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1 Introduction

It is well known that the presence of anti-branes in otherwise supersymmetric string config-

urations breaks supersymmetry. Describing this effect in a properly defined effective field

theory is an interesting challenge. In particular, the KKLT scenario of de Sitter moduli

stabilisation [1, 2] relies on the presence of at least one anti-D3-brane (D3) to lift the su-

persymmetric AdS minimum and allow the possibility of dS string vacua. The uplift is

due to the positive energy provided by the tension of the D3 brane located at the tip of a

warped throat.

Even though it is generally agreed that the presence of an antibrane breaks supersym-

metry spontaneously, see for example [3], a manifestly supersymmetric action describing

this effect was missing until recently. The corresponding action of the D3 was presented re-

cently in [4, 5] starting from a single κ-symmetric brane in the supersymmetric background
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with fluxes. Using the consistent supersymmetric orientifold condition for the fields on the

brane one finds that the vectors and scalars are cut off in this procedure. It corresponds

to placing the D3 on top of an O3-plane, and the surviving part of the brane action co-

incides with the Volkov-Akulov (VA) action [6]. This action has a non-linearly realized

supersymmetry on a single N = 1 fermionic goldstino which has no bosonic supersym-

metric partners. The Volkov-Akulov goldstino model has also an alternative description

via a nilpotent chiral multiplet [7–12]. In such a multiplet the scalar component, sgold-

stino, is not a fundamental field but a bilinear combination of the fermions. The auxiliary

field of the nilpotent multiplet is not vanishing, which signifies a spontaneously broken

supersymmetry.

The renewed interest to KKLT construction of de Sitter vacua is partly due to im-

proved observational data on dark energy and inflationary cosmology. The update on

dark energy follows from combining Planck data with other astrophysical data, including

Type Ia supernovae. The equation of state of dark energy is now, according to [13, 14]

w = −1.006± 0.045 . (1.1)

This supports the idea behind the KKLT construction and other constructions such as

the large volume scenario (LVS) [15, 16] that lead to the string landscape scenario, that a

cosmological constant with w = −1 remains a good fit to data. In fact it is a much better

fit than the one in 2003 when this construction was suggested.1

Further motivations for nilpotent superfields come from cosmology. The recent bottom-

up approach to cosmology [37–47] using an effective d = 4 N = 1 supergravity has very

nice phenomenological features. Namely, new supergravity models were constructed de-

pending on two chiral superfields [37, 38], an inflaton superfield and a nilpotent superfield

X satisfying the nilpotency condition X2(x, θ) = 0. These models agree nicely with the

Planck data [13, 14], during inflation the scale of δρ
ρ and the tilt of a power spectrum ns

take their known observational values. Meanwhile, the level of primordial gravity waves r

depends on the curvature of the moduli space and is therefore flexible with regard to future

discovery of gravity waves or a new bound on r. At the minimum of inflationary potential

in the recent models in [42–47] supersymmetry is broken spontaneously in de Sitter vacua

and the cosmological constant is given by2

Λ = M2 − 3m2
3/2 . (1.2)

Here M , the scale of supersymmetry breaking by goldstino at the minimum, is the value

of the auxiliary field of the nilpotent multiplet. This SUSY breaking scale M in the

context of models in [42–47] will be somehow restricted by the LHC discovery/non-discovery

of supersymmetry, depending on how it appears in the soft-breaking terms. When the

universal goldstino contribution to energy M2 is slightly larger than the one from gravitino

−3m2
3/2, the models describe the dark energy with a cosmological constant Λ in the spirit

of the string landscape.

1For other approaches towards de Sitter space in string compactifications see [17–36].
2We write the scalar potential and then the cosmological constant in units of Mplanck so there is an

implicit M2
planck factor on the right hand side of the equation.
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A complete self-contained proof of non-linearly realized supersymmetry for the single

D3 on top of the O3 plane is contained in [4, 5]. The result has been derived using a pow-

erful and rigorous method of a local fermionic κ-symmetry where the local supergravity

background is represented by a superspace with fermionic coordinates. However, there are

certain issues that benefit from a direct string theory analysis. For instance, it is interesting

to provide a direct microscopic computation of the worldvolume field content of D3-branes

on top of orientifold planes, by using standard open string worldsheet techniques. In ad-

dition, it is not a priori obvious that it is possible to introduce O3-planes at the bottom

of warped throats. Even though this may seem a question of finding suitable supergrav-

ity backgrounds, it turns out that this quest is best approached by using holography to

construct field theories whose RG flow produces the desired orientifolded warped throat,

generalizing the KS construction [48].

We will confirm the features of the supersymmetric KKLT construction presented

in [4, 5], and we will describe the positions of the O3-plane and the properties of the

warped throat geometries for which the analysis in [4, 5] can be applied. This aspect of

the work is very important for the eventual analysis of the possible values our parameter

M can take in string theory, so that the string landscape picture can be supported for our

supersymmetric KKLT case.

Thus, the main purpose of this note is to describe explicit realizations of string theory

anti-D-brane sectors with a spectrum corresponding to the nilpotent chiral multiplet with

a fermionic goldstino which has no bosonic superpartners. The absence of scalars, which

follows from the consistent orientifolding, shows that these local models have improved

stability properties. These local models describe only the D3-brane at warped orientifold

throat, but this should be regarded as a sector of a fully-fledged compact Calabi-Yau

compactification. Such global models of string compactification can then achieve the re-

alization of the phenomenological models of inflation and supersymmetry breaking in dS

vacua proposed in [39–47], and other extensions thereof.

As mentioned, the case of a single D3-brane seems to enjoy improved stability prop-

erties. For instance, a special role of a single D3 in the KKLT uplifting was recently

established using the effective field theory (EFT) methods in [49], where it was argued

that EFT description allows to use the brane actions beyond the probe approximation.

For a single D3-brane in a flux threaded KS throat the back reaction is small and there

is no instability at small string coupling, in accordance with earlier studies in [50]. It is

moreover possible that beyond the most clear case of one D3-brane, the comments in [20]

hold for multiple antibranes if gsN � 1 (with N the number of anti-branes), in agreement

with the suggested existence of a metastable state in this regime in the probe analysis

of [50].

Meanwhile, during the last years there were papers studying KKLT construction with

many D3 branes using a d = 10 supergravity approximation and the feedback on it from

many branes. There are many examples of tachyonic instabilities and singularities, see

for example [51–59]. However, such an analysis is based on the classical 10d supergravity

approach which requires small string coupling gs � 1 and a large product gsN � 1 where

N is the number of antibranes, hence they require N � 1
gs
� 1. It means that these
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investigations reviewed are valid only for a large number of branes, and the approximation

is not reliable for our case of a single D3-brane.

For the supersymmetric single D3-brane studied in [4, 5] on the basis of κ-symmetry,

there is no known non-Abelian generalization to the case of many branes. It is sufficient to

remind that even the non-Abelian version of the bosonic Born-Infeld action is not available.

There is therefore a significant difference between the single and many brane cases: at our

present level of knowledge we can only state that the supersymmetric KKLT uplift in [4, 5]

is available for a single D3 brane.

In this paper we will focus on a single D3, and exploit the microscopic string theory

description to provide further insights into the stability of the system, and potential non-

perturbative decay channels. In addition we will also comment on the mutiple D3-brane

from the perspective of the string spectrum.

The rest of the presentation is organized as follows. Section 2 is devoted to general

string theoretical realizations of D3-branes in orientifolded flux backgrounds. The overall

differences and similarities of the spectrum on D3- and D3-branes are emphasized. For

ease of presentation, we assume the presence of a warped throat (induced by fluxes) and

postpone their explicit construction to later sections. We describe the computation of the

worldvolume spectrum on a single D3-brane stuck at an orientifold plane, and explore the

result for O3- or O7-planes. We show that a combination of fluxes and orientifold projection

leaves a single 4d massless fermion in the low-energy spectrum of the D3-brane, which can

be identified as the goldstino. We explain the stringy origin of the non-linearity in goldstino,

which is essential for the spontaneously broken supersymmetry. The generalization to a

higher number of anti-branes is briefly described.

In section 3 we concentrate on the description of O3-planes at the tip of a throat. We

show that, for the simple case of the KS throat, orientifold action producing O7-planes are

possible, but there are no consistent orientifolds producing O3-planes at the bottom of the

throat. However, we describe the construction of more general warped throats admitting

such O3-plane at their tip, and with the same warping behaviour as the KS case. We

moreover provide an explicit example with an explicit holographic dual field theory, based

on a deformed generalized conifold geometry. In section 4 we start a preliminary discussion

on the expected couplings of the nilpotent superfield X to Kähler moduli and chiral matter

fields in the visible sector and discuss the expected value of the soft breaking terms. Finally

in section 5 we present general discussions of the implications of these configurations for

KKLT and related scenarios of moduli stabilization.

2 String theory realization of the nilpotent goldstino

In this section we provide the string theory construction of a local system of D3-branes on

warped throats and show that the worldvolume spectrum contains only the goldstino of

the broken supersymmetries, with no extra fields. This shows, with account of a non-linear

goldstino coupling, that the presence of the D3-brane breaks supersymmetry spontaneously.

