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1 Introduction

Following the measurement of the third lepton mixing angle, the so-called reactor angle

θ13 ≈ 8.5◦ [1, 2], neutrino physics has entered the precision era. Indeed all three lepton

mixing angles are expected to be measured with increasing precision over the coming years,

with forthcoming accurate measurements expected for both the atmospheric angle θ23 and

the solar angle θ12. First hints of the CP-violating (CPV) phase δ have also been reported in

global fits [3–5], and rapid progress can be expected with the next generation of oscillation

experiments.

The measurement of the reactor angle has had a major impact on models of neutrino

mass and mixing, ruling out at a stroke models based on tribimaximal (TBM) lepton

mixing [6], although, as we shall discuss in this paper, these patterns may survive in

the neutrino sector, if charged-lepton corrections are included. Such TBM patterns can

arise from “direct” models [7], in which the full Klein symmetry (S,U generators) of the

neutrino mass matrix as well as the T symmetry of the charged lepton mass matrix are
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subgroups of an underlying discrete family symmetry. Alternatively, TBM mixing can arise

from “indirect” models based on constrained sequential dominance (CSD) [8] with special

family symmetry breaking vacuum alignments.

In response to the experimental data, many different model building directions capable

of accounting for the reactor angle have emerged, as recently reviewed in refs. [9] and [10].

The viability of these ideas can only be established by comparison with experiment, and a

tractable approach to test large classes of models is to identify generic types of prediction

associated with these models. A promising example of such a signature can be found in

lepton mixing sum rules, which relate the three lepton mixing angles to the CPV oscil-

lation phase δ, or more precisely to cos δ. Indeed, given the precisely measured values of

the mixing angles, they can be regarded as predictions for cos δ, to be tested in future

experiments. Lepton mixing sum rules arise from two distinct types of scenarios and lead

to two different types, referred to as atmospheric and solar sum rules [9, 10].

Atmospheric sum rules [11] arise from a variety of “semi-direct” models in which only

half of the Klein symmetry emerges from the discrete family symmetry, classified in terms of

finite von Dyck groups, with charged lepton mixing controlled by the T generator [12–14].

For example, such models can lead to trimaximal-1 (TM1) or trimaximal-2 (TM2) mixing,

in which the first or second column of the TBM mixing matrix is preserved, eq. (1.1) and

eq. (1.2) respectively,

TM1 : |Ue1| =
√

2

3
and |Uµ1| = |Uτ1| =

1√
6

; (1.1)

TM2 : |Ue2| = |Uµ2| = |Uτ2| =
1√
3
. (1.2)

The atmospheric sum rule a = λr cos δ+O(a2, r2) can be derived from these conditions [11],

where a ≡
√

2 sin θ23 − 1, r ≡
√

2 sin θ13 and λ = 1 for TM1 and λ = −1/2 for TM2. The

study of correlations of this type, and their application to the discrimination between

underlying models, has been shown to be a realistic aim for a next-generation superbeam

experiment [14].

It was first shown in refs. [15] and [16] that A4 generally leads to a “semi-direct model”

which predicts TM2 mixing with the second atmospheric sum rule, while the indirect CSD2

model with special family symmetry breaking vacuum alignments (0, 1, 1)T and (1, 2, 0)T

in ref. [17] predicts TM1 mixing and the first atmospheric sum rule. In fact the TM1

atmospheric sum rule arises from all generalised versions of CSD(n), based on the vacuum

alignments (0, 1, 1)T and (1, n, n − 2)T for integer n ≥ 1 [18, 19], since such alignments

are orthogonal to the first column of the TBM matrix, (2,−1, 1)T /
√

6, and hence predict

TM1 mixing.

The Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix U can be expressed as the

product of the diagonalising matrices of the neutrino and charged lepton mass terms, Uν
and Ue, respectively,

U = U †eUν .

Solar sum rules [8, 20, 21] arise in models in which a leading-order mixing matrix Uν is

corrected by a small basis change from the charged leptons. In the first models of this
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type Ue had a Cabibbo-like form: if we denote the angles which parameterise Uα by θαij ,

the angles obey 0 ≈ θe13 ≈ θe23 � θe12 ≈ θC . These scenarios are motivated by Grand

Unified Theories (GUTs) where the approximately diagonal charged lepton mass matrix

is related to the down-type quark mass matrix, together with the assumption that quark

mixing arises predominantly from the down-type quark sector. Indeed this was the case in

the CSD model where solar sum rules were first proposed [8]. In the context of “direct”

models, solar sum rules arise when the full Klein group continues to emerge from the discrete

family symmetry (leading for example to TBM mixing in the neutrino sector) while the

T generator which governs the charged leptons is broken. In the simple case where only

θe12, θ
ν
12, θ

ν
23 are non-zero, with θe23 = θe13 = θν13 = 0, the charged-lepton corrections do not

change the third row of the neutrino mixing matrix, and solar sum rules can be derived

from the conditions [22]

|Uτ1| = sν12s
ν
23 , |Uτ2| = cν12s

ν
23 , |Uτ3| = cν23 , (1.3)

where sαij ≡ sin θαij and cαij ≡ cos θαij . For example, with TBM neutrino mixing sν23 = cν23 =

1/
√

2, sν12 = 1/
√

3 and cν12 =
√

2/3,

|Uτ1| =
1√
6
, |Uτ2| =

1√
3
, |Uτ3| =

1√
2
. (1.4)

The solar sum rule s = r cos δ + O(a2, r2, s2) can be derived from these conditions [11],

where s ≡
√

3 sin θ12 − 1. It is clear that the conditions on |Uτ1| and |Uτ2| in eq. (1.4) are

identical to the corresponding conditions for TM1 and TM2 mixing, respectively. However

the conditions on the other elements of the PMNS mixing matrix are different, so the

resulting atmospheric and solar sum rules will also be different.

In this paper, we extend the above derivation of the solar sum rule to the more general

case where not only θe12, θ
ν
12, θ

ν
23 are non-zero but also θe23 is allowed to be non-zero and all

complex phases are kept arbitrary, while still keeping θe13 = θν13 = 0. As a result we shall

find the remarkable condition,
|Uτ1|
|Uτ2|

=
sν12
cν12

= tν12 . (1.5)

Of course, the condition in eq. (1.5) can be trivially derived from eq. (1.3), assuming

θe23 = 0. The notable feature is that eq. (1.5) also holds independently of θe23 and of all

complex phases. However, eq. (1.3) involves further relations which only hold for θe23 = 0.

