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1 Introduction

Irregular conformal state is a conformal state, but is not a primary or descendent state.

Rather it is similar to a coherent state since it is a simultaneous eigenstate of some of

positive mode of conformal generator. The simplest irregular state is the eigenstate of

Virasoro L+1 mode which is called Gaiotto state [1] or Whittaker state [2]. More irregular

states have been systematically investigated for Virasoro and W-irregular state [3–7].

The irregular state is termed as rank n if it is the simultaneous eigenstate of Virasoro

generators Lk with n ≤ k ≤ 2n or of W (q) generators W
(q)
k with (q − 1)n ≤ k ≤ qn

with spin q. However, the construction of the irregular state is not easy to find because

the eigenvalues are not enough to define the state of rank n ≥ 2. One needs additional

information how the irregular state behaves when all other positive generators applied on

the irregular state such as W
(q)
k with 0 ≤ k < (q − 1)n.

The progress is achieved according to AGT [8] and the idea of colliding limit [9, 10].

AGT connects Nekrasov partition function of N=2 super Yang-Mills theory in 4 dimension

with the Liouville conformal block in 2 dimension. Colliding limit of Liouville conformal

block describes the irregular state and in turn closely related with Argyres-Douglas theory

of N=2 super Yang-Mills theory. Colliding limit of the Liouville conformal block is easily

investigated in terms of irregular matrix model. Originally, Penner-type matrix model is

suggested from the Liouville conformal block [9, 11, 12] and colliding limit of the Penner-

type matrix model results in the irregular matrix model.

The irregular matrix model is successful to describe irregular states and their inner

product. The partition function is related with the inner product between primary state

and irregular state or between two irregular states depending on the potential of the irreg-

ular matrix model. However, the success is limited to the case of irregular states of integer

rank. Virasoro irregular state of integer rank n has eigenvalue of the highest Virasoro
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generator L2n. Question arises. Can we find irregular state with half-odd rank, that is,

irregular state of highest Virasoro generator L2n−1? The state of rank 1/2 is easily found

from the rank 1 if one limits the eigenvalue of L2 vanish. However, this trick does not

work for rank greater than 1 since this limit does not exist since other eigenvalues diverges

unless special limit is achieved so that the state is a simultaneous eigenstate of L1 and

L2n−1 only [4].

In this paper, we will present the irregular matrix model of half-odd integer rank

using supersymmetrizing the theory. The irregular vertex operator is constructed similar

to the regular vertex operator [13–15] and is supersymmetrized in [16]. It is noted that

the irregular vertex operator with half-odd rank appears naturally with Ramond sector

in the super-symmetrized version. This operator is useful for the free field formalism. If

one includes the screening operators, then one can investigate the interacting system of

irregular states.

This paper is organized as following. In section 2, we present irregular super-matrix

model and its loop equation. The matrix model is related with the N=1 super Liouville

conformal block and its colliding limit. The loop equation is simply integrable at Nekrasov-

Shatashvili limit (NS limit), which is called super-spectral curve. In section 3, we consider

irregular states with integer rank. This state is obtained from the NS sector. Using the

super-spectral curve we obtain partition function and present the explicit form of rank

1. In section 4, irregular states with half-odd rank are considered. Partition functions of

rank 1/2 and 3/2 are presented. In section 5, we present an idea on RG flow equation

corresponding to the operator algebra of the irregular vertices from the string field theory.

Section 6 is the conclusion and discussion. Super-spectral curve of the irregular matrix

model is presented in the appendix.

2 Irregular super-matrix model and its spectral curve

Super-vertex operator Vα(ζ) in the NS sector is considered in the super-field formalism

Vα(ζ) = eαΦ(ζ) (2.1)

where ζ = (z, θ) is the holographic super-coordinate, Φ is the super-field and α is the

Liouville momentum. Two point correlation of the vertex operator is normalized as in [17]

〈Vα1(ζ1)Vα2(ζ2)〉 = (z12 − θ1θ2)−α1α2 (2.2)

where zzb = za − zb. To find the multi-point correlation in the super Liouville formalism

one may use screening operator Vb(ζ) in the presence of background charge Q = b + 1/b.

Primary operator has the conformal dimension ∆α = α(Q− α)/2 and the superconformal

system has central charge c = 3/2(1 + 2Q2).

Explicitly, (n + 2)-point holomorphic correlation can be calculated in the presence of

N -screening operators Vb(ζ) and be put into Selberg integrals〈
n+2∏
A=1

VαA(ζA)

〉
=

∫ [ N∏
I=1

dzIdθI

]∏
I<J

(zIJ − θIθJ)−b
2
∏
I,A

(zIA − θIθA)−bαI (2.3)

where neutrality condition
∑

I αI +Nb = Q is assumed.