This also simplifies the description of systems including this kind of antibranes, by using

the nilpotent goldstino multiplet to write supersymmetric actions [12].
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Field SO(3, 1) SO(6) U(N)

Gauge boson vector 1 Adj

Scalar 1 6 Adj

Fermion spinor 4 Adj

Table 1. Spectrum on a stack of N D3-branes in flat space.

The construction is based on one D3-brane on top of an O3-plane at the bottom of a

warped throat (or in more generality, in the presence of imaginary self-dual (ISD) 3-form

flux G3). This is precisely the setup used in uplifting to de Sitter (in the KKLT or LARGE

volume scenarios), and in the inflation models described in the introduction.

In this section we only use general features of warped throats, like the presence of

supersymmetric 3-form fluxes. Explicit examples will be discussed in section 3.

2.1 D3- and D3-branes on warped throats

We now describe the worldvolume spectrum on D3- and/or D3-branes on top of O3-planes.

These computations are relatively standard, and we basically quote the results and their

physical interpretation.

2.1.1 Open string spectra in 10d flat space

As a warmup, consider a stack of N D3-branes in flat 10d space. As is familiar [3],

the massless open string spectrum, classified according to representations of the SO(3, 1)

4d Lorentz group on the brane worldvolume, the SO(6) ' SU(4) rotation group in the

transverse dimensions, and the U(N) gauge group, is shown in table 1.

It is the N = 4 U(N) super Yang-Mills vector multiplet. The supersymmetry of the

open string sector is related, by open-closed duality, to the BPS cancellation of NSNS

and RR closed string exchange between parallel D3-branes, as follows. The one-loop open

string partition function (annulus diagram) is given (up to a center of mass momentum

factor) by

Zannulus = trHopen NS+R
(qL0) (2.1)

where q = e−2πt is the modular parameter and L0 is the open string Hamiltonian in the NS

or R Hilbert space Hopen. The diagram can be transformed into a tree level exchange of

NSNS and RR closed string states between boundaries, i.e. D3-branes, with the structure

Zannulus = 〈D3| q′ 2L0 |D3〉NSNS + 〈D3| q′ 2L0 |D3〉RR (2.2)

where now L0 is the closed string Hamiltonian in the NSNS and RR sectors, the factor of 2

in the exponent accounts for left- and right-moving sectors, and q′ = e−2πt′ with t′ = 1/t.

If we instead consider a stack of N D3-branes, we obtain precisely the same spectrum,

as there is no way to distinguish D3- from D3-branes if they are isolated configurations

(see e.g. [60] for review). The only difference, since they preserve opposite set of super-

symmetries, is that the fermions transform in the 4 of SU(4), which amounts to a mere

convention in the absence of extra ingredients. Of course, in real string compactifications

– 5 –



J
H
E
P
1
2
(
2
0
1
5
)
0
3
9

there are many ingredients that distinguish them. In our case, we are interested in branes

located on warped throats supported by fluxes. We turn to consider their effect on the

worldvolume spectrum.

2.1.2 Effects of fluxes in warped throats

The masslessness of the above spectrum is in general modified in the presence of NSNS

and RR 3-form fluxes G3, such as those supporting the throat (or with more general fluxes

introduced to stabilize compactification moduli) [61, 62].

We start by pointing out that such fluxes have no effect on the gauge group, so the

gauge bosons remain massless. The effect of fluxes on the remaining massless sector was

considered in [63–65] (see [4, 5] for a recent analysis of the action of the D3-brane action

subject to orientifolding condition). We use a language from [4, 5, 64]. Consider first the

fermions λ, which transform as a 4 (or 4̄) under the SO(6) rotation group. As shown by

these references, the fermions pick up a mass term of the form

G3 λλ . (2.3)

The precise flux components providing mass for each of the four fermions follow from

the SO(6) selection rules. The flux density G3 is a 3-index antisymmetric tensor, which

decomposes into an imaginary self-dual (ISD) and imaginary antiself-dual (IASD) parts,

transforming as a 10 and 10 of SO(6), respectively. Therefore, the fermions on a D3-brane

can couple (through 4 · 4 · 10) to the IASD flux component, and remain massless in ISD

fluxes. This is a consequence of the cancellation between contributions from the DBI and

the CS actions, as checked explicity in the above references. On the other hand, we get

the opposite result for D3-branes, whose fermions remain massless in the presence of IASD

flux, but get masses (through 4̄ · 4̄ · 10) in the presence of ISD fluxes.

To be more concrete about the fermion spectrum, we notice that the throat in [48] (as

well as the more general throats in [81, 82], cf. section 3) are supported by supersymmetry

preserving (2, 1) primitive 3-form flux. Decomposing SO(6) → SU(3) × U(1) as befits 4d

N = 1 supersymmetry, we can decompose the fluxes as 10 = 6 + 3 + 1 (and its conjugate

decomposition for 10), with the (2, 1) primitive flux corresponding to the 6 (see e.g. table 1

in [64]). Decomposing the fermions as 4 = 3 + 1 (for D3-branes) and 4 = 3 + 1 (for D3-

branes), we see that the (2, 1) fluxes leaves the D3-brane fermions massless. However, it

gives mass to the triplet of fermions on D3-branes, and leave precisely one massless 4d

fermion. The intuitive explanation is that it corresponds to the goldstino of the 4d N = 1

supersymmetry of the flux configuration, which is broken spontaneously by the introduction

of the D3-brane. This model will play a crucial role in section 2.2.

Finally, consider the scalars. We focus on the n = 1 case, to have a minimal number of

fields, but also to avoid polarization due to cubic terms in the scalar potential [50], which

appear for n > 1.

The scalars get masses quadratic in the flux density, in a way compatible, but not

fully determined, by SO(6) quantum numbers. Hence we appeal to the results in [63–65],

focusing already on (2, 1) ISD flux. As already noted in [62], the result is that scalars
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on D3-branes get no mass, due to a BPS cancellation in the interaction of the D3-branes

and the fluxes: the gravitational and electrostatic interactions cancel for D3-branes in

supersymmetric flux, as they are mutually BPS.3 On the other hand, for D3-branes, both

effects add up, and the scalars get positive squared masses, stabilizing the D3-branes at

the maximum of the warp factor (and flux density), the bottom of the throat [50].

Therefore, for one D3-brane in the presence of (2, 1) fluxes, the massless spectrum is

given by a U(1) gauge boson, six real scalars and four fermions. For one D3-brane in the

presence of (2, 1) fluxes, the massless spectrum is given by a U(1) gauge boson, and one

4d spinor. Below the flux scale (at which other states should be included in the effective

action), this comes very close to the realization of a spectrum with just the goldstino. It

is really remarkable that this minimal goldstino structure arises almost precisely in the

configurations used for de Sitter uplifting.

In the following section we introduce a last ingredient to actually achieve a spectrum

with just the goldstino.

2.2 Anti-D3-brane with O3-plane and the nilpotent goldstino

In this section we introduce an O3-plane, and consider the worldvolume spectrum for a

single D3- or a single D3-brane on top of the O3-plane.4 For a discussion of the embedding

of these configurations in warped throats, see section 3.

2.2.1 D3-branes with O3-plane

Consider first the configurations in flat 10d space, and introduce one D3-brane on top of

an O3-plane. The introduction of the orientifold plane corresponds to modding out the

theory by Ω′ ≡ ΩR(−1)FL , where FL is spacetime left-moving fermion number, and R is a

geometric actiong flipping the sign of the dimensions transverse to the O3-plane, which is

therefore the fixed point of this action. The single D3-brane has no orientifold image, and

therefore it cannot move off the O3-plane; this will nicely dovetail with the worldvolume

spectrum content computed below. Also, let us note that the configuration with a single

D3-brane is possible only for the negatively charged O3−-plane; the choice of O3+-plane

can be discussed in section 2.4.

The computation of the D3-brane worldvolume spectrum amounts to imposing an

orientifold projection on the parent oriented D3-branes spectrum of section 2.1 (see e.g. [3,

60] for textbook reviews). Let λO|0〉 denote a massless state of a parent D3-brane system,

with λ the Chan-Paton wavefunction, and O the NS or R oscillators. The action of the

O3-plane is

λO|0〉 → −(γΩλ
Tγ−1

Ω )O|0〉 (2.4)

where γΩ is the action on Chan-Paton indices. This result is essentially identical to the

(T-dual, in suitable toroidal compactifications) orientifold projection in type I theory. In

3The cancellation occurs also (albeit accidentally) for the non-supersymmetric ISD (0, 3) flux component,

in agreement with the no-scale structure of the theory at tree level.
4Initially we focus on the negatively charged O3-plane, denoted O3−-plane, which corresponds to a

Chan-Paton projection matrix γΩ = 1; the O3+-plane is discussed in section 2.4.
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Figure 1. The one-loop open string annulus and Moebius strip diagrams turn into closed string

channel diagrams describing tree level exchange of NSNS and RR states between two boundaries

(branes or antibranes), or between one boundary and one crosscap (O3-plane).

particular, it is identical to the projections in e.g. [66, 67], in eq. (3.11)–(3.13) of [68], or

eq. (4.107) in [60].

