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1 Introduction

In the last years, tremendous progress has been achieved in understanding the structure of

the S-matrix (amplitudes) of four dimensional gauge theories [1–4]. The most impressive

results have been obtained in the N = 4 SYM theory (for example, see [5] and reference

therein). New computational techniques such as different sets of recursion relations for the

tree level amplitudes and the unitarity based methods for loop amplitudes were used to

obtain deep insights in the structure of the N = 4 SYM S-matrix. It is believed that these

efforts will eventually lead to the complete determination of the N = 4 SYM S-matrix

in the planar limit. Also, probably, some beautiful geometrical ideas and insights will be

encountered along the way [6–11].

There is another class of objects of interest in N = 4 SYM which resembles amplitudes

— the form factors. The form factors are the matrix elements of the form

〈pλ1
1 , . . . , p

λn
n |O|0〉, (1.1)

where O is some gauge invariant operator which acts on the vacuum of the theory and

produces some state 〈pλ1
1 , . . . , p

λn
n | with momenta p1, . . . , pn and helicities λ1, . . . , λn.

1 One

can think about this object as an amplitude of the proses where classical current or field,

coupled via a gauge invariant operator O, produces some quantum state 〈pλ1
1 , . . . , p

λn
n |.

1Note that scattering amplitudes in “all ingoing” notation can schematically be written as

〈pλ1

1 , . . . , pλn

n |0〉.
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It is interesting to study the form factors in N = 4 SYM systematically for several

reasons:

• Symmetries, such as dual conformal symmetry, play an essential role in the structure

of amplitudes in gauge theories. Moreover, it is expected that N = 4 SYM is an inte-

grable system (see [12–15] and references there, also see [16, 17]). Studying the form

factors in integrable systems (for example, see [18] and references therein) usually

can be useful for a better understanding of the origins and properties of symmetries

in this type of theories. One may hope that studying the form factors in N = 4 SYM

may be useful for understanding symmetry properties of the N = 4 SYM S-matrix

and correlation functions.

• The form factors are intermediate objects between fully on-shell quantities such as

amplitudes and fully off-shell quantities such as correlation functions (which are one

of the central objects in AdS/CFT). Since powerful computational methods have

recently appeared for the amplitudes in N = 4 SYM, it would be desirable to have

their analog for the correlation functions [19, 20]. Understanding of the structure

of the form factors and the development of computational methods will be useful

for a better understanding of the structure of the correlation functions of multiple

(n > 2) gauge invariant local operators in N = 4 SYM. The latter may also be

useful in understanding of “triality” relations: amplitudes, Willson loops, correlation

functions and subsequent relations for the amplitudes [21, 22].

• The form factors in N = 4 SYM are excellent objects for developing and testing new

computational methods which can be efficient beyond the planar sector of maximally

supersymmetric gauge theories. Indeed, form factors naturally incorporate non pla-

narity and violate some supersymmetries (at least the form factors of the operators

from the chiral truncation of the N = 4 SYM stress tensor supermultiplet).

The investigation of the form factors inN = 4 SYM was first initiated in [23], almost 20

years ago. Unique investigation of form factors of single field non gauge invariant operators

(off-shell currents) was made in [24], by using the “perturbiner” technique.

After a pause that lasted for nearly a decade the investigation of 1/2-BPS form factors

was initiated in [25, 26]. Different on-shell methods were successfully applied to the form

factors [27–30]. Different multiloop results were obtained in [26, 31, 32] Different types of

regularizations and colour-kinematic duality were considered in [33, 34]. Strong coupling

limit results for the form factors were obtained in [35, 36]. The form factors in theories with

maximal supersymmetry in dimensions different from D = 4 were investigated in [37–39].

The aim of this article is the following: we would like to apply the momentum twistor

representation for the form factors of the N = 4 SYM stress-tensor supermultiplet and

formulate the BCFW recursion relation for tree level form factors in this formulation.

It is known that in the case of the amplitudes written in momentum twistor variables,

interesting geometrical properties and symmetries of the amplitudes are represented most

clearly and naturally [6, 8]. It is interesting to know what the situation would be if we will
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consider partially off-shell object? What on-shell ideas and methods such as [6, 8, 9] could

survive for partially off-shell objects?

This article is organised as follows. In section 2, we briefly discuss the general structure

of the form factors of the operators from the N = 4 SYM stress-tensor supermultiplet in

on-shell harmonic superspace. In section 3, we establish and solve BCFW recursion rela-

tions for tree level form factors in the NMHV sector in the on-shell harmonic superspace.

In section 4, we discuss how to rewrite NMHV form factors in the momentum twistor rep-

resentation, establish BCFW recursion relations for general NkMHV form factors in the

momentum twistor space. In section 5, we represent a sketch of the proof of the equivalence

between BCFW and all-line shift (CSW) recursion relations for the NMHV sector in the mo-

mentum twistor space and use the geometrical representation of the form factors as a special

limit of the volumes of the polytopes to show that the all-line shift (CSW) representation

of the NMHV sector is free from spurious poles. The latter would imply the spurious poles

cancellation in the BCFW representation as well. In the appendix, we give more details

of the harmonic superspace construction, discuss some particular examples of the spurious

poles cancellation and also discuss how relations between IR pole coefficients at one loop

in the NMHV sector can be naturally established in the momentum twistor representation.

2 Form factors of the stress-tensor current supermultiplet in N = 4

SYM

In this section, we are going to introduce essential ideas and notation regarding the general

structure of the form factor of the stress-tensor supermultiplet formulated in the harmonic

superspace.

To describe the stress-tensor supermultiplet in a manifestly supersymmetric and

SU(4)R covariant way it is useful to consider the harmonic superspace parameterized by

the set of coordinates [40, 41]:

N = 4 harmonic superspace = {xαα̇, θ+a
α , θ−a′

α , θ̄+a α̇, θ̄
−
a′ α̇, u}. (2.1)

Here u is the set of
SU(4)

SU(2)× SU(2)′ ×U(1)

harmonic variables, a and a′ are the SU(2) indices, ± corresponds to U(1) charge; θ’s are

Grassmann coordinates, α and α̇ are the SL(2,C) indices. Hereafter we will not write some

indices explicitly in all expressions when it does not lead to misunderstanding.

The stress-tensor supermultiplet will be given by

T = Tr(W++W++) (2.2)

where W++(x, θ+, θ̄+) is the harmonic superfield that contains all component fields of

the N = 4 supermultiplet, which are the φAB scalars (anti-symmetric in the SU(4)R
indices AB), ψA

α , ψ̄
A
α̇ fermions and Fµν is the gauge field strength tensor, all in the adjoint

representation of the SU(Nc) gauge group. The details of harmonic superspace construction

– 3 –
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will be given in the appendix. Note that this superfield is on-shell in the sense that algebra

of supersymetric transformations which should leave W++ invariant, is closed only if the

component fields in W++ obey their equations of motion.

Space of on-shell states of the N = 4 supemultiplet is naturally described in a mani-

festly supersymmetric fashion by means of on-shell momentum superspace. We are going

to use its harmonic version:

N = 4 harmonic on-shell momentum superspace = {λα, λ̃α̇, η
−
a , η

+
a′ , u}. (2.3)

Here λα, λ̃α̇ are the SL(2,C) commuting spinors that parameterize momenta carried by

the on-shell state: pαα̇ = λαλ̃α̇ if p2 = 0. All creation/annihlation operators of on-shell

states, which are two physical polarizations of gluons |g−〉, |g+〉, four fermions |ΓA〉 with

positive and four fermions |Γ̄A〉 with negative helicity, and three complex scalars |φAB〉

(anti-symmetric in the SU(4)R indices AB ) can be combined together into one N = 4

invariant superstate (“superwave-function”) |Ωi〉 = Ωi|0〉 (i numerates momenta carried by

the state):

|Ωi〉 =

(

g+i + (ηΓi) +
1

2!
(ηηφi) +

1

3!
(εηηηΓ̄i) +

1

4!
(εηηηη)g−i

)

|0〉, (2.4)

where (. . .) represents contraction with respect to the SU(2)×SU(2)′×U(1) indices, (ε . . .)

represents contraction with εABCD symbol. It is implemented, one has to express all SU(4)

indices in terms of SU(2)×SU(2)′×U(1) once using the set of harmonic variables u. The n

particle superstate |Ωn〉 is then given by |Ωn〉 =
∏n

i=1Ωi|0〉. Note that on-shell momentum

superspace is chiral. Due to that and subtleties [27, 28] with on-shell realisation of the

stress tensor supermultiplet in terms of the W++ superfield, it is natural to consider the

chiral (self dual) sector of the stress tensor supermultiplet only. This can be done by

putting all θ̄ to 0 by hand in T (this often called “chiral truncation”):

T (x, θ+) = Tr(W++W++)|θ̄=0. (2.5)

All operators from T are constructed of the fields of the self dual part of the N = 4

supermultiplet. Also, it is important to mention that all component fields in T are off-shell.

So we can consider the form factors of chiral truncation (self dual sector) of the N = 4

stress tensor supermultiplet Fn:

Fn({λ, λ̃, η}, x, θ
+) = 〈Ωn|T (x, θ+)|0〉, (2.6)

Here we are considering the colour ordered object Fn. The physical form factor Fphys.
n in

the planar limit2 should be obtained from Fn as:

Fphys.
n ({λ, λ̃, η}, x, θ+) =

∑

σ∈Sn/Zn

Tr(taσ(1) . . . taσ(n))Fn(σ({λ, λ̃, η}), x, θ
+), (2.7)

where the sum runs over all possible none-cyclic permutations σ of the set {λ, λ̃, η} and

the trace involves SU(Nc) t
a generators in the fundamental representation; the factor

(2π)4gn−22n/2 is dropped. The normalization Tr(tatb) = 1/2 is used.

2g → 0 and Nc → ∞ of SU(Nc) gauge group so that λ = g2Nc =fixed.
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Let us now consider the general Grassmann structure of Fn. It is convenient to perform

transformation from θ+ and x to q and the set of axillary variables {λ
′

α, η
′−
a , λ

′′

α, η
′′−
a },

λ
′

η
′− + λ

′′

η
′′− = γ−:

T̂ [. . .] =

∫

d4xαα̇ d−4θ exp(iqx+ θ+γ−)[. . .], (2.8)

Zn({λ, λ̃, η}, {q, γ
−}) = T̂ [Fn]. (2.9)

Using supersymmetry arguments (Zn should be annihilated by an appropriate set of su-

percharges) one can say that in general [27, 28]:

Zn({λ, λ̃, η}, {q, γ
−}) = δ4

( n
∑

i=1

λiαλ̃
i
α̇ − qαα̇

)

δ−4(q−aα + γ−aα)δ
+4(q+a′α)Xn

(

{λ, λ̃, η}
)

,

Xn = X (0)
n + X (4)

n + . . .+ X (4n−8)
n , (2.10)

where

q+a′α =

n
∑

i=1

λiαη
+
a′i, q

−
aα =

n
∑

i=1

λiαη
−
ai. (2.11)

Grassmann delta functions are defined as (see the appendix for the whole set of definitions

regarding Grassmann delta functions and their integration)

δ±4
(

q±a′/a α

)

=
2
∏

a′/a,b′/b=1

ǫαβq±a′/a αq
±
b′/b β . (2.12)

X
(4m)
n are the homogenous SU(4)R and SU(2)×SU(2)′×U(1) invariant polynomials of the

order of 4m. Hereafter, for saving space we will use the notation:

δ8(q + γ) ≡ δ−4(q−aα + γ−aα)δ
+4(q+a′α). (2.13)

Assigning helicity λ = +1 to |Ωi〉 and λ = +1/2 to η and λ = −1/2 to θ, one can see

that Fn has overall helicity λΣ = n, δ+4 has λΣ = 2, the exponential factor has λΣ = 0.

From this we see that X
(0)
n has λΣ = n − 2, X

(4)
n has λΣ = n − 4, etc, X

(0)
n , X

(4)
n etc. are

understood as analogs [44] of the MHV, NMHV etc. parts of the superamplitude, i.e., the

part of the super form factor proportional to the X
(0)
n will contain component form factors

with overall helicity n − 2 which we will call the MHV form factors, part of super form

factor proportional to X
(4)
n will contain component form factors with overall helicity n− 4

which we will call NMHV etc. up to X
(4n−8)
n overall helicity 2−n which we will call MHV.

