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bDepartment of Physics, Korea Advanced Institute of Science and Technology,

335 Gwahak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea

E-mail: alejandro.celis@ific.uv.es, javier.fuentes@ific.uv.es,

hserodio@kaist.ac.kr

Abstract: We build a class of invisible axion models with tree-level Flavor Changing

Neutral Currents completely controlled by the fermion mixing matrices. The scalar sector

of these models contains three-Higgs doublets and a complex scalar gauge singlet, with

the same fermionic content as in the Standard Model. A horizontal Peccei-Quinn sym-

metry provides a solution to the strong CP problem and predicts the existence of a very

light and weakly coupled pseudo-Goldstone boson, the invisible axion or familon. A phe-

nomenological analysis is performed taking into account familon searches in rare kaon and

muon decays, astrophysical considerations and axion searches via axion-photon conversion.

Drastic differences are found in the axion properties of different models due to the strong

hierarchy of the CKM matrix, making some of the models considered much more con-

strained than others. We also obtain that a rich variety of these models avoid the domain

wall problem. A possible mechanism to protect the solution to the strong CP problem

against gravitational effects is also discussed.

Keywords: Beyond Standard Model, CP violation, Global Symmetries

ArXiv ePrint: 1410.6218

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP12(2014)167

mailto:alejandro.celis@ific.uv.es
mailto:javier.fuentes@ific.uv.es
mailto:hserodio@kaist.ac.kr
http://arxiv.org/abs/1410.6218
http://dx.doi.org/10.1007/JHEP12(2014)167


J
H
E
P
1
2
(
2
0
1
4
)
1
6
7

Contents

1 Introduction 1

2 Notation and the Branco-Grimus-Lavoura model 4

3 The anomalous condition for a BGL-like model 6

4 The three-Higgs-doublet class of anomalous models 11

4.1 The Yukawa quark sector 12

4.2 The scalar potential 13

4.3 The Yukawa leptonic sector 17

5 Axion properties 20

5.1 Axion-photon coupling 20

5.2 Axion couplings to matter 22

5.3 The domain wall problem 25

5.4 Protecting the axion against gravity 26

6 Model variations 30

6.1 Type (i) operation 31

6.2 Type (ii) operation 31

6.3 Model variations dictionary 33

7 Discussion 33

7.1 Constraining the axion coupling to photons 34

7.2 Constraining the axion couplings to matter 36

7.3 Constraining flavor changing axion interactions 37

7.4 Higgs physics 40

7.4.1 Decoupling in the scalar sector 40

7.4.2 Higgs phenomenology 42

8 Conclusions 43

1 Introduction

The recent discovery by the ATLAS [1] and CMS [2] collaborations of a Higgs-like particle

with a mass around 125 GeV represents one of the greatest achievements of physics in the

last decades and constitutes an indisputable success of the Standard Model (SM) of particle

physics. This discovery reinforces the SM as the theory of electroweak and strong interac-

tions, no significant deviations from this framework have been observed so far at LHC, in
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precision experiments at flavor factories nor in electroweak precision test at LEP. However,

the SM presents several unanswered questions which might be a hint of physics beyond

the SM. One of such open questions is the so-called strong CP problem (for comprehensive

reviews of the strong CP problem see [3–5]).

The strong CP problem is tightly related to the U(1)A problem of Quantum Chromo-

dynamics (QCD). In the limit of massless quarks the QCD Lagrangian shows a chiral U(1)A

symmetry. The fact that after chiral symmetry breaking its associated pseudo-Goldstone

boson was not found experimentally proved that this symmetry should be broken or not

realized in nature [6, 7]. This led to an apparent contradiction between theory and ex-

periment which was termed as the U(1)A problem. The solution to this issue came from

the realization by t’Hooft that non-perturbative QCD effects explicitly break this symme-

try [8, 9]. However, with the resolution of this problem a new problem arose. The explicit

breaking of the U(1)A in QCD leads to the presence of an extra term in the Lagrangian

Lstrong
CP = θQCD

g2
s

32π2
Ga, µνG̃

µν
a , (1.1)

where gs is the strong coupling constant and Gµνa and G̃µνa are the QCD field-strength tensor

and its dual tensor, respectively. This way the QCD vacuum angle, θQCD, together with gs
remain as the only free parameters of massless QCD. If along with QCD the electroweak

(EW) sector is introduced, one should take into account that the quark masses are complex

in general. To get the Lagrangian in the physical basis a chiral U(1)A transformation should

be performed. As a result, the QCD vacuum angle in eq. (1.1) is substituted in the full

theory by θ̄ defined as

θ̄ = θQCD + Arg (DetM) , (1.2)

being M the quark mass matrix. For θ̄ 6= 0, eq. (1.1) introduces a violation of P and T but

not C and consequently a violation of CP. However, the present bound on neutron dipole

moment, |dn| < 2.9× 10−26 e cm [10], set a stringent bound on this angle
∣∣θ̄∣∣ <∼ 10−11 [11,

12]. The reason why this parameter, coming from the strong and the electroweak sectors,

is so small is unknown and gives rise to the Strong CP problem.

An elegant solution to the Strong CP problem was given by Peccei and Quinn [13, 14].

This solution, commonly referred as the Peccei-Quinn (PQ) mechanism, consists on the

introduction of a global chiral U(1)PQ symmetry with mixed anomalies with QCD. This

symmetry effectively replaces the CP-violating phase by a CP-odd field, the so-called axion,

which correspond to the pseudo-Goldstone boson resulting from the spontaneous breaking

of the PQ symmetry [15, 16]. The implementation of the PQ mechanism requires the

extension of the matter content of the SM. In its original formulation, the scalar sector

is enlarged to a two-Higgs-doublet model (2HDM) with the PQ charges implementation

enforcing Natural Flavor Conservation (NFC) [17, 18]. This way the severe experimental

constraints from Flavor Changing Neutral Currents (FCNCs) [19] are avoided. In this

model the axion has a mass of few hundreds keV and presents large couplings to matter [15,

16]. This formulation was soon ruled out by experimental data.
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In order to satisfy the experimental constraints one needs to decouple the PQ symmetry

breaking and the EW scales. This is achieved by the introduction of a gauge singlet field

that acquire a vacuum expectation value (vev) that breaks the PQ symmetry at a scale

much higher than the EW scale. This results in invisible axion models where the mass and

the couplings of the axion are suppressed by the vev of the scalar singlet and, therefore,

are naturally small. In this class of models the axion possesses several interesting features.

For instance, the invisible axion is a promising candidate for cold dark matter [20–24].

Additionally, the type I seesaw mechanism [25–29] can be naturally implemented in these

models allowing for the possibility to explain the smallness of the active neutrino masses

and providing a dynamical origin to the heavy seesaw scale [30–33].

Two models stand as benchmark invisible axion models: the Dine-Fischler-Srednicki-

Zhitnitsky (DFSZ) [34, 35] and the Kim-Shifman-Vainshtein-Zakharov (KSVZ) [36, 37]

models. In the KSVZ model one adds to the SM particle content a heavy color triplet

and SU(2)L singlet vector-like quark and a complex scalar gauge singlet. The SM fields

carry no PQ charge in the KSVZ model. On the other hand, in the DFSZ model one

introduces an additional Higgs doublet and a complex scalar gauge singlet while the PQ

symmetry enforces NFC just like in the original PQ model. In this article we consider

models of the DFSZ type where one only enlarges the scalar sector (possibly adding also

right-handed neutrinos). In a recent paper [38], the authors presented an invisible axion

model where the PQ symmetry is not family universal but rather a horizontal symmetry.

As the PQ symmetry cannot be used now to implement NFC, potentially dangerous tree-

level FCNCs might be present. The approach followed in this case to avoid large flavor

violating scalar couplings was to implement the flavored PQ symmetry in the same fashion

as in the Branco-Grimus-Lavoura (BGL) model [39]. This way FCNCs appear at tree-

level but they are controlled by the Cabibbo-Kobayashi-Maskawa (CKM) [40, 41] and

the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) [42–44] matrices. This axion model is

characterized by several interesting features. Among these, we stress the possibility of

avoiding the domain wall problem [45–48], also the presence of Flavor Changing Axion

Interactions (FCAI) can introduce experimental constraints stronger than the astrophysical

ones in some cases [49, 50]. Invisible axion models with a horizontal PQ symmetry have

been built previously in refs. [51–56] and in the context of horizontal gauge symmetries in

ref. [57, 58].

The present work is devoted to the extension and detailed analysis of the model pre-

sented in ref. [38]. In section 2 we introduce the notation and briefly review the main

aspects of the BGL model in the two Higgs scenario. Section 3 is dedicated to the determi-

nation of the required conditions for this symmetry to be a chiral PQ symmetry, therefore

demanding it to be QCD anomalous. We show that this condition cannot be fulfilled in

the two-Higgs-doublet BGL model and that an extension of the scalar sector is required.

In section 4 we present a three-Higgs-doublet implementation with a horizontal PQ sym-

metry enforcing a BGL-like suppression in the FCNCs, we refer to this as the three-Higgs

flavored Peccei-Quinn (3HFPQ) model. A full study of the axion properties of the model

is done in section 5. The domain wall problem and gravitational effects are also considered

in this section. All the results shown in the previous sections are obtained in a specific

– 3 –
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implementation with FCNCs in the down-quark sector and where the top quark is singled

out. Section 6 is intended to the study of all the possible models variations. In section 7 we

perform a phenomenological analysis of the axion in these models taking into account flavor

experiments, astrophysical considerations and axion searches via axion-photon conversion.

Some details concerning Higgs decoupling scenarios and possible new physics signatures

related to the Higgs sector can also be found in this section. We summarize our results

and conclude in section 8.

2 Notation and the Branco-Grimus-Lavoura model

In this section we introduce the notation used throughout the article and present the so-

called Branco-Grimus-Lavoura (BGL) model [39]. We consider a 2HDM with the Higgs

doublets parametrized as

Φj = eiαj

(
ϕ+
j

1√
2

(vj + ρj + iηj)

)
(j = 1, 2) . (2.1)

Here v1 > 0 and v2 > 0 generate the quark masses. We also set α1 = 0 and α2 ≡ α

without loss of generality. Due to the presence of an additional Higgs doublet the Yukawa

Lagrangian takes the general form

− LY = Q0
L [Γ1 Φ1 + Γ2 Φ2] d0

R +Q0
L [∆1 Φ̃1 + ∆2 Φ̃2]u0

R + h.c. , (2.2)

where Φ̃j = iσ2Φ∗j , σ2 being the Pauli matrix. In order to study some of the new phenomena

present in this framework it is convenient to work in the Higgs basis, where the Goldstone

bosons G+ and G0 are singled out and only one Higgs doublet acquires a non-vanishing

vev. For that, we perform the following transformations(
G+

H+

)
= O2

(
ϕ+

1

ϕ+
2

)
,

(
G0

I

)
= O2

(
η1

η2

)
,

(
H0

R

)
= O2

(
ρ1

ρ2

)
, (2.3)

with

O2 =
1

v

(
v1 v2

v2 −v1

)
and v ≡

√
v2

1 + v2
2 =

(√
2GF

)−1/2
. (2.4)

Expanding the Yukawa Lagrangian in the Higgs basis one obtains

−LY ⊃
1

v

{
d0
L

[
vMd +MdH

0 +N0
dR+ iN0

d I
]
d0
R

+ u0
L

[
vMu +MuH

0 +N0
uR− iN0

uI
]
u0
R

+
√

2H+
(
u0
LN

0
d d

0
R − u0

RN
0†
u d0

L

)
+ h.c.

}
.

(2.5)

The matrices Mq and N0
q (q = u, d) encode the flavor structure in the 2HDM, these are

given by

Md =
1√
2

(
v1Γ1 + v2e

iαΓ2

)
, Mu =

1√
2

(
v1∆1 + v2e

−iα∆2

)
, (2.6)
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and

N0
d =

1√
2

(
v2Γ1 − v1e

iαΓ2

)
=
v2

v1
Md −

v2√
2

(
v2

v1
+
v1

v2

)
eiαΓ2 ,

N0
u =

1√
2

(
v2∆1 − v1e

−iα∆2

)
=
v2

v1
Mu −

v2√
2

(
v2

v1
+
v1

v2

)
e−iα∆2 .

(2.7)

The quark mass matrices Mu,d determine the Yukawa couplings of the scalar field H0 while

the matrices N0
u,d determine the Yukawa couplings of the scalar R and the pseudoscalar

I. Note that the fields {H0, R, I} are not mass eigenstates in general, the physical neutral

scalar bosons will correspond to a linear combination of these fields.

The quark mass matrices can be diagonalized through the bi-unitary transformations:

u0
L,R = UuL,R uL,R , d0

L,R = UdL,R dL,R , (2.8)

chosen appropriately so that

U †uLMuUuR = Du = diag (mu, mc, mt) , U †dLMdUdR = Dd = diag (md, ms, mb) . (2.9)

These transformations guarantee diagonal quark couplings for H0 but, in general,

Nu = U †uLN
0
uUuR 6= diag , Nd = U †dLN

0
dUdR 6= diag , (2.10)

so that R and I have flavor violating couplings at tree-level. These are the sources of

dangerous FCNCs at tree level in the 2HDM. The most common solution to this problem

is the NFC condition. This scenario is nothing more than the requirement of simultaneous

diagonalization of Mu,d and N0
u,d, or equivalently, the simultaneous diagonalization of the

Yukawa textures in each sector. In the two Higgs doublet models the NFC condition can

be implemented in two ways:

• Through a discrete or continuous symmetry which restricts the number of Yukawas

in each sector to one [17, 18].

• Using the alignment condition, where the Yukawa matrices in the same sector have

the same flavor structure up to an overall factor [59]. This can be seen as an effective

theory of a larger model with the first condition imposed at the UV level [60–64]. It

can also be seen as a first order expansion in a minimal flavor violating scenario [65–

68].

There exists, however, a different scenario where NFC is only imposed in one sector and

FCNCs present in the other sector are under control, this is known as the BGL model [39].

The model uses an abelian symmetry to impose the Yukawa textures

ΓBGL
1 =

× × ×× × ×
0 0 0

 , ΓBGL
2 =

0 0 0

0 0 0

× × ×

 ,

∆BGL
1 =

× × 0

× × 0

0 0 0

 , ∆BGL
2 =

0 0 0

0 0 0

0 0 ×

 .

