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1 Introduction

The familiar Kruskal wormhole has an exact Killing symmetry often called a time-translation.

But as illustrated in figure 1 (left) for the asymptotically AdS case, this symmetry dis-

places one asymptotic region forward in time while shifting the other asymptotic region

toward the past. As a result, non-local quantities that compare the two boundaries do

in fact change under the asymptotic symmetry that shifts both boundaries toward the

future. Such quantities are commonly studied in AdS/CFT and include both boundary-to-

boundary two-point functions and mutual informations between the two boundaries. The

resulting time-evolutions were described in e.g. [1] and [2].

Below, we explore whether Einstein-Hilbert gravity coupled to familiar matter sources

might allow wormholes with a Killing symmetry that translates both ends in the same

direction. Since topological censorship [3, 4] requires wormholes to have horizons, and since

the Killing symmetry must resemble a flat-space boost transformation near the horizon

bifurcation surface, such spacetimes should have conformal diagrams resembling figure 1

(right), or more generally should have Killing horizons with an even number of bifurcation

surfaces in the t = 0 hypersurface.

For simplicity, we study wormholes with spherical symmetry. Birkhoff’s theorem then

forbids vacuum solutions of this form in Einstein-Hilbert gravity. Physically, the issue is

that the interior of the wormhole tends to collapse, destroying the presumed-static region

shown in the middle of the wormhole at right in figure 1. We solve this problem by

coupling gravity to a scalar field. The repulsive gravity generated by either positive-

tension scalar domain walls or positive scalar potentials (which effectively act as local

positive cosmological constants) allow the desired static region to exist.
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Figure 1. Sketches of conformal diagrams for the familiar two-sided Kruskal-AdS wormhole (left)

and what we call time-independent wormholes (right). In the Kruskal case the Killing symmetry

moves one boundary forward in time while shifting the other backward. But on the right the Killing

symmetry acts as a future-directed time-translation on both boundaries. On the left, the Killing

horizon has only a single bifurcation surface, while the Killing horizon of the right figure has two

(red dots). Both spacetimes have Z2 reflection symmetries about the dotted vertical lines. On the

left, this reflection changes the sign of the time translation Killing field, while it leaves the Killing

field invariant on the right.

Section 2 constructs and studies asymptotically-AdS such solutions in the thin wall

approximation. The resulting spacetimes are similar in many ways to the single-asymptotic

region black holes with de Sitter interiors found in [1]. Interestingly, the holographic mutual

information between the two boundaries always vanishes when considering regions smaller

than half of either boundary.

We then consider spacetimes sourced by smooth scalar fields in section 3. We show

that time-independent wormhole solutions exist when the scalar potential V (φ) is chosen

to behave like φ2(log φ)3 near a local minimum; i.e., while the solutions are smooth, the

scalar potentials are only C1 as functions of φ. Examples are constructed numerically.

Again, the holographic mutual information between the two boundaries always vanishes

when considering regions smaller than half of either boundary. That singular potentials are

required is shown in section A; scalar fields with smooth potentials cannot support our time-

independent wormholes. We close with some final discussion in section 4. In particular,

we comment on the status of such solutions with respect to gauge/gravity duality and

also with respect to recent discussions of the possible role of complexity in gauge/gravity

duality [5–8].

2 Thin wall solutions

We begin in section 2.1 by constructing thin wall versions of the time-independent worm-

holes shown at right in figure 1. We then briefly analyze the holographic mutual information

defined by these wormholes in section 2.2 and note that in a certain sense they are already

thermalized at any finite t.

2.1 A cut and paste construction

It is straightforward to assemble the desired time-independent wormholes by cutting two

copies of Kruskal-AdS (figure 1 left) along a timelike surface defined by orbit of the sym-
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metry group (a constant r surface) and then sewing the two larger pieces together other

along a thin positive-tension domain wall. This domain wall then becomes the dotted line

in right diagram in figure 1 and is left invariant under the reflection symmetry.