One can think [27] that it is still possible to describe the form factors of the full stress

tensor supermultiplet disregarding subtleties with on-shell realization, at least at the tree

level, using symmetry arguments and the full W++(x, θ+, θ̄+) superfield. To do this, one

has to introduce the none chiral version of the on-shell momentum superspace, which in

our case can be obtained by performing the following Grassmann Fourier transform:

|Ωi〉 =

∫

d+2ηi exp(η+i η̄
−
i ) |Ωi〉,

– 5 –
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|Ωi〉 =
(

g+i (η̄
−
i η̄

−
i ) + . . .+ (η−i η

−
i )g

−
i

)

|0〉. (2.14)

After that one can define the form factor of full stress tensor supermultiplet

F full
n ({λ, λ̃, η, η̄}, x, θ+, θ̄+) = 〈Ωn|T (x, θ

+, θ̄+)|0〉. (2.15)

Performing T̂ transformation from (x, θ+, θ̄+) to (q, γ−, γ̄−) one can obtain Z full
n :

Z full
n ({λ, λ̃, η, η̄}, {q, γ−, γ̄−}) = δ4

( n
∑

i=1

λiαλ̃
i
α̇ − qαα̇

)

δ−4(q−aα + γ−aα)δ
−4(q̄−a′

α + γ̄−a′

α )×

×

∫ n
∏

k=1

d+2ηk exp(η+k η̄
−
k )δ

+4(q+a′α)Xn

(

{λ, λ̃, η}
)

, (2.16)

where now after Fourier transformation

q̄−a′

α =
n
∑

i=1

λiαη̄
−a′ . (2.17)

We see that at least at the tree level the form factors of the full stress tensor supermultiplet

up to trivial Grassmann delta function are defined by the Grassmann Fourier transformed

Xn function, which one can compute using chiral truncated (self dual sector) stress tensor

supermultiplet only [27]. Keeping this in mind we will focus on the self-dual sector form

factors.

Using the BCFW recursion relations [25] one can show that for the MHV sector at the

tree level one can obtain for n point form factor (here we drop the momentum conservation

delta function):

Z(0)MHV
n = δ8(q + γ)X (0)

n , X (0)
n =

1

〈12〉〈23〉 . . . 〈n1〉
. (2.18)

We will use this result in the next section. Also, for completeness let us write down well

known answers for tree level MHVn and MHV3 amplitudes

A(0)MHV
n =

δ8(q)

〈12〉〈23〉 . . . 〈n1〉
, A

(0)MHV
3 =

δ̂4(η1[23] + η2[31] + η3[12])

[12][23][31]
, (2.19)

which will be used in the next section.

3 BCFW and all-line shift for the NMHV sector

Recursion relations for the tree level form factor were considered in the literature before.

BCFW recursion for the MHV sector, as was mentioned earlier, was considered in [25]

for the component form factors. All-line shift (CSW) recursion for the NMHV sector was

considered in [27] in the on-shell momentum superspace and momentum twistor spaces.

BCFW for form factors of more general 1/2-BPS operators in the on shell momentum

superspace were considered in [30].

– 6 –
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Figure 1. Diagrammatic representation of the quadruple cut proportional to Rrst. The white blob

is the MHV3 vertex and the light-grey blob is the MHV amplitude.

In [27], it was argued that for the general [i, j〉 shift the NkMHV form factor vanishes as

z → ∞, so BCFW recursion without “boundary terms”. Let us consider BCFW recursion

for the NMHV sector in on-shell momentum superspace. Before going to form factors it is

useful to recall how BCFW recursion for the NMHV amplitudes works. It will help us to

introduce important structures and make useful analogies. For the adjacent [i− 1, i〉 shift

λ̂i = λi + zλi−1,

ˆ̃
λi−1 = λ̃i−1 − zλ̃i,

η̂i = ηi + zηi−1. (3.1)

there are two types of contributions in BCFW recursion in the NMHV sector, which are

combined of the (MHV⊗MHV) and (NMHVn−1⊗MHV3) amplitudes.3 The MHV⊗MHV

terms are given by so called Rrst 2mh functions times the MHV tree level amplitude. The

NMHVn−1 ⊗MHV3 term can be represented in terms of Rrst functions as well. The Rrst

function can be written as:

Rrst =
〈ss− 1〉〈tt− 1〉δ̂4(Ξrst)

x2st〈r|xrtxts|s〉〈r|xrtxts|s− 1〉〈r|xrsxst|t〉〈r|xrsxst|t− 1〉
, (3.2)

ΞA
rst =

r−1
∑

i=t

ηAi 〈i|xtsxsr|r〉+
s−1
∑

i=r

ηAi 〈i|xstxtr|r〉 = 〈ΘA
tr|xtsxsr|r〉+ 〈ΘA

rs|xstxtr|r〉. (3.3)

where xij and ΘA
ij are the dual variables defined as (〈l| ≡ λl)

xij =

j−1
∑

k=i

pk, 〈Θ
A
ij | =

j−1
∑

l=i

ηAl 〈l|. (3.4)

3⊗ stands for summation over internal states (Grassmann integration) and substitution of the corre-

sponding z values.
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Figure 2. Diagrammatic representation of the quadruple cut proportional to R
(1)
rst. The dark grey

blob is the MHV form factor.

In the harmonic superspace formulation ΞA
rst splits into Ξ+a

rst and Ξ−a′

rst as well as the Grass-

mann delta function δ̂4 = δ̂−2δ̂+2 (see appendix for details). Throughout the paper we

will assume that numbers of momenta r, s, t, . . . ect. are arranged anticlockwise for the

form factors, were it is not mentioned otherwise. All sums are understood in the cyclic

sense, for example, if n=6 s=5,t=3 then
∑t

s =
∑n

s +
∑t

1 =
∑6

5+
∑3

1. For n ≤ 4 the Rrst

function vanishes. The Rrst 2mh functions may also be obtained by quadruple cuts of the

one-loop NMHV amplitude. In fact, there is a deep connection between on-shell recur-

sion relation for tree level amplitudes and their loop level structure [7, 9, 42, 43]. Also the

Rrst functions are invariants with respect to dual superconformal transformations [44] from

dual SU(2, 2|4) as well as ordinary superconformal group SU(2, 2|4). Even more, the Rrst

functions are invariants with respect to full Yangian algebra [45] which includes generators

from dual and ordinary superconformal algebras. In harmonic superspace formulation the

Rrst functions are also invariants with respect to SU(2) × SU(2)′ × U(1). There is also

interesting geometrical interpretation [8] of them which we will discuss further in detail.

Using these functions one can write the results of BCFW recursion for the NMHV sector

for the amplitudes for the [1, 2〉 shift as:

A(0)NMHV
n =

(

A
(0)NMHV
n−1 ⊗A

(0)MHV
3

)

+A(0)MHV
n

n−1
∑

i=4

R12i. (3.5)

This recursion relation can be solved in terms of the Rrst functions (note that some terms

in this sum are actually equal to 0):

A(0)NMHV
n = A(0)MHV

n





n−2
∑

j=2

n
∑

i=j+2

R1ji



 . (3.6)

It is natural to assume that the NMHV sector of the form factors can be represented in

terms of quadruple cut coefficients as in the case of the amplitudes. Quadruple cuts for the

– 8 –
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Figure 3. Diagrammatic representation of the quadruple cut proportional to R
(2)
rst.

Figure 4. Diagrammatic representation of the quadruple cut proportional to R̃
(1)
rtt .

NMHV sector of the form factors were studied in [29]. There are three different types of

analogs of the Rrst functions for the form factors R
(1)
rst, R

(2)
rst and R̃

(1)
rtt (“the R functions”).

R
(1)
rst =

〈s+ 1s〉〈t+ 1t〉δ̂4
(
∑t

i=r+1 ηi〈i|ps+1...tps+1...r+1|r〉 −
∑s+1

i=r ηi〈i|ps+1...tpt...r+1|r〉
)

p2s+1...t〈r|pr...s+1pt...s+1|t+ 1〉〈r|pr...s+1pt...s+1|t〉〈r|pt...rpt...s+1|s+ 1〉〈r|pt...rpt...s+1|s〉
, (3.7)

R
(2)
rst =

〈s+ 1s〉〈t+ 1t〉δ̂4
(
∑r+1

i=t
ηi〈i|ps...t+1pr+1...s|r〉+

∑s+1
i=r

ηi〈i|ps...t+1pt...r+1|r〉
)

p2s...t+1〈r|pr...sps...t+1|t+ 1〉〈r|pr...sps...t−1|t〉〈r|pt...r+1ps...t+1|s+ 1〉〈r|pt...r+1ps...t+1|s〉
, (3.8)

R̃
(1)
rtt =

〈tt+ 1〉δ̂4
(
∑r+1

i=t ηi〈i|p1...npr...t+1|r〉 −
∑t+1

i=r ηi〈i|p1...npt...r+1|r〉
)

q4〈r|pr...t+1p1...n|t〉〈r|pt...rq|t+ 1〉〈r|pt...r+1p1...n|r〉
, (3.9)

where we used notations pi1...in = pi1 + . . . + pin , q =
∑n

i=1 pi. The same notation will be

used hereafter. One can see that R
(1)
rst, R

(2)
rst in fact coincides with Rrst computed in the

corresponding kinematics, while R̃
(1)
rtt is different. Note also that due to the presence of

momenta q carried by the operator in the momentum conservation condition for the form

factors R
(1)
rst, R

(2)
rst and R̃

(1)
rtt can be defined (are none vanishing) starting with the number

of particles n = 3.
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Figure 5. BCFW diagrams contributing to the n = 3 case, for the [1, 2〉 shift. A = 0 due to the

kinematic reasons.

Now we are ready to return to tree the level form factors. As it was stated earlier

we hope that the NMHV sector of the form factors can be represented in terms of the

quadruple cut coefficients R
(1)
rst, R

(2)
rst and R̃

(1)
rtt . Indeed, this is just the case. By explicit

computation one can see that in the case of the [1, 2〉 shift:

Z(0)NMHV
n =

(

Z
(0)NMHV
n−1 ⊗A

(0)MHV
3

)

+ Z(0)MHV
n

(

R̃
(1)
122 +

n−1
∑

i=3

R
(1)
1i2 +

n
∑

i=3

R
(2)
1i2

)

. (3.10)

Just as in the amplitude case the coefficients R
(1)
1i2, R

(2)
1i2 and R̃

(1)
122 are given by 2mh quadru-

ple cuts. Let us write several answers for some fixed n. For example, for n = 3 and n = 4

one can get:

Z
(0)NMHV
3 = Z

(0)MHV
3 R̃

(1)
122, (3.11)

Z
(0)NMHV
4 = Z

(0)MHV
4

(

R̃
(1)
133 + R̃

(1)
122 +R

(1)
132 +R

(2)
142

)

. (3.12)

Here R̃
(1)
133 is given by

(

Z
(0)NMHV
3 ⊗A

(0)MHV
3

)

term. Note also that R
(2)
132 = 0 for the

n = 4 case. In general the result for
(

Z
(0)NMHV
n−1 ⊗A

(0)MHV
3

)

for Z
(0)NMHV
n can be

conveniently written in terms of Z
(0)NMHV
n−1 by introducing the shift operator S that

shifts the number of arguments of the function starting with 2 by +1, (for example,

Sf(x0, x1, x2, x5) = f(x0, x1, x3, x6)):

(

Z
(0)NMHV
n−1 ⊗A

(0)MHV
3

)

({λi, λ̃i, η}
n
i=1, {q, γ}) = Z(0)MHV

n S
Z

(0)NMHV
n−1

Z
(0)MHV
n−1

({λi, λ̃i, η}
n−1
i=1 ).

(3.13)

{q, γ} are unshifted. This can be seen using BCFW recursion in the MHV sector and

representing R functions as a quadruple cut that is given by the product of the MHVn

and MHV3 amplitudes and form factors.4 Using this observation one can write the answer

for Z
(0)NMHV
n in closed form using R

(1)
rst, R

(2)
rst and R̃

(1)
rtt functions:

Z(0)NMHV
n = Z(0)MHV

n





n−1
∑

i=2

R̃
(1)
1ii +

n−2
∑

i=2

n−1
∑

j=i+1

R
(1)
1ji +

n−2
∑

i=2

n
∑

j=i+2

R
(2)
1ji



 . (3.14)

4In the amplitude case this can be most easily seen in the momentum twistor formulation [5] or using of

on-shell diagrams [9]. In the case of the form factors one may hope that the extension of on-shell diagrams

formalism also exists, but we are not going to discuss this issue here.
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Figure 6. BCFW diagrams contributing to the n = 4 case, for the [1, 2〉 shift. B2 = B5 = 0 due

to the kinematic reasons.