For a single D3-brane, Chan-Paton matrices reduce to complex numbers, and for an

O3−-plane we have γΩ = 1. All the massless states, both for NS and R states, are odd

under the orientifold action, and therefore are projected out, so the D3-brane has no degrees

of freedom at all. The physical interpretation is that, since the D3-brane is stuck at the

O3-plane, there are no massless scalars in the spectrum; then, since the D3-brane preserves

the same 16 supersymmetries as the O3-plane, the orientifold projection must remove the

whole 4d N = 4 vector multiplet, i.e. the gauge bosons and fermions as well.

The supersymmetry of the orientifold projection in the open string channel is related,

by open-closed duality, to the cancellation of NSNS and RR exchanges in the closed string

channel. For the annulus diagram, this works as in the parent oriented theory; for the

Moebius strip diagram, which is responsible for the orientifold projection, this corresponds

to the BPS cancellation of the gravitational and 4-form interactions between the D3-brane

and the O3-plane, see figure 1.

More concretely, combining the open string annulus and Moebius strip amplitudes

we have

Zannulus+Zmoebius = trHopen NS+R
(qL0)+trHopen NS+R

(qL0 Ω′) = 2 trHopen NS+R

[
qL0

(1+Ω′)

2

]
.

The operator (1 + Ω′)/2 implements the projection onto invariant states.

The transformation onto the closed string channel for the annulus works as in sec-

tion 2.1.1. For the Moebius strip, we have

ZMoebius = 〈D3|q′ 2L0 |O3〉NSNS + 〈D3|q′ 2L0 |O3〉RR (2.5)

where q′ = e−2πt′ with now t′ = 1/(8t). For future convenience, we note that the Ramond

sector Moebius strip amplitude translates into the RR exchange in the closed string channel.

– 8 –
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2.2.2 Anti-D3-branes with O3-plane

We now consider one D3-brane on top of the O3−-plane. Again, the worldvolume spectrum

is obtained by a simple orientifold action on the parent oriented spectrum in section 2.1.

This is very similar to the D3-brane case, except for the fact that the orientifold does not

preserve the same supersymmetries as the D3-brane. As studied in [69, 70] (see also [71, 72],

and [60] for review), this manifests in an extra sign in the orientifold action on the open

string Ramond sector. Namely we have

NS (bosons) λO|0〉 → −(γΩλ
Tγ−1

Ω )O|0〉
R (fermions) λO|0〉 → +(γΩλ

Tγ−1
Ω )O|0〉 . (2.6)

The extra sign in the orientifold projection for Ramond states is easily derived from open-

closed duality, as follows. The extra sign is in the Moebius strip diagram for open string

Ramond states, which maps to an extra sign in the RR exchange between the crosscap and

the boundary. This precisely matches the fact that D3-brane carry the same tension as

D3-branes, but opposite RR charge, hence the NSNS exchange is identical in both systems,

but the RR exchange must have opposite signs.

More concretely, the Moebius strip closed string channel amplitude (2.5) turns into

ZMoebius = 〈D3|q′ 2L0 |O3〉NSNS − 〈D3|q′ 2L0 |O3〉RR . (2.7)

And the extra sign propagates to the open string channel as

Zannulus+Zmoebius = trHopen NS
(qL0)+trHopen R

(qL0)+trHopen NS
(qL0 Ω′)−trHopen R

(qL0 Ω′)

= 2trHopen NS

[
qL0

(1+Ω′)

2

]
+2trHopen R

[
qL0

(1−Ω′)

2

]
showing the different orientifold projection in the NS and R sectors.

Imposing this orientifold projection on the D3-brane spectrum, massless bosonic states

are odd and therefore removed by the orientifold projection, exactly as in the D3-brane

case. On the other hand, due to the sign flip, the massless fermionic states are orientifold-

even and remain in the spectrum. Thus a single D3-brane on top of an O3-plane has 4

fermions as its only worldvolume degrees of freedom.

The result of the orientifold projection has a nice physical interpretation. As in the

D3-brane case, the scalars are absent because the single D3-brane is stuck and cannot

move off the O3-plane. In this case, we cannot exploit supersymmetry to argue for the

disappearance of the gauge bosons, but it can be understood directly, as follows. Recall

that the worldvolume gauge fields on D-branes are intimately related to the NSNS 2-form

field, by the gauge symmetry

Bµν → Bµν + ∂[µΛν] ; Aµ → Aµ + Λµ . (2.8)

The familiar fact that the NSNS 2-form is projected out by orientifolds is thus correlated

with the removal of the worldvolume gauge field on D-branes, in our case on D3-branes
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(in agreement with supersymmetry, as discussed above) or on D3-branes, as in our case of

present interest.

Finally, the four massless fermions that remain in the spectrum are the goldstinos of

the sixteen supersymmetries preserved by the O3-plane, which are all spontaneously broken

by the introduction of the D3-brane.

As in the last part of section 2.1, we are actually interested in brane systems in the

presence of (2, 1) supersymmetric fluxes. The effect of these fluxes is simply obtained by

considering the fluxes in the parent theory, and truncating the spectrum by the orientifold

projection. More explicitly, for a single D3-brane in the presence of (2, 1) fluxes, the SU(3)

triplet of fermions is made massive by the fluxes, while exactly one fermion remain massless.

In conclusion, for a single D3-brane on top of an O3-plane, in the presence of (2, 1)

fluxes (such as those in warped throats), the light spectrum below the flux scale is given by

exactly one massless fermion. This is interpreted as the goldstino of the 4d N = 1 super-

symmetry preserved by the O3-plane and the fluxes, broken spontaneously by the presence

of the D3-brane. Therefore this setup provides an explicit string theory realization of a

spectrum given exactly by the nilpotent chiral multiplet. The fact that supersymmetry

with only fermions in the spectrum is broken spontaneously requires an additional confir-

mation: we will argue below that the non-linear terms in fermions are present in the action

of the D3-brane.

A natural question at this point is whether the spontaneously broken supersymmetries

are restored at higher energies. In a sense, the answer in the full string theory lies in

the earlier discussions of open-closed duality. The open string diagrams sensitive to the

supersymmetry breaking, like the Moebius strip, have a UV behaviour which is controlled

by the closed string channel, which is supersymmetric. Clearly, this regime is beyond

the reach of effective field theory, which therefore contains only the degrees of freedom

corresponding to the goldstino.

Besides the above described vanilla-type setup, it is also possible to achieve this spec-

trum from D3-branes on other orientifold planes, like O7-planes. These setups will be

described in section 2.5.

2.3 Non-linear goldstino interactions

From the spectrum of the configuration of a single D3-brane on top of an O3-plane we have

inferred that only a single Majorana fermion is present. To argue that supersymmetry is

broken spontaneously as in Volkov-Akulov (VA) theory [6], we have to explain the origin

of non-linear terms beyond the kinetic terms for the fermions. For this purpose we refer to

a property of the parent theory of a single D3-brane before orientifolding.

Recall how the non-linear interactions of the D-brane gauge bosons are nicely re-

summed in a Born-Infeld expression
√

(1 + (α′F )2), as can be shown from the string parti-

tion function in the presence of a single magnetic field component F , see e.g. [73]. Indeed,

the F 2 + α
′2F 4 terms in BI action are in precise agreement with the ones derived directly

from (super)string 4-point amplitude [74]. This motivated the suggestion in [73] to use 4d

N = 2 and N = 1 superfields to obtain the non-linear fermionic partners to the non-linear

Born-Infeld terms F 2n. Namely the supersymmetrization of the Born-Infeld terms e.g. of
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the form F 4 gives the result one would obtain from direct computation of the (super)string

4-point amplitude for fermions.

An advanced version of this kind of supersymmetrization was presented in [75, 76],

allowing for the computation of the local terms in the D-brane action producing higher

order non-linear terms both in Maxwell field as well as in spinor fields. For example, the

action of D3 or D3-brane in a gauge where WZ term is absent and only DBI term is present

has the following form [75, 76]

S = − 1

α2

∫
d4x

√
− det(Gµν + αFµν) , µ = 0, 1, 2, 3 , (2.9)

where

Gµν = ηmnΠm
µ Πn

ν = ηm′n′Π
m′
µ Πn′

ν +δIJΠI
µΠJ

ν , m′= 0, 1, 2, 3 , I=1, . . . , 6 .

Πm′
µ = δm

′
µ −α2λ̄Γm

′
∂µλ , ΠI

µ= ∂µφ
I−α2λ̄ΓI∂µλ , Fµν ≡Fµν−bµν ,

bµν = 2αλ̄Γ[µ∂ν]λ−2αλ̄ΓI∂[µλ∂ν]φ
I = −2αλ̄Γm′∂[µλΠm′

ν]−2αλ̄ΓI∂[µλΠI
ν] . (2.10)

This action has a maximal number of supersymmetries, namely 16 ε-supersymmetries cor-

respond to a deformation of the original 16 supersymmetries of the N = 4, d = 4 Maxwell

multiplet, and 16 ζ-supersymmetries correspond to a Volkov-Akulov-type supersymmetries.

For example, the ζ transformations on the brane acting on the spinor λ are

δζλ = ζ + λ̄γaζ∂aλ . (2.11)

If instead of the regular κ-gauge symmetry fixing one imposes the orientifolding con-

dition as explained in [4, 5], the action of the D3-brane reduces to a VA action without

vectors and scalars.5 Namely, a direct computation of superstring amplitudes in a situation

with only fermions, and no vectors or scalars, would reproduce the non-linear terms in the

D3-brane of the form [4, 5]

SVA = −M2

∫
d4σ detE = −M2

∫
E0∧E1∧E2∧E3, Ea = δaµdσ

µ+ λ̄γadλ . (2.12)

This action is invariant under the non-linear N = 1 supersymmetry transformation (2.11).

