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1 Introduction

The Standard Model (SM) of particle physics is very successful, but it fails to explain

neutrino mass and dark matter (DM). Dark matter accounts for about one quarter of

the energy density of the Universe, five times more than ordinary matter, but its origin is

unknown. A good candidate for the dark matter are sterile neutrinos with a keV-scale mass

and tiny mixing with the active neutrinos, which is a simple extension of the SM [1, 2].

In contrast to standard cold dark matter, they are generally warmer with a larger free-

streaming horizon. Thus they are candidates for warm dark matter and suppress structure

at small scales addressing the missing satellite problem [3–5] and possibly explaining the

velocities of pulsars [6, 7].

There are many ways of producing sterile neutrinos: (i) they can be produced through

neutrinos oscillations in the early Universe via a small mixing with the active neutrinos [8–

10]. This mechanism is already excluded by observation [11], but the bounds can be

avoided, if there is a large enough primordial lepton asymmetry and sterile neutrinos are

produced via resonant oscillations [12]. (ii) Another well-studied alternative is non-thermal

production via decay of a scalar field in thermal equilibrium [6, 13–17], or a scalar produced

via the freeze-in mechanism [18], which subsequently decays to sterile neutrinos [17, 19–21].

Recently several alternative production mechanisms from decay have been suggested such

as the production from the decay of pions [22], Dirac fermions [23], light vector bosons [24],
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or a condensate formed during inflation [25, 26]. (iii) Finally the keV sterile neutrinos

could have been in thermal equilibrium and their abundance diluted by production of

entropy [27–31].

In any model with mixing between active neutrinos and the keV sterile neutrinos

a fraction of the sterile neutrino abundance will be generated via neutrino oscillations.

The mixing is generally induced after an electroweak doublet scalar obtains a vacuum

expectation value (vev). The Yukawa interaction however induces a second contribution:

the electroweak doublet scalar can decay into a SM lepton and a sterile neutrino. In

a model with one Higgs doublet, this contribution is always negligible compared to the

contribution from neutrino oscillations [32], because the vev, v = 174 GeV, and thus the

mixing is sizeable. However this does not hold anymore in models with multiple Higgs

doublets. The vev of one of the Higgs doublets might be tiny, smaller than O(MeV), and

consequently the production via Higgs decay might dominate. Sterile neutrino dark matter

with a keV-scale mass has been previously considered in a two Higgs doublet model in

ref. [33] and the production of the required number density via the decay of an electroweak

doublet has been studied in ref. [34] in the scotogenic model of neutrino mass [35].

We consider a two Higgs doublet model, where one of the electroweak doublet scalars

exclusively couples to the sterile neutrino and study the production of keV sterile neutrino

DM via the decay of this electroweak doublet in detail. The main result is the momentum

distribution function for the sterile neutrino DM and the free-streaming horizon, which

we use to determine the relevant parameter space where the keV sterile neutrino consti-

tutes warm dark matter. This mechanism can be easily embedded in a seesaw [33, 36] or

radiative [34, 35] neutrino mass model.

The paper is organised as follows: in section 2, we introduce the two-Higgs doublet

model and discuss the mass spectrum. The produced sterile neutrino DM abundance is

discussed in section 3. Section 4 is dedicated to the free-streaming horizon of the sterile

neutrinos and we briefly comment on the effective number of relativistic degrees of freedom

in section 5. In section 6, we discuss the possibility that the scalar doublet obtains a

tiny vev, thus the sterile neutrinos can decay and explain the observed an X-ray line

at 3.55 keV [37, 38]. We conclude in section 7. Technical details are collected in the

appendices.

2 Neutrino-phillic two Higgs doublet model

We consider a two Higgs doublet model with a second scalar doublet Hν which exclusively

couples to the sterile neutrino N and the left-handed lepton doublet L. This is guaranteed

by a Z2 symmetry under which the new fields, N and Hν , are odd, but all SM particles are

even. A coupling to other fermions is strongly constrained by flavour-violating processes.

The most general Yukawa interactions in the lepton sector are given by

− L = yELHE
C + yLNLHνN +

1

2
mNN

2 + h.c. (2.1)
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and the most general scalar potential is defined in the usual way

V = −m2
1H
†H +

λ1

2
(H†H)2 +m2

2H
†
νHν +

λ2

2
(H†νHν)2 (2.2)

+ λ3H
†HH†νHν + λ4|H†Hν |2 +

λ5

2

[
(H†Hν)2 + h.c.