(2.11)
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This implementation is also known as the top-BGL, since it singles out the top quark. In

this case the flavor matrices responsible for the FCNCs take the form

(Nd)
BGL
ij =

v2

v1
(Dd)ij −

(
v2

v1
+
v1

v2

)
(V †)i3(V )3j(Dd)jj ,

(Nu)BGL =
v2

v1
diag(mu,mc, 0)− v1

v2
diag(0, 0,mt) ,

(2.12)

with V = U †uLUdL the CKM quark mixing matrix. This simple implementation introduces

no FCNC effects in the up-quark sector. In the down-quark sector, one has tree-level

FCNCs, however, those are highly suppressed. We can see from eq. (2.12) that the second

term of Nd will introduce FCNCs which are suppressed by:

• The down-type quark masses.

• The off-diagonal CKM matrix elements.

This way, the model implements controllable FCNCs at tree level within the 2HDM. As

shown in refs. [69, 70] this implementation is unique, up to trivial permutations, in models

with abelian symmetries. A detailed phenomenological study of the experimental con-

straints on this model was presented in refs. [71–73].

Although the BGL model presents several unique features, it still suffers from a few

problems. The first problem is present in the scalar potential of the model. While the

abelian flavor symmetry used to get the desired textures can be implemented through a

discrete group, the scalar sector will exhibit an accidental global U(1) symmetry leading to

a Goldstone boson after spontaneous symmetry breaking [39]. Alternatives to eliminate the

accidental global symmetry have been discussed in ref. [39], adding soft breaking terms to

the scalar potential or extending the scalar sector with gauge singlet fields could protect the

model against the phenomenologically dangerous Goldstone modes. On the other hand, the

strong CP problem is not addressed in this scenario. While there are no large contributions

to electric dipole moments in the BGL model [74], this is based on the assumption of a

vanishing or very small θ term [3–5].

In this work we suggest that these apparent problems of the BGL model could be

solved in an unified way if the required Yukawa textures are imposed by a global chiral

U(1)PQ symmetry, bringing also other advantages we will discuss in the following sections.

The model then provides a dynamical solution to the strong CP problem via the PQ

mechanism while an axion appears in the spectrum, which could in principle account for

the dark matter of the Universe.

3 The anomalous condition for a BGL-like model

In this section we shall find the anomalous condition for the abelian continuous symmetry

that imposes the BGL Yukawa textures, extending the analyses done in ref. [38]. We are

then interested in finding the abelian generators under which the fields must transform, i.e.

Q0
L → SLQ0

L , d0
R → SdR d0

R , u0
R → SuR u0

R , (3.1)

– 6 –
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with

SL = diag(eiXuL θ, eiXcL θ, eiXtL θ) , SdR = diag(eiXdR θ, eiXsR θ, eiXbR θ) ,

SuR = diag(eiXuR θ, eiXcR θ, eiXtR θ) ,
(3.2)

and

Φ→ SΦ Φ , (3.3)

with

SΦ = diag(eiXΦ1 θ, eiXΦ2 θ) . (3.4)

These field transformations will induce the following constraints

S†L Γk SdR (SΦ)kk = Γk , S†L ∆k SuR (S∗Φ)kk = ∆k , (3.5)

with k = 1, 2. The Yukawa texture patterns are dictated by the way the fermion fields

transform, the Higgs field transformation will only select one of the allowed textures [67,

69, 70, 74]. The best way to find these fermion transformations is to study the Hermitian

combinations ΓkΓ
†
k and Γ†kΓk (and similarly for ∆k). The symmetry constraints on these

combinations give

S†L
{

ΓkΓ
†
k ,∆k∆

†
k

}
SL =

{
ΓkΓ

†
k ,∆k∆

†
k

}
,

S(d,u)†
R

{
Γ†kΓk ,∆

†
k∆k

}
S(d,u)
R =

{
Γ†kΓk ,∆

†
k∆k

}
.

(3.6)

The above equations are nothing more than the commutation of a diagonal matrix SL,R
with a Hermitian matrix. In order for these matrices to commute SL,R must share the

same eigenvectors as the Hermitian combination, or have degenerate eigenvalues for the

non-shared eigenvectors. We then get three scenarios:

i) The matrix SL,R has only one phase. The Hermitian combination has no restriction;

ii) The matrix SL,R has two different phases. The Hermitian combination must be block

diagonal, with the 2× 2 block in the same sector as the degeneracy in SL,R;

iii) The matrix SL,R has three different phases. The Hermitian combination must

be diagonal.

From eq. (2.11) we see that the ∆j Yukawa textures are block diagonal in the up-charm

sector. The hermitian combinations ∆k∆
†
k and ∆†k∆k will also share the same form. This

in turn implies that the symmetry generators for the left- and right-handed fields must

belong to case ii), i.e. the abelian generators have only two different phases

SL = diag
(

1, 1, eiXtL θ
)
, SuR = diag

(
eiXuR θ, eiXuR θ, eiXtR θ

)
, (3.7)

where we set one of the charges to zero using a global phase transformation. Notice that

the charges should satisfy the conditions

Condition A: XtL 6= 0 and XuR 6= XtR , (3.8)

– 7 –
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in order to stay in the scenario ii). When the left-handed quark doublet and the right-

handed up-type quark transform under this symmetry, the phases appearing in the Yukawa

term are

Θu = θ

 XuR XuR XtR

XuR XuR XtR

XuR −XtL XuR −XtL XtR −XtL

 , (3.9)

with the additional condition

Condition B: XtL 6= −(XuR −XtR) . (3.10)

To the matrix Θu we call the up-quark phase transformation matrix. The generators

in eq. (3.7), together with the conditions A and B are the complete and minimal set of

required conditions in order to have available the BGL textures for the up sector. In order

to pick the desired textures we now have to attribute the correct charges to the Higgs fields.

Remembering that in the up-quark sector we have the Φ̃i field coupling, we choose for the

scalar fields

Sup
Φ = diag

(
eiXuR θ, ei(XtR−XtL) θ

)
. (3.11)

This choice makes Φ̃j associated with the ∆j of eq. (2.11). We can now build the phase

transformation matrix for the down-quark sector. The left-handed transformation is the

same, since it is shared by the two sectors. Concerning the right-handed generator of Γj
(see eq. (2.11)), it belongs to the case i) and, therefore, has the form

SdR = eiXdRθ I . (3.12)

The down-quark phase transformation matrix is then given by

Θd = θ

 XdR XdR XdR

XdR XdR XdR

XdR −XtL XdR −XtL XdR −XtL

 . (3.13)

Eqs. (3.7) and (3.12) together with the first part of condition A are the minimal set of

required conditions necessary to obtain the BGL textures in the down sector. In order to

pick the desired textures we would need the scalar transformation

Sdown
Φ = diag

(
e−iXdR θ, ei(XtL−XdR) θ

)
. (3.14)

To make the BGL textures in the up and down sectors compatible without introducing

additional textures that spoil the nice features of the BGL-type models we need to impose

some extra charge conditions, we call them texture matching conditions. They guarantee

that the only non-BGL textures present in the Yukawa sector are the null textures,

XdR 6= −XtR, XtL 6= XuR +XdR, XtL 6= XtR +XdR, XtL 6=
1

2
(XuR +XdR) . (3.15)

Finally, we have to require an additional texture matching condition indicating how the up

and down sectors match. In the original BGL formulation it is crucial that the Higgs doublet

– 8 –
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coupling to the ΓBGL
1 and ∆BGL

1 textures is the same, the other possible implementation

would violate one of the texture matching conditions in eq. (3.15). This automatically

leads to XdR = −XuR.

Since we introduced a chiral symmetry we get the anomaly free condition for the PQ

symmetry with the QCD currents

2XtL − (2XuR +XtR + 3XdR) = 0 ⇒ XtL = XuR +
1

2
XtR +

3

2
XdR . (3.16)

This anomaly free condition makes both Sup
Φ and Sdown

Φ equal for XdR = −XuR, making

the BGL implementation consistent and anomaly free with two Higgs doublets. If we

want this symmetry to be anomalous then XtL 6= −1/2(XuR −XtR) and the model must

be extended. We shall pursue a possible anomalous implementation in the multi-Higgs

framework, making the three-Higgs doublet model the minimal extension. In the three

Higgs implementation we can just join the scalar generators Sup
Φ and Sdown

Φ into a single one

SΦ = diag
(
eiXuR θ, ei(XtR−XtL) θ, ei(XtL−XdR) θ

)
. (3.17)

In this three-Higgs doublet model implementation we get the following Yukawa textures

Γ1 =

× × ×× × ×
0 0 0

 , Γ2 = 0 , Γ3 =

0 0 0

0 0 0

× × ×

 ,

∆1 =

× × 0

× × 0

0 0 0

 , ∆2 =

0 0 0

0 0 0

0 0 ×

 , ∆3 = 0 ,

(3.18)

with the charge constraints

Texture Matching Conditions:


XuR = −XdR,

XuR 6= XtR,

XtL 6= XtR −XuR,

Anomaly condition: XtL 6= −
1

2
(XuR −XtR) .

(3.19)

Since we extended the Higgs sector, in principle it is no longer necessary to have

ΓBGL
1 and ∆BGL

1 coupling to the same Higgs doublet. We can have another three different

implementations:

• ΓBGL
1 with ∆BGL

2 . This implies −XdR = XtR −XtL;

• ΓBGL
2 with ∆BGL

1 . This implies XuR = XtL −XdR;

• ΓBGL
2 with ∆BGL

2 . This implies XtR −XtL = XtL −XdR.

However, the first two implementations violate the charge restrictions in eq. (3.15) whereas

the third one is a safe implementation and gives

SΦ = diag
(
eiXuR θ, e−iXdR θ, ei(XtL−XdR) θ

)
, (3.20)

– 9 –
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so we get the following Yukawa textures implementation

Γ1 =0 , Γ2 =

× × ×× × ×
0 0 0

 , Γ3 =

0 0 0

0 0 0

× × ×

 ,

∆1 =

× × 0

× × 0

0 0 0

 , ∆2 =0 , ∆3 =

0 0 0

0 0 0

0 0 ×

 .

(3.21)

For this symmetry to be anomalous and in order not to introduce additional textures that

spoil the desired behavior of the model we need to guarantee, in analogy to the previous

case, the following charge restrictions

Texture Matching Conditions:


XtR = 2XtL −XdR,

XtL 6= XuR +XdR,

XtL 6= 1
2 (XuR +XdR) ,

Anomaly Condition: XuR 6= −XdR.

(3.22)

The BGL 2HDM model needs condition B in its anomaly free implementation. How-

ever, when extending it to a three Higgs scenario, with the possibility of null couplings,

this condition no longer needs to be satisfied. Relaxing this condition by setting XtR =

XuR + XtL, we get a new type of texture in the up sector (the combination of ∆BGL
1 and

∆BGL
2 ). Three new possible implementations become available:

• New texture coupling to ΓBGL
1 . This implies XdR = −XuR;

• New texture coupling to ΓBGL
2 . This implies XdR −XtL = −XuR;

• New texture coupling to a null texture.

The first two cases violate the charge conditions in eq. (3.15), this is the reason why there is

no BGL 2HDM with this texture. However, the third possibility gives a safe implementation

in a three Higgs scenario with the same scalar charge assignments as in the previous case

(i.e. eq. (3.20)). The Yukawa textures implementation is then given by

Γ1 = 0 , Γ2 =

× × ×× × ×
0 0 0

 , Γ3 =

0 0 0

0 0 0

× × ×

 ,

∆1 =

× × 0

× × 0

0 0 ×

 , ∆2 =0 , ∆3 =0 .

(3.23)
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For the symmetry to be anomalous and to guarantee that we introduce no additional

Yukawa textures, the following charge conditions apply

Texture Matching Conditions:


XuR 6= −XdR,

XtL 6= XuR +XdR,

XtL 6= − (XuR +XdR) ,

XtL 6= 1
2 (XuR +XdR) ,

Anomaly Condition: XtL 6= 3 (XuR +XdR) .

(3.24)

In conclusion, in this section we have shown that it is not possible to build an anomalous

two-Higgs-doublet model à la BGL and we have found three different implementations of

the PQ symmetry for the three-Higgs-doublet model, up to permutations in the family

or in the up-down sectors. These three cases are built from the generators in eqs. (3.7)

and (3.12). They read as follows:

• Case I: where the Yukawa textures are given by eq. (3.18), satisfies conditions A and

B, and also the texture matching and anomaly conditions in eq. (3.19).

The charges associated with the Higgs fields are

XΦ1 = XuR , XΦ2 = XtR −XtL , XΦ3 = XtL +XuR . (3.25)

• Case II: with the Yukawa textures shown in eq. (3.21), satisfies conditions A and B,

and also the texture matching and anomaly conditions in eq. (3.22).

The charges associated with the Higgs fields are

XΦ1 = XuR , XΦ2 = −XdR , XΦ3 = XtL −XdR . (3.26)

• Case III: with the Yukawa textures shown in eq. (3.23), satisfies the constraint XtR =

XuR + XtL, condition A, and also the texture matching and anomaly conditions in

eq. (3.24).

The charges associated with the Higgs fields are the same as in case II.

4 The three-Higgs-doublet class of anomalous models

In the previous section we have shown that the Yukawa textures in the BGL 2HDM cannot

be imposed by a chiral PQ symmetry. We also derived the necessary conditions to build

three-Higgs doublet models with FCNC at tree-level completely determined by the fermion

mixing matrices. In the latter scenario, we obtained all the possible Yukawa texture imple-

mentations imposed by a PQ symmetry and determined the restrictions to the PQ charges

in each case. We provide details about the quark Yukawa sector of these type of models in

section 4.1. The scalar potential of this class of models is discussed in detail in section 4.2.