Figure 7. Schematic representation of the corresponding R functions contributing to the n = 4

case, for the [1, 2〉 shift.

Figure 8. BCFW diagrams contributing to the n = 4 case, for the [2, 3〉 shift. C2 = C5 = 0 due

to the kinematic reasons.

As a by product let us also consider different BCFW shifts. For example, for the [2, 3〉

shift, n = 4 one can obtain the following representation of Z
(0)NMHV
4 :

Z
(0)NMHV
4 = Z

(0)MHV
4

(

R̃
(1)
244 +R

(1)
243 +R

(2)
213 + R̃

(1)
233

)

. (3.15)

Adding the results of [1, 2〉 and [2, 3〉 shifts with the 1/2 coefficient we obtain representation

of Z
(0)NMHV
4 computed as a coefficient of the IR pole at one loop for the NMHV form
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Figure 9. Schematic representation of the corresponding R functions contributing to the n = 4

case, for the [2, 3〉 shift.

factor [29]. This can be written in the following cyclic invariant form5 [29]:

Z
(0)NMHV
4 = Z

(0)MHV
4

1

2
(1 + P+ P

2 + P
3)(R̃

(1)
311 +R

(1)
241). (3.16)

Here we used the identity R
(2)
413 = R

(1)
241 (see appendix).

As an illustration let us consider computation of the term which gives R̃
(1)
122 in the

n = 3, [1, 2〉 shift case. For n = 3 we have only one term contributing to Z
(0)NMHV
3 = A2

which is given by (see figure, A1 = 0 due to the kinematic reasons):

A2 =

∫

d4ηP̂Z
(0)MHV
2 (P̂ , 1̂)

1

p223
A

(0)MHV
3 (−P̂ , 2̂, 3). (3.17)

Preforming Grassmann integration and substituting z13 = [13]/[23], p̂13 = p13 + z13λ1λ̃2
we obtain (q123 = λ1η1 + λ2η2 + λ3η3)

A2 =
δ8(q123 + γ)

〈1p̂〉〈3p̂〉〈2̂p̂〉2〈13〉

∫

d4ηP̂ δ
8(λ3η3 + λ̂1η̂1 − λ̂P η̂P )

=
δ8(q123 + γ)δ̂4 ([2|p̂13|1〉η1 + [13]/[23][2|p̂13|1〉η2 + [2|p̂13|3〉η3)

〈13〉〈1|p̂13|2]〈3|p̂13|2]〈2̂|p̂13|2]2p213

=
δ8(q123 + γ)

[12][23][31]

δ̂4([23]η1 + [31]η2 + [21]η3)

〈2̂|p13|2]2
. (3.18)

After noting that

〈2̂|p13|2] = 〈2|p13|2] + p213 = q2, (3.19)

we can write (note also that momentum q carried by the operator is equal to q = p123)

A2 =
δ8(q123 + γ)

〈12〉〈23〉〈31〉
×

〈12〉〈23〉〈31〉δ̂4([23]η1 + [31]η2 + [21]η3)

q4[12][23][31]
=

=
δ8(q123 + γ)

〈12〉〈23〉〈31〉
×

〈23〉δ̂4(η2〈2|qp13|1〉 − η1〈1|qp21|1〉 − η3〈3|qp21|1〉)

q4〈1|p13q|2〉〈1|p12q|3〉〈1|p12q|1〉

= Z
(0)MHV
3 × R̃

(1)
122. (3.20)

5
P is the permutation operator which shifts the number of all arguments of function by +1, i.e., for

example: Pf(x0, x1, x2, x5) = f(x1, x2, x3, x6).
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The pole q4 is canceled in this expression on the support of δ8(q123 + γ). This will be

important for us later on. Indeed δ8(q + γ) = δ−4(q− + γ−)δ+4(q+), q+a′ =
∑3

i=1 η
+
a′, iλi so

δ̂+2
(

η+2 〈2|qp13|1〉 − η+1 〈1|qp21|1〉 − η+3 〈3|qp21|1〉
)

=

δ̂+2

(

η+2 〈21〉q
2 −

3
∑

i=1

η+i 〈i|qp12|1〉

)

=

δ̂+2
(

η+2 〈21〉q
2 − 0

)

= q4〈21〉2δ̂+2
(

η+2
)

. (3.21)

Cancellation of the q4 pole will be true also for arbitrary n for R̃
(1)
rtt .

Let us briefly discuss analytical properties of the results of BCFW recursion. As an

example we will consider n = 4 case. Each R
(1)
rst, R

(2)
rst and R̃

(1)
rtt term is a rational function

of λi, λ̃i variables and has several poles. Some of them are physical, i.e., correspond to

appropriate factorisation channels [42], while others are spurious and must be canceled in

the whole sum. The presence of spurious poles is the general feature of BCFW recursion,

and its application to the form factors is no exception. So in the n = 4, [1, 2〉 shift case the

list of poles is the following:

R
(1)
132 : 〈3|q|2], 〈3|q|4], p2124, p

2
12, p

2
14, R

(2)
142 : 〈1|q|4], 〈1|q|2], p2234, p

2
34, p

2
23, (3.22)

R̃
(1)
122 : 〈3|q|2], 〈1|q|2], p2134, R̃

(1)
133 : 〈1|q|4], 〈3|q|4], p2123. (3.23)

Poles

p2123, p
2
124, p

2
234, p

2
123, p

2
12, p

2
23, p

2
34, p

2
41, (3.24)

are physical, while

〈1|q|2], 〈1|q|4], 〈3|q|2], 〈3|q|4], (3.25)

are spurious once. The structure of Z
(0)NMHV
4 suggests that spurious poles should cancel

themselves between the R functions (for example 〈1|q|2] should be canceled between R
(2)
142

and R̃
(1)
122) but it is not easy to see how it really works. Also it would be nice to observe some

general pattern of such cancelations for general n. There are also several related questions.

1. One can consider a different type of recursion relations for the form factors: all-line

shift (CSW) [46–48]. Indeed, one can show that under anti holomorphic all-line shift

the form factors with operators from the stress-tensor supermultiplet (number of

fields in operator m = 2,) behave as:

Zn(z) → zs(or better) as z → ∞, with s =
2− n+ λΣ

2
, (3.26)

(note 2 − n instead of n − 4 [49] in the amplitude case due to the different mass

dimension of the form factor), so for λΣ = n − 4, as in the NMHV case recursion is

valid. Thus one can easily obtain [30]:

Z(0)NMHV
n = Z(0)MHV

n





n
∑

i=1

i+1−n
∑

j=i+2

R∗ij



 , with λ∗ = 0, ηA∗ = 0. (3.27)

– 13 –



J
H
E
P
1
2
(
2
0
1
4
)
1
1
1

Here we exchange the problem of cancellation of spurious poles to the problem of prov-

ing that the poles of the form 〈i|q|∗] should be canceled. This cancellation will imply

that the result is independent of the choice of λ̃∗ [8]. Note also that representations

for NMHV sector given by BCFW and all-line shift (CSW) recursions naively look

rather different. It would be nice to show how one can transform one into another.

2. It would also be nice to write some simple recursion relation for the general NkMHV

form factor.

3. In the one loop generalised unitarity based computations (for example, see [29]) one

encounters different none obvious relations between R functions. It would be nice

to have some simple representation for R functions where these relations becomes

obvious.

These questions are not unique to the form factors and one encounters their analogs

in the amplitude case as well. In the case of amplitudes they all can be answered in

beautiful geometrical picture based on the momentum twistor representation and the in-

terpretation of the amplitudes as the volumes of polytopes in CP
4 in the first non trivial

NMHV case [6–8] and more general “Amplituhidron” picture [10, 11] based on positive

Grassmanian geometry [9] in the general case.

We are going to show now that in the case of the form factors one can also use nearly

the same momentum twistor representation to answer all these questions. Only one new

ingredient is necessary — infinite periodical contour in the momentum twistor space [27].

4 Momentum twistor space representation

To use momentum twistors, one has to introduce dual variables xi for momenta pi [6].

pαα̇i = xαα̇i − xαα̇i−1. (4.1)

and their fermionic counterparts q−aα,i = λα,iη
−
ai, q

+
a′α,i = λα,iη

+
a′i and Θ−

aα, Θ
+
a′α:

q−aα,i = Θ−
aα,i −Θ−

aα,i−1, (4.2)

q+a′α,i = Θ+
a′α,i −Θ+

a′α,i−1. (4.3)

This is where periodical configuration first appears [25, 27]. Indeed, we are working with

a colour ordered object, so positions of momenta of external particles pi are fixed. But the

operator, which carries the momentum q, is colour singlet and can be inserted between any

pair of momenta. The same is true also for the fermionic counterpart of q, when we are

dealing with the superspace formulation of the form factors. One can think of working with

different (with respect to position where q is inserted) closed contours, but it is not obvious

how to combine terms defined on different contours. An infinite periodical (with period

equal to q) configuration solves this problem. In fact we will need only 2n xi independent

variables to describe any kinematic invariant p211,...,il we may encounter in the case of n

particle form factor, at least at the tree level in the MHV and NMHV sectors. The only fea-

ture that the periodical contour brings into play and one should take into account is some
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Figure 10. Dual contour in momentum and momentum twistor spaces for n = 4 form factor.

sort of redundancy. Everything is defined up to the shift over k periods along the contour,

so one should “gauge fix” which periods will be used. Also the periodical configuration is

very natural from the AdS/CFT point of view [35]. The insertion of operator corresponds

to consideration of a closed string state on the string worldsheet in addition to open ones

(which correspond to particles) in the dual picture. After such insertion, T -duality trans-

formation gives infinite periodical configuration with a period equal to momenta carried by

the closed string state. The periodical contour and hence dual variables Θ−,Θ+ can also

be introduced to the total super momentum carried by particles q+, q−. The period will

be equal to the super momenta γ+, γ− carried by the operator. Note that since γ+ = 0,

the corresponding fermionic part of the contour in the superspace will be closed.

Now we are ready to introduce momentum supertwistors [6, 7]. The points in the dual

superspace are mapped to the lines in momentum twistor space (xi,Θi) ∼ Zi−1 ∧ Zi (as

usual i is the number of a particle, with:

Z±∆
i =

(

ZM
i

χ±
a/a′,i

)

, (4.4)

The fermionic part of the supertwistor χ is given by:

χ−
ai = Θ−

aiλi, χ
+
a′i = Θ+

a′iλi. (4.5)

Note that χ−
ai part of the supertwistor belongs to the infinite periodical contour, χ

+
a′i belongs

to the “closed part of the fermionic contour” due to the γ+ = 0 condition. Sometimes it

will be convenient to consider χ+
a′i also as part of the infinite periodical contour in the

intermediate expressions and apply γ+ = 0 only at the end. Since all our expressions are

polynomials in Grassamann variables, a smooth limit in γ+ → 0 always exists. The bosonic

part of the supertwistor is

ZM
i =

(

λαi
µα̇i

)

, µα̇i = xαα̇i λαi, (4.6)
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where M = 1 . . . 4. The corresponding objects transform under the action of the dual con-

formal SU(2, 2) group; ∆ is the multi-index for the SU(2, 2) indices and ±a/±a′ indices of

SU(2) and U(1). The standard notation for dual conformal SU(2, 2) invariant will be used:

〈i, j, k, l〉 = ǫABCDZ
A
i Z

B
j Z

C
k Z

D
l . (4.7)

In terms of the components of the twistors this expression can be written as (here

ǫα̇β̇µ
α̇
i µ

β̇
j
.
= [ij]):

〈i, j, k, l〉 = 〈ij〉[kl] + 〈ik〉[lj] + 〈il〉[jk] + 〈kl〉[ij] + 〈lj〉[ik] + 〈jk〉[il]. (4.8)

Hereafter we will drop indices on the twistors and their components everywhere when it

does not lead to misunderstanding. Due to the periodical configuration with period the

q =
∑n

i=1 pi we will have the following relation for the momentum twistors:

Zi = (λi, xiλi), Zi+nk = (λi, xi+nkλi), i = 1 . . . n, k ∈ N. (4.9)

Using 〈i, j, k, l〉 one can write the following expressions for kinematical invariants and

products of spinors:

(

j−1
∑

l=i

pl

)2

= x2ij = 〈ii+ 1〉〈jj + 1〉〈i, i+ 1, j, j + 1〉, (4.10)

and

〈tt+ 1〉〈r|xrtxts|s〉 = 〈r, t, t+ 1, s〉. (4.11)

Because we are working with the periodical configuration, one can shift simultaneously all

numbers in 〈r, t+1, t, s〉 and 〈i, i+1, k, k+1〉 by kn, k ∈ N without changing the result. In

addition there are several relations between 〈a, b, c, d〉 invariants unique to the periodical

contour. We will need two of them:

〈1, i, i+ 1, 1 + n〉 = 〈1, i− n, i+ 1− n, 1− n〉, (4.12)

and

〈i+ n, i+ 1 + n, i+ 2 + n, i+ 1〉 = 〈i, i+ 1, i+ 2, i+ 1 + n〉. (4.13)

As it was claimed before, in the case of the amplitudes (closed contour) the Rrst func-

tion is invariant with respect to the dual superconformal transformations from SU(2, 2|4).