To proceed, recall the D dimensional AdS-Schwarzschild metric

ds2 = −
(

1− ωDM

rD−3
+
r2

`2

)
dt2 +

1

1− ωDM
rD−3 + r2

`2

dr2 + r2dΩ2, (2.1)

where ωD = 16πGD
(D−2)SD−2

and SD−2 = 2π
D−1

2

Γ(D−1
2 )

. A timelike constant r surface has unit normal

na =
√

1− ωDM
rD−3 + r2

`2

(
∂
∂r

)a
. Its extrinsic curvature Kab = 1

2£nhab is thus

Kabdx
adxb =

1

2

√
1− ωDM

rD−3
+
r2

`2

[
−
(

(D − 3)
ωDM

rD−2
+

2r

`2

)
dt2 + 2rdΩ2

]
. (2.2)

We wish to consider relativistic domain walls with surface stress tensor T̂ab = −σhab in

terms of the (constant) tension σ and the induced metric hab. Here we use the conventions

of [9] in which hab is a degenerate tensor in the full spacetime such that hab is the projector

onto the vector space tangent to the wall. The full stress-energy tensor Tab is proportional

to T̂ab, but contains an extra delta-function localizing the stress-energy on the wall. Given

the Z2 symmetry of figure 1 (right), the Israel junction conditions (see e.g. [10]) require

T̂ab ∝ Kab, and thus gtt
gΩΩ

= Ktt
KΩΩ

. This relation is satisfied if and only if

rD−3
wall =

D − 1

2
ωDM. (2.3)

The junction condition then gives Kab = 4πGDσ
D−2 hab so that

σ =
D − 2

4πGDrwall

√
1− ωDM

rD−3
wall

+
r2

wall

`2
(2.4)

is positive as desired.

This completes our construction of thin-wall solutions corresponding to figure 1 (right).

However, we note in passing that a similar analysis indicates that our solutions are un-

stable. This is to be expected as the interior of our wormhole remains static only due to

a delicate balance between the gravitational attraction of the black hole and the gravita-

tional repulsion of the domain wall. Indeed, maintaining the Z2 reflection symmetry and

spherical symmetry but allowing the wall to move with time on a surface r = R(T ), the

Israel junction conditions imply an equation of motion

2

√
f(R) + Ṙ2 =

8πGDσ

D − 2
R, (2.5)

for f(r) = 1−ωDM
rD−3 + r2

`2
and Ṙ the derivative of R with respect to proper time along the shell.

Here the first-order nature of the equation is a consequence of restricting to solutions with

Z2 symmetry. Squaring (2.5) and linearizing it around the static solution (2.3), we obtain(
d

dτ
δR

)2

= (D − 3) 4
1

D−3 ((D − 1)ωDM)
−2

D−3 δR2 +O(δR3), (2.6)
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so the static solution is unstable on the timescale

τ =

√
1

D − 3
4

−1
D−3 ((D − 1)ωDM)

2
D−3 . (2.7)

2.2 Mutual information and thermalization

As noted in the introduction, physical quantities defined by the geometry of our wormhole

must be independent of time. This includes the (leading order) holographic mutual infor-

mation defined by the Ryu-Takayanagi (RT) [11, 12] or the covariant Hubeny-Rangamani-

Takayanagi (HRT) [13] prescriptions. While — as will be discussed in section 4 — the

derivations of [14] and [15] need not apply to our spacetime, it is nevertheless of interest

to investigate what these prescriptions would predict. In particular, we will see that —

despite the instability noted above — in a sense these mutual informations (and indeed

the entropies of all boundary regions) appear to already be thermalized at any finite t.

We note that such leading-order holographic mutual informations are of more interest

in our context than our boundary-to-boundary correlators, as the latter depend on the

choice of quantum state for light bulk fields as well as on the classical background geometry.

Since we have not constructed our spacetimes as stationary points of a path integral, there

is no preferred choice for this quantum state. And due to the large causal shadow between

the two event horizons of our time-independent wormholes, we are free to choose the light

bulk fields in the left asymptotic region to be completely uncorrelated with those in the

right asymptotic region so that all connected correlators vanish when evaluated with one

argument on the right boundary and another on the left.

Because the spacetime is not globally static, the RT prescription does not strictly apply.