– 2 –



J
H
E
P
1
2
(
2
0
1
6
)
0
0
4

To formulate this integral in terms matrix model, we put (n+2) external operator con-

tribution (zIA−θIθA)−bαI into an exponential of a super-potential V (ζI) =
∑

A α̂I ln(zIA−
θIθA) with α̂ = ~α;

Zn =

∫ [ N∏
I=1

dzIdθI

]∏
I<J

(zIJ − θIθJ)β e

√
β
g

∑
I V (ζI)

. (2.4)

This will be called deformed super Penner-type matrix model. Here β = −b2 is used instead

of b. In addition, g = i~ is introduced for later convenience. In terms of the new notations,

b = i
√
β, Q = i(

√
β − 1/

√
β) and ~Q = g(

√
β − 1/

√
β).

If one applies the colliding limit by fusing n operators to the one at origin and let

the rest to the infinity after accordingly normalizing the partition function at infinity, one

obtains a new super potential of the form V (ζI) = VB(zI) + θIVF (zI): VB(z) and VF (z)

are bosonic and fermionic part of super-potential.

The loop equation provides the super-spectral curve with the deformed parameter ε.

(Its derivation is found in appendix A).

xB(z)xF (z) + εx′F (z) = FF (z) (2.5)

xB(z)2 + εx′B(z) + xF (z)V ′F (z)− x′F (z)VF (z) = 2FB(z) (2.6)

where xF (z) (xB(z)) is anti-commuting (commuting) one-point resolvent ωF (z) (ωB(z))

shifted by potential term, xF (z) = ωB(z)−VF (z) ( xB(z) = ωB(z)+V ′B(z)). FF (FB) is also

anti-commuting (commuting) holomorphic function and represent spin 3/2 supercurrent

(spin 2 Virasoro) symmetry of the partition function.

Explicitly, the potential obtained from the colliding limit of (n + 2) number of NS

sector of N=1 super Liouville vertex operators is of the form

VB(zI) = c0 ln(zI)−
n∑
k=1

ck

kzkI
(2.7)

VF (zI) = −
n∑
k=0

ξk

zk+1
I

. (2.8)

where VB(zI) is the bosonic part and VF (zI) the fermionic part. ck is a commuting

variable defined as ck =
∑

A α̂Az
k
A and ξk is an anti- commuting variable defined as

ξk =
∑

A α̂Az
k
AθA. The partition function with the new super potential will be called

irregular super-matrix model of integer rank n.

It is noted that the matrix model is closely related with irregular vertex operator was

investigated in [16]

Wn = e
∑2n
k=0 γkD

k
θΦ(z,θ) (2.9)

where Dθ = θ∂z + ∂θ. γk is commuting (anti-commuting) when k is even (odd). The same

potentials VB(zI) and VF (zI) in (2.7) and (2.8) are obtained if one contracts Wn with N

screening operators Vb(ζ).
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There is a slightly different form of the super-matrix model due to Ramond sector. If

one uses the vertex operator of Ramond sector

Wn− 1
2

= e
∑2n−1
k=0 γkD

k
θΦ(z,θ), (2.10)

and contracts Wn− 1
2

with N screening operators Vb(ζ), one obtains the irregular matrix

model of Ramond sector. The resulting irregular potential is the one similar to (2.7)

and (2.8):

VB(zI) = c0 ln(zI)−
n∑
k=1

ck

kzkI
(2.11)

VF (zI) = −
n−1∑
k=0

ξk

zk+1
I

. (2.12)

The difference from the model of rank n (NS sector) is that the commuting variable ck has

unusual constraints. ck contains the product of two anti-commuting variables so that c2
n =

0 = cnξn−1. This model is called irregular super-matrix model of half-odd rank (n− 1/2).

3 Partition function of integer rank

For the integer rank n, the potential is given in (2.7) and (2.8):

VB(z) = c0 ln(z)−
n∑
k=1

ck
kzk

, VF (z) = −
n∑
k=1

ξk
zk+1

. (3.1)

Here ck (ξk) is a commuting (anti-commuting ) variable. We are using the super- spectral

curve (2.5) and (2.6) using the explicit form of FF (FB) using the potential (3.1).

FF (z) =

2n−1/2∑
r=1/2

Ωr

z3/2+r
+

n−1/2∑
r=1/2

ηr

z3/2+r
(3.2)

FB(z) =

2n∑
m=0

Λm
z2+m

+

n∑
m=0

dm
z2+m

. (3.3)

Ωr is anti-commuting number and is defined as Ωr =
∑

k ckξr−1/2−k − ε(δr,1/2 − (r +

1/2))ξr−1/2. On the other hand, Λm is commuting number, Λm =
∑

k+l=m ckcl/2− ε(m+

1)cm/2. It is noted in the appendix A that ηr (dm) is an expectation value ηr = gr(−~2 lnZ)

with supercurrent gr (dm = `m(−~2 lnZ) with Virasoro current `m).

