce a one-parameter family of geodesics orthogonal to

Σ parametrized by τ , and ρ denotes the radial distance to Σ along such a geodesic.

(x1, x2) ≡ (ρ cos τ, ρ sin τ) and {yî, i = 1, · · · , d − 2} denotes an arbitrary coordinates sys-

tem on Σ. We note that in this computation of fc, the boundary metric (2.19) is conformal

equivalent to a deformed conical metric.

To proceed with the calculation of fc(n), we consider the bulk metric that asymptotes

to the deformed hyperboloid background (2.19):

ds2bulk =
dr2

f(r)
+ f(r)dτ2 +

r2

ρ2
[

dρ2 + (δîĵ + q(r)Qab̂iĵx
axb +O(ρ3))dyîdyĵ

]

(2.21)

where q(r) is determined by the E.O.M in the bulk and approach 1 in the limit r → ∞.

Actually, to derive fc(n), we do not need to solve the E.O.M. That is because we already

have δγij = r2

ρ2
Qab̂iĵx

axb ∼ Cab
ab, so we only need zero order of T ij in eq. (2.17) in order

to extract the terms proportional to Cab
ab. In other words, we only need to calculate T ij

on undeformed hyperboloid background.

We note that in the context of AdS/CFT, the stress tensor that appears in (2.17) can be

taken either as the regularized Brown-York boundary stress tensor [25] or the holographic

stress tensor [26]. The two are equivalent as we demonstrate in the appendix. In this sec-

tion, we will consider the first approach. The key point is to find the regularized boundary

stress tensor for our non-standard GB gravity (2.1). Notice that our non-standard GB

– 8 –
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gravity (2.1) can be rewritten into the standard form, with only the coefficients of L0 = 1

and L2 = R different from the standard GB:

I =
1

16πGN

∫

M

[

R+
d2 − d

l2
+ αL4(R̄)

]

, (2.22)

=
1

16πGN

∫

M

[

(

1 + 2(d− 1)(d− 2)α
)

R+
d2 − d

l2
(

1 + (d+ 1)(d− 2)α
)

+ αL4(R)

]

,

where L4(R) denotes the standard GB term. The holographic regularization for GB gravity

is studied in [27]. Reparameterizing their formulas, we get for the Brown-York boundary

stress tensor:

8πGNT ij
∂M =

(

1 + 2α(d− 1)(d− 2)
)

[

Kij
∂M −K∂Mγij − (d− 1)γij +

Θ(d− 3)

d− 2

(

Rij
∂M − 1

2
R∂Mγij

)]

+2α

(

Qij − 1

3
Qγij

)

, (2.23)

where Θ(x) is the step-function with Θ(x) = 1 provided x ≥ 0, and zero otherwise. Kij
∂M

is the extrinsic curvature on the AdS boundary and Qij is given by

Qij = 2K∂MK∂MikK
k

∂M j − 2K∂MikK
kl
∂MK∂Mlj +K∂Mij(K∂MklK

kl
∂M −K2

∂M ) (2.24)

+2K∂MR∂Mij +R∂MK∂Mij − 2Kkl
∂MR∂Mkilj − 4R∂MikK

k
∂M j .

Here R∂M denotes the intrinsic curvature on the boundary.

Substituting eq. (2.23) and δγij =
r2

ρ2
Qab̂iĵx

axb into eqs. (2.17), (2.18), we obtain

fc(n) =
π

8GN

[

1 + 8α+

(

−17

18
− 32α

3

)

(n− 1) +
217 + 4512α+ 23232α2

162(1 + 8α)
(n− 1)2

]

+O(n− 1)3

= c+

(

7

18
a− 4

3
c

)

(n− 1) +O(n− 1)2

= c+ c

(

−17

18
− 7

108
t2

)

(n− 1) +O(n− 1)2 (2.25)

Similar to fa(n), we have used c−a
c = 1

6 t2 +
4
45 t4 for 4d CFTs and t4 = 0 for GB gravity.

Eq. (2.25) agrees with eq. (1.11) when t4 = 0. Note that eq. (2.25) and eq. (2.15) are

consistent with the identity (1.7). This can be regarded as a check of our holographic

calculations.

2.1.3 fb(n)

Now let us go on to calculate fb(n). The method is similar to that of fc(n): we consider

the first order variation (2.17) of the partition on the hyperboloid background deformed

by an extrinsic curvature [9] and then extract fb(n) from

δSn = log ǫ

∫

Σ
d2y

√
σ
fb(n)

2π
tr(K̄2) + · · · . (2.26)

The main difference from fc(n) is that now we need to calculate T ij on the deformed

hyperboloid H̃4
n. This is because we have δγij ∼ K, thus to extract K2 terms, we must get

T ij of order K.

– 9 –



J
H
E
P
1
2
(
2
0
1
6
)
0
3
6

To proceed, we deform the boundary hyperboloid by a traceless extrinsic curvature

ds2boun = dτ2 +
1

ρ2
[

dρ2 + (δîĵ +Kaîĵx
a +O(ρ2))dyîdyĵ

]

. (2.27)

Then the bulk metric becomes

ds2bulk =
dr2

f(r)
+ f(r)dτ2 +

r2

ρ2
[

dρ2 + (δîĵ + k(r)Kaîĵx
a +O(ρ2))dyîdyĵ

]

(2.28)

To get boundary stress tensor T ij of order O(K), we need to solve the E.O.M up to O(K).

For traceless Kaij , we find one independent equation

[

−2α
(

ff ′′ + rf ′ − 6
(

f + r2
))

+ f + r2
]

k(r)

+f
[

rf
(

−36α+ 2αf ′′ − 3
)

− f ′ ((12α+ 1)r2 − 4αf
)

+ 2αr
(

f ′)2
]

k′(r)

−rf2
(

−2αf ′ + 12αr + r
)

k′′(r) = 0 (2.29)

Near the horizon, the solutions behave like k(r) ∼ (r − rH)n/2. The solution is uniquely

determined by this IR boundary boundary condition and the UV boundary condition

limr→∞ k(r) = 1. However, the IR boundary boundary condition k(r) ∼ (r − rH)n/2

is not easy to deal with. Thus, we define a new function

h(r) = k(r) exp

[
∫ ∞

r

dr

f(r)

]

(2.30)

and the E.O.M becomes

[

2α(r − 1)f ′′ + 4αf ′ + (12α+ 1)(−(3r − 1))
]

h(r)

+
[

f
(

r
(

−36α+ 2αf ′′ − 3
)

+ 4αf ′)− r
(

f ′ + 2
) (

−2αf ′ + 12αr + r
)]

h′(r)

+
[

−fr
(

−2αf ′ + 12αr + r
)]

h′′(r) = 0 (2.31)

Now the regularity condition at horizon simply requires h(rH) to be finite. Solving the

above equation perturbatively, we get

h(r) =
r + 1

r
+ h1(r)(n− 1) + h2(r)(n− 1)2 + · · · (2.32)

with

h1(r) =
r + 1

r
log

(

r + 1

r

)

− 6r2 + 3r − 1

6r3
, (2.33)

h2(r) =
r + 1

2r
log2

(

r + 1

r

)

− 6r2 + 3r − 1

6r3
log

(

r + 1

r

)

+
5
(

216r3 − 85r + 27
)

r2 + 24
(

r
(

r
(

360r3 − 155r + 69
)

+ 4
)

+ 20
)

α

2160r7(1 + 8α)
, (2.34)

· · · ,

where we have obtained solutions up to h5(r). For simplicity we do not list them here.
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From eqs. (2.30), (2.32), (2.33), we can derive k(r). Expanding k(r) in large r, we find

k(r) = 1− 1

2r2
+

βn
r4

+O

(

1

r6

)

(2.35)

where

βn = −1

8
+

n− 1

12
− (67 + 600α)

432(1 + 8α)
(n− 1)2 +

(

151104α2 + 34320α+ 1945
)

7776(1 + 8α)2
(n− 1)3

−
(

1362415104α3 + 471579456α2 + 54244296α+ 2074355
)

5598720(8α+ 1)3
(n− 1)4

+

(

19865723572224α4 + 9304662564864α3 + 1627900276608α2 + 126143146752α+ 3654194425
)

7054387200(1 + 8α)4
(n− 1)5

+O(n− 1)6. (2.36)

Recall that δ logZ ∼ T ijδγij and (2.17) is calculated on the boundary with r →
∞. Thus, k(r) in the large r expansion is good enough for our purpose. Substituting

eqs. (2.35), (2.28), (2.9), (2.13) into eqs. (2.23), (2.17), (2.26), we obtain

8GN

π
fb(n) = (1 + 8α)−

(

11

12
+ 10α

)

(n− 1) +

(

27840α2 + 5552α+ 275
)

216(1 + 8α)
(n− 1)2

−
(

237436416α3 + 74097984α2 + 7667464α+ 263115
)

155520(1 + 8α)2
(n− 1)3

+

(

3323533971456α4 + 1425617289216α3 + 228089069952α2 + 16137500288α+ 426115725
)

195955200(1 + 8α)3
(n− 1)4

+O(n− 1)5. (2.37)

Similar to fc(n), we can rewrite fb(n) in terms of a and c or c and t2. We have

fb(n) = c+

(

1

3
a− 5

4
c

)

(n− 1) +O(n− 1)2

= c+ c

(

−11

12
− 1

18
t2

)

(n− 1) +O(n− 1)2. (2.38)

To end this section, we notice an interesting property of solutions to GB gravity (2.1).