The extension of the models considered to the leptonic sector is discussed in section 4.3.
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4.1 The Yukawa quark sector

In similar a fashion to what was done in section 2, we shall build the relevant flavor matrix

combinations that mediate the FCNCs. The Yukawa Lagrangian in the three Higgs scenario

is now written as

− LY = Q0
L [Γ1 Φ1 + Γ2 Φ2 + Γ3 Φ3] d0

R +Q0
L [∆1 Φ̃1 + ∆2 Φ̃2 + ∆3 Φ̃3]u0

R + h.c. , (4.1)

where we just keep the same notation as in eq. (2.1), but for j = 1, 2, 3 in this case. We go

once more to the Higgs basis, by preforming the following transformationsG+

H+

H ′+

 = O3

ϕ+
1

ϕ+
2

ϕ+
3

 ,

G0

I

I ′

 = O3

η1

η2

η3

 ,

H0

R

R′

 = O3

ρ1

ρ2

ρ3

 , (4.2)

with

O3 =


v1

v

v2

v

v3

v
v2

v′
−v1

v′
0

v1

v′′
v2

v′′
− v′2

v′′v3

 , v =
√
v2

1 + v2
2 + v2

3 , v′ =
√
v2

1 + v2
2 , v′′ =

v′v

v3
. (4.3)

In the Higgs basis the mass and Yukawa interactions are given by

−LY = d0
L

[
Md +

1

v
MdH

0 +
1

v′
N0
dR+

1

v′′
N ′0d R

′ + i
1

v′
N0
d I + i

1

v′′
N ′0d I

′
]
d0
R

+ u0
L

[
Mu +

1

v
MuH

0 +
1

v′
N0
uR+

1

v′′
N ′0u R

′ − i 1

v′
N0
uI − i

1

v′′
N ′0u I

′
]
u0
R

+

√
2

v′
H+

(
u0
LN

0
dd

0
R − u0

RN
0†
u d

0
L

)
+

√
2

v′′
H ′+

(
u0
LN
′0
d d

0
R − u0

RN
′0†
u d0

L

)
+ h.c. ,

(4.4)

with the flavor matrices given by

Md =
1√
2

(v1e
iα1Γ1 + v2e

iα2Γ2 + v3e
iα3Γ3) ,

Mu =
1√
2

(v1e
−iα1∆1 + v2e

−iα2∆2 + v3e
−iα3∆3) , (4.5)

and

N0
d =

1√
2

(
v2e

iα1Γ1 − v1e
iα2Γ2

)
,

N0
u =

1√
2

(
v2e
−iα1∆1 − v1e

−iα2∆2

)
,

N ′0d =
1√
2

(
v1e

iα1Γ1 + v2e
iα2Γ2 −

v′2

v3
eiα3Γ3

)
,

N ′0u =
1√
2

(
v1e
−iα1∆1 + v2e

−iα2∆2 −
v′2

v3
e−iα3∆3

)
.

(4.6)
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These last flavor matrix combinations are the ones mediating the FCNCs in our framework.

We can now evaluate them for each of the three cases. In the basis where the quarks are

mass eigenstates we get:

• Case I:
(Nd)ij =

v2

v1
(Dd)ij −

v2

v1
(V †)i3(V )3j(Dd)jj ,

Nu = −v1

v2
diag(0, 0,mt) +

v2

v1
diag(mu,mc, 0) ,

(
N ′d
)
ij

= (Dd)ij −
v2

v2
3

(V †)i3(V )3j(Dd)jj ,

N ′u = Du .

(4.7)

• Case II:
(Nd)ij = −v1

v2
(Dd)ij +

v1

v2
(V †)i3(V )3j(Dd)jj ,

Nu =
v2

v1
diag(mu,mc, 0) ,

(
N ′d
)
ij

= (Dd)ij −
v2

v2
3

(V †)i3(V )3j(Dd)jj ,

N ′u = diag(mu,mc, 0)− v′2

v2
3

diag(0, 0,mt) .

(4.8)

• Case III:
(Nd)ij = − v1

v2
(Dd)ij +

v1

v2
(V †)i3(V )3j(Dd)jj ,

Nu =
v2

v1
Du ,(

N ′d
)
ij

= (Dd)ij −
v2

v2
3

(V †)i3(V )3j(Dd)jj ,

N ′u = Du .

(4.9)

As expected, in all cases the FCNCs will be mediated by quark masses and off-diagonal

elements of the CKM quark mixing matrix. This is virtually the same type of suppression

as the one obtained in the BGL 2HDM implementation. The difference lies in the vevs

ratios that we get in front of each term. This actually contrasts with the anomaly free three

Higgs BGL implementation [67]. In that scenario the Yukawa textures, which differ from

the 2HDM implementation, cannot give such a strong suppression to |∆S| = 2 processes

as compared to the original BGL implementation. One generally gets suppressions of the

order of (V ∗cdVcs)
2 ∼ λ2 (λ ' 0.225), requiring heavy neutral scalar fields. However, the

fact that we kept the same Yukawa textures in passing from the two to the three Higgs

implementation allows us to have suppressions of the type (V ∗tdVts)
2 ∼ λ10 for |∆S| = 2

processes, just like the original BGL scenario.

4.2 The scalar potential

Current experimental limits exclude axions coming from a PQ symmetry broken at the EW

scale [55, 75–77]. To obtain a viable axion model the PQ symmetry must be broken at a
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scale much higher than the EW scale. The axion is then called invisible since its mass and

couplings are suppressed by the large PQ symmetry breaking scale. We can achieve this in

a similar way than in the DFSZ and KSVZ invisible axion models, that is, by introducing

a complex scalar singlet which acquires a very large vev 〈0|S|0〉 = eiαPQvPQ/
√

2, with

vPQ � v. The new complex field S will have the following symmetry transformation

S → eiXS θS . (4.10)

The introduction of the complex scalar singlet increases the number of independent charges

in one unity. From the Yukawa sector alone, with fermion charges chosen in order for the

symmetry to be anomalous, we are able to reduce the number of independent PQ charges

to just three. In this way the number of independent charges increases to four.

The scalar doublets transform as in eq. (3.3) with the charges XΦi expressed in terms

of the three quark charges, their explicit form will depend on whether we are working in

case I or II/III (as detailed in the previous section). We shall split the potential in two

parts: the phase blind part [V (Φ, S)]blind, and the phase sensitive part [V (Φ, S)]sen, i.e.

V (Φ, S) = [V (Φ, S)]blind + [V (Φ, S)]sen . (4.11)

The phase blind terms do not constrain the charge assignments, they are given by

[V (Φ, S)]blind =m2
iΦ
†
iΦi + λii,jj

(
Φ†iΦi

)(
Φ†jΦj

)
+ λ′ij,ji

(
Φ†iΦj

)(
Φ†jΦi

)
+m2

S |S|2 + λS |S|4 + λΦS
i (Φ†iΦi)|S|2 .

(4.12)

The parameters λΦS
i and λii,jj run for all i, j = 1, 2, 3, while the parameter λ′ij,ji run for

i 6= j. This part of the potential possesses a U(1)4 global symmetry. The role of the

phase sensitive part is to introduce terms which break (explicitly) this symmetry down

to U(1)Y × U(1)PQ. With this symmetry we will have two complex phases to which the

scalar potential will not be sensitive, one will be the neutral Goldstone boson and the

other the axion. This will introduce two new additional constraints, reducing the number

of independent charges down to two.

We shall now present the possible phase sensitive terms that we may built and their

constraints in terms of the PQ charges. We note that any term of the form Φ†iΦj (or

any combination where this is the only phase sensitive part) implies the charge relation

XΦi = XΦj , which is automatically excluded by the charge conditions, see eqs. (3.25)

and (3.26). Also, terms that are only sensitive to phases of one single field such as Sk,

Φ†iΦiS
k, etc. would imply a discrete phase, which is not allowed in our framework.

In table 1 we present all the possible, renormalizable and gauge invariant, phase sensi-

tive terms (up to hermitic conjugation). We now have to check all the possible combinations

of two terms from (1) to (6). Combining just the first three cases will lead to a constraint

of the type XΦi = XΦj , which is excluded. When combining cases (1) to (3) with cases

(4) to (6) all of these last three cases will be allowed simultaneously. After finding all the

possible combinations and using the information about the explicit forms of XΦi in terms

of the quark charges we get the following charge constraints:
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Case Phase sensitive Constraint

(1)
(

Φ†1Φ2

)(
Φ†1Φ3

)
XΦ2 +XΦ3 − 2XΦ1 = 0

(2)
(

Φ†2Φ1

)(
Φ†2Φ3

)
XΦ3 +XΦ1 − 2XΦ2 = 0

(3)
(

Φ†3Φ1

)(
Φ†3Φ2

)
XΦ1 +XΦ2 − 2XΦ3 = 0

(4)
(

Φ†1Φ2

)
{S, S∗}k1 k1XS = ∓(XΦ2 −XΦ1)

(5)
(

Φ†1Φ3

)
{S, S∗}k2 k2XS = ∓(XΦ3 −XΦ1)

(6)
(

Φ†2Φ3

)
{S, S∗}k3 k3XS = ∓(XΦ3 −XΦ2)

Table 1. We consider ki = 1, 2 due to renormalizability. The minus sign (−) is associated with S

and the plus (+) with the conjugated field S∗.

• Case I:

XtL = CI(XuR −XtR) , XS = CI
SXtL . (4.13)

• Case II/III:

XtL = CII(III)(XuR +XdR) , XS = C
II(III)
S XtL . (4.14)

We must also have CI 6= 0,−1,−1/2, CII 6= 0, 1, 1/2 and CIII 6= −1, 0, 1
2 , 1, 3 (see

eqs. (3.19), (3.22) and (3.24), respectively) in order to preserve the Yukawa textures and

the symmetry to be anomalous. In table 2 we present all possible values for CI,II,III and

CI,II,III
S in each possible phase sensitive potential implementation.

At this point we have two free charges which we choose to be XuR and XS , for all

cases. We can normalize all charges to the scalar singlet charge, without loss of generality,

just by setting the condition XS = 1. This allows the PQ quark charges to be written in

terms of the values CI,II,III
S , CI,II,III and one free charge, XuR. They will now take the form:

• Case I:

XtL =
1

CI
S

, XdR = −XuR , XtR = XuR −
1

CI
SCI

. (4.15)

• Case II:

XtL =
1

CII
S

, XdR = −XuR +
1

CII
S CII

, XtR = XuR −
1− 2CII

CII
S CII

. (4.16)

• Case III:

XtL =
1

CIII
S

, XdR = −XuR +
1

CIII
S CIII

, XtR = XuR +
1

CIII
S

. (4.17)
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Term Combination CI CI
S CII(III) C

II(III)
S

T1 (4)+(5) k1 = 1, k2 = 2 (S, S∗) −2 1/2 3 1/3

T2 (4)+(5) k1 = 2, k2 = 1 (S, S∗) 1 1 3/2 1/3

T3 (4)+(6) k1 = 1, k3 = 2 (S, S) −3/4 −1/3 −2 −1/2

T4 (4)+(6) k1 = 2, k3 = 1 (S, S) −3/5 −1/3 −1/2 −1

T5 (5)+(6) k2 = 1, k3 = 2 (S, S∗) −1/4 −1 2/3 1/2

T6 (5)+(6) k2 = 2, k3 = 1 (S, S∗) −2/5 −1/2 1/3 1

T7 (1)+(4)+(5) k1 = k2 = 2 (S, S∗) − − 2 1/4

T8 (2)+(4)+(6) k1 = k3 = 2 (S, S) −2/3 −1/4 −1 −1/2

T9 (3)+(5)+(6) k2 = k3 = 2 (S, S∗) −1/3 −1/2 − −

T10 (1)+(4)+(5)+(6) k1 = 1, k2 = 1, k3 = 2 (S, S∗, S∗) − − 2 1/2

T11 (2)+(4)+(5)+(6) k1 = 1, k2 = 2, k3 = 1 (S, S, S) −2/3 −1/2 −1 −1

T12 (3)+(4)+(5)+(6) k1 = 2, k2 = 1, k3 = 1 (S, S, S∗) −1/3 −1 − −

Table 2. Allowed values for the charge combinations CI,II,III and CI,II,III
S . Half of the possible

values are not shown in the table as they can be trivially obtained by interchanging S ↔ S∗ in the

above combinations, which amounts to a replacement CI,II,III
S → −CI,II,III

S . The scenarios T1, T8
and T11 are not possible in case III.

In this section we have found up to 12 distinct phase sensitive potential implementa-

tions, see table 2. For case I, T7 and T10 implementations are not compatible with the flavor

PQ symmetry in the fermionic sector. In case II, the incompatible implementations are T9

and T12. Finally, case III has the same incompatible implementations as case II plus T1,

T8 and T11 implementations. As an illustrative example, let us choose the implementation

T2. The scalar potential would take the form

V (Φ, S) = [V (Φ, S)]blind +
[
λ(Φ†1Φ2)S2 + µ(Φ†1Φ3)S∗ + h.c.

]
, (4.18)

with λ dimensionless and µ with mass dimension. Under this particular potential imple-

mentation, and with our normalization, the PQ quark charges read

• Case I: XtL = 1 , XdR = −XuR , XtR = XuR − 1.

• Case II: XtL = 3 , XdR = −XuR + 2 , XtR = XuR + 4.

• Case III: XtL = 3 , XdR = −XuR + 2 , XtR = XuR + 3.

While the scalar charges are: XΦ1 = XuR , XΦ2 = XuR − 2 , XΦ3 = XuR + 1. The

fact that the scalar charges are the same for all the three cases should not be surprising.

The scalar potential itself knows nothing about the distinct Yukawa implementations, that

information enters only when we use the explicit expression of the scalar charges in terms

of the quark ones. Therefore, the scalars charges will only depend on the the distinct

potential implementations.

– 16 –



J
H
E
P
1
2
(
2
0
1
4
)
1
6
7

4.3 The Yukawa leptonic sector

In this section we shall only be interested in the Yukawa couplings of the charged leptons

and therefore we will say nothing on the Dirac or Majorana nature of the neutrinos. We will

assume that the final neutrino mass matrix texture contains enough freedom, such that, in

combination with the lepton mass matrix accommodates the full low-energy neutrino data.

However, note that the neutrino Yukawa textures should satisfy some conditions such that

the BGL quark and lepton textures are not spoiled through radiative corrections [78]. In

ref. [38] a particular model implementation has been presented were the neutrino sector

has been worked out. However, since we are mostly interested in the axion properties in

this class of models, we can just focus our attention to the charged lepton implementation.

The Yukawa leptonic Lagrangian will be of the form

− Llep
Y = L0

L [Π1 Φ1 + Π2 Φ2 + Π3 Φ3] l0R + h.c. (4.19)

In a similar way as it happens in the quark Yukawa sector, it is convenient to rewrite the

Yukawa lepton Lagrangian by rotating the Higgs doublets to the Higgs basis (see eq. (4.2))

and by diagonalizing the lepton mass matrices through the bi-unitary transformations

ν0
L = UνL νL , l0L,R = UeL,R eL,R . (4.20)

The Yukawa Lagrangian now reads as

−Llep
Y = eL

[
De +

1

v
DeH

0 +
1

v′
NeR+

1

v′′
N ′eR

′ + i
1

v′
NeI + i

1

v′′
N ′eI

′
]
eR

+

√
2

v′
H+νLNeeR +

√
2

v′′
H ′+νLN

′
eeR + h.c.