These further relations can be used to eliminate the atmospheric angle, providing a solar

sum rule which is more restrictive than that coming from eq. (1.5) alone. Nevertheless, we

shall continue to refer to the relation in eq. (1.5) as a solar sum rule, since it is satisfied

even when θe23 = 0, as in eq. (1.3), and is distinct from the atmospheric sum rules discussed

earlier. The solar sum rule in eq. (1.5) may be cast as a prediction for cos δ, as a function

of the measured mixing angles and θν12,

cos δ =
t23s

2
12 + s213c

2
12/t23 − sν212(t23 + s213/t23)

sin 2θ12s13
, (1.6)

an expression which had been derived previously using an alternative argument in refs. [23]

and [24]. We also highlight a second remarkable feature of eq. (1.6), namely that it is not
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only independent of θe23 but also of θν23. The sum rule in eq. (1.6) is specified by only fixing

the value of sν12. Therefore, we can enumerate the viable models of this type by deriving

the values of θν12 associated with those leading-order mixing patterns with θν13 = 0 which

are derivable from considerations of symmetry. In this article, we shall show that this leads

us to four well-motivated solar sum rules: one based on TBM mixing [6] where sν12 = 1/
√

3,

one based on bimaximal (BM) mixing [25–27] where sν12 = 1/
√

2 and two patterns based

on versions of golden ratio mixing including GR1 with tν12 = 1/ϕ [28–30] and GR3 with

cν12 = ϕ/
√

3 [31, 32], where ϕ = 1+
√
5

2 is the golden ratio. We shall also discuss the viability

of two leading-order patterns which have been invoked in the literature called GR2 with

θν12 = π/5 [33, 34], and hexagonal (HEX) mixing with θν12 = π/6 [35].

For each viable prediction we perform a study of the scope to test the sum rule in

eq. (1.6) within the current experimental programme. Over the next few decades, signifi-

cant new information will be provided on the leptonic mixing matrix from two main sources:

the next generation of medium-baseline reactor (MR) experiments and long-baseline wide-

band superbeams (WBB). The MR programme primarily seeks to measure the interfer-

ence between atmospheric and solar neutrino oscillations at baseline distances of around

50–60 km. These facilities have been shown to be sensitive to the mass hierarchy [36–39].

There are two main experiments working towards a MR facility, both building on successful

measurements of θ13 at a shorter baseline: JUNO [40] and RENO-50 [41, 42]. The WBB

experiments can be seen as complementary to the MR proposals. Collaborations such as

LBNE [43] and LBNO [44] intend to construct a high-power long-baseline neutrino and

antineutrino beam which can exploit matter effects and large statistics for the primary aim

of constraining the CPV phase δ. The combination of MR and WBB facilities will provide

new levels of precision in the neutrino sector, with θ12 and θ13 being probed to the level

of percent by MR experiments, and δ being constrained by dedicated WBB facilties. This

complementarity offers for the first time the possibility of experimentally testing relations

such as eq. (1.6).1 In this work, we shall simulate illustrative MR and WBB facilities with

an aim to exploring how their complementarity can be used to constrain the models of

charged-lepton corrections.

The idea of correcting a leading-order neutrino mixing pattern by contributions from

the charged leptons has recently been revisited [23, 24, 46–48]. Our work goes beyond

these analyses in three ways. Firstly, we present a novel derivation of the correlation in

eq. (1.6) in a more general setting, showing it to be the consequence of the simpler relation

eq. (1.5), which helps to highlight its relationship to the earlier solar sum rules. Secondly,

we systematically derive the possible leading-order mixing patterns from considerations of

residual symmetry, finding a small well-motivated set. Thirdly, we present the results of

simulations assessing the potential to constrain the solar sum rules from two upcoming

complementary oscillation experiments: a superbeam and a reactor facility.

The layout of the remainder of the paper is as follows: in section 2, we present a

simple derivation of the correlations induced by charged-lepton corrections. We then sys-

1For another application of this complementarity to the study of flavour-symmetric predictions,

see ref. [45].
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tematically identify the viable leading-order neutrino mixing matrices, and comment on

their relation to the underlying flavour symmetry. Section 3 is devoted to our numerical

study. We first consider the currently allowed parameter spaces of these correlations, then

we present the details and results of our simulations of a superbeam and reactor exper-

iment, showing how these can be used to test these relations. We comment on the case

where θν13 6= 0 in section 4, and discuss renormalisation group effects in section 5. Finally,

section 6 concludes the paper.

2 Mixing sum rules from charged-lepton corrections

In the first subsection, we present a simple derivation of the solar sum rule of eq. (1.6).

Then in later subsections we discuss the leading-order mixing patterns which one encounters

in the considered class of models. We shall find that there are only four well-motivated

patterns of interest, whose relation to model building will be discussed.

2.1 A simple derivation

In the equations that follow, superscripts are attached to quantities which are naturally

associated with the neutrinos or the charged leptons (e.g. θν and θe), whilst physical

parameters go without.

Assuming2 θν13 = θe13 = 0, the PMNS matrix is given by the product of five unitary

matrices

U = U e†12U
e†
23R

ν
23R

ν
12P

ν , (2.1)

the three right-most matrices describe the neutrino sector, and are parameterised by

Rν23 =

1 0 0

0 cν23 sν23
0 −sν23 cν23

 and Rν12 =

 cν12 sν12 0

−sν12 cν12 0

0 0 1

 ,

and P ν is a diagonal matrix of uni-modular complex numbers. The two unitary matrices

on the left of eq. (2.1) characterise the charged-lepton corrections, and will be allowed to

include extra complex phases,

U e23 =

 1 0 0

0 ce23 se23e
−iδe23

0 −se23eiδ
e
23 ce23

 ,

U e12 =

 ce12 se12e
−iδe12 0

−se12eiδ
e
12 ce12 0

0 0 1

 .

With these definitions, it is simple enough to compute the explicit form of the PMNS

matrix. However, our derivation focuses only on the first two elements of the bottom row

2It is possible to derive sum rules with θν13 6= 0. We comment on one example in section 4.
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of the physical PMNS matrix, which are found to be

Uτ1 = sν12(s
ν
23c

e
23 − cν23se23eiδ

e
23),

Uτ2 = −cν12(sν23ce23 − cν23se23eiδ
e
23).

(2.2)

By comparing eq. (2.2) to the PDG parameterisation of U [49], we find the relations between

the physical parameters and our internal parameters,

|Uτ1| = |s23s12 − s13c23c12eiδ| = |sν12(sν23ce23 − cν23se23eiδ
e
23)| ,

|Uτ2| = |s23c12 + s13c23s12e
iδ| = |cν12(sν23ce23 − cν23se23eiδ

e
23)| .

As the ratio of these two equations is independent of the values of the parameters in U e23
and U e12, we are left with a correlation between observable parameters and the value of the

neutrino mixing parameter θν12,

|Uτ1|
|Uτ2|

=
|s23s12 − s13c23c12eiδ|
|s23c12 + s13c23s12eiδ|

= tν12. (2.3)

This correlation will be referred to as the solar mixing sum rule. It can be viewed as a

predictive statement about the physical CPV phase: squaring both sides of eq. (2.3) and

solving for cos δ leads us to the expression in eq. (1.6), which we repeat below,

cos δ =
t23s

2
12 + s213c

2
12/t23 − sν212(t23 + s213/t23)

sin 2θ12s13
. (2.4)

An equivalent correlation has been derived previously using a lengthier argument in

refs. [23] and [24]. Understanding its application to specific models, its compatibility with

global data and its potential use as a signature of new physics will be the focus of the rest

of this article.