Expanding in (n − 1), we find the solutions such as f(r) and h(r) are exactly the same

as those of Einstein gravity at the first order (n − 1). Differences appear only at higher

orders. As we will prove in the next section, this is a universal property for general higher

curvature gravity as long as we rescale the coefficient of R as 1.

2.2 General higher curvature gravity

In this section, by applying the methods illustrated in section2.1, we discuss the universal

terms of Rényi entropy for CFTs dual to general higher curvature gravity. In general, it is

difficult to find the exact black hole solutions in higher derivative gravity. Instead, we focus

on perturbative solutions up to (n−1)2. This is sufficient to derive fa of order (n−1)2 and

fb, fc of order (n − 1). As we have argued above, it is expected that there is no universal

behavior at higher orders, due to the fact that the higher orders are determined by four

and higher point functions of stress tensor, which depend on the details of CFTs.

– 11 –



J
H
E
P
1
2
(
2
0
1
6
)
0
3
6

Let us consider the general higher curvature gravity I(Rµνρσ). We use the trick in-

troduced in [24] to rewrite it into the form similar as eq. (2.1). This method together

with [28, 29] is found to be useful to study the holographic Weyl anomaly and universal

terms of entanglement entropy [24, 30–32].4 Firstly, we define a ’background-curvature’

(we set the AdS radius l = 1 below)

R̃µνσρ = gµρgνσ − gµσgνρ (2.39)

and denote the difference between the curvature and the ’background-curvature’ by

R̄µνσρ = Rµνσρ − R̃µνσρ. (2.40)

Then we expand the action around this ‘background-curvature’ and get

I =
1

16πGN

∫

dd+1x
√
gL(Rµνσρ) (2.41)

=
1

16πGN

∫

dd+1x
√
g

[

L0+c
(1)
1 R̄+(c

(2)
1 L4(R̄)+c

(2)
2 R̄µνR̄

µν+c
(2)
3 R̄2)+

8
∑

i=1

c
(3)
i Ki(R̄)+O(R̄4)

]

where L0 = L(R̃µνσρ) = L(Rµνσρ)|AdS is a constant defined by the Lagrangian for AdS

solution, and c
(n)
i are constants which parametrize the higher derivatives correction to the

Einstein action up to third orders in the curvature with n denoting the order. Here L4(R̄)

denotes the GB term

L4(R̄) = R̄µνρσR̄
µνρσ − 4R̄µνR̄

µν + R̄2, (2.42)

and Ki(R̄) denotes the basis of third order curvature terms

Ki(R̄) = {R̄3, R̄R̄µνR̄
µν , R̄R̄µνρσR̄

µνρσ, R̄ν
µR̄

ρ
νR̄

µ
ρ , R̄

µνR̄ρσR̄µρσν , R̄µνR̄
µρσλR̄ν

ρσλ,

R̄µνρσR̄
µνλχR̄ρσ

λχ, R̄µνρσR̄
µλχσR̄ν ρ

λχ }. (2.43)

We require that the higher derivative gravity has an asymptotic AdS solution. This would

impose a condition c
(1)
1 = −L0/2d [24]. Using this condition, we can rewrite the ac-

tion (2.41) as

I =
1

16πGN

∫

M
−L0

2d
(R+d2−d)+(c

(2)
1 L4(R̄)+c

(2)
2 R̄µνR̄

µν+c
(2)
3 R̄2)+

8
∑

i=1

c
(3)
i Ki(R̄)+O(R̄4) .

(2.44)

Rescaling GN → G̃N = − 2d
L0

GN , c
(n)
i → c̃

(n)
i = − 2d

L0
c
(n)
i , we have

I =
1

16πG̃N

∫

M
(R+ d2 − d) + (c̃

(2)
1 L4(R̄) + c̃

(2)
2 R̄µνR̄

µν + c̃
(2)
3 R̄2) +

8
∑

i=1

c̃
(3)
i Ki(R̄) +O(R̄4).

(2.45)

Now it takes the form as eq. (2.1). For simplicity, we ignore the notation ˜ below. The

E.O.M of the above gravity is

P αρσ
µ Rναρσ − 2▽ρ

▽
σPµρσν −

1

2
Lgµν = 0, (2.46)

4For recent discussions on entanglement entropy and the scale invariance, please see [33].

– 12 –



J
H
E
P
1
2
(
2
0
1
6
)
0
3
6

with Pµαρσ = ∂L/∂Rµαρσ.

A couple of remarks on action (2.45) are in order.

Firstly, it is clear the hyperbolic black hole which is locally AdS is a solution to

action (2.45). That is because R̄µνρσ = 0 in AdS. We are interested of two kinds of

perturbations: the first one is δgµν ∼ O(n − 1) related to fa, fc, and the second one is

δgµν ∼ O
(

(n − 1),K
)

related to fb. Remarkably, we have R̄µνρσ ∼ O(n − 1,K2)5 for the

deformed metric (2.28).

Secondly, we are interested of the solutions up to O(n−1)2 and O(K), or equivalently,

the action up to O(n− 1)3 and O
(

(n− 1)2K2
)

. As a result, we can drop the O(R̄)4 terms

in action (2.45) due to O(R̄)4 ∼ O
(

(n − 1)4, (n − 1)3K2, · · ·
)

. Recall that the terms of

order O
(

(n− 1)aKb
)

in the action contributes to terms at least of order O
(

(n− 1)a−1Kb
)

and O
(

(n− 1)aKb−1
)

in the E.O.M.

Thirdly, at the linear order in O(n − 1,K), solutions to Einstein gravity are also

solutions to higher curvature gravity (2.45). In other words, the parameters c̃
(n)
i do not

appear in the solutions of order O(n−1,K). Let us give a simple proof. Since Ki(R̄) ∼ R̄3 ∼
O(n−1)3 andO

(

(n−1)2K2
)

, obviously they do not contribute to the solution at orderO(n−
1,K). Now we are left with three curvature-squared terms. Notice that R̄µν = 0 and R̄ = 0

for all solutions to Einstein gravity with negative cosmological constant. Thus we only need

to consider the GB term L4(R̄), which contributes the following terms to the E.O.M

P αρσ
µ Rναρσ − 1

2
L4(R̄)gµν , (2.47)

where Pµαρσ = ∂L4(R̄)/∂Rµαρσ. At leading order we have P αρσ
µ Rναρσ ∼ 2R̄ αρσ

µ Rναρσ ∼
4R̄µν ∼ O

(

(n− 1)2,K2
)

and L4(R̄) ∼ O
(

(n− 1)2,K2
)

. Thus, it is clear that the GB term

L4(R̄) does not affect the E.O.M of order O(n− 1,K). This is indeed the case as we have

seen in section 2.1. Now we finish the proof.