This expectation value is the basic tool to find the partition function from the super-

spectral curves (2.5) and (2.6) as noted in bosonic cases [18–20]. The super-flow equa-

tion (A.16) and (A.20) is essential to find the moments dm and ηr. In the following we

provide an explicit calculation for the simplest case (rank 1).
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For the rank 1, there are 3 flow equations: 2 bosonic and one fermionic:

d0 =

(
c1

∂

∂c1
+

1

2
ξ0

∂

∂ξ0
+

3

2
ξ1

∂

∂ξ1

)
(−~2 lnZ) (3.4)

η1/2 =

(
ξ1

∂

∂c1
− c1

∂

∂ξ0

)
(−~2 lnZ) + εξ0 (3.5)

d1 = ξ1
∂

∂ξ0
(−~2 lnZ). (3.6)

To solve the flow equations, we need to find the moments d0, η1/2 and d1 in the left

hand side of the flow equations as the functional dependence of variables c1, ξ1 and ξ2 from

the super-spectral curve. The moment d0 is easily identified if one considers the dominant

contribution of the bosonic spectral curve (2.6) at large z limit.

d0 = εN

(
c0 +

ε(N − 1)

2

)
. (3.7)

Therefore, the bosonic flow equation (3.4) requires the partition function to be of the form

− ~2 lnZ = d0 log c1 +Aξ0ξ1/c
2
1 + C. (3.8)

Here, ξ0ξ1/c
2
1 is the homogeneous solution and C is a constant independent of c1, ξ1 and

ξ2, which can be normalized to be 0.

The fermionic moment η1/2 is obtained if we use the large z expansion of (2.5):

η1/2 = εNξ0 + εNF (ε(N − 1) + c0) (3.9)

where NF = 〈
∑

I θI〉. To get the information on NF , we use the fact that dm and ηr should

obey the consistency condition due to commutation relations (A.22) between generators.

Note that [lm, gr] = (r −m/2)gr+m. This requires

lm(ηr)− gr(dm) =

(
r − m

2

)
ηr+m, (3.10)

Therefore, d0 in (3.7) and η1/2 in (3.9) has the relation: l0(η1/2) = (1/2)η1/2 since g1/2(d0) =

0. This shows that η1/2 behaves as the primary of conformal dimension 1/2. There are

two anti-commuting variables ξ0 and ξ1/c1 of dimension 1/2. This shows that NF should

be proportional to either ξ0 or ξ1/c1. Fermionic filling fraction is anti-commuting and is

concentrated at ξ0 or ξ1. Putting NF = N1ξ0 +N2ξ1/c1 with commuting numbers N1 and

N2, one has

η1/2 = ξ0

(
εN + εN1(c0 + ε(N − 1))

)
+

(
ξ1

c1

)(
c0 +N2ε(N − 1)

)
. (3.11)

The flow equation (3.5) together with (3.8) and (3.11) is rewritten as

ξ0

(
εN + εN1(c0 + ε(N − 1))

)
+

(
ξ1

c1

)(
c0 +N2ε(N − 1)

)
= ξ0ε+

(
ξ1

c1

)
(d0 −A) (3.12)
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Therefore, the flow equation reduces to algebraic identities:

εN + εN1(c0 + ε(N − 1)) = ε

N2(c0 + ε(N − 1)) = d0 −A (3.13)

which fixes N1 and A as a function of c0, N and N2:

N1 = − N − 1

c0 + ε(N − 1)
, A = d0 −N2(c0 + ε(N − 1)). (3.14)

As a result, the partition function is given as

− ~2 lnZ = d0 ln c1 +

(
ξ0ξ1

c2
1

)
(d0 −N2(c0 + ε(N − 1)). (3.15)

Finally, the bosonic flow equation (3.6) provides additional information on the system.

The right hand side of the flow equation vanishes if one uses the partition function of the

form (3.15). Therefore, d1 should vanish. On the other hand one can obtain d1 using the

spectral curve (2.6). It is noted in [21, 22] that the resolvent at NS limit is of the form

ωB(z) = ε(lnP (z))′ = ε
N∑
α=1

1

z − zα
(3.16)

with a monic polynomial of degree N

P (z) =
N∏
α=1

(z − zα) =
N∑
k=0

pN−kz
k (3.17)

with p0 = 1. Then, (2.6) results in

d1 = εN (c1 + p1(ε(N − 1)/2 + c0)) . (3.18)

Note that p1 is the sum of all the poles p1 =
∑

α zα and is same as the expectation value

〈
∑

I zI〉 of the matrix model. Since d1 vanishes, one concludes that

p1 = − c1

c0 + ε(N − 1)/2
. (3.19)

The result (3.19) is consistent with constraint `0(d1) = d1 since `1(d0) = 0. In general, there

are two variables c1 and ξ0ξ1/c1 of conformal dimension 1 for the rank 1 case. However,

the term proportional to ξ0ξ1/c1 turns out to vanish and the only term proportional to

c1 survives.