(4.21)

where, as it happened with the quarks, Ne and N ′e will mediate the FCNCs. These flavor

combinations will have the same expression, in the flavor basis, as Nd and N ′d present in

eq. (4.6) with the replacement Γi → Πi.

Regarding the PQ symmetry transformations, the scalar field transformations are given

in eqs. (3.25) and (3.26) for cases I and II/III respectively. We now need to determine the

PQ charges of the leptonic fields. In general these will transform under the continuous

symmetry as

L0
L → S`L L0

L , l0R → S`Rl0R , (4.22)

with

S`L = diag(eiXeLθ, eiXµLθ, eiXτLθ) , S`R = diag(eiXeRθ, eiXµRθ, eiXτRθ) . (4.23)

A global phase transformation allows us to set XeL = 0 without loss of generality, just as

we did in the quark sector.

We could proceed with the symmetry implementation just like in the quark sector,

however, we can also combine the BGL-like textures in the quark sector with NFC for the

charged lepton such that we have several phenomenological models available. We shall

then split these implementations into two classes:
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(1) With FCNCs in the charged lepton sector.

This is the extension to three Higgs doublets of the symmetry implementation in

ref. [78]. In this case, in order to have the FCNCs under control we choose the

implementation à la BGL, i.e.

{Π1, Π2, Π3} ∼
{

ΓBGL
1 , ΓBGL

2 , 0
}
. (4.24)

Just like in the quark sector, we need the other sector mass matrix (i.e. neutrino mass

matrix) to be block diagonal, in order to have the PMNS mediating the FCNCs. The

way to achieve this will depend on the Dirac or Majorana nature of neutrino and

is out of the scope of this paper (see ref. [38] for more details). The symmetry

implementation is just like the one in the quark sector, i.e. XeL = XµL ≡ Xl′L and

XeR = XµR = XτR ≡ XlR. The constraints are

Xl′L −XlR = XΦi , XτL −XlR = XΦj . (4.25)

The equivalent to conditions A and B in the quark sector also apply to the lepton

charges. Since we have set XeL = 0, the charged lepton charges become completely

defined by the known scalar charges, i.e.

XτL = XΦj −XΦi , XlR = −XΦi . (4.26)

(2) Without FCNCs in the charged lepton sector.

In this case there are six implementations possible, as it was shown in ref. [70]. Using

the information that all the charges of the scalar fields are different we get

(a)

{Π1, Π2, Π3} ∼


× × ×× × ×
× × ×

 ,


 ,



 . (4.27)

In this scenario both left and right generators must be fully degenerate, i.e.

XeL = XµL = XτL ≡ XlL and XeR = XµR = XτR ≡ XlR. This implies the

following constraint

XlL −XlR = XΦi (or XlR = −XΦi) . (4.28)

(b)

{Π1, Π2, Π3} ∼


× × 0

× × 0

0 0 ×

 ,


 ,



 . (4.29)

In this scenario both left and right generators must be two-fold degenerate,

i.e. XeL = XµL ≡ Xl′L and XeR = XµR ≡ Xl′R. This implies the following

constraints

Xl′L −Xl′R = XΦi , XτL −XτR = XΦi . (4.30)
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(c)

{Π1, Π2, Π3} ∼


× × 0

× × 0

0 0 0

 ,

0 0 0

0 0 0

0 0 ×

 ,



 . (4.31)

In this scenario the left and right generators have the same form as in the

previous one. However, the constraints are

Xl′L −Xl′R = XΦi , XτL −XτR = XΦj . (4.32)

(d)

{Π1, Π2, Π3} ∼


× 0 0

0 × 0

0 0 ×

 ,


 ,



 . (4.33)

In this scenario the left and right generators must have no degeneracy. The

constraint is given by

XαL −XαR = XΦi (α = e, µ, τ) . (4.34)

(e)

{Π1, Π2, Π3} ∼


× 0 0

0 × 0

0 0 0

 ,

0 0 0

0 0 0

0 0 ×

 ,



 . (4.35)

In this scenario the left and right generators are the same as before. The con-

straints are given by

Xα′L −Xα′R = XΦi , XτL −XτR = XΦj (α′ = e, µ) . (4.36)

(f)

{Π1, Π2, Π3} ∼


× 0 0

0 0 0

0 0 0

 ,

0 0 0

0 × 0

0 0 0

 ,

0 0 0

0 0 0

0 0 ×


 . (4.37)

In this scenario the left and right generators are the same as before. The con-

straints are given by

XeL −XeR = XΦi , XµL −XµR = XΦj , XτL −XτR = XΦk . (4.38)

In general, we have only information on the difference between left- and right-handed

charged lepton charges. The condition XeL = 0 allows us to have the charged lepton

charges fully determined by the known scalar charges only in cases (1) and (2a). For the

other cases we would need to know the neutrino sector implementation. Nevertheless, as

we shall see in the next section, the knowledge of the difference is enough to get most of

the axion properties.
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5 Axion properties

The anomalous U(1)PQ symmetry of the class of models built in the previous sections is

spontaneously broken by the vev of the singlet field S at a very high scale, just like in the

standard DFSZ and KSVZ models. Non-perturbative QCD effects induce a potential for

the axion field, allowing us to shift away the strong CP phase and also give a small mass

to the axion [15, 16], the physical one (denoted by a). In the following we derive the most

relevant axion properties for our model. We start by writing the relevant Lagrangian for

the physical axion

Leff
axion = LSM +

1

2
∂µa ∂

µa− 1

2
m2
a a

2 + Laγγ + Laψ̄ψ , (5.1)

where Laγγ is the axion interaction to photons, we will shown in section 5.1, and Laψ̄ψ
the axion interaction to matter, we will present in section 5.2. The axion mass is given

by [15, 16]:

ma =
fπmπ|Cag|

vPQ

[
z

(1 + z) (1 + z + w)

]1/2

' 6 meV×
(

109 GeV

vPQ/|Cag|

)
, (5.2)

with mπ ' 135 MeV and fπ ' 92 MeV the pion mass and decay constant, respectively. The

parameters z and w denote the quark mass ratios z = mu/md ' 0.56 and w = mu/ms '
0.029. The quantity Cag is determined by the chiral color anomaly of the current associated

with the U(1)PQ transformation [79–81], in our model it is given by

Cag ≡
∑

i=colored

XiR −XiL = 2XuR + 3XdR +XtR − 2XtL . (5.3)

This quantity turns out to be independent of the free charge and can be expressed as CMag
(with M = I, II, III) and is given by

Case I : CI
ag = −1 + 2CI

CICI
S

, Case II : CII
ag =

2

CIICII
S

, Case III : CIII
ag =

3− CIII

CIIICIII
S

.

(5.4)

The quantity CMag is therefore only dependent of the scalar implementation once the Yukawa

textures are specified.

5.1 Axion-photon coupling

The axion two-photon interaction is described by the effective Lagrangian

Laγγ =
α

8πvPQ
CagC

eff
aγ aFµνF̃

µν , (5.5)

with α = e2/4π ' 1/137, Fµν is the electromagnetic field strength tensor and F̃µν its dual

tensor. The effective factor Ceff
aγ takes the form [82, 83]:

Ceff
aγ =

Caγ
Cag
− 2

3

4 + z + w

1 + z + w
, (5.6)
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Cases AI AII AIII

(1, 1, 1) −4− 5CI −1 + 3CII 3− CIII

(2, 2, 2) 5 + 4CI 8 + 3CII 12− CIII

(3, 3, 3) −4− 14CI 8− 6CII 12− 10CIII

(1, 1, 2) −1− 2CI 2 + 3CII 6− CIII

(1, 1, 3) −4− 8CI 2 6− 4CIII

(2, 2, 1) 2 + CI 5 + 3CII 9− CIII

(2, 2, 3) 2− 2CI 8 12− 4CIII

(3, 3, 1) −4− 11CI 5− 3CII 9− 7CIII

(3, 3, 2) −1− 8CI 8− 3CII 12− 7CIII

(1, 2, 3) −1− 5CI 5 9− 4CIII

Table 3. Charge combinations AI, AII and AIII entering in the description of the axion coupling to

photons. The numbers in the first column label the Higgs doublet that is coupled to the left-handed

charged leptons (e, µ, τ).

where the second term is a model independent quantity which comes from the mixing of the

axion with the π0 and the η while Caγ and Cag are model dependent quantities associated

to the axial anomaly. These are determined in terms of the fermion charges by

Caγ =2
∑

i=charged

(XiR −XiL)Q2
i

=2

[
8

3
XuR +XdR +

4

3
XtR −

5

3
XtL +

∑
α=e,µ,τ

(XαR −XαL)

]
,

(5.7)

while Cag was already introduced in eq. (5.3). The quantity Caγ can be expressed as

CMaγ =
2

3

AM

CMCMS
, (5.8)

with M = I, II, III. Here we have introduced the parameters CI,II,III and CI,II,III
S specified

in table 2 and a new combination of fermionic charges AI,II,III defined in table 3. The

charged lepton combinations are denoted by a vector (i, j, k), which represents the Higgs

doublet that is coupled to the left-handed leptons (e, µ, τ). For example, the case (1, 1, 3)

tell us that Φ1 is coupled to eL and µL while Φ3 couples to τL. This can correspond to

the charged lepton Yukawa implementations (1), (2c) or (2e). Note also, that the case

(3, 3, 1) is not a relabeling of the scalar fields since we keep the quark sector unchanged

and, therefore, we will get a distinct result. Once the choice on the Yukawa textures is

made, the parameter CMaγ will depend on the potential implementation and the way the

charged leptons transform under the PQ symmetry.
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5.2 Axion couplings to matter

The interactions of the axion with fermions are described by

Laψ̄ψ =
1

2

∂µa

vPQ

[
eαγ

µ
((
CVa`
)
αβ

+ γ5

(
CAa`
)
αβ

)
eβ + uαγ

µ
((
CVau

)
αβ

+ γ5

(
CAau

)
αβ

)
uβ

+dαγ
µ
((
CVad
)
αβ

+ γ5

(
CAad
)
αβ

)
dβ − η Cag

(
uγµγ5u+ zdγµγ5d+ wsγµγ5s

)]
,

(5.9)

with η = (1+z+w)−1. When calculating the axion couplings to matter one should redefine

the axion current in such a way that it does not mix with the neutral Goldstone boson

associated with the spontaneous symmetry breaking of the electroweak gauge symmetry.

This redefinition results in a shift of the original scalar charges [82, 83],

X ′Φi = XΦi − Z , (5.10)

which in terms of the fermion charges reads

X ′u,tR = Xu,tR − Z , X ′dR = XdR + Z , X ′tL = XtL , X ′`L = X`L , X ′`R = X`R + Z ,

(5.11)

with ` = {e, µ, τ} and

Z =
1

v2

∑
i

v2
iXΦi . (5.12)

The explicit expression for Z will take the same form in cases II and III (they share the

same Higgs charge assignments) but a different form in case I, i.e.

Z =


XuR −

v2
2 (1 + CI)− v2

3CI

v2CI
SCI

for case I,

XuR −
v2

2 + v2
3

(
1− CII(III)

)
v2C

II(III)
S CII(III)

for case II and III .

(5.13)

We now define the shifted charge matrix as

XX ≡
1

i

dS ′X
dθ

∣∣∣∣
θ=0

, (5.14)

which take the explicit form

XuL = XdL = diag(0, 0, X ′tL) , XeL = diag(X ′eL, X
′
µL, X

′
τL) ,

XuR = diag(X ′uR, X
′
uR, X

′
tR) , XdR = X ′dRI , XeR = diag(X ′eR, X

′
µR, X

′
τR) .

(5.15)

These charge matrices determine the couplings of the axion to fermions in the flavor basis.

By going to the mass basis the fermion fields are rotated through the unitary transforma-

tions in eq. (2.8) and in eq. (4.20). These transformations will change the charge matrix to

X̃X = U †XXXUX . (5.16)
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In this new basis the quark charge matrices take the explicit form

X̃uL = XuL , X̃uR = XuR , X̃dL = XtL

 |Vtd|2 V ∗tdVts V
∗
tdVtb

V ∗tsVtd |Vts|2 V ∗tsVtb
V ∗tbVtd V

∗
tbVts |Vtb|2

 , X̃dR = XdR , (5.17)

where we have used X ′tL = XtL. For the charged leptons we have in scenario (1)

X̃eL = XτL

 |Vτ1|2 V ∗τ1Vτ2 V
∗
τ1Vτ3

V ∗τ2Vτ1 |Vτ2|2 V ∗τ2Vτ3

V ∗τ3Vτ1 V
∗
τ3Vτ2 |Vτ3|2

 , X̃eR = XeR , (5.18)

where we have used X ′τL = XτL, in scenario (2) we get

X̃eL = XeL , X̃eR = XeR . (5.19)

The axion vector and axial couplings to matter are then given by

CV,Aau = XuL ±XuR , CV,Aad = X̃dL ±XdR , CV,Aae = X̃eL ±XeR . (5.20)

From the above equations we can see that the flavor changing axion interactions will be

mediated by the off-diagonal elements of X̃dL (and X̃eL in case (1)). This is a common

property of Goldstone bosons in flavor models, however it is an additional feature for the

axion compared to the standard DFSZ and KSVZ scenarios.

Regarding the vectorial couplings, it is interesting to remark that the PQ symmetry

implementation that we have used until now is defined up to a global vectorial phase

transformation which allows us to remove some of the vectorial couplings. As a result, the

Lagrangian will remain invariant if we redefine the PQ charges by performing the following

transformation

X VX = XX + α I , (5.21)

with XX defined in eq. (5.15) and α an arbitrary constant. In the DFSZ model this

transformation is enough to remove all the vectorial couplings. However, this is not the

case in the models we are presenting. For example, by setting α = −X ′uR/2 the transformed

quark charges read as

X VuL = X VdL = diag(−X ′uR/2, −X ′uR/2, X ′tL −X ′uR/2) ,

X VuR = diag(X ′uR/2, X
′
uR/2, X

′
tR −X ′uR/2) ,

X VdR =
(
X ′dR −X ′uR/2

)
I ,

(5.22)

such that now
(
CVau

)
11

=
(
CVau

)
22

= 0. Similarly, we could have set α = − (X ′tL +X ′tR) /2

to make
(
CVau

)
33

= 0 but there is no value of α that makes CVau = 0 for the three families

simultaneously. A similar procedure can be applied to the lepton sector.