The action can be also given in the following form (see [12], where it was derived for a

nilpotent superfield, X2(x, θ) = 0)

LKS = −M2 + i∂aψ̄σ̄
aψ +

1

4M2
ψ̄2∂2ψ2 − 1

16M6
ψ2ψ̄2∂2ψ2∂2ψ̄2, (2.13)

with σ̄a = (−1,−σn). As it is shown explicitly in [78], the above action agrees with the

original VA action (2.12) after a spinorial field redefinition ψ = M2λ plus terms non-linear

in fermions.

2.4 Additional D3-branes and other variants

In this section we briefly consider how the earlier discussion changes for other systems of

D3-branes and O3-planes. These variants were considered in [70], and the computation of

their spectrum, to be described shortly, is advanced in table 2.6 The bottom-line is that

5A more detailed study of the fermionic terms on the D3-brane reveals that the VA form for the D3-brane

action may persist even when all orders of fermionic interactions are taken into account [77].
6This corrects a typo in [70], where N(N ± 1)2 should be replaced by N(N ± 1)/2.
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SO(1, 3) SO(6) O3−: SO(N) ; O3+: USp(N)

Gauge bosons vector singlet N(N − 1)/2 ; N(N + 1)/2

Scalars singlet vector N(N − 1)/2 ; N(N + 1)/2

Fermions spinor spinor N(N + 1)/2 ; N(N − 1)/2

Table 2. Massless spectrum on anti D3-branes on top of O3-planes.

for O3-planes, the only setup realizing just the goldstino multiplet is that considered in the

previous sections.

2.4.1 Additional D3- or D3-branes

Consider a stack of N D3- or D3-branes on top of an O3−-plane in flat 10d space. The mass-

less spectra are obtained by applying the orientifold projection conditions (2.4) or (2.6), but

with an enlarged N ×N Chan-Paton matrix λ, and a projection matrix given by γΩ = 1N .

For N D3-branes, the conditions (2.4) project all NS and R massless states onto an-

tisymmetric Chan-Paton matrices λ. The massless spectrum thus corresponds to SO(N)

gauge bosons, six scalars and four fermions, all in the antisymmetric (i.e. adjoint) repre-

sentation. This spectrum fills out the 4d N = 4 SO(N) vector multiplet, since D3-branes

preserve the same supersymmetry as the O3-plane.

For N D3-branes, the conditions (2.6) imply that the NS massless states project down

to the antisymmetric representation, but due to the extra sign for Ramond states project

down onto the symmetric representation. Therefore we obtain SO(N) gauge bosons, six

scalars in the antisymmetric representation, and four fermions in the symmetric represen-

tation.

Note that for N = 1 the antisymmetric representations are empty, and we recover

the spectrum of the previous section, with a purely fermionic massless spectrum, repro-

ducing the goldstino of the spontaneously broken supersymmetries. Note also that the

two-index symmetric tensor representation of SO(N) is reducible, and splits into a singlet

(the trace) and a traceless symmetric tensor. The singlet of fermions also corresponds to

a goldstino, for general N , and could be described in terms of a nilpotent chiral multiplet.

However, the presence of the extra fields (with non-matched fermions and bosons) requires

the introduction of additional constrained superfields, as introduced in [12]. Since these

systems do not reproduce the minimal goldstino setup, we refrain from discussing them

further.

Moreover, as reviewed in the introduction, multiple D3-brane systems have additional

difficulties. Namely, they do not have a known realization of the local κ-symmetry. Also,

it is easy to show that they suffer a repulsive instability, additional pairs of D3-branes

located on top of the O3-plane are dynamically expelled off, as follows. Since both the

tension and 4-form charge of the O3−-plane are negative, both the gravitational and RR

exchange interaction between the O3-plane and the D3-brane pair are repulsive. The above

closed string channel description has an open string channel description as well: the one-

loop quantum correction to the masses of scalars that appear in multiple brane systems

renders them tachyonic and thus unstable.
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This analysis suggests that the configuration with one D3-brane on top of the O3-plane

is natural (as others dynamically flow to it, by pairwise expulsion of additional D3-branes),

and constitutes a stable configuration (as it has no scalars and thus no further tachyons).

Note that for the stuck antibrane, the repulsive interaction is just a constant contribution

to the vacuum energy, i.e. a (finite) quantum correction to the cosmological constant.

These observations actually emphasize the simplicity and elegance of the single D3-

brane on a O3-plane, where the κ-symmetry has been studied in [4, 5], and the absence of

scalars ensures the stability of the systems agains tachyons. This nicely dovetails the fact

that the system with a single D3-brane is not well-described as a supergravity solution,

and therefore can evade the problems found there.

2.4.2 Using O3+-planes

For completeness we comment of the system of D3- and D3-branes on top of a positively

charged, O3+-plane. The definition of a string theory configuration in the presence of an

O3+-plane is identical to the O3−-plane case, except that the quantum amplitude of a

worldsheet with nc crosscaps has an extra sign (−1)nc (see [60] for a textbook review).

This is easily understood by considering the tree-level closed string exchange between one

crosscap and one boundary: the overall sign change due to the crosscap reflects the fact

that an O3+-plane has opposite tension and charge as compared with the O3−-plane.

The extra sign flips the orientifold projection in the open string (both NS and R) sector

(it can be equivalently described by using the same projections but with γΩ = εN , with

εN =
(

0 1
−1 0

)
⊗ 1N/2). The resulting massless spectra for N D3- or D3-branes on top of an

O3+-plane are as follows. For N D3-branes, we get gauge bosons of USp(N), six scalars

and four fermions, all in the two-index symmetric (i.e. adjoint) representation. This fills

out the 4d N = 4 USp(N) vector multiplet, in agreement with the mutual supersymmetry

of D3-branes and O3-planes. Note that N is forced to be even for consistency, therefore

the minimal non-trivial case of this kind corresponds to N = 2.

For N D3-branes we get USp(N) gauge bosons, six real scalars in the symmetric

representation, and four fermions in the antisymmetric representation. Considering the

minimal case of N = 2, the latter are gauge singlets, and correspond to the goldstinos of

the spontaneously broken supersymmetries (for higher n, the antisymmetric representation

is reducible and also contains gauge singlets corresponding to the goldstinos). However,

these goldstinos are accompanied by non-Abelian gauge bosons and charged scalars, so the

spectrum does not correspond to purely the nilpotent chiral multiplet, and may suffer from

the difficulties of the N > 1 case mentioned in the previous section.

As described in [70, 80], the system of two D3-branes on top of an O3+-plane describes

the S-dual, infinite coupling regime of the single D3-brane on top of the O3−-plane. The

presence of additional scalars might seem bothersome, but they are easily shown to actually

be very massive. In the open string channel, this follows from the one-loop quantum

correction tot he scalar mass. In the closed string channel, it follows from the attractive

intraction between the O3+-plane and the two D3-branes. However, note that even if

scalars are absent, the configuration still contains SU(2) gauge bosons and therefore is not

a realization of a configuration with just the goldstino multiplet.
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In any event, these issues are directly absent in the weak coupling regime of the single

D3-brane stuck at the O3−-plane, at which we assume the dilaton is stabilized by bulk

fluxes.

2.5 The nilpotent goldstino from D3-branes with an O7-plane

In this section we consider the configuration of single D3-brane in the presence of other

orientifold planes, like O7-planes. As we will see, it can also produce the minimal spectrum

of just the goldstino at the massless level, albeit with additional massive scalars at the flux

scale.

We start in flat 10d space, split as 4d Minkowski space and three complex coordinates

z, w1, w2. We introduce an O7-plane defined as the fixed point set under an orientifold

action ΩR(−1)FL , with FL left-moving spacetime fermion number, and a geometric action

R : z → −z.7

Consider a single D3-brane stuck at z = 0 i.e. on top of the O7-plane. The D3-brane

preserves 8 of the 16 supercharges of the O7-plane, so the spectrum fills out 4d N = 2

multiplets. The computation is similar to that of D5-branes in the presence of an O9-plane

(i.e. in type I theory), see [79]. The projections are as follows

Gauge bosons, scalar z λO|0〉 → −(γΩλ
Tγ−1

Ω )O|0〉
Scalars w1, w2 λO|0〉 → +(γΩλ

Tγ−1
Ω )O|0〉

Two fermions λ, ψ λO|0〉 → −(γΩλ
Tγ−1

Ω )O|0〉
Two fermions ψ1, ψ2 λO|0〉 → +(γΩλ

Tγ−1
Ω )O|0〉 (2.14)

with γΩ = 1 for an O7+-plane. The orientifold removes the gauge boson, the scalar z, and

the fermions λ, ψ. This can be understood because the D3-brane is stuck at z = 0 so the

corresponding scalar (and by supersymmetry the whole N = 2 multiplet hosting it) must

be projected out. The massless spectrum is given by the orientifold-even states, which

correspond to two fermions ψ1, ψ2, and two scalars w1, w2. The corresponding 4d N = 2

hypermultiplets is associated to the fact that the D3-brane can slide along the O7-plane

in the directions w1, w2. As usual, this spectrum is not modified by the presence of ISD

(2, 1) fluxes due to the relative BPS nature of the D3-branes and the fluxes.