Nevertheless, in a spacetime with time-reversal symmetry, the maximin construction of [16]

guarantees the HRT surface to be the minimal surface within the t = 0 (i.e., within the

hypersurface invariant under t→ −t) as one would expect from the RT prescription.1

We wish to study surfaces anchored both to a region AR of the right boundary and also

to a corresponding region AL of the left boundary, such that AR, AL are interchanged by

the Z2 symmetry of reflection across the wall. In order to compute the entropy SALAR
of

AL ∪AR, we must correctly identify the minimal surface. We first consider the case where

AR and AL are each precisely half of the t = 0 sphere at the AdS boundary (note that our

solutions correspond to ‘global’ Schwarzschild-AdS). Referring to AL, AR as the ‘northern’

hemispheres (whose boundaries are thus the equator of the sphere), it is then clear that the

smallest connected surface anchored to both AL and AR is the surface defined by taking

the equator of the sphere at each r. As shown below, it suffices for our purposes to compute

the area of the portion of this surface inside our wormhole. Noting that the radius r0 of

the event horizon is defined by

1− ωDM

rD−3
0

+
r2

0

`2
= 0, (2.8)

1Since this surface is minimal on the t = 0 slice, its area can be no larger than that of the maximin

surface. But the time-reversal symmetry means that this minimal surface is also an extremal surface in the

full spacetime. It can therefore have area no smaller than the maximin surface, as the latter agrees with

the area of the smallest extremal surface. We thank Veronika Hubeny for pointing this out to us.
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Figure 2. The functions (2.9) for D = 4 (red), D = 5 (orange), D = 6 (yellow), D = 7 (green),

D = 8 (cyan), D = 9 (blue), and D = 10 (purple).

and introducing r̃ = r/` and r̃0 = r0/`, this area satisfies

Aconnected, inside

AEH
=

2√
π

Γ
(
D−1

2

)
Γ
(
D−2

2

) ∫ [D−1
2 (1+r̃2

0)]
1

D−3

1

r̂D−3√
1− 1+r̃2

0

r̂D−3 + (r̃0r̂)
2
dr̂, (2.9)

where we have normalized the quantity by dividing by the area of either event horizon.

The area of the full minimal connected surface is then Aconnected = Aconnected, inside +

Aconnected, Kruskal where Aconnected, Kruskal is the area of the minimal connected surface in

the AdS-Kruskal geometry of figure 1 (left).

For general D the integral (2.9) can be performed numerically. But for D = 5 it can

be performed exactly to obtain

Aconnected, inside, D=5

AEH
=

2r̃0

√
1 + r̃2

0

(
1 + 2r̃2

0

)
− ln

(
1 + 2r̃0

(
r̃0 +

√
1 + r̃2

0

))
πr̃3

0

. (2.10)

As shown in figure 2, (2.9) and (2.10) are increasing functions of r̃0, which are larger than

1.6 for all r̃0 (at least for 4 ≤ D ≤ 10). In particular, there is
Aconnected, inside

AEH
> 1.

However, as usual we must also consider the smallest disconnected surface anchored on

AL, AR and compare its area to that of the connected surface. Let us first study a single

connected component, say the one anchored to AL. One example of a surface satisfying

these boundary conditions is the surface Σ0 shown in figure 3 which consists of the northern

hemisphere of the bifurcation surface for the left event horizon together with the equators
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Σ� Σ�

Figure 3. On the left, Σ1 is minimal surface for a hemisphere of the boundary with a black hole

(red, dotted) in the bulk. The surface Σ0 on the right necessarily has larger area than Σ1. This

surface contains a piece (straight segments along the equator) that are part of the connected surface

passing through the wormhole; the other piece lies on the black hole horizon.

of all t = 0 spheres in the left asymptotic region. In other words, outside the horizon it

coincides with the connected surface studied above anchored to both AL and AR. So the

area of the left component of the actual minimal surface must be less than that of Σ0.

Adding together the two components, the area of the minimal disconnected surface

must satisfy

Adisconnected ≤ Aconnected, Kruskal +AEH. (2.11)

The observation that (2.9) and (2.10) are larger than 1 then implies Adisconnected <

Aconnected. The HRT surface is thus disconnected and, due to e.g. the barrier theorems

of [17], lies entirely outside the horizons. The mutual information I(AL : AR) is then just

what would be obtained from surfaces outside the horizon of AdS-Kruskal (figure 1 left)

and I(AL : AR) vanishes. Furthermore, the positivity and monotonicity of HRT mutual

information derived in [16] then imply vanishing mutual information I(AL : AR) for any

subsets AL, AR of the northern hemisphere, whether or not such AL, AR are related by the

Z2 symmetry.