Additionally, we can fix the value of the free PQ charge, XuR, in order to remove

extra vectorial couplings. For instance, setting XuR = XtR +XtL in eq. (5.22) would also
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make
(
CVau

)
33

= 0 for α = −X ′uR/2. However, the condition XuR = XtR + XtL can only

be satisfied in cases I and II while in case III it would violate the charge constraints in

eq. (3.8). The same happens for other values of α and thus one cannot use the freedom in

XuR to remove vectorial couplings in case III.

Finally, note that the vectorial transformation and the freedom to fix the value of XuR

only affect the diagonal vector couplings while the off-diagonal ones remain unchanged.

In any case, it is simple to see that in the case of on-shell fermions the axion-fermion

interaction is purely pseudoscalar for fermions of the same flavor

∂µaψαC
A
αβγ

µγ5 ψβ =ia ψα (mα +mβ)CAαβ ψβ + · · ·

∂µaψαC
V
αβγ

µ ψβ =ia ψα (mα −mβ)CVαβ ψβ + · · ·
(5.23)

with ψ representing a fermionic specie (up quarks, down quarks and charged leptons).

Therefore, the nature of the axion interaction in the up quark sector is purely pseudoscalar

for on-shell quarks. However, due to the presence of FCNCs in the quark sector, the axion

interaction will no longer conserve flavor, reflecting a scalar (beside the pseudoscalar) nature

of the axion field in models with FCNCs.

The axion axial couplings to light quarks are explicitly given by

gu ≡ (CAau)11 =


−v

2
2 (1 + CI)− v2

3CI

v2CI
SCI

for case I,

−
v2

2 + v2
3

(
1− CII(III)

)
v2C

II(III)
S CII(III)

for case II and III ,

gd ≡ (CAad)11 = −gu +


|Vtd|2

CI
S

for case I ,

|Vtd|2CII(III) − 1

C
II(III)
S CII(III)

for case II and III ,

gs ≡ (CAad)22 = gd (with the replacement Vtd → Vts) .

(5.24)

Below the chiral symmetry breaking scale the axion nucleon interactions can be

parametrized by

LaN =
1

2

∂µa

vPQ
N(g0 + g3σ3)γµγ5N , (5.25)

with σ3 the Pauli matrix in the isospin space and N = (p, n)T the nucleon doublet. The

isoscalar and isovector couplings are given in refs. [54, 82, 83]. The couplings to protons

and neutrons are given by the combinations

gp ≡ g0 + g3 =(gu − 2ηCag)∆u+ (gd − 2ηCagz)∆d+ (gs − 2ηCagw)∆s ,

gn ≡ g0 − g3 =(gu − 2ηCag)∆d+ (gd − 2ηCagz)∆u+ (gs − 2ηCagw)∆s ,
(5.26)

with ∆u = 0.841± 0.020, ∆d = −0.426± 0.020 and ∆s = −0.085± 0.015 [84].

The coupling to electrons in scenario (1) is given by

ge ≡
(
CAae
)

11
= XτL|Vτ1|2 −XeR − Z . (5.27)
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The scenario (2) can be obtained in the limit |Vτ1|2 → 0. The explicit form of ge will

depend on the scalar potential implementation and the vevs of the doublet fields.

5.3 The domain wall problem

During the evolution of the Universe the PQ symmetry gets broken in different ways. In

the early Universe the PQ symmetry is spontaneously broken by the expectation value of

the S field. At this stage the potential has the mexican-hat shape, the angular part of

the field becomes a Goldstone boson and the Lagrangian remains global phase invariant.

As the Universe cools down non-perturbative instantonic effects at the QCD scale take

place and the PQ symmetry gets explicitly broken by the QCD gluon anomaly [SU(3)C ]2×
U(1)PQ [15, 16]. This is the PQ mechanism for the resolution of the strong CP problem.

However QCD instantons only break the symmetry down to a discrete ZN subgroup.

This can be easily seen from eq. (1.1) and the fact that the θ term is invariant under the

shift θ → θ + 2πk. While before the QCD scale the shift a/vPQ → a/vPQ + α was allowed

for any α, the presence of the axion coupling to gluons restricts the phase to the values

αk = 2πk/|Cag| (with k = 0, 1, . . . , |Cag| − 1), which just reflects the original θ periodicity.

Therefore, the order N of the discrete group is given by the color instantons effects to be

N = |Cag|. As pointed out by Sikivie [46, 47], these models will have NDW degenerate

disconnected vacua. This in turn leads to an unwanted domain wall structure in the early

universe [45–48].

In general, the domain wall number, NDW, coincides with the order of the discrete

group, i.e. NDW = N = |Cag|. Nonetheless, in some cases only a subgroup of ZN acts

non-trivially on the vacuum. To examine the vacuum structure one should analyze the

gauge invariant order parameters of the theory. In this way the domain wall number will

coincide with the dimension of the higher order subgroup of ZN which acts non-trivially

on at least one of the order parameters. For the models we are discussing, it suffices to

notice that for the singlet condensate

〈S〉k →Exp

[
2πk

N/XS

]
〈S〉0 , (5.28)

as we set XS = 1 the vacuum periodicity is N , i.e. all elements of the residual ZN act

non-trivially on the vacuum. As a result, we have NDW = |Cag| for the class of models

studied in this article.1

Many axion models suffer from the domain wall problem. In particular, the well known

DFSZ invisible axion model has a domain wall number NDW = 2Ng or NDW = Ng depend-

ing on the scalar potential implementation, with Ng the number of quark generations. In

table 4 we present the values of the domain wall number for the different implementations

of the models we are presenting. As we can see, while some of the implementations also

suffer from the domain wall problem, others have NDW = 1, for which the resulting domain

wall structure is harmless [85].

1Considering higher dimensional order parameters such as
〈

Φ†
iΦj

〉
or 〈qLαqRα〉 would not change the

periodicity of the full vacuum, since in our choice of normalization the residual discrete group always acts

non trivially in 〈S〉.
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T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

N I
DW 3 3 2 1 2 1 − 2 2 − 1 1

N II
DW 2 4 2 4 6 6 4 4 − 2 2 −

N III
DW − 3 5 7 7 8 2 − − 1 − −

Table 4. Values for the domain wall number in each of the possible scenarios.

Even for NDW 6= 1, some solutions to the domain wall problem can be found in the

literature. It is possible to avoid the domain wall problem by assuming that inflation

has occurred after the PQ symmetry breaking. In this case, one can derive limits on

the inflationary scale based on the observation of isocurvature fluctuations in the cosmic

microwave background [86]. Also, there have been several attempts to introduce an explicit

breaking of the PQ symmetry that also breaks the ZN discrete group in such a way that

the PQ solution to the Strong CP problem is protected [46, 47, 87]. This explicit breaking

could come from gravity, giving rise to Planck scale suppressed operators [88, 89]. However,

it was argued that this solution would give rise to long lived domain walls which introduce

cosmological problems [90]. Additionally, gravity violations of the PQ symmetry should

be controlled in order not to spoil the PQ solution [91–97]. This issue will be considered

in the next section.

5.4 Protecting the axion against gravity

Until now we have discussed a model where an ad hoc PQ symmetry is imposed. However,

as already mentioned, the presence of semi-classical gravitational effects can potentially

violate global symmetries [88, 89], spoiling the strong CP solution [91–97].

In the absence of gravity, the axion potential coming from the instantonic contributions

can be written as [13, 14]

Vaxion ' −Λ4
QCD cos

aphys

vPQ
, (5.29)

which has a minimum at 〈aphys〉 = θ̄ = 0 and where the estimated axion mass is ma '
Λ2

QCD/vPQ. On the other hand, when including gravitational effects, the axion potential

will change. For example in our invisible axion model, we should expect higher dimensional

PQ violating terms of the type

1

Mn−2
Pl

Φ†iΦjS
n ,

1

Mn−4
Pl

Sn , · · · (5.30)

with the Planck scale denoted by MPl. Let us consider, for simplicity, the second term in

the above equation. By introducing this term in the Lagrangian the axion potential gets

modified and takes the form [95]

Ṽaxion ' −ΛQCD cos
aphys

vPQ
−
c vnPQ

Mn−4
Pl

cos

[
aphys

vPQ
+ δ

]
. (5.31)
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The parameter c is just a coupling constant and δ a CP violating phase. The problem with

this new axion potential is that the minimum is no longer at 〈aphys〉 = 0, but rather at

θ̄ =
〈aphys〉
vPQ

' c sin δ
vnPQ

Mn−4
Pl Λ4

QCD

, (5.32)

which in general will be far from zero. The axion mass will also be affected by these

gravitational effects, taking the form

m2
a '

Λ4
QCD

v2
PQ

+ c
vn−2

PQ

Mn−4
Pl

. (5.33)

Therefore, in this simple scenario we see that gravitational effects will in general spoil the

strong CP solution coming from the PQ symmetry.

Fortunately, over the years several solutions to this problem have emerged, which allows

us to preserve the PQ solution of the strong CP problem. GUT motivated models [94, 95],

extra dimensional [98] ones and even models having neutrinos playing a big role in gravity

protection [99] can be found in the literature. However, many of these solutions need a

significant extension of the original PQ model.

In this section we will focus on the use of gauge discrete symmetries to protect the PQ

solution against gravity [100, 101]. This solution has the interesting feature that the low

energy spectrum of the theory does not need to be extended. Gauge discrete symmetries,

which arise through the spontaneous symmetry breaking of a gauge symmetry, are not

broken by gravity and can provide natural suppression to the harmful gravitational effects.

The idea proposed is to have a large discrete abelian symmetry ZP forbidding, up to a

given order, these unwanted terms [102–105]. For example, if the symmetry only allows

terms of the form Sm/Mm−4
Pl for m ≥ 13, we will just get irrelevant contributions to the

axion mass and its vev [106].

In what follows we will identify the PQ symmetry as an accidental global symmetry

at low energies, associated with the spontaneous breaking of a gauge symmetry, U(1)A,

at high energies down to a discrete subgroup. We shall follow ref. [102], using a discrete

gauge symmetry to stabilize the axion without enlarging the low energy particle content.

To this end, we shall use the discrete version of the Green-Schwarz anomaly cancellation

mechanism [107–109].

From the effective theory point of view, since we have at low energies the SU(3)C ×
SU(2)L ×U(1)Y gauge group, there are several possible anomalies we must consider:

A1 : [U(1)Y ]2 ×U(1)A , A2 : [SU(2)L]2 ×U(1)A , A3 : [SU(3)C ]2 ×U(1)A ,

AA : [U(1)A]3 , AG : [gravity]2 ×U(1)A .
(5.34)

The Green-Schwarz anomaly cancellation conditions are then given by

A1

k1
=
A2

k2
=
A3

k3
=
AA
kA

=
AG
12

= δGS , (5.35)

with δGS a constant that cannot be specified by the low energy theory and k1,2,3,A the levels

of the Kac-Moody algebra [110, 111] which are integers for non-abelian groups. The equality
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involving the hypercharge currents, A1, give no useful constraints since the associated level

k1 is not an integer in general [100, 101]. Similarly, the anomaly AA can be canceled by

the Green-Schwarz mechanism but with no useful constraints due to the arbitrariness in

the normalization of U(1)A. Finally, the anomaly AG give no useful constraint either.

When the U(1)A is broken down to a ZP , the effective low energy theory will satisfy

the discrete version of the Green-Schwarz cancellation condition [100, 101, 112–114]

A3 +mP/2

k3
=
A2 +m′P/2

k2
, (5.36)

with m and m′ integers. The model under discussion is non-supersymmetric, nevertheless,

the Green-Schwarz mechanism should still be available since the breaking of supersymmetry

can happen at the scale much higher that the weak scale.

Our goal is to build a U(1)A symmetry that contains a discrete subgroup capable of

solving the strong CP problem. The U(1)PQ group is anomalous and, therefore, capable

of giving such a solution (as it was seen in the previous sections). However, U(1)PQ

cannot be identified with U(1)A as the PQ symmetry alone is, in general, not enough

to satisfy the Green-Schwarz anomaly conditions. Fortunately, the model also presents

Baryon number conservation (+1 charge for quarks, −1 for anti-quarks), which is QCD

anomaly free but it is anomalous under SU(2)L. We shall then try to see if the combination

U(1)PQ + γU(1)B is suitable to be our axial symmetry. As the lepton charges depend on

the specific representation in the neutrino sector, we will focus on the quark sector. The

generalization to the lepton sector will be discussed at the end. From the U(1)PQ charge

assignments in eqs. (4.15), (4.16) and (4.17) we can find the anomaly coefficients

A2 =
3

2
(3γ +XtL) =

3

2

(
3γ +

1

CMS

)
,

A3 =
1

2
(2XtL − 2XuR −XtR − 3XdR) = −

CMag
2

,

(5.37)

with M = I, II, III. The factor γ is then found to be

γ = −1

9

(
k2

k3
CMag +

3

CMS

)
. (5.38)

Using the simplest realization of the Kac-Moody algebra, i.e. k2 = k3 = 1, we get for

each case

Case I : γ =
1− CI

9CI
SCI

, Case II : γ = −2 + 3CII

9CII
S CII

, Case III : γ = −3 + 2CIII

9CIII
S CIII

.

(5.39)

Normalizing the combination to have all charges integer number we then define the axial

abelian symmetry as

U(1)A = 9U(1)PQ + 9γU(1)B . (5.40)

The charges under this new symmetry are given in table 5. Finally, note that the inclusion

of PQ lepton charges would modify A2 in the following way

A2 → A2 +
1

2
(XeL +XµL +XτL) , (5.41)
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U(1)A Case I Case II Case III

QL1,2
1−CI
CSCI

−2+3CII

CII
S CII

− 3+2CIII

CIII
S CIII

QL3
8CI+1
CSCI

6CII−2
CII
S CII

7CIII−3
CIII
S CIII

uR1,2 x+ 1−CI
CSCI

x− 2+3CII

CII
S CII

x− 3+2CIII

CIII
S CIII

uR3 x− C1+8
CSCI

x+ 15CII−11
CII
S CII

x+ 7CIII−3
CIII
S CIII

dR1,2,3 −x+ 1−CI
CSCI

−x+ 7−3CII

CII
S CII

−x+ 6−2CIII

CIII
S CIII

Φ1 x x x

Φ2 x− 9+9CI

CI
SCI

x− 9
CII
S CII

x− 9
CIII
S CIII

Φ3 x+ 9
CI
S

x+ 9CII−9
CII
S CII

x+ 9CIII−9
CIII
S CIII

S 9 9 9

Table 5. Charge assignments under U(1)A, x = 9XuR.

while A3 would remain unaltered. This accounts to a correction of γ of the form

γ → γ − 1

9
(XeL +XµL +XτL) , (5.42)

which transforms the quark charges in table 5 to

QLi → QLi − (XeL +XµL +XτL) ,

uRi → uRi − (XeL +XµL +XτL) ,

dRi → dRi − (XeL +XµL +XτL) ,

(5.43)

and leaves the lepton and scalar charges unchanged.