Finally, let us discuss the regularized boundary stress tensor of action (2.45). Let

us firstly discuss the curvature-squared terms in action (2.45). Such terms are studied

in [34] at the first order of c
(2)
2 and c

(2)
3 . Reparameterizing their formulas, we find for the

Brown-York boundary stress tensor

8πG̃NT ij
∂M = (1 + 2c

(2)
1 (d− 1)(d− 2))

[

Kij
∂M −K∂Mγij − (d− 1)γij +

Θ(d− 3)

d− 2

(

Rij
∂M − 1

2
R∂Mγij

)]

+2c
(2)
1

(

Qij − 1

3
Qγij

)

, (2.48)

where d = 4 and Qij is given by eq. (2.24). Remarkably, the terms c
(2)
2 R̄µνR̄

µν and c
(2)
3 R̄2 do

not contribute to the regularized boundary stress tensor. This is actually expected since for

an asymptotically AdS spacetime, we can rewrite the metric in Fefferman-Graham gauge

ds2 = gµνdx
µdxν =

1

4ρ̂2
dρ̂2 +

1

ρ̂
γijdx

idxj , (2.49)

5Note that we have R̄µνρσ proportional to O(K2) instead of O(K). The reason is as follows: K depends

on the orientation, while R is orientation independent. Thus R must be proportional to even powers of

K. Substituting f(r) = r2 − 1 and k(r) =
√
r2 − 1/r into the metric (2.28), one can check that indeed

R̄µνρσ ∼ O(K2).

– 13 –



J
H
E
P
1
2
(
2
0
1
6
)
0
3
6

where γij = γ(0)ij + ρ̂γ(1)ij + · · · and the boundary is at ρ̂ → 0. Near the boundary, we

have [24]

√
gR ∼ √

g ∼ O

(

1

ρ̂3

)

, (2.50)

√
gL4(R̄) ∼ O

(

1

ρ̂

)

, (2.51)

√
gK7(R̄) ∼ √

gK8(R̄) ∼ O(1), (2.52)
√
gR̄µνR̄

µν ∼ √
gR̄R̄ ∼ √

gKi6=7,8(R̄) ∼ √
gO(R̄4) ∼ O(ρ̂). (2.53)

Clearly, only terms (2.50), (2.51) in action (2.45) are divergent and need to be regularized

near the boundary. No counter terms are needed for the other terms for d = 4. In addition

to the counter terms which make the action finite, one may worry about the Gibbons-

Hawking-York (GHY) boundary terms which make a well-defined variational principle. For

general higher curvature gravity, the GHY-like term is proposed in [35]. For Ki(R̄), we have

IGHY ∼
∫

∂M
d4x

√
γ

ρ̂2
P ρ̂i

ρ̂jK
j

∂M i ∼ O(ρ̂), (2.54)

where Pµνρσ = ∂Ki(R̄)/∂Rµνρσ. So the GHY-like terms for Ki(R̄) are harmless. The

GHY-like terms and counter terms for curvature-squared are discussed in [34], which yield

eq. (2.48).

In conclusion, the regularized boundary stress tensor for higher curvature gravity (2.45)

is given by eq. (2.48) in dimensions less than five (d = 4). It should be stressed that the

GHY-like terms and counter terms for K7(R̄) and K8(R̄) are necessary when d ≥ 6.

2.2.1 fa(n)

Applying the methods of section 2.1.1, let us calculate fa(n) in general higher curvature

gravity (2.45). Recall that Rényi entropy on spherical entangling surface is given by

Sn =
n

1− n

1

T0

∫ T0

T0/n
SBH(T )dT (2.55)

with SBH(T ) the black hole entropy

SBH =
1

8GN

∫

H
dy3

√
h

∂L

∂Rµνρσ
εµνερσ. (2.56)

To suppress the massive modes and ghost modes with M ∼ 1/c
(n)
i , we work in pertur-

bative framework with c
(n)
i ≪ 1. After some calculations, we find the black hole solution as

ds2bulk =
dr2

f(r)
+ f(r)F (r)dτ2 + r2dΣ2

3 (2.57)

where dΣ2
3 is the line element for hyperbolic plane H3 with unit curvature, and f(r), F (r)

are given by
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f(r) = r2 − 1 +
2(n− 1)

3r2

−

(

r6(336c
(2)
1 + 192c

(3)
7 − 96c

(3)
8 + 35)− 24r2(c

(2)
1 + 228c

(3)
7 − 3c

(3)
8 ) + 4608c

(3)
7

)

27(1 + 8c
(2)
1 )r8

(n− 1)2,

+O(n− 1)3 (2.58)

F (r) = 1− 8(52c
(3)
7 + 3c

(3)
8 )

3(1 + 8c
(2)
1 )r8

(n− 1)2 +O(n− 1)3. (2.59)

From the conditions

f(rH) = 0, (2.60)

T =
1

4π

√

f ′(r)∂r[f(r)F (r)]|r=rH =
1

2πn
, (2.61)

we find a consistent solution

rH = 1− (n− 1)

3
+

10

27
(n− 1)2 +

4(4c
(2)
1 − 84c

(3)
7 − 3c

(3)
8 )

27(1 + 8c
(2)
1 )

(n− 1)2 +O(n− 1)3. (2.62)

Substituting the above equations into eqs. (2.55), (2.56), we obtain

8GN

π
fa(n) = 1− 1 + 8c

(2)
1

2
(n−1)+

1

54
(336c

(2)
1 +192c

(3)
7 −96c

(3)
8 +35)(n−1)2+ · · · . (2.63)

Using the following relations [32],

a =
π

8GN
, c =

π

8GN
(1 + 8c

(2)
1 ), (2.64)

t2 =
12

1 + 8c
(2)
1

(4c
(2)
1 − 192c

(3)
7 + 96c

(3)
8 ), (2.65)

t4 =
2160

1 + 8c
(2)
1

(2c
(3)
7 − c

(3)
8 ), (2.66)

we can rewrite eq. (2.63) as

fa(n) = a− c

2
(n− 1) + c

(

35

54
+

7

324
t2 +

1

84
t4

)

(n− 1)2 + · · · (2.67)

which is eq. (1.9) advertised in the Introduction.

We remark that although we work in linear order of c
(n)
i in the above derivation, our

result eq. (2.67) applies to finite c
(n)
i . For the case c

(2)
2 = c

(2)
3 = 0, eqs. (2.58), (2.59), (2.62)

are exact in c
(n)
i . For small but non-zero c

(2)
2 and c

(2)
3 , we have performed a fifth order

perturbation and find that eq. (2.67) remains unchanged.
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2.2.2 fc(n)

Now let us study fc(n) in higher curvature gravity (2.45). Similarly, we consider the

first order variation (2.17) of the partition function with Tij computed on the undeformed

hyperboloid background. Here T ij is the regularized boundary stress tensor given by

eq. (2.48). The bulk metric takes the form

ds2bulk =
dr2

f(r)
+ f(r)F (r)dτ2 +

r2

ρ2
[

dρ2 + (δîĵ + q(r)Qab̂iĵx
axb +O(ρ3))dyîdyĵ

]

, (2.68)

which approaches the deformed hyperboloid eq. (2.19) for q(∞) = 1. Recalling f(r), F (r)

as given in eqs. (2.58), (2.59) and substituting all these equations together with γîĵ =
r2

ρ2
Qab̂iĵx

axb into eqs. (2.17), (2.18), we obtain

8GN

π
fc(n) = (1 + 8c

(2)
1 ) +

(

−17

18
− 32

3
c
(2)
1 − 32

3
c
(3)
7 +

16

3
c
(3)
8

)

(n− 1) + · · · . (2.69)

Applying eqs. (2.64), (2.65), (2.66), we can rewrite fc(n) as

fc(n) = c+ c

(

−17

18
− 7

108
t2 −

1

27
t4

)

(n− 1) + · · · . (2.70)

Notice that fa(n) (2.67) and fc(n) (2.70) are consistent with identity (1.7). This is

a non-trivial check of our holographic approach, in particular, the regularized boundary

stress tensor eq. (2.48).

2.2.3 fb(n)

Finally, let us discuss fb(n) in the higher derivative gravity. Similar to the case of the GB

gravity, the key point is to find deformed black hole solutions up to order O(K)

ds2bulk =
dr2

f(r)
+ f(r)F (r)dτ2 +

r2

ρ2
[

dρ2 + (δîĵ + k(r)Kaîĵx
a +O(ρ2))dyidyj

]

(2.71)

For traceless Kaij , there is one independent equation of k(r). We find the solution at the

linear order in (n−1) is exactly the same as that of Einstein gravity, which agrees with the

arguments below eq. (2.46). Modifications from the higher-curvature terms only appear at

higher orders. Remarkably, at the next order O(n− 1)2, only c
(2)
1 , c

(3)
7 and c

(3)
8 contribute.