Consider now introducing a single D3-brane instead. By the same argument as in

section 2.2, the spectrum is obtained by imposing the orientifold projections, with an extra

sign on the Ramond sector. Namely we have

Gauge bosons, scalar z λO|0〉 → −(γΩλ
Tγ−1

Ω )O|0〉
Scalars w1, w2 λO|0〉 → +(γΩλ

Tγ−1
Ω )O|0〉

Two fermions λ, ψ λO|0〉 → +(γΩλ
Tγ−1

Ω )O|0〉
Two fermions ψ1, ψ2 λO|0〉 → −(γΩλ

Tγ−1
Ω )O|0〉 . (2.15)

7For the initiated, note that there are two variants of O7-planes, which differ on their orientifold projec-

tion on the open string sector. We focus on the O7+-plane, for reasons that will soon become clear.
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The orientifold removes the gauge boson, the scalar z, and the fermions ψ1, ψ2. There

survive four real scalars (the complex w1, w2) and two fermions λ, ψ. These correspond

to a 4d N = 2 supersymmetry preserved by the D3-brane and the O7-plane (given by the

8 supersymmetries preserved by the O7-plane but broken by the D3-brane in the earlier

computation). Hence, this N = 2 is not preserved by other ingredients in string compact-

ifications, and in particular is not compatible with the the (2, 1) fluxes on warped throats.

In fact, it is easy to check (using the SO(6) quantum numbers, and their decomposition

under the SO(4)×SO(2) preserved by the O7-plane) that the (2, 1) fluxes give mass to the

fermion ψ, and to the scalars w1, w2. The latter describes the fact that the D3-brane will

be pinned to the point of maximal warp factor.

In this situation, the massless spectrum contains only one fermion, which corresponds

to the goldstino of the N = 1 supersymmetry preserved by the fluxes (and the O7-plane)

and are broken spontaneously by the D3-brane. Notice however the important difference

with respect to section 2.2, that in this case the scalars are not directly projected out, but

remain in the massive spectrum, with mass fixed by the scale at the bottom of the throat.

On the other hand, an advantage of the O7-plane setup is that it is very easy to

construct warped throats admitting this kind of orientifold involution. This is possible for

O3-planes, although it requires some heavier machinery. We turn to this discussion in the

next section.

3 Orientifolding warped throats

The basic ingredient to realize the nilpotent goldstino spectrum are D3-branes and ori-

entifold planes at the bottom of warped throats. In earlier sections, such throats were

asummed to exist and to have the standard properties associated to the prototypical KS

throat [48], mainly the existence of (2, 1) 3-form fluxes. In this section we discuss the

realization of throats of this kind with orientifold planes (of various kinds) at their bottom.

3.1 Preliminary remarks

Let us consider the question of locating an O3-plane at the bottom of warped throats.

One may naively think that this requires a substantial tuning. However, this is not

the case, because the location of O3-planes is not determined by a choice of free pa-

rameters, but rather by the determination of fixed points under the geometric part R
of the orientifold action ΩR(−1)FL . Locally R acts by flipping three local coordinates

(z1, z2, z3)→ (−z1,−z2,−z3). Actually the right description on a curved CY is to require

that R flips the sign of the holomorphic 3-form (the earlier explicit action satisfies this,

since locally the holomorphic 3-form is dz1dz2dz3).

On the other hand, it is certainly true that not all warped throats admit an O3-

plane symmetry. For instance, the well-established Klebanov-Strassler throat is based

on a warped version of the deformed conifold geometry, which in complex variables is

described by

xy − zw = ε (3.1)
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where ε is the size of the S3, fixed in terms of the flux data. One may be tempted to

consider the Z2 action flipping all coordinates in this geometry,

(x, y, z, w)→ (−x,−y,−z,−w) . (3.2)

This is a symmetry (3.1) for arbitrary ε, and would seem to provide an unoriented version

of the deformed conifold throat. However it does not introduce O3-planes, since the action

has no fixed points, since the origin x = y = z = w = 0 is not part of the CY defined

by (3.1). Moreover, the action is not acting properly on the holomorphic 3-form dx dy dz/z.

This is in fact a general feature of the KS throat: the deformed conifold does not have

any holomorphic Z2 symmetries with isolated fixed points. Therefore the usual warped

deformed conifold geometry does not admit the introduction of an O3-plane. This is

important to appreciate that the introduction of O3-planes is not a choice that we can

control at will.

On the other hand, there exist orientifold actions which define O7-planes on the de-

formed conifold [84]. For instance

(x, y, z, w)→ (−x,−y, z, w) . (3.3)

This defines an O7-plane located at x = y = 0, namely at zw = −ε. This can be used to

construct a string realization of the minimal goldstino multiplet as described in section 2.5,

which is easily embedded in the KS throat. Namely, the O7-plane stretches in the radial

direction getting down to the bottom of the throat, where the D3-brane sits.

One should not conclude that O3-planes are too hard to be realized in warped throats.

In the next section we address this question more systematically, and easily construct

very explicit examples of throats (with explicit holographic dual quiver field theories) with

O3-planes at their bottom.

3.2 Explicit throats with O3-planes

The reader not interested in the details, but just in one working example, can jump to the

discussion around (3.5).

3.2.1 The conifold revisited

In order to present the general analysis, we review the KS throat emphasizing those aspects

important for generalizations.

The KS throat is based on a warped version of the deformed conifold geometry. The

latter can be obtained by a geometric transition from the resolved conifold. The resolved

conifold is a toric geometry, i.e. it can be described as a series of circles fibered over a base,

with loci where particular circle fibers (or combinations thereof) degenerate (see e.g. [88]

for a simple introduction to toric geometry). The geometry is encoded in a so-called web

diagram, which is a figure in a 2-plane (representing the base of the fibration), composed

of lines and segments with a (p, q) label defining their slope, and joining at vertices with an

‘equilibrium’ sum rule: the (p, q) labels of all incoming legs must add up to zero. The (p, q)
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Figure 2. a) The web diagram for the resolved conifold; the finite segment corresponds to the

2-sphere. b) The splitting of the diagram into sub-webs in equilibrium describes the complex

deformation; the dashed segment measuring the sub-web separation represents the 3-sphere. c) The

3-sphere in the complex deformation can support fluxes which lead to the KS warped throat.

label of each line representing that a (p, q) linear combination of circle fibers degenerates

over the locus of the base. The web diagram of the resolved conifold is shown in figure 2(a).

The geometric transition of shrinking the 2-cycle and deforming the geometry by grow-

ing a 3-sphere corresponds to shrinking the S2 finite segment in figure 2(a), and separating

the diagram into two sub-webs in equilibrium, the two indepent lines in figure 2(b). The

resulting geometry can support 3-form fluxes leading to the KS warped throat, shown in

figure 2(c).

The throat has a field theory dual, given by the quiver gauge theory of N D3-branes

in the resolved conifold geometry, in the presence of M fractional D5-branes wrapped on

the S2. In the gravity dual, M is the RR 3-form flux on the S3, and N is the total charge

carried by the NSNS and RR fluxes, taking the throat to be cutoff at some radial distance

to render the NSNS flux finite. The 4d N = 1 theory, determined in [87] (see also [89–91]),

has two gauge factors SU(N)×SU(N +M) with chiral multiplets Ai, i = 1, 2 in the ( , )

and Bi in the ( , ), and a superpotential W = εijεkltr (AiBkAjBl). The warped throat

is dual to the RG flow of this gauge theory, in which the gauge factors, in an alternating

fashion, attain strong coupling and suffer a Seiberg duality, reproducing a periodic pattern

known as duality cascade. The number of fractional branes is preserved, but the number

of D3-branes decreases logarithmically along the RG flow. The infrared end of the RG flow

arises when the D3-branes disappear, and the strong gauge dynamics on the remaining M

fractional branes confine and generate a dynamical scale, exponentially suppressed with

respect to the UV cutoff, and whose gravity dual is the S3 size, fixed by ε in (3.1).

The gauge theories for branes at toric singularities are efficiently encoded in dimer

diagrams [85]. They are (bipartite) graphs tiling an auxiliary T2 (equivalently, doubly pe-

riodic two-dimensional graphs), with faces representing gauge factors, edges representing

chiral multiplets in bi-fundamental representations of the adjacent gauge factors (with ori-

entation given by moving e.g. clockwise around black nodes, and counterclockwise around

white nodes), and nodes representing superpotential couplings of the chiral multiplets as-

sociated to the edges of the node (and sign determined by the node color). The diagram

for the conifold is shown in figure 3. The web diagram corresponding to the toric geometry

underlying a given dimer gauge theory is easily obtained by simple combinatorial tools,

whose discussion we skip, directing the interested reader to the references.
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Figure 3. Dimer diagram for the theory of D-branes at a conifold. The dashed line is the unit cell

in the periodic array.