The correlation in eq. (1.6) is in fact the full non-linear version of a more familiar first-

order relation. We collect a number of phenomenologically interesting approximations in

appendix A. If we expand eq. (1.6) in a small parameter ε, assumed to control the deviation

from a leading-order neutrino mixing pattern with maximal atmospheric mixing,

θ13 ∼ |θ12 − θν12| ∼
∣∣∣θ23 − π

4

∣∣∣ ∼ ε, (2.5)

we find the well-known first-order relation [8, 20, 21],

θ12 = θν12 + θ13 cos δ +O(ε2). (2.6)

The validity of this approximation is dependent upon the severity of the assumptions in

eq. (2.5). This can only be assessed on a model dependent basis; however, in figure 1 we

show the size of the error ∆(cos δ) ≡ cos δlinear − cos δ which is introduced by the linear

approximation for the patterns which we will derive in subsections 2.2 and 2.3. Apart

from the patterns denoted GR3 and BM (which we will argue in the following section are

strongly disfavoured by current data), the error approximately satisfies |∆(cos δ)| . 0.1.
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Figure 1. The difference between the linearised expression cos δlinear ≡ (θ12 − θν12)/θ13 and the

solar sum rule in eq. (1.6). These plots assume θ12 = 33.5◦ and take θ23 to be the best-fit value for

normal (inverted) ordering in the left (right) panel. The best-fit values are those of ref. [3].

As deviations of this size are expected to be close to the attainable precision at a next-

generation oscillation facility, all subsequent numerical work will use the full correlations

in eq. (1.6).3

The solar sum rule derived above is valid for any neutrino mixing pattern with θν13 = 0

and for any charged-lepton corrections with θe13 = 0. Our focus in this work is on the

predictions of models which apply charged-lepton corrections to neutrino mixing matrices

which are completely fixed by symmetry. In recent work, significant progress has been

made in the categorisation of fully-specified mixing patterns subject to some weak model

building assumptions. In subsection 2.2, we shall identify a set of leading-order predictions

with θν13 = 0 from arguments of symmetry by following two categorisation schemes from

the literature [12, 52]. As we shall explain, strictly speaking, one of these frameworks [12]

is a subcase of the other [52]; however, its systematic exploration has not been presented

before, and we shall show how this more restrictive scenario still finds all of the cases

of the more comprehensive analysis, while shedding light on the group structure of the

viable solutions.

In subsection 2.3, we shall also comment on some mixing patterns frequently invoked

in the literature which are not found in the systematic derivations. We will discuss these

patterns in the context of an infinite family of neutrino mixing matrices which are partially

constrained by symmetry. For the lack of a symmetric origin, we believe these patterns to

be more poorly motivated; however, we shall include them in our numerical analysis for

completeness.

3It has been argued [24, 48] that the ratio of leading-order to exact predictions indicate that the
linearized sum rules are not accurate enough for phenomenological use. We believe that for many purposes

the linearized expressions would be adequate: constant errors of ∆(cos δ) = 0.1 induce an error of less than

15◦ (10◦) for 76% (60%) of the range of δ. Therefore the linearized expressions well describe the correlation

to the precision of the first phases of the next-generation of superbeams, which expect a sensitivity of

15–30◦ [50, 51]; however, the full expressions will be necessary in the subsequent phases, where precisions

are expected to be 8–18◦ [50, 51].
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2.2 Fully specified mixing patterns

An impressively comprehensive account of fully specified leading-order mixing matrices has

been presented in ref. [52]. In this work, it was assumed that neutrinos are Majorana par-

ticles, that a finite flavour group G is broken into the Klein group Gν = Z2×Z2 in the neu-

trino sector, and Ge = Zn, with n ∈ N, in the charged-lepton sector. Such an arrangement

completely specifies the leading-order mixing matrix. Under these general assumptions, it

was shown that the only possible mixing matrices are given by 17 sporadic patterns and

one infinite family of patterns (up to row and column permutations). In ref. [52], all 17

sporadic patterns are shown to be excluded by the current global neutrino oscillation data

at 3σ, whilst the infinite family is allowed for some values of its parameters. In the cur-

rent work, we are expecting corrections to the leading-order mixing angles of a magnitude

θ13, and therefore we have rather more lenient criteria for viability. We define the eligible

leading-order mixing patterns as those which meet the criteria θν13 ≤ 20◦, 20◦ ≤ θν12 ≤ 45◦

and 30◦ ≤ θν23 ≤ 60◦. Scanning over the patterns found in ref. [52] (including row and

column permutations), we find that the 17 sporadic patterns allow 13 viable matrices. The

infinite family meets our criteria for about 20% of its allowed parameter space. However,

our present aim is to discuss situations where a leading-order pattern with θν13 = 0 can

be brought in-line with observation through corrections from the charged-lepton sector. If

we therefore restrict our attention to patterns with θν13 = 0, we find only 4 patterns which

pass our lax phenomenological conditions on the remaining two neutrino mixing angles θν12
and θν23. It is interesting to note that all 4 patterns differ from one another only in their

value for the solar mixing angle θν12 with the atmospheric mixing angle fixed at θν23 = 45◦.

The first eligible pattern is known as bimaximal (BM) mixing. It has a maximal solar

mixing angle [25–27], and is given by a matrix of the form

UνBM =


1√
2

1√
2

0

−1
2

1
2

1√
2

1
2 −

1
2

1√
2

 . (2.7)

The second pattern is the tribimaximal (TBM) mixing matrix. This has been associated

with models based on the flavour symmetries A4 and S4. It predicts a solar mixing angle

given by sν12 = 1/
√

3, i.e. θν12 ≈ 35.3◦. The mixing matrix is given explicitly by

UνTBM =


√

2
3

1√
3

0

− 1√
6

1√
3

1√
2

1√
6
− 1√

3
1√
2

 . (2.8)

The remaining two patterns both associate the golden ratio ϕ = 1+
√
5

2 with the solar

mixing angle, although in different ways. The first is the original golden ratio mixing

pattern (GR1) [28–30], related to the flavour symmetry A5. It predicts tν12 = 1/ϕ, i.e.
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θν12 ≈ 31.7◦, resulting in the mixing matrix

UνGR1 =


ϕ√
2+ϕ

1√
2+ϕ

0

− 1√
4+2ϕ

ϕ√
4+2ϕ

1√
2

1√
4+2ϕ

− ϕ√
4+2ϕ

1√
2

 . (2.9)

The other golden ratio pattern found by our survey is less well known but has been found

previously in refs. [31] and [32]. It is associated with the group A5 breaking into a Z3

symmetry in the charged-lepton sector and the Klein symmetry in the neutrino sector.