In fact, since AL∪AR is homologous to its complement, the same argument shows that

the HRT surface for SALAR
is again disconnected (and lies entirely outside the horizon)

whenever AL, AR both contain the entire southern hemisphere. So here too I(AL : AR) is

what would be obtained from surfaces outside the horizon of AdS-Kruskal (figure 1 left),

though due to the homology constraint I(AL : AR) no longer vanishes.

Equivalently [2], we may say in both cases that I(AL : AR) for the time-dependent

wormhole agrees with that for the t → +∞ limit of AdS-Kruskal. Though there remain

certain cases that we have not checked, it is thus natural to conjecture the same to be

true of arbitrary AL, AR, and thus for the entropies of arbitrary boundary regions. But

the t → +∞ limit of AdS-Kruskal is naturally interpreted as a thermalized state. So if

our conjecture is true, then despite the instability found in section 2.1, as measured by

such entropies we find that our time-independent wormhole is already thermalized at any

finite time t.
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3 Smooth solutions

Having constructed time-independent wormholes using thin shells, it is natural to ask if

similar solutions can be sourced by smooth scalar fields φ. We shall now show that they

can, but with an interesting twist. While the solutions are completely smooth, the scalar

potential V (φ) is not. Indeed, near the AdS minimum φ0, our V (φ) will behave like

(φ − φ0)2[ln(φ − φ0)]3. We demonstrate the existence of such solutions analytically and

construct a particular example numerically. Appendix A then gives a general argument

that spherically symmetric time-independent wormholes cannot be sourced by scalar fields

with smooth potentials.

Our smooth solution will bear a strong similarity to our domain wall solution, in that

it will be precisely D-dimensional AdS-Schwarzschild outside the horizon and also in the

region where the time-translation Killing field is spacelike. In those regions our scalar field

will be constant and will sit at a minimum of its potential. The scalar will deviate from this

minimum only in the central diamond of figure 1 (right) which in section 2 contained the

domain wall; we refer to this diamond as the wormhole below. Smoothness then requires

that all derivatives of φ vanish at boundaries of the wormhole.

The wormhole should enjoy both spherical and time-translation symmetry. As a result,

any smooth metric in this region may be written

ds2 = −f(r)dt2 +
dr2

f(r)
+ S(r)2dΩ2

D−2, (3.1)

where we require f to vanish linearly at the wormhole boundaries to give a smooth bifurcate

horizon. Imposing the Z2 reflection symmetry of figure 1 (right), we may set r = 0 at the

fixed points of this reflection. It then suffices to study the metric only on the right half

of the spacetime. We take this to be r > 0, with the wormhole boundary at r = rh.

Note that (3.1) and these choices still allow the freedom to perform a constant rescaling

(t, r, rh, f)→ (αt, r/α, rh/α, f/α
2) without changing the geometry. For later reference, we

note that AdS-Schwarzschild in these coordinates has

SAS(r) = r, fAS(r) =
r2

`2
+ 1− (r2

h + `2)
(rh
r

)D−3
, (3.2)

with AdS boundary at r →∞. From now on, we set ` = 1 so that

V (φ(rh)) = ΛAdS = −(D − 1)(D − 2)

2
. (3.3)

In these coordinates, the equation of motion for a single minimally coupled scalar

field reads

fφ′′ +

[
(D − 2)

fS′

S
+ f ′

]
φ′ =

dV

dφ
. (3.4)

– 7 –
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and the nontrivial tt, rr, and sphere-sphere, components of the Einstein equation (with

8πG = 1) may be combined to write

(D−2)S′′ = −Sφ′2,(
S′

S

)
f ′−D−3

S2

(
1−f(S′)2

)
=

2

D−2
T rr =

1

D−2
(fφ′2−2V (φ)),

f ′′+(D−3)

((
S′

S

)
f ′+

1

S2
−
(
S′2

S2

)
f

)
=

2

D−2
TΘ

Θ = − 1

D−2

(
2V (φ)+fφ′(r)2

)
.