3.2.2 More general throats and an explicit example

In order to construct more general throats, we must consider more general toric singu-

larities, which are easily engineered using the web diagrams. The quiver gauge theories

associated to D-branes at such singularities can systematically studied using dimer diagram

tecniques. However, not all such geometries admit complex deformations, and therefore not

all can be used to define warped throats with smooth infrared ends. The criterion for the

existence of complex deformations, and its dual field theory interpretation, were described

in [86]. The result is that complex deformations correspond to splitting the web diagram

into sub-webs in equilibrium. The field theory dual is described in terms of confinement

on a set of gauge factors associated to certain fractional branes, and was systematically

studied in terms of dimer diagrams in [83, 86].

The geometries admitting complex deformations can be used to build throats, which

are supported by (2, 1) 3-form fluxes, with RR fluxes on the 3-cycles at the bottom of the

throat, and NSNS fluxes on their dual 3-cycles. The field theory duals of these throats

correspond to duality cascades triggered by the fractional branes dual to the RR 3-form

fluxes, which lead to a reduction of the effective number of D3-branes as one runs to the

infrared, and which ends in a process of confinement at a dynamical scale dual to the size of

the infrared 3-cycles. The explicit construction of metrics for these throats depends on the

ability to write metrics for the corresponding (deformed) cones, see [81] for some examples

of the KT-like solutions for cones over del Pezzo surfaces. However, the main properties of

the throats, like the existence of (2, 1) fluxes, and the scaling of the warp factor with the flux

quanta, can be established even with no information about the underlying metric. These

properties are easily encoded in the existence of a supersymmetric RG flow representing a

duality cascade.

As example, useful in later discussions, consider the geometry xy = z3w2, whose web

diagram in the resolved and deformed phases is shown in figure 4. The resolved phase has

two independent 3-spheres, which can support two different quanta of RR 3-form flux.

After the deformation, the geometry reads8

xy = z(zw + ε1)(zw + ε2) . (3.4)

8A simple derivation is as follows. Consider the modified geometry xy = z3w3, which we can rewrite as

xy = t3, t = zw. The first equation is a C2/Z3 singularity, which can be deformed by splitting the zeroes

of t3, namely we end up with xy = t(t + ε1)(t + ε2), t = zw, equivalently xy = zw(zw + ε1)(zw + ε2).

The deformation of xy = z3w2 is basically the same, by simply removing one power of w (i.e. performing a

partial blow-up).
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Figure 4. a) Web diagram for the geometry xy = z3w2 in the resolved phase; the exponents of z, w

in the defining equation are related to the numbers of parallel vertical external legs. b) Diagram

for the deformed geometry, with two independent 3-spheres, shown as dashed lines.

Figure 5. Dimer diagram describing the gauge theory on D3-branes at the geometry xy = z3w2.

The field theory associated to these singularities (first considered in [90]) has a dimer

diagram shown in figure 5. The fractional branes responsible for the duality cascade and

complex deformation correspond to faces 2 and 4.

The strong dynamics of the gauge theory due to the fractional branes can be easily

studied using the dimer diagram, as follows. For our purposes, it is sufficient (and later

on, necessary) to take the gauge factors on faces 2 and 4 of equal rank, so both reach the

infrared of their duality cascade simultaneously. Both groups confine, and their elementary

flavours must be recast in terms of mesons, which moreover get non-trivial vevs and break

some of the flavour symmetries to their diagonal subgroup. Concretely, the dynamics of face

2 forces the recombination of the gauge symmetries associated to faces 1 and 3, while the

dynamics of 4 recombines 3 and 5. This is shown in figure 6(a), where the confining faces

are ultimately shrunk and its endpoint nodes are collapsed. The resulting gauge theory

contains only one face, and its dimer diagram is described in figure 6(b). It corresponds

to the quiver gauge theory of D3-branes in flat C3, showing that the complex defomation

has smoothed out the singular geometry completely.

3.2.3 The orientifold throat with O3-plane

We are now ready to consider warped throats with O3-planes. As discussed above, the

general strategy is to search for complex deformed geometries which admit a Z2 symmetry

flipping the sign of the holomorphic 3-form, and having isolated fixed points. Since the
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Figure 6. a) The confinement and chiral symmetry breaking of the gauge factors 2 and 4 can be

represented in the dimer diagram. b) Upon recombining the faces 1,3 and 5, and collapsing the

faces 2 and 4, we are left with the dimer of C3. The blue shade in (a) suggest the shape of the final

face in (b).

Figure 7. a) The orientifold of the toric geometry is represented as a symmetry of the dimer

diagram. In this case we have a reflection with respect to the points signalled by a red square. For

simplicity we have highlighted the squares in the unit cell, while their periodic copies are faded.

The symmetry is compatible with the introduction of fractional branes, and their strong dynamics,

after which we are left with an orientifold of the theory of D-branes in C3, defined by the inherited

point reflection in the dimer (b).

equations for complex deformed geometries are not always easily obtained, it is simpler to

work in the holographic dual field theory, by considering orientifolds of dimer diagrams.

They are basically obtained by modding out the dimer diagram by some Z2 symmetry,

subject to some rules which were characterized in [86], to which we refer the reader for

details. For our present purposes, it is crucial that the Z2 symmetry of the dimer is

compatible with the introduction of the fractional branes which trigger the duality cascade

and the infrared confinement, equivalently with the complex deformation of the dual throat

geometry. Otherwise, the orientifold quotient is incompatible with the complex deformation

required to support the throat.

In figure 7(a) we show one such Z2 symmetry of the dimer for xy = z3w2, corresponding

to a reflection with respect to the points signalled with a square. Since the Z2 maps the face
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2 to the face 4 and viceversa, it is compatible with the introduction of (an equal number of)

fractional branes in these faces. Correspondingly, the strong dynamics process in figure 6

is also Z2 invariant, and results in an orientifold of the dimer of C3, see figure 7(b). The

geometric counterpart of these statements is that the orientifold is compatible with the

complex deformation of the geometry, when the two deformation parameters are related.

The result of the deformation is an orientifold of a smooth geometry, which locally is an

orientifold of C3.

We must check that the orientifold actually corresponds to an O3-plane. As studied

in [86], the action of the orientifold symmetry on the geometry (and therefore, its fixed

point set) is determined by the choice of orientifold projection imposed on dimer elements

fixed under the orientifold (i.e. on top of the red squares). For instance, in order to have

an O3-plane (rather than an O7-plane) on the final C3, the orientifold must project the

gauge group down to an SO factor, while the fields from orientifold-fixed edges must be

projected down to two-index antisymmetric representations.9 This same choice, inherited

back in the original dimer of xy = z3w2, guarantees that it defines an orientifold with

isolated fixed points in the toric geometry.

Let us finally turn to a more explicit description of the orientifold action on the geom-

etry, as given by the defining equation (3.4). The first observation is that the orientifold

is a symmetry only if the deformation parameters are related, i.e. ε1 = −ε2. Denoting any

of them by ε, the geometry reads

xy = z(zw + ε)(zw − ε) . (3.5)

The holomorphic 3-form can be written as dz dw dx/x. The recipe in [86] allows to read out

the orientifold action on the coordinates (by realizing them as mesons of the field theory),

which agrees with the simplest guess

x→ −x , y → −y , w → −w , z → z . (3.6)

This is a symmetry of (3.5) acting by exchange of the two pieces in parenthesis (thanks

to the relation between the deformation parameters). The holomorphic 3-form is odd, as

it should. Finally, the set of fixed points is given by x = 0, y = 0, w = 0, and using

the defining equation z = 0. Therefore the origin is the only fixed point, and defines the

location of the O3-plane.

The field theory analysis establishes that the O3-plane sits at the bottom of the dual

warped throat. Indeed, the duality cascade occurs in the gauge theory described by the

orientifolded dimer, and the confinement produces an orientifold of the smoothed out in-

frared geometry. In fact, this is also directly clear form the geometry, since the equality

of the numbers of fractional branes leads to an equality of the number of RR flux units in

the two 3-cycles, so both are located at the bottom of the throat, and so is the O3-planes,

which defines the fixed point under their exchange. The structure of the warped throat is

shown in figure 8.

9In the conventions of [86], the fixed point in the middle of the face has sign +, while the other three

have signs −. We remind the reader that these signs are mere labels and do not describe the physical charge

of the resulting O3-plane (which for our choice is indeed an O3−-plane).
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Figure 8. The warped throat with an O3-plane at its infrared tip, shown as a red circle.

The holographic dual picture also makes it manifest that these more general throats

have a behaviour for the warp factor which is essentially identical to the KS throat. More

concretely, if the throat is dual to a cascade of Seiberg dualities in a theory with M

fractional branes and N = KM D3-branes (at some UV cutoff scale), the warp factor at

the bottom of the throat is

z ∼ exp

(
− 2πK

Mgs

)
. (3.7)

Actually, different throats lead to different order 1 numerical factors in the exponent,

related to the amount of D3-branes disappearing in a duality period. The important point

is however that the parametric dependence in K and M is maintained, and therefore the

throats lead to exponential suppressions with respect to the bulk or cutoff scales.

4 Coupling the Nilpotent field to moduli and matter fields

We have seen that the parameter M reflects the breaking of supersymmetry, and the gold-

stino belongs to a chiral nilpotent superfield X. In this section we provide a preliminary

discussion of how X might couple to the moduli and matter fields in a full string compact-

ification, leaving a more detailed description for the future.

Let us assume that the complex structure moduli and dilaton have been stabilised

supersymmetrically by the fluxes, and consider as simple model of the remaining dynamics.

