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1 Introduction

The analytic solution for tachyon condensation [1] in Witten’s open bosonic string field

theory [2] has provided analytical and numerical tools to analyze several classical solutions

of the string field equations of motion [3]–[24]. In the framework of the modified cubic

superstring field theory [25], the analytic construction of the tachyon vacuum solution was

analyzed by Erler [26]. Using the KBcγ subalgebra introduced in [27, 28], many gauge

equivalent tachyon vacuum solutions [29–33] have been proposed and the computation of

the energy associated to these solutions was performed giving results in agreement with

Sen’s conjecture. The analysis of multibrane solutions has been given in a set of two

papers [34, 35]. In the case of Berkovits non-polynomial open superstring field theory [36],

the analytic construction of the tachyon vacuum solution, based on an extension of the

KBcγ subalgebra, has been studied by Erler [37].

In the bosonic context, the well known solutions, i.e., Schnabl’s [1] and the simple Erler-

Schnabl’s analytic solutions for tachyon condensation [4] were used to analytically test Sen’s

conjecture. Apart from these analytical computations, further numerical evidence has been

provided by the so-called level truncation analysis [4, 24]. In the superstring case, only

analytical calculations have been performed with the solutions [26, 30, 37] and the results

were in agreement with Sen’s conjecture. So that the tachyon vacuum solution from an

analytic perspective appears to be as regular as Schnabl’s original solution for the bosonic

string. Nevertheless, from the perspective of the level expansion the situation is unknown,
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because the analysis of the energy for the tachyon vacuum solution in cubic superstring

field theory using the usual L0 level expansion has not yet been carried out.

In this paper, we will analyze a simple analytic solution for tachyon condensation in

cubic superstring field theory. This solution is written in terms of the elements of the

KBcγ subalgebra

Ψλ =
1√

1 + λK

[
1

λ
c+ cKBc+Bγ2

]
1√

1 + λK
. (1.1)

The solution (1.1) with λ = 1 has been studied by Gorbachev [30], and his main results

were: (i) the analytical computation of the energy leads to a value in agreement with Sen’s

first conjecture, and (ii) the proof of the absence of physical excitations in the vicinity of

the tachyon vacuum. Let us point out that to obtain the result (i), the validity of the

equation of motion contracted with the solution itself was assumed. However, to explicitly

test the validity of this assumption, the cubic term of the action must be computed. By

employing the solution (1.1) with a generic λ, we will compute the kinetic 〈ΨλQΨλ〉 and

the cubic terms 〈ΨλΨλΨλ〉, and test the validity of the equation of motion contracted

with the solution itself, namely 〈ΨλQΨλ〉+ 〈ΨλΨλΨλ〉 = 0. Additionally, we will evaluate

Ellwood’s gauge invariant observable.

Apart from the evaluation of the cubic term and Ellwood’s gauge invariant observable,

we will study the solution using the traditional Virasoro L0 level truncation scheme [38–

42]. This analysis is important since we want to know if the solution behaves as a regular

element in the state space constructed out of Fock states. Specifically the analysis of the

coefficients appearing in the L0 level expansion provides one criterion for the solution being

well defined [5, 24]. Furthermore the L0 level expansion of the solution will provide us with

an additional way to numerically test Sen’s first conjecture [24, 43–45].

The main motivation for developing a level truncation analysis of a simple tachyon

vacuum solution in cubic superstring field theory is to prepare a numerical background in

order to analyze more cumbersome solutions, such as the multibrane solutions [34, 35], and

the recently proposed Erler’s analytic solution for tachyon condensation in Berkovits non-

polynomial open superstring field theory [37]. Since the algebraic structure of Berkovits

theory is similar to the cubic superstring field theory, the results of our work can be

naturally extended, however the presence of a non-polynomial action in Berkovits theory,

will bring us challenges in the level truncation analysis of Erler’s solution.

This paper is organized as follows. In section 2, we review the construction of the

simple tachyon vacuum solution in cubic superstring field theory and compute the kinetic

and the cubic terms of the action. Ellwood’s gauge invariant observable is also evaluated.