]
,

where we used a field redefinition of Hν to absorb the complex phase of λ5. The Yukawa

couplings yLN,α are generally complex. After the SM Higgs doublet obtains a vev, v2 =

m2
1/λ1, electroweak symmetry is broken and we decompose the fields in terms of their

components

H =

(
G+

v + 1√
2
(h+ iG0)

)
Hν =

(
K+

1√
2
(k + iK0)

)
. (2.3)

The scalar masses at leading order are given by

m2
h = 2m2

1 = 2λ1v
2 m2

k = m2
2 + (λ3 + λ4 + λ5)v2 (2.4)

m2
K0 = m2

2 + (λ3 + λ4 − λ5)v2 m2
K± = m2

2 + λ3v
2,

where h describes the observed Higgs boson at mh = 125 GeV [39, 40]. As long as Hν

does not obtain a vev, there is no mixing between the different states. We will comment

on this possibility in section 6. The active neutrinos obtain mass in the usual way. Both

Dirac and Majorana mass terms are possible. For example, one can introduce the Weinberg

operator [41], LLHH, to generate the neutrino mass. We will not discuss it further, because

it does not affect the production of the keV sterile neutrino N .

3 Dark matter production

Freeze-in production of sterile neutrino DM with a second Higgs doublet has been studied

in the scotogenic model [34]. Here we focus on keV sterile neutrinos and do not specify the

mechanism of neutrino mass generation explicitly.

The keV sterile neutrino can be produced via the decay of the scalar fields (k,K0,K±)

while they are in thermal equilibrium. We will present a crude simple calculation using the

Maxwell-Boltzmann approximation and neglect Pauli-blocking. The result will result in a

good order of magnitude estimate. In our discussion, however, we will use the more accurate

result using the distribution function, which can be found in appendix C. Assuming that

inverse decays can be neglected, the yield Y (T ) = n(T )/s(T ) of the sterile neutrino can be

obtained from the Boltzmann equation,

sT
dYN1

dT
= −γN1(T )

H(T )
, (3.1)

where s is the entropy density of the Universe, H(T ) is the Hubble parameter at a given

temperature and γN1(T ) is the thermally averaged sterile neutrino production rate,

γN1(T ) =
∑

X

gXm
2
XT

2π2
K1(mX/T )Γ(X → N1l) , (3.2)
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where X = k,K0,K± and l is a SM lepton. Following the freeze-in calculation in ref. [18],

we can integrate the equation and obtain the final yield of sterile neutrinos after freeze-in

Y∞N1
=

45

4π4

∑

X

gXΓ(X → N1l)M0

m2
Xg

s
∗(Td)

∫ xmax

xmin

x3K1(x)dx (3.3)

where we defined the typical mass scale

M0 =
3

2π

√
5

πgρ∗(Td)
MPl . (3.4)

This allows us to rewrite the Friedmann equation during the radiation dominated epoch as

H =
T 2

M0
(3.5)

using the Planck mass MPl and the usual definition of the effective entropy degrees of

freedom gs∗ and the relativistic degrees of freedom gρ∗

s =
2π2

45
gs∗(T )T 3 ρ =

π2

30
gρ∗(T )T 4. (3.6)

We can obtain an approximate analytic solution to this equation by extending the integra-

tion over all positive values of x, i.e. xmin → 0 and xmax →∞

Y∞N1
' 405

√
5

16π9/2

∑

X

gXΓ(X → N1l)MPl

m2
Xg

s
∗(Td,X)

√
gρ∗(Td,X)

(3.7)

' 0.328
∑

X

gXΓ(X → N1l)MPl

m2
Xg

s
∗(Td,X)

√
gρ∗(Td,X)

. (3.8)

In order to obtain simple analytic results, we made several (crude) approximations:

(i) We used the Maxwell-Boltzmann approximation and thus also neglected Pauli-blocking

of the neutrinos. (ii) We extended the integration boundaries in (3.3) to obtain the leading

order result in eq. (3.7). This is justified by noting that freeze-in is typically dominated by

processes around T ∼ mX [18]. (iii) We assumed that the effective number of relativistic

degrees of freedom for entropy, gs∗, and energy, gρ∗ , do not change during the production of

dark matter, which is reasonably well satisfied for scalar masses mX & 100 GeV. (iv) We

neglected 2 ↔ 2 scattering processes like X0 + `± → N + W± and X± + ν → N + W±.

These processes are subdominant compared to two body decays of X due to phase space

suppression. (v) We assumed that the particles X are in thermal equilibrium until freeze-in

occurs at xfi ∼ 2–5 [18] and thus Tfi & 20 GeV for mX & 100 GeV. For sufficiently large

Higgs portal couplings1 λ3,5, the scattering of the scalars X with b quarks, X + b→ X + b,

will keep the scalars X in thermal equilibrium similar to the SM Higgs down to T ∼
5 GeV. (vi) Finally we use the usual vacuum decay rate and do not take into account finite

temperature effects, which has been studied e.g. in ref. [42]. We expect these corrections

1Note that the Higgs portal couplings enter the freeze-in calculation only indirectly via the mass mX of

the particle X.
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Figure 1. Contour plots with fixed DM relic abundance ΩN1
h2 = 0.1199 [43].

to be small, because the Yukawa coupling is small and the sterile neutrino a gauge singlet.

In the following we will, however, use the more accurate result in eq. (C.1).

