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we enlarge a black hole-scalar field system by adding an extra radiation detector that

couples with the scalar field. After performing a partial trace over the scalar field space, we

obtain an effective entanglement between the black hole and the detector (or radiation in it).

As the whole system evolves, the S-matrix formula can be constructed formally step by step.

Without local quantum measurements, the paradoxes of the information loss and AMPS’s

firewall can be resolved. However, the information can be lost due to quantum decoherence,

as long as some local measurement has been performed on the detector to acquire the

information of the radiation in it. But unlike Hawking’s completely thermal spectrum,

some residual correlations can be found in the radiations. All these considerations can be

simplified in a qubit model that provides a modified quantum teleportation to transfer the

information via an EPR pairs.
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1 Introduction

In 1976, Hawking pointed out the information loss paradox [1, 2], which says that the

quantum state of the Hawking radiation emitted from the black hole is not pure, but

completely thermal. This means that the black hole evaporation is not a unitary process,

and information will be lost when the evaporation finishes. After Hawking’s work, various

alternatives to restore the black hole unitary have been proposed and studied, one of which

is the black hole complementarity (BHC) [3]. It postulates that

(i) black hole formation and evaporation are described via unitary quantum evolution;

(ii) the region outside the stretched horizon is well described by QFT in curved space;

(iii) to a distant observer, the black hole appears to be a quantum system with states given

by, for example |M〉, with M the mass of the black hole;
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(iv) an in-falling observer can cross the horizon without encountering any trouble, in

particular, a field vacuum can always be present in the near horizon region.

However, in reference [4], Almheiri et al. formulated a firewall paradox, saying that

the postulates (i), (ii) and (iv) of the BHC are not valid simultaneously. Their argument is

briefly as follows: by dividing the Hawking radiation into an early part and a late part, the

purity of the Hawking radiation (postulate (i)) implies that the late part is fully entangled

with the early part, but the absence of any trouble for the in-falling observer (postulate(iv))

implies that the late part is full entangled with the modes behind the event horizon. This

violates the monogamy of entanglement of quantum mechanics. The firewall paradox has

led to a serious debate [4–8].

Both of the two paradoxes seem to arise from a fact that their arguments depend too

much on the observers. In the information loss argument, the distant observer plays an

crucial role via local quantum measurements. While in the BHC, an in-falling observer is

added to ensure the validness of effective field theory in the near horizon region, so that

Einstein’s equivalence principle is satisfied. But this violates the monogamy of entangle-

ment when combined with the descriptions of the distant observer. However, the principle

of general covariance says that a physical description should not depend on the observers.

Thus, to reconcile the contradiction, the description of the distant observer should be ex-

tended to include a complementary interior observable.1 As a consequence, we can obtain

an effective super-observer whose description may be consistent with the in-falling ob-

server’s. In this case, a postulate about the interior region of the black hole is also needed,

assuming that this region can also be well described by QFT in curved space, certainly

the singularity r = 0 should be excluded. This postulate seems to be appropriate only for

a macro black hole whose interior region is large enough, but not for a micro one with a

small interior, where quantum gravity effects will dominate. However, if this postulate can

help to resolve those paradoxes for a macro black hole, it should be treated seriously.

The closed system in the black hole evaporation problem can be simplified to be com-

posed of two components, the black hole and a matter field, for example, a scalar field.

According to quantum mechanics [9], a measurement apparatus is usually utilized as an

environment for a quantum measurement. It is thus possible to add an apparatus into

the black hole evaporation problem, for example a radiation detector that couples with

the scalar field. With this added detector, an effective field model can be proposed to

satisfy the BHC, with the second postulate replaced by an extended one including the

description about the interior of the black hole. After performing a partial trace over the

scalar field space, an effective black hole-detector (or radiation in it) entanglement will be

obtained. The S-matrix formula can be constructed formally step by step, implying that

the information won’t be lost during the evolution of the entire system.

However, the information can be lost due to quantum decoherence, when some local

measurement is performed on the detector to acquire the information of the radiation in it.

In this sense, the black hole evaporation (without extra matter absorptions) is analogous

to the amplitude-damping channel [9], a schematic model of the decay of an excited atom

1That is a combination {Oext,Oint}, for detailed discussions, see section 2.1.
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due to spontaneous emission of photons. The lowest order decay rate is calculated, giving

a smaller estimate of the l = 0 luminosity (without backscattering effects) (128π3M2)−1.

Moreover, a non-thermal spectrum differing from Hawking’s completely thermal one is also

obtained, implying that the information is not completely lost in this case.

A qualitative model including the gravitational perturbation is further investigated,

in which the gravitons (or gravitational field perturbations) play the role of an interme-

diate medium for the energy transfer between the interior and exterior of the black hole.

Moreover, we show that the effective entanglements between the black hole and the ra-

diations (in the detector) belong to a class, whose members are nonlocal and generated

by some other already existing entanglements. This entanglement generation can be well

demonstrated by a qubit model, in which correlations between two distant systems can be

established through an EPR pairs.2 Moreover, a modified quantum teleportation via the

EPR pairs is also proposed to transfer information, thus the information of the black hole

can also be transferred outside effectively in our effective field model.

The outline of our paper is as follows. In section 2.1, we study the extension of the

BHC (ii) to include a postulate about the interior region of a black hole. In sections 2.2

and 2.3, we develop our effective field model and obtain the required entanglement between

the black hole and the added radiation detector. In section 3.1, a S-matrix formula for our

model is constructed, while in sections 3.2 and 3.3, the situations of the information for our

model is discussed in detail. The inclusion of the gravitational perturbation is qualitatively

analyzed in section 4.1. Finally, in section 5, we give a brief summary and propose a qubit

model of the black hole evaporation. Two appendixes are added. In appendix A, a simple

model with a singular evolution operator is studied, and in appendix B, the mathematical

detail of the qubit model is given.

2 Effective field model of the black hole evaporation

2.1 General covariance and extension of the BHC (ii)

In the physics of a black hole, for example, a Schwarzschild black hole with a mass M ,

there are mainly two classes of observers: one class consists of the distant observers, or

more generally static observers, while the other one is composed of the in-falling observers.

For a static observer, the reference frame is given by the global (Schwarzschild) coordinate

(t, r, θ, φ) with a metric singularity at r = 2M , leading to a hypersurface called an event

horizon. As a result, in the view of a distant observer, an in-falling particle will never

cross the event horizon to enter the interior of the black hole, in the sense of using infinite

time because of the singular event horizon at r = 2M ; analogously, a beam of light in the

interior of the black hole can never escape outside by crossing the event horizon because of

the same singular event horizon. While for an in-falling observer, the chosen coordinate is

some locally inertial one ξαX so that no singularity occurs. Consequently, in his view, the

in-falling particle can cross the event horizon in a finite time.

2Readers who want to quickly understand our model conceptually are advised to read first the qubit

model in section 5 and its mathematical details in appendix B.
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The descriptions of the above two classes of observers are apparently in contradiction,

which seems to invalidate the principle of general covariance. In the quantum version, this

contradiction is in fact expressed as the information loss paradox, in which the quantum

state is mixed in the view of a distant observer, while pure for an in-falling observer.

Certainly, the BHC was actually proposed to reconcile the contradiction between the two

descriptions, but it seems to violate the monogamy of entanglement of quantum mechanics,

leading to a firewall paradox [4]. Notice further that the firewall paradox arises because

of the possible inconsistency of the BHC(i)(ii)(iv), with (ii)(iv) involving the static and

in-falling observers respectively. In this sense, the firewall paradox can also be treated as

one part of the violation of general covariance. In reference [8], by adding an ancillary

Hilbert space, the authors tried to reconstruct the local effective field theory observables

that probe the black hole interior, and relative to which the state near the horizon looks

like a local Minkowski vacuum. In this way, the firewall paradox can be resolved effectively,

but not completely. Moreover, they treated their ancillary Hilbert space only as a carbon

copy of the space of the exterior Hawking radiation. Then whether their ancillary Hilbert

space can be treated just as the space of the interior modes?

Let’s skip this problem temporarily, and compare the descriptions of two kinds of

observers in a different way. If the principle of general covariance is also proper in the

quantum version, the descriptions of two different observers about the physical world should

be consistent with each other. However, this seems not to be the case for the distant and in-

falling observers in a black hole background or the static and accelerated observers in a flat

space background, indicated by the information loss paradox. Let’s consider a simplified

model of formation of a black hole, a shock wave model [10]. Initially, the space-time is a

flat one, and after a while, a black hole is produced by a shock wave. The resulting black

hole can be well described by the Vaidya space-time with line element [10]

ds2 = −
(

1− M(v)

r

)
dv2 + 2dvdr + r2dΩ2 , (2.1)

with M(v) = MΘ(v − v0). For a static observer relative to the initial flat space-time, an

initial pure state will evolve to a mixed state due to the Hawking effect [1], i.e. the familiar

information loss paradox. For an accelerated observer relative to the initial flat space-time,

however, the initial state he observe should be thermal due to the Unruh effect [11], since

he is accelerated relative to the initial flat space-time. Moreover, if his acceleration can be

treated as the one induced by the produced black hole according to Einstein’s equivalence

principle, i.e. he becomes an in-falling observer for the formed black hole, then the final

state he observes may be pure.3 These can be expressed formally as

|0〉in
static−→ ρmix, ρmix

in−falling−→ |0〉U , (2.2)

3More concretely, the coordinate frame of a static observer is (t, r, θ, φ), which is inertial for the initial

flat space-time, but non-inertial for the final produced black hole. However, the coordinate frame of an

accelerated observer is some one ξαX , which is non-inertial for the initial flat space-time. But it may be

inertial for the final black hole if ξαX is just the in-falling coordinate frame of the formed black hole, according

to Einstein’s equivalence principle.
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where |0〉in is the Minkowski vacuum for the static observer relative to the initial flat space-

time, and |0〉U ∼ |0〉in is the Unruh (or near horizon) vacuum for the in-falling observer

relative to the produced black hole. Then how to understand these processes, especially the

second one involving an evolution from a mixed state to a pure one? If the first process was

physically possible, then the second one should also be the case. Although the first process

can be obtained by some partial trace in quantum mechanics, the second one can not be

realized effectively. These two inconsistent processes observed by two different observers

in fact imply further the violation of the principle of general covariance, in addition to the

information loss paradox.4

The processes in (2.2) are both non-unitary, because some local measurements have

been performed either initially or finally, indicated by the mixed density operators. Obvi-

ously, these local measurements are caused by the space-time causal structures in the views

of respective observers. It thus seems that the only way to reconcile the contradiction is to

extend those local measurements(or observables) by including some complementary ones.

This is analogous to the arguments of reference [8], resolving the firewall paradox effec-

tively by adding an ancillary Hilbert space. By treating this ancillary Hilbert space just

as the one for the interior modes, the descriptions of the static and in-falling observers

may be consistent with each other, and the principle of general covariance may thus be

obeyed.5 In other words, according to the principle of general covariance, there should be

a correspondence between the field observables relative respectively to the in-falling and

static observers expressed formally as

{Oin−falling}
 {Oext,Oint} , (2.3)

with Oext and Oint the observables corresponding to the static observers in the exterior

and interior of the black hole respectively.6 As will be shown below, this correspondence

implies a possible global or nonlocal correlation between Oext and Oint, meaning that a

single Oext or Oint is not complete enough to give a full consistent description.

Then whether the violation of general covariance can be resolved by the correspon-

dence (2.3)? Actually, this correspondence indicates that {Oext,Oint} may be treated as

the “super-observer” of [3], whose description can involve both the interior and exterior

degrees of freedom. This resembles the case of an EPR pairs, with the identifications

Oin−falling ⇒ St = S1 + S2, Oext ⇒ S1,Oint ⇒ S2 , (2.4)

4Since the information loss can be explained well by a local measurement according to quantum mechan-

ics, the relevance to the violation of general covariance is not evident. While the second process in (2.2)

provides an obvious evidence for the violation of general covariance, since it cannot be explained well only

by a local measurement.
5Notice that the violation of general covariance is expressed by both of the paradoxes of information

loss and firewall. The authors of reference [8] only deal with the firewall paradox, since they still base their

arguments on a thermal spectrum, i.e. the Hawking’s process in (2.2). In this sense, the violation of general

covariance is resolved only partially by including a complementary observable, with the information loss

paradox still unresolved. This can also be seen from the discussions below (2.5).
6In the flat space background, there is an analogous correspondence {Ostatic}
 {OR,OL} between the

observables relative respectively to the static and accelerated observers.
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where St is the total spin of two electrons with respective spins S1 and S2. In other

words, the observables Oext and Oint are independent and can be measured simultaneously,

but the measurement results may be correlated for a pure state of the in-falling observer,

corresponding to case of the total spin states or the four Bell states. This means that, for

the Unruh vacuum |0U 〉 we have

〈0U |OextOint|0U 〉 6= 〈0U |Oext|0U 〉〈0U |Oint|0U 〉 . (2.5)

For the case of EPR pairs, the correlations implicit in a Bell state can be acquired by first

locally measuring S1 and S2 then comparing the measurement outcomes via information

transfer through a classical channel,7 obtaining the correlation function 〈S1S2〉. However in

acquiring the correlations of (2.5), local measurements can be performed in principle while

the comparison cannot be achieved because of the causal disconnectedness of the exterior

and interior of a black hole. This means that the “super-observer” {Oext,Oint} can not be

realized physically, which may be treated as another (stronger) version of information loss.

Since the information loss paradox cannot be resolved in this way, it may be concluded

that, general covariance is violated in the framework of effective field theory with dependent

space-time background. The only resolution may be the unknown complete quantum gravity

theory without background dependence.