The pole structure of the bosonic resolvent also shares with that of the fermionic one.

This can be seen from (2.5). First, note that if one uses (3.16), one may put xB(z) =

ε(ln P̃N (z))′ with P̃N = PNe
VB/ε. Then, (2.5) reduces to

εP̃ ′N (z)xF (z) + εP̃N (z)x′F (z)) = P̃N (z)FF (z) (3.20)

or (εP̃N (z)xF (z))′ = P̃N (z)FF (z). Therefore, xF (z) has the simple expression

xF (z) =
τF (z)

PN (z)
(3.21)

where τF (z) = e−VB(z)/ε
∫ z
dyFF (y)P̃N (y)/ε. Since τF (zα) is not zero in general (except 0

accidentally), the obvious conclusion is that the pole position zα is also the pole position

of xF (z).

– 6 –
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4 Partition function of half-odd rank

The partition function of integer rank n is interpreted as the inner-product between a

primary state and an irregular state of rank n. The spectral curve shows that the irregular

state is the simultaneous eigenstate of super-current Gr with r = n + 1/2, · · · , 2n − 1/2

and Virasoro current Lm with m = n, · · · , 2n if dn = 0 (otherwise, m = n + 1, · · · , 2n).

One may wonder if the eigenvalue of the highest Virasoro mode L2n vanishes.

Note that the eigenvalue of the highest Virasoro mode is given as Λ2n = c2
n. Therefore,

unless cn = 0 the case is not achieved in the NS sector. Instead, if one includes the Ramond

sector also, one may have the potential of half-odd rank as in (2.11) and (2.12).

VB(zI) = c0 ln(zI)−
n∑
k=1

ck

kzkI
, VF (zI) = −

n−1∑
k=0

ξk

zk+1
I

. (4.1)

The difference from the NS sector is that the commuting variable vanishes when squared

c2
n = 0. This is because cn is commuting but is the product of two anti-commuting vari-

ables. Therefore, the eigenvalue Λ2n vanishes so that the non-vanishing highest mode

becomes L2n−1.

We will consider two simplest cases: rank 1/2 and 3/2. The rank 1/2 has bosonic

parameters c0, c1 and one fermionic ξ0 with the constraint c2
1 = 0 = c1ξ0. It is clear that

Λn = 0 when n ≥ 2 and Λ1 = c1(c0−ε) so that the irregular state has the eigenvalue of high-

est Virasoro mode L1. Note that G3/2 annihilates the irregular state since Ω3/2 = c1ξ0 = 0.

The super-flow equations are simply given as

d0 =

(
c1

∂

∂c1
+

1

2
ξ0

∂

∂ξ0

)
(−~2 lnZ) (4.2)

η1/2 =

(
−c1

∂

∂ξ0

)
(−~2 lnZ) + εξ0. (4.3)

The partition function is formally given as

− ~2 lnZ = d0 ln c1 (4.4)

where d0 = εN
(
c0 + ε(N−1)

2

)
as given in (3.7).

Non-trivial case starts with rank 3/2. In this case there are three commuting parame-

ters c0, c1, c2 and two anti-commuting parameters ξ0, ξ1. The parameters have the relation

with the original γk in (2.10) as follows: c0 = ~γ0, c1 = ~(γ1θ + γ2), c2 = ~γ3θ, ξ0 = ~γ1,

and ξ1 = ~(γ2θ + γ3). This shows that c2
2 = c2ξ1 = 0.

Then we have 4 flow equations

d0 =

(
c1

∂

∂c1
+ 2c2

∂

∂c2
+

1

2
ξ0

∂

∂ξ0
+

3

2
ξ1

∂

∂ξ1

)
(−~2 lnZ) (4.5)

η1/2 =

(
ξ1

∂

∂c1
− c1

∂

∂ξ0
− c2

∂

∂ξ1

)
(−~2 lnZ) + εξ0 (4.6)

d1 =

(
c2

∂

∂c1
+ ξ1

∂

∂ξ0

)
(−~2 lnZ). (4.7)

η3/2 =

(
−c2

∂

∂ξ0

)
(−~2 lnZ) (4.8)

– 7 –
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The bosonic spectral curve (2.6) shows that d0 is the same as in (3.7) and the solution

of (4.5) is given as

− ~2 lnZ = d0 log c1 +A(t)ξ0ξ1/c
2
1 +B(t) (4.9)

where we use the fact t = c2/c
2
1 and ξ0ξ1/c

2
1 are homogeneous solutions.