This pattern (GR3) predicts cν12 = ϕ/
√

3, i.e. θν12 ≈ 20.9◦, leading to a mixing matrix of

the form

UνGR3 =


ϕ√
3

ϕg√
3

0

− ϕg√
6

ϕ√
6

1√
2

ϕg√
6
− ϕ√

6
1√
2

 , (2.10)

where ϕg is the Galois (Q-)conjugate of ϕ given by ϕg = 1−
√
5

2 . To make the connection

with the nomenclature of Fonseca and Grimus [52]: BM is known as C1, TBM is the only

member of the infinite family C2 with θν13 = 0, GR1 is C11 and GR3 is known as C12.
We will now show that these four patterns can also be derived under the framework

of refs. [12, 13] in which the assumption of θν13 = 0 will be shown to be unnecessary. This

scenario can be seen as a subcase of the previous systematic analysis, also working under

the assumption of Majorana neutrinos and a finite group G broken into distinct residual

symmetries amongst the charged-lepton sector and the neutrino sector. However, a further

assumption is made on the form of the finite groups: they are assumed to be overgroups

of the von Dyck groups [12, 13],

D(2,m, p) = 〈S, T,W |S2 = Tm = W p = STW = 1〉.

Finiteness ofD(2,m, p) restricts the values of {m, p} to either {3, 3}, {3, 4}, {3, 5} or {2, N},
where the first three choices are associated with the groups A4, S4 and A5, respectively,

while the fourth is related to the dihedral groups D2N . The fully specified mixing matrices

were not systematically derived in ref. [13], and we will now sketch this calculation, deferring

details to appendix B. It is particularly interesting to note that the further constraint on the

form of the group in this framework makes the restriction θν13 = 0 unnecessary: the only

patterns meeting our phenomenological selection criteria are the four previous patterns

with θν13 = 0.

Taking the generators of the symmetry of the charged lepton mass terms to be T and

those of the Klein group acting on the neutrino mass terms as S1 and S2, constraints can

be derived on the leading-order mixing matrix directly. Disregarding cases related to the

dihedral symmetries,4 we find that the patterns are specified by a choice of two parameters

η1 and η2 taken from the set{
1

3
,
2

3
,
1

2
,
1 + ϕ

3
,
2− ϕ

3
,
2 + ϕ

5
,
3− ϕ

5

}
, (2.11)

4We comment on the option where {m, p} = {2, N} at the end of appendix B.
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subject to the unitarity constraint η1 + η2 ≤ 1. The squared moduli of the elements of the

mixing matrix are then given by the following pattern (up to row and column permutations)

|Uναi|2 =

 η1 η2 1− η1 − η2
1−η1
2

1−η2
2

η1+η2
2

1−η1
2

1−η2
2

η1+η2
2

 . (2.12)

Of all the possible combinations of η1 and η2, only four leading-order neutrino mixing

patterns are eligible by our criteria on θνij stated at the beginning of this subsection. They

are exactly those found in our discussion above: bimaximal mixing, tribimaximal mixing,

and two patterns associated with the golden ratio (GR1 and GR3).

2.3 Common partially constrained patterns

There are a few other common mixing patterns with θν13 = 0. However, these patterns

are not found in the systematic surveys of the previous subsection. We will focus on two

patterns of this type mentioned in the literature: one associated with the golden ratio

(GR2) [33, 34] and one called hexagonal mixing (HEX) [35]. Both patterns have maximal

atmospheric mixing θν23 = π/4 and vanishing reactor angle θν13 = 0, but they differ in their

predictions for θν12,

θν12 =
π

5
(GR2) and θν12 =

π

6
(HEX).

These predictions can be understood as part of a family of patterns which predict θν12 = πd
N

with d,N ∈ N and 0 < d < N . These are commonly connected to the dihedral groups

D2N , and indeed it is possible to derive partial constraints consistent with these patterns

by breaking D2N to different preserved subgroups in the charged-lepton sector and the

neutrino sector [53]. Such a construction can generate the prediction

cos θν12 cos θν13 = cos

(
πd

N

)
,

which leads to the patterns of interest if we fix θν13 = 0 by hand. Furthermore, the as-

sumption of a dihedral group as the fundamental flavour symmetry does not permit the

unification of the three families into a single irreducible representation of the symmetry

group.5 For these reasons we consider these mixing patterns to be on less firm footing than

the models arising from the construction presented previously. Despite these reservations,

we will include the GR2 and HEX neutrino mixing patterns in our later analysis. However,

we would like to point out that any rational multiple of π can be found for θν12 using a

suitably large dihedral group in this fashion; GR2 and HEX are only distinguished in that

they are the best-fitting predictions of the form θν12 = π
N .

3 Numerical results

3.1 Allowed parameter spaces for solar sum rules

The parameter correlations discussed above can be seen as predictions for the remaining

unknown parameter δ. We will require cos δ to lie in the physical region, for which −1 ≤
5All dihedral groups have irreducible representations of dimensions 1 and 2 only.
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cos δ ≤ 1. This may not occur for all models considered or in all the allowed parameter

space. In this section, we will consider the predictions of the solar sum rules over the

current 3σ interval of the mixing angles. We will use the values from v2 of the NuFit

collaboration [3]. This parameter space is denoted by I3σ,

I3σ = I12 × I13 × I23
= [31.29◦, 35.91◦]× [7.87◦, 9.11◦]× [38.3◦, 53.3◦].

Models which apply θe12 and θe23 charged-lepton corrections to a neutrino mixing matrix

defined by θν12 and θν23 result in a single constraint given by eq. (1.6). For a given choice

of θν12 this formula may only predict physical values for cos δ in a subregion of the allowed

interval I3σ. In figure 2 we show the regions in which the sum rule makes a consistent

prediction for cos δ (coloured bands) for six different models. In all panels, θ13 is given

by the abscissa, θ12 is denoted by the different coloured bands whose width is generated

by varying θ23 over its range in I3σ. For bimaximal mixing (BM) in the neutrino sector

(θν12 = 45◦) the only regions of parameter space for which we find a consistent prediction

require a large value of θ13, a large negative value of cos δ and a large value of θ12. This is

easily understood from the linearised relation shown in eq. (2.6), where the leading-order

prediction of θν12 = 45◦ must receive large negative corrections to be brought in agreement

with the global data. For tribimaximal mixing (TBM) in the neutrino sector (θν12 = 35.3◦),

smaller values of θ13 are allowed, and all points in I3σ lead to consistent predictions. The

predicted values of cos δ show only a slight dependence on the true value of θ13 and θ23,

lying between −0.7 . cos δ . 0.2. We consider two models referred to as golden ratio

mixing: GR1 and GR3. For GR1, all values of θ12, θ13 and θ23 in I3σ allow for a consistent

definition of cos δ, whereas for GR3 we require a small value of θ12, a large value of θ13 and

large positive cos δ. In figure 2, we see that GR1 predicts mostly positive values of cos δ

with 0 . cos δ . 0.7. The small region of parameter space in which GR3 is consistent with

the data is analogous to the allowed regions of the BM pattern; however, the predictions

of cos δ for these two models are distinct. The bottom row in figure 2 shows the possible

predictions for the two patterns related to dihedral symmetries: GR2 and HEX, which

are associated with D10 and D12, respectively. These models make similar predictions to

TBM and GR1, and they give physical values of cos δ over the whole range I3σ. Our

results, shown in figure 2, are in agreement with an independent survey of charged-lepton

corrections presented for the cases of TBM, GR1, GR2 and HEX in ref. [48].