Although the correlation information of (2.5) cannot be acquired through local mea-

surements in the background of a black hole, that (nonlocal) correlation is indeed present,

implicit in the near horizon vacuum state. Since the (correlation) information loss problem

is mainly caused by the causal structure of the black hole, what we have to do is to make

the black hole evaporate completely in a (effective) unitary manner according to effective

field theory, without involving any local measurement. After the black hole disappear, there

will not be mode splitting, and the problem of (correlation) information loss is absent. This

means that we should develop an effective unitary method to transfer the energy of the

black hole outside.8 In Hawking’s argument, the semiclassical Einstein equation for only

the exterior region is used, where local measurement 〈0U |Oext|0U 〉 serves as the source

term. Therefore, by means of this semiclassical method, the (correlation) information will

always be lost. We shall show in this paper that, a unitary effective field model can be

proposed to transfer energy or information between the interior and the exterior of the

black hole, by using of the nonlocal correlation (2.5), or more precisely the entanglement

7A quantum channel seems to be more efficient [9], and it can easily be established in a flat space-time.

In fact, our effective field model indeed establishes a quantum channel between the causally disconnected

interior and exterior of the black hole, by using of the entanglement implicit in the (near horizon) vacuum

state |0U 〉. This can also be quickly seen from the qubit model proposed in section 5 and appendix B.

As a result, the correlations of (2.5) may be acquired by comparing the measurement outcomes through a

quantum channel established via another field’s near horizon vacuum state. However, not all of the field’s

correlations can be acquired in this way, since local measurements always destroy correlations. Thus the

only resolution is a complete quantum gravity theory without background dependence, as argued below.
8This is analogous for the accelerated observer in a flat space-time, whose acceleration is provided by

some extra (energy) source that resembles to a black hole when expressed as a curved metric. The reason

for “ effective” is due to the (classical) background dependence of the effective field theory, i.e. a prior local

measurement 〈ĝµν〉. A full unitary description can be obtained only through the quantum gravity theory.

– 6 –
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implicit in the near horizon vacuum state. To apply that nonlocal correlation, or to resolve

the firewall paradox implicit in the BHC, the BHC (ii) should be extended as:

(ii’) both of the exterior and interior regions of the black hole can be well described by

QFT in curved space, with the singularity r = 0 excluded from the interior region.

That is to say, there are two effective field theories on both the two sides of the event

horizon, which are independent from each other in the sense that the observables are

constructed with different modes of the fields. This is such a crucial extension that an

effective field model can be proposed to satisfy the extended BHC(i)(ii’)(iii)(iv), so that

the black hole can evaporate completely in a (effective) unitary manner.

2.2 The effective field model

2.2.1 The Hilbert space: introduction of a radiation detector

As analyzed in the last subsection, in the black hole background locally measuring Oext

(or Oint) will always lead to information loss due to the black hole’s causal structure.

Then how to avoid these local measurements? According to quantum mechanics [9], a

quantum measurement should be performed via a coupling between the target system and

a measurement apparatus. In the black hole evaporation problem, we can also add a

radiation detector that couples with the target system, for example, a scalar field. This

detector can be located somewhere as a static observer, or can fall freely into the black

hole as an in-falling observer. In our model, we treat it as a distant static observer. This

radiation detector works in the following way. By coupling with the scalar field in the

exterior of the black hole, the detector will be entangled with the exterior modes of the

scalar field, so that a local measurement or observable Oext can be replaced by another one

OD performed on the space of the detector. This approach is different from the standard

one utilized in quantum measurement theory.9 In fact, what we need is just an environment

that interacts with the scalar field, so that the energy or information can be transferred

between them. Unlike the space of the scalar field which has been split into two parts due

to the black hole’s causal structure, the space of the detector is complete enough since the

detector is located completely in the exterior of the black hole in our model.

Assume the extended BHC(with postulate (ii’) given in the last subsection) is proper.

The total Hilbert space of the entire system, including a (Schwarzschild) black hole B,

a scalar field ψ and an added perfect radiation detector D (without energy loss), can be

factorized as

H = HB ⊗Hψ ⊗HD , (2.6)

where the space of the scalar field Hψ is composed of exterior and interior modes. From

the BHC (iii) and (iv), however, we can restrict our considerations within a smaller space

H0 = HB,ψ ⊗HD , (2.7)

9Our coupling between the scalar field and the detector is constructed according to effective field theory,

as given in (2.21). The differences between the two couplings will be shown in section 2.3.
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in which a state can be expressed as10

|Φ〉 =

(
M0∑

M,E≥0

C(M)|M〉B|0M 〉ψ

)
⊗ |E〉D , (2.8)

where |M〉B and |E〉D are the orthonormal basis states of the black hole and the detector,

respectively. The entangled state in the bracket describes partially the correlation11 be-

tween the black hole and the scalar field. |0M 〉ψ or |0M 〉 for short (with M denoted as the

dependence on black hole’s mass12) is the near horizon vacuum of the scalar field [10]

|0M 〉ψ =
∏
ω

(1− e−8πMω)1/2 exp

(∑
ω

e−4πMωb†ω b̃
†
ω

)
|0, 0̃〉 , (2.9)

with b†ω and b̃†ω the creators of exterior and interior modes respectively. Here, the formula

for the initial vacuum state in the shock wave model is used, since |0〉in ∼ |0〉U [10].

The state |0〉B in (2.8) only stands for a space-time without black holes, with |00〉ψ the

corresponding scalar field vacuum. The free Hamiltonian of the entire system is

H0 = HB +Hψ +HD , (2.10)

with HD chosen simply as

HD =
∑
ω̃

ω̃d†ω̃dω̃ , (2.11)

where d†ω̃ and dω̃ stand for the raising and lowering operators of the energy levels of the

detector. As for the Hψ, it can be derived from a general formula

Hψ(t) =

∫
Σt

TαβK
αdΣβ , (2.12)

with a time translation Killing field Kα on a space-like Cauchy hypersurface Σt. When Σt

approaches the infinite past I−, i.e. Σt → I−, the corresponding free Hamiltonian becomes

Hψ(t)
I−−→ Ha =

∑
ω

ωa†ωaω , (2.13)

where aω|0M 〉ψ = 0. For a general Σt intersecting the event horizon, it will be split into

Σext
⋃

Σint. When it approaches I+
⋃
H+, i.e. the infinite future together with the future

event horizon, the free Hamiltonian will be given by

Hψ(t) =

∫
Σext

TαβK
αdΣβ +

∫
Σint

TαβK
αdΣβ I+

⋃
H+

−→ Hb +Hb̃ . (2.14)

Notice that the state |M〉B|0M 〉ψ ⊗ |E〉D in (2.8) is an eigenstate of the free Hamiltonian

in (2.10), with Hψ given by Ha in (2.13), this property can be utilized to construct the

S-matrix, as shown in section 3.1.

10Here M0 'M + E is the total energy of the closed system.
11The full correlation is actually described by the coupling between the black hole and the scalar field.

Here, the entangled state in the bracket just gives the space-time background dependence of the scalar field,

with the back-reaction of the scalar field on the black hole being modeled in (2.15) below.
12This mass dependence makes the problem a little complicated. In this section, we ignore its possible

effects, which will be studied in section 3.
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2.2.2 The interior and exterior interactions

To verify the consistency of the extended BHC, we have to evolve the entire system and

see whether it can always be descried well within the smaller space H0. An interaction

term Hint(t) is needed. The details of the interaction may involve some unknown quantum

gravity effects, but we can still propose a simple model based on effective field theory. The

scalar field can diffuse over the whole space-time, including both the exterior and interior

of the black hole. Then, for a static observer, according to the extended BHC (ii’) given

in section 2.1, the full interaction can be chosen as Hint(t) = HB,ψ(t) + Hψ,D(t). The

term HB,ψ(t) gives the interaction between the black hole and the scalar field, which is

localized in the interior of the event horizon, while Hψ,D(t) is a local interaction between

the scalar field and the detector in the exterior of the event horizon. Moreover, these two

terms should be independent from each other because of the causal structure of the black

hole. However, we shall show below that the entanglements, between the bω and b̃ω modes

implicit in the vacuum state |0M 〉, can be applied to correlate the causally disconnected

interior and exterior of the black hole, which leads to the evaporation of the black hole.

Under these circumstances, HB,ψ(t) could simply be chosen as a direct coupling be-

tween the scalar field and the black hole

HB,ψ(t) =

∫
Σtint

d3xψ(t)V(t) , (2.15)

where V(t) is a space-distribution operator acting on the Hilbert space of the black hole,

and the interaction region t × Σt
int is in the interior of the black hole(or event horizon).

This interaction term is different from the one used in [8], where the interaction happens

only at the stretched horizon, or in the exterior of the event horizon. Here according to the

extended BHC (ii’), the interaction between the black hole and the scalar field are assigned

to happen in the interior of the event horizon. We can still expand the operator V(t) in

terms of V†ω and Vω that map black hole states |M〉B to |M ±ω〉B, together with the field

vacua |0M 〉ψ to |0M±ω〉ψ due to the correlation in (2.8). If concerning with only the black

hole evaporation, VM,ω ≡ VM−ω,M (ω) = 〈M − ω|Vω|M〉 is the required matrix element,

determining the emission rate of particle of frequency ω. To obtain these matrix elements,

one can use an approximate completeness relation for the restricted space HB,ψ13

I =
∑
M

|M〉B〈M | ⊗ |0M 〉ψ〈0M | . (2.16)

In terms of the modes in the stationary regions, the scalar field can be expanded as

ψ =

∫ ∞
0

dω(a†ωU
∗
ω + h.c.) =

∫ ∞
0

dω(b†ωu
∗
ω + b̃ωũω + h.c.) , (2.17)

13For a state |Φ〉 =
∑
i ci|i〉|φi〉, with an orthonormal basis 〈j|i〉 = δij and normalized but non-orthogonal

states 〈φi|φi〉 = 1, we have
∑
i |i〉〈i| ⊗ |φi〉〈φi||Φ〉 = |Φ〉, meaning that

∑
i |i〉〈i| ⊗ |φi〉〈φi| is an identity-like

operator. However, in a general space this relation is not fulfilled.
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with Uω ∼ (ω1/2r)−1e−iωv the ingoing modes at the infinite past I−. The outgoing modes

uω at the infinite future I+ and the incoming modes ũω at the future horizon H+ are [10]

uω = − 1

4π
√
ω

exp[−iω(vH − 4M ln vH−v
4M )]

r
θ(vH − v) , (2.18a)

ũω = − 1

4π
√
ω

exp[iω(vH − 4M ln v−vH
4M )]

r
θ(v − vH) . (2.18b)

Here we still use the formulae for the shock wave model, and consider only the s-wave com-

ponents without the backscattering effects for simplicity. By substituting (2.18) into (2.15),

and noting that the interaction region is in the interior of the black hole, we have

HB,ψ(t) =
∑
ω

[Vω(t)b̃ω + h.c.] , (2.19)

with Vω(t) ∼
∫
d3xV(t)ũω. Then, by using of (2.16), we have∑
M≥ω,ω

VM,ω|M − ω〉B〈M | ⊗ |0M−ω〉ψ〈0M−ω|b̃ω|0M 〉ψ〈0M | , (2.20)

where the factor ψ〈0M−ω|b̃ω|0M 〉ψ vanishes according to (2.9), i.e. out of the space H0.

To avoid this, the created particle needs to be transported somewhere else, for example

into the radiation detector. This can be accomplished by the interaction Hψ,D(t)

Hψ,D(t) = g̃

∫
Σtext

d3xψ(t)φD(t) =
∑
ω

[gω(t)bωd
†
ω + h.c.] , (2.21)

where gω(t)d†ω ∼ g̃
∫
d3xφD(t)uω. φD stands for some (localized) field inside the detector,

and the interaction region t × Σt
ext is near the infinite future I+. The unitary evolution

operator for the full interaction is

UB,ψ,D = e−i
∫
dtHint(t) = exp i

{∑
ω

∫
dt[gω(t)bωd

†
ω + Vω(t)b̃ω] + h.c.

}
, (2.22)

where the emission and absorption parts have been grouped separately, while the relevant

terms for the evaporation process is

exp i
∑
ω

∫
dt[gω(t)bωd

†
ω + Vω(t)b̃ω] . (2.23)

Then instead of the vanishing factor in (2.20), we will obtain a non-vanishing one

N(M,ω) ≡ 〈0M−ω|bω b̃ω|0M 〉 = e−4πMω〈0M−ω|bωb†ω|0M 〉 , (2.24)

where the relation b̃ω|0M 〉 = e−4πMωb†ω|0M 〉 [10] has been used. Considering the operation

of (2.23) on |Φ〉 in (2.8), the lowest order term is given as

M0∑
M≥ω;ω,E≥0

−{N(M,ω)gωVM,ω}C(M)|M − ω〉B|0M−ω〉ψ ⊗ d†ω|E〉D , (2.25)
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which expresses an entanglement or correlation between the black hole and the radiation

in the detector. This entanglement between the causally disconnected interior and exterior

of the black hole, is generated by the entanglements between the bω and b̃ω modes implicit

in the vacuum |0M 〉ψ. A more detailed discussion about this entanglement will be given

in section 3.2. If the black hole continues evaporating, higher order terms will contribute.

Without extra matter absorptions, for an initial state |M0〉B|0M0〉ψ ⊗ |0〉D, the black hole

may evaporate completely in the end, leading to a final state14

|0〉B|00〉ψ ⊗ |M0〉D(t→ +∞) , (2.26)

which is still in the restricted space H0. These two states can thus be related to each other

by an S-matrix, which will be shown in section 3.1.