The fermionic spectral curve (2.5) shows that η1/2 has the same form (3.11). However,

the right hand side of the fermionic flow equation (4.6) has a different result.

η1/2 = ξ0

(
εN + εN1(c0 + ε(N − 1))

)
+

(
ξ1

c1

)(
c0 +N2ε(N − 1)

)
= ξ0(ε+ tA(t)) +

(
ξ1

c1

)
(d0 −A(t)− 2tB′(t)). (4.10)

This fermionic flow equation reduces to another algebraic identity whose solves A(t)

and B(t):

A(t) =
A1

t
, B(t) = B0 log t+

B1

t
. (4.11)

so that the partition function is given as

− ~2 lnZ = (d0 − 2B0) log c1 +B0 log c2 +A1ξ0ξ1/c2 +B1c
2
1/c2 (4.12)

where A1 = ε(N − 1 + N1(c0 + ε(N − 1)), B0 = (d0 − c0 + εN2(N − 1)))/2 and B1 =

ε(N − 1 +N1(c0 + ε(N − 1))/2. Therefore, the partition function (4.9) is given in terms of

potential variables together with N , N1 and N2.

Two more flow equations provide additional information on the system. d1 is given

as (3.18) and corresponding flow equation (4.7) shows that

εN (c1 + p1(c0 + ε(N − 1)/2)) = (d0 − 2B0)c2/c1 + 2B1c1. (4.13)

This gives the information on p1 = 〈
∑

I zI〉;

p1 =
(d0 − 2B0)c2/c1 + (2B1 −N)c1

εN(c0 + ε(N − 1)/2)
. (4.14)

Finally, the fermionic flow equation (4.8) shows that the right side is given as

r.h.s. = −A1ξ1. (4.15)

On the other hand, fermionic spectral curve (2.5) shows that the left hand side is

l.h.s. = ε(c0 + ε(N − 2))q1 + ε(ξ0p1 + ξ1N + (c1 + εp1)NF ) (4.16)

where q1 = 〈
∑

I zIθI〉, fermionic partner of p1. Therefore, the flow equation determines q1.

q1 = −A1ξ1 + ε(ξ0p1 + ξ1N + (c1 + εp1)NF )

ε(c0 + ε(N − 2))
(4.17)

Note that Λn = 0 when n ≥ 4 and the positive Virasoro generators L3 and L2 have

non-vanishing eigenvalues Λ3 = c1c2 and Λ2 = c2
1/2 + (c0 − 3ε/2)c2, respectively. In addi-

tion, super-current Gn−1/2 with n ≥ 4 annihilates the state and G5/2 have non-vanishing

eigenvalue Ω5/2 = c1ξ1 + c2ξ0. This eigenvalue is consistent with the commutation algebra

G2
5/2 = −L5 since Ω2

5/2 = 0 and Λ5 = 0.

– 8 –
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5 Irregular vertex operators and RG flow equations

In this section, we provide RG flow equations to the operator algebra of the irregular

vertices from the string field theory. The main idea is that, in the formalism of irregular

vertex operators, we may have conformal β-function equations on the wavefunctions of these

operators, generalized to the off-shell case. For simplicity, we shall limit ourselves to the

non-supersymmetric case and to the rank one, however, the discussion is straightforward

to generalize to higher ranks and the supersymmetry. The most general form of the rank

1 vertex operator is given by

U(α, β) = ξ(α, β)eαφ+β∂φ (5.1)

where ξ(α, β) is the wavefunction for the irregular state. In case if U(α, β) were a regular

vertex operator, its leading order contribution to the string sigma-model partition function

would be given by Zσ ∼ eS(ξ) where S(ξ) is the low-energy effective action, defined by the

vanishing β-function condition

δS

δξ
= Λ

dξ

dΛ
≡ βξ ∼ ∆ξ + Cξ2 +O(ξ3) = 0 (5.2)

where Λ is the worldsheet cutoff and C are the structure constants defined by 3-point

worldsheet correlators. The above condition ensures that the conformal invariance is pre-

served by inserting the on-shell operators on the worldsheet. The irregular vertex operators

are, however, the off-shell objects, therefore they do not have any associate β-function in a

naive literal sense. Nevertheless, the relation of the type (5.2) still retains some important

meaning off-shell, in particular, in the context of background-independent string field the-

ory - and can be related to the flow equations derived above. That is, in the on-shell case,

the equations of motion (5.2) define the perturbative background deformations preserving

the worldsheet conformal symmetry, ensured by the Weyl invariance combined along with

the condition of absence of logarithmic singularities in the partition function due to colli-

sions between vertex operators. It is furthermore important that, in the on-shell case, all

the vertex operators have conformal dimension 1, and the only OPE terms contributing to

the β-functions as a result of collision of two such vertices, are those involving operators of

dimension one. In the off-shell case, such as ours, all these conditions have to be modified.