So far we have considered all points in I3σ on equal footing. However, the corners of

this parameter space are arguably less likely: they require large deviations from the current

best-fits in multiple parameters. To fully account for this effect we would need a measure

of the degree of correlation amongst the parameters inferred from global fits. In figure 3,

in the absence of this information, we show the posterior probability density functions for

cos δ assuming that the likelihood functions for the squared sines of the mixing angles are

given by independent Gaussian distributions centred on the current best-fit values and with

the widths of the global minima. We take a flat prior in sin2 θij , although we have checked

that flat priors in θij do not significantly change the result. This helps to see the most
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Figure 2. The predictions for cos δ generated by the solar sum rules for BM and TBM (top row),

GR1 and GR3 (middle row), GR2 and HEX (bottom row). In each plot, the true value of θ13 is

given by the abscissa, the value of θ12 is denoted by the colour of the band, and the width of the

band is generated by varying θ23 over its 3σ allowed interval.

reasonable predictions produced by each sum rule if the parameters take values close to

their current best-fits.

In summary, we find that of the four patterns well motivated by symmetry (BM, TBM,

GR1 and GR3) only TBM and GR1 are consistent in a reasonable part of the parameter

space. The predictions associated with BM and GR3 are only consistent in the far corners

of the 3σ intervals, where they predict maximal values of | cos δ|. For the rest of this work,

we shall assume that the solar sum rules derived from BM and GR3 are excluded.
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Figure 3. Posterior probability density functions for cos δ for each of the solar sum rules considered

in section 3.1. The patterned regions are unphysical, which shows that the BM and GR3 sum rules

could only be consistent with the known data if there is a significant deviation from the current

best-fit values.

3.2 Simulation details

We simulate the combination of a medium-baseline reactor (MR) experiment and a wide-

band superbeam (WBB). This combination of experiments is particularly interesting for

the investigation of solar sum rules as MR is expected to improve the current knowledge

on θ12, whilst the superbeam should allow δ to be constrained at a significant level for the

first time. There are two proposals for a MR with comparable designs, JUNO and RENO-

50, and also two candidates for a next generation WBB, LBNE and LBNO. Both MRs

and WBBs have similar performance targets; however, to keep our simulations concrete

and relevant to experimental work, we will base our simulations on the JUNO and LBNO

designs, and in this subsection we will discuss the details of our simulations of these facilties.

We would like to stress that this is a purely illustrative choice, and any combination of a

MR and WBB can be expected to perform similarly.

3.2.1 JUNO

The Jiangmen Underground Neutrino Observatory (JUNO) is a proposed reactor neutrino

experiment [40], whose primary goal is to measure the neutrino mass hierarchy by observing

the subtle shifts that it induces on the fast subdominant oscillations in the νe disappearance

probability [36–39]. Alongside the study of the mass hierarchy, this facility has the potential

to significantly improve our measurements of θ12, ∆m2
21 and ∆m2

31 to a precision of less

than 1% [40].

The JUNO experiment derives its flux from twelve nearby reactors, ten of these are

at a distance of around 50 km from the detector with powers of either 2.9 or 4.6 GW,

the remaining reactors are much further away at 215 km and 295 km both with powers
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Figure 4. Example spectra from our simulations of the medium-baseline reactor experiment (left)

and a wide-band superbeam (right).

of 17.4 GW [39]. JUNO’s detector is assumed to be a 20 kton liquid scintillator detector.

To measure the fast oscillations which generate the mass hierarchy sensitivity, JUNO must

have very strong energy resolution capabilities. A linear energy dependent resolution of

∆E/E = 0.03/
√
E/MeV is assumed in our simulations following the design target [40].

Non-linearities in the energy resolution are known to be a possible source of limitations for

such an experiment [37, 54]; however, as these effects are not as relevant for the precise

determination of θ12 we assume that these effects can be controlled to a negligible level by

in situ measurements, and omit them from our simulations. Our spectrum is normalised

to produce 105 total events after 6 years.

In ref. [55] it has been pointed out that the cosmogenic muon background for the

next generation of large volume reactor neutrino oscillation experiments with relatively

small overburdens is sufficiently large as to render the KamLAND muon cuts inapplicable

whilst preserving a reasonable active period. This will be a particular problem for the

delicate measurement of the neutrino mass hierarchy, but it will certainly influence the

final sensitivity to θ12 as well. As it stands, it is unclear how the proposed experiments

will circumvent this background. However, for the successful measurement of the mass

hierarchy it must be addressed by some means, and in the current work, we assume that

this background has been brought under control by a modification of the design or analysis.

Even though this means that our work overestimates the sensitivity to θ12, it should not

significantly alter our analysis of solar sum rules, which for the most part, only require a

precision of θ12 at the percent level to be effective.

An illustrative event spectrum is shown in figure 4 for JUNO in both mass hierar-

chies (with and without oscillations). Our simulation agrees with the predicted perfor-

mance in ref. [40]; in particular, our simulation provides an independent precision on θ12
of around 0.6%.

3.2.2 Wide-band superbeam

A superbeam is the extrapolation of conventional neutrino beam production methods to

more intense beams and larger detectors. The source neutrino beam is produced at an
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accelerator, which collides protons with a fixed target generating a spray of mesons, pre-

dominately π±. Magnetic focusing selects mesons of a given charge and the decay of these

particles produces a beam of neutrinos. The flavour profile is mostly νµ (for focused π+)

and νµ (for focused π−); although, there is a small contamination from subdominant meson

decay modes which leads to an intrinsic background of νe and νe at the sub-percent level.

Our model of the wide-band superbeam is based upon the Long Baseline Neutrino

Experiment (LBNE) [43] and Long Baseline Neutrino Oscillations (LBNO) [44] proposals

for on-axis superbeams with baselines of around 1000–2000 km. The on-axis orientation

ensures that the beam has a wide spectrum and allows the oscillation probability to be

tested over a range of values of L/E, mitigating degeneracies and improving precision.