In section 3, we present the level expansion analysis of the solution. By truncating the

standard Virasoro L0 level expansion of the solution, we compute the vacuum energy and

obtain a result in agreement with Sen’s first conjecture. In section 4, a summary and

further directions of exploration are given. Some details regarding the level truncation

evaluation of the vacuum energy are given in the appendix A.
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2 A simple analytic solution for tachyon condensation in cubic super-

string field theory

In this section, we are going to review the construction of the simple tachyon vacuum

solution in cubic superstring field theory [27]. Let us start by writing a string field Ψ as a

pure gauge form

Ψ = UQU−1, (2.1)

so that Ψ formally satisfies the string field equation of motion QΨ + ΨΨ = 0, where Q is

the BRST operator of the open Neveu-Schwarz superstring theory.

We can construct a string field U by employing the elements of the KBcγ subalgebra.

The basic string fields of this subalgebra are given by [26–28]

K =
1

2
L̂U †

1U1|0〉 , (2.2)

B =
1

2
B̂U †

1U1|0〉 , (2.3)

c = U †
1U1c̃(0)|0〉 , (2.4)

γ = U †
1U1γ̃(0)|0〉 , (2.5)

where the operator U †
1U1 is defined in general as U †

rUr = e
2−r
2

L̂. The operators L̂, B̂, c̃(0)
and γ̃(0) are defined in the sliver frame,1 and they are related to the worldsheet energy-

momentum tensor, the b, c and γ ghosts fields respectively. For instance, the operators L̂
and B̂ are given by

L̂ ≡ L0 + L†
0 =

∮
dz

2πi
(1 + z2)(arctan z + arccotz)T (z) , (2.6)

B̂ ≡ B0 + B†
0 =

∮
dz

2πi
(1 + z2)(arctan z + arccotz) b(z) . (2.7)

Using these definitions, we can show that the basic elements of the KBcγ subalge-

bra (2.2)–(2.5) satisfy the algebraic relations

{B, c} = 1 , [B,K] = 0 , B2 = c2 = 0 , (2.8)

∂c = [K, c] , ∂γ = [K, γ] , [c, γ] = 0 , [B, γ] = 0 , (2.9)

and have the following BRST variations

QK = 0 , QB = K , Qc = cKc− γ2 , Qγ = c∂γ − 1

2
γ∂c . (2.10)

Employing the elements of the KBcγ subalgebra, let us write the string field U as

follows

U = 1− FBcF , U−1 = 1 +
F

1− F 2
BcF, (2.11)

1Remember that a point in the upper half plane z is mapped to a point in the sliver frame z̃ via the

conformal mapping z̃ = 2

π
arctan z. Note that we are using the convention of [4] for the conformal mapping.
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where F is a function of K given by

F (K) =
1√

1 + λK
. (2.12)

Using this string field U and the relations (2.8)–(2.10), we can derive the following solution

Ψλ = UQU−1 =
1√

1 + λK

[
1

λ
c+ cKBc+Bγ2

]
1√

1 + λK
. (2.13)

The solution (2.13) with λ = 1 has been analyzed by Gorbachev [30], and his main

results were: (i) the analytical computation of the energy leads to a value in agreement

with Sen’s first conjecture, and (ii) the proof of the absence of physical excitations in the

vicinity of the tachyon vacuum. Let us point out that to obtain the result (i), the validity of

the equation of motion contracted with the solution itself was assumed. To explicitly test

the validity of this assumption, the cubic term of the action must be computed. Apart from

the evaluation of the cubic term, it remains to analyze the solution using the traditional

Virasoro L0 level truncation scheme. This analysis is important since we want to know if

the solution behaves as a regular element in the state space constructed out of Fock states.