Now let’s consider the factor N(M,ω) defined in (2.24). From (2.25) this factor is a

part of the emission amplitude for the evaporation. It is formally similar to the expectation

value of the particle number N̄(M,ω) = 〈0M |b†ωbω|0M 〉. To compare them, let’s calculate

another quantity Ñ(M,ω) = 〈0M−ω|b†ωbω|0M 〉. After some calculations we have

Ñ(M,ω) =
∏
ω′ 6=ω

(1− e−8πMω′)1/2(1− e−8π(M−ω)ω′)1/2

(1− e−8π(M−ω/2)ω′)

× (1− e−8πMω)1/2(1− e−8π(M−ω)ω)1/2e−8π(M−ω/2)ω

(1− e−8π(M−ω/2)ω)2
.

(2.27)

And if ω �M , it becomes

Ñ(M,ω) ≈ 1

e8π(M−ω/2)ω − 1
≈ e−8π(M−ω/2)ω(M � 1) , (2.28)

an analogous result as N̄(M,ω) = (e8πMω − 1)−1 [1, 2], but with an ω2 correction [12].

In [12], the authors treat e−8π(M−ω/2)ω as a semiclassical emission rate, but here it’s

N(M,ω) ≈ e−4πMω,15 that is a part of the emission amplitude in (2.25). If the absorption

part in (2.22) is also included, some other factors may also be obtained, for example a fac-

tor 〈0M |b̃†ω b̃ω|0M 〉 that describes the process of the black hole emitting and re-absorbing.

Even the factor N̄(M,ω) can also be related to the process of the detector absorbing and

re-emitting, in addition to the meaning of an expectation value of the particle number.

In fact, for some initial state |φ〉, by using of (2.22), the expectation value of the

particle number for our model can be given by

〈d†ωdω〉 = 〈φ|U †B,ψ,D(d†ωdω)UB,ψ,D|φ〉 = |gω|2〈b†ωbω〉 . (2.29)

Furthermore, we can also calculate the correlation function

〈(d†ωdω)(d†ω′dω′)〉 = |gω|4〈(b†ωbω)(b†ω′bω′)〉 = |gω|4
∑
α

〈(b†ωbω)|Φα〉〈Φα|(b†ω′bω′)〉 , (2.30)

14Eq. (2.26) is not the only final state, since the interaction Hψ,D(t) can correlate the scalar field with

the detector. If the absorption part in (2.22) is included, a state |Mmin〉B |0Mmin〉ψ ⊗ |Emax〉D may also be

obtained, i.e. a dynamic balance with a “remnant” in the black hole.
15The estimate N(M,ω) ≈ e−4πMω agrees with another computation in (3.37).
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where a completeness relation in (3.2) has been used. Since our model is proposed in a

unitary manner, then all the possible intermediate states will contribute significantly, with

some correlations being preserved among the radiations in the detector.16 These in fact

imply that a distant exterior observer can acquire the information of the radiations only

by performing local measurements on the detector. A general measurement is given by

〈φ|U−1
B,ψ,DODUB,ψ,D|φ〉 = trD(ODρD) , (2.31)

for a detector’s observable OD that corresponds to Oext. The reduced density operator is

ρD = trB,ψ(UB,ψ,D|φ〉〈φ|U−1
B,ψ,D) , (2.32)

which leads to a super-operator evolution [9] for the detector. And more discussions will

be shown in section 3.3.

2.3 Some general features of the interactions

Consider the vacuum (|0M 〉ψ) expectation value of the full interaction term

〈e−i
∫
d4x(B+D)ψ〉 = 1− i

〈∫
d4x(B +D)ψ

〉
− 1

2

〈[∫
d4x(B +D)ψ

]2〉
+ · · · , (2.33)

with B and D denoted as the black hole and the detector respectively. For an in-falling

observer equipped with a detector, according to effective field theory this vacuum expecta-

tion value is the ordinary one without mode split. In other words, the field is expanded in

terms of aω modes, so the detector will also receive radiations of aω modes. In this case, B

actually stands for the perturbation of a flat space-time, i.e. the gravitational perturbation.

The first order term in (2.33) vanishes obviously, while the second and higher orders give

the exchanges of energy among the components of the entire system. In the view of a static

observer, the second order contains the following four processes〈[∫
int
d4xBψ

]2〉 〈[∫
ext
d4xDψ

]2〉
〈∫

int
d4xBψ

∫
ext
d4yDψ

〉 〈∫
ext
d4xDψ

∫
int
d4yBψ

〉
,

(2.34)

which still describe the energy exchanges or interactions between the components. The

first two terms give the self-interactions of the black hole and the detector themselves,

while the last two describe the interactions, or more exactly, nonlocal correlations between

them. Since the space-time has been separated into two causally disconnected regions,

the first two self-interactions are well described in the framework of local effective field

theory; while the last two with independent interaction terms can give non-trivial results

only through the entanglement between the bω and b̃ω modes implicit in the vacuum state

|0M 〉. The locality makes a static exterior detector always receive radiations only in terms

16The correlations can not be completely preserved due to quantum decoherence, but there are indeed

some residual correlations, as shown in (3.31).
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of bω modes; while for a static detector in the interior of the black hole but still far from

the singularity at r = 0, it will receive radiations only in terms of b̃ω modes.

All of those terms in (2.34) involve the scalar field’s propagator denoted formally by

〈ψ2〉. For an in-falling observer, it is an ordinary propagator, while for a static observer, it

will depend on the relevant modes due to the black hole’s causal structure. For instance,

the self-interaction terms make use of only bω or b̃ω modes; while the correlations between

the black hole and the detector should make use of both the bω and b̃ω modes. Recalling

the quantity N(M,ω) defined in (2.24), except for the little difference of the vacua, it is

just part of the propagator with contributions from both the bω and b̃ω modes. In addition

to the combination in (2.22), there is also another one, in which HB,ψ is expanded as∑
ω[Vω(t)b̃†ω + h.c.] with Vω(t) ∼

∫
d3xV(t)ũ∗ω, while Hψ,D is

∑
ω[gω(t)bωdω + h.c.] with

gω(t)dω ∼ g̃
∫
d3xφD(t)uω. As a consequence, another transition Vω(t)〈b̃†ωb†ω〉d†ω for the

evaporation can also be obtained, still with a contribution from the field propagator. At a

first glance, it seems to be impossible to have expressions for Vω(t) and dω different from

those used in the model of section 2.2.2. This is indeed possible if the black hole and the

detector have their own mode expansions, so that four combinations can be constructed

for each of the interaction terms HB,ψ and Hψ,D.

In a view of evolution in the Heisenberg picture, there should be a following sequence

for the field propagator

〈ψ2
a〉

formation−→ 〈ψ2
b,b̃
〉 evaporation−→ 〈ψ2

a〉 . (2.35)

To some extent, this sequence for the static observer demonstrates the unitary property of

the evolution for both the formation and evaporation of the black hole, if no black hole is

present at both the starting point and ending point of the evolution. If a local quantum

measurement is performed on the scalar field as in the Hawking’s arguments, the sequence

in (2.35) will be broken since a quantum measurement can lead to some non-unitary super-

operator evolution. This can also be roughly explained as follows. According to quantum

mechanics, an observable Oext can be measured by means of a measurement apparatus via

a coupling λOextTapp [9], with Tapp a corresponding operator of the apparatus, while the

back-reaction of the scalar field on the black hole can still be described by HB,ψ. Then the

vacuum expectation value of the full evolution operator is〈
exp

{
− i
∫

int
d4xBψ − itλOextTapp

}〉
, (2.36)

where the two terms can not be combined to give a scalar field’s propagator as in QFT,

thus breaking the the sequence in (2.35). This is also the difference between our effective

field coupling Hψ,D and the quantum measurement coupling λOextTapp.

In the semiclassical treatment, the back-reaction of the scalar field on the black hole is

treated by means of a semiclassical Einstein’s equation, with one side the classical Einstein

tensor, while the other one an expectation value 〈Tµν〉. According to the extended BHC (ii’)

in section 2.1, there should be two semiclassical equations in both the interior and exterior

of the event horizon respectively. These two semiclassical equations can be well modelled
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by local interactions according to effective field theory. The fundamental interaction is the

coupling between the gravitational field or perturbation and the matter field via

exp

{
− i
∫
d4xhµνT

µν [ψ]

}
, (2.37)

with hµν the gravitational perturbation. Because of the causal structure of the black hole,

the energy-momentum tensor Tµν [ψ] is thus separated into two independent parts, one

part Tµν [ψb] in terms of the bω modes, while the other one Tµν [ψb̃] with the b̃ω modes.

Analogously, the gravitational perturbation must also be split into two components that

couple with the corresponding Tµν [ψb] and Tµν [ψb̃] respectively. Certainly, the proposed

term HB,ψ in our model is just an approximation to the interior interaction. A somewhat

precise treatment will be given in section 4.1.

3 Dynamics of the effective field model

3.1 The S-matrix formula and its self-consistency

The S-matrix formula for a curved space QFT is more complicated than that for a flat

space QFT because of the background dependence on the metric. An analogous but simple

model is studied in appendix A, where the S-matrix formula is constructed in detail. In this

subsection, we shall construct the S-matrix formula for our model following appendix A.

The BHC (iii) indicates that the black hole’s state |M〉 can be treated as a steady state,

giving a stationary space-time region. We can thus consider the transitions between various

states, which are well defined in two stationary regions with different black hole’s masses,

for example M1 and M2. In other words, an S-matrix formula between two arbitrary

stationary regions can be constructed, at least for the restricted Hilbert space H0.

Recall H0 is spanned by the eigenstates of the free Hamiltonian H0 in (2.10), with Hψ

given by Ha in (2.13). Thus near the infinite past I− in each stationary region, we have

H0i|Φiα〉 = Eα|Φiα〉(Eα = Mi + Ei), |Φiα〉 ≡ |Mi〉B|0Mi〉ψ ⊗ |Ei〉D, (i = 1, 2) , (3.1)

with α denoted as a collection of the quantum numbers (M,E). For those eigenstates, we

also have the following relations

〈Φjβ|Φiα〉 = δβαδji,
∑
α

|Φiα〉〈Φiα| = Ii , (3.2)

where the completeness relation (2.16) is extended by adding
∑

E |E〉D〈E| = ID. Following

appendix A, the S-operator can be constructed as

S(21) = Ω2(+∞)†Ω1(−∞) = U21(+∞,−∞) , (3.3)

where the evolution operator is defined as

U21(t2, t1) ≡ Ω2(t2)†Ω1(t1) = exp(+iH02t2) exp{−iH(t2 − t1)} exp(−iH01t1) . (3.4)
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Since the free field Hamiltonian Hψ depends on the black hole’s mass, we have H01 6= H02.

Hence there is also a singular initial condition U21(t0, t0) = eiH02t0e−iH01t0 like (A.14). This

singularity also occurs in Hawking’s original arguments [1, 2], where near the two stationary

regions I− and H+
⋃
I+, the corresponding free Hamiltonians of the scalar field are

Ha =
∑
ω

ωa†ωaω, Hb,b̃ =
∑
ω

ωb†ωbω +Hb̃ . (3.5)

Since Ha 6= Hb,b̃, a singular evolution operator like the one in (3.4) can be also constructed.

Therefore, except for the possible singularity, the unitary is preserved formally.17

The evolution in (3.3) can be extended to a general one with (meta-)stable sequences

for the states of the black hole and the detector

|0〉B → |M1〉B → · · · → |Mi〉B → |Mi+1〉B → · · · , (3.6a)

|M0〉D → |E1〉D → · · · → |Ei〉D → |Ei+1〉D → · · · , (3.6b)

where the energy is roughly balanced between the black hole and detector, i.e. Mi+Ei ≈M0

for every i. As for the scalar field, the corresponding sequence of the vacua is

|00〉ψ → |0M1〉ψ → · · · → |0Mi〉ψ → |0Mi+1〉ψ → · · · . (3.6c)

A complete sequence of the Cauchy surfaces along the sequences (3.6) may be chosen as

I−0
1−→ H+

1

⋃
I+

1
2−→ H+

2

⋃
I+

2 → · · · , (3.7)

with the process 1 denoted as the formation of a black hole, i.e. the evolution in Hawking’s

arguments. The corresponding sequence of the free Hamiltonians is then given by18

(HBD
0 +Ha0)

H1−→ (HBD
0 +Hb1,b̃1

)
H2−→ (HBD

0 +Hb2,b̃2
)→ · · · , (3.8)

with Ha and Hb,b̃ given by (3.5), and the interaction terms HB,ψ and Hψ,D of our model

are contained in the full Hamiltonians H1, H2 and subsequent ones in (3.8).

The first two steps of the above sequences are depicted in figure 1, and the required

evolution operator can be constructed formally as

U(t2, t1)U(t1, t0) =
[
e
i(HBD

0 +Hb2,b̃2
)t2e−iH2(t2−t1)e

−i(HBD
0 +Hb1,b̃1

)t1
]

×
[
e
−i(HBD

0 +Hb1,b̃1
)t1e−iH1(t1−t0)e−i(H

BD
0 +Ha0 )t0

]
= e

i(HBD
0 +Hb2,b̃2

)t2
{
e−iH2(t2−t1)e−iH1(t1−t0)

}
e−i(H

BD
0 +Ha0 )t0 .