(3.5)

As usual, (3.4) follows from (3.5) due to the Bianchi identity, so it suffices to consider (3.5).

Rather than choose a form for V (φ) and solve for the resulting φ(r), we find it con-

venient to proceed in analogy with section 4 of [18] and to posit φ(r). We then take the

middle equation from (3.5) as the definition of V (φ). The requirement that all derivatives

of φ(r) vanish at rh motivates us to choose the form

φ(r) = b tanh

(
kr

r2
h − r2

)
. (3.6)

This leaves us with a pair of second order ODEs (the first and last of (3.5)) to solve

for f(r), S(r). The Z2 reflection symmetry requires the boundary conditions

S′(0) = f ′(0) = 0. (3.7)

We also wish to impose two boundary conditions at rh. The first of these is simply f(rh) =

0. Using (3.3) and our definition of V (φ) (the middle equation in (3.5)) gives the second:

df

dr
|r=rh =

1

S′(rh)S(rh)

(
(D − 1) S(rh)2 + (D − 3)

)
. (3.8)

We note that (3.8) guarantees the surface gravity at the wormhole boundary to

match that of AdS-Schwarzschild with horizon radius S(rh) if we rescale (t, r, rh, k, f) →
(αt, r/α, rh/α, αk, f/α

2) to set S′(rh) = 1. With this understanding, the redshift factor

f , the sphere size S, and their first derivatives with respect to r are then continuous at

r = rh. So long as S(rh) 6= 0, the ODEs (3.5) then guarantee continuity of all derivatives

and the geometry matches smoothly to AdS-Schwarzschild as desired. However, it will be

convenient for our later numerics to first choose b, k, rh arbitrarily and only later to rescale

in this manner.

This suffices to prove that the desired solutions exist. So long as S > 0, it is clear

that our ODEs have no singular points. Furthermore, since we take φ(r) as given, the first

ODE is a homogeneous equation for S(r) alone. Using only S′(0) = 0, it is then clear

that the resulting one-parameter family of solutions for S(r) will have S > 0 on [0, rh] so

long as we choose b sufficiently small for given k, rh. For each such S(r), the second ODE

defines a regular linear 2nd order ODE for f(r), so there a unique solution f(r) satisfying

f ′(0) = 0 and f(rh) = 0. Taking the remaining free parameter to be S(0), and noting that

scaling S(0) → βS(0) induces the scalings S(r), f(r), V (r) → βS(r), β−2f(r), β−2V (r) we

– 8 –
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Figure 4. Above we plot the numerical solutions to the Einstein-scalar system for the scalar field

profile (3.6) with b = 1, k=2.05768. Note that, having set ` = 1, the potential goes to V = ΛAdS

at the horizons (rh = ±1).

may then choose β so as to both satisfy (3.8) and make S(0) positive. Thus smooth time-

independent wormholes of this form exist so long as b is sufficiently small. Figure 4 displays

numerical solutions for f(r), S(r) and V (φ) in D = 4 with

b = 1, k = 2.05768, S(rh) = 1, (3.9)

where for numerical convenience we have chosen rh = 1.

It now remains to discuss V (φ). Since f, S are smooth, our definition of V via (3.5)

guarantees that V is a smooth function of r. The ansatz (3.6) then implies that V (φ)

is smooth for φ ∈ (−b, b). But the behavior at the minimum b must be determined by

expanding S, f, φ near r = rh. To simplify this calculation we now set rh = 1 to find

φ ≈ b(1− 2e−k/(1−r)),

φ′ = b

(
kr

1− r2

)′
sech2

(
kr

1− r2

)
≈ 2bk

e−k/(1−r)

(1− r)2
,

φ′′ = b

[(
kr

1− r2

)′′
− 2

[(
kr

1− r2

)′]2

tanh

(
kr

1− r2

)]
sech2

(
kr

1− r2

)
≈ b

[
4k

(1− r)3
− 2k2

(1− r)4

]
e−k/(1−r).

(3.10)

and

S2f ≈ −f ′(1)S(1)2(1− r) + . . .