Using momentum the supertwistors one can see that the following combination of 5 arbi-

trary twistors is SU(2, 2|4) invariant [7]:

[a, b, c, d, e] =
δ̂4(〈a, b, c, d〉χe + cycl.)

〈a, b, c, d〉〈b, c, d, e〉〈c, d, e, a〉〈d, e, a, b〉〈e, a, b, c〉
. (4.14)

Here δ̂4 = δ̂−2δ̂+2 (see the appendix). The Rrst function is a special case of this invariant:

Rrst = [r, s, s+ 1, t, t+ 1]. (4.15)
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Figure 11. Schematic representation of the relation between R
(1)
rst, R

(2)
rst functions and the corre-

sponding [abcde] momentum twistor dual superconformal invariants in the 2mh case.

What about the R
(1)
rst, R

(2)
rst and R̃

(1)
rtt functions for the form factors? Using the momentum

supertwistors defined on periodical contour one can see that the following identities hold

for R
(1)
1st, R

(2)
1st:

R
(1)
1st = [1, t, t+ 1, s− n, s+ 1− n], (4.16)

and

R
(2)
1st = [1, t, t+ 1, s, s+ 1]. (4.17)

Here n is the number of twistors (particles) in period of the contour. As it was explained

earlier, due to the periodical nature of momentum twistor configuration we are consid-

ering, this form is not unique. For example, for n = 4 one can see that: [5, 6, 7, 3, 4] =

[1, 2, 3,−1, 0]. We choose this particular form (“fix the gauge”) because it naturally arises

in the [1, 2〉 shift. It is implemented that the condition γ+ = 0 is imposed in the argument

of δ̂4. The case of R̃
(1)
rtt is special. Nevertheless, it is also possible to rewrite it in terms of

the [a, b, c, d, e] momentum twistor invariant but with the nontrivial “bosonic” coefficient:

R̃
(1)
1tt = c

(n)
t [1, t, t+ 1, t− n, t+ 1− n],

c
(n)
t =

〈1, t, t+ 1, t− n〉〈1, t− n, t+ 1− n, t+ 1〉

〈1, t, t+ 1, 1 + n〉〈t, t+ 1, t− n, t+ 1− n〉
. (4.18)

As an illustration how one can rewrite the R coefficients in the momentum twistor

variables, let us consider the n = 4 case (as usual we have q = p1234), R̃
(1)
122:

R̃
(1)
122 =

〈23〉δ̂4(X122)

q4〈1|p12q|3〉〈1|p34q|2〉〈1|p34q|1〉
, (4.19)
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Figure 12. Schematic representation of relation between R
(1)
rst functions and corresponding [abcde]

momentum twistor dual superconformal invariants, special cases.

Figure 13. Schematic representation of the relation between the R
(2)
rst functions and the corre-

sponding [abcde] momentum twistor dual superconformal invariants, special case.

where

X122 = −η2〈2|qp134|1〉+
∑

i=1,3,4

ηi〈i|qp2|1〉 =

= −
∑

i=1,2

ηi〈i|qp34|1〉+
∑

k=3,4

ηk〈k|qp12|1〉. (4.20)

Now using the momentum twistors we can write:

〈−1,−2, 2, 3〉 = 〈23〉〈−1|x−13x2−2| − 2〉 = 〈23〉〈3|q(q + 2)|2〉 = 〈23〉2q2, (4.21)

〈1,−1,−2, 2〉 = 〈23〉〈1|x1−1x−12|2〉 = 〈23〉〈1|p34q|2〉, (4.22)
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〈1, 2, 3,−1〉 = 〈23〉〈1|x13x3−1|1〉 = 〈23〉〈1|p12q|3〉, (4.23)

〈1,−1,−2,−3〉 = 〈−1− 2〉〈1|x1−1x−1−3| − 3〉 = 〈23〉〈1|p34q|1〉. (4.24)

So substituting this relations in R̃
(1)
122 one can see that:

R̃
(1)
122 =

〈23〉8δ̂4(X122)

〈−1,−2, 2, 3〉2〈1,−1,−2, 2〉〈1,−1, 2, 3〉〈1,−1,−2,−3〉
=

=
〈1, 2, 3,−2〉〈1,−2,−1, 3〉

〈1,−2,−1,−3〉〈2, 3,−2,−1〉
×

×
〈23〉8δ̂4(X122)

〈1,−1,−2, 2〉〈−1,−2, 2, 3〉〈−2, 2, 3, 1〉〈2, 3, 1,−1〉〈3, 1,−1,−2〉
. (4.25)

From the last expression one can conclude that (we used (4.12), which in this case gives

us 〈1, 2, 3, 4〉 = 〈1,−2,−1,−3〉)

〈1, 2, 3,−2〉〈1,−2,−1, 3〉

〈1,−2,−1,−3〉〈2, 3,−2,−1〉
= c

(4)
2 . (4.26)

Now let us rewrite X122 in terms of the momentum supertwistors (here we suppress

SU(2)× SU(2)′ × U(1) indices, 〈Θij | ≡ Θij , 〈i| ≡ λi). Here we treat χ+
i and χ−

i one equal

footing, and will take the γ+ → 0 limit only in the final expression. One can see that on

the periodical contour

〈Θ13| =
∑

i=1,2

ηi〈i|, 〈Θ−11| = −
∑

i=3,4

ηi〈i|, (4.27)

and

x−11 = p34, x−13 = −x3−1 = q, x31 = −p12, (4.28)

so

X133 = 〈Θ13|x3−1x−11|1〉+ 〈Θ1−1|x−13x31|1〉. (4.29)

Then we can write [7]:

〈Θ13|x3−1x−11|1〉+ 〈Θ1−1|x−13x31|1〉 =
χ1〈2, 3,−1,−2〉+ perm.

〈23〉2
. (4.30)

Substituting this in R̃
(1)
122 we get:

R̃
(1)
122 = c

(4)
2

〈23〉8δ̂4(X122)

〈1,−1,−2, 2〉〈−1,−2, 2, 3〉〈−2, 2, 3, 1〉〈2, 3, 1,−1〉〈3, 1,−1,−2〉

= c
(4)
2 [1, 2, 3,−2,−1], (4.31)

as expected. Also, now we can take the γ+ → 0 limit.

Using these results one can easily rewrite the BCFW recursion relations in the NMHV

sector for the form factors in momentum supertwistors (hereafter we drop the (0) subscript
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for simplicity):

ZNMHV
n (Z2−n, . . . ,Z1+n)

ZMHV
n

=
ZNMHV
n−1

ZMHV
n−1

(Z2−n, . . . ,Z1,Z3,Z4, . . . ,Z1+n) +

+
n
∑

j=3

[1, 2, 3, j, j + 1] +
n−1
∑

j=3

[1, 2, 3, j − n, j + 1− n] + c
(n)
2 [1, 2, 3, 2− n, 3− n]. (4.32)

As an illustration let us write the answers for n = 3, 4, 5 in the momentum supertwistor

notations:

ZNMHV
3

ZMHV
3

= c
(3)
2 [−1, 0, 1, 2, 3], (4.33)

ZNMHV
4

ZMHV
4

=
(

Sc
(3)
2

)

[−1, 0, 1, 3, 4] + [1, 2, 3, 4, 5] + [1, 2, 3, 0,−1]

+c
(4)
2 [1, 2, 3,−2,−1], (4.34)

ZNMHV
5

ZMHV
5

=
(

S
2c

(3)
2

)

[−1, 0, 1, 4, 5] + [1, 3, 4, 5, 6] + [−1, 0, 1, 3, 4]

+
(

Sc
(4)
2

)

[−2,−1, 1, 3, 4] + [1, 2, 3, 4, 5] + [1, 2, 3, 5, 6]

+[1, 2, 3,−2,−1] + [1, 2, 3,−1, 0] + c
(5)
2 [1, 2, 3,−3,−2]. (4.35)

As a by product using these explicit expressions let us discuss the relation between

the form factors with the supermomentum carried by the operator equal to zero and the

amplitudes. In [27, 28, 50] it was observed that the following relation between the form

factors and amplitudes likely holds

Zn({λ, λ̃, η}, {0, 0}) = g
∂An({λ, λ̃, η})

∂g
. (4.36)

In our momentum supertwistor notation the limit of q → 0, γ± → 0 corresponds to

“gluing” all periods of the contour together, i.e., for the n particle case Zi → Zi±kn for

any integer k and i. Taking this limit in written above answers for the form factors one

can see that (remember that [a, b, c, d, e] = 0 if any of the two arguments coincide):

ZNMHV
3 |Zi→Zi±k3

= 0, (4.37)

ZNMHV
4 |Zi→Zi±k4

= 0, (4.38)

ZNMHV
5 |Zi→Zi±k5

∼ AMHV
5 [1, 2, 3, 4, 5] = ANMHV

5 , (4.39)

as one would expect because there are no 3 and 4 point NMHV amplitudes.6 Note also

that in our case of the super form factors, this limit is well defined and can be easily taken,

while in components it is singular for some particular answers and in on-sell momentum

superspace [28] it is not obvious at first glance how exactly these singularities are canceled.

6Actually we obtained ZNMHV
5 |Zi→Zi±k5

= 2AMHV
5 [1, 2, 3, 4, 5]. The presence of coefficient 2 is unex-

pected. However one can also see (?) that from the BCFW representation of the NkMHV form factors that

the coefficient will be 2k in the NkMHV sector.
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Figure 14. Schematic representation of BCFW recursion for the NkMHV form factor Z
(0)(k)
n at the

tree level. The vertical bold black line corresponds to the form factor. The grey blob corresponds

to the amplitude. MHV form factors and amplitudes are factor out. In the last term the only non

zero contribution is k2 = 0, k1 = k − 1.

Using the momentum supertwistors one can also easily write the recursion relations

for NkMHV form factor Z
tree(k)
n at tree level in full analogy with the amplitude case.

Performing the following shift of momentum supertwistor [5, 51]

Ẑ2 = Z2 + wZ3, (4.40)

which is equivalent to the [1, 2〉 shift in the momentum superspace and considering integral:

∮

dw

w
Ẑ(k)
n (w) = 0, (4.41)

one can obtain the following recursion relations (Z
(0)
n ≡ ZMHV

n , A
(0)
n ≡ AMHV

n ):

Z
(k)
n (. . . ,Z−n+2,Z−n+3, . . . ,Z1,Z2,Z3, . . . ,Zn,Zn+1, . . .)

Z
(0)
n

=

=
Z

(k)
n−1

Z
(0)
n−1

(. . . ,Z1−n, . . . ,Z1,Z3,Z4, . . . ,Z1+n, . . .)

+
n
∑

j=3

[1, 2, 3, j, j + 1]×
A

(k1)
n1

A
(0)
n1

(

ZI , Ẑ2, . . . ,Zj

)

×
Z

(k2)
n2

Z
(0)
n2

(. . . ,Z0,Z1,ZI ,Zj+1, . . .)

+

n−1
∑

j=3

[1, 2, 3, j − n, j + 1− n]×
Z

(k1)
n1

Z
(0)
n1

(

. . . ,Zj−n,ZI , Ẑ2,Z3, . . .
)

×
A

(k2)
n2

A
(0)
n2

(ZI ,Z1, . . . ,Zj+1−n)

+c
(n)
2 [1, 2, 3, 2− n, 3− n]×

Z
(k1)
2

Z
(0)
2

(

. . . ,Z2−n,ZI , Ẑ2,Z3, . . .
)

×
A

(k2)
n

A
(0)
n

(ZI ,Z1, . . . ,Z−n+3) . (4.42)
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with7

ZI = (jj + 1)
⋂

(123) and Ẑ2 = (12)
⋂

(0jj + 1), (4.43)

n1 + n2 − 2 = n, k1 + k2 + 1 = k. (4.44)

These relations have a curious property that they represent the ratio of Z
(k)
n form factor

and the MHV form factor in terms of polynomials of the [a, b, c, d, e] “brackets” multiplied

by the coefficients c
(k)
p which are ratios of the 〈a, b, c, d〉 dual conformal invariants. The

[a, b, c, d, e] bracket in the case of amplitudes is the dual superconformal invariant. In the

case of the form factors we impose the γ+ = 0 condition which will likely brake some of the

dual superconformal symmetries, but leave ordinary dual conformal symmetry intact (?).