Y∞N1
' 0.207

∑

X

gXΓ(X → N1l)MPl

m2
Xg

s
∗(Td,X)

√
gρ∗(Td,X)

. (3.9)

It has been obtained by solving the Boltzmann equation for the distribution function

without using the Maxwell-Boltzmann approximation and including Pauli-blocking. The

detailed calculation is outlined in appendix B and C.

The number of degree of freedom of the scalar fields are given by gk = 1, gK0 = 1,

gK+ = 2 and the decay widths ΓX are given in appendix A. We finally obtain the relic

abundance of the sterile neutrino dark matter using ΩN1 = mNs0Y
∞
N1
/ρcr with the critical

energy density ρcr = 3H2M2
Pl/8π and find

ΩN1h
2 ' 6.88× 1026mN

∑

X

gXΓ(X → N1l)

m2
Xg

s
∗(Td,X)

√
gρ∗(Td,X)

. (3.10)

Taking the limit of equal scalar masses, mk ' mK0 ' mK+ ≡ mkk and Td,X ≡ Td, the relic

abundance

ΩN1h
2 ' 6.88× 1026

gs∗(Td)
√
gρ∗(Td)

3mN

16πmkk

∑

α

|yLN,α|2 (3.11)

only depends on three parameters: the two masses mkk, mN and the effective coupling∑
α |yLN,α|2. Fixing the dark matter relic abundance to the observed best fit value for

dark matter, ΩDMh
2 = 0.1199, by Planck [43], we show in figure 1 two contour plots

illustrating the dependence on the three parameters. We find that the effective coupling

has to be of order 10−9 for keV sterile neutrino masses in the range 2–100 keV and scalar

doublets with electroweak-scale masses. Although there is no explanation for the smallness

of the Yukawa coupling, it is technically natural. Larger scalar masses generally require

smaller couplings to compensate for the suppression by the scalar mass mkk. Larger sterile
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neutrino masses generally require larger effective couplings or larger scalar masses, because

the DM abundance is proportional to the ratio mN/mkk.

4 Free streaming horizon

The free streaming horizon characterises the scale below which perturbations are suppressed

in the power spectrum [44]. It is defined by the average distance a particle travels without

any collisions

rFS =

∫ t0

tin

〈v〉
a(t)

dt (4.1)

where 〈v〉 is the average velocity, tin denotes the time when the sterile neutrino is produced

and t0 the time today. In order to evaluate it, we have to find the average velocity of the

sterile neutrino

〈v〉 =
〈 p
E

〉
=

{
1 for t < tN,nr

〈p〉
mN

for t > tN,nr

(4.2)

where tnr (TN,nr) denotes the time (temperature of the sterile neutrinos) when neutrinos

become non-relativistic, i.e.

〈p(TN,nr)〉 = mN . (4.3)

We can define the average momentum in terms of the momentum distribution function2

f(p, t) of the sterile neutrinos, which can be obtained from the Boltzmann equation

L[f ] = C[f ] (4.4)

with the Liouville operator L[f ] and the collision term C[f ]. The Liouville operator is

defined as [45]

L[f ] =

(
∂

∂t
−Hp ∂

∂p

)
f(p, t) . (4.5)

In analogy to the treatment in refs. [15, 17], we introduce the dimensionless quantity

xN =
pN
TN

, (4.6)

which allows to write the distribution function as

fN (xN , TN ) =
2
√

90π

π2

∑

X

gXΓX

m2
X

√
gρ∗(Td, X)

∫ m2
X

8xNT
2
N

0
dy

√
y

xN
g
(
ey+

xN
2
)

(4.7)

with

g(z) = − 1

1 + z
− 1

2
ln

(
z − 1

z + 1

)
. (4.8)

The scalar particle mass (decay width) is denoted mX (ΓX) and we assumed that the

effective number of relativistic degrees of freedom, gρ∗ , remains constant during production,

2Note that we limit our discussion to a homogeneous isotropic Universe which is described by the

Friedmann-Robertson-Walker metric and thus also take the distribution function to be homogeneous.
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Td,X is the decay temperature of particle X and we neglected the back reaction from

inverse decays. See appendix B for a derivation of the distribution function. As the

integrand is exponentially suppressed for y � 1, we can take the upper limit of the integral

to infinity for temperatures TN � mX/
√

8xN . This is generally justified at late times,

when pN ∼ TN � mX , thus we obtain for f0
N (xN ) ≡ limTN→0 fN (xN , TN )

f0
N (xN ) =

√
90

2π

∑

X

gXΓXMpl

m2
X

√
gρ∗(Td,X)

1√
xN

[
2Li 3

2

(
− e−

xN
2
)

+ Li 5
2

(
e−

xN
2
)
− Li 5

2

(
− e−

xN
2
)]
.

(4.9)

In this approximation the function x2fN (x) has only one maximum at x̂ ' 1.54 and it falls

off very quickly away from the maximum. A typical value for the momentum is thus of order

x̂TN . This justifies the approximation for small temperatures. The average momentum is

given by

〈p(TN )〉 ' 2.46TN (4.10)

and thus lower compared to a sterile neutrino in thermal equilibrium with 〈p〉T = 3.15TN .