(S2f)′ ≈ f ′(1)S(1)2 + . . .
(3.11)
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Figure 5. A comparison of the numerical results (y-axis) for dV
dφ to analytic results (x-axis). We

have plotted our result (blue) on a log-log plot against a line (red) with slope 1 to show agreement

over 4 orders of magnitude. The values of b,k, and rh are the same as in figure 4.

Using (3.4) then yields

dV

dφ
= f ′(1) log2

(
b− φ

2b

)(
log

(
b− φ

2b

)
− 1

)
b− φ
k

+O[(b− φ)2], (3.12)

or

V (φ) = ΛAdS +
f ′(1)b

4k

(
b− φ

2b

)2 [
−5 + 10 log

(
b− φ

2b

)
−10 log2

(
b− φ

2b

)
+ 4 log3

(
b− φ

2b

)]
+O[(b− φ)3].

(3.13)

So our potential is not smooth at its minimum. Instead, d2V
dφ2 has a logarithmic singularity,

indicating that interactions remain important near the horizon. As shown in figure 5, this

result is consistent with our numerics.

We remark that the singularity in our potential is not just an artifact of our particular

construction. Indeed, appendix A demonstrates — even when the requirement of a pure

AdS-Schwarzschild exterior is dropped — that time-independent spherically-symmetric

wormholes cannot be sourced by scalar fields with smooth potentials.

3.1 HRT entropies

Finally, we investigate the holographic HRT mutual information between the two bound-

aries of our smooth time-independent wormhole. Here we consider the particular numerical

solution displayed in figure 4. As in section 2.2, we begin by choosing AL, AR to each be

the northern hemisphere of the respective boundary at t = 0. Repeating the steps de-

scribes there, and since the solution is just AdS4-Kruskal outside the horizon, we focus on
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Figure 6. A comparison of the areas Aconnected, inside of minimal surfaces inside the wormhole to

the area AEH of the corresponding black hole. Using the profile in (3.6), each curve corresponds

to a fixed value of b (b = .87 (green), b = 1 (red), b = 1.2 (blue)) while k is varied from .2 to 2.1.

For each b there are two branches of solutions which join around k ∼ .7. We have also plotted

the D = 4 solution from figure 2 in brown which is seen to coincide with the top branch of our

solutions for each b; in particular, while the brown curve is hidden by the top branches of the

colored curves across much of the figure, it remains visible at both the lower left and upper right

ends. All solutions lie above the dashed line which plots Aconnected, inside = AEH , so the minimal

surfaces are disconnected for hemispheres on the boundary of AdS.

the area Aconnected, inside of the surface defined by taking the equator of each sphere inside

the horizon. Interestingly, as in the thin-wall case, we find Aconnected, inside > AEH for all

values of k, b that we have explored — and indeed even for other functional forms of φ(r)

such as φ(r) = b tanh
(

kr
(r2

h−r2)c2

)c1
with c1, c2 integer constants. So as in section 2.2 we

conjecture that for general AL, AR the HRT entropy SALAR
agrees with the t→ +∞ limit

of AdS-Kruskal and that, despite a likely instability analagous to that found for the domain

wall solutions, in this sense our time-independent wormholes are already thermalized at

any finite t.

Typical results for Aconnected, inside, AEH are shown in figure 6 for the profile (3.6). One

might expect that for large k our smooth solutions approximate the thin-shell solutions of

section 2. At least so far as these areas are concerned, the plot indicates that the agreement

is already quite good for any b at k ∼ 1. Indeed, different scalar profiles in this regime that

lead to the same AEH also have nearly identical Aconnected, inside.

4 Discussion

We have constructed time-independent spherically symmetric AdS-wormholes sourced by

both thin-shell domain walls and smooth scalar fields with potentials V (φ) that are C1
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but not C2. The time-translation in such spacetimes translates both wormhole mouths

forward in time, instead of shifting them in opposite directions as in familiar AdS-Kruskal

black holes. Interestingly, the results of figure 6 indicates that, at least for some purposes,

the thin-shell solutions become good approximations to the smooth solutions when the

parameter k in (3.6) satisfies k & 1.