Both of these experiments aim to determine the mass hierarchy and the CPV phase δ

through the precise measurement of the appearance channel probabilities P (νµ → νe) and

P (νµ → νe). LBNE and LBNO have a comparable physics reach, which is ultimately

dependent on the precise programme of upgrades available, and we base our simulations

on LBNO as described in ref. [44]. The LBNO design features as its first phase a 700 kW

beam, a baseline distance of 2300 km between CERN and the Pyhäsalmi mine in Finland,

and a 20 kton detector based on liquid argon time-projection chamber technology [44, 56].

Our simulation of this facility uses the fluxes provided by ref. [57], and propagates the

neutrinos through a constant density background of 3.2 g/cm3. We consider both the ap-

pearance νµ → νe (νµ → νe) and muon disappearance channels νµ → νµ (νµ → νµ). The

background to the appearance channel is given by the intrinsic νe component of the beam,

misidentified νµ events at a rate of 1%, 2% of neutral current events and events arising

from τ -contamination: the production of τ± leptons in the detector which quickly decay to

e±. These τ events have been implemented via a custom migration matrix which maps the

spectrum of incoming νµ (νµ) onto the resultant e− (e+) post-decay distribution. We have

normalised our number of events to match the tables simulated in ref. [44], which assumes

a total of 1021 protons on target corresponding roughly to 10 years of run time, but we

consider masses of 35 kton and 70 kton to account for a reasonable range of possible detec-

tors, according to the LBNE and LBNO phased designs and upgrade programmes [43, 44].

An illustrative spectrum decomposed into its background components can be seen in the

right panel of figure 4. We see a close agreement of form for most of our backgrounds when

our spectrum is compared with the spectra in ref. [44]. The only notable deviation is in

the shape of our neutral current background, but this small difference is not expected to

effect the general conclusions of the current work.

3.3 Simulation results

Our simulation combines the expected data from a long-baseline wide-band superbeam

(WBB) experiment, modelled after LBNO although it also provides a good estimate of the

performance of LBNE, and a medium-baseline reactor (MR) experiment with a baseline

around 60 km, modelled on JUNO. As discussed previously, these facilities are expected

to provide complementary constraints on the parameters relevant for the solar sum rule.

This synergy can be seen in figure 5, where we show the independent constraints on δ and
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Figure 5. The independent and combined constraints on the parameters δ and θ12 for an illustrative

point in parameter space for the JUNO and LBNO experiments. In each experimental arrangement,

the three lines correspond to 1, 3 and 5σ significance.

θ12 provided by the LBNO and JUNO experiments and their combination. As expected,

the precision is dominated by JUNO for θ12 and by LBNO for δ.

To determine the allowed regions for a given sum rule we generate the expected event

rates for each set of true parameters of interest. We then compute the set of hypothetical

parameters which maximise the likelihood function under two different hypotheses: first,

assuming no constraints on the parameter space, which finds the best-fitting point, and

secondly, whilst imposing the constraint of the sum rule on our hypothesised parameters.

When the constrained best-fit has a likelihood significantly below the unconstrained best-

fit, we conclude that the sum rule can be excluded. During the maximisation process,

we include priors on the oscillation parameters to account for the external constraints of

the global data. If not mentioned explicitly, we assume the following values for the true

parameters

θ12 = 33.48◦, θ13 = 8.50◦ and θ23 = 42.3◦,

and the mass splittings

∆m2
21 = 7.50× 10−5 eV2 and ∆m2

31 = 2.46× 10−3 eV2.

For the prior constraints, we assume a 2% (2.4%) uncertainty on ∆m2
31 (∆m2

21) and uncer-

tainties of 2.3%, 2.4% and 6% on θ12, θ13 and θ23, respectively. These are chosen to be in

agreement with recent best-fits [3]. We assume normal hierarchy in all of our simulations,

although it has been checked that the results are not particularly sensitive to this choice.

Our simulations are implemented using the GLoBES package [58, 59].

In figure 6, we show the results of our simulations of MR and WBB for the measurement

of the solar sum rules defined by eq. (1.6). The four models shown are the tribimaximal

(TBM) model with θν12 = arcsin 1√
3
, the golden ratio model with θν12 = arctan 1

ϕ , and the

two dihedral models, GR2 and HEX, with θν12 = π
5 and θν12 = π

6 , respectively. In the left

panel on the top row, we see the regions of true parameter space for which the TBM model

cannot be excluded at 2 and 3σ significance. As we saw in figure 2, all four of the models

under consideration here make consistent predictions for all values of θ12. The plots predict
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a similar fraction of true parameter space in which these models can be excluded: at 2σ the

models can be excluded in around 65% of the parameter space, while at 3σ this drops to

around 26%. These plots show only a mild dependence on the true value of θ12. Comparing

the panels on the top row, which show the two models well motivated by symmetry, we see

that the smaller value of θν12 in the GR1 model compared to the TBM prediction generates

a smaller prediction for |δ|. Although, there is significant overlap between the allowed

regions of the two models, which means it is unlikely that they could be distinguished with

the 35 kton detector. The bottom row shows the two dihedral predictions (GR2 on the left,

and HEX on the right). For HEX, the smaller value of |δ| leads to the 3σ regions merging

at δ ≈ 0. In practice, this means that for larger values of θ12, it is easier to exclude the

model: for θ12 = 35.3◦, we see the fraction of parameter space for which the model can be

excluded increase to around 38% at 3σ.

Although distinguishing between these models will be challenging, each can be excluded

for a reasonable region of the parameter space through the combination of data from a MR

and WBB experiment. In general, we can also point out that an observation of an extreme

value of cos δ would allow all of these models to be excluded: a true value of | cos δ| = 1

or cos δ = 0 would disfavour all models at 2σ and for most of the parameter space exclude

them at 3σ.

Upgrading the WBB experiment would allow the discovery potential to be significantly

extended. In figure 7, we show the effect of increasing the detector mass to 70 kton. This

doubling of statistics allows the precision on δ to increase, which leads to larger exclusion

areas. We show the results for TBM and GR1, where the exclusion regions are now around

71% of the true parameter space at 2σ and 48% at 3σ. This corresponds to an 80% increase

in the 3σ exclusion region. Clearly, to fully understand the potential for this measurement,

the foreseen programme of upgrades will play an important role.