Following the approach of section 2.1.3, we obtain k(r) in large r expansion as

k(r) = 1− 1

2r2
+

βn
r4

+O

(

1

r6

)

, (2.72)

where

βn = −1

8
+

n− 1

12
+

(−600c
(2)
1 + 4224c

(3)
7 − 2112c

(3)
8 − 67)

432(1 + 8c
(2)
1 )

(n− 1)2 +O(n− 1)3. (2.73)
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Substituting eqs. (2.72), (2.58), (2.59) and δγîĵ = r2

ρ2
Kaîĵx

a into (2.17) and (2.26), we

obtain

fb(n) =
π

8GN

[

(1 + 8c
(2)
1 ) +

(

−11

12
− 10c

(2)
1 + 32c

(3)
7 − 16c

(3)
8

)

(n− 1) + · · ·
]

(2.74)

= c− c

(

11

12
+

1

18
t2 +

1

45
t4

)

(n− 1) + · · · (2.75)

as declared in the Introduction.

Now we have obtained f ′′
a (1), f

′
b(1) and f ′

c(1) by using holographic methods. Inter-

estingly, they only depend on the parameters of stress tensor two-point and three-point

functions. When c
(2)
2 = c

(2)
3 = 0, our derivations are nonperturbative in the coupling con-

stants of higher curvature gravity. For small but non-zero c
(2)
2 and c

(2)
3 , we have performed a

fifth order perturbation and find that they remains unchanged. In conclusion, our obtained

results eqs. (1.9), (1.10), (1.11) are universal laws for strongly coupled CFTs that are dual

to general higher curvature gravity. It is expected that there are no such universal laws

at the next order, since the next order terms would involve the stress energy four-point

functions which no longer admit any universal form.

3 The story of free CFTs

In this section, we discuss the universal terms of Rényi entropy for free CFTs. We find the

holographic relations found in section2 also apply to free fermions and free vectors but not

to free scalars. We find a combined relation which is obeyed by all free CFTs and strongly

coupled CFTs with holographic dual. It seems that this combined relation is universal for

all CFTs in four dimensions.

For the theory consisting of ns free real scalars, nf free Weyl fermions and nv free

vectors, the functions fa(n) and fc(n) have been calculated explicitly in [8, 15, 36–39]. We

list the results as follows:

fa(n) =
1

360

[

ns
(1+n)(1+n2)

4n3
+nf

(1+n)(7+37n2)

16n3
+nv

(1+n+31n2+91n3)

2n3

]

, (3.1)

fc(n) =
1

120

[

ns
(1+n)(1+n2)

4n3
+nf

(1+n)(7+17n2)

16n3
+nv

(1+n+11n2+11n3)

2n3

]

. (3.2)

One can check that the above fa(n) and fc(n) satisfy the identity eq. (1.7). Assuming

fb(n) = fc(n), we have

fb(n) =
1

120

[

ns
(1 + n)(1 + n2)

4n3
+nf

(1 + n)(7 + 17n2)

16n3
+nv

(1 + n+ 11n2 + 11n3)

2n3

]

. (3.3)

This is at least the case for free scalars [12]. Numerical calculations also support fb(n) =

fc(n) for free fermions [17].
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According to [40, 41], the stress tensor three-point functions for CFTs in general space-

time dimensions are completely determined in terms of the three parameters A,B,C as,

CT =
πd/2

d(d+ 2)Γ[d/2]
[(d− 1)(d+ 2)A− 2B − 4(d+ 1)C], (3.4)

t2 =
2(d+ 1)

d

(d− 2)(d+ 2)(d+ 1)A+ 3d2B − 4d(2d+ 1)C

(d− 1)(d+ 2)A− 2B − 4(d+ 1)C
, (3.5)

t4 = −(d+ 1)

d

(d+ 2)(2d2 − 3d− 3)A+ 2d2(d+ 2)B − 4d(d+ 1)(d+ 2)C

(d− 1)(d+ 2)A− 2B − 4(d+ 1)C
, (3.6)

where for free 4d CFTs, we have

A =
8

27π6
(ns − 54nv), (3.7)

B = − 2

27π6
(8ns + 432nv + 27nf ), (3.8)

C = − 1

27π6
(2ns + 432nv + 27nf ). (3.9)

and CT = 40
π4 c.

Substituting eqs. (3.7)–(3.6) into the holographic relations eqs. (1.9), (1.10), (1.11)

for fa, fb, fc and comparing with those of free CFTs eqs. (3.1), (3.2), (3.3), we find ex-

act agreements for fermions and vectors. However, there is discrepancy for scalars. As

noticed in [20], such discrepancy results from the boundary contributions to the modular

Hamiltonian. Interestingly, we find the following combined holographic relations

2f ′
b(1)− 3f ′

c(1) = c

(

1 +
1

12
t2 +

1

15
t4

)

(3.10)

2f ′
b(1) +

9

2
f ′′
a (1) = c

(

4 +
1

12
t2 +

1

15
t4

)

(3.11)

are satisfied by all free CFTs including scalars. We conjecture these are universal laws for

all CFTs in four dimensions. As mentioned in the Introduction, eq. (3.10) and eq. (3.11)

are not independent, which can be derived from each other by applying eq. (1.7).

In the notation of [12], our conjecture (3.10) becomes

πC ′′
D(1)− 36h′′n(1) =

2π3

5
CT

(

1 +
1

12
t2 +

1

15
t4

)

, (for 4d CFTs), (3.12)

where CT = 40
π4 c for 4d. As the quantities hn and CD have natural definitions in all

dimensions. It is expected that one can generalize our results to general dimensions. We

will perform this analysis in the next section.

4 Universality of HRE in general dimensions

In this section, we study hn(n) and CD(n) of holographic Rényi entropy for CFT in general

d-dimensions. We firstly consider the 3d case and then discuss the case in higher dimen-

sions. We find that in general dimensions there are indeed similar holographic universal
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laws expressing h′′n(1) and C ′′
D(1) in terms of a linear combination of CT , t2 and t4. And for

all the examples we have checked, these holographic laws are obeyed by free fermions, but

are violated by free scalars. Similar to what we did above for four dimensions, we are also

able to find a specific relation involving linearly the quantities h′′n(1), C
′′
D(1), CT , t2 and t4,

which applies to free fermions, free scalars and strongly coupled CFTs with holographic

dual. We conjecture that this relation holds for general CFTs.

To proceed, we apply the holographic approach developed in [10, 13] to derive hn(n)

and CD(n) for general higher curvature gravity. This procedure treats the extrinsic cur-

vature perturbatively. For our purpose, we only need to consider the linear order of the

extrinsic curvature below. Inspired by [10, 13], we consider the following bulk metric

ds2bulk =
dr2

f(r)
+ f(r)F (r)dτ2 (4.1)

+
r2

ρ2

[

dρ2 + (δîĵ + 2k(r)K̄aîĵx
a)dyîdyĵ +

4

d− 2
k(r)∂iK

axaρdρdy
î +O(ρ2)

]

,

where K̄aîĵ is the traceless part of extrinsic curvature and we have ∂k̂Kaîĵ = ∂ĵKaîk̂+O(K2)

for consistency [10]. According to [10, 13, 42], hn and CD(n) can be extracted from the

boundary stress tensor

〈Tab(x)〉n =
gn
ρ2

(

(d− 1)δab − d
xaxb
ρ2

)

+ · · · ,

〈Taî(x)〉n =
xaxb
ρ2

∂îK
b kn
d− 2

+ · · · , (4.2)

〈Tîĵ(x)〉n =
1

ρ2
(

− gnδîĵ + knK̄
a
îĵ
xa
)

+ · · · ,

where

kn − k1 =
(d− 1)Γ(d2 − 1)π

d
2
−2

2Γ(d+ 1)

CD

n
− 3d− 4

d− 2

hn
2πn

, and gn − g1 =
hn
2πn

. (4.3)