So the [a, b, c, d, e] bracket in the case of the form factors is the dual conformal invariant and

so is c
(k)
p [a, b, c, d, e]. The only inconsistency which one can encounter is the behaviour of c

(k)
p

with respect to little group scaling [5]. However, it is easy to see that for the n particle case

if Zi and Zi+nk, k ∈ N scaled the same way, which is expected, then c
(k)
p is invariant with

respect to little group scaling. One may think that the ratio of the NkMHVn form factor and

the MHVn form factor at tree level is dual conformal invariant! It is immediately tempting

to speculate about the situation at the loop level. At one loop explicit answers are available

for NMHV3,4. One may think that contributions from 3m triangles will be an obstacle [29],

it is unclear at the first glance how such contributions may cancel each other. This situation

as well as the symmetry properties of tree level form factors require more detailed studies.

5 Spurious poles cancellation, BCFW Vs all-line shift and polytopes

So far we have formulated how to treat the form factors in the momentum twistor space,

obtained BCFW recursion for the NkMHVn form factor in the momentum supertwistors

representation, and very briefly discussed their possible symmetry properties. The ques-

tions regarding BCFW and all-line shift (CSW) equivalence and spurious poles cancellation

remained unanswered. However now we have all appropriate tools to address them.

At first, let us try to see that BCFW and all-line shift (CSW) recursion are equivalent,

at least in NMHV sector. Here we aim at the concrete examples rather then general proofs,

and will consider mostly n = 3, 4 NMHV cases.

Let us rewrite all-line shift (CSW) results for the NMHV sector in the momentum

supertwistors. One can obtain [27]:

ZNMHV
n /ZMHV

n =

n
∑

i=1

i+n−1
∑

j=i+2

[∗, i, i+ 1, j, j + 1]. (5.1)

Here Z∗ is an arbitrary supertwistor with components λ∗ = χ∗ = 0. One can choose

µ∗ = λ̃∗. The γ+ → 0 condition is implemented.

One can also think that Z∗ is an obtained from a twistor with arbitrary components

by contraction with the so called infinity twistor IAB [7]. The presence of the infinity

7(jj + 1)
⋂

(klm) = Zj〈j + 1klm〉+ Zj+1〈jklm〉.

– 22 –



J
H
E
P
1
2
(
2
0
1
4
)
1
1
1

twistor explicitly brakes dual conformal invariance of each [∗, a, b, c, d] term in the all-line

shift (CSW) representation of the amplitude or the form factor. In the case of amplitudes,

dual conformal invariance is restored in the whole sum of the [∗, a, b, c, d] terms. We expect

a similar situation in the case of the form factors.

Note that the form of the all-line shift (CSW) representation discussed here is not

unique, due to the periodical nature of the contour. One can start the first sum (“fix

the gauge”)
∑n

i=1 from an arbitrary point on the contour, for example, from i = −1:
∑n−2

i=−1

∑i+n−1
j=i+2 ; this will lead to the same formula if one will return from momentum

twistors to momentum superspace variables, as was explained earlier. It is convenient to

“fix the gauge” this way in our case, i.e., start summation from the point i = −1:

ZNMHV
n /ZMHV

n =
n−2
∑

i=−1

i+n−1
∑

j=i+2

[∗, i, i+ 1, j, j + 1]. (5.2)

Equivalently, we can shift (“fix another gauge”) our BCFW results by appropriate amount

of periods, but we will not do so. Then for n = 3 and n = 4 one can write:

ZNMHV
3 /ZMHV

3 = [∗,−1, 0, 1, 2] + [∗, 0, 1, 2, 3] + [∗, 1, 2, 3, 4], (5.3)

and

ZNMHV
4 /ZMHV

4 = ([∗,−1, 0, 1, 2] + [∗,−1, 0, 2, 3]) + ([∗, 0, 1, 2, 3] + [∗, 0, 1, 3, 4]) +

+([∗, 1, 2, 3, 4] + [∗, 1, 2, 4, 5]) + ([∗, 2, 3, 4, 5] + [∗, 2, 3, 5, 6]). (5.4)

Our next step is to show the sketch of the proof that the following equality holds:

c
(n)
i [1, i, i+ 1, i− n, i+ 1− n] = [∗, 1, i, i+ 1, 1 + n] + [∗, 1, i, i− n, i+ 1− n]

+[∗, 1, i, i+ 1, i+ 1− n], (5.5)

γ+ → 0 condition is implemented, χ∗ = 0 and Z∗ is the result of projection by means

of the infinity twistor IAB. One can think about it as some kind of partial fractions

decomposition. Let us proceed by iterations. For n = 3 one can verify that this equality

holds by explicit comparison of the coefficients before Grassmann monomials. For example,

c
(3)
2 [−1, 0, 1, 2, 3] = [∗,−1, 0, 1, 2] + [∗, 0, 1, 2, 3] + [∗, 1, 2, 3, 4],

c
(3)
2 =

〈−1, 1, 2, 3〉〈−1, 0, 1, 3〉

〈−1, 0, 2, 3〉〈1, 2, 3, 4〉
. (5.6)

Note that l.h.s. of the equality has poles 〈−1, 0, 1, 2〉, 〈0, 1, 2, 3〉, and 〈1, 2, 3, 4〉. The pole

〈−1, 0, 1, 3〉 ∼ q2 as was explained earlier is absent. In r.h.s. we separated these poles by

introducing the Z∗ axillary supertwistor. In fact for n = 3 this equality is just a statement

that BCFW and all-line shift (CSW) gives the same result:

ZNMHV
3,BCFW = ZNMHV

3,CSW . (5.7)

One can also check that the dependence on the axillary twistor is canceled in all coefficients.

Then we can substitute in the BCFW recursion for n = 4 in the term
(

Z
(0)NMHV
3 ⊗A

(0)MHV
3

)

(5.8)
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ZNMHV
3 in the form ZNMHV

3,BCFW or ZNMHV
3,CSW . Comparing two results and considering all

possible [i, j〉 shifts we can prove the identity (5.6) for n = 4. Then we can substitute in

BCFW recursion for n = 5 the results obtained for n = 4, etc.

Now one can see that substituting in BCFW formula identity (5.6) containing the

axillary supertwistor Z∗ and using the 6 term identity [6, 7] for the set of twistors

Z∗,Z1,Za,Zb,Zc,Zd (5.9)

for all other [1, a, b, c, d] invariants:

[1, a, b, c, d] = [∗, a, b, c, d]− [∗, 1, b, c, d] + [∗, 1, a, c, d]− [∗, 1, a, b, d] + [∗, 1, a, b, c], (5.10)

the all-line shift (CSW) formula is reproduced. Let us illustrate this by the n = 4 example.

Substituting

[1, 2, 3, 4, 5] = [∗, 2, 3, 4, 5]−[∗, 1, 3, 4, 5]+[∗, 1, 2, 4, 5]−[∗, 1, 2, 3, 5]+[∗, 1, 2, 3, 4], (5.11)

[− 1, 0, 1, 2, 3] = [∗, 0, 1, 2, 3]− [∗,−1, 1, 2, 3] + [∗,−1, 0, 2, 3]− [∗,−1, 0, 1, 3]

+[∗,−1, 0, 1, 2], (5.12)

(Sc
(3)
2 )[− 1, 0, 1, 3, 4] = [∗,−1, 0, 1, 3] + [∗, 0, 1, 3, 4] + [∗, 1, 3, 4, 5], (5.13)

c
(4)
2 [1, 2, 3,−2,−1] = [∗,−2,−1, 1, 2] + [∗,−1, 1, 2, 3] + [∗, 1, 2, 3, 5], (5.14)

in the BCFW result one obtains ([∗,−2,−1, 1, 2] = [∗, 2, 3, 5, 6] for n = 4)

ZNMHV

4 /ZMHV

4 = [∗, 2, 3, 4, 5] + [∗, 1, 2, 4, 5] + [∗, 1, 2, 3, 4] + [∗, 0, 1, 2, 3] + [∗,−1, 0, 2, 3]

+[∗,−1, 0, 1, 2] + [∗, 0, 1, 3, 4] + [∗, 2, 3, 5, 6]. (5.15)

which is the all-line shift (CSW) formula.

So far we argued how to transform the BCFW representation of NMHV form factors

into the all-line shift (CSW) one. But what about cancelation of spurious poles? Let us

start with the n = 4 point example, as an illustration, how spurious pole cancels. As it was

explained earlier, one of the spurious poles 〈1|q|2] should be canceled between the terms

R̃
(1)
122 = c

(4)
2 [1, 2, 3,−2,−1] and R

(2)
142 = [1, 2, 3, 4, 5]. (5.16)

Let us consider a component expression proportional to χ−
5 χ

−
5 χ

+
2 χ

+
3 . Note also that (χ+

2 =

χ+
−2, χ

+
3 = χ+

−1 because γ+ = 0) the coefficient of χ−2
5 χ+

2 χ
+
3 should be equivalent to

coefficient before χ−2
1 χ+

−2χ
+
−1 due to the periodical nature of the contour. Extracting the

corresponding components we see that (here we drop ∓ subscript):

[1, 2, 3, 4, 5]|χ2
5χ2χ3

=
〈1, 2, 3, 4〉

〈3, 4, 5, 2〉〈5, 1, 2, 3〉
, (5.17)

and

c
(4)
2 [1, 2, 3,−2,−1]

∣

∣

∣

χ2
1χ−2χ−1

=
(

P
4c

(4)
2

)

[2, 3, 5, 6, 7]
∣

∣

∣

χ2
5χ2χ3

=
〈2, 5, 6, 7〉

〈1, 2, 3, 5〉〈2, 3, 5, 6〉
. (5.18)

So for the form factor we have

ZNMHV
4 /ZMHV

4

∣

∣

χ2
1χ−2χ−1

=
1

〈1, 2, 3, 5〉

(

〈1, 2, 3, 4〉

〈2, 3, 4, 5〉
+

〈2, 5, 6, 7〉

〈2, 3, 5, 6〉

)

. (5.19)
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〈1, 2, 3, 5〉 ∼ 〈1|q|2], and we see that if the expression in the brackets vanishes as

〈1, 2, 3, 5〉 → 0, then 〈1, 2, 3, 5〉 pole is canceled exactly as in the [6] example. Using identity

for 6 twistors Z1, . . . , Z5, ZX :

〈2, 3, 1, 4〉〈2, 3, 5, X〉+ 〈2, 3, 1, 5〉〈2, 3, 4, X〉+ 〈2, 3, 1, X〉〈2, 3, 4, 5〉 = 0 (5.20)

One can see that as 〈1, 2, 3, 5〉 → 0

〈2, 3, 1, 4〉

〈2, 3, 4, 5〉
=

〈2, 3, 1, X〉

〈2, 3, 5, X〉
. (5.21)

This identity is valid for arbitrary 6 twistors, so we can choose ZX = Z6. Using iden-

tity (4.13) which in our case gives us 〈5, 6, 7, 2〉 = 〈1, 2, 3, 6〉 one can see that indeed as

〈1, 2, 3, 5〉 → 0 expression in brackets cancels. This is a good sign, but one would like to

have more general statement regarding the spurious pole cancelation.

Transforming the BCFW representation into CSW we recast all BCFW spurious poles

into poles containing the Z∗ twistor: 〈∗, a, b, c〉. We also get rid of the terms with the

coefficients c
(n)
i , so our answer is represented only as the sum of [∗, a, b, c, d] invariants.

In the amplitude case, one can use the geometrical interpretation of the amplitude as

the volume of a polytope in CP
4 to show that all poles of the form 〈∗, a, b, c〉 cancel [8].

The [a, b, c, d, e] invariant is interpreted as the volume of 4-simplex in CP
4 [5, 8]. The

NMHV amplitude is the sum of volumes of such 4-simplixes, and hence can be interpreted

as the volume of the polytope. The 4-simplixes in BCFW or all-line shift (CSW) recursion

represents particular triangulation of this polytope. The poles in [a, b, c, d, e] are “brackets”

of the form 〈a, b, c, d〉 which correspond to the vertexes of the 4-simplex in the geometrical

picture. Cancellation of spurious poles can be seen in this picture as “cancellation” of

the contribution of the corresponding vertices: 4-simplexes are combined into a polytope

(amplitude) in such a way that the resulting polytope (amplitude) will have only such

vertexes that correspond to the physical poles.