In table 6 we present the axial symmetry and its discrete Z13 version in the T6 scenario,

for each case I, II and III. The discrete anomaly coefficients are A3 = −2 and A2 = 24

for case I, A3 = −15/2 and A2 = 12 for case II, and A3 = 3 and A2 = 45/2 for case III.

In each case, by construction, the anomaly coefficients satisfy the discrete Green-Schwarz

cancellation condition eq. (5.36).

In this example the phase sensitive terms are explicitly given by

T6 : Φ†1Φ3S
2 , Φ†2Φ3S

∗ . (5.44)

Due to gravity effects we expect the most relevant U(1)PQ breaking contributions to be of

the type

[O4−d]×
Sk

Mk−d
P l

:


d = 4 O0 ∼ const

d = 2 O2 ∼ |Φi|2, |S|2, · · ·
d = 1 O3 ∼ Φ†2Φ3S

∗

d = 0 O4 ∼ |Φi|4, |S|4, · · ·

(5.45)

with k integer. The largest contribution will be the one coming from the O0 operator.

Due to the Z13 symmetry this contribution will only take place for k = 13, i.e. S13/M9
Pl.
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T6 QL1,2 QL3 uR1,2 uR3 dR1,2,3 Φ1 Φ2 Φ3 XS

Case I:

U(1)A 7 −11 x+ 7 x− 38 −x+ 7 x x− 27 x− 18 9

Z13 7 2 x+ 7 x+ 1 −x+ 7 x x+ 12 x+ 8 9

Case II:

U(1)A −9 0 x− 9 x− 18 −x+ 18 x x− 27 x− 18 9

Z13 4 0 x+ 4 x+ 8 −x+ 5 x x+ 12 x+ 8 9

Case III:

U(1)A −11 −2 x− 11 x− 2 −x+ 16 x x− 27 x− 18 9

Z13 2 11 x+ 2 x+ 11 −x+ 3 x x+ 12 x+ 8 9

Table 6. Particular example with the phase sensitive scalar potential T6.

This operator will give a contribution to the axion mass squared of the order v11
PQ/M

9
Pl ∼[

10−72, 10−39
]

GeV2 for PQ scales between 109 to 1012 GeV. The contribution to the θ̄ will

be between 10−54 to 10−15. These are extremely small contributions, making the model

safe against large gravitational corrections.

In this section we have shown how we could avoid large contributions to the axion mass,

as well as to the θ̄ parameter, just by invoking a discrete gauge symmetry. However, there

are many more effective operators that will be induced by gravity than those presented

above. Some of them could give contributions to the original Yukawa textures potentially

spoiling the good behavior of the BGL-like textures.

Let us choose case I as a particular scenario. From the Z13 charge assignments we

have the Yukawa term QL1 uR3 Φ̃2 carrying a net charge 8. This term is not allowed at

the renormalizable level, but the gravity induced effects can introduce the Z13 invariant

term QL1 uR3 Φ̃2 (S/MPl)
2. This term will contribute to the Yukawa textures once S spon-

taneously breaks the PQ symmetry with a correction of the order y × v2
PQ/M

2
Pl, with y

the associated Yukawa coupling. For a PQ breaking scale of order vPQ
<∼ O

(
1015

)
GeV

this operator give a harmless contribution. However, for higher scales this term could give

significant corrections to the BGL-like suppression when y ∼ O(1). Nevertheless, even for a

high PQ breaking scale, we could have O(y)� 1 suppressing this additional contribution.

This is not so strange taking into account that in our framework no information on the

Yukawa hierarchy is given. We know that O(yu, yd, · · · )� 1 and in our framework this is

imposed by hand. In a more complete model, these hierarchies could be made dynamical

and there we should also take attention to these additional gravity induced terms.

6 Model variations

The models presented in the main sections of the paper had FCNCs in the down-quark

sector and the top quark was singled out. However, there are many other possible imple-
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mentations that will still give the same minimal flavor violating scenario. These model

variations can be found by performing any of the two operations:

(i) Symmetric permutations in the flavor space;

(ii) Changing up and down right-handed generators.

We can apply these two operations to the models previously studied in order to get all

possible model variants.

6.1 Type (i) operation

The permutations in flavor space will change the textures in the sector with no FCNCs,

i.e the up sector if we apply this operation in the original formulation. The symmetry

generators take now the form

SL → P TSLP , Su,dR → P TSu,dR P SeL → P ′TSLP ′ , SeR → P ′TSeRP ′ , (6.1)

with P and P ′ 3×3 permutation matrices. The 2 by 2 block in the NFC sector will change

structure, we get

P, P ′ = P23 −→


× ×

× ×

 ,

 ×
 ,

× ×
×

× ×


 : Block 1− 3 (6.2a)

P, P ′ = P13 −→


 × ×
× ×

 ,

×
 ,

× × ×
× ×


 : Block 2− 3 (6.2b)

Where Pij permutes the lines i and j (when applied on the left) and columns i and j

(when applied on the right). Besides the textures the only changes due to (i) are in the

axion-matter couplings. The permutation matrices single out other flavors. Therefore, the

action of the permutation matrices will change the CKM and PMNS elements entering in

eq. (5.17) and eq. (5.18), respectively. We get the following redefinition

P, P ′ = P23 −→ t→ c, τ → µ

P, P ′ = P13 −→ t→ u, τ → e
(6.3)

Consequently, the couplings u, d, s and e are appropriately changed.

6.2 Type (ii) operation

We change the sector where the FCNCs are present, that can be accounted with the

following symmetry generators

SL = diag(1, 1, eiXtLθ) , SuR = eiXdRθI , SdR = diag(eiXuRθ, eiXuRθ, eiXtRθ) . (6.4)

We have switched the SuR and SdR generators, keeping the same labels for the charges. Thus,

in this scenario the SuR is completely degenerate, but instead of labeling the charge XuR
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Cases AI AII AIII

(1, 1, 1) −1− 5CI 11− 3CII 12− 4CIII

(2, 2, 2) −10− 14CI 2− 3CII 3− 4CIII

(3, 3, 3) −1 + 4CI 2 + 6CII 3 + 5CIII

(1, 1, 2) −4− 8CI 8− 3CII 9− 4CIII

(1, 1, 3) −1− 2CI 8 9− CIII

(2, 2, 1) −7− 11CI 5− 3CII 6− 4CIII

(2, 2, 3) −7− 8CI 2 3− CIII

(3, 3, 1) −1 + CI 5 + 3CII 6 + 2CIII

(3, 3, 2) −4− 2CI 2 + 3CII 3 + 2CIII

(1, 2, 3) −4− 5CI 5 6− CIII

Table 7. Charge combinations AI, AII and AIII entering in the description of the axion coupling

to photons. The numbers in the first column label the Higgs doublet giving mass to the charged

leptons (e, µ, τ); for example (1,1,2) stands for the case where Φ1 gives mass to e and µ while Φ2

to τ .

we keep it labeled as XdR, just as in the previous case. By keeping the same label we can

easily compare this new case with the previous scenario where the FCNCs where in the

down sector. The Higgs charges, for the three cases, take the same form as in the original

scenario (see eqs. (3.25) and (3.26)) but with an overall minus sign.

Case I : XΦ1 = −XuR , XΦ2 = −(XtR −XtL) , XΦ3 = −(XtL +XuR) .

Case II : XΦ1 = −XuR , XΦ2 = XdR , XΦ3 = −(XtL −XdR) .

Case III : XΦ1 = −XuR , XΦ2 = XdR , XΦ3 = −(XtL −XdR) .

(6.5)

The quark charges take the same form as in eq. (4.15), (4.16) and (4.17) as long as

in the scalar sector the role of the S field is substituted by the S∗, keeping the XS = 1

normalization. This will account for the overall minus sign coming from the Higgs charges.

While the left-handed quark charges have the same expression as in the original scenario,

the right-handed ones switched sectors. The coupling to gluons will not change, however

the coupling to photons changes since the up and down electric charges are different. It

will be given by

Caγ = 2

[
4XdR +

2

3
XuR +

1

3
XtR −

5

3
XtL +

∑
α

(XαR −XαL)

]
. (6.6)

This will have the same form as eq. (5.8), but now the coefficients take the form given in

table 7.

The axion coupling to matter will also change, since we have changed the FCNC sector.

The shift we need to perform in order to account for the orthogonality between the axion
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and the Goldstone boson will get an overall minus sign with respect to eq. (5.13). Because

we changed sectors without changing the labels of the charges, the quark charges shifts will

coincide with the ones in eq. (5.11). The shifted charge matrix takes the form

XuL = XdL = diag(0, 0, X ′tL) , XeL = diag(X ′eL, X
′
µL, X

′
τL) ,

XuR = X ′dRI , XdR = diag(X ′uR, X
′
uR, X

′
tR) ,

XeR = diag(X ′eR, X
′
µR, X

′
τR) .

(6.7)

In the mass basis they take the explicit form

X̃uL = XtL

 |Vub|2 VubV
∗
cb VubV

∗
tb

VcbV
∗
ub |Vcb|2 VubV

∗
tb

VtbV
∗
ub VtbV

∗
cb |Vtb|2

 , X̃uR = XuR , X̃dL = XdL , X̃dR = XdR , (6.8)

The axial couplings to the light quarks are now given by

gd ≡ (CAad)11 =


−v

2
2 (1 + CI)− v2

3CI

v2CI
SCI

for case I,

−
v2

2 + v2
3

(
1− CII(III)

)
v2C

II(III)
S CII(III)

for case II and III ,

gs ≡ (CAad)22 = gd ,

gu ≡ (CAau)11 = −gd +


|Vub|2

CI
S

for case I ,

|Vub|2CII(III) − 1

C
II(III)
S CII(III)

for case II and III .

(6.9)

6.3 Model variations dictionary

In this section we present a compilation of the most significant changes resulting from

applying the operations (i) or (ii) to the original formulation. These can be found in

table 8.

7 Discussion

In the previous sections we have characterized a class of invisible axion models with tree-

level FCNCs. We have also detailed the most relevant properties of the axion in these

models. In this section we will analyze the different constraints on these models due

to familon searches in kaon and muon decays, astrophysical considerations, as well as

axion searches that rely on the axion-photon conversion mechanism. We will separate the

discussion as follows: in section 7.1 we discuss the constraints that can be extracted from the

axion-photon coupling. In section 7.2 we consider constraints on the axion from its flavor

diagonal couplings to matter (nucleons and electrons). In section 7.3 we discuss constraints

derived from familon searches in rare kaon and muon decays. Our main results regarding

the constraints on the axion are summarized in figures 2 and 3, the reader familiar with the

– 33 –



J
H
E
P
1
2
(
2
0
1
4
)
1
6
7

Original
Operation (i)

Operation (ii)
P23 P13

Yukawa
Eq. (3.18), (3.21), (3.23) Eq. (6.2a) Eq. (6.2b) OriginalTextures

Symmetry
Eqs. (3.7), (3.12) Eq. (6.1) Eq. (6.4)Generators

Scalar
Eqs. (3.25), (3.26) Eq. (6.5)Charges

Coupling to
Table 3 Table 7Photons

Orthogonality
Eq. (5.13) Overall minus signShift

Mass Basis
Eqs. (5.15), (5.17)

t→ c t→ u
Eqs. (6.7), (6.8)Charges τ → µ τ → e

u, d, s
Eqs. (5.24) t→ c t→ u Eqs. (6.9)couplings

Electron
Eqs. (5.27) τ → µ τ → e Originalcoupling

Table 8. This table summarizes the changes we need to do in order to get all possible model

variations. The firs column, i.e. Original, presents the various relevant equations in the scenario

where the down sector has FCNCs and the top is singled out. The second column, i.e. Operation

(i), represents models with permutations in the flavor space of each sector. The last column, i.e.

Operation (ii), represent models with quark sectors interchanged.

axion phenomenology might prefer to skip directly to these figures. Finally, in section 7.4

we discuss the phenomenology of the Higgs sector within the frameworks considered, for

this we feel it is important to discuss also the possible decoupling limits of the scalar sector.

7.1 Constraining the axion coupling to photons

The axion couples to photons through the dimension 5 operator in eq. (5.5). The axion-

photon coupling constant is defined by

gaγ =
α

2πvPQ
CagC

eff
aγ . (7.1)

In various extensions of the SM, weakly coupled light pseudoscalar particles emerge natu-

rally. However, the axion possesses (due to QCD effects) an inherent correlation between

the photon coupling and its mass

(ma/1 eV) ' 0.5 ξ g10 , (7.2)

where g10 = |gaγ |/(10−10 GeV−1) and ξ = 1/|Ceff
aγ |. The dimensionless coefficient ξ is in

many axion models of order 1. In the well-known DFSZ (type II and flipped) and KSVZ
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Figure 1. Values of Caγ/Cag in 3HFPQ models with NDW = 1. Squares stand for models with

FCNC in the up-quark sector while those with FCNC in the down-quark sector are denoted with

circles. The corresponding values for Caγ/Cag in the DFSZ models (type II and flipped) are also

shown.

models ξ takes the approximate values 1.4 (0.8) and 0.5, respectively.2 In our 3HFPQ

scenario we can get, besides the standard values, an additional set of discrete values allowing

us to cover a large range of axion-photon couplings. We present in figure 1 the values of

the model dependent quantity Caγ/Cag for those 3HFPQ models with NDW = 1, where

the different values for each potential implementation represent distinct models for the

charged leptons.

It is well known that the evolution of stars place strong constraints on the axion

coupling to photons. A strong bound can be derived from globular-cluster stars [115].

These are homogeneous gravitationally bound systems of stars formed around the same

time, allowing for detailed tests of stellar-evolution theory. The actual experimental bound

gives g10
<∼ 1 for axion masses up to 30 keV. Recently, the analysis of the evolution of

massive stars lead to the bound g10
<∼ 0.8, based on the fact that Cepheid variable stars

exist [116]. An even more stringent bound from an updated analysis of 39 Galactic Globular

Clusters has been reported [117], setting the limit g10
<∼ 0.66 at 95% CL.