In the next subsections, by employing the solution (2.13) with a generic λ, we are

going to compute the kinetic term 〈ΨλQΨλ〉 and the cubic term 〈ΨλΨλΨλ〉, and we will

test the validity of the equation of motion contracted with the solution itself, namely

〈ΨλQΨλ〉 + 〈ΨλΨλΨλ〉 = 0. Additionally, we will evaluate Ellwood’s gauge invariant

observable. However, the main result of our paper will be presented in section 3, i.e., the

level truncation analysis of the solution.

2.1 Computation of the kinetic term

In this subsection, we are going to compute the kinetic term of the action. Since we have

that Q[Bc] = cKBc + Bγ2, to simplify the computation it will be useful to write the

solution (2.13) in the following way

Ψλ =
1√

1 + λK

c

λ

1√
1 + λK

+Q

{
1√

1 + λK
Bc

1√
1 + λK

}
. (2.14)

Plugging this solution into the definition of the kinetic term 〈ΨλQΨλ〉, we get

〈ΨλQΨλ〉 =
1

λ2

〈
c

1

1 + λK
Qc

1

1 + λK

〉
. (2.15)

The action of the BRST operator on the c field is Qc = cKc − γ2. Since the non-

vanishing correlators for elements in theKBcγ subalgebra, in cubic superstring field theory,

are proportional to 〈cF1(K)γ2F2(K)〉 or 〈Bγ2F1(K)cF2(K)cF3(K)〉, the non-vanishing

contribution to the kinetic term (2.15) is given by

〈ΨλQΨλ〉 = − 1

λ2

〈
c

1

1 + λK
γ2

1

1 + λK

〉
. (2.16)

Let us write the integral representation of the function 1/(1 + λK),

1

1 + λK
=

∫ ∞

0
dt e−t(1+λK) =

∫ ∞

0
dt e−tΩλt, (2.17)

– 4 –
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where Ω = e−K . Plugging this integral representation into the equation (2.16), we obtain

〈ΨλQΨλ〉 = − 1

λ2

∫ ∞

0
dt1dt2 e

−t1−t2
〈
cΩλt1γ2Ωλt2

〉
, (2.18)

where the correlator 〈cΩλt1γ2Ωλt2〉 is given by [26, 27]

〈cΩλt1γ2Ωλt2〉 = λ2(t1 + t2)
2

2π2
, (2.19)

so that plugging equation (2.19) into equation (2.18), we get

〈ΨλQΨλ〉 = − 1

2π2

∫ ∞

0
dt1dt2 e

−t1−t2(t1 + t2)
2, (2.20)

where the integral has the value
∫ ∞

0
dt1dt2 e

−t1−t2(t1 + t2)
2 = 6, (2.21)

therefore the value of the kinetic term is

〈ΨλQΨλ〉 = − 3

π2
, (2.22)

as expected.

2.2 Computation of the cubic term

In this subsection, we are going to compute the cubic term of the action. Plug-

ging the solution (2.14) into the definition of the cubic term 〈ΨλΨλΨλ〉, and using the

fact that the only non-vanishing correlators are proportional to 〈cF1(K)γ2F2(K)〉 or

〈Bγ2F1(K)cF2(K)cF3(K)〉, after performing some algebraic manipulations, we obtain

〈ΨλΨλΨλ〉 =
3

λ2

〈
Bγ2

1

1 + λK
c

1

1 + λK
c

1

1 + λK

〉
+

3

λ

〈
Bγ2

1

1 + λK
c

1

1 + λK
c

K

1 + λK

〉

+
3

λ

〈
Bγ2

K

1 + λK
c

1

1 + λK
c

1

1 + λK

〉
. (2.23)

Let us write the integral representation for the corresponding functions,

1

1 + λK
=

∫ ∞

0
dt e−t(1+λK) =

∫ ∞

0
dt e−tΩλt, (2.24)

K

1 + λK
= − 1

λ

∫ ∞

0
dt e−t ∂

∂t
(e−tλK) = − 1

λ

∫ ∞

0
dt e−t ∂

∂t
Ωλt. (2.25)