(3.9)

17As analyzed in appendix A, that singularity may be from the semiclassical property of curved space

QFT, i.e. the classical metric. In fact, for our model, the black hole and the scalar field can be combined

formally as a single component, with the corresponding Hamiltonian HB and state |φM 〉B . Then the state

for the entire system can be expressed as
∑
M+E=M0

C(M)|φM 〉B |E〉D, and the relevant interaction can

be constructed as
∑
ω(Vωd

†
ω + h.c.), leading to the correlation between the black hole (together with the

scalar field) and the detector. But this treatment is useless for our understanding of the black hole physics.
18From this sequence of the free Hamiltonians and the subsequent evolution in (3.9), it indicates that the

full evolution must have been out of the space H0, since |0M 〉 is not an eigenstate of Hb,b̃. Hence we should

apply an extended space with H0 just as a subspace. Some more discussions will be shown in section 3.4.
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Figure 1. The first two steps of a whole evolution, which is described in (3.9) with the Cauchy

surfaces given in (3.7).

The term in the brace in the last line describes the processes of the formation and evapo-

ration of a black hole, which is so complicated that we can not give an exact expression.

However, a full Hamiltonian H20 exists so that

e−iH2(t2−t1)e−iH1(t1−t0) = e−iH20(t2−t0) , (3.10)

since there is always such a time parametrization satisfying

H20(t) =

{
H1(t) t0 ≤ t ≤ t1

H2(t) t1 ≤ t ≤ t2
. (3.11)

Then (3.9) will become

U(t2, t1)U(t1, t0) = e
i(HBD

0 +Hb2,b̃2
)t2e−iH20(t2−t0)e−i(H

BD
0 +Ha0 )t0 = U(t2, t0) , (3.12)

which is the required associative relation for the evolution operator. In a functional form,

this evolution can also be described as

〈Ψ(Σt2)|Ψ(Σt1)〉 =

∫
D[B]D[ψ]D[D] exp i

∫ t2

t1

d4x{L0[B,ψ,D] + (B +D)ψ} , (3.13)

with B and D still denoted as the black hole and the detector, respectively. Analogously,

the complete S-operator U(+∞,−∞) can be constructed step by step following the se-

quences (3.6). Since those sequences are chosen arbitrarily, there may be one in which the
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Figure 2. Black hole evaporation: without extra matter absorptions, the black hole will evaporate

completely in the end, leaving a space-time without any black hole.

mass of an already formed black hole continues decreasing so that the black hole disappears

in the end, as depicted in figure 2. In this figure, the long dash line is the event horizon of

the formed black hole at rH0 = 2M0, while the region surrounding by the zigzag line is the

black hole interior, due to decreasing of the event horizon in size during the evaporation.

There are also four typical t-slices (space-like Cauchy surfaces) in figure 2, foliating

the space-time. Similarly as reference [3], for the t2 slice, because it intersects the interior

of the black hole, the state on it should be expressed as

|Ψ(Σt2)〉 =
∑
i,j

|φi(Σint)〉B,ψ|χj(Σext)〉ψ,D , (3.14)

with the sum of the indexes i, j denoted as correlations between the interior and exterior

degrees of freedom due to the interactions HB,ψ and Hψ,D. Notice (3.14) is different from

the one used in [3], where the full state was given by a direct tensor product of the interior

and exterior components, since there were no interactions that induce correlations between

the interior and exterior modes in their article. Moreover, in the evaporation figure of [3],

the interior region of the black hole is depicted as if it suddenly disappeared just after

the complete evaporation. While in figure 2 the gradual changes of the event horizon is

demonstrated apparently, that is, the interior region becomes exterior gradually during the

evaporation. On the t3 slice the evolution continues, but with less interior modes than
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those on the t2 one. At last, on the t4 slice the black hole disappears completely, so the

interaction HB,ψ has stopped. And we will obtain a final pure state |Ψ(Σt4)〉, with the

remaining correlations stored among the scalar field, the weak gravitational field and the

detector because of the interaction Hψ,D and the one in (2.37). The evaporation depicted

in figure 2 is just a particular one of all the possible complete evolutions that can be

accomplished via (3.9) or (3.13) step by step. Therefore, we can conclude that the whole

process of formation and evaporation of a black hole is unitary as the entire system evolves.

3.2 Discussions on the paradoxes of information loss and AMPS’s firewall

As shown in the above subsection, the black hole evaporation based on our model is unitary,

then how to understand Hawking’s information loss arguments? According to [1], a distant

exterior observer should construct an operator like Oext, which can act only on the space

generated by b†ω. Then, if we calculate the expectation value like

〈0M |Oext|0M 〉 , (3.15)

the b̃ω modes cancel automatically, leading to a mixed state. This can also be seen by per-

forming a partial trace over the b̃ω modes in the initial density operator |0M 〉〈0M |, giving a

super-operator evolution for the exterior bω modes. In the discussions below (2.5) we have

shown that, in the framework of effective field theory with background dependence, local

measurements will always lead to (correlation) information loss in the black hole back-

ground. However, in the evolution of the last subsection, there are no local measurements.

The radiation detector is not a standard measurement apparatus, but only serves as an

environment coupling with the scalar field according to effective field theory.

In reference [7], a “pull-back-push-forward” strategy is proposed to identify the interior

with the exterior degrees of freedom. It’s assumed there are two unitary transformations

U and V that can evolve an initial full operator O as

U−1OU = Oext, V−1OV = Oint . (3.16)

The exterior operator can thus be related to the interior one simply by [7]

Oext = (U−1V)Oint(V−1U) . (3.17)

Now let’s go into the Schrödinger picture. Since O is a full operator, in order for (3.15) to

contain only an “ext” (or “int” ) sector, in general, it should be assumed that

U|0M 〉 = |φ〉ext, V|0M 〉 = |χ〉int , (3.18)

then we will have

〈0M |V−1U|0M 〉 =int 〈χ|φ〉ext = 0 . (3.19)

This means the unitary transformation V−1U would be singular, which is impossible. This

inconsistency can also be seen as follows. Consider two non-commutative full operators O1

and O2, then from (3.16) we can get

[O1ext,O2int] = 0 , (3.20)
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that is, one representation can be found so that two non-commutative operators are com-

mutative, which is also impossible. Therefore, the unitary transformations U and V utilized

in the “pull-back-push-forward” strategy can not be constructed consistently. In fact, the

observables Oext and Oint are independent, and the exterior and interior degrees of freedom

can be related to each other only through the correlation implicit in (2.5), or more exactly,

the entanglement implicit in the vacuum |0M 〉.
However, the information stored in the correlation (2.5) or the entanglement implicit

in the vacuum |0M 〉 cannot be physically acquired due to the black hole’s causal structure.

For this reason, a radiation detector has been introduced in our model to only receive

the radiation. Then where is the possible physical information in our model? Without

any measurement, the black hole and the detector are effectively correlated or entangled

via the entanglement implicit in |0M 〉, as given roughly by the transition in (2.25). The

possible physical information of our model may be stored in this new generated correlation

or entanglement between them. In this way, the firewall paradox can be resolved, since

any state in the space H0 can be both an aω-vacuum and a d†ωdω eigenstate, instead of

the b†ωbω as argued in [4].19 This is because in our model, via the interaction Hψ,D the

radiation has been transferred into the detector expressed in terms of dω modes, with the

scalar field only as an intermediate medium. Under this circumstance, the arguments of

the AMPS’s firewall don’t hold any longer. In the firewall paradox, only three subsystems

are present, the black hole together with the b̃ω modes as a whole, the early radiation and

the late one, so that entanglements would be shared by two pairs: one pair is the early and

late radiations, while the other one is the late radiation and b̃ω modes behind the event

horizon, violating the monogamy of entanglement. In our model, there are four subsystems

effectively, the black hole, the detector or radiation in terms of dω modes, and the splitting

bω and b̃ω modes of the scalar field. The radiation is transferred between the black hole

and the detector(dω modes), as indicated in (2.25). This generates a new entanglement

between them, replacing the entanglement in the firewall paradox between the early and

late radiations in terms of bω modes. During the energy transfer, the vacuum state |0M 〉
may be changed into other states, for example another vacuum |0M ′〉 with a different mass,

but the entanglement implicit in them almost remains, as will be shown in section 4.2. In

a word, there are two different entanglements among two pairs of subsystems. This does

not violate the monogamy of entanglement, and the firewall paradox is thus resolved.

The generation of entanglement through an old one is different from the “transfer of

entanglement” in reference [7], where the author says that “as time evolves entanglements

shift from the near horizon region to the evaporation products of the black hole”. That is,

the entanglements between the bω and b̃ω modes are all transferred into the whole exterior

radiation space, leading to a sort of “conservation of entanglement” [6]. This is impossible

by noting that the energy of the radiations should not only come from the near horizon

region with state |0M 〉, but also come from the black hole itself with state |M〉, as shown

in our model. It is always believed the expectation value of the energy-momentum tensor

〈0M |Tµν |0M 〉 provides the total energy extracted from the black hole, via the semiclassical

19Since [aω, bω′ ] 6= 0, it is impossible to construct a state to be eigenstate of both the aω and b†ωbω.

– 19 –



J
H
E
P
1
2
(
2
0
1
4
)
0
8
8

Einstein’s equation. But this is not the case. From the Hawking’s evolution given by (3.5),

one can see that the initial average energy of the scalar field 〈0M |Ha|0M 〉 is exactly 0,

while the final one 〈0M |Hb,b̃|0M 〉 is of the order M−2. This energy difference or vacuum

energy should not be treated as the total evaporated energy since a contribution from the

interior b̃ω modes is also included. Moreover, for large M this contribution is negligible

and can be regarded to be the work done by the black hole on the scalar field due to the

causal structure, just like the case in which gravitational potential energy is transported

into the matter via the work done by the gravity. But for small M , that energy difference

or vacuum energy will become divergent and dominate, implying the need of a quantum

gravity theory.20

In our model, however, the energy transfer between the black hole and the detector is

accomplished via the quantum transitions given roughly by (2.25). We can still divide the

radiations into an early and a late part, as a whole, these two parts should be entangled.

The early part has already been transferred into the detector, while the late part is still

stored in the black hole. Since the detector is entangled with the black hole via the new

generated entanglement, the early and late parts of the radiations are thus entangled, too.

This can be simply expressed as∑
M

C(M)|M〉B|0〉D −→
∑

Mω1ω2

(γMω1ω2 |M − ω1 − ω2〉|ω2〉)B|ω1〉D , (3.21)

where the late radiation state |ω2〉 can be treated as a part of the black hole’s state before it

is transferred into the detector. This means that the correlations among the radiations are

mainly provided by those correlations within the states of the black hole, together with the

nonlocal correlations between the black hole and the detector. In other words, the physical

information of our model is mainly stored in the correlations or entanglements between

the black hole and the detector during the evaporation. When the black hole evaporates

completely, the information can still be stored in the correlations among the detector, a

weak gravitational field and the scalar field. Whether this information can be acquired will

be discussed in the next subsection.

In conclusion, the physically acquirable information is not stored in the entanglement

implicit in the vacuum |0M 〉, but may be in a new entanglement between the black hole and

the detector generated via the one implicit in |0M 〉. Without any local measurement, this

information can not be lost for ever since the entire system evolves in a unitary manner,

as shown in section 3.1. Moreover, the new generated entanglement does not violate the

monogamy of entanglement, thus no AMPS’s firewall could emerge.

3.3 Quantum decoherence due to measurement on the detector

As shown above, the evolution of the entire system is unitary, as long as there are no local

measurements. Under this circumstance, the information won’t be lost. In other words,

20These can also be explained by the back-reaction of the matter on the black hole. For a macro black

hole with a large mass M , the energy of the matter is small compared with M , so the back-reaction or the

perturbation of the black hole is small, and effective field theory is valid. While for a micro black hole with

a small mass m, the perturbation may be large when the contributed energy from the matter exceed m,

then a quantum gravity theory will be needed.
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if there is any information loss, it must be attributed to some local measurement, for in-

stance, the measurement (2.31) on the detector space or Hawking’s measurement (3.15)

on the exterior modes. These two measurements are both local in the sense that they are

performed only on some component of a bigger system. These partial measurements can

be described well by the so called positive operator-valued measure (POVM) [9] approach,

leading to a super-operator evolution for the measured component, just like (2.32). Since

any measurement outcome must be definite, the original quantum coherence among the

components of the bigger system disappears after the measurement, i.e. the so called quan-

tum decoherence. The measurement (3.15) used by Hawking can always lead to information

loss due to the black hole’s causal structure, as shown in section 2.1. In this subsection,

we consider the measurement (2.31) on the detector and show the information loss due to

quantum decoherence during the black hole evaporation.

As shown previously, the black hole and the detector are effectively entangled, so we

can consider a black hole-detector system by performing a partial trace over the scalar field

space. The coupling between them can be approximated by an linear operator21

LB,D = 1−
∑
ω

(λωVωd
†
ω + h.c.) + · · · , (3.22)

where the lowest order term in (2.25) has been used, and the coupling constant is given by

λω ' N(M,ω)gω . (3.23)

Except for the non-unitary, this coupling resembles the amplitude-damping channel [9], a

schematic model of the decay of an excited state of an atom due to spontaneous emission

of photons. Assuming that the initial state is ρB(0) ⊗ |0〉D〈0|, and that there is no extra

matter absorbed by the black hole, the evolution of ρB in the interaction picture can be

described by a first order Lindblad’s equation [9]

˙ρB ≈
∑
ω

|λω|2
(

VωρBV†ω −
1

2
V†ωVωρB −

1

2
ρBV†ωVω

)
. (3.24)

We can further make an operator factorization as Vω = VM,ωc, with c an annihilator-like

operator acting on the states of the black hole. Then following [9], we have

〈c†ωcω(t)〉 ∼ e−|λωVM,ω |2t , (3.25)

which is the familiar exponential law for the decay, giving an estimate of total decay rate∑
ω |λωVM,ω|2. That is, in the view of a black hole alone, the evaporation is like a non-

unitary decay process. This can be explained by quantum decoherence. Actually, to obtain

the Lindblad’s equation (3.24), we have performed a partial trace over the detector space

˙ρB = trD[LB,D(0)ρB(0)⊗ |0〉D〈0|L†B,D(0)] , (3.26)

21Since we have performed a partial trace over the scalar field space, the operator LB,D can not be

unitary, thus leading to some information loss. But the lost information is all about the scalar field and is

not the relevant physical information of our model, as analyzed in the last subsection.
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with the first order Kraus representation operator given by22

Mω =D 〈ω|LB,D(0)|0〉D = −λωVω . (3.27)

Roughly speaking, during the black hole evaporation, we keep performing partial measure-

ments on the detector to determine the back-reactions on the black hole approximatively,

i.e. the Markovian approximation [9]. As a consequence, the information will be lost due

to quantum decoherence.