First of all, U(α, β) becomes a string field which wavefunction, ξ(α, β) now describes a

nonperturbative background deformation from the original to the one defined by the ap-

propriate analytic solution in string field theory. The “β-function”-like constraint of the

type (5.2) is now precisely the condition that the string field U is that analytic solution,

producing the nonperturbative background change. Moreover, contrary to the perturbative

on-shell-case, the “effective action” S(ξ) is typically nonlocal.

For the irregular vertices, we can no longer require the absence of the OPE singularities

for the colliding operators, as this constraint has an essentially on-shell origin in string

perturbation theory. However, we still have to retain the Weyl invariance constraints

on the operators, since a) these constraints are imposed off-shell even in standard string

perturbation theory b) Weyl invariance is essential to fix the (super)conformal gauge which
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we are using here. In order to elucidate the constraints due to the scale invariance, one

has to calculate the OPE of the irregular vertex sitting on the disc boundary, with the

trace of the stress-energy tensor, integrated over the bulk of the disc, and to extract the

logarithmic divergence stemming from the OPE integration. This shall lead to the first set

of the constraints, analogous to the flow equations. Straightforward calculation gives:

lim
z,z̄→τ

: Tzz̄ : (z, z̄) : eαφ+β∂φ : (τ) = lim
z,z̄→τ

−1

2
: ∂φ∂̄φ : (z, z̄)eαφ+β∂φ(τ)

=

{
α2

2|z − τ |2
+

(
(z − z̄)2

|z − τ |4
+

2

|z − τ |2

)
: β∂φeαφ+β∂φ : (τ)

+
1

|z − τ |2

[
β2

8
(α∂φ)2 − α∂2φ+ 2(α∂φ)(α∂2φ)− β∂3φ

]
−1

2

αβ

|z − τ |2
(α∂φ+ β∂2φ)

}
eαφ+β∂φ : (τ) (5.3)

Integrating over z the contributions proportional to ∼
∫
d2z 1

|z−τ |2 ∼ ln Λ leads to loga-

rithmic singularities defining the variations of the operators under Weyl transformations.

Cancellation condition for these variations defines the flow equations we are looking for.

In what follows we shall ignore the OPE terms with higher derivatives of φ. That is, the

terms proportional to ∂2φ and higher derivatives, are only relevant for the RG flows for the

higher rank operators, related to variational derivatives with respect momenta, conjugate

to higher derivatives in the irregular vertices (e.g. : ∂2φeαφ+β∂φ+γ∂2φ :∼ ∂
∂γ e

αφ+β∂φ+γ∂2φ)

Then the flow equation describing the Weyl deformations of the irregular operators is

βξ = Λ
dξ

dΛ
= −α

2

2
ξ − β ∂

∂β
ξ − β2

8

(
α
∂

∂β

)2

ξ − 1

2
(αβ)α

∂

∂β
ξ (5.4)

This extended β-function relation is related to the Legendre transformed bosonic part

of the flow equation (3.4) for the free energy lnZ, expressed in terms of the wavefunction

ξ(α, β), related to the partition function according to

Zσ =
∑
P

1

P !

∫
dτ1 . . . dτP ξ(α1, β1) . . . ξ(αP , βP ) < V (α1, β1, τ1) . . . V (αP , βP , τP ) > (5.5)

where V (α, β, τ) =: eαφ+β∂φ : (τ).

The relation to the bosonic part of the flow equation (3.4) is not straightforward

because the generalized RG flow (5.4) is expressed in terms of very different variables. To

obtain this relation, one has to insert the differential operator on the right hand side of

(5.4) inside the generating functional < e
∫
dτdαdβξ(τ,α)V (α,β,β) >. The relation will then

follow as the 2d Ward identity inside the worldsheet correlators.

It is straightforward to generalize this calculation to the supersymmetric case. In this

case, the irregular vertices are not eigenvalues of positive Virasoro generators, but the Jor-

dan blocks. In the simplest rank 1
2 case such a block has a multiplicity 2 with components:

V1 = η1(α, β)(αψ + β∂φ)

V2 = η2(α, β)eφ (5.6)
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Applying the Weyl transformation now leads to separate equations on the wavefunctions

η1 and η2: (
α2 + β

∂

∂α

)
η1 + αβα

∂

∂α
η1 = 0

(α2 − 1)η2 = 0 (5.7)

Note that, unlike (4.3) in the pair of the flow equations, one of the equations for the rank
1
2 is algebraic.