Our aim now is to show that the same ideas about the spurious pole cancellation can

be applied to the form factors as well, with some minor but curious changes.

First of all, let us explain how one can rewrite [a, b, c, d, e] invariants as volumes of

the CP
4 simplexes in the case when we are dealing with the harmonic superspace. We

introduce new fermionic variables X+a and X−a′

X+aχ−
ai = ψ

(−)
i , X−a′χ+

a′i = ψ
(+)
i (5.22)

such that ψ
(−)
i = ψ

(+)
i . Here the (±) subscript stands to distinguish dependence of ψ and

other objects on χ− or χ+. Then we can introduce 5 component objects which we will

treat as the set of homogeneous coordinates on CP
4

Z
(±)
i = (Zi, ψ

(±)
i ) — 5 comopnent object, (5.23)

and

Z0 = (0, 0, 0, 0, 1), (5.24)
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such that

δ̂±2(χ±
a 〈b, c, d, e〉+ cycl.) =

1

2!

∫

d±2X 〈a, b, c, d, e〉2(±),

〈a, b, c, d〉 = 〈0, a, b, c, d〉 ≡ 〈0, a, b, c, d〉(±), (5.25)

where

〈a, b, c, d, e〉(±) = ǫq1q2q3q4q5Z
(±)q1
a Z

(±)q2
b Z(±)q3

c Z
(±)q4
d Z(±)q5

e , (5.26)

〈0, b, c, d, e〉(±) = ǫq1q2q3q4q5Z
q1
0 Z

(±)q2
b Z(±)q3

c Z
(±)q4
d Z(±)q5

e . (5.27)

Since in the case of amplitudes ψ
(−)
i = ψ

(+)
i , we have 〈a, b, c, d, e〉2(−) = 〈a, b, c, d, e〉2(+), so

δ̂4(χa〈b, c, d, e〉+ cycl.) =
4!

2!2!

∫

d−2Xd+2X
1

4!
〈a, b, c, d, e〉4, (5.28)

and we can rewrite [a, b, c, d, e] in the following way (
∫

X ≡ 4!/2!2!
∫

d−2Xd+2X):

[a, b, c, d, e] ≡

∫

X

1

4!

〈a, b, c, d, e〉4

〈0, a, b, c, d〉〈0, b, c, d, e〉〈0, c, d, e, a〉〈0, d, e, a, b, 〉〈0, e, a, b, c〉
. (5.29)

Comparing this with the formula for the volume of the 4-simplex in CP
4

V ol4[a, b, c, d, e] =
1

4!

〈a, b, c, d, e〉4

〈0, a, b, c, d〉〈0, b, c, d, e〉〈0c, d, e, a〉〈0, d, e, a, b〉〈0, e, a, b, c〉
, (5.30)

we see that

[a, b, c, d, e] =

∫

X
V ol4[a, b, c, d, e]. (5.31)

One can see that the NMHV amplitude is given by the sum of V ol4. Let us also write for

comparison the general formula for volume of the simplex in CP
n

V oln(a1, . . . , an+1) =
1

n!

〈a1, . . . , an+1〉
n

〈0, a1, . . . , an〉 . . . 〈0, an+1, a1, . . . , an−1〉
. (5.32)

To get some geometrical intuition how this volume formula works, consider CP2 case [5]:

V ol2[a, b, c] =
1

2!

〈a, b, c〉2

〈0, a, b〉〈0, b, c〉〈0, c, a〉
. (5.33)

The 3 component objects ZI
a , Z

I
b , Z

I
c , I = 1, . . . , 3, which are homogeneous coordinates on

CP
2 define 3 lines in the dual CP2 space, with the coordinates WI , via the conditions8

(ZaW ) ≡ ZI
aWI = 0. In CP

n Z will define the n− 1 subspace. In the CP
2 case these lines,

defined by ZI
a , Z

I
b , Z

I
c intersect at the points

W1I = W(ab)I = ǫIJKZ
J
aZ

K
b ,

8We are considering the projective geometry, so if one will consider W as points in the 3 dimensional

affine spaces W, condition (ZW ) = 0, for fixed Z defines a plane in W. Intersection of this plane with the

plane defined by Z0 gives us line, which we are talking about.
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Figure 15. CP2 Simplex defined by Za, Zb, Zc.

W2I = W(bc)I = ǫIJKZ
J
b Z

K
c ,

W3I = W(ca)I = ǫIJKZ
J
c Z

K
a . (5.34)

These points are projected on a plane defined by Z0, and one can think of them as vertices

of 2d triangle (two dimensional simplex), with the edges defined by ZI
a , Z

I
b , Z

I
c ; V ol2[a, b, c]

is the projectively defined (it is invariant under rescalings of ZI → λZI or WI → λWI ,

while Z0 is always fixed, λ is some number) area of this triangle. The vertexes of this

triangle are in one to one correspondence with 〈0, a, b〉, etc. “scalar products”. In terms of

W ’s V ol2[a, b, c] is given by ((Z0W1) = 〈0, a, b〉, etc.)

V ol2[a, b, c] =
1

2!

〈W1,W2,W3〉

(Z0W1)(Z0W2)(Z0W3)
. (5.35)

Using projective invariance WI → λWI one can always choose W1,W2,W3 in the form

W1 = (x1, y1, 1), W2 = (x2, y2, 1), W3 = (x3, y3, 1). xi, yi are then the coordinates of the

vertices of (a, b, c) triangle in the plane defined by Z0.

The situation when one of the brackets in the denominator (for example 〈0, a, b〉 = 0)

is equal to 0 corresponds in general to the case when W1 point moves to infinity so that

V ol2[a, b, c] becomes singular (infinite).

In the CP
4 case, we are really interested in, the Z twistors define three dimensional

subspaces in dual the CP
4 space. Intersections of these three dimensional subspaces define

vertices of the four dimensional simplex. The vertexes of this simplex are in one-to-one

correspondence with 〈0, a, b, c, d〉 = 〈a, b, c, d〉 poles.

To see how one can observe cancellation of poles (vertices) in this geometrical picture,

let us return to the CP
2 example [5]. Consider two triangles defined by Z1, Z2, Z3 and

Z1, Z3, Z4. In the difference V ol2[1, 2, 3] − V ol2[1, 4, 3] (V ol2[1, 4, 3] = −V ol2[1, 3, 4])

the contribution of the 〈0, 1, 3〉 vertex will drop out, so the difference is regular in the

〈0, 1, 3〉 → 0 limit. See figure 16.

To see this cancellation in a more algebraic way, without drawing pictures, which is

very convenient when we are dealing with four dimensional volumes, let us introduce a

boundary operator ∂ for the simplex in CP
n which gives the volume of the boundary of

this simplex (i.e. combination of volumes of the simplexes in CP
n−1) [5]:

∂V oln[1, 2, 3, . . . , n] =
n
∑

i=1

(−1)i+1V oln−1[1, 2, . . . , i− 1, i+ 1, . . . , n]|Zi . (5.36)
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Figure 16. Cancellation of (1, 3) pole in V ol2[1, 4, 3]− V ol2[1, 2, 3].

One can verify that as expected ∂2 = 0, V oln−1[1, 2, . . . , i− 1, i+ 1, . . . , n]|Zi is defined as

the projection of the (1, 2, . . . , i− 1, i+ 1, . . . , n) lines into the n− 1 dimensional subspace

defined by Zi. Returning to the CP
2 case one can see that

∂V ol2[1, 2, 3] = V ol1[2, 3]|
Z1 − V ol1[1, 3]|

Z2 + V ol1[1, 2]|
Z3 ,

∂V ol2[1, 3, 4] = V ol1[4, 3]|
Z1 − V ol1[1, 4]|

Z3 + V ol1[1, 3]|
Z4 . (5.37)

The boundaries (line segments) of the triangles V ol1[1, 3]|Z2 and V ol1[1, 3]|Z4 corresponding

to the 〈013〉 vertex (pole) encounters with the opposite sign. This corresponds to the

situation when such vertex is absent in the final polytope (sum of simplexes). The same

will be true in the general case of the sum of the simplexes in CP
n−1.

In summary [5, 8] one can say that to figure out which vertices (poles) will be present

in the polytope combined from the set of simplexes, one has to act with the boundary

operator ∂ on each simplex and “cancel” all vertices with the opposite sign ignoring the

|Zi subscript. Hereafter we will drop the |Zi subscript.

As an example, one can check that in the case of the all-line shift (CSW) representation

of the n = 5 NMHV amplitude in the result of the action of the boundary operator on the

individual simplexes, all the poles (vertices) of the form 〈0, ∗, a, b, c〉 are “canceled” and

only physical poles of the form 〈0, a, b, c, d〉 remain. This also reflects the fact that the result

should be independent of the explicit choice of µ∗ in Z∗. In fact in the case of amplitudes

one can see that the result is independent of the choice of all components in Z∗ recasting

the all-line shift (CSW) representation into the BCFW one by using the 6 term identity.

Now let us return to the form factors. Due to the presence of γ+ = 0 condition on the

periodical contour (fermionic part χ+
i of the contour is closed) ψ

(−)
i 6= ψ

(+)
i . So in the case

of the form factors one can write

[a, b, c, d, e] ≡

∫

X

1

4!

〈a, b, c, d, e〉(−)2

(〈0, a, b, c, d〉〈0, b, c, d, e〉〈0, c, d, e, a〉〈0, d, e, a, b〉〈0, e, a, b, c〉)1/2

×
〈a, b, c, d, e〉(+)2

(〈0, a, b, c, d〉〈0, b, c, d, e〉〈0, c, d, e, a〉〈0, d, e, a, b〉〈0, e, a, b, c〉)1/2
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=

∫

X

(

V ol4[a, b, c, d, e]
(−)
)1/2 (

V ol4[a, b, c, d, e]
(+)
)1/2

. (5.38)

The only difference in (V ol4[a, b, c, d, e]
(−))1/2 and (V ol4[a, b, c, d, e]

(+))1/2 is the fermionic

components χ+
i and χ−

i . As it is not convenient to work with square roots of volumes

one can consider axillary objects where γ− and γ+ (hence χ+
i and χ−

i ) enter on an equal

footing and the limit γ+ → 0 is taken only in the final result. As it was explained

before, this limit is not singular. If some poles cancel in the sum of [a, b, c, d, e] before

the γ+ → 0 limit they also should cancel after this limit is taken; [a, b, c, d, e] are ratio of

polynomials. So if in the sum of such ratio of polynomials some poles of individual terms

cancel, taking one coefficient to 0 in the numerators of such polynomials should not affect

pole cancellation. From this point of view the NMHV form factor is not exactly the CP
4

polytope but rather its special limit (γ+ → 0).

Now consider the three point NMHV form factor (here we choose the contour periods

as in [27])

ZNMHV
3 /ZMHV

3 = [∗, 0, 1, 2, 3] + [∗, 1, 2, 3, 4] + [∗, 2, 3, 4, 5]. (5.39)

Considering γ+ 6= 0 let us apply the boundary operator to the individual terms:

∂V ol4[∗, 0, 1, 2, 3] = V ol3[0, 1, 2, 3]− V ol3[∗, 1, 2, 3] + (V ol3[∗, 0, 2, 3]− V ol3[∗, 0, 1, 3])

+V ol3[∗, 0, 1, 2],

∂V ol4[∗, 1, 2, 3, 4] = V ol3[1, 2, 3, 4]− V ol3[∗, 2, 3, 4] + (V ol3[∗, 1, 3, 4]− V ol3[∗, 1, 2, 4])

+V ol3[∗, 1, 2, 3],

∂V ol4[∗, 2, 3, 4, 5] = V ol3[2, 3, 4, 5]− V ol3[∗, 3, 4, 5] + (V ol3[∗, 2, 4, 5]− V ol3[∗, 2, 3, 5])

+V ol3[∗, 2, 3, 4]. (5.40)

We see that the poles corresponding to V ol3[∗, 0, 2, 3], V ol3[∗, 0, 1, 3], V ol3[∗, 1, 3, 4],

V ol3[∗, 1, 2, 4], V ol3[∗, 2, 4, 5], V ol3[∗, 2, 3, 5] are not canceled in such axillary object. All

other poles are canceled (Note that V ol3[∗, 3, 4, 5] and V ol3[∗, 0, 1, 2] correspond to the

same pole in the n = 3 case). We also see that

V ol3[∗, 1, 3, 4]− V ol3[∗, 1, 2, 4] = P(V ol3[∗, 0, 2, 3]− V ol3[∗, 0, 1, 3]), (5.41)

and

V ol3[∗, 2, 4, 5]− V ol3[∗, 2, 3, 4] = P
2(V ol3[∗, 0, 2, 3]− V ol3[∗, 0, 1, 3]). (5.42)

So if these poles are canceled in the first term, they will be canceled in other terms as well.