We find that the sterile neutrinos become non-relativistic at a temperature

TN,nr '
mN

2.46
. (4.11)

The corresponding temperature of the SM thermal bath Tnr is obtained using the usual

entropy dilution given in eq. (C.15) with gs∗(Td) = gρ∗(Td) = 110.75 and gs∗(Tnr) = 3.94 and

thus the time tnr, when the sterile neutrinos become non-relativistic, is determined by

tnr =
M0

2T 2
nr

' 1.82√
gρ∗(Td)

(
gs∗(Tnr)

gs∗(Td)

)2/3MPl

m2
N

' 1500s

(
10 keV

mN

)2

. (4.12)

Thus we can finally evaluate the integral for the free-streaming horizon by evaluating it

piece-wise in the different regions set by tnr and teq, respectively

rFS =

√
teqtnr

aeq

(
5 + ln

teq

tnr

)
' 0.047 Mpc

(
10 keV

mN

)
(4.13)

where teq = 1.9 × 1011 s and aeq = 8.3 × 10−5. A detailed derivation can be found in

refs. [19, 20, 46]. Note that we do not have the additional entropy dilution factor, because

it is already included in tnr in eq. (4.12). Note, that the free-streaming horizon does

not (strongly) depend on the mass of the heavy scalar or the effective coupling, which

determine the sterile neutrino abundance. There is only an implicit dependence via the

effective degrees of freedom at decay. A different scalar mass will lead to a different decay

temperature, but for scalar masses above 100 GeV, the number of effective degrees of

freedom stays almost constant.

We show the free-streaming horizon in figure 2. The red region indicates when the

free-streaming horizon becomes larger than 0.1 Mpc and the keV sterile neutrinos can be

considered as hot dark matter. The blue region indicates the region when keV sterile

neutrinos are in the cold dark matter regime. We take as benchmark value rFS . 0.01 Mpc

following refs. [19, 20].
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Figure 2. Free-streaming horizon vs. keV sterile neutrino mass. The regions of hot and cold dark

matter are marked red and blue, respectively. A sterile neutrino mass mN = 7.1 keV is indicated

by the dashed orange line.

We find free-streaming horizons within the desirable range for warm dark matter for

a sizeable fraction of the parameter space. More precisely, the free-streaming horizon is

in the warm dark matter range for keV sterile neutrino masses of 4 to about 53 keV. For

example for mN = 7.1 keV, the keV sterile neutrino mass fitting the recently claimed X-ray

line observation at 3.55 keV [37, 38], we obtain rFS ' 0.06 Mpc, which is well within the

range of warm dark matter.

5 Effective degrees of freedom

With the introduction of an additional sterile neutrino, one might wonder about its con-

tribution to the effective relativistic degrees of freedom. Its contribution can be quantified

by [17]

∆Neff =
ρN −mNn

ρ1ν
with ρ1ν =

7

4

π2

30
T 4
ν , (5.1)

where we subtracted the non-relativistic energy density contained in the mass of the sterile

neutrino. The energy density ρN is given in eq. (C.8). Thus we find that there are no

additional relativistic degrees of freedom in the non-relativistic limit rN ≡ mN/TN � x̂,

but in the ultra-relativistic limit (rN � x̂) the additional effective relativistic degrees of

freedom are

∆Neff(T ) = 0.0379
MPl

mkk

√
gρ∗(Td)

(
1− rN

2.46

)(
gs∗(T )

gs∗(Td)

)4/3( T

Tν

)4∑

α

|yLN,α|2. (5.2)

Hence we find for a temperature Tν = TBBN ' 4 MeV shortly before the onset of big

bang nucleosynthesis ∆Neff(TBBN) ∼ 10−3 with gs∗(TBBN) = 10.75, gs∗(Td) = 110.75,

yLN,α ∼ 10−8, the scalar mass mkk ∼ 500 GeV, mN ∼ 10 keV and hence a negligibly
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small contribution to the effective number of neutrinos. At recombination the temper-

ature is well below the mass of the keV sterile neutrinos, mN , i.e. rN � x̂, and thus

∆Neff(Trec) ' 0.

6 Sterile neutrino mixing and the X-ray line

The scalar doublet scalar Hν may obtain a vev, 〈Hν〉 =
(
0 vν

)T
, similar to the SM Higgs.

A vev will induce mixing between the sterile neutrino and the active neutrinos

θα '
yLN,αvν
mN

(6.1)

and lead to a new contribution to the active neutrino mass via the seesaw mechanism

∆mν,αβ = mN sin θα sin θβ . (6.2)

The mixing allows the production of the sterile neutrinos via neutrino oscillations [8–10],

which can be estimated using the approximate formula [47]

ΩN,osch
2 ' 0.2×

∑
α sin2 θα

3× 10−9

(
mN

3 keV

)1.8

. (6.3)

In addition the sterile neutrino can decay into a photon and an active neutrino generat-

ing an X-ray line. This already constrains the mixing angle. See ref. [11] for different

constraints on a keV sterile neutrino which is produced via oscillations. Last year two

independent groups observed an X-ray line at 3.55 keV [37, 38], which can be explained by

the decay of sterile neutrino DM to a photon and a neutrino with an active-sterile mixing,∑
α sin2(2θα) ' 7× 10−11. However, the observation is still debated [48–52].