Plugging these integral representations into the equation (2.23), we get

〈ΨλΨλΨλ〉 =
3

λ2

∫ ∞

0
dt1dt2dt3 e

−t1−t2−t3

(
1− ∂

∂t1
− ∂

∂t3

)
〈Bγ2Ωλt1cΩλt2cΩλt3〉, (2.26)

where the correlator 〈Bγ2Ωλt1cΩλt2cΩλt3〉 is given by [26, 27]

〈Bγ2Ωλt1cΩλt2cΩλt3〉 = λ2(t1 + t2 + t3)t2
2π2

, (2.27)

– 5 –
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so that plugging equation (2.27) into equation (2.26), we get

〈ΨλΨλΨλ〉 =
3

2π2

∫ ∞

0
dt1dt2dt3 e

−t1−t2−t3(t1 + t2 + t3 − 2)t2, (2.28)

where the integral has the value
∫ ∞

0
dt1dt2dt3 e

−t1−t2−t3(t1 + t2 + t3 − 2)t2 = 2, (2.29)

therefore the value of the cubic term is

〈ΨλΨλΨλ〉 = +
3

π2
, (2.30)

as expected.

Employing the result of the kinetic term (2.22) and the cubic term (2.30), we just have

proven the validity of the equation of motion contracted with the solutions itself, namely:

〈ΨλQΨλ〉 + 〈ΨλΨλΨλ〉 = 0. In the next subsection, we are going to evaluate another

important gauge invariant quantity.

2.3 Computation of Ellwood’s gauge invariant

Let us evaluate Ellwood’s gauge invariant overlap for the tachyon vacuum solution. For a

generic solution Ψ, Ellwood’s gauge invariant overlap is defined as

W (Ψ,V) = Tr(Ψ), (2.31)

where the notation Tr(· · · ) refers to a correlator with an on shell closed string vertex

operator V(i) inserted at the midpoint, Tr(Ψ) = 〈V(i)Ψ〉. We assume the same V used in

reference [28], this field is an NS-NS closed string vertex operator of the form

V(z) = cc̃e−φe−φ̃Om, (2.32)

where Om is a weight (12 ,
1
2) superconformal matter primary field. As argued by Ell-

wood [17], the gauge invariant overlap represents the shift in the closed string tadpole of

the solution relative to the perturbative vacuum.

Inserting the solution (2.14) into the definition of the gauge invariant overlap (2.31),

the BRST exact term does not contribute, therefore we get

W (Ψλ,V) =
1

λ
Tr

(
1√

1 + λK
c

1√
1 + λK

)
. (2.33)

Let us write the integral representation of the function 1/
√
1 + λK,

1√
1 + λK

=
1√
π

∫ ∞

0
dt

1√
t
e−t(1+λK) =

1√
π

∫ ∞

0
dt

1√
t
e−tΩλt. (2.34)

Plugging this integral representation into the equation (2.33), we obtain

W (Ψλ,V) =
1

λπ

∫ ∞

0
dt1dt2

1√
t1t2

e−t1−t2Tr(Ωλt1cΩλt2). (2.35)

– 6 –
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The correlator Tr(Ωλt1cΩλt2) is given by [28, 34]

Tr(Ωλt1cΩλt2) = λ(t1 + t2)Tr(cΩ), (2.36)

where Ω = e−K and Tr(cΩ) = 〈V(i∞)c(0)〉C1
is the expected result of the closed string

tadpole on the disk. Plugging the correlator (2.36) into equation (2.35), we get

W (Ψλ,V) =
1

π

∫ ∞

0
dt1dt2

1√
t1t2

e−t1−t2(t1 + t2)Tr(cΩ), (2.37)

where the integral has the value
∫ ∞

0
dt1dt2

1√
t1t2

e−t1−t2(t1 + t2) = π, (2.38)

therefore the value of Ellwood’s gauge invariant is

W (Ψλ,V) = (+1)Tr(cΩ), (2.39)

as expected.

Since the analytic computation of the gauge invariant quantities performed in the

previous subsections leads to the desired results, the tachyon vacuum solution (2.13) from

an analytic perspective appears to be as