Now, let’s see whether the information is completely lost, in the sense of Hawking’s

completely thermal spectrum [10]

〈0M |b†ω1
bω1b

†
ω2
bω2 |0M 〉 = 〈0M |b†ω1

bω1 |0M 〉〈0M |b†ω2
bω2 |0M 〉 . (3.28)

In our model, the correlation is given in (2.30). By using of the approximation in (3.22),

the general state of the black hole-detector system can be expressed as

|φ〉 = ε|M〉B|0〉D +
∑
ω

αω|M − ω〉B|ω〉D +
∑
ω1ω2

βω1ω2 |M − ω1 − ω2〉B|ω1, ω2〉D + · · · .

(3.29)

Then the reduced density operator ρD in (2.32) will be expressed as

ρD = |ε|2|0〉D〈0|+
∑
ω

|αω|2|ω〉D〈ω|+
∑
ω1ω2

|βω1ω2 |2|ω1, ω2〉D〈ω1, ω2|+ · · · , (3.30)

i.e. a statistical ensemble. After some calculations, we then get

tr(ρDd
†
ω1
dω1d

†
ω2
dω2) 6= tr(ρDd

†
ω1
dω1)tr(ρDd

†
ω2
dω2) , (3.31)

because of the probability relation P (ω1, ω2) 6= P (ω1)P (ω2). This implies that the radia-

tions in the detector are not completely independent, instead some correlations or entan-

glements are remaining. In this sense, the information is not completely lost. This can

simply be explained by noting the intermediate states in (2.30). Although the information

is lost partially, the lost information cannot be recovered as long as the measurement is

performed during the black hole evaporation. This is because, according to the analysis

below (2.5), the correlation information between the black hole and the detector cannot

be fully acquired due to the black hole’s causal structure. In this case, quantum measure-

ment should be performed after the black hole evaporate completely, otherwise (correlation)

information will be lost inevitably due to the causal disconnectedness.23

22The general Kraus representation of the super-operator evolution is $(ρB) =
∑
µMµρBM

†
µ, where the

operator Mµ =ψ,D 〈µ|UB,ψ,D|0M 〉ψ|0〉D with the |µ〉ψ,D denoted as the state of both the scalar field and

the detector.
23This emphasized condition is proposed only in the framework of effective field theory, not for a com-

plete quantum gravity theory, as indicated by the analysis below (2.5). Notice further that in Hawking’s

arguments, local measurement such as 〈0M |Oext|0M 〉 serves as the source term of the semiclassical Einstein

equation. As a consequence, information is always lost during the evaporation process in this way, in par-

ticular the correlation information. However, in our model black hole can evaporate completely in a unitary

manner, so the emphasized condition can avoid the correlation information loss effectively.

– 22 –



J
H
E
P
1
2
(
2
0
1
4
)
0
8
8

In conclusion, by performing some local quantum measurements on the detector during

the black hole evaporation, we will obtain mixed states inevitably because of the black hole’s

causal structure and quantum decoherence. As a result, the information must be lost, but

only partly, giving a non-thermal property of the radiations. However, after the black hole

evaporate completely, local measurement can lead to information loss only due to ordinary

quantum decoherence.24

3.4 Extensions including excited states of the scalar field

In the space H0 given by (2.7), the scalar field is assumed to be always in its (near horizon)

vacuum state depending on some particular black hole’s mass. In this subsection, we shall

make some extensions to include excited states. But first, let’s consider another extension

about the dependence on the black hole’s mass, which has been ignored in the previous

analysis. For the vacuum state |0M 〉 in (2.9), in addition to the explicit dependent factor

e−4πMω, the creators b†ω and b̃†ω can also depend on the black hole’s mass, as indicated by

the sequence (3.8). In the calculations of the factors 〈0M−ω|b̃ω|0M 〉 in (2.20) and N(M,ω)

in (2.24), the mass dependence of the creators and annihilators has been neglected, by

assuming these operators belong to one Fock space with some fixed black hole’s mass.

Then one may ask whether the results would become very different, if including the mass

dependence of the creators and annihilators.

As an example, let’s consider a general factor 〈0M1 |b̃0ω|0M0〉 with

a0
ω|0M0〉 = a1

ω|0M1〉 = 0 , (3.32)

with the indexes 0 and 1 denoted as the mass dependence of M0 and M1 respectively. The

annihilators a0
ω and a1

ω are related by a Bogoliubov transformation, and there is also a

relation between the two vacua

|0M1〉 ∼ exp{γωω′(a0
ω)†(a0

ω′)
†}|0M0〉 . (3.33)

Then we have

〈0M1 |b̃0ω|0M0〉 ∼ 〈0M0 | exp{γωω′a0
ωa

0
ω′}b̃0ω|0M0〉 = 0 , (3.34)

where another Bogoliubov transformation b̃0 ∼ αa0 + β(a0)† has been used. From (3.34)

we see that, as long as the initial state is some (near horizon) vacuum, particles of both

the two modes must be created or annihilated in pairs (generally in even numbers), leaving

the vacuum almost unaltered. This is also the reason for the non-vanishing of the factor

N(M,ω) which contains annihilators of both the two modes. By including the mass de-

pendence of the creators and annihilators, it may be extended to a non-diagonal factor

N(M,ω, ω′), which leads to a general correlation
∑

ωω′ fωω′ |M−ω〉B|E+ω′〉D between the

black hole and the detector.
24Recall that a quantum measurement only gives probabilities, with the phase information lost. For an

entangled state such as an EPR pairs, correlation information can be acquired by comparing measurement

outcomes through a classical channel. Thus, without black holes, only phase information can be lost due

to quantum decoherence.
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Now, let’s consider the excited states of the scalar field. As shown in section 3.1, the

space H0 is not enough for a full unitary evolution, that is, excited states can be obtained

during the evolution. In the evolution operator (3.9), the completeness relations in terms

of bω and b̃ω modes instead of aω modes, should be inserted. It thus seems that the

evolution may be described in a direct product Hilbert space Hb ⊗ Hb̃, with the vacuum

|0, 0̃〉. Then the creation and annihilation of particles of the bω and b̃ω modes may be un-

related, behaving like two independent dynamical systems. However, given a single system

with an initial state |0M 〉, it seems to be impossible to obtain two completely independent

subsystems under a unitary evolution. This can be roughly explained as follows. With

the interactions of our model being turned on, one would obtain some states which can be

expressed as, for example (b)m(b†)n(b̃)p(b̃†)q|0M 〉, i.e. with finite creators and annihilators

acting on the initial vacuum. They can be derived from terms like (a†)l|0M 〉, with a relation

l = m+n+p+q due to the Bogoliubov transformations. This relation should be preserved

under the unitary evolution, meaning that the completeness relation for the Hilbert space

Ha of the aω modes can still be used. When expressed in terms of the bω, b̃ω modes, it is

identified with the completeness relation for the direct product space Hb ⊗Hb̃. If further

l = 2k, i.e. an even number, then from (3.33) the scalar field can be in some near horizon

vacuum state, but only with a small probability for large M , indicated by the estimate

in (2.28).25 Moreover, the relation (3.33) implies that the creators are required to be

combined in some coherent manner to obtain another vacuum |0M1〉 from an initial one

|0M0〉, which can not be achieved simply by using of only a perturbation method. Thus, in

terms of only perturbations, states excited relative to some chosen vacuum |0M 〉 could be

obtained as long as the radiations have not been absorbed by some other systems.

In the lowest order, if the initial state is the vacuum |0M 〉, the states of the scalar field

in each subsequent stationary region can be assumed to be expressed as26

|φ〉 = α|0, 0̃〉+ β|1, 1̃〉+ · · ·+ γ|n, ñ〉+ · · · , (3.35)

with all the possible ω labels neglected for simplicity. This form is possible only when the

radiations emitted from the back hole are almost absorbed by the detector. As a coherence

state, the near horizon vacuum is just a particular one of them. Instead of (2.16), another

approximate completeness relation can be utilized for the scalar field space

I = |0, 0̃〉〈0, 0̃|+
∑
ω

|ω, ω̃〉〈ω, ω̃|+
∑
ω1ω2

|ω1ω2, ω̃1ω̃2〉〈ω1ω2, ω̃1ω̃2|+ · · · . (3.36)

Then some transition rates can be calculated, where the mass dependence of the creators

and annihilators can still be neglected for simplicity. For example, the transition rate for

|0M 〉 to |0, 0̃〉 is given by

|λ0
ωVM,ω|2 = |〈0, 0̃|bω b̃ω|0M 〉gωVM,ω|2 ' |gωVM,ω|2e−8πMω , (3.37)

25The existence for the case of l = 2k+ 1 implies that we should work in a larger Hilbert space, with H0

only as a subspace.
26It should be stressed that the state (3.35) is actually not exact and even not present, it is proposed

only for convenience of calculation.
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where we have used an approximation∏
ω

(1− e−8πMω) = e−
1

96M ' 1, (M � 1) . (3.38)

This gives a black hole mass decreasing rate

1

2π

∫ ∞
0

dωω|λ0
ωVM,ω|2 '

1

2π

∫ ∞
0

dωω|gωVM,ω|2e−8πMω ' c

128π3M2
= cLl=0 , (3.39)

where c = |gωVM,ω|2 is assumed to be a model dependent constant approximatively. Ll=0

is the l = 0 luminosity (without backscattering effects), a little smaller than the result

(768πM2)−1 [10] based on the Hawking’s arguments. The transition rate for |0M 〉 to all of

the states |ω0, ω̃0〉 is given by

|λ1
ωVM,ω|2 ' |gωVM,ω|2

(∑
ω0

e−4πM(ω+ω0)

)2

= |gωVM,ω|2
e−8πMω

8π2M2
, (3.40)

reduced by a factor (8π2M2)−1 comparing with |λ0
ωVM,ω|2. This means higher states |n, ñ〉

contribute little as long as the black hole mass is large enough. However, it should be

stressed again that the above calculations actually only provide a convenient computa-

tional method. Besides, the calculated transition rate in (3.39) serves only as the vacuum

contribution indicated by the form of the state in (3.35).

During the evolution of our model, the scalar field can be excited to higher levels,

provided that the emitted energy of the black hole is still stored in the scalar field and not

transferred into the detector. Then what are the effects of these excited states? This can

be seen through the following two expectation values

〈0M |N |0M 〉 = 〈0M |
∑
ω

b†ωbω|0M 〉 =
∑
ω

1

e8πMω − 1
, (3.41a)

N(ω0)−1〈0M |bω0Nb
†
ω0
|0M 〉 =

∑
ω

1

e8πMω − 1
+ 2 +

e−8πMω0

e8πMω0 − 1
, (3.41b)

with b†ω0 |0M 〉 a first excited state and N(ω0) = e8πMω0(e8πMω0 − 1)−1 its normalization

constant. We can see that, in addition to the thermal spectrum giving the vacuum ef-

fects, there is also a contribution 2 + e−8πMω0(e8πMω0 − 1)−1. For a general excited state

(b)m(b†)n(b̃)p(b̃†)q|0M 〉, the contributions will be more complex, but the thermal spectrum

is modified to be non-thermal. This implies that there are quantum corrections to the

thermal spectrum in our model, which can be treated as an extension of the semiclassical

method used by Hawking. In reference [13], the authors say that the non-thermal spectrum

of Parikh and Wilczek [12] with the form (2.28) allows for the Hawking radiation emissions

to carry away all information of a black hole.27 The calculations in (3.41) support their

argument only partly, because in this way not all information can be recovered within a

27Notice that the state |0M−ω〉 used in deriving (2.28) is also an excited state relative to |0M 〉, as indicated

by (3.33).
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black hole background. That is, the correlation information is still lost if local measure-

ments are performed during the evaporation, as discussed below (2.5) or below (3.31).28

Below (3.31) a condition is proposed that measurements should be performed after the

black hole evaporate completely. At that time, there will not be mode splitting for the

scalar field, and ordinary measurement can be performed without any question.

Certainly, when the energy almost goes to the infinite future and is absorbed by the

detector, the scalar field can be in some near horizon vacuum state. Although the scalar

field’s (near horizon) vacuum is not necessary during the evolution, it indeed provides

the necessary entanglements to generate the new correlations between the black hole and

the detector. Then can we destroy the entanglements implicit in the vacuum |0M 〉 by

a Hawking’s measurement (3.15)? If this was possible, then |0M 〉 would collapse into a

state like |α〉|β̃〉, which behaves like two independent systems described alone by bω and b̃ω
modes respectively. As a consequence, even the whole space-time may be broken completely

into two disconnected regions along the event horizon. In our model, however, the local

measurement is performed on the space of the detector, then after the measurement it

is the detector’s state that will collapse, so will the state of the black hole due to the

entanglements between the black hole and the detector. These have little influences on

the vacuum |0M 〉 without destroying the entanglements implicit in it, so the evolution or

evaporation can be continuing.