The vev vν can be naturally small and satisfy the X-ray bound, if it is induced via a

small, possibly complex, Z2 soft-breaking term [33, 36],

Vsoft = (µ2
12H

†Hν + h.c.) (6.4)

after the electroweak symmetry is broken. We obtain for the vev vν

Re(vν) ' − Re(µ2
12)v

m2
2 + v2(λ3 + λ4 + λ5)

Im(vν) ' Im(µ2
12)v

m2
2 + v2(λ3 + λ4 − λ5)

. (6.5)

There are no charge-breaking minima at leading order in µ2
12. The scalar masses will receive

small corrections proportional to µ2
12 appearing at the second order in the scalar mass in

eq. (2.4).

As the production via non-resonant neutrino oscillations can only give a subdominant

contribution to the abundance of keV sterile neutrinos [11],3 the production is dominated by

scalar decay. Thus we can translate the limit on the mixing angle from X-ray observations

into a limit on the vev, vν . We find vν . 1–10 MeV depending on the sterile neutrino

3This does not apply to sterile neutrino production via resonant neutrino oscillations [12]. Thus the

3.55 keV X-ray line can be explained in models like in ref. [53, 54].
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Figure 3. Contour plot showing the dark matter abundance Ωh2 for the benchmark point with

mN = 7.1 keV and
∑
α sin2(2θα) ' 7×10−11. The red band indicates the 2σ-allowed region around

the measured by Planck [43].

mass mN ' 2–100 keV and the scalar mass mkk ' 100–1000 GeV. Hence the contribution

to the active neutrino masses in eq. (6.2) is much smaller than the solar mass scale. The

small splitting might explain the existence of pseudo-Dirac neutrinos, if the active neutrino

mass originates from a Dirac mass term. Taking the claimed hint for an X-ray line at

3.55 keV [37, 38], we show in figure 3 the dark matter abundance as a function of the scalar

mass mkk and the effective Yukawa coupling
√∑

α |yLN,α|2 fixing mN = 7.1 keV and the

active-sterile mixing
∑

α sin2(2θα) ' 7 × 10−11. The red band indicates the 2σ-allowed

region around the best-fit value measured by Planck [43]. The required effective Yukawa

couplings are of order (5–22)× 10−9 for scalar masses mkk ' 100–1000 GeV.

7 Conclusions

In the Standard Model of particle physics extended by one singlet Majorana fermion, keV

sterile neutrinos are usually produced via neutrino oscillations and the decay of the elec-

troweak Higgs doublet scalar into the keV sterile neutrino is a subdominant contribution.

However, we showed in this paper, that the decay of an electroweak doublet scalar can

become the dominant production mechanism in a two Higgs doublet model, if the vev of

the electroweak scalar doublet is small or even vanishes. Neutrino oscillations will only

account for a minor additional contribution to the keV sterile neutrino abundance. Thus

we do not consider a vev of the electroweak scalar doublet for the first part of the paper and

only indicate in section 6 the possible changes, when the electroweak doublet scalar obtains

a vev. As long as the vev is small enough, the produced abundance can be approximated

by the result for a vanishing vev. The vev will lead to a mixing of the sterile neutrino with

the active neutrinos. This renders it unstable via a two body decay allowing to search for

the keV sterile neutrinos using X-ray line searches.
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We explicitly derived an analytic expression for the momentum distribution of the keV

sterile neutrino for late times, studied its free-streaming horizon and briefly commented

on its contribution to Neff , the effective number of neutrinos in the early Universe, which

is neglibly small. This production mechanism leads to a cooler spectrum of the sterile

neutrino. The range for the sterile neutrino to be the warm dark matter is in between 4

and 53 keV.

The mechanism to produce sterile neutrinos via the decay of a Higgs doublet can

be easily embedded in models of neutrino mass, which naturally explain the smallness of

neutrino mass. This requires the addition of two or more sterile neutrinos. If the second

Higgs doublet obtains a tiny vev, neutrino mass is naturally suppressed, while the Yukawa

couplings of the other neutrinos can be relatively sizeable [33, 36]. For a vanishing vev of

the second Higgs doublet, neutrino masses can be induced via the radiative seesaw in the

scotogenic model [35] and dark matter is produced via freeze-in [34].