As shown in appendix A, the non-smooth potential V (φ) is critical to the construction,

as there there can be no precisely time-independent such solutions when the scalar potential

V is a smooth function of the scalar field φ. This feature may be related to the expectation

that — even when they exist — the interior of such wormholes will be unstable. The

instability was identified explicitly in the thin-shell case.

Nevertheless, as discussed in sections 2.2 and 3.1, at least for a large set of boundary

regions the HRT entropies of boundary regions are already thermalized at any finite t

without the above instability having been triggered. By this we mean that the result

agrees with that obtained from familiar AdS-Kruskal in the limit t→∞. This was shown in

particular for many cases where the boundary region contains pieces on both boundaries so

that the same result holds for cross-boundary mutual informations similar to those studied

in [2]. Indeed, we conjecture that it holds for all such entropies and mutual informations.

Should one be able to find a stable version of our time-independent wormholes, a feature

of this sort would be an interesting consistency check on whether dual gauge theory states

thermalize in a universal way.

Such computations raise the question of whether our wormholes can have gauge theory

duals in some version of gauge/gravity duality. One question involves the dual description

of the logarithm at the minimum of the potentials used in section 3. But leaving this aside

for now, we might ask if our wormholes define stationary points of Euclidean path integrals

in analogy with [19]. At least in the thin-wall context, it is clear that the answer is negative.

Constructing a Euclidean thin-wall stationary point amounts to solving an ODE for the

Euclidean motion of the wall within Euclidean AdS-Schwarzschild. Since at t = 0 the wall

sits at (2.3) with zero velocity, it must do so for all Euclidean time. But since shifting

Euclidean time by half a period takes one to the opposite side of the Lorentzian horizon,

this is incompatible with the requirement that the wall exist only inside the wormhole and

not outside. It would be interesting to determine whether a similar argument applies to

our smooth wormhole solutions built from non-smooth potentials.

Finally, we briefly mention the recent discussions of the possible role of complexity in

gauge/gravity duality in [5–8] and the conjectures that gauge-theory complexity is related

either to the volume of maximal slices or the action of certain regions in the bulk geome-

try. In our case, even the renormalized volume of a maximal slice that extends from one

boundary to the other is strictly infinite. Although the renormalized volume of the t = 0

slice will be finite, for maximal slices there is no analogue of the argument in footnote 1.

Indeed, in our case it is clear that a surface of arbitarily large renormalized volume can

be obtained by following an orbit of the Killing field in the regions of figure 1 (right) in

which the time-translation Killing field is spacelike. In particular, the volume of such sur-

faces grows without bound as the surface nears the topmost point of the dotted line in 1

(right). Similarly, the action of the spacetime region inside the wormhole (say, defined as
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in [20]) should diverge due to the required integral over time and the (non-compact) time-

translation symmetry. Interestingly, assuming the wormhole to be unstable as in section 2

and choosing a perturbation that collapses the interior even at a very late time would result

in finite actions and volumes of maximal surfaces at any given time t, though the resulting

breaking of time-translation symmetry would also cause these quantities to grow with time.

Indeed, at late times the growth in such quantities should be dominated by the region near

the outermost horizon and so will proceed precisely as in AdS-Kruskal. In contrast, with

an instability that causes the wormhole interior to expand both the relevant actions and

volumes of maximal slices will continue to diverge. It would be interesting to understand

better the meaning of such divergences in the context of the conjectures of [5–8].
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A No solutions with smooth scalar potentials

This appendix shows that spherically symmetric time-independent wormholes with a Z2

reflection cannot be sourced by scalar fields with smooth potentials, and thus that the

singular potential found in section 3 is not an artifact of our particular construction. Our

argument closely follows the work of Bekenstein [21] constraining black holes with scalar

hair, though we have rephrased much of the proof in terms of manifestly covariant quantities

like the expansion of radial geodesics. We allow a general scalar action of the form

L =

[
gab

2
MAB({φA}) ∂aφA ∂bφB + V ({φA})

]√
−g (A.1)

with positive definite MAB. Such fields in particular respects the null energy condition

(NEC), which states that the stress tensor Tab satisfies Tabk
akb ≥ 0 for all null ka.