4 A qualitative analysis including the gravitational perturbation

4.1 Graviton as an intermediate medium for energy transfer

The model studied in section 2.2 provides a nonlocal correlation between the causally dis-

connected interior and exterior of the black hole. According to local QFT, the interactions

HB,ψ and Hψ,D in (2.15) and (2.21) should decouple from each other. However, because

of the entanglements between the bω and b̃ω modes implicit in the vacuum state |0M 〉,
it is possible to combine the two interaction terms in a way like (2.22) to obtain a non-

vanishing transition (2.25), leading to correlations between those two disconnected regions.

In this subsection, we shall make some further investigations in the framework of curved

space QFT, where unlike the traditional semiclassical treatment, the gravity is treated by

including the gravitons or the perturbations of the black hole background.

For a flat space-time background, a useful expansion is given by gµν ' ηµν +hµν , with

the perturbation hµν treated as the quantum gravitational field or graviton. Here, we make

an analogous expansion based on some black hole background

gµν ' gBµν + hµν , (4.1)

with gBµν the classical metric of a black hole with mass M0, and the perturbation hµν treated

still as the quantum gravitational field based on this black hole. Analogous to the mode

28From (2.29) and (2.30), we can see that the discussion here is analogous to that below (3.31). In

particular, after the black hole evaporates completely, the bω modes will become aω modes, without involving

any mode splitting.
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expansion (2.17) for the scalar field, we have29

hµν =

∫ ∞
0

dω
∑
i

εiµν(ω)(eiωUω + h.c.) =

∫ ∞
0

dω
∑
i

εiµν(ω)[ciωuω + c̃iωũω + h.c.] , (4.2)

with εµν the polarizations of the gravitons. The full interaction is given by∫
Σint

d3xhc̃µνT
µν [ψb̃] +

∫
Σext

d3xhcµνT
µν [ψb] , (4.3)

which occurs in both of the interior and exterior of the black hole according to the extended

BHC (ii’). For simplicity, the interactions will be studied only in the momentum space

labeled by the energy ω, with all the other items such as the polarizations being neglected.

According to local QFT, the terms in (4.3) will contain the following interaction patterns

(b†ω2
cωbω1 + h.c.)δ(ω1 + ω − ω2) (c†ωbω1bω2 + h.c.)δ(ω1 + ω2 − ω)

(b̃†ω2
c̃ω b̃ω1 + h.c.)δ(ω1 + ω − ω2) (c̃†ω b̃ω1 b̃ω2 + h.c.)δ(ω1 + ω2 − ω) ,

(4.4)

with the combinations of the mode functions such as
∫
u∗∂u∂u being ignored for simplicity.

Let’s then evolve the entire system, and a Hartree-Fock-like method should be used.

For an initial state |i〉g of the graviton, we can evolve it and obtain a final state |f〉g via

the evolution operator for the interaction in (4.3), where the fields are expanded based

on an initial background metric gBµν as in (2.17) and (4.2). Then the new background

metric is given by gBµν +g 〈f |hµν |f〉g, and the procedure continues. Let’s first consider

the black hole formation. The initial state |i〉g of the graviton must be chosen to satisfy

g〈i|hµν |i〉g ' 0, so that the black hole is initially stationary. To form a larger black hole with

mass M0 + ∆M = M , the scalar field must be in its excited state initially, for example30

|φ〉ψ ∼
∏
ω

a†ω|0M0〉ψ
(∑

ω = ∆M

)
. (4.5)

Because of the Bogoliubov transformations, this state can be expressed as a superposition

of various states, among which two particular ones are

|φ1〉ψ ∼
∏
ω1

b†ω1
|0M0〉ψ

(∑
ω1 = ∆M1

)
, |φ2〉ψ ∼

∏
ω2

b̃†ω2
|0M0〉ψ

(∑
ω2 = ∆M2

)
.

(4.6)

After the formation of the larger black hole, the state of the scalar field can be chosen to be

the vacuum |0M 〉ψ. That is, the energy ∆M stored in ψ〈φ|Tµν [ψb,b̃]|φ〉ψ have been almost

transferred into the black hole (interior), keeping the energy balance31

g〈f |Gµν [hc,c̃]|f〉g ∼ψ 〈φ|Tµν [ψb,b̃]|φ〉ψ . (4.7)

29For simplicity, we still use the formulae of the shock wave model, so the coordinate transformations for

the tensor can be ignored.
30Here

∏
ω a
†
ω ≡ a†ω1

a†ω2
· · · ,

∑
ω ≡ ω1 +ω2 + · · · , similarly for other equations below, such as (4.6), (4.8)

and (4.10), etc.
31Here the first order Einstein’s equation has been used, since Rµν [gB ] = 0. The energy balance is a

general condition satisfied by two components of a closed system.
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The graviton’s final state can be chosen as, for example (according to BHC (iii))

|f〉g ∼
∏
ω

c̃†ω|i〉g
(∑

ω

ω = ∆M

)
, (4.8)

since the energy of the black hole must be stored almost in the interior degrees of freedom.

Then there would be some transitions due to the interactions in (4.3)

|φ1〉ψ|i〉g
1→ |0M 〉ψ|f1〉g, |φ2〉ψ|i〉g

2→ |0M 〉ψ|f2〉g , (4.9)

with energies ∆M1 and ∆M2 for |f1〉g and |f2〉g, respectively.

The transition 2 in (4.9) can simply be induced by an interaction c̃†ω b̃ω1 b̃ω2 in (4.4),

which is local in the interior of the black hole. While for the transition 1, it seems that an

interaction c̃†ωbω1bω2 can do the job, which is impossible since it contains operators from

causally disconnected regions. But following the effective field model in section 2.2, the

transition 1 can be induced by some combinations of some local interaction terms32∏
∑
ω′=∆M1

(c̃†ω′ b̃ω′1 b̃ω′2)(cω′bω′1bω′2)
∏

∑
ω=∆M1

(c†ωbω1bω2) , (4.10a)

∏
∑
ω′=∆M1

(c̃†ω′ b̃
†
ω′1
b̃†
ω′2

)(cω′b
†
ω′1
b†
ω′2

)
∏

∑
ω=∆M1

(c†ωbω1bω2) . (4.10b)

That is, the energy of the scalar field is first transferred into the exterior gravitational field

via some local interactions, then into the interior gravitational field through the entangle-

ments implicit in |0M0〉ψ. These can be verified by noting the following actions

(b̃ω′bω′)(bωb
†
ω)|0M0〉ψ ∼ (b̃ω′bω′)|0M0〉ψ ∼ |0M 〉ψ , (4.11a)

(b̃†ω′b
†
ω′)(bωb

†
ω)|0M0〉ψ ∼ (b̃†ω′b

†
ω′)|0M0〉ψ ∼ |0M 〉ψ , (4.11b)

c̃†ω′(cωc
†
ω)|i〉g ∼ c̃†ω′ |i〉g , (4.11c)

where the creators and annihilators of the same mode has been considered to be approx-

imately cancelled,33 while those of different modes are in pairs so that the entanglements

between the bω and b̃ω modes are still retained. There are two interaction terms which do

not appear in the ordinary patterns (4.4)

c̃†ω b̃
†
ω1
b̃†ω2

, cωbω1bω2 . (4.12)

In the framework of flat space QFT, these two terms are related to a factor δ(ω1 +ω2 +ω),

and thus should vanish. In the black hole physics, however, the whole space-time is divided

into an interior and an exterior regions by the event horizon, with each one incomplete.

As a consequence, the integral intervals of the space-time integrals in each region are also

32We have neglected the mass dependence of these operators for simplicity.
33Since b, b̃ can not annihilate |0M0〉ψ, thus bωb

†
ω|0M0〉ψ = |0M0〉ψ + b†ωbω|0M0〉ψ. The first term |0M0〉ψ

is already in (4.11a) and (4.11b), while the second term can be considered to be from another procedure

involving a state |φ′1〉ψ ∼
∏
ω1
bω1 |0M0〉ψ, which can also be derived from the general state in (4.5).
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incomplete, leading to non-vanishing results. Therefore, with the help of the combinations

in (4.10), the transition 1 in (4.9) can be induced step by step. The other states in the

superposition of |φ〉ψ can be treated in an analogous way.

These transitions can be illustrated in the following diagram

b
(×)−−−−→ b̃

bbc†+h.c.

y yb̃b̃c̃†+h.c.

c
E(b,b̃)−−−−−→

c†c̃+h.c.
c̃

with E(b, b̃) denoted as the entanglements implicit in the vacuum |0M0〉ψ. The transferred

energy flows along the arrows. First, it is stored in the scalar field as matter’s energy. For

the energy stored in the b̃ω modes, it can be transferred directly into the c̃ω modes as the

black hole’s mass via the local interaction (b̃b̃c̃† + h.c.). While for the energy stored in

the bω modes, it firstly has to be transferred into the cω modes via the local interaction

(bbc† + h.c.), then into the c̃ω modes as the black hole’s mass via the nonlocal correlation

(c†c̃+ h.c.) that is generated by E(b, b̃). This generated nonlocal correlation is just like the

one discussed in section 3.2, by noting c̃†ω′cω′(ψ〈0M0 |b̃ω′1 b̃ω′2bω′1bω′2 |0M0〉ψ) from (4.10). The

notation (×) in the above diagram is used to indicate the impossibility to transfer energy

in the corresponding direction,34 similarly for another diagram below.

For the black hole evaporation, we can reverse the above formation process, with

the initial and final states given by |0M 〉ψ|f〉g and |φ〉ψ|i〉g, respectively.35 The required

transitions can be induced by means of a local interaction c̃ω b̃
†
ω1 b̃
†
ω2 and the following

combinations of local interactions∏
∑
ω′=∆M1

(cω′b
†
ω′1
b†
ω′2

)
∏

∑
ω=∆M1

(c†ωb
†
ω1
b†ω2

)(c̃ω b̃
†
ω1
b̃†ω2

) , (4.13a)

∏
∑
ω′=∆M1

(cω′b
†
ω′1
b†
ω′2

)
∏

∑
ω=∆M1

(c†ωbω1bω2)(c̃ω b̃ω1 b̃ω2) . (4.13b)

Then the energy stored in the interior of the black hole can be transferred back into the

scalar field, and the scalar field will be excited. In order for the black hole to evaporate

further, the energy stored in the scalar field must be transferred into somewhere else so

that the entanglements E(b, b̃) can still be utilized. The distance detector in the model of

section 2.2 just does this job. These can be illustrated in an analogous diagram

b̃
(×)−−−−→ b

b†d+h.c.−−−−−→ d

b̃b̃c̃†+h.c.

y xbbc†+h.c.

c̃
E(b,b̃)−−−−−→

c†c̃+h.c.
c

34In fact, there is an analogous way to transfer energy between the b̃ω and bω modes via the entanglements

between the c̃ω and cω modes of the graviton’s states. However, this seems to be impossible here since we

have to make an average 〈h〉 to give a classical background in each stage.
35This procedure for the evaporation, by directly reversing the previous formation process, is a little like

the stimulated radiation, because the state of the gravitons has been excited after the previous formation.
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where we have reversed the direction for the energy flowing between the b̃ω and c̃ω modes

so that the energy can almost be transferred into the distant detector. The role played by

the gravitons as an intermediate medium is thus demonstrated in the above diagram, or

more apparently in the following expression

∏
∑

(ω1+ω2)=∆M1

(d†ω1
d†ω2

bω1bω2)

 ∏
∑
ω′=∆M1

(cω′b
†
ω′1
b†
ω′2

)
∏

∑
ω=∆M1

(c†ωbω1bω2)


g,ψ

(c̃ω b̃ω1 b̃ω2) .

(4.14)

The grouped contribution from the scalar and gravitational field serves as the propagators

in the exterior region, while the terms in the two ends just give the model in section 2.2

with an identification c̃ω → Vω. Roughly speaking, the energy (or information) is not

transferred instantaneously from the interior of the black hole into the distant detector,

but transferred step by step via the intermediate gravitational and scalar field. Therefore,

the correlations between the black hole and the detector are physically practicable.

As discussed in section 2.1, in the (classical) black hole physics, there is a contradiction

between the descriptions of a static observer and an in-falling observer because of the metric

singularity at r = 2M . In a quantum version, as illustrated in the above two diagrams, it

is impossible for an exterior or interior particle to cross the event horizon directly, since

the exterior particle is described by the bω modes, while the interior one is described in

terms of the b̃ω modes. This causally disconnectedness agrees with the classical one in

the view of a static observer, since the chosen reference frame is still given by (t, r, θ, φ).

For an in-falling observer, the chosen reference frame is regular so that there is no mode

split. Then the physical world in his eyes can be described well according to flat space

QFT. The scalar field and the gravitational perturbation are expanded in terms of the

aω and eω modes respectively, in particular, the vacuum for the scalar field is |0M 〉. The

full interaction is given by the term (2.37), which can induce various quantum transitions,

including those induced by nonlocal correlations when expressed in terms of the bω and b̃ω
modes. For example, by means of the Bogoliubov transformations, an interaction pattern

e†ωaω1aω2 can be formally expressed as

e†ωaω1aω2 ∼ αc
†
ω′bω′1bω′2 + βc̃†ω′bω′1bω′2 + · · · , (4.15)

where the term c†ω′bω′1bω′2 is an local interaction in the exterior region, while the other one

c̃†ω′bω′1bω′2 is a nonlocal one which is required to induce the transition 1 in (4.9).

For a static observer, however, the term c̃†ω′bω′1bω′2 in (4.15) can not be constructed

directly since it contains modes from disconnected regions, violating the causality. But

the quantum transitions are physical so that they should not depend on the observers.