Several helioscope and haloscopes experiments are currently involved in probing the

gaγ coupling. The most powerful axion helioscope experiment is the CERN Axion So-

lar Telescope (CAST), which searches for solar axions via axion-photon conversion using

a dipole magnet directed towards the sun. The CAST experiment achieved the limit

g10
<∼ 0.88 for ma

<∼ 0.02 eV, while slightly weaker bounds were obtained for heavier ax-

ions [118, 119]. Still the astrophysical bounds represent a slight improvement over the

2For the KSVZ model we have taken the benchmark of Xem
Q = 0, with Xem

Q denoting the electric charge

of the exotic color triplet Q. For the DFSZ model there are two possible implementations of NFC, the Higgs

doublet coupling to lR can couple either to down-type quarks (type II) or to up-type quarks (flipped).
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CAST results. It is expected that the next generation of axion helioscope experiments,

such as the International Axion Observatory (IAXO) [120, 121], will provide better bounds

on the axion-photon couplings in the future. Microwave cavity haloscopes, including the

Axion Dark Matter experiment (ADMX), exclude a window for the axion around a few

µeV [122–127]. These experiments search for cold dark matter axions in the local galactic

dark matter halo.

7.2 Constraining the axion couplings to matter

We define the axion-electron coupling constant as haee = |ge|me/vPQ, with ge given by

eq. (5.27). The axion-electron coupling is bounded from astrophysical sources. In globular

clusters, energy losses in red-giant stars due to axion emission would delay helium-ignition

and make the red-giant branch extend to brighter stars. Helium ignition arguments in

red-giant branch stars place the following upper bound on the axion-electron coupling,

haee
<∼ 3 × 10−13 [128]. A more restrictive bound comes from white-dwarf (WD) cooling

due to axion losses [115, 129],

haee < 1.3× 10−13 ⇒ vPQ > |ge| × (4× 109 GeV) . (7.3)

The bounds that can be extracted on the PQ symmetry breaking scale, or alternatively,

on the axion mass, are very model dependent for this observable. The value of ge given by

eq. (5.27) not only depends on the particular charge assignments of the model considered

but also on the vevs of the Higgs doublets. In some regions of the parameter space it is

even possible to obtain ge ' 0 so that WD cooling arguments would not place a strong

bound on the axion mass.3 Taking the benchmark point |ge|/NDW = 10−1 for example,

implies the upper bound ma
<∼ 15 meV.

Axion-nucleon interactions are constrained by the requirement that the neutrino signal

of the supernova SN 1987A is not excessively shortened by axion losses [115, 130]. We find

these constraints to be similar than those coming from the WD cooling arguments in

general. However, the SN 1987A limit involves many uncertainties which are not easy to

quantify [115]. Once more, the bound extracted on the PQ scale from the SN 1987A will

depend on the vevs of the Higgs doublets.

The axion couplings to matter can also be tested in terrestrial laboratories, with

promising prospects of probing unexplored regions of the axion parameter space. Dark

matter axions can cause transitions between atomic states that differ in energy by an

amount equal to the axion mass. By tuning the atomic states energy using the Zeeman

effect it is possible in principle to detect axion dark matter candidates in the 10−4 eV mass

range [131]. The axion can also be tested in dedicated laboratory experiments looking for

oscillating nucleon electric dipole moments (EDMs) [132–134], and, oscillating parity- and

time reversal-violating effects in atoms and molecules [133, 134]. The proposed Cosmic

Axion Spin Precession Experiment (CASPEr) for example, could cover the entire range of

axion dark matter masses ma . µeV by looking for oscillating EDMs in a nuclear magnetic

resonance solid-state experiment [135].

3For a very small axion-electron coupling one should also include the one loop contributions [82, 83].
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Figure 2. Constraints on the invisible axion of the 3HFPQ models where the top-quark is singled

out. Familon searches in flavor experiments, astrophysical considerations and axion-photon conver-

sion experiments are taken into account. The yellow wide band represents a scan over all possible

3HFPQ models considered. Constraints from white-dwarfs (WD) cooling are shown taking the

benchmark point |ge|/NDW = 10−1. The dark blue band represents the most conservative upper

bound on the axion mass from µ+ → e+aγ. Predictions for the KSVZ and DFSZ models (type II

and flipped) are also shown.

7.3 Constraining flavor changing axion interactions

In our framework, and contrarily to what happens in the DFSZ and KSVZ models, the axion

couples differently to different flavors and has flavor changing interactions at tree level.

Pseudo-Goldstone bosons arising from the spontaneous breaking of a horizontal symmetry

are known as familons [49, 50, 136]. In our class of models this familon is the axion, and

it will have non-diagonal interactions in the up-quark sector or in the down-quark sector

depending on the model considered. There are also flavor changing axion interactions in

the charged lepton sector for some of the leptonic implementations considered.

The most stringent bounds on flavor changing axion interactions are extracted from

flavor violating decays of kaon or muons into the axion and some other particle(s). Flavor

processes in which the axion enters with a double insertion of the axion coupling (µ→ eγ,

µ−e conversion in nuclei, K0−K̄0 mixing, Bs → µ+µ−, among others) are very suppressed

by an extra v−1
PQ factor at the amplitude level and do not put relevant bounds.

The leptonic decay µ+ → e+ a can in principle be used to constrain charged lepton

flavor violating interactions of the axion. In ref. [137] the authors reported the exper-

imental bound Br(µ+ → e+a) < 2.6 × 10−6 at 90% CL. This result however relies on

the assumption that the positron is emitted isotropically to avoid large backgrounds from

the ordinary muon decay µ+ → e+νeν̄µ. This assumption would be valid if we only had
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Figure 3. Constraints on the invisible axion of the 3HFPQ models where the up-quark and charm

quarks are singled out. Familon searches in flavor experiments, astrophysical considerations and

axion-photon conversion experiments are taken into account. The yellow wide band represents a

scan over all possible 3HFPQ models considered. The dark blue band corresponds to the most

conservative upper bound on the axion mass extracted from K+ → π+a, the light blue band

corresponds to the strongest upper bound from this process. Predictions for the KSVZ and DFSZ

models (type II and flipped) are also shown.

vectorial couplings but not axial ones. In our scenarios, the lepton flavor violating axial

and vectorial couplings are equal, so the assumptions behind the µ+ → e+a bound do not

apply. In this case the best process to bound the charged lepton flavor violating axion

couplings is the radiative decay µ+ → e+ a γ. With this process it is possible to extract

limits which are independent of the chirality properties of the axion couplings [138]. The

most stringent experimental bound at the moment is Br(µ+ → e+ a γ) < 1.1 × 10−9 at

90% CL [139], obtained at the Los Alamos Meson Physics Facility (LAMPF) using the

Crystal Box detector. From this process we can extract

vPQ >
[∣∣gVµe∣∣2 +

∣∣gAµe∣∣2]1/2
×
(
1.6× 109 GeV

)
=
∣∣gVµe∣∣× (2.3× 109 GeV

)
, (7.4)

with the axion-lepton couplings gVµe = gAµe =
(
CAae
)

21
in the scenario with FCNCs in the

charged lepton sector. We obtain a robust bound from this process since the flavor changing

couplings gV,Aµe are completely determined by elements of the PMNS lepton mixing matrix

due to the underlying PQ symmetry. The bound extracted on the PQ scale, or equivalently

the axion mass, from µ+ → e+aγ does not vary much between all the models with FCNCs in

the charged lepton sector. The reason being that that the PMNS matrix is very anarchical,

that is, |V ∗τ2Vτ1| ∼ |V ∗µ2Vµ1| ∼ |V ∗e2Ve1|. Obviously, models without tree-level FCNCs in the

charged lepton sector avoid the constraints coming from µ+ → e+aγ.
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Models with FCNCs in the up-quark sector do not receive strong constraints from flavor

observables, all the relevant observables involve a double insertion of the axion couplings

in this case. On the other hand, models with FCNCs in the down-quark sector are strongly

constrained by limits on K+ → π+a. To the best of our knowledge, the strongest bound

on K+ → π+a decays has been set by the E787 Collaboration at Brookhaven National

Laboratory, achieving Br(K+ → π+a) < 4.5 × 10−11 at 90% CL [140]. The partial decay

width for this process is given by

Γ(K+ → π+ a) =
1

64π

m3
K

v2
PQ

∣∣gVsd∣∣2 β3 |F1(0)|2 , (7.5)

with β = 1−m2
π/m

2
K and gVsd =

(
CVad
)

21
. The relevant hadronic matrix element〈

π+(p′)
∣∣ sγµd ∣∣K+(p)

〉
= F1(q2)(p+ p′)µ , (7.6)

can be extracted in the limit of exact SU(3) flavor symmetry. At the zero momen-

tum transfer the form factor has the fixed normalization F1(0) = 1 [141]. We have

〈π+(p′)| sγµγ5d |K+(p)〉 = 0 because K+ and π+ are pseudoscalar mesons. From this

result we can extract a lower bound on the PQ scale

vPQ >
∣∣gVsd∣∣× (4.4× 1011 GeV

)
. (7.7)

Just like in the charged lepton sector, the coupling gVsd is fixed in terms of elements of

the CKM quark mixing matrix due to the underlying PQ symmetry. A robust bound can

then be extracted on the axion mass which is independent of the many free parameters of

the model.

Future improvements on the µ+ → e+aγ bounds are difficult to achieve with present

facilities, see discussion in ref. [142]. On the other hand, improvements on the K+ → π+a

limits can be expected from the NA62 experiment at CERN [143].

In figures 2 and 3 we summarize all the constraints discussed so far on the axion

properties. We do not show explicitly the limits from massive stars on gaγ though these

are similar to that from CAST. In figure 2 we show constraints on models with FCNCs in

the charged lepton sector and in the down-quark sector which select the top-quark. The

strongest bound from flavor observables arises in this case from µ+ → e+aγ because of the

strong suppression factor |V ∗tsVtd| entering in K+ → π+a decays. The wide yellow band

represents the prediction scanning over all the 3HFPQ models of this type. For this type

of models astrophysical bounds from WD cooling put in general a stronger limit on the

axion mass than flavor processes, the WD bound however depends strongly on the vevs

of the Higgs doublets while the flavor limits do not. This is precisely what occurs for

the model analyzed in ref. [38], which corresponds to a case I model with scalar potential

implementation T11 and leptonic implementation (3, 3, 2). Predictions for the KSVZ and

DFSZ invisible axion models are also shown in figures 2 and 3. For the KSVZ model we

assume that the exotic color triplet has no electric charge (Xem
Q = 0). In both figures,

the upper DFSZ line corresponds to the flipped scenario while the bottom one to the

type II case.
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In figure 3 we show the constraints on those models with FCNCs in the down-quark

sector which select the up or charm quark. The most relevant limit on the axion mass

comes now from K+ → π+a due to the value of the product of CKM matrix elements

|V ∗udVus|2 ∼ |V ∗cdVcs|2 � |V ∗tdVts|2 lifting the decay rate. For some models of this type the

bound from kaon decays can be as strong as ma
<∼ 2 × 10−5 eV. This is one of the main

results of our work. Among all the models with FCNCs in the down-quark sector, those

which select the top quark are much less constrained because of the very effective CKM

suppression entering in K+ → π+a decays.

7.4 Higgs physics

The scalar sector of the model contains three complex Higgs doublets Φj (j = 1, 2, 3) and a

complex scalar gauge singlet S. The scalar fields are then parametrized in terms of 14 real

degrees of freedom (each doublet carrying 4 and the singlet 2). Three degrees of freedom

correspond to the usual Goldstone bosons G±,0 responsible of giving mass to the massive

weak gauge bosons. These have already being isolated by going to the Higgs basis in

eq. (4.2). Another degree of freedom corresponds to the axion which, up to corrections of

order O (v/vPQ), is given by the phase of the scalar gauge singlet. The other 10 degrees of

freedom become physical scalar fields, leaving 2 electrically charged and 6 neutral physical

scalars. It is not our intent to present a detailed analysis of the Higgs phenomenology

in this class of models. We will, nevertheless, say a few words on some of these aspects.

However, before discussing the Higgs phenomenology it is necessary to have some basic

grasp of the decoupling structure of the kind of models considered.

7.4.1 Decoupling in the scalar sector

After the scalar fields acquire a vev, mixing among the scalars with the same charge is

induced. Due to the large hierarchy between the vevs, i.e. vPQ � v, the radial part of

the gauge singlet acquires a large mass and we can treat the mixing as SU(2)L-conserving.

The scalar potential of the SU(2)L doublets is then given by

V (Φ) = (Φ†iM
2
ijΦj +O(v2) + h.c.) + quartic terms on Φi , (7.8)

with the square mass matrix taking the form

M2 = v2
PQ



m2
1

v2
PQ

+ λΦS
1 λ4 λ5

λ∗4
m2

2

v2
PQ

+ λΦS
2 λ6

λ∗5 λ∗6
m2

3

v2
PQ

+ λΦS
3


. (7.9)

The couplings λi are associated with a phase sensitive terms (i) of table 1. In the case

where a phase sensitive term has mass dimension, such as in cases (4), (5) and (6) with

ki = 1, we parametrize it as µi = vPQλi. Additionally, note that for models T1 to T9 the

PQ symmetry forces one of the couplings to be zero, that is λk = 0 with k = 4, 5 or 6,

while for models T10 to T12 all the couplings are expected to be non-zero.
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Because of the large value of the PQ symmetry breaking scale, the scalar sector of

invisible axion models usually presents a decoupling scenario. This way only the axion and

a SM-like Higgs remains at the EW scale while the others acquire a mass of order vPQ.

However, it is possible to achieve specific values for the parameters in order to avoid the

decoupling limit in such a way that two (or three) Higgs doublets get masses around the

EW scale.

In what follows, we analyze the different decoupling limits and give a possible tex-

ture reproducing each scenario. In the textures we use the parameters b, c ∼ O(1) and

ε ∼ O
(
v2/v2

PQ

)
. The last parameter, ε, has been introduced in order to show how EW

corrections coming from the terms we have neglected in eq. (7.8) can lift the zero eigenval-

ues to the EW scale. We also distinguish between the case where one of the λ-couplings is

zero as in models T1 to T9 and the case where all the couplings are non-zero, corresponding

to models T10 to T12.

• One doublet at the electroweak scale.

This scenario is characterized by the presence of a SM-like Higgs at the EW scale,

with the other two scalar doublets having masses at the PQ symmetry breaking

scale. As a result, the infrared theory will correspond to the SM plus the axion

(whose properties and couplings were discussed in section 5) supplemented by higher

dimension operators suppressed by the PQ breaking scale which can be neglected.4

We list two textures generating this scenario

M2 = v2
PQ


√

2 b+ ε b b

b
√

2 b 0

b 0
√

2 b

 . (7.10)

This texture can be implemented in models T1 to T9, even though the zero has been

located in the position of λ5. The same mass spectrum is generated by permuting

the value of the parameters appropriately. On the other hand, for the models T10 to

T12 one possible texture is given by

M2 = v2
PQ

b+ ε b c

b b+ ε c

c c c

 , (7.11)

where the constraint b 6= c needs to be satisfied to have just one doublet at the

EW scale.