We again describe the spacetime using the metric (3.1), taking r = 0 at the surface

invariant under the Z2 symmetry. We also assume the scalar fields to share the symmetries

of the spacetime so that they depend only on the coordinate r. As a result, covariance and

the definition Tab = − 2√
−g

δS
δgab

require

−T t
t = −T Θ

Θ = E =
f

2
MAB({φA}) ∂rφA ∂rφB + V (φ), (A.2)

T rr =
f

2
MAB({φA}) ∂rφA ∂rφB − V (φ) (A.3)

where E is the Lagrangian density for the scalars and T Θ
Θ is the same for all angular

coordinates. Furthermore, the scalar equation of motion takes the form

∂r

(
MABfS

d−1∂rφ
B
)

=
∂V

∂φA
. (A.4)

The Einstein equations remain as in (3.5) with the substitution of (A.2).
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Our argument begins not in the wormhole itself, but in the region outside the horizon.

Here we recall that the null convergence condition (a consequence of the Einstein equations

and the null energy condition) requires the size of the (d− 1) spheres to increase monoton-

ically from the horizon to the conformal boundary. The argument is simply that spherical

symmetry prevents any outgoing sphere of light rays from forming a caustic before reaching

the conformal boundary, and that a standard calculation shows that such null congruences

have vanishing expansion (θ = 0) at the AdS boundary. The Raychaudhuri equation thus

forbids them from having θ < 0 at any r outside the horizon and thus implies monotonic-

ity of S(r). In the same way, since S′(r) = 0 at r = 0, the sphere size S must increase

monotonically as one moves from a horizon toward r = 0. So the horizon r = rh must be

a local minimum of S(r).

In contrast to section 3, we now wish to take V (φ) to be a fixed smooth function of

φ and to solve (A.4), (3.5) to generate the spacetime. We seek solutions with S 6= 0, so

the only singular points of this system of ODEs occur when f = 0; i.e., at the horizon. In

order for this to be a smooth Killing horizon with finite surface gravity, both f and must

be a smooth function of r at rh. Thus as usual r − rh is quadratic in the proper distance

s− sh from the horizon, and in fact (r− rh) may be expanded in even powers of (s− sh)2.

Smoothness of the geometry then requires that f also have an asymptotic series expansion

about the horizon, and that this expansion is even.

This suggests that the entire solution will be symmetric about the horizon. Given

that on one side we allow no further horizons between rh and the AdS boundary, such a

symmetry would forbid the desired wormhole from being present on the other. Indeed,

we will show below that smoothness of V (φ) prohibits any breaking of this symmetry by

S, φA, or by effects vanishing faster than any power of r − rh and thus forbids smooth

time-independent wormholes.

We begin with perturbative effects. Having shown above that rh is a minimum of S,

smoothness requires S = S(rh) + dS
dr |rh(s − sh)2 + O((s − sh)3) with dS

dr finite at rh. The

scalar equation of motion (A.4) then also forces dφB

dr to remain finite and in fact constrains

its value. Repeated differentiation of (A.4) and the first equation of (3.5) then guarantee

that all r-derivatives of S, φB are finite at rh as well so that they also admit well-defined

asymptotic series expansions involving only even powers of s− sh.

We now consider possible non-perturbative effects. In particular, suppose that two

solutions (f1, S1, φ
A
1 ) and (f2, S2, φ

A
2 ) have identical asymptotic expansions about the hori-

zon. Near rh, we may then expand our ODEs in powers of ∆f = f1 − f2,∆S = S1 − S2,

and ∆φA = φA1 −φA2 . And close enough to rh, to good approximation we may truncate this

expansion to first order and neglect f∆∂rφ
A relative to ∂rφ

A. Doing so results in a linear

system of ODEs for ∆f,∆S, and ∆φA with smooth non-vanishing coefficents; in particular,

the ODE resulting from (A.4) is only of first order. The boundary condition that ∆f,∆S,

and ∆φA all vanish at rh thus requires them to vanish everywhere. We have thus shown

that solutions of our ODEs are uniquely determined by their power series expansion near

rh for smooth V (φ). As a result, smooth V (φ) requires a Z2 symmetry about any smooth

bifurcate Killing horizons an forbids the desired time-independent wormholes.
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