Now what will change if we take the γ+ → 0 limit? First of all let us note that the

〈0, ∗, 0, 2, 3〉 = 〈∗, 0, 2, 3〉 and 〈0, ∗, 0, 1, 3〉 = 〈∗, 0, 1, 3〉 vertices in fact correspond to the

same pole [∗|q|3〉:

〈∗, 0, 2, 3〉 = 〈23〉[∗|x30|3〉 = 〈23〉[∗|q|3〉,

〈∗, 0, 1, 3〉 = 〈31〉[∗|x13|3〉 = 〈31〉[∗|q|3〉. (5.43)
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The formulas

〈∗, i− 1, i, j〉 = 〈i− 1i〉[∗|xij |j〉, xij =

j−1
∑

k=i

pk, (5.44)

Zi = (λi, xiλi), Zi+nk = (λi, xi+nkλi), i = 1 . . . n, k ∈ N. (5.45)

were used. Now consider the argument of the δ̂+2 function in [∗, 0, 1, 2, 3] in more detail.

The argument looks like (note that χ+
∗ = 0)

χ+
3 〈∗, 0, 1, 2〉+ χ+

0 〈∗, 1, 2, 3〉+ χ+
1 〈∗, 0, 2, 3〉+ χ+

2 〈∗, 0, 1, 3〉, (5.46)

γ+ = 0 corresponds to χ+
0 = χ+

3 , so we can write the argument of the delta function as

χ+
3 (〈∗, 0, 1, 2〉+ 〈∗, 1, 2, 3〉) + χ+

1 〈∗, 0, 2, 3〉+ χ+
2 〈∗, 0, 1, 3〉. (5.47)

For 〈∗, 0, 1, 2〉 and 〈∗, 1, 2, 3〉 one can get

〈∗, 0, 1, 2〉+ 〈∗, 1, 2, 3〉 = [∗|q|3〉〈12〉, (5.48)

so [∗|q|3〉 factors out from the delta function and one can see that [∗|q|3〉2 ∼ δ̂+2. The

poles 〈∗, 0, 2, 3〉 ∼ [∗|q|3〉 and 〈∗, 0, 1, 3〉 ∼ [∗|q|3〉 are exactly canceled! This is similar to

the cancelation of q2 pole in R̃
(1)
rtt . Note that such factorisation is possible only in the γ+ → 0

limit. δ̂−2 dose not factories in such a way. From a geometric point of view this means

that as [∗|q|3〉 → 0 V ol4[∗, 0, 1, 2, 3]
(−) becomes singular, while V ol4[∗, 0, 1, 2, 3]

(+) → 0 so

that their product remains finite. Such cancellation of the poles is the general pattern for

all [∗, a, b, c, d] coefficients with a = i and b = i± n for the n point form factor.

For the general n the situation is the same as in the n = 3 example and all poles

containing the µ∗ dependence, except pairs of poles which come from the [∗, a, b, c, d]

coefficients with a = i and b = i ± n, are already cancel in the axillary expression with

γ+ 6= 0. The remaining pairs of poles cancel in γ+ → 0 limit. In the appendix one can

find the details on the n = 4 example.

Summing up, for ZNMHV
n /ZMHV

n in the all-line shift (CSW) representation the answer

is free from poles containing the Z∗ dependence which also imply cancellation of spurious

poles in BCFW picture and independence of all-line shift (CSW) result on the choice of µ∗.

This cancellation most easily can be seen geometrically when we represent the [∗, a, b, c, d]

invariants as the volumes or the products of volumes of the simplexes in CP
4. This situation

is similar to the amplitude case, but there are some differences unique to the form factors

due to their special Grassmann structure. The form factor is not exactly the CP4 polytope

but rather special limit (γ+ → 0) of such polytope.

6 Conclusion

In this article, we considered different types of recursion relations for the form factors of

operators from the stress tensor supermultiplet in the N = 4 SYM theory. We formu-

lated the BCFW recursion relations in the momentum twistor space for general helicity
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configuration and considered the NMHV sector in more details. Using the momentum

twistor space representation we demonstrated the equivalence between the BCFW and

all-line shift (CSW) recursion relations at least for the NMHV sector and used geomet-

rical interpretation of the NMHV form factors as the volumes of polytopes to show that

the BCFW/all-line shift (CSW) representations of the form factors are free from spurious

poles. The relation between the logarithmical derivative of the form factor with respect

to the coupling constant and the amplitudes were also considered. In addition, we briefly

discussed how the momentum twistor representation can be used to clarify the relation

between the IR pole coefficients at the one loop level. We hope that similar ideas can be

used beyond the NMHV sector.

The main conceptual result of this article is that the “on-shell structures and ideas”

such as the momentum twistor representation, Yangian momentum twistor invariant

function [abcde] or the polytope interpretation of the NMHV amplitudes still play an

essential role for partially off-shell objects such as the form factors (or at least for the form

factors of operators from the stress tensor supermultiplet). However, several important

questions still remain unanswered.

It is well known that different BCFW shifts give representations of the same amplitude,

which looks different at the first glance. For example, for the NMHV sector six point

amplitude we have for the [1, 2〉 shift:

ANMHV
6

AMHV
6

= [1, 2, 3, 4, 5] + [1, 2, 3, 5, 6] + [1, 3, 4, 5, 6], (6.1)

while for the [2, 3〉 shift:

ANMHV
6

AMHV
6

= P ([1, 2, 3, 4, 5] + [1, 2, 3, 5, 6] + [1, 3, 4, 5, 6])

= [6, 1, 2, 3, 4] + [6, 1, 2, 4, 5] + [6, 2, 3, 4, 5]. (6.2)

In the general case, the equivalence between different BCFW representations can be shown

using the representation of the amplitude as an integral over Grassmannian and residues

theorems for functions of multiple complex variables [52]. The case n = 6 may also be seen

as the manifestation of six term identity

0 = [1, 2, 3, 4, 5] + [1, 2, 3, 5, 6] + [1, 3, 4, 5, 6]

−P ([1, 2, 3, 4, 5] + [1, 2, 3, 5, 6] + [1, 3, 4, 5, 6]) , (6.3)

for the [a, b, c, d, e] functions, which can be interpreted as “the boundary of 5-simplex in

CP
4 =0” in the polytope picture. In the case of the form factor, we have similar relations

between the [a, b, c, d, e] functions in special kinematics (γ+ = 0). For the [1, 2〉 shift one

can get:

ZNMHV
4

ZMHV
4

= (Sc
(3)
2 )[−1, 0, 1, 3, 4] + [1, 2, 3, 4, 5] + [1, 2, 3, 0,−1] + c

(4)
2 [1, 2, 3,−2,−1], (6.4)

while for the [2, 3〉 shift:

ZNMHV
4

ZMHV
4

=P

(

(Sc
(3)
2 )[−1, 0, 1, 3, 4]+[1, 2, 3, 4, 5]+[1, 2, 3, 0,−1]+c

(4)
2 [1, 2, 3,−2,−1]

)

, (6.5)

– 31 –



J
H
E
P
1
2
(
2
0
1
4
)
1
1
1

and as the consequence

0 = (Sc
(3)
2 )[−1, 0, 1, 3, 4] + [1, 2, 3, 4, 5] + [1, 2, 3, 0,−1] + c

(4)
2 [1, 2, 3,−2,−1]

−P

(

(Sc
(3)
2 )[−1, 0, 1, 3, 4] + [1, 2, 3, 4, 5] + [1, 2, 3, 0,−1] + c

(4)
2 [1, 2, 3,−2,−1]

)

. (6.6)

Is there any geometrical picture behind such identities (see also (5.6))?

It would be interesting to find representations for the form factors as an integral over

Grassmannian [52] similar to the amplitudes9 case:

A(0)(k)
n =

∫

dn×kCal

V ol[GL(k)]

1

M1 . . .Mn

k
∏

a=1

δ4|4

(

n
∑

l=1

CalW
A
l

)

, (6.7)

or prove that such representation is impossible. This representation is the first step in

the on-shell diagram formalism [9], which may be very useful for the form factors as well

as for the amplitudes. The representation of the ratio of the NMHV and MHV form

factors as the sum of the [∗, a, b, c, d] functions gives hope that such Grassmannian integral

representation is possible.

It would be interesting to formulate recursion relations for the integrand of the form

factors at the loop level. The form factors of operators from the stress tensor supermultiplet

naturally involve non planar contributions starting from two loops, so to formulate such

recursion relations, one must incorporate non planarity.

And also, it would be interesting to continue the investigation of the form fac-

tors/Wilson loop duality. One can hope that the results obtained in this article will be

useful in mentioned above quests.
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A N = 4 harmonic superspaces

The standard N = 4 coordinate superspace is convenient to describe supermultiplets of

fields or local operators. It is parameterized by the following coordinates:

N = 4 coordinate superspace = {xαα̇, θAα , θ̄Aα̇}, (A.1)

where xαα̇ are ordinary coordinates, which are bosonic variables and θ’s are additional

fermionic coordinates; A is the SU(4)R index, α, α̇ are the Lorentz SL(2, C) indices.

9Here Mi is i’th ordered minor of the n× k Cal matrix, and WA
l = (µα

l , λ̃α̇,l, η
A
l ).
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The N = 4 supermultiplet of fields (containing φAB scalars, ψA
α , ψ̄

A
α̇ fermions and Fµν–

the gauge field strength tensor, all in the adjoint representation of the SU(Nc) gauge group)

is realised in the N = 4 coordinate superspace as the constrained superfield WAB(x, θ, θ̄)

with the lowest component WAB(x, 0, 0) = φAB(x); WAB in general is not a chiral object

and satisfies several constraints: the self-duality constraint

WAB(x, θ, θ̄) =WAB(x, θ, θ̄) =
1

2
ǫABCDWCD(x, θ, θ̄), (A.2)

which implies φAB = φAB = 1
2ǫ

ABCDφCD and two additional constraints10

Dα
CW

AB(x, θ, θ̄) = −
2

3
δ
[A
C D

α
LW

B]L(x, θ, θ̄),

D̄α̇(CWA)B(x, θ, θ̄) = 0, (A.3)

where DA
α is the standard coordinate superspace derivative.11 Note that in this formulation

the full N = 4 supermultiplet of fields is on-shell in the sense that the algebra (more

precisely the last two anticommutators) of the generators QAα, Q̄
B
α̇ for the supersymmetric

transformation of the fields in this supermultiplet

{QAα, Q̄
B
α̇ } = 2δBAPαα̇, {QAα, QBβ} = 0, {Q̄A

α̇ , Q̄
B
β̇
} = 0 (A.4)

is closed only if the fields obey their equations of motion (in addition the closure of the

algebra requires the compensating gauge transformation [41]).

The off-shell formulation of the full N = 4 supermultiplet is still unknown. But

fortunately the self-dual (chiral) sector of the full N = 4 supermultiplet can be formulated

off-shell. In the SU(4)R covariant way this can be done by using the N = 4 harmonic

superspace [40, 41].

The N = 4 harmonic superspace is obtained by adding additional bosonic coordi-

nates (harmonic variables) to the N = 4 coordinate superspace or on-shell momentum

superspace. These additional bosonic coordinates parameterize the coset

SU(4)

SU(2)× SU(2)′ ×U(1)
(A.5)

and carry the SU(4) index A, two copies of the SU(2) indices a, ȧ and the U(1) charge ±

(u+a
A , u−a′

A ) and c.c. once (ū−A
a , ū+A

a′ ). (A.6)

Using these variables one presents all the Grassmann objects with SU(4)R indices.