Note added. A recent publication [55] pointed out additional thermal corrections to

the production rate, which become relevant at high temperatures. We do not expect

any significant corrections, because keV sterile neutrinos are dominantly produced at low

temperatures, T . mX . The inclusion of these effects goes beyond the scope of this work,

which focused on a simple analytic discussion of this novel keV sterile neutrino production

mechanism. A future numerical discussion should include these effects and also include the

other neglected subdominant corrections discussed in section 3.
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A Decay widths

The decay width of the scalar fields are given as

Γ(k → N1να) =
mk|yLN,α|2

32π

(
1− m2

N

m2
k

)2

' mk|yLN,α|2
32π

(A.1)

Γ(K0 → N1να) =
mK0 |yLN,α|2

32π

(
1− m2

N

m2
K0

)2

' mK0 |yLN,α|2
32π

(A.2)

Γ(K+ → N1 l̄α) =
mK+ |yLN,α|2

16π

(
1− m2

N

m2
K+

)2

' mK+ |yLN,α|2
16π

. (A.3)

Hence the decay widths in the limit mN � mX can be approximated by

Γ(k → N1να)

gkmk
' Γ(K0 → N1να)

gK0mK0

' Γ(K+ → N1 l̄α)

gK+mK+

' |yLN,α|
2

32π
. (A.4)
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B Dark matter momentum distribution function

In case of the production of sterile neutrinos from decay of the real scalar k, the collision

term is given by

C[fN ] ≡ 1

2EN

∫
dΠkdΠν(2π)4δ(4)(pk − pN − pν)|M|2

(
fk(1− fN )(1− fν)− fNfν(1 + fk)

)
,

(B.1)

with the Lorentz-invariant phase space element

dΠ =
gd3p

(2π)32E
, (B.2)

which is denoted dΠν (dΠk) for neutrinos (the real scalar). The number of degrees of

freedom are gk = 1 for the scalar and gν = 2 for the neutrino. The distribution functions

of the scalar (neutrino) are fk (fν) and the spin-averaged matrix element is given by

|M|2 =
1

4
|yLN |2pν · pN =

1

4
|yLN |2(m2

k −m2
N −m2

ν) . (B.3)

Using the decay width Γk ' |yLN |2mk/32π in the limit of negligible final state masses,

mN = mν = 0, we can rewrite the matrix element

|M|2 =
8πΓk
mk

m2
k (B.4)

and generalise it to any of the three considered scalars using eq. (A.4)

|M|2 = 8πgXmXΓX . (B.5)

Neglecting all terms proportional to fN and taking the ultra-relativistic approximation

EN ' pN , we obtain

C[fN ] ≡ 4πgXmXΓX
pN

∫
dΠXdΠν(2π)4δ(4)(pX − pN − pν)fX(1− fν) . (B.6)

Note that we do not neglect Pauli-blocking, i.e. do not approximate 1 − fν ' 1. The

integration over the neutrino momenta pν is easily evaluated using the δ-function of the

momenta. As the integrand only depends on Eν and thus the scalar product ~pX ·~pN , which

can be evaluated via the delta function of the energies

EX − EN = Eν = |~pν | =
√
~p 2
X + ~p 2

N − 2~pX · ~pN , (B.7)

the collision term can we written as

C[fN ] =
gXmXΓX

2p2
N

∫ ∞

pN+
m2
X

4pN

dEXfX

(
EX
T

)(
1− fν

(
EX
2T

))
. (B.8)

Using the dimensionless variables

xN,X =
pN,X
T

, r =
mX

T
, rN =

mN

T
(B.9)
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we rewrite the Liouville operator in the radiation dominated epoch assuming gρ∗ to be

constant

L[fN ] = Hr
∂fN
∂r

(B.10)

and the collision term

C[fN ] = gXΓX
r

2x2
N

∫ ∞

xN+ r2

4xN

fX(yX)

(
1− fν

(
yX
2

))
dyX , (B.11)

where we use the Friedmann equation in a radiation dominated epoch to express the Hubble

constant as H(T ) = T 2/M0 = m2
X/M0r

2 where M0 is defined in eq. (3.4). Using our result

from the collision term of a scalar decay, we find the Boltzmann equation for the distribution

function fN of the sterile neutrinos

∂fN
∂r

=
M0gXΓX

2m2
X

r2

x2
N

∫ ∞

xN+ r2

4xN

dyXfX(yX)

(
1− fν

(
yX
2

))
. (B.12)

Hence the distribution function can be obtained by a simple integration

fN (xN , r) =
M0gXΓX

2m2
X

∫ r

0
dr′

r′2

x2
N

∫ ∞

xN+ r′2
4xN

dyXfX(yX)

(
1− fν

(
yX
2

))
. (B.13)

If the scalar and the neutrino are in thermal equilibrium, they are described by a Bose-

Einstein distribution function f−1
BE(y) = ey−1 and Fermi-Dirac distribution f−1

FD(y) = ey+1,

respectively. We can perform the integral over yX ,

fN (xN , r) =
M0gXΓX

2m2
X

∫ r

0
dr′

r′2

x2
N

g
(
e

1
2

(
xN+ r′2

4xN

))
(B.14)

with

g(z) = − 1

1 + z
− 1

2
ln

(
z − 1

z + 1

)
. (B.15)