These quantum transitions, in the view of a static observer, are given by (4.10) and (4.13)

via the entanglements implicit in the vacuum |0M 〉. That is, they are induced by some

nonlocal correlations between the interior and exterior degrees of freedom of the black

hole, leading to some quantum tunneling effects across the event horizon. Thus, the energy

or information can be tunneled across the event horizon gradually through those quantum
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transitions, as long as the entanglements implicit in |0M 〉ψ will never be destroyed. The

remaining problem is whether the different descriptions are consistent with each other, one

is based on the static observer, the other is based on the in-falling observer. For instance,

on one hand, c̃†ωbω1bω2 , as one part of the full interaction in (4.15), can not be constructed

directly for a static observer; on the other hand, terms like eωaω1aω2 should be vanishing

for an in-falling observer, while terms like cωbω1bω2 or c̃ω b̃ω1 b̃ω2 can be constructed for a

static observer. This consistency problem has been answered in section 2.1 only in principle

by means of the principle of general covariance, without a detailed inspection.36

4.2 Three classes of entanglements or correlations

Up to now, we have obtained three kinds of entanglements:

(1) Entanglements that are always implicit in some steady pure state, such as the vacuum

state |0M 〉;

(2) Entanglements that can be established through some ordinary local interactions, like

those (bbc† + h.c.), (b̃b̃c̃† + h.c.) and (bd† + h.c.);

(3) Entanglements which are nonlocal in the sense that they are established between two

causally disjoint regions by means of the entanglement implicit in the vacuum state

|0M 〉, like (c†c̃+ h.c.) and (d†V + h.c.).

From the previous discussions, one can see that the entanglements of class (1) and (3)

share some property different from that of the class (2): local measurements will lead to

(correlation) information loss inevitably due to the causal disconnectedness. While for the

entanglements in the class (2), correlation information can be acquired by comparing two

local measurement outcomes through a classical channel, such as the correlation 〈S1S2〉 for

an EPR pairs. The author of reference [7] tried to transfer the entanglements of class (1)

into those among the radiations that belong to the class (2). In our model, the information

is stored in the entanglements of class (3) between the causally disconnected interior and

exterior of the black hole. According to the above properties of the three classes, it seems

that both the two mechanisms are impossible. Then how to make a distinction between the

generation of entanglements in our model and the transfer of entanglements in reference [7].

There is still a difference between the classes (1) and (3) by noting that |0M 〉 is a steady pure

state, while the entanglements of class (3) are only established temporarily. This can be

explained as follows. In our model the energy of the radiation mainly comes from the black

hole, transferred via the the entanglements of class (3). This means that the entanglements

of class (3) will disappear when all the energy of the black hole is transferred outside

completely, so that the black hole is also absent. At that time, the class (3) disappear

while vacuum state still remains, and entanglements will always be established via local

interactions, belonging to class (2). In this sense, our entanglement generation mechanism

is more realizable than the transfer of entanglements in reference [7].

36This consistency problem can be treated as an extension of the correspondence (2.3). However, as shown

in section 2.1, general covariance is violated in the framework of effective field theory, thus the consistency

problem may be resolved only in a quantum gravity theory.

– 31 –



J
H
E
P
1
2
(
2
0
1
4
)
0
8
8

Let’s now consider the changes of the vacuum |0M 〉 during the evolution. In section 2.2,

a restrict space H0 is assigned, in which the scalar field are assumed to be in the (near

horizon) vacua depending on different black hole’s masses. As the entire system evolves,

a sequence of those vacua (3.6c) is assigned to describe the changes of the vacuum during

the evolution. It seems to be impossible to decide which vacuum has more entanglements,

since each vacuum can be expressed by (2.9) in terms of their respective bω, b̃ω modes,

i.e. maximum entangled in each Fock space. If |0M0〉 is a maximum entangled state, then

|0M1〉 is away from maximum by including excited states from the relation (3.33). But this

relation can also be rewritten in a reversed order so that |0M1〉 is maximum entangled while

|0M0〉 is away from maximum. One may say that their entanglements can be compared by

calculating the Von Neumann entropy for each vacuum. But this is complicated due to the

mass dependence in each vacuum |0M 〉. In fact, those vacua are just meta-stable states,

and should be treated as some auxiliary states. For a full evolution, free states in the real

t → ±∞ regions should be utilized, since the causal structures of the space-time there

should be regular without black holes and mode splitting. In this sense, it’s meaningless

to count the amount of entanglements implicit in those vacua.

For local interactions in terms of perturbation expansions, we can obtain states with

finite creators and annihilators acting on the vacuum, which are still entangled states, for

example a state like (b)m(b†)n(b̃)p(b̃†)q|0M 〉. That is, the entanglements between the bω and

b̃ω modes are still remaining, since |0M 〉 can not be destroyed by those operations composing

of only finite creators and annihilators. This is not the case for a global operation, for

example the inverse of the operator e
∑
ω e
−4πMωb†ω b̃

†
ω in (2.9) that can be used to transform

|0M 〉 to another vacuum |0, 0̃〉, obtaining a direct product state. Fortunately, this kind of

operators with global properties seldom occurs in local effective field theory. This can also

be explained by noting that the local interactions HB,ψ and Hψ,D are independent so that

there exist no prior correlations for them to produce an operator with global properties.

Therefore, without destroying the entanglements implicit in |0M 〉, the quantum transitions

given in sections 2.2 and 4.1 can still continue, leading to the black hole evaporation. It

thus implies that the space H0 should be extended to a more general one to include all

the possible entangled states of the scalar field, generated by those operations composing of

finite creators and annihilators acting on each vacuum state |0M 〉, analogous to the case of

the four Bell states. This can be explicitly seen in the qubit model analyzed in appendix B,

where all the four Bell states can appear during the unitary evolution.

5 Summary

Some essential points for our model of the black hole evaporation are summarized as follows:

(1) Black hole complementarity (BHC) can almost be satisfied, but with an extended

postulate (ii’): both the exterior and interior regions of the event horizon are well

described by QFT in curved space, with the singularity r = 0 excluded from the

interior region. (Sections 2, 3 and 4.) The reason for the extension of the BHC (ii)

is given in section 2.1.
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(2) The radiation mainly comes from the black hole itself, transferred outside via some

quantum transitions across the event horizon. Those quantum transitions are in-

duced via some nonlocal correlations generated by the entanglements implicit in the

(near horizon) vacuum state |0M 〉 of the scalar filed. The contribution from the

stretched horizon or the near horizon region can be treated as vacuum effects. (Sec-

tions 2.2, 3.2, 4.1 and 3.4.)

(3) A Hawking-like measurement 〈0M |Oext|0M 〉 will always lead to correlation informa-

tion loss. In our model, Hawking-like measurement can be replaced by measure-

ments operated on an added detector that receives radiations. In this way, instead

of Hawking’s thermal spectrum, a non-thermal spectrum of the radiations will be

obtained, by including the contributions from the possible intermediate states. (Sec-

tions 2.1, 2.2.2, 3.2 and 3.3.)

(4) Information will be lost when some local measurements have been performed. This

is caused by quantum decoherence that destroys the entanglements among the com-

ponents of a closed system. Moreover, in the framework of effective field theory,

measurements should be performed only after the black hole evaporates completely,

otherwise correlation information will be lost for ever. A quantum gravity theory

without background dependence may resolve this problem. (Sections 3.3, 2.1.)

(5) In the framework of curved space QFT, a unitary evolution including both the

black hole formation and evaporation can be constructed formally, although the con-

structed evolution operators have singularities. Those singularities can not be easily

avoided, indicating that a quantum gravity theory is still needed. (Section 3.1 and

appendix A.)

Here, we give a qubit model which behaves in a similar manner as the above essential

points. Suppose that Alice and Bob own an EPR pairs, Alice takes one qubit denoted by

a, while Bob carries the other one named by b. Now there is a task for them to establish

correlations between two independent systems A and B, which are far away from each

other. Usually, for two systems to correlate with each other, one direct method is to

couple them via some local interactions, for example an EPR pairs can be produced in

this way. However, if the systems A and B can not be moved to close to each other, or

even they may be located in two causally disconnected regions, for instance the interior

and exterior of a black hole, then how to correlate them? The EPR pairs owned by Alice

and Bob can be applied to accomplish this task in the following way. Let Alice and Bob

travel to the locations of A and B respectively, together with their own qubits of the EPR

pairs. After arriving, let them carry some local unitary operations UaA and UbB on the

combined systems aA and bB respectively, then A and B will be correlated with each other

by carefully controlling the operations. The mathematical detail of this model is given in

appendix B, where a modified quantum teleportation is also given to transfer information

through the EPR pairs. Obviously, the systems A and B can be regarded as the black

hole and the detector respectively, while the EPR pairs serves as the vacuum state |0M 〉.
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Therefore, the information of the black hole can also be transferred outside via an analogous

quantum teleportation process.

From the discussions of this paper, it can be concluded that, the black hole forma-

tion and evaporation processes can be modelled in a unitary manner according to effective

field theory. Then the paradoxes of the information loss and the firewall can be resolved,

provided that no local measurements are performed during the process. Even though the

black hole may evaporate completely in the end, the information could still be stored in

the entire system, with components including the scalar field, the weak gravitational field

(without black holes), and perhaps an additional detector. When some local measurement

has been performed, however, the information will be lost inevitably due to quantum deco-

herence, but lost only partially since contributions from the intermediate states have been

included. A more general case including the charges and angular momenta has to be fur-

ther investigated. Since our model is unitary, and a non-thermal spectrum is also obtained

indicated by (3.31), it thus seems that there may not be a thermodynamic character for

the pure gravity. Certainly, this needs to be investigated further. In conclusion, although

our model is just an approximation, it indeed implies that quantum mechanics and gravity

can be combined in a consistent way, giving a quantum gravity theory.

A A simple model with a singular evolution operator

A simple model with a singular evolution operator is studied in detail here. The action is

that for a harmonic oscillator with a prescribed, time-dependent spring “constant” [14]

S[q] =

∫ [
− 1

2
q̇2(t) +

1

2
ω2(t)q2(t)

]
dt , (A.1)

where

ω2(t) = A+B tanhλt . (A.2)

The function ω2(t) becomes constant in the remote past and the remote future

ω2(t)
t→±∞−→ A±B ≡ ω2

± . (A.3)

By solving the equations of motion, the in and out mode functions can be obtained [14].

As in curved space QFT, these two modes are related by a Bogoliubov transformation.

From (A.3),the free Hamiltonians in the t→ ±∞ limits are

H
t→±∞−→ H± =

1

2
(p2 + ω2

±q
2) , (A.4)

with the eigenstates given by

H±|χ±α 〉 = E±α |χ±α 〉 . (A.5)

The “out”(+) and “in”(−) states are defined as

H|Φ±α 〉 = E±α |Φ±α 〉 , (A.6)
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which satisfy the condition [15]

exp(−iHt)
∑
α

g(α)|Φ±α 〉
t→±∞−→ exp(−iH±t)

∑
α

g(α)|χ±α 〉 . (A.7)

Then the “out” and “in” states can be expressed as

|Φ±α 〉 = Ω±(±∞)|χ±α 〉 , (A.8)

where

Ω±(t) ≡ exp(+iHt) exp(−iH±t) . (A.9)

The S-matrix is thus given by

(S+−)βα = 〈Φ+
β |Φ

−
α 〉 , (A.10)

or equivalently the S-operator is

S+− = Ω+(+∞)†Ω−(−∞) = U+−(+∞,−∞) , (A.11)

where the evolution operator is defined as

U+−(t2, t1) ≡ Ω+(t2)†Ω−(t1) = exp(+iH+t2) exp{−iH(t2 − t1)} exp(−iH−t1) . (A.12)

Differentiating U+−(t2, t1) with respect to t2 and t1 respectively, we have

i
d

dt2
U+−(t2, t1) = V +(t2)U+−(t2, t1) V +(t2) = eiH

+t2(H −H+)e−iH
+t2 , (A.13a)

−i d
dt1

U+−(t2, t1) = U+−(t2, t1)V −(t1) V −(t1) = eiH
−t1(H −H−)e−iH

−t1 . (A.13b)

Since H+ 6= H−, then V +(t) 6= V −(t) generally, meaning that the first differential of

U+−(t2, t1) is discontinuous. This can also bee seen from a singular initial condition

U+−(t0, t0) = eiH
+t0e−iH

−t0 , (A.14)

indicating that U+−(t2, t1) works well only if t2 6= t1. U+−(t2, t1) occurs in the two-point

function 〈0+|q(t)q(t′)|0−〉, while for 〈0+|q(t)q(t′)|0+〉 and 〈0−|q(t)q(t′)|0−〉, the evolution

operators U++ and U−− are

U±±(t2, t1) = exp(+iH±t2) exp{−iH(t2 − t1)} exp(−iH±t1) . (A.15)

Easily to see, U++(t2, t1) is ill-defined in the neighborhood of −∞, so is U−−(t2, t1) in the

neighborhood of +∞. Thus, we have three classes of evolution operators that cover the

whole parameter space [−∞,+∞], and each class has its own singularity. The S-operator

in (A.11) can be constructed as

S+− = U+−(+∞,−∞) = U++(+∞, t)U+−(t, t)U−−(t,−∞) , (A.16)
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where U±± are in their well-defined domains respectively, but the singular U+−(t, t) occurs

inevitably. To avoid this singularity, another singular operator U−+(t, t) should be included,

so that they cancel with each other

U+−(t, t)U−+(t, t) = U−+(t, t)U+−(t, t) = I . (A.17)

Notice that it is the asymptotic condition H
t→±∞−→ H± in (A.4) determines U+−. Hence to

obtain U−+, another asymptotic condition H
t→±∞−→ H∓ should be added. By combining

these two conditions, we then obtain an ordinary one, either H
t→±∞−→ H+ or H

t→±∞−→ H−.