6 Conclusion and discussion

In this work, we analyzed the loop equation in supersymmetric matrix model in the su-

perspace formalism, in order to derive the spectral curve for the Argyres-Douglas limit

of N = 2 super Yang-Mills theory, related to N=1 super Liouville conformal field theory

through generalized AGT conjecture. Noting that the N=1 super Liouville conformal field

theory is related with the instanton partition function of N = 2 quiver gauge theories on

the ALE space C2/Z2 [23–25], we expect that the supersymmetric matrix model at the

colliding limit will provide the useful information on the Argyres-Douglas limit.1 We have

been able to derive and to integrate the loop equation in the supersymmetric case and to

obtain partition functions associated with irregular blocks of ranks 1
2 , 1 and 3

2 .

The loop equations, as well as the associate flow equations on the free energy, can

be reproduced in the irregular vertex operator approach, in terms of the scale invariance

constrants for the vertex operators. One particularly promising thing about the vertex

operator approach is that it is relatively straightforward to extend to higher ranks, as well

as to observe the Jordan cell structure of the flow equations in the supersymmetric case.

We hope to be able to extend these results to higher/arbitrary ranks in the future works. It

will be also interesting to investigate (super)-spectral curve for the special value of Liouville

parameter space as observed in [26, 27].

In general, it is natural to understand the AGT conjecture as an isomorphism be-

tween the partition functions of the sigma-models with irregular vertex operators in

Toda/superstring theories and those of super Yang-Mills theories. The relation between

these theories can be thought of as a generalization of the one between standard string-

theoretic sigma-models and their low-energy limit, through the off-shell generalization of

the conformal β-functions. The background-independent second-quantized string field the-

ory approach appears to be a promising framework for that. The work in this direction is

currently in progress and we hope to be able to elaborate on these issues soon.
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A Super-spectral curve

One may derive the loop equation of the irregular super-matrix model corresponding to

the super-conformal symmetry. Spin 3/2 current contribution is obtained if one use the

supercoordinate transform [26, 27] zI → zI +θIεF /(z−zI) and θI → θI +εF /(z−zI) where

εF is the small anti-commuting number. The metric contribution[∏
I

dzIdθI

]
→

[∏
I

dzIdθI

](
1 +

∑
I

θI εF
(z − zI)2

)
. (A.1)

Super-Vandermonde determinant has the contribution

∏
I<J

(zIJ − θIθJ)β →
∏
I<J

(zIJ − θIθJ)β

1+β

∑
I,J

θI
(z − zI)(z − zJ)

−
∑ θI

(z − zI)2

 εF

 .

(A.2)

Finally, the potential has the contribution

e

√
β
g

∑
I V (ζI) → e

√
β
g

∑
I V (ζI)

(
1 +

√
β

g

∑
I

{
V ′B(zI)θI − VF (zI)

z − zI

}
εF

)
. (A.3)

Collecting all terms one has

ωB(z)ωF (z) + V ′B(z)ωF (z)− VF (z)ωB − ~2ωBF (z, z) + ~bω′F (z) = fF (z) (A.4)

where prime denotes the derivative with respect to z. ωB(z) (ωF (z)) is one-point commut-

ing (anti-commuting) resolvent

ωB(z) = g
√
β

〈∑
I

1

z − zI

〉
, ωF (z) = g

√
β

〈∑
I

θI
z − zI

〉
. (A.5)

ωBF (z, z) is the connected two-point resolvent

ωBF (z, w) = β

〈∑
I

1

z − zI

∑
J

θI
w − zJ

〉
conn

. (A.6)

fF is related with the super-potential

fF (z) ≡ g
√
β

〈
(V ′B(z)− V ′B(zI))θI − (VF (z)− VF (zI))

z − zI
.

〉
(A.7)

Virasoro contribution is obtained if one uses the super-coordinate transform zI →
zI + ε/(z − zI) and θI → θI(1 + ε/(2(z − zI)

2) where ε is an infinitesimal commuting

number. The metric contribution is[∏
I

dzIdθI

]
→

[∏
I

dzIdθI

](
1 +

ε

2

∑
I

1

(z − zI)2

)
. (A.8)
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(Here the anti-commuting measure [dθI ] is required to maintain the integral property∫
dθIθI = 1). Super-Vandermonde determinant has the contribution∏
I<J

(zIJ − θIθJ)β →
∏
I<J

(zIJ − θIθJ)β

×

1 + ε
β

2

∑
I,J

[
1

(z − zI)(z − zJ)
+

θI
z − zI

θJ
(z − zJ)2

]
−
∑
I

1

(z − zI)2


 . (A.9)

Finally, the potential has the contribution

e

√
β
g

∑
I V (ζI) → e

√
β
g

∑
I V (ζI)

(
1 + ε

√
β

g

∑
I

[
(V ′B(zI) + θIV

′
F (zI))

z − zI
+

θIVF (zI)

2(z − zI)2

])
. (A.10)

Collecting all terms one has

1

2
ωB(z)2 + V ′B(z)ωB(z) +

1

2

(
ωF (z)V ′F (z)− ω′F (z)VF (z)