Changing the variables of integration to y = r′2/8xN we obtain

fN (xN , r) =
4
√

2M0gXΓX
m2
X

1√
xN

∫ r2/8xN

0
y

1
2 g
(
e
xN
2 ey

)
dy . (B.16)

We will employ the integral representation of the incomplete polylogarithm4

Lis(b, z) =
1

Γ(s)

∫ ∞

b

ts−1

et/z − 1
dt all z but Re(z) ≥ 1 (B.18)

Lis(b,−z) = − 1

Γ(s)

∫ ∞

b

ts−1

et/z + 1
dt all z but Re(z) ≤ −1 ,

4The integral representation of the incomplete polylogarithm is also known as the incomplete Bose-

Einstein and Fermi-Dirac integrals, more precisely

Fj(x, b) ≡
1

Γ(j + 1)

∫ ∞
b

tj

et−x + 1
dx = −Lij+1(b,−ex) . (B.17)
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which are well-defined for Re(s) > 0, to rewrite the integral in terms of known functions.

The usual polylogarithm is obtained for b = 0, i.e. Lis(z) ≡ Lis(0, z). The first summand of

eq. (B.15) can be integrated directly using the integral representation of the polylogarithm

in eq. (B.18), while the second term requires integration by parts to obtain fractions, which

can then be integrated using eq. (B.18). Finally the distribution function can be expressed

at late times with r2 � 8xN by

f0
N (xN ) =

√
2πM0gXΓX

m2
X

1√
xN

[
2Li 3

2

(
− e−

xN
2
)

+ Li 5
2

(
e−

xN
2
)
− Li 5

2

(
− e−

xN
2
)]
. (B.19)

A comparison to the result without Pauli-blocking,

f0,nP
N (xN ) =

√
πM0gXΓX

2m2
X

1√
xN

Li 5
2
(e−xN ) (B.20)

shows that the Pauli-blocking leads to the correction

f0
N (xN )− f0,nP

N (xN ) =

√
2πM0gXΓX

2m2
X

1√
xN

[
2Li 3

2

(
− e−

xN
2
)
−Li 5

2

(
e−

xN
2
)
−3Li 5

2

(
− e−

xN
2
)]
.

(B.21)

As expected the correction is negative and becomes larger for smaller xN . This agrees with

the distribution function given in ref. [56]. In the limit xN � 0 we obtain the Maxwell-

Boltzmann result

f0
N (xN )

xN�0'
√
πM0gXΓX
m2
X

e−xN√
xN

, (B.22)

which agrees with the result obtained from taking the Maxwell-Boltzmann limit in

eq. (B.13).

fMB
N (xN , r) =

√
πM0gXΓX
m2
X

e−xN√
xN

(
1−

Γ
(

3
2 ,

r2

4xN

)

Γ
(

3
2

)
)
, (B.23)

where we used the incomplete Γ function

Γ(s, x) ≡
∫ ∞

x
ts−1e−tdt . (B.24)

The final expression for the distribution function at a finite temperature is given by

fN (xN , r) = f0
N (xN )−

√
2πM0gXΓX

m2
X

1√
xN

h

(
r2

8xN
, e−

xN
2

)
(B.25)

with the function

h(b, z) = 2Li 3
2
(b, z) + Li 5

2
(b, z)− Li 5

2
(b,−z)− 4

3
√
π
b
3
2 ln

(
eb − z
eb + z

)
b→∞−→ 0 . (B.26)

We are mainly interested in the distribution function after the sterile neutrino DM produc-

tion has finished and thus we will use the zero-temperature limit f0
N (xN ) in the following.
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The generalisation to multiple scalar fields is simply the sum of the different contribu-

tions

f0
N (xN ) =

√
90

2π

∑

X

gXΓXMpl

m2
X

√
gρ∗(Td,X)

1√
xN

[
2Li 3

2

(
− e−

xN
2
)

+ Li 5
2

(
e−

xN
2
)
− Li 5

2

(
− e−

xN
2
)]
.

(B.27)

The function x2f0
N (x) has a maximum at x̂ ' 1.54 and falls off very quickly away from

the maximum. A typical value for the momentum is thus of order x̂. After the sterile

neutrinos are produced via the decay, they are completely decoupled from the thermal

bath of the SM particles and generally have a different temperature TN compared to the

thermal bath of SM particles. Obviously the distribution function of the sterile neutrinos

does not resemble a thermal Maxwell-Boltzmann, Fermi-Dirac or Bose-Einstein statistic,

but represents a non-equilibrium distribution function.