The Grassmann coordinates in the original N = 4 coordinate superspace then can be

transformed as

θ+a
α = u+a

A θAα , θ−a′

α = u−a′

A θAα , (A.7)

θ̄−aα̇ = ū−A
a θ̄Aα̇, θ̄+a′α̇ = ū+A

a′ θ̄Aα̇, (A.8)

10[∗, ⋆] denotes antisymmetrization in indices, while (∗, ⋆) denotes symmetrization in indices.
11Which is DA

α = ∂/∂θαA + iθ̄Aα̇∂/∂xαα̇.
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and in the opposite direction

θAα = θ+a
α ū−A

a + θ−a′

α ū+A
a′ , (A.9)

θ̄Aα̇ = θ̄+a′α̇u
−a′

A + θ̄−aα̇u
+a
A . (A.10)

The same is true for supercharges:

QAα → (Q−
aα, Q

+
a′α), Q̄

A
α̇ → (Q̄+a

α̇ , Q̄−a′

α̇ ). (A.11)

So the N = 4 harmonic superspace is parameterized with the following set of coordinates

N = 4 harmonic superspace = {xαα̇, θ+a
α , θ−a′

α , θ̄−aα̇, θ̄
+
a′α̇ u}. (A.12)

Using u harmonic variables one can project the WAB superfield as

WAB →WABu+a
A u+b

B = ǫabW++, (A.13)

W++ = W++(x, θ+a, θ−a′ , θ̄−a , θ̄
+
a′ u), (A.14)

where ǫab is an SU(2) totally antisymmetric tensor. This W++ superfield is SU(4)R and

SU(2)× SU(2)′ ×U(1) covariant but carries +2 U(1) charge.

Using harmonics one can project constraints (A.3) so that:12

Dα
−a′W

++ = 0,

D̄α̇
+aW

++ = 0. (A.15)

Thus, the superfield W++ contains the dependence on half of the Grassmannian variables

θ’s and θ̄’s:

W++ =W++(x, θ+a, θ̄−a′ , u). (A.16)

Now one can put all θ̄ = 0 in W++, the corresponding supercharges ect. and observe that

all component fields in W++(x, θ+a, 0, u) are off-shell in a sense that the remaining chiral

part of SUSY algebra {QAα, QBβ} = 0 which acts onW++ is closed without using equation

of motion for the component fields.

The chiral part T of the stress tensor supermultiplet can now be constructed simply as:

T (x, θ+, u) = Tr(W++W++)|θ̄=0. (A.17)

T is the first operator in the series of the so-called 1/2-BPS operators of the form

Tr[(W++)k]. Its lowest component is

T (x, 0, u) = Tr(φ++φ++), φ++ =
1

2
ǫabu

+a
A u+b

B φAB, (A.18)

and its highest component which is proportional to (θ+)4 is the Lagrangian of N = 4

SYM written in a special (chiral) form. All components of T can be found in [41]. Using

supercharges one can write T as:

T (x, θ+, u) = exp(θ+a
α Q−α

a )Tr(φ++φ++). (A.19)

12Strictly speaking, this is true only in the free theory (g = 0), in the interacting theory one has to replace

DA
α , D̄

A
α̇ by their gauge covariant analogs, which contain superconnection, but the final result is the same [41].
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Also, the lowest component T (x, 0, u) commutes with half of the chiral and anti-chiral

supercharges of the theory:

[T (x, 0, u), Q+
a′α] = 0, [T (x, 0, u), Q̄+a

α̇ ] = 0. (A.20)

These properties allow one to determine the general Grassmann structure of the form

factor [28].

Harmonic variables can also be used in on-shell momentum superspace to treat on-shell

states of the theory on equal footing as operators from supermultiplets. Using harmonic

variables one can write:

N = 4 harmonic on-shell momentum superspace = {λα, λ̃α̇, η
−
a , η

+
a′ , u}. (A.21)

Here λα and λ̃α̇ are the SL(2, C) spinors associated with momenta carried by a massless

state (particle): pαα̇ = λαλ̃α̇, p
2 = 0. Supercharges which act in this superspace can be

represented in the n-particle case as

q−aα =
n
∑

i=1

λα,iη
−
a,i, q+a′α =

n
∑

i=1

λα,iη
+
a′,i, (A.22)

and

q̄+a
α̇ =

n
∑

i=1

λ̃α̇,i
∂

η−a,i
, q̄−a′

α̇ =

n
∑

i=1

λ̃α̇,i
∂

η+a′,i
. (A.23)

The Grassmann delta functions, which one can encounter in this article, are given by

(〈ij〉 ≡ λα,iλ
α
j ):

δ−4(q−aα) =
n
∑

i,j=1

2
∏

a,b=1

〈ij〉η−a,iη
−
b,j , δ+4(q+aα) =

n
∑

i,j=1

2
∏

a′,b′=1

〈ij〉η+a′,iη
+
b′,j , (A.24)

δ̂−2(X−a) =
2
∏

a=1

X−a, δ̂+2(X+
a′) =

2
∏

a=1

X+
a′ . (A.25)

We also will use the notations

δ−4δ+4 ≡ δ8, δ̂−2δ̂+2 ≡ δ̂4. (A.26)

Using these delta functions one can rewrite the MHVn and MHV3 amplitudes, Rrst func-

tions etc. in the form nearly identical to the form they have in the ordinary on-shell mo-

mentum superspace.

Grassmann integration measures are defined as

d−2η =
2
∏

a=1

dη−a , d
+2η =

2
∏

a=1

dη+a′ , d−2ηd+2η ≡ d4η. (A.27)

in the on-shell momentum superspace and

d−4θ =
2
∏

a,α=1

dθ−a
α , d+4θ =

2
∏

a,α=1

dθ+a′α, (A.28)
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in the ordinary superspace; δ±4 functions can be represented as δ̂±2 functions using the

identity (here we drop the SU(2) and SL(2, C) indices),

δ±4(q±) = 〈lm〉2δ̂±2

(

η±l +
n
∑

i=1

〈mi〉

〈ml〉
η±i

)

δ̂±2

(

η±m +
n
∑

i=1

〈li〉

〈lm〉
η±i

)

, i 6= l, i 6= m. (A.29)

which can be integrated as usual Grassmann delta functions.

B Spurious pole cancellation in A
NMHV (0)
5 and Z

NMHV (0)
4

Now let us illustrate how the cancellation of the spurious poles can be seen on the example

of the NMHV5 amplitude. Consider the all-line shift (CSW) representation of the NMHV5

amplitude:

ANMHV
5

AMHV
5

= [∗, 1, 2, 3, 4] + [∗, 2, 3, 4, 5] + [∗, 3, 4, 5, 1] + [∗, 4, 5, 1, 2] + [∗, 5, 1, 2, 3]. (B.1)

Applying the boundary operator to all terms in ANMHV
5 /AMHV

5 we get:

∂V ol4[∗, 1, 2, 3, 4] = V ol3[1, 2, 3, 4]− V ol3[∗, 2, 3, 4] + V ol3[∗, 1, 3, 4]− V ol3[∗, 1, 2, 4]

+V ol3[∗, 1, 2, 3],

∂V ol4[∗, 2, 3, 4, 5] = V ol3[2, 3, 4, 5]− V ol3[∗, 3, 4, 5] + V ol3[∗, 2, 4, 5]− V ol3[∗, 2, 3, 5]

+V ol3[∗, 2, 3, 4],

∂V ol4[∗, 3, 4, 5, 1] = V ol3[3, 4, 5, 1]− V ol3[∗, 1, 4, 5] + V ol3[∗, 1, 3, 5]− V ol3[∗, 1, 3, 4]

+V ol3[∗, 3, 4, 5],

∂V ol4[∗, 4, 5, 1, 2] = V ol3[4, 5, 1, 2]− V ol3[∗, 1, 2, 5] + V ol3[∗, 1, 2, 4]− V ol3[∗, 2, 4, 5]

+V ol3[∗, 1, 4, 5],

∂V ol4[∗, 5, 1, 2, 3] = V ol3[5, 1, 2, 3]− V ol3[∗, 1, 2, 3] + V ol3[∗, 2, 3, 5]− V ol3[∗, 1, 3, 5]

+V ol3[∗, 1, 2, 5]. (B.2)

We see that all terms containing Z∗ “cancel” each other, which indicates that in the sum

of all terms all spurious poles 〈∗, a, b, c〉 are canceled.

Now let us consider the NMHV4 form factor. In the all-line shift (CSW) representation

it can be written as:

ZNMHV
4 /ZMHV

4 = ([∗,−1, 0, 1, 2] + [∗,−1, 0, 2, 3]) + ([∗, 0, 1, 2, 3] + [∗, 0, 1, 3, 4]) +

+([∗, 1, 2, 3, 4] + [∗, 1, 2, 4, 5]) + ([∗, 2, 3, 4, 5] + [∗, 2, 3, 5, 6]). (B.3)

Note also that equivalently one can rewrite last two terms as

[∗, 2, 3, 4, 5] = [∗,−2,−1, 0, 1], [∗, 2, 3, 5, 6] = [∗,−2,−1, 1, 2]. (B.4)

Applying ∂ to all these terms one can obtain:

∂V ol4[∗,−1, 0, 1, 2] = V ol3[−1, 0, 1, 2]− V ol3[0, 1, 2, ∗] + V ol3[1, 2, ∗,−1]− V ol3[2, ∗,−1, 0]

+V ol3[∗,−1, 0, 1],
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∂V ol4[∗,−1, 0, 2, 3] = V ol3[−1, 0, 2, 3]− V ol3[0, 2, 3, ∗] + (V ol3[2, 3, ∗,−1]− V ol3[3, ∗,−1, 0])

+V ol3[∗,−1, 0, 2],

∂V ol4[∗, 0, 1, 2, 3] = V ol3[0, 1, 2, 3]− V ol3[1, 2, 3, ∗] + V ol3[2, 3, ∗, 0]− V ol3[3, ∗, 0, 1]

+V ol3[∗, 0, 1, 2],

∂V ol4[∗, 0, 1, 3, 4] = V ol3[0, 1, 3, 4]− V ol3[1, 3, 4, ∗] + (V ol3[3, 4, ∗, 0]− V ol3[4, ∗, 0, 1])

+V ol3[∗, 0, 1, 3],

∂V ol4[∗, 1, 2, 3, 4] = V ol3[1, 2, 3, 4]− V ol3[2, 3, 4, ∗] + V ol3[3, 4, ∗, 1]− V ol3[4, ∗, 1, 2]

+V ol3[∗, 1, 2, 3],

∂V ol4[∗, 1, 2, 4, 5] = V ol3[1, 2, 4, 5]− V ol3[2, 4, 5, ∗] + (V ol3[4, 5, ∗, 1]− V ol3[5, ∗, 1, 2])

+V ol3[∗1, 2, 4],

∂V ol4[∗,−2,−1, 0, 1] = V ol3[−2,−1, 0, 1]− V ol3[−1, 0, 1∗] + V ol3[0, 1, ∗,−2]− V ol3[1, ∗,−2,−1]

+V ol3[∗,−2,−1, 0],

∂V ol4[∗,−2,−1, 1, 2] = V ol3[−2,−1, 1, 2]−V ol3[−1, 1, 2, ∗]+(V ol3[1, 2, ∗,−2]−V ol3[2, ∗,−2,−1])

+V ol3[∗,−2,−1, 1]. (B.5)

We see that poles corresponding to terms containing Z∗ in the (. . .) bracket “cancel” in

γ+ → 0 limit, while all other Z∗ dependant poles “cancel” among themselves.

C IR pole coefficients relations

In one loop generalized unitarity based calculations for the NMNV sector the following

identities for the R functions were used in n = 4 case:

R̃
(1)
244 = R̃

(1)
211, R̃

(1)
144 = R̃

(1)
311, R

(2)
413 = R

(1)
241. (C.1)

We now want to show that they are transparent and easily derived in the momentum

twistor variables.

Let us start with R̃
(1)
244 = R̃

(1)
211. It is essentially trivial, these are the same R functions

written using clockwise and anticlockwise conventions.

For R̃
(1)
144, R̃

(1)
311, one can obtain (note that here legs are ordered clockwise )

R̃
(1)
144 =

〈1, 2, 4,−1〉〈4,−1, 0, 1〉

〈−1, 0, 3, 4〉〈1, 3, 4, 5〉
[1, 3, 4,−1, 0] = [∗, 0, 1, 3, 4] + [∗,−1, 0, 1, 3] + [∗, 1, 3, 4, 5]. (C.2)

R̃
(1)
311 =

〈3, 4, 5, 0〉〈5, 0, 1, 3〉

〈0, 1, 4, 5〉〈3,−1, 0, 1〉
[3, 4, 5, 0, 1] = [∗, 0, 1, 3, 4] + [∗, 1, 3, 4, 5] + [∗, 3,−1, 0, 1]. (C.3)

Indeed, as expected R̃144 = R̃311.

For R
(2)
413 and R

(1)
241, we see that

R
(2)
413 = [4, 0, 1, 2, 3], and R

(1)
241 = [2, 3, 4, 0, 1], (C.4)

so R
(2)
413 = R

(1)
241 as expected.
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