The boundary stress tensor in general higher curvature gravity has been calculated in [32],

yielding that

〈Tij〉 =
d

fd
CTh

(d)
ij =

d

16πGN

(

1 + 4(d− 2)c
(2)
1

)

h
(d)
ij , (4.4)

where

fd = 2
d+ 1

d− 1

Γ(d+ 1)

πd/2Γ(d/2)
, (4.5)

CT =
fd

16πGN

(

1 + 4(d− 2)c
(2)
1

)

. (4.6)

and h
(d)
ij appears in the Fefferman-Graham expansion of the asymptotic AdS metric

ds2 =
dz2

z2
+

1

z2
(g

(0)
ij + z2g

(1)
ij + · · ·+ zdh

(d)
ij + · · · )dyidyj . (4.7)
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Notice that the stress-tensor eq. (4.4) contains contributions from the g(0)ij in even dimen-

sions [26]. These contributions reflect the presence of conformal anomalies. However, as

argued in [10], these terms do not affect CD(n) and hn.
6 So we have ignored them in the

present paper. Note also that we use a seemingly different stress tensor T∂Mij eq. (2.48) in

section 2. Actually, the stress-tensor eq. (2.48) is equivalent to eq. (4.4) up to a rescaling

and some functions of g(0)ij [26]

〈Tij〉 = lim
z→0

1

zd−2
T∂Mij . (4.8)

If we take the stress tensor eq. (4.4) instead of eq. (2.48) in the procedure of section 2, we

get the same results for fb(n) and fc(n). The interested reader is referred to appendix A for

the proof of the equivalence. Now let us focus on the stress tensor eq. (4.4) from now on.

Comparing eq. (4.4) with eq. (4.2), one can read out hn(n) and CD(n). Let us take

Einstein gravity as an example. The solution is given by

f(r) = r2 − 1− M

rd−2
, F (r) = 1, (4.9)

k(r) =

√
r2 − 1

r
+

βn
rd

+O

(

1

rd+1

)

. (4.10)

From the above equations, one can easily obtain

h
(d)

îĵ
=

1

ρ2

[(

1

d
M + g0

)

δîĵ +

(

2

d
M + 2βn + k0

)

K̄a
îĵ
xa

]

, (4.11)

where g0 and k0 are constants which are not important.7 Comparing eqs. (4.4), (4.11) with

the last equation of (4.2), one obtains [10, 13]

hn
n

= − M

8GN
, (4.12)

CD

n
=

dΓ(d+ 1)

(d− 1)πd/2−2Γ(d/2)

2(d− 2)(βn − β1)−M

16πGN
. (4.13)

Now let us turn to discuss the general higher curvature gravity (2.45). In general, it

is difficult to find the black hole solutions for higher derivative gravity. For simplicity, we

work in the perturbative framework of the coupling constants c
(n)
i . Remarkably, we find

the solutions behaving as

f(r) = r2 − 1− Me

rd−2
+O

(

1

rd

)

, F (r) = 1 +O

(

1

r2d

)

, (4.14)

k(r) =

√
r2 − 1

r
+

βn
rd

+O

(

1

rd+1

)

. (4.15)

6One can easily check that g(0)ij is independent of Me and βn. Thus, the contributions to the stress-

tensor eq. (4.4) from g(0)ij do not affect CD(n) and βn.
7From eqs. (4.2), (4.4), (4.11), we can derive kn and gn, which have a linear dependence on the constants

g0 and k0 appearing in eq. (4.11). However, we are interested of CD(n) and hn instead of kn and gn. Since

CD(n) and hn are functions of (kn−k1) and (gn−g1) from eq. (4.3). They do not depend on g0 and k0 instead.
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Here ‘e’ denotes effective. Using the above solutions, we can work out h
(d)

îĵ
in the Fefferman-

Graham expansion. Interestingly, it takes exactly the same form as that of Einstein gravity

eq. (4.11), only replacing M and βn by the effective counterparts Me and βn. Comparing

eqs. (4.4) with eq. (4.2), we finally obtain

hn
CT

= −2πn
Me

fd
, (4.16)

CD

CT
=

dπ2n

d+ 1

[

(d− 2)(βn − β1)−
Me

2

]

, (4.17)

where fd and CT are given by (4.5) and (4.6). hn and CD were first obtained for Einstein

Gravity in [13] and for Gauss-Bonnet Gravity in [10]. Here we derive them for the general

higher curvature gravity. It is remarkable that, when expressed in terms of Me and the

βn’s, the coefficients hn and CD take on these very simple universal forms (4.16), (4.17).

As a first check, our formulae agree with those of [10, 13] for Einstein gravity and Gauss-

Bonnet Gravity. The holographic relations (4.16) and (4.17) are one of the main results we

obtain for general dimensional CFTs. It should be mentioned that GN and c
(n)
i appearing

in this section are actually G̃N and c̃
(n)
i defined in the action (2.45). For simplicity, we

have ignored the notation .̃

4.1 CFTs in three dimensions

In this section, we use the formulas obtained in the above section to study the universal

behaves of h′′n(1) and C ′′
D(1) for 3d CFTs. We need to solve the E.O.M of general higher

curvature to get the effective mass Me and βn. Note that the Gauss-Bonnet term is a total

derivative in four-dimensional spacetime. Without loss of generality, we can set c
(2)
1 = 0.

After some calculations, we derive

f(r) = r2 − 1 +
n− 1

r
−

3
(

r5(8c
(3)
7 − 4c

(3)
8 + 5) + 4r2(c

(3)
8 − 44c

(3)
7 ) + 144c

(3)
7

)

(n− 1)2

8r6

+O(n− 1)3, (4.18)

F (r) = 1− 9(12c
(3)
7 + c

(3)
8 )

2r6
(n− 1)2 +O(n− 1)2. (4.19)

One can see that these solutions obey the behaving (4.14) and the effective mass is given by

Me = −(n− 1) +
3(8c

(3)
7 − 4c

(3)
8 + 5)

8
(n− 1)2 +O(n− 1)2. (4.20)

Note that we have used the conditions f(rH) = F (rH) = 0 and T = 1
2πn to fix the

constants of integration for f(r) and F (r), with rH given by

rH = 1− n− 1

2
+

9

16
(n− 1)2 − 9c

(3)
7 (n− 1)2

2
+O(n− 1)3. (4.21)
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Solving k(r) up to order O(n− 1)2, we obtain

k(r) =

√
r2 − 1

r
+

βn
r3

+O

(

1

r4

)

(4.22)

βn =
n− 1

6
+

(

19c
(3)
7

2
− 19c

(3)
8

4
− 41

144

)

(n− 1)2 +O(n− 1)3 (4.23)

Substituting eqs. (4.20), (4.23) into eqs. (4.16), (4.17), we obtain

hn
CT

=
1

24
π3(n− 1)− π3

11520
(420 + t4)(n− 1)2 +O(n− 1)3, (4.24)

CD

CT
=

1

2
π2(n− 1)− π2

240
(100− t4)(n− 1)2 +O(n− 1)3. (4.25)

where we have used [32] t4 = 720(2c
(3)
7 − c

(3)
8 ).

Now let us compare our holographic results with those of free CFTs. hn for free

fermions and free scalars are calculated in [20, 36, 43–45]. And it is proved in [43, 44] that

CD = dΓ(d+1
2 )( 2√

π
)d−1hn for free fermions and scalars in three dimensions. For free Dirac

fermions, we have [45]

CT =
3

16π2
, t4 = −4, h′n(1) =

π

128
, h′′n(1) = −13π

960
, C ′

D(1) =
3

32
, C ′′

D(1) = −13

80
, (4.26)

which exactly match the holographic results eqs. (4.24), (4.25). However, similar to the

case of 4d CFTs, mismatch appears for free scalars. According to [20, 43], it is

CT =
3

16π2
, t4 = 4, h′n(1) =

π

128
, h′′n(1) = −17π

960
, C ′

D(1) =
3

32
, C ′′

D(1) = −17

80
, (4.27)

for free complex scalars. It is found in [20, 45] there is discrepancy for h′′n(1). Here we

note further that there is a discrepancy in C ′′
D(1) too. Similar to the 4d case, we find a

combination of h′′n(1) and C ′′
D(1),

πC ′′
D(1)− 16h′′n(1) =

π3

3
CT

(

1 +
t4
30

)

(4.28)

which is obeyed by free scalars, free fermions and CFTs with gravity dual. In addition

to free CFTs and strongly coupled CFTs with gravity dual, it is interesting to investigate

whether the ’universal law’ (4.28) is obeyed by more general CFTs.