C Temperature of the sterile neutrino dark matter

In the following we will calculate all relevant quantities for the sterile neutrino dark matter

sector for sufficiently late time and low temperature TN � mX/2xN using the distribution

function in eq. (B.27). In order to simplify the notation we will also drop the subscript N

from pN and xN = pN/TN . The number density and the average momentum are given by

n = gN

∫
d3p

(2π)3
fN (p) =

T 3
N

2π2

∫ ∞

0
x2fN (x)dx (C.1)

=
9
√

5

2π5/2

(
ζ(5)− 13

16
ζ(4)

)∑

X

gXΓXMpl

m2
X

√
gρ∗(Td,X)

T 3
N ' 0.091

∑

X

gXΓXMpl

m2
X

√
gρ∗(Td,X)

T 3
N

〈p〉 =
gN
n

∫
d3p

(2π)3
pfN (p) =

T 4
N

2nπ2

∫ ∞

0
x3fN (x)dx = 5

29ζ(5)− 32ζ(6)

26ζ(4)− 32ζ(5)
TN ' 2.46TN ,

(C.2)

where we used the integral formulas

∫ ∞

0
xnLis(e

−x/a)dx = an+1Γ(n+ 1)ζ(n+ s+ 1) (C.3)

∫ ∞

0
xnLis(−e−x/a)dx = an+1(−1 + 2−n−s)Γ(n+ 1)ζ(n+ s+ 1) (C.4)

to evaluate the integrals. The result for the number density in eq. (C.1) is consistent with

the calculation of the yield Y = n/s in eq. (3.7) using the integrated Boltzmann equation in

the Maxwell-Boltzmann approximation. Using the expression for the number density and

the distribution function we can determine how the temperature of the sterile neutrinos

depends on the scale factor [57]. The sterile neutrinos are not interacting and thus the

only effect is due to the cosmic expansion. After the abundance of the sterile neutrino is

frozen-in, n(x)a3 does not change and we can relate the number density n at time t to

the number density n′ at a later time t′, n(x)a3 = n′(x′)(a′)3. Then we obtain from the
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number density of the sterile neutrinos with momenta between p and p+ dp the following

relation between the distribution functions at different times

T 3
Nx

2fN (x)dx =

(
a′

a

)3

T ′3Nx
′2f ′N (x′)dx′ = T 3

Nx
2f ′N

(
a

a′
TN
T ′N

x

)
dx (C.5)

where we used the dependence of the momentum on the scale factor, p ∝ a−1, to relate

x and

x′ =
p′

T ′N
=
a

a′
p

TN

TN
T ′N

=
a

a′
TN
T ′N

x . (C.6)

Thus the distribution function f ′N at a later time t′ has the same form with a temperature

T ′N = TN
a

a′
. (C.7)

The expression for the energy density is similarly obtained from

ρN = gN

∫
d3p

(2π)3
EfN (p) =

T 4
N

2π2

∫ ∞

0
x2
√
x2 + r2

NfN (x)dx =

{
〈p〉n rN � x̂

mNn rN � x̂
(C.8)

with rN ≡ mN/TN , where we took the ultra-relativistic or non-relativistic limit, respec-

tively, in the last step. The pressure is given by

PN =
〈 p2

3E(p)

〉
=
T 4
N

6π2

∫ ∞

0

x4

√
x2 + r2

N

fN (x)dx =





1
3 〈p〉n rN � x̂
7
6

61ζ(6)−64ζ(7)
29ζ(5)−32ζ(6)

ρN
r2N

rN � x̂
(C.9)

and thus the equation of state is

w =
PN
ρN

=





1
3 rN � x̂
7
6

61ζ(6)−64ζ(7)
29ζ(5)−32ζ(6)

1
r2N
' 1.16

r2N
rN � x̂

(C.10)

showing that the sterile neutrinos behave like matter for temperatures much below mN ,

i.e. rN � 1. Similarly the entropy density is given by

sN =
ρN + PN
TN

= (1 + w)
ρN
TN

=

{
20
3

29ζ(5)−32ζ(6)
26ζ(4)−32ζ(5)n ' 3.28n rN � x̂

(1 + w)rNn rN � x̂ .
(C.11)

Thus we find that the entropy density scales like T 3
N in the ultra-relativistic limit for

rN � x̂ and observe that the entropy of the sterile neutrino dark matter sector is separately

conserved using eq. (C.7).

We can use the conservation of entropy to obtain a relation between the temperature of

the SM thermal bath T and the temperature TN of the sterile neutrino dark matter sector.

Consequently we parameterize the entropy density similarly to the SM thermal bath

s =
2π2

45
gs∗T

3 and sN =
2π2

45
gs∗,NT

3
N , (C.12)
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we find for the entropy degrees of freedom in the sterile neutrino sector, gs∗,N ,

gs∗,N =
∑

X

5π3/2

56

√
5

gρ∗(Td,X)

gXΓXMPl

m2
X

. (C.13)

Using the conservation of entropy

gs∗(Td)T
3
d a

3
d =

(
gs∗(T )T 3 + gs∗,NT

3
N

)
a3 (C.14)

and assuming that all scalars decay at the same time Td, we find for the temperature TN ,

TN
T

=

(
gs∗(T )

gs∗(Td)− gs∗,N

)1/3

'
(
gs∗(T )

gs∗(Td)

)1/3

. (C.15)

In the non-relativistic limit, we can employ eq. (C.7) to relate the temperature TN to the

temperature TN,nr,

TN = TN,nr
anr

a
(C.16)

and ultimately the temperature of the SM thermal bath T .
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