• Two doublets at the electroweak scale.

In this decoupling scenario we obtain a 2HDM with tree-level FCNCs controlled by

the CKM and PMNS matrices, the quark masses and the ratio of the vevs of the

two Higgs doublets whose masses are at the EW scale (in a similar fashion as in the

4Additionally, one should take special care of higher dimension operators coming from gravitational

effects as they give non-negligible contributions. For a detailed analysis see subsection 5.4.
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BGL 2HDM). However, the values of the flavor changing scalar couplings cannot be

determined in general as it will depend on the specific implementation of the scalar

parameters in M2. In any case, as these couplings present the same structure as in

the BGL models, similar constraints in the parameter space are expected.

For models T1 to T9 it is not possible to reproduce this scenario unless some of the

parameters are ultraweak, i.e. of order O
(
v2/v2

PQ

)
. In this case one possible texture

is given by

M2 = v2
PQ

b+ ε b ε

b b+ ε 0

ε 0 ε

 , (7.12)

which is only valid for models T1, T2 and T7. The equivalent texture for models T3 to

T6, T8 and T9 can be directly obtained from the previous texture by permuting the

entries in the matrix. Finally, one texture reproducing this scenario in models T10

to T12 is

M2 = v2
PQ

b+ ε b b

b b+ ε b

b b b

 . (7.13)

• Three doublets at the electroweak scale.

Having the three doublets at the EW scale is only possible if we force all the param-

eters in eq. (7.9) to be ultraweak, that is if every term inM2 take values around the

EW scale. As we have discussed in section 4, this scenario gives rise to FCNCs which

are suppressed by the CKM and the PMNS matrices with the explicit scalar flavor

violating couplings depending on the model implementation.

This simple analysis of the possible decoupling scenarios is by no means a full and

detailed study of the scalar spectrum. The textures above are just illustrative and many

other textures with different degrees of tuning might be present for any of the three relevant

decoupling scenarios. Finally, it should be noted that the scalar sector in this class of

models suffers from a fine tuning problem (commonly known as the hierarchy problem),

just like most models where more than one scale is present in the theory. A solution for

this problem is out of the scope of the present work. However, some promising directions

have been pursued in the literature within the framework of invisible axion models [144].

7.4.2 Higgs phenomenology

If there is a decoupling in the scalar sector where one Higgs doublet remains at the weak

scale while the other scalar fields become very heavy, three degrees of freedom of this

doublet correspond to the Goldstone bosons giving mass to the massive gauge bosons while

the remaining degree of freedom corresponds to a SM-like Higgs boson. The possibility

of a richer decoupling structure in the scalar sector, with two or three Higgs doublets at

the weak scale would give rise to potentially new physics signatures at flavor factories
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and collider experiments like the LHC. The latter scenario would imply the existence of

additional neutral Higgs boson (besides the 125 GeV SM-like Higgs boson) and charged

scalars with masses around the EW scale. Neglecting mixing effects among the scalar

fields, the phenomenology of these scalars would be basically the same than in the BGL

2HDMs analyzed in refs. [71–73]. For example, dangerous |∆S| = 2 contributions to

K0 − K̄0 mixing due to neutral scalars would be very suppressed in the top BGL models

because the flavor changing couplings are proportional to |V ∗tsVtd|, allowing the mass of

these scalars to be at the weak scale [71].

A classification of flavor observables which receive important contributions in the BGL

2HDMs and a comprehensive phenomenological analysis of this models was presented in

ref. [71]. Additional neutral scalars with flavor changing couplings will enter at tree level

in pseudoscalar meson leptonic decays M0 → `+`−, neutral meson mixing M0 − M̄0, as

well as in lepton flavor violating transitions of the type: `−1 → `−2 `
+
3 `
−
4 , τ → `ππ and µ− e

conversion in nuclei. The previous processes arise in the SM at the loop level and receive

strong suppressions due to the GIM mechanism or the smallness of neutrino masses, this

makes these processes very sensitive to small new physics contributions. Charged scalars

will also contribute at tree-level to semi-leptonic pseudoscalar meson decays (M → `ν,

B → D(∗)`ν) and leptonic τ decays (τ → `ν̄`ντ ), possibly causing observable violations of

lepton universality. Neutral and charged scalars will contribute at the loop level in processes

like B̄ → Xsγ and `1 → `2γ and will in general dominate over the SM contribution which

appears at the same level. The discovery of additional scalars at the LHC and characteristic

decay signatures of the non-standard scalars in the BGL 2HDMs have been analyzed in

ref. [72, 73]. The main results of these analyses is that within BGL 2HDMs additional

charged and neutral scalars can be as light as 150 GeV while being compatible with present

125 GeV Higgs, flavor, electroweak precision and collider data [71–73].

8 Conclusions

In this work we have built a class of invisible axion models with FCNCs at tree level

which are controlled by the fermion mixing matrices, therefore extending the work done

in ref. [38]. The scalar sector contains three-Higgs doublets and a complex scalar gauge

singlet field. A flavored Peccei-Quinn symmetry provides a solution to the strong CP

problem via the Peccei-Quinn mechanism, giving rise to an invisible axion which could

account for the cold dark matter in the Universe. The main features of such three-Higgs

flavored Peccei-Quinn (3HFPQ) class of models are summarized in table 9, making the

relevant comparisons with the KSVZ and DFSZ axion models. Experimental limits on

the axion have been analyzed taking into account familon searches in rare kaon and muon

decays, astrophysical considerations and axion-photon conversion experiments.

The most important findings of our analysis are:

• Models with tree-level FCNCs in the down-quark or charged lepton sectors receive

important constraints on the PQ scale from familon searches in kaon and muon

decays. These bounds are very robust for the class of models considered in this work
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Models KSVZ DFSZ 3HFPQ

BSM fields Q+S Φ2+S Φ2+Φ3+S

PQ fields Q, S
q, l, Φ1,2, S q, l, Φ1,2,3, S

(flavor blind) (flavor sensitive)

Caγ/Cag 6(Xem
Q )2 2/3, 8/3 [−34/3, 44/3]

Tree-level CtM No Yes Yes

Tree-level FCAI No No Yes

NDW 1 3, 6 1, 2, · · · , 8

Table 9. Comparison of the class of models constructed in this work with the usual invisible axion

model benchmarks. The different values for Caγ/Cag and NDW in the DFSZ and the 3HFPQ models

correspond to different implementations of the PQ symmetry. We use the notation: CtM=Coupling

to Matter; FCAI=Flavor Changing Axion Interaction.

since the flavor changing axion couplings are completely controlled by elements of

the fermion mixing matrices due to the underlying PQ symmetry.

• Models with tree-level FCNCs in the down-quark sector for which the top quark is

singled out receive the strongest upper bound on the axion mass from white-dwarf

cooling arguments in general, though this bounds depend strongly on the vevs of the

Higgs doublets. Bounds from K+ → π+a are very weak due to the strong CKM

suppression. Figure 2 summarizes all the constraints on this scenario.

• Models with tree-level FCNCs in the down-quark sector for which the up (or charm)

quark is singled out receive the strongest upper bound on the axion mass from

K+ → π+a decays since in this case the flavor changing couplings are not as sup-

pressed |V ∗usVud| ∼ |V ∗csVcd| � |V ∗tsVtd|. Figure 3 summarizes all the constraints on

this scenario.

• Constraints from µ+ → e+aγ are very similar in all the models with FCNCs in the

charged lepton sector due to the anarchical structure of the PMNS matrix. The

bounds derived from µ+ → e+aγ are stronger than those obtained from K+ → π+a

in models with tree-level FCNCs in the down-quark sector for which the top quark

is singled out.

• The axion of models without FCNCs in the down-quark and charged lepton sectors do

not receive important constraints from flavor observables. In this case the strongest

bounds on the axion can be derived from the axion-photon coupling and white-dwarf

cooling arguments.

• A large variety of the models considered have NDW = 1, avoiding the domain wall

problem. Allowed values for the model dependent quantity Caγ/Cag (see eq. (5.7)) in

these models was presented in figure 1, large deviations on the axion-photon coupling
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compared with the DFSZ model are obtained in some cases. One interesting aspect is

the fact that we are able to mimic the DFSZ axion coupling to photons and have at the

same time NDW = 1. A zero Caγ can be achieved but only in models with NDW > 1.
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scholarship. H.S. wants to thank to IFIC where a large part of the work was done and

funded by the European FEDER, Spanish MINECO, under the grant FPA2011-23596.

H.S. work was also supported by the National Research Foundation of Korea (NRF)

grant funded by the Korea Government (MEST) (No. 2012R1A2A2A01045722), and also

supported by Basic Science Research Program through the National Research Founda-

tion of Korea (NRF) funded by the ministry of Education, Science and Technology (No.

2013R1A1A1062597). Finally, H.S. acknowledges the Portuguese FCT project PTDC/FIS-

NUC/0548/2012.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] ATLAS collaboration, Observation of a new particle in the search for the standard model

Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1

[arXiv:1207.7214] [INSPIRE].

[2] CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS

experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

[3] H.-Y. Cheng, The strong CP problem revisited, Phys. Rept. 158 (1988) 1 [INSPIRE].

[4] R.D. Peccei, The strong CP problem and axions, Lect. Notes Phys. 741 (2008) 3

[hep-ph/0607268] [INSPIRE].

[5] J.E. Kim and G. Carosi, Axions and the strong CP problem, Rev. Mod. Phys. 82 (2010) 557

[arXiv:0807.3125] [INSPIRE].

[6] S.L. Glashow, R. Jackiw and S.S. Shei, Electromagnetic decays of pseudoscalar mesons,

Phys. Rev. 187 (1969) 1916 [INSPIRE].

[7] H. Fritzsch, M. Gell-Mann and H. Leutwyler, Advantages of the color octet gluon picture,

Phys. Lett. B 47 (1973) 365 [INSPIRE].

[8] G. ’t Hooft, Symmetry breaking through Bell-Jackiw anomalies, Phys. Rev. Lett. 37 (1976)

8 [INSPIRE].

[9] G. ’t Hooft, Computation of the quantum effects due to a four-dimensional pseudoparticle,

Phys. Rev. D 14 (1976) 3432 [Erratum ibid. D 18 (1978) 2199] [INSPIRE].

– 45 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://arxiv.org/abs/1207.7214
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.7214
http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://arxiv.org/abs/1207.7235
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.7235
http://dx.doi.org/10.1016/0370-1573(88)90135-4
http://inspirehep.net/search?p=find+J+Phys.Rept.,158,1
http://dx.doi.org/10.1007/978-3-540-73518-2_1
http://arxiv.org/abs/hep-ph/0607268
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0607268
http://dx.doi.org/10.1103/RevModPhys.82.557
http://arxiv.org/abs/0807.3125
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.3125
http://dx.doi.org/10.1103/PhysRev.187.1916
http://inspirehep.net/search?p=find+J+Phys.Rev.,187,1916
http://dx.doi.org/10.1016/0370-2693(73)90625-4
http://inspirehep.net/search?p=find+J+Phys.Lett.,B47,365
http://dx.doi.org/10.1103/PhysRevLett.37.8
http://dx.doi.org/10.1103/PhysRevLett.37.8
http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,37,8
http://dx.doi.org/10.1103/PhysRevD.18.2199.3
http://inspirehep.net/search?p=find+J+Phys.Rev.,D14,3432


J
H
E
P
1
2
(
2
0
1
4
)
1
6
7

[10] C.A. Baker et al., An improved experimental limit on the electric dipole moment of the

neutron, Phys. Rev. Lett. 97 (2006) 131801 [hep-ex/0602020] [INSPIRE].

[11] V. Baluni, CP violating effects in QCD, Phys. Rev. D 19 (1979) 2227 [INSPIRE].

[12] R.J. Crewther, P. Di Vecchia, G. Veneziano and E. Witten, Chiral estimate of the electric

dipole moment of the neutron in quantum chromodynamics, Phys. Lett. B 88 (1979) 123

[Erratum ibid. B 91 (1980) 487] [INSPIRE].

[13] R.D. Peccei and H.R. Quinn, CP conservation in the presence of instantons, Phys. Rev.

Lett. 38 (1977) 1440 [INSPIRE].

[14] R.D. Peccei and H.R. Quinn, Constraints imposed by CP conservation in the presence of

instantons, Phys. Rev. D 16 (1977) 1791 [INSPIRE].

[15] S. Weinberg, A new light boson?, Phys. Rev. Lett. 40 (1978) 223 [INSPIRE].

[16] F. Wilczek, Problem of strong p and t invariance in the presence of instantons, Phys. Rev.

Lett. 40 (1978) 279 [INSPIRE].

[17] S.L. Glashow and S. Weinberg, Natural conservation laws for neutral currents, Phys. Rev.

D 15 (1977) 1958 [INSPIRE].

[18] E.A. Paschos, Diagonal neutral currents, Phys. Rev. D 15 (1977) 1966 [INSPIRE].

[19] UTfit collaboration, M. Bona et al., Model-independent constraints on ∆F = 2 operators

and the scale of new physics, JHEP 03 (2008) 049 [arXiv:0707.0636] [INSPIRE].

[20] J. Preskill, M.B. Wise and F. Wilczek, Cosmology of the invisible axion, Phys. Lett. B 120

(1983) 127 [INSPIRE].

[21] L.F. Abbott and P. Sikivie, A cosmological bound on the invisible axion, Phys. Lett. B 120

(1983) 133 [INSPIRE].

[22] M. Dine and W. Fischler, The not so harmless axion, Phys. Lett. B 120 (1983) 137

[INSPIRE].

[23] M.S. Turner and F. Wilczek, Inflationary axion cosmology, Phys. Rev. Lett. 66 (1991) 5

[INSPIRE].

[24] D.H. Lyth and E.D. Stewart, Axions and inflation: string formation during inflation, Phys.

Rev. D 46 (1992) 532 [INSPIRE].

[25] P. Minkowski, µ→ eγ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67

(1977) 421 [INSPIRE].

[26] M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, Conf.

Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].

[27] M. Gell-Mann, P. Ramond and R. Slansky, Horizontal symmetry and masses of neutrinos,

Conf. Proc. C 7902131 (1979) 95 [INSPIRE].
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