4.2 CFTs in higher dimensions

Let us go on to discuss hn and CD in higher dimensions. Similar to the cases of 3d CFTs

and 4d CFTs, we need to solve the E.O.M in the bulk to get the effective mass and βn.

Then we can derive hn and CD from the general formula eqs. (4.16), (4.17).
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By solving the E.O.M for the general higher curvature gravity (2.45), we obtain

f(r) = r2 − 1− MEin

rd−2
+

c
(2)
1 f1(r) + c

(3)
7 f7(r) + c

(3)
8 f8(r)

1 + 4(d− 2)c
(2)
1

(n− 1)2 +O(n− 1)3

= r2 − 1− Me

rd−2
+O

(

1

rd

)

, (4.29)

F (r) = 1 +
c
(3)
7 F7(r) + c

(3)
8 F8(r)

1 + 4(d− 2)c
(2)
1

(n− 1)2 +O(n− 1)3 = 1 +O

(

1

r2d

)

, (4.30)

k(r) =

√
r2 − 1

r
+

βn
rd

+O

(

1

rd+1

)

, (4.31)

where

Me = − 2

d− 1
(n− 1) +

(2d− 3)(2d− 1)

(d− 1)3
(n− 1)2

+
c
(2)
1 m1 + c

(3)
7 m7 + c

(3)
8 m8

1 + 4(d− 2)c
(2)
1

(n− 1)2 +O(n− 1)3, (4.32)

and

βn = β1 +
1

d(d− 1)
(n− 1)− 4d3 − 8d2 + d+ 2

2d2(d− 1)3
(n− 1)2

+
c
(2)
1 b1 + c

(3)
7 b7 + c

(3)
8 b8

1 + 4(d− 2)c
(2)
1

(n− 1)2 +O(n− 1)3. (4.33)

Here f1(r), f7(r), f8(r), F7(r), F8(r),m1,m2,m3, b1, b7, b8 are determined by the E.O.M. We

have worked out the solutions case by case up to d = 9. Please refer to the appendix for

these solutions. In summary we obtain:

hn
CT

= 2π
d
2
+1 Γ(d2)

Γ(d+ 2)
(n− 1) +

h′′n(1)

2CT
(n− 1)2 +O(n− 1)3, (4.34)

CD

CT
=

2π2

d+ 1
(n− 1) +

C ′′
D(1)

2CT
(n− 1)2 +O(n− 1)3, (4.35)

with h′′

n(1)
CT

and
C′′

D(1)
CT

given by

h′′n(1)

CT
= − 2π

d
2
+1Γ

(

d
2

)

(d− 1)3d(d+ 1)Γ(d+ 3)

[

d
(

2d5 − 9d3 + 2d2 + 7d− 2
)

(4.36)

+(d− 2)(d− 3)(d+ 1)(d+ 2)(2d− 1)t2 + (d− 2)
(

7d3 − 19d2 − 8d+ 8
)

t4
]

,

C ′′
D(1)

CT
=

4π2

d+ 1

[

1− d2 + d

d2 − d
− (d− 2)(d− 3)

(d− 1)2d
t2 −

(d− 2)
(

3d2 − 7d− 8
)

(d− 1)2d(d+ 1)(d+ 2)
t4

]

. (4.37)

Note that the coefficients of t2 and t4 (t2) in h′′n(1) and C ′′
D(1) (4.36), (4.37) vanish when

d = 2 ( d = 3). This is the expected result, which can be regarded as a check of our general

formula (4.36), (4.37). One can also check that the general formulas (4.36), (4.37) reproduce
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the results of 3d and 4d CFTs. We remark that the holographic formula of h′′n(1) (4.36)

agrees with the those of [20, 45], which are derived by using three-point functions of stress

tensor. As they have checked, the relation (4.36) for h′′n(1) works well for free fermions (up

to d = 12) but not for free scalars (d > 2).

Before we end this section, let us make some comments about the possible universal

relation between CD and hn. For general dimensions, the generalization of the 4d conjec-

ture (1.8) is the statement [12]:

CD(n) = dΓ

(

d+ 1

2

)(

2√
π

)d−1

hn(n). (4.38)

This relation can be motivated by the observation that if one assume (4.38) holds for free

fermions and conformal tensor fields, one can prove C ′′
D(1) of these fields exactly match

the holographic formula (4.37). Turning the logic around, if one assume free fermions and

conformal tensor fields obey the holographic formulas (4.36), (4.37),8 one can prove that

the weaker relation

C ′′
D(1) = dΓ

(

d+ 1

2

)(

2√
π

)d−1

h′′n(1) (4.39)

holds in general dimensions. In proving these, we have found useful the rela-

tions (4.6), (3.5), (3.6) and that

A =
1

S3
d

[

d3

(d− 1)3
ns −

d3

d− 3
ñt

]

, (4.40)

B = − 1

S3
d

[

(d− 2)d3

(d− 1)3
ns +

d2

2
ñf +

(d− 2)d3

d− 3
ñt

]

, (4.41)

C = − 1

S3
d

[

(d− 2)2d2

4(d− 1)3
ns +

d2

4
ñf +

(d− 2)d3

2(d− 3)
ñt

]

, (4.42)

where Sd = 2πd/2/Γ(d2), ñf = tr(1)nf = 2[d/2]nf , nf is the number of Dirac fermion,

tr is the Dirac trace and ñt denotes the number of degrees of freedom contributed by

the (n − 1)-form in even dimensions d = 2n [19]. However incompatiblity arises in the

scalar sector as before. Indeed using (4.6), (3.5), (3.6) and (4.40)–(4.42) in the holographic

formulas (4.36), (4.37), we find for a free theory with ns scalars,

C ′′
D(1)− dΓ

(

d+ 1

2

)(

2√
π

)d−1

h′′n(1) =
(d− 2)4π2−dΓ

(

d
2 − 1

)2

16(d− 1)3
ns 6= 0. (4.43)

Thus problems only appear for scalars. This equation shows that the relation (4.39) and

the holographic formulas (4.36), (4.37) cannot both be satisfied at the same time by free

scalars.

8This is indeed the case at least in three dimensions for free fermions.
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That the relation (4.38) is not compatible with the holographic results can also be seen

from the consideration of the positivity constraints [19, 46] for CFTs in general dimensions:

Scalar Constraint : 1 +
d− 3

d− 1
t2 +

d2 − d− 4

d2 − 1
t4 ≥ 0, (4.44)

Vector Constraint : 1 +
d− 3

2(d− 1)
t2 −

2

d2 − 1
t4 ≥ 0, (4.45)

Tensor Constraint : 1− 1

d− 1
t2 −

2

d2 − 1
t4 ≥ 0. (4.46)

These constraints are consequences of the requirement of the positivity of the energy fluxes.

Now it is easy to compute from (4.36), (4.37) that

C ′′
D(1)− dΓ

(

d+ 1

2

)(

2√
π

)d−1

h′′n(1)

= CT
2π2(d− 2)

(d− 1)2d(d+ 1)

(

1 +
d− 3

d− 1
t2 +

d2 − d− 4

d2 − 1
t4

)

≥ 0, (4.47)

where in the last step we have used the unitarity constraint CT ≥ 0 and the scalar con-

straint (4.44). This shows that, unless d = 2 or if the scalar constraint is saturated,9 the

relation (4.39) and our holographic results (4.36), (4.37) cannot both be satisfied at the

same time.

All in all, it is therefore interesting to look for a different relation between C ′′
D(1) and

h′′n(1) like those of (1.12) for the 4d case and (1.21) for the 3d case, that would hold for all

free theories as well as strongly coupled dual theories. To do so, we need the information of

h′′n(1) and C ′′
D(1) of free scalars. h′′n(1) of free scalars is discussed in [37, 43, 45] in general

dimensions. However, so far we do not know C ′′
D(1) in dimensions higher than four (d > 4).