We consider the (for simplicity, a single) Kähler modulus T , the nilpotent superfield X, and

a chiral superfield C as a representative matter field, which we assume to be stabilized at

C = 0 but we keep it in the action to study how its components split after supersymmetry

breaking.

In general the Kähler potential can be written as

K = −3 log(T + T ∗) + c (T + T ∗)n XX∗ + ZCC∗ + · · · (4.1)

where

Z = (T + T ∗)m + b (T + T ∗)kXX∗. (4.2)

The coefficients c, b are arbitrary (after absorbing other coefficients as field redefinitions

of C) and also the ‘modular weights’ n,m, k which are expected to be non-positive rational

numbers. Particular cases are n,m, b = 0 corresponding to canonical kinetic terms for

both X and C. Also the case n = m = −1, k = −2, b = 1/3 corresponds to the Kähler
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potential K = −3 log(T + T ∗ − CC∗ − cXX∗) after scaling properly the fields C and X.

The superpotential is

W = W0 +MX +Wmatter +Wnp (4.3)

where both W0 and M are functions of the complex structure moduli and dilaton at their

minimum, Wmatter = C3+· · · , and Wnp = Ae−aT . We will work in the limit a (T + T ∗)� 1

in order to have a proper non-perturbative expansion.

The coupling between T and X modifies the appearance of M in the scalar potential

and gives:

Vuplift =
|M |2

c (T + T ∗)n+3 . (4.4)

Notice that this agrees with the KKLT expression for n = 0 and the KKLMMT (warped)

expression for n = −1. In this case the warping can be absorbed in the coefficient |M |2/c.
Even though without the uplifting term the field T is stabilised supersymmetrically

(DTW = ∂TW + KTW = 0), the presence of the uplift term induces a shift on the value

of T that generates a non-zero F term for T . We find:

FT = eK/2DTW ∼
3W0

(T + T ∗)3/2
ε (4.5)

with

ε =
3 + n

c

1

a2 (T + T ∗)2 . (4.6)

This induces, as expected, a small shift in the scalar potential:

V0 =
|M |2

c (T + T ∗)n+3 − 3m2
3/2 +O(εm2

3/2) . (4.7)

A nonvanishing value of M reflects the breaking of supersymmetry. However its impact

on matter fields C and standard model gauginos needs to be computed. We will assume

here for simplicity,10 that the standard expressions for soft terms [92–94] (gaugino masses

M1/2, scalar masses m0 and trilinear A- terms) can be applied even in case that one of the

superfields is nilpotent

M1/2 =
1

f + f∗
F I∂If

Aαβγ = F IKI + F I∂I log Yαβγ − F I∂I log(ZαZβZγ) (4.8)

m2
0 = V0 +m2

3/2 − F
IF J∂I∂J logZ .

Here, indices α, β, γ label different matter fields, indices I, J run over moduli fields and

in our case also the X field. Also, f is the holomorphic gauge kinetic function of the

visible sector, depending only on moduli fields and dilaton, and Yαβγ are Yukawa couplings

among matter fields. It is clear from these expressions that that the F term of the nilpotent

10The validity of this assumptions will be tested when the complete supergravity models interacting with

a nilpotent multiplet and other chiral multiplets will be constructed.
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superfield X only affects the scalar masses:11 first, note that X is localised, so f cannot

depend on it, and hence the contribution of FX to gaugino masses vanishes; second, since

the scalar component of X vanishes in the vacuum, it gives no contribution to A. On the

other hand the first and third terms in the expression for the scalar masses do depend on

M . Using FX = eK/2K−1
XX∗DXW = M/ (T + T ∗)n+3/2 and FT / (T + T ∗) = O(ε1/2m3/2)

we find:

M1/2, A = O(ε1/2m3/2)

m2
0 = V0 +m2

3/2 − F
XFX

∗
∂X∂X∗ logZ +O(εm2

3/2)

= V0 +m2
3/2 −

b

c2
(T + T ∗)k−m−2n−3 |M |2 +O(εm2

3/2) . (4.9)

After tuning the vacuum energy to V0 ∼ 0 we can see that the soft scalar masses are of

order the maximum between the second and third term. For k = m + n these are all of

order m2
0 ∼ m2

3/2 as expected generically. Furthermore for b = c/3 these two terms combine

with each other to give

m2
0 = V0 −

1

3

(
|M |2

c (T + T ∗)n+3 − 3m2
3/2

)
+O(εm2

3/2) =
2

3
V0 +O(εm2

3/2) . (4.10)

In this case the leading order contribution to all soft terms comes from FT . Since at the

minimum a (T + T ∗) ∼ logW0 and all scales are measured in units of Mplanck, this implies

the soft terms are of order msoft ∼ m3/2/ log
(Mplanck

m3/2

)
. Notice that a Kähler potential of

the form K = −3 log(T + T ∗ −CC∗ −XX∗) satisfies all these conditions and therefore in

this case all soft terms will be subdominant with respect to the gravitino mass and other

effects such as anomaly mediation should also be considered. This result agrees with the

proposal of [95] for soft terms in the KKLT scenario. A similar cancelation also occurs in

the sequestered ‘ultra-local’ case in the LARGE volume scenario [96, 97].

In summary we can see that both gaugino masses and trilinear A terms are suppressed

with respect to the gravitino mass as m3/2/ log
(Mplanck

m3/2

)
. On the other hand, the scalar

masses depend on the precise form of the matter Kähler potential. In some models, they

are of order m3/2 (or larger), in which case we will have a realization of split supesym-

metry. If instead the cancelation mentioned above occurs, then they are also of order

m3/2/ log
(Mplanck

m3/2

)
. Further studies of these issues are left for future work.

5 Discussion

It is rather unusual to encounter a supergravity model with a nilpotent multiplet. In

fact, such a complete supergravity model action with explicit spontaneously broken local

supersymmetry was not even presented in the literature. Some partial work in this direction

includes [98] where a proposal was made how to generalize the global Volkov-Akulov model

to a locally supersymmetric one and [99, 100], where the curved superspace formulation

11This qualitative feature for anti-D3-brane SUSY breaking was derived in [64] in the probe approxi-

mation.
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of the VA goldstino theory was studied. However, in both cases the action as well as

the local supersymmetry rules were not presented in a complete form. A related work

was performed in [101] where the leading order d = 10 Lagrangian with the coupling of

gravitino to Volkov-Akulov model was studied (see also [102] for follow-up work). A d = 4

supergravity with nilpotent multiplet is not available in the textbooks and the complete

fermion part of it is not known.

The fact that the globally supersymmetric VA action in the form (2.12) as well as in

the form (2.13) has a negative constant −M2 in the action is well known. However, only

when VA goldstino has a consistent coupling to gravity, this term in the action becomes

−
√
−gM2 and indicates a contribution to a positive cosmological constant. It was shown

in [2] that when anti-D3-brane is coupled to d = 10 supergravity compactified to d = 4,

indeed, such a term is present and leads to a KKLT uplift. A generalization of this argument

in the setting where also fermions are present on the world-volume of the anti-brane was

given in [4, 5]. However, the supersymmetry on the anti-D3-brane on top of the O3-plane

still has a global nature, see eq. (2.11) where ζ is the space-time independent fermionic

parameter.

To discuss the issue of a positive cosmological constant, one would like to have also

an action with local supersymmetry where the positive contribution to the energy comes

from the potential. The corresponding action together with the local spontaneously broken

supersymmetry is now under construction [103].

It is therefore very interesting that the string theory with open strings at the 1-loop

level and closed string at the tree level provides a configuration which is precisely the one

with fermions on a single anti-D3-brane on top of the O3-plane. In this paper we have

given a detailed computation which explains the origin of the nilpotent chiral multiplet

in string theory. The computation of the open string spectrum supports the use of the

spontaneously broken supersymmetry with a fermionic goldstino multiplet.

We have also studied possibilites to place an orientifold O3-plane at the tip of the

throats. It turned out that the familiar KS model [48] does not admit orientifold actions

with isolated fixed points, and therefore it cannot host an O3-plane at its bottom. However,

it is easy to find general constructions of other throats, based on deformations of slightly

more general toric geometries, which have the same features concerning the generation of

warp factors by fluxes supported on 3-cycles, yet admit orientifold actions with fixed points

at the bottom of the throat. We have provided one such example, based on an orientifold of

a generalized conifold, and phrased its detailed description in the terms of the holographic

dual quiver gauge field theory. The use of dimer diagrams allows a exquisite tracking of

both the field theory RG flow, which involves a Seiberg duality cascade triggered by a

precise set of fractional branes, and the infrared confinement phenomena dual to the IR

capping of the throat by the 3-cycles.

We have also shown that the spectrum of the nilpotent goldstino can be realized, below

the flux scale, in one D3-brane on top of an O7-plane, and that this construction can be

easily implemented in the familiar KS throat (which does admit O7-planes stretching along

the radial direction down to the bottom of the throat).
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More studies of the relation to string theory would be desirable with regard to phe-

nomenological cosmological models, involving the nilpotent multiplet and describing infla-

tion with supersymmetry breaking and cosmological constant in the vacuum.