Let’s then discuss the symmetries of the S-matrix of the model (A.1). The only sym-

metries are those about the time, i.e. time translation and time-reversal

t→ t+ t0, t→ −t . (A.18)

We consider only the time translation. According to QFT [15], a theory is invariant under

time translation, it means the same operator e−iHt0 acts on both the “out” and “in” states

Sβα = 〈Φout
β |Φin

α 〉 = 〈e−iHt0Φout
β |e−iHt0Φin

α 〉 . (A.19)

It’s convenient to work with the S-operator formula. For an ordinary asymptotic condition

H
t→±∞−→ H0, an operator e−iH0t0 can be applied to act on the free state space

〈e−iH0t0φ|S|e−iH0t0χ〉 = 〈φ|e+iH0t0Se−iH0t0 |χ〉 , (A.20)

where |φ〉 and |χ〉 are two arbitrary states in the free space determined by H0. Thus (A.19)

will hold if [15]

e+iH0t0Se−iH0t0 = S . (A.21)

This can also be rewritten as

e+iH0t0Ω(+∞)†Ω(−∞)e−iH0t0 = Ω(+∞)†e+iHt0e−iHt0Ω(−∞) , (A.22)

then we have [15]

e−iHt0Ω(±∞) = Ω(±∞)e−iH0t0 , (A.23)

that is, a time translation e−iH0t0 in the free space can induce e−iHt0 in the full space.

Condition (A.23) can be easily satisfied because of the asymptotic condition H
t→±∞−→ H0.

However, all these don’t hold for S+− or U+−(+∞,−∞). In the two stationary regions

t→ ±∞, the harmonic oscillator are free, and can be quantized as follows

{a†+, a+, |0+〉}(ω+), {a†−, a−, |0−〉}(ω−) , (A.24)

with the Bogoliubov transformations [10]

a− = αa+ + β∗a†+, a+ = α∗a− − β∗a†− . (A.25)
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These relations can lead to some unusual effects, for example, the particle creation

N+ = 〈0−|a†+a+|0−〉 = |β|2 6= 0 . (A.26)

The two vacua are related as [10]

|0−〉 = 〈0+|0−〉 exp

(
− 1

2
β∗α−1a†+a

†
+

)
|0+〉 . (A.27)

Consider the S-matrix element 〈0+|S+−|0−〉. A time translation operator e−iH
+t0 will act

on both the future and past Hilbert spaces because of the relation (A.27). Following the

same steps from (A.20) to (A.23), we will obtain the condition

e−iHt0Ω±(±∞) = Ω±(±∞)e−iH
+t0 . (A.28)

For Ω+(+∞), this condition is satisfied, since H
t→+∞−→ H+, while for Ω−(−∞), it can not

be obeyed generally, since H
t→−∞−→ H− and [H+, H−] 6= 0. Hence the time translation

symmetry is broken. In fact, the model (A.1) is only semiclassical due to a classical

potential term ω2(t)q2(t), with ω2(t) treated as an external classical field satisfying some

classical equations of motion. Besides, this potential breaks the classical symmetries of the

time, the reason for the quantum symmetry breaking.

The above broken symmetry may be recovered in the following way. The condition

e+iH+t0S+−e
−iH−t0 = S+− can be satisfied, if we enlarge the free space by combining H+

with H− constrained by a relation [H+, H−] = 0. This can be achieved by replacing the

parameter t in ω2(t) with another independent one µ, i.e. ω2(µ). There will thus be a

collection of oscillator states parameterized by µ, with the two in (A.24) corresponding to

the limits µ→ ±∞. Then instead of (A.25), we have

[a+, a−] = 0 . (A.29)

The whole collection of states in the free space will then becomes

{a†µ, aµ, |0〉}(ωµ) . (A.30)

In this case, [aµ1 , aµ2 ] = 0, and only a single vacuum |0〉 is needed, since the Hilbert space

of the harmonic oscillator has been enlarged, with the free Hamiltonian H0 =
∫
dµHµ, and

an ordinary asymptotic condition H
t→±∞−→ H0.

From the above analysis we can conclude that, for a semiclassical system such as the

model (A.1), a formal S-matrix or evolution operator can be constructed, implying that

the evolution of the system is unitary. But the evolution operator has some singularities

which can not be easily avoided. Moreover, the formal S-matrix may lose some meaningful

symmetries, for example the time translation symmetry, so it can not be used to construct

well-defined physical quantities for describing the system. This conclusion can be extended

to curved space QFT, where the S-matrix may lose some important Lorentz invariance.

Certainly, a full and nonsingular description may be given by a quantum gravity theory.
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B A qubit model of the black hole evaporation

In section 5, a qubit model of the black hole evaporation is proposed, in which an EPR

pairs can be utilized to correlate two distant systems without direct local couplings. In

this appendix, we give some mathematical details of this model. To resemble the black

hole evaporation, the EPR pairs are chosen to be at the Bell state

|β00〉ab ≡ 2−1/2(|00〉ab + |11〉ab) . (B.1)

The initial state of the systems A and B are chosen to be |1〉A|0〉B, meaning that A is

excited while B is at the ground state. With A regarded as the black hole and B as

the detector, a state |0〉A|1〉B is expected to occur during the evolution, i.e. the energy of

the black hole is transferred into the detector. The unitary operation U can be chosen

as the one that generates the Bell states, realized by a Hadamard gate and a subsequent

controlled-NOT (or CNOT) gate. The Bell states are generated as follows [16]

|00〉 U−→ |β00〉 ≡ 2−1/2(|00〉+ |11〉) |01〉 U−→ |β01〉 ≡ 2−1/2(|01〉+ |10〉)

|10〉 U−→ |β10〉 ≡ 2−1/2(|00〉 − |11〉) |11〉 U−→ |β11〉 ≡ 2−1/2(|01〉 − |10〉) .
(B.2)

The initial state of the entire system abAB is then |β00〉ab|1〉A|0〉B. We evolve it via a

combined unitary operation UaAUbB following the actions in (B.2). The first action gives

|β00〉ab|1〉A|0〉B
UaAUbB−→ 2−1/2(|00〉ab|1〉A|0〉B + |11〉ab|0〉A|1〉B) , (B.3)

with some correlations between A and B. Evolve once again with the same operation

|β00〉ab|1〉A|0〉B
U2
aAU

2
bB−→ 2−1/2(|β00〉ab|β01〉AB − |β11〉ab|β10〉AB) , (B.4)

where the correlations become complicated. It can be verified that |β00〉ab|β01〉AB is invari-

ant under further operations, while |β11〉ab|β10〉AB continues evolving as

−|β11〉ab|β10〉AB
UaAUbB−→ |β01〉ab|β11〉AB

UaAUbB−→ |β00〉ab|β11〉AB . (B.5)

By combining (B.4) with (B.5), we then have

|β00〉ab|1〉A|0〉B
U4
aAU

4
bB−→ |β00〉ab|0〉A|1〉B , (B.6)

which is the required result. That is, the energy of A has been transferred into B, in other

words, the black hole has evaporated completely.37 Further evolutions are given by

|β00〉ab|β11〉AB
UaAUbB−→ |β10〉ab|β11〉AB

UaAUbB−→ |β11〉ab|β10〉AB
UaAUbB−→ −|β01〉ab|β11〉AB

UaAUbB−→ −|β00〉ab|β11〉AB ,
(B.7)

37Certainly, the real black hole evaporation is much more complicated than this qubit model.
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which will lead to the initial state |β00〉ab|1〉A|0〉B, by using of (B.4) and (B.5). Therefore,

we obtain a cyclic procedure expressed as

|β00〉ab|1〉A|0〉B
U4
aAU

4
bB−→ |β00〉ab|0〉A|1〉B

U4
aAU

4
bB−→ |β00〉ab|1〉A|0〉B , (B.8)

where the second evolution can be regarded as the formation process of a black hole. Thus

we prove the BHC (i) in a not rigorous way. In fact, (B.8) provides a swap operation

which swaps the states of the two input qubits of A and B. Moreover, (B.8) can also

be extended to other computational basis states, for example |0〉A|0〉B. That is to say,

analogous to (B.8), we will also have

|β00〉ab|0〉A|0〉B
U4
aAU

4
bB−→ |β00〉ab|1〉A|1〉B

U4
aAU

4
bB−→ |β00〉ab|0〉A|0〉B , (B.9)

i.e. transitions between |0〉A|0〉B and |1〉A|1〉B. Analogously, (B.9) gives a (double-) NOT

gate for both the systems A and B. This can be verified generally as

|β00〉ab(α|0〉A + β|1〉A)(µ|0〉B + ν|1〉B)
U4
aAU

4
bB−→ |β00〉ab(α|1〉A + β|0〉A)(µ|1〉B + ν|0〉B) .

(B.10)

Similarly, other quantum gates can also be constructed by choosing different UaA and UbB.

There is a cyclic property for the evolutions in (B.8) and (B.9), where the initial state

of the EPR pairs |β00〉ab is recovered for the four-action and eight-action. This is related to

the group structure of the unitary operation as follows. By grouping the four computational

basis states as a column vector (|00〉, |01〉, |10〉, |11〉)T , the unitary operation given in (B.2)

can then be rewritten in a matrix form

U =
1√
2

(
I2×2 σ1

I2×2 −σ1

)
, (B.11)

with I2×2 the unit matrix, and σ1 the first Pauli matrix. It is easy to verify that the unitary

matrix U given in (B.11) satisfies

U4 =

(
σ1 0

0 σ1

)
U8 =

(
I2×2 0

0 I2×2

)
, (B.12)

which give the cyclic property in (B.8) and (B.9). There are also some other unitary

operations with different periods, for example

U1 =

(
I2×2 0

0 σ1

)
U =

1√
2

(
I2×2 σ1

σ1 −I2×2

)
, (B.13a)

U2 =

(
σ1 0

0 I2×2

)
U =

1√
2

(
σ1 I2×2

I2×2 −σ1

)
, (B.13b)

both of which have a period of 2, not 8.

This qubit model also provides quantum teleportation between A and B by means of

the EPR pairs, which can be seen as follows. Suppose we deliver a qubit α|0〉A + β|1〉A
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from A to B, and set the initial state of B to be |0〉B, i.e. the initial state of the entire

system is

|β00〉ab(α|0〉A + β|1〉A)|0〉B . (B.14)

As in the ordinary quantum teleportation [16, 17], we first send aA through a CNOT gate,

with A as the control qubit

CNOT,A−→ (α|β00〉ab|0〉A + β|β01〉ab|1〉A)|0〉B , (B.15)

then send A through a Hadamard gate, obtaining

Hadamard,A−→ {|00〉aA(α|0〉b + β|1〉b) + |01〉aA(α|0〉b − β|1〉b)
+ |10〉aA(α|1〉b + β|0〉b) + |11〉aA(α|1〉b − β|0〉b)}|0〉B ,

(B.16)

which is the result of the ordinary teleportation. If we make some further operations on

the bB, the task can be accomplished. The operations are as follows

Hadamard,B−→ · · · CNOT,B−→ 2−1{|β00〉ab|0〉A(α|0〉B + β|1〉B) + |β01〉ab|0〉A(α|1〉B + β|0〉B)

+ |β00〉ab|1〉A(α|0〉B − β|1〉B) + |β01〉ab|1〉A(α|1〉B − β|0〉B)} .
(B.17)

Analogous to the ordinary teleportation, to complete the teleportation, some measurements

on A and ab, and some classical channel are necessary to determine the final state of B.

This means that the information can not be transferred faster than light. In the case of

the black hole, the classical channels are restricted by the classical causality, which always

leads to correlation information loss in the framework of effective field theory, as discussed

below (2.5).38 However, what we need is just transferring the black hole’s information out-

side generally in a (effective) unitary manner, so it is not necessary to know the transferred

information. Hence, the result in (B.17) is enough for our black hole evaporation model.

Notice that the above qubit model is completely different from the one in reference [18],

where the author proved a theorem saying that the formation and evaporation of a black

hole will always lead to mixed states or remnants. The proof is based on an argument

stating that the vacuum state |0M 〉 is stable during the evaporation, in the sense that the

state will not be changed. In our model, however, this condition is relaxed by emphasizing

that the entanglements implicit in the state |0M 〉 should not be destroyed, but the state

38When combined with the white hole in which everything interior must be emitted out of the event

horizon, the above causality restriction for the black hole may disappear. In this sense, the black hole and

white hole are complementary to each other. In fact, in our model developed in sections 2 and 4.1, the

emission and absorption parts of the interactions must be combined together to guarantee the Hermitian

of the Hamiltonian, or the unitary property of the evolution. From these considerations, it seems that the

black hole and white hole are actually two faces of a unique space-time structure, at least in a quantum

version. This unified structure is free of the causality restriction so that classical channels are open enough

to transfer classical bits, too.
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can be changed by local operations as discussed in section 4.2.39 This can also be seen

from the above qubit model, where the initial |β00〉ab can be changed into other three

Bell states without destroying the entanglements. Moreover, any partial measurement

performed on each qubit of the EPR pairs should be forbidden, or else the evolution (B.8)

will be destroyed and the established correlations between A and B will be lost. For

the quantum teleportation in (B.17), the EPR pairs are retained during the procedure,

while for the ordinary teleportation in (B.16), the EPR pairs are absent and the quantum

channel may be closed. In a word, as long as the entanglements of the Bell states or those

(near horizon) vacua in our black hole evaporation model are not destroyed, two causally

disconnected regions can be correlated all the time.
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