On the other hand, if we assume (4.39) holds for free scalars in general dimensions as has

been suggested in [12], then we obtain

C ′′
D(1)− 2(d− 1)Γ

(

d+ 1

2

)(

2√
π

)d−1

h′′n(1)

=
4π2(d− 2)

d(d+ 1)
CT

[

1 +
d− 3

d(d− 1)
t2 +

4
(

d2 − 2d− 2
)

(d− 1)d(d+ 1)(d+ 2)
t4

]

, (4.48)

which is such a ‘universal law’ obeyed by free scalars, free fermions, free conformal tensor

fields and CFTs with holographic dual. Please refer to the appendix for the derivation of

eq. (4.48). As a quick check, eq. (4.48) reproduces (1.12) and (1.21) for 4d and 3d CFTs,

respectively. It is interesting to find out if the ‘universal law’ (4.48) is indeed valid for

general CFTs. We leave this interesting problem and related questions for future work.

In summary, our holographic results (4.36), (4.37) are obeyed by free fermions and

conformal tensors but are violated by free scalars. According to [12], it seems that the free

CFTs satisfy (4.39). However, as we have proven above, this relation does not agree with

9The relation between (4.39) and lower bound of unitarity constraint (which is equivalent to the scalar

constraint ) is observed for Gauss-Bonnet gravity for d = 4, 5, 6 in [10]. Here we find this is a universal

property for general higher curvature gravity in general dimensions.
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eqs. (4.36), (4.37). So neither the relation (4.39) nor the holographic relations (4.36), (4.37))

can be universally true for all CFTs. Instead, we find that the suitably combined rela-

tion (4.48) is satisfied by free CFTs (including scalars) as well as by CFT with holographic

duals, and stands a chance to be a universal relation satisfied by all CFTs.

5 Conclusions

In this paper, we have investigated the universal terms of holographic Rényi entropy for

4d CFTs. Universal relations between the coefficients f ′′
a (1), f

′
b(1), f

′
c(1) in the logarithmic

terms of Rényi entropy and the parameters c, t2, t4 of stress tensor two-point and three-

point functions are found. Interestingly, these relations are also obeyed by weakly coupled

CFTs such as free fermions and vectors but are violated by scalars. Similar to the case of

f ′′
a (1) [20], one expects that the discrepancy for scalars comes from the boundary contribu-

tions to the modular Hamiltonian. Remarkably, We have found that there is a combination

of our holographic relations which is satisfied by all the free CFTs including scalars. We

conjecture that this combined relation (1.14) is universal for general CFTs in four dimen-

sional spacetime. For general spacetime dimensions, we obtain the holographic dual of hn
and CD for general higher curvature gravity. Our holographic results together with the

positivity of energy flux imply C ′′
D(1) ≥ dΓ(d+1

2 )( 2√
π
)d−1h′′n(1). And the equality is satis-

fied by free fermions and the conformal tensor fields if they obey the holographic universal

laws. We also find there are similar holographic universal laws of h′′n(1) and C ′′
D(1). By

assuming (4.39) for free CFTs, we find that for general dimensions, the relation (4.48) is

obeyed by all the free CFTs as well as by CFTs with holographic duals. It is interesting

to test these ‘universal laws’ by studying more general CFTs. We leave a careful study of

this problem to future work.
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A Equivalence between two stress tensors

In the analysis in the main text, we have considered in section 2 the Brown-York boundary

stress tensor eq. (2.48) in section 2, and in section 4 the holographic stress tensor eq. (4.4).

As we have mentioned in section 4, they are actually equivalent up to a rescaling and some

functions of g(0)ij [26] that are irrelevant:

〈Tij〉 = lim
z→0

1

zd−2
T∂Mij . (A.1)
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Here the l.h.s. is the holographic stress tensor and the r.h.s. is the Brown-York boundary

stress tensor. In this appendix, we shall prove that, by applying the stress tensor eq. (4.4)

instead of eq. (2.48) in the approach of section 2, we obtain the same results for fb(n) and

fc(n). This is can be regarded as a double check of our results.

The key point in section 2 is that the change in the partition function is govern by the

stress tensor one-point function

δ logZn =
1

2

∫

∂M
dx4

√
γT ij

∂M δγij (A.2)

From eq. (A.1) and the asymptotic AdS metric in the FG gauge eq. (4.7), one can rewrite

it in terms of 〈Tij〉 and δg(0)ij as

δ logZn =
1

2

∫

dx4
√

g(0)〈T ij〉δg(0)ij (A.3)

The boundary metric g(0)ij is given by (2.18) of [10]

ds2 = dτ2 +
1

ρ2
(

dρ2 + [δîĵ + 2K̄a
îĵ
xa +Qab

îĵ
xaxb]dy

îdyĵ
)

+O(K2). (A.4)

Actually, we can ignore the Q terms above, since it is of order O(K2). For simplicity,

we focus on the case of traceless extrinsic curvature Kaî
î
= 0 as in section2. Using

eqs. (4.4), (4.11), we can derive the stress tensor in îĵ components for 4d CFTs as

〈Tîĵ〉 =
4

f4
CTh

(4)

îĵ
=

4

f4
CT

1

ρ2

[(

1

4
Me + g0

)

δîĵ +

(

1

2
Me + 2βn + k0

)

K̄a
îĵ
xa

]

+O(K2).

(A.5)

From the above two equations, we get

〈T îĵ〉 = 4

f4
CTh

(4) îĵ=
4

f4
CT ρ

2

[

(

1

4
Me + g0

)

δîĵ +

(

−1

2
Me + 2βn + k0 − 4g0

)

K̄aîĵxa

]

+O(K2).

(A.6)

Substituting eq. (A.6) and δg(0)̂iĵ =
1
ρ2
(2δK̄a

îĵ
xa + δQab

îĵ
xaxb) into eq. (A.3), we get

δ logZn =
1

2

∫

∂M
dx4

√
g0T

îĵδg(0)̂iĵ (A.7)

Integrating eq. (A.7) and selecting the logarithmic divergent terms, we obtain

logZn = − log ǫ

∫

Σ
dy2

2nπ

f4
CT

[

3

(

1

4
Me + g0

)

Cab
ab +

(

−1

2
Me + 2βn + k0 − 4g0

)

trK̄2

]

(A.8)

where we have used Cab
ab =

1
3Q

aî
a î in the above derivations. Using eq. (A.8) and Me(1) = 0,

we obtain the logarithmic divergent terms of Rényi entropy

Sn =
logZn − n logZ1

1− n

= log ǫ
n

n− 1

π

f4
CT

∫

Σ
dy2

[

3

2
MeC

ab
ab + (−Me + 4(βn − β1))trK̄

2

]

(A.9)

= log ǫ

∫

Σ
dy2

[

fb(n)

2π
trK̄2 − fc(n)

2π
Cab

ab

]

. (A.10)
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Notice that the constants g0 and k0 are canceled automatically in the above calcultions.

Comparing eq. (A.9) and eq. (A.10) and using CT /f4 =
c

2π2 , we finally obtain

fb(n) =
n(4βn − 4β1 −Me)

n− 1
c, (A.11)

fc(n) = − 3nMe

2(n− 1)
c. (A.12)

Recall that Me and βn are given by

Me = −2

3
(n− 1) +

(336c
(2)
1 + 192c

(3)
7 − 96c

(3)
8 + 35)

27(1 + 8c
(2)
1 )

(n− 1)2 +O(n− 1)3 (A.13)

βn = −1

8
+
n−1

12
+
(−600c

(2)
1 +4224c

(3)
7 −2112c

(3)
8 −67)

432(1 + 8c
(2)
1 )

(n−1)2+O(n−1)3. (A.14)

Substituting eqs. (A.13), (A.14) and c = π
8GN

(1 + 8c
(2)
1 ) into eqs. (A.11), (A.12), we repro-

duce the results (2.69) and (2.74) in section 2. So the stress tensor eq. (4.4) indeed yields

the same results for 4d CFTs as the stress tensor eq. (2.48).

Substituting hn/(n− 1) = 2
3πfc(n), CD/(n− 1) = 16

π2 fb(n) and c = π4CT /40 [12] into

eqs. (A.11), (A.12), one can also reproduce hn and CD eqs. (4.16), (4.17) for 4d CFTs in

section 4.