4 Beyond θν
13 = 0

Neutrino mixing patterns in which θν13 6= 0 have also been predicted in the literature, and

can likewise give rise to solar sum rules. However, eq. (1.6) does not apply in such scenarios,

and we must work on a case by case basis. Examples of patterns of this type can be found

in the fully-specified patterns in ref. [52]. Of these patterns, we identify 10 unique mixing

matrices from the sporadic patterns which meet our criteria on the mixing angles and have

θν13 6= 0, along with an infinite subset of the family C2.
As an example, we shall derive another sum rule from one member of C2 characterised

by a purely imaginary parameter σ = i, cf. eq. (150) of ref. [52]. This pattern had been

previously studied in a grand-unified model of flavour based on the group ∆(96)×SU(5) [60],

where it was known as the bi-trimaximal mixing (BTM) pattern,

UνBTM =

 a+
1√
3
a−

− 1√
3

1√
3

1√
3

a− − 1√
3
a+

 , (4.1)
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Figure 6. The allowed regions of true parameter space in the θ12 − δ plane for TBM (left, top

row), GR1 (right, top row), GR2 (left, bottom row) and HEX (right, bottom row) after 6 years of

data taken by a medium-baseline reactor experiment (MR) and 10 years by a wide-band superbeam

with 35 kton detector (WBB35kt).
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(right) after 6 years of data taken by a medium-baseline reactor experiment (MR) and 10 years by

a wide-band superbeam with an upgraded 70 kton detector (WBB70kt).
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with a± = (1± 1√
3
)/2. Multiplication of the charged lepton mixing U e12

† from the left yields

the PMNS matrix (up to Majorana and unphysical phases)

U =

a+c
e
12 + 1√

3
se12e

−iδe12 1√
3
ce12 − 1√

3
se12e

−iδe12 a−c
e
12 − 1√

3
se12e

−iδe12

a+s
e
12e

iδe12 − 1√
3
ce12

1√
3
se12e

iδe12 + 1√
3
ce12 a−s

e
12e

iδe12 + 1√
3
ce12

a− − 1√
3

a+

 . (4.2)

The two free continuous parameters θe12 and δe12 will control the four physical parameters

θ12, θ13, θ23 and δ. Therefore we expect two sum rules. They can be derived easily by

comparing the (square of the) absolute value of the (i, j) entry with the corresponding entry

in the PDG parameterisation of U . From Uτ3 we find the first exact sum rule involving

the atmospheric angle

c13c23 = a+ . (4.3)

Similarly we get from Uτ2

c223s
2
12s

2
13 + s223c

2
12 + 2s23c23s12c12s13 cos δ =

1

3
. (4.4)

Solving eq. (4.3) for θ23 and inserting the result into eq. (4.4) gives rise to the sum rule

involving θ12, θ13 and δ,

cos δ =
c213 − 3a2+s

2
12s

2
13 − 3c212(c

2
13 − a2+)

6a+s12c12s13

√
c213 − a2+

. (4.5)

Satisfying both of these constraints simultaneously is very difficult with the known

global data on the mixing angles: cos δ is only well defined for large values of θ13 and small

values of θ12, but the constraint of eq. (4.3) requires that θ13 and θ23 are at the low-valued

extremes of their allowed parameter space. This tension may be alleviated by introducing

further corrections to these predictions, for example the renormalisation effects.

5 Renormalisation group corrections

In this analysis we have ignored the effects of renormalisation group (RG) corrections to

mixing angles. Although this is generally a good approximation, it is useful to be aware

of the typical magnitudes of such corrections and when they might be important. In this

section, we briefly review such issues. For previous discussion of RG corrections in this

context see e.g. ref. [61] for a discussion in case of Cabibbo-like charged-lepton correction

to BM mixing and charged-lepton corrections to TBM in ref. [62].

In the effective theory the RG correction to θ12, which is generically the largest, is

described by the following renormalisation group equation [63]

θ̇12 ≡
dθ12

d ln(µ/µ0)
= − Cy

2
τ

32π2
sin 2θ12s

2
23

∣∣m1e
iϕ1 +m2e

iϕ2
∣∣2

m2
2 −m2

1

+O(θ13) , (5.1)

with C = 1 in the Minimal Supersymmetric Standard Model (MSSM) and C = −3/2 in the

Standard Model (SM). In the MSSM large values of tanβ = vu/vd lead to an enhancement
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of the RG running via the Yukawa coupling y2τ = m2
τ (1 + tan2 β)/v2, where v = 246 GeV.

There is no such enhancement in the SM. In order to estimate the size of the RG corrections,

we use the exact analytic RG equation for θ12 fixing all parameters at their respective best

fit values. We do not include the running of the other parameters. The running of the

solar mixing angle from the electroweak scale to the GUT scale ΛGUT = 2 · 1016 GeV is

given to leading order by ∆θ12 = θ12(ΛGUT)− θ12(mZ) ' θ̇12(mZ) ln
(
2 · 1014

)
. It depends

on the absolute neutrino mass scale.

In the SM the corrections are generally small. Using the exact6 one-loop formula for

θ12 given in ref. [63], we obtain a conservative estimate by taking a quasi-degenerate mass

spectrum with vanishing phases: ∆θ12 ≈ 0.17◦ (0.04◦) for m1 = 0.1 eV (m1 =
√

∆m2
32).

Experimentally, the expected sensitivity for determining θ12 is about 0.6% [40], i.e. ∆θ12 ≈
0.2◦. In the context of the SM it is therefore justified to neglect RG effects on the solar

sum rules discussed in this paper.

On the other hand, RG corrections are typically bigger in the MSSM. We have consid-

ered 4 different cases: normal and inverted mass ordering and a Majorana phase difference

∆ϕ = ϕ2 − ϕ1 of 0 and π. With ∆ϕ = 0, RG effects become more and more relevant

for increasing absolute neutrino mass scales and increasing values of tanβ. For an in-

verted mass ordering, the lower bound on m1 entails relevant RG corrections for tanβ & 2.

In the case of a normal mass ordering, RG corrections have to be taken into account if

tanβ & 45, where this bound is decreasing with increasing m1, e.g. with m1 ≈
√

∆m2
21

one has tanβ & 10. A non-vanishing Majorana phase difference generically suppresses RG

running. For ∆ϕ = π, the leading term in eq. (5.1) is proportional to ∆m2
21/(m1 + m2)

2,

such that it decreases with increasing absolute neutrino mass scale. RG corrections to the

solar sum rules can be neglected for tanβ . 35 provided the neutrino mass spectrum is

not quasi-degenerate.

6 Conclusion

We have presented a succinct derivation of solar lepton mixing sum rules, arising from

simple patterns of neutrino mixing with θν13 = 0, enforced by discrete family symmetry and

corrected by a rather generic charged lepton mixing matrix, assuming only that θe13 = 0.

From our derivation we have expressed the result as the ratio of the absolute magnitude

of two PMNS matrix elements, given in terms of θν12, namely |Uτ1|/|Uτ2| = tν12. When

expanded in terms of the three PMNS mixing angles and the CPV oscillation phase δ,

the resulting solar sum rule may be cast in terms of a prediction for cos δ which depends

only on θν12.