)
+
~Q
2
ω′B(z) +

1

2
~2
(
ωBB(z, z) + ω

(1,2)
FF (z, z)

)
= fB(z) (A.11)

where ωBB(z, z) and ω
(1,2)
FF (z, z) are the connected two-point resolvents

ωBB(z, w) = β

〈∑
I

1

z − zI

∑
J

1

w − zJ

〉
conn

. (A.12)

and

ω
(1,2)
FF (z, w) = β

〈∑
I

θI
z − zI

∑
J

θJ
(w − zJ)2

〉
conn

. (A.13)

fB is related with the super-potential

fB(z) = g
√
β

〈∑
I

(V ′B(z)− V ′B(zI)) + θI(V
′
F (z)− V ′F (zI))

z − zI
+

1

2

θI(VF (z)− VF (zI))

(z − zI)2

〉
.

(A.14)

It is useful to find the explicit holomorphic structure of fF (z) and fB(z) for the given

potential (2.7) and (2.8). They are given in terms of the inverse powers of z

fF (z) =

n−1/2∑
r=−1/2

ηr

z3/2+r
. (A.15)

The moment ηr is given as an expectation value and η−1/2 vanishes which is evident from

1/z expansion of (A.4). If one uses the explicit form of the potential, one may put the

non-vanishing moment into an interesting form as in non-supersymmetric case [18, 20]

ηr = gr(−~2 logZ) + δr,1/2g
√
βξ0 (A.16)

– 13 –



J
H
E
P
1
2
(
2
0
1
6
)
0
0
4

where gr is the differential representation of the super current (corresponding to

right action)

gr =
∑
k

(
kξk+r−1/2

∂

∂ck
− ck+r+1/2

∂

∂ξk

)
. (A.17)

This is obtained if one notices that
√
β

g

〈
1

zk+1
I

〉
= k

∂

∂ck
lnZ,

√
β

g

〈
θI

zkI

〉
=

∂

∂ξk
lnZ (A.18)

Likewise, fB is written in terms of inverse powers of z,

fB(z) =

n∑
m=−1

dm
z2+m

. (A.19)

The moment d−1 vanishes from 1/z expansion of (A.4). Non-vanishing moment has

the form

dm = `m(−~2 logZ) (A.20)

where `m is the differential representation of the Virasoro current (corresponding to

right action)

`m =
∑
k

(
l cl+m

∂

∂cl
+

(
2`+m+ 1

2

)
ξl+m

∂

∂ξl

)
. (A.21)

It can be checked that gr in (A.17) and lm in (A.21) satisfy the commutation relation of

right action of the super algebra

[lm, gr] =

(
r − m

2

)
gr+m, {gr, gs} = −2lr+s, [lm, ln] = −(m− n)lm+n. (A.22)

At the NS limit (~→ 0 and b→∞ so that ~b = ε), the loop equations (A.4) and (A.11)

can be put in terms of one-point resolvent only, which is called the deformed spectral curve

xB(z)xF (z) + εx′F (z) = FF (z) (A.23)

xB(z)2 + εx′B(z) + xF (z)V ′F (z)− x′F (z)VF (z) = 2FB(z) (A.24)

where we use compact notations: xB(z) = ωB(z)+V ′B(z), xF (z) = ωB(z)−VF (z), FF (z) =

fF (z)− V ′B(z)VF (z)− εV ′F (z) and FB(z) = fB(z) + 1
2V
′2
B + εV ′B(z).

It is interesting to look into the explicit form of FF (z) and FB(z).

FF (z) =

2n+1/2∑
r=1/2

Ωr + ηr

z3/2+r
, FB(z) =

2n∑
m=0

Λm + dm
z2+r

, (A.25)

where Ωr is an anti-commuting number Ωr =
∑

k+`=r−1/2 ckξ` − ε(δr,1/2 − (r+ 1/2))ξr−1/2

and Λm is a commuting number Λm =
∑

k+l=m ckcl/2 − ε(m + 1)cm/2 Non-vanishing ηr
(r = 1/2, · · · , n − 1/2) and dm (m = 0, · · · , n) are given in (A.15) and (A.19). The

anti-commuting number Ωr with r = (n + 1/2, n + 3/2, · · · , 2n + 1/2) corresponds to

the eigenvalue of super-current positive mode Gr and the commuting number Λm with

m = (n+ 1, n+ 2, · · · , 2n) corresponds to the eigenvalue of Virasoro positive mode Lm.

The same analysis can be done for the potential (2.12) and (2.11) of the half-odd rank

(n− 1/2) similarly if one considers the constraint of the variables, c2
n = 0 = cnξn−1. This

shows that Λm = 0 if m ≥ 2n and Ωr = 0 if r ≥ 2n− 1/2.
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