B Solutions in general higher curvature gravity

In this appendix we provide the solutions to E.O.M of the general higher curvature grav-

ity (2.45), which are found to be useful for the derivations of holographic hn and CD in

section 4.2. For simplicity, we work in the perturbative framework of the coupling con-

stants c
(n)
i . To derive h′′n(1) and C ′′

D(1) in terms of CT , t2, t4, we can further set c
(2)
1 = 0 in

dimensions except d = 4. The solutions for d = 3 and d = 4 are given in section 4.1 and

section 2.2. Below we list the key results for d = 5, 6, 7, 8, 9 up to O(n− 1)2.

5d CFTs:

f(r) = r2 − 1 +
n− 1

2r3

−
3
(

3r7(104c
(3)
7 − 34c

(3)
8 + 7)− 8r2(1044c

(3)
7 − 9c

(3)
8 ) + 7200c

(3)
7

)

64r10
(n− 1)2 +O(n− 1)3,

F (r) = 1− 45(22c
(3)
7 + c

(3)
8 )

4r10
(n− 1)2 +O(n− 1)3, (B.1)

k(r) =

√
r2 − 1

r
+

1

r5
(n− 1)(160− (n− 1)(−30840c

(3)
7 + 15990c

(3)
8 + 307))

3200
+O

(

1

rd+1

)

.
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6d CFTs:

f(r) = r2 − 1 +
2(n− 1)

5r4

−
3
(

r8(992c
(3)
7 − 232c

(3)
8 + 33)− 80r2(328c

(3)
7 − 2c

(3)
8 ) + 23040c

(3)
7

)

125r12
(n− 1)2 +O(n− 1)3,

F (r) = 1− 72(132c
(3)
7 + 5c

(3)
8 )

25r12
(n− 1)2 +O(n− 1)3, (B.2)

k(r) =

√
r2 − 1

r
+

1

r6
(n− 1)(75− 2(n− 1)(−10548c

(3)
7 + 5733c

(3)
8 + 73))

2250
+O

(

1

rd+1

)

.

7d CFTs:

f(r) = r2 − 1 +
n− 1

3r5

+

(

r9(−7320c
(3)
7 +1320c

(3)
8 −143)+900r2(220c

(3)
7 −c

(3)
8 )−176400c

(3)
7

)

216r14
(n−1)2+O(n−1)3,

F (r) = 1− 35(92c
(3)
7 + 3c

(3)
8 )

6r14
(n− 1)2 +O(n− 1)3, (B.3)

k(r) =

√
r2 − 1

r
+

1

r7
(n− 1)((n− 1)(192696c

(3)
7 − 109704c

(3)
8 − 989) + 504)

21168
+O

(

1

rd+1

)

.

8d CFTs:

f(r) = r2 − 1 +
2(n− 1)

7r6

−
3
(

r10(5088c
(3)
7 −744c

(3)
8 +65)−504r2(284c

(3)
7 −c

(3)
8 )+129024c

(3)
7

)

343r16
(n−1)2+O(n−1)3,

F (r) = 1− 144(244c
(3)
7 + 7c

(3)
8 )

49r16
(n− 1)2 +O(n− 1)3, (B.4)

k(r) =

√
r2 − 1

r
+

1

r8
(n− 1)((n− 1)(194304c

(3)
7 − 115392c

(3)
8 − 773) + 392)

21952
+O

(

1

rd+1

)

.

9d CFTs:

f(r) = r2 − 1 +
n− 1

4r7

−
3
(

r11(9464c
(3)
7 −1162c

(3)
8 +85)−784r2(356c

(3)
7 −c

(3)
8 )+254016c

(3)
7

)

512r18
(n−1)2+O(n−1)3,

F (r) = 1− 189(39c
(3)
7 + c

(3)
8 )

8r18
(n− 1)2 +O(n− 1)3, (B.5)

k(r) =

√
r2 − 1

r
+

1

r9
(n− 1)((n− 1)(715608c

(3)
7 − 441234c

(3)
8 − 2279) + 1152)

82944
+O

(

1

rd+1

)

.

Using these solutions, we can derive Me and βn from eqs. (4.14), (4.15) as

Me = − 2

d− 1
(n− 1) +

(2d− 3)(2d− 1)

(d− 1)3
(n− 1)2

+
12(d− 2)

(

d3 − 6d2 + 11d− 4
)

(d− 1)3
c
(3)
7 (n− 1)2

−3(d− 2)
(

3d2 − 9d+ 4
)

(d− 1)3
c
(3)
8 (n− 1)2 +O(n− 1)3, (B.6)
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and

βn = β1 +
1

d(d− 1)
(n− 1)− 4d3 − 8d2 + d+ 2

2d2(d− 1)3
(n− 1)2

+
6
(

d4 + 2d3 − 21d2 + 36d− 16
)

(d− 1)3d
c
(3)
7 (n− 1)2

−3
(

4d4 − 17d3 + 35d2 − 40d+ 16
)

2(d− 1)3d
c
(3)
8 (n− 1)2 +O(n− 1)3. (B.7)

Recall that we have

c
(3)
7 =

2
(

d2 + 3d+ 2
)

t2 + (7d+ 4)t4

12(d− 1)d (d3 − d2 − 10d− 8)
, (B.8)

c
(3)
8 =

(

d2 + 3d+ 2
)

t2 + (3d+ 4)t4

3d (d4 − 2d3 − 9d2 + 2d+ 8)
. (B.9)

Substituting eqs. (B.6)–(B.9) into the holographic formula (4.16), (4.17), we can derive hn
and CD eqs. (4.34)–(4.17) in section 4.2.

C Universal laws in general dimensions

hn for free comformally coupled scalars in even-dimensional space-time are calculated in [45]

hn =
(2π)1−d

d− 1

(d−4)/2
∑

j=0

a
(0)
j,l−1(2j − d+ 1)π2j−d/2(n2j−d+1 − n)Γ

(

d

2
− j

)

ζ(d− 2j), (C.1)

where d = 2l + 2 and a
(0)
j,l−1 are defined by

P
(0)
l−1(t) =

l−1
∑

j=0

a
(0)
j,l−1t

j

= lim
ρ→0

(4πt)l
( −1

2π sinh ρ

∂

∂ρ

)l

exp

(

−ρ2

4t

)

. (C.2)

The first few polynomials are given by

P
(0)
0 (t) = 1,

P
(0)
1 (t) = 1 +

2t

3
,

P
(0)
2 (t) = 1 + 2t+

16t2

15
,

P
(0)
3 (t) = 1 + 4t+

28t2

5
+

96t3

35
,

P
(0)
4 (t) = 1 +

20t

3
+

52t2

3
+

1312t3

63
+

1024t4

105
,

P
(0)
5 (t) = 1 + 10t+

124t2

3
+

5560t3

63
+

30656t4

315
+

10240t5

231
,

P
(0)
6 (t) = 1 + 14t+ 84t2 +

2488t3

9
+

4736t4

9
+

30208t5

55
+

245760t6

1001
. (C.3)
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From eq. (C.1), it is easy to derive h′′n(1) as

h′′n(1) =
(2π)1−d

d− 1

(d−4)/2
∑

j=0

a
(0)
j,l−1(2j − d+ 1)2(2j − d)π2j−d/2Γ

(

d

2
− j

)

ζ(d− 2j), (C.4)

Unfortunately, now we do not have a formula of CD(n). It seems that C ′′
D(1) =

dΓ(d+1
2 )( 2√

π
)d−1h′′n(1) holds for free scalars in general dimensions [12]. This is at least

the case for d = 3 and d = 4. With this assumption, now we are ready to derive the

‘universal law’ (4.48).

We require that the ‘universal laws’ are obeyed by both the free scalars and the holo-

graphic CFTs. From eqs. (C.4), (4.34), (4.37) and the assumption mentioned above, we

finially obtain the ‘universal law’ (4.48) in general dimensions. In the derivations, we have

used the following useful formula

(d−4)/2
∑

j=0

a
(0)
j,l−1

4d(d+ 2)(d− 2j − 1)2π−d+2j− 1
2Γ
(

d+3
2

)

ζ(d− 2j)Γ
(

d
2 − j + 1

)

(d(3d− 2)− 4)Γ
(

d
2

)2 = 1. (C.5)

Using eq. (C.3), we verified that this identity holds up to d = 16.

It should be mentioned that although we focus on even dimensions in the above dis-

cussions. We have checked that the ‘universal law’ (4.48) produces correct result (1.21) in

three dimensions. So it is expected that eq. (4.48) works well in general odd dimensions too.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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