An important aspect of this story is the following. The mysterious origin of dark en-

ergy, which is well presented by the positive cosmological constant at present, might be

due to spontaneously broken local supersymmetry, like the Higgs effect is due to sponta-

neously broken gauge symmetry. A tiny cosmological constant results from an incomplete

cancellation of the positive goldstino and negative gravitino contribution to the supergrav-

ity energy. Still the argument for the smallest of Λ has to rely on the existence of the

landscape. In our paper we studied possibilities to get many different values of a positive

contributions to cosmological constant due to many choices of fluxes integers M and K

such that the SUSY breaking parameter is ∼ exp
(
− 2πK

Mgs

)
.

There are several open questions that are left for future work. On the formal side,

it would be interesting to device a string description from which to derive the nilpotency

of the goldstino multiplet more directly. In the model building direction, it would be

desirable to realize the embedding of our local constructions in concrete compact Calabi-

Yau orientifolds, even though no fundamental obstacles are foreseen, in order to have a

fully global realization of this de Sitter scenario and address global issues such as explicit

implementation of inflation in concrete models.

Finally, the concrete realization of supersymmetry breaking in terms of nilpotent su-

perfields opens up the possibility to analyze the structure of soft supersymmetry breaking

terms for standard model fields in a very explicit way. We started this discussion in sec-

tion 4 but there are several open questions. Determining the precise form of the Kähler

potential for the nilpotent and matter fields is needed in order to extract more concrete

phenomenology. Studying the generic case with more Kähler moduli would be interest-

ing to consider. Also sequestered scenarios of supersymmetry breaking as those described

in [96, 97] are sensitive to the concrete uplifting mechanism and could be approached using

the nilpotent goldstino superfield discussed here. Our results give further motivation for

addressing these questions.
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[36] J. Bl̊abäck, U.H. Danielsson, G. Dibitetto and S.C. Vargas, Universal dS vacua in

STU-models, JHEP 10 (2015) 069 [arXiv:1505.04283] [INSPIRE].

[37] S. Ferrara, R. Kallosh and A. Linde, Cosmology with nilpotent superfields,

JHEP 10 (2014) 143 [arXiv:1408.4096] [INSPIRE].

[38] I. Antoniadis, E. Dudas, S. Ferrara and A. Sagnotti, The Volkov-Akulov-Starobinsky

supergravity, Phys. Lett. B 733 (2014) 32 [arXiv:1403.3269] [INSPIRE].

[39] R. Kallosh and A. Linde, Inflation and uplifting with nilpotent superfields,

JCAP 01 (2015) 025 [arXiv:1408.5950] [INSPIRE].

[40] G. Dall’Agata and F. Zwirner, On sgoldstino-less supergravity models of inflation,

JHEP 12 (2014) 172 [arXiv:1411.2605] [INSPIRE].

[41] R. Kallosh, A. Linde and M. Scalisi, Inflation, de Sitter landscape and super-Higgs effect,

JHEP 03 (2015) 111 [arXiv:1411.5671] [INSPIRE].

[42] J.J.M. Carrasco, R. Kallosh and A. Linde, α-attractors: Planck, LHC and dark energy,

JHEP 10 (2015) 147 [arXiv:1506.01708] [INSPIRE].

[43] J.J.M. Carrasco, R. Kallosh and A. Linde, Cosmological attractors and initial conditions for

inflation, Phys. Rev. D 92 (2015) 063519 [arXiv:1506.00936] [INSPIRE].

[44] J.J.M. Carrasco, R. Kallosh, A. Linde and D. Roest, Hyperbolic geometry of cosmological

attractors, Phys. Rev. D 92 (2015) 041301 [arXiv:1504.05557] [INSPIRE].

[45] R. Kallosh and A. Linde, Escher in the sky, arXiv:1503.06785 [INSPIRE].

[46] R. Kallosh and A. Linde, Planck, LHC and α-attractors, Phys. Rev. D 91 (2015) 083528

[arXiv:1502.07733] [INSPIRE].

[47] R. Kallosh, A. Linde and D. Roest, Superconformal inflationary α-attractors,

JHEP 11 (2013) 198 [arXiv:1311.0472] [INSPIRE].

[48] I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: duality

cascades and χSB-resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191]

[INSPIRE].

[49] B. Michel, E. Mintun, J. Polchinski, A. Puhm and P. Saad, Remarks on brane and

antibrane dynamics, JHEP 09 (2015) 021 [arXiv:1412.5702] [INSPIRE].

[50] S. Kachru, J. Pearson and H.L. Verlinde, Brane/flux annihilation and the string dual of a

nonsupersymmetric field theory, JHEP 06 (2002) 021 [hep-th/0112197] [INSPIRE].

[51] P. McGuirk, G. Shiu and Y. Sumitomo, Non-supersymmetric infrared perturbations to the

warped deformed conifold, Nucl. Phys. B 842 (2011) 383 [arXiv:0910.4581] [INSPIRE].

[52] I. Bena, M. Graña and N. Halmagyi, On the existence of meta-stable vacua in

Klebanov-Strassler, JHEP 09 (2010) 087 [arXiv:0912.3519] [INSPIRE].
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[54] J. Bl̊abäck et al., (Anti-)brane backreaction beyond perturbation theory,

JHEP 02 (2012) 025 [arXiv:1111.2605] [INSPIRE].

[55] I. Bena et al., Persistent anti-brane singularities, JHEP 10 (2012) 078 [arXiv:1205.1798]

[INSPIRE].

– 29 –

http://dx.doi.org/10.1007/JHEP10(2015)069
http://arxiv.org/abs/1505.04283
http://inspirehep.net/search?p=find+EPRINT+arXiv:1505.04283
http://dx.doi.org/10.1007/JHEP10(2014)143
http://arxiv.org/abs/1408.4096
http://inspirehep.net/search?p=find+EPRINT+arXiv:1408.4096
http://dx.doi.org/10.1016/j.physletb.2014.04.015
http://arxiv.org/abs/1403.3269
http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.3269
http://dx.doi.org/10.1088/1475-7516/2015/01/025
http://arxiv.org/abs/1408.5950
http://inspirehep.net/search?p=find+EPRINT+arXiv:1408.5950
http://dx.doi.org/10.1007/JHEP12(2014)172
http://arxiv.org/abs/1411.2605
http://inspirehep.net/search?p=find+EPRINT+arXiv:1411.2605
http://dx.doi.org/10.1007/JHEP03(2015)111
http://arxiv.org/abs/1411.5671
http://inspirehep.net/search?p=find+EPRINT+arXiv:1411.5671
http://dx.doi.org/10.1007/JHEP10(2015)147
http://arxiv.org/abs/1506.01708
http://inspirehep.net/search?p=find+EPRINT+arXiv:1506.01708
http://dx.doi.org/10.1103/PhysRevD.92.063519
http://arxiv.org/abs/1506.00936
http://inspirehep.net/search?p=find+EPRINT+arXiv:1506.00936
http://dx.doi.org/10.1103/PhysRevD.92.041301
http://arxiv.org/abs/1504.05557
http://inspirehep.net/search?p=find+EPRINT+arXiv:1504.05557
http://arxiv.org/abs/1503.06785
http://inspirehep.net/search?p=find+EPRINT+arXiv:1503.06785
http://dx.doi.org/10.1103/PhysRevD.91.083528
http://arxiv.org/abs/1502.07733
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.07733
http://dx.doi.org/10.1007/JHEP11(2013)198
http://arxiv.org/abs/1311.0472
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.0472
http://dx.doi.org/10.1088/1126-6708/2000/08/052
http://arxiv.org/abs/hep-th/0007191
http://inspirehep.net/search?p=find+EPRINT+hep-th/0007191
http://dx.doi.org/10.1007/JHEP09(2015)021
http://arxiv.org/abs/1412.5702
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.5702
http://dx.doi.org/10.1088/1126-6708/2002/06/021
http://arxiv.org/abs/hep-th/0112197
http://inspirehep.net/search?p=find+EPRINT+hep-th/0112197
http://dx.doi.org/10.1016/j.nuclphysb.2010.09.008
http://arxiv.org/abs/0910.4581
http://inspirehep.net/search?p=find+EPRINT+arXiv:0910.4581
http://dx.doi.org/10.1007/JHEP09(2010)087
http://arxiv.org/abs/0912.3519
http://inspirehep.net/search?p=find+EPRINT+arXiv:0912.3519
http://dx.doi.org/10.1007/JHEP08(2011)105
http://arxiv.org/abs/1105.4879
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.4879
http://dx.doi.org/10.1007/JHEP02(2012)025
http://arxiv.org/abs/1111.2605
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.2605
http://dx.doi.org/10.1007/JHEP10(2012)078
http://arxiv.org/abs/1205.1798
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.1798


J
H
E
P
1
2
(
2
0
1
5
)
0
3
9

[56] I. Bena, M. Graña, S. Kuperstein and S. Massai, Anti-D3 branes: singular to the bitter end,

Phys. Rev. D 87 (2013) 106010 [arXiv:1206.6369] [INSPIRE].

[57] U.H. Danielsson and T. Van Riet, Fatal attraction: more on decaying anti-branes,

JHEP 03 (2015) 087 [arXiv:1410.8476] [INSPIRE].

[58] T. Van Riet, to appear.

[59] T. Van Riet, The pros and cons of antibrane SUSY-breaking, talk given at String

Phenomenology 2015, Madrid Spain, 8–12 Jun 2015,

http://workshops.ift.uam-csic.es/stringpheno15/program.
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