We have considered in detail the resulting solar mixing sum rules, arising from four

particularly well-motivated cases of neutrino mixing, which can be derived from discrete

family symmetries, namely: BM mixing where sν12 = 1/
√

2, TBM mixing where sν12 = 1/
√

3,

and two patterns based on versions of golden ratio mixing including GR1 with tν12 = 1/ϕ

and GR3 with cν12 = ϕ/
√

3, where ϕ = (1 +
√

5)/2 is the golden ratio. We have also fully

6It turns out that the term proportional to θ13 becomes relevant in eq. (5.1) and the exact expression

of θ̇12 has to be used.
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discussed two leading-order patterns which have been invoked in the literature, but which

cannot be enforced by any simple discrete family symmetry, called GR2 with θν12 = π/5

and HEX mixing with θν12 = π/6.

It turns out that two of the above six cases, namely BM and GR3, are almost excluded

by current data, so in the phenomenological study, we have focused on the remaining four

viable cases, namely TBM, GR1, GR2 and HEX, of which only the first two (TBM and

GR1) are well founded by symmetry arguments. The predictions for cos δ for all these

cases are summarised in figure 3. For the four viable cases, we performed a simulation of a

next-generation superbeam experiment, based on LBNO, and a future reactor experiment,

based on JUNO, to see how well the sum rules can be tested. For example, in figure 6 we

show the allowed regions of true parameter space in the θ12 − δ plane, following a 6-year

medium-baseline reactor experiment and a decade of running with a WBB and a 35 kton

detector.

We have seen that the ability to constrain solar sum rules relies crucially on the comple-

mentary sensitivities of both reactor and superbeam experiments, and that, acting together,

these facilities will be capable of significantly restricting the allowed parameter space of the

models associated with solar mixing sum rules. It is possible that such experiments could

exclude all of the models considered in this paper, which would be the case if, for example

δ ≈ 0. If this occurs, the theoretical approach of explaining lepton mixing as a result of

charged-lepton corrections to simple symmetry-driven patterns of neutrino mixing would

become strongly disfavoured.
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A Simple approximation to the mixing sum rule

In this appendix we show that the exact sum rule in eq. (1.6) reduces to the well-known

leading-order sum rule to an accuracy of a few percent. If we drop terms proportional to

s213 in eq. (1.6), we obtain the approximate sum rule,

cos δ ≈ t23(s
2
12 − sν212)

sin 2θ12s13
.

This sum rule can be written to leading order in θ13 as,

s212 − sν212
2s12c12

≈ θ13
t23

cos δ. (A.1)
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If we write θ12 = θν12 + ε12, then to leading order in ε12,

s212 − sν212
2s12c12

≈ ε12.

Hence eq. (A.1) becomes, to leading order in ε12 and θ13,

θ12 − θν12 ≈
θ13
t23

cos δ. (A.2)

If we write θ23 = π/4 + ε23, then to leading order in ε23, ε12 and θ13 we find,

θ12 − θν12 ≈ θ13 cos δ, (A.3)

which is the usual well-known leading-order solar sum rule [8, 20, 21]. The corrections

to this linearised sum rule are of order θ213, ε
2
12 and θ13ε23. For example, the second

order correction from the reactor angle is θ213 ∼ (0.15)2 ∼ 0.02 ∼ 2%. The formulae

preceding eq. (A.3) may be used for a more accurate approximate description of the sum

rule. For example, eq. (A.2) could be used to better account for the atmospheric mixing

angle deviating from maximal.

B Neutrino mixing patterns from Z2 × Z2

The possibility that the full Z2 × Z2 symmetry of the neutrino mass term is a subgroup

of the flavour symmetry was considered from a bottom-up perspective in ref. [13]. It is a

simple extension of the authors’ previous constraints (see ref. [12] for details): each neutrino

generator Si fixes one column of the mixing matrix using the formulae,

cos2
(
πd

p

)
= sin2

(
πk

m

)
|Uναi|

2 ,

0 = sin

(
2πk

m

)
(
∣∣Uνβi∣∣2 − ∣∣Uνγi∣∣2), (B.1)

where k,m, d, p ∈ N such that 0 < k < m and 0 < d < p with the requirement that k

and m (d and p) are coprime, and {α, β, γ} = {e, µ, τ}. Neglecting for the time being the

case m = 2 or p = 2, the constraint of unitarity implies that fixing two columns of the

mixing matrix using these formulae fully specifies the pattern. Each column is given by a

permutation of {√η,
√

1−η
2 ,
√

1−η
2 }, where the η parameter for the first and second column

are given, respectively, by

η1 =
cos2

(
πd1
p1

)
sin2

(
πk1
m1

) and η2 =
cos2

(
πd2
p2

)
sin2

(
πk2
m2

) .
We can generate the consistent mixing patterns by choosing those ki,mi, pi and di pa-

rameters which generate finite groups. Considering only patterns related to von Dyck

groups with irreducible triplets, i.e. A4, S4 and A5, the result is the set of numbers listed

in eq. (2.11). As we are assuming a single Zm residual symmetry in the charged-lepton

sector, we must also take a common value of m, i.e. m1 = m2.
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Up to row and column permutations, there are two ways of relatively aligning the

elements of the two fixed columns. In one case, we choose the unique element fixed by the

two real constraints to be in the same row,

|Uναi|2 =

 η1 η2 1− η1 − η2
1−η1
2

1−η2
2

η1+η2
2

1−η1
2

1−η2
2

η1+η2
2

 . (B.2)

In the other case, we choose these elements to be misaligned,

|Uναi|2 =

 η1
1−η2
2

1
2 − η1 + η2

2
1−η1
2 η2

1
2 − η2 + η1

2
1−η1
2

1−η2
2

η1+η2
2

 . (B.3)

However, patterns of the form given in eq. (B.3) are not possible if the residual symmetry in

the charged-lepton sector has only a single generator: it is the choice of Tα which specifies

the row α of the η parameter. Under our assumption of a single cyclic charged-lepton

symmetry, Zm, we only need to consider patterns of the form of eq. (B.2) and its row and

column permutations.

Up to now, we have refrained from discussing the case related to dihedral groups where

{m, p} = {2, N}. In fact, such a scenario does not give rise to any new eligible neutrino

patterns. If m or p take the value 2, the symmetry constraints from the generators of this

subgroup in eq. (B.1) do not necessarily fix a column of matrix elements, leaving parts of the

leading-order mixing matrix unspecified. Therefore, we will only consider the choice which

does indeed fix a column completely; it is given by (m, p) = (N, 2) with N > 2 and yields

Uναi = 0 and
∣∣Uνβi∣∣ =

∣∣Uνγi∣∣ .
Then, the only way to fully specify the mixing matrix is to either apply this constraint twice,

or to apply this constraint in conjunction with one related to A4, S4 or A5. By scanning

through the row and column permutations of eq. (B.2), we find that the only viable choices

are (unsurprisingly) when the dihedral constraint is applied once and is used to fix Uνe3 = 0;

however, all patterns of this type reproduce patterns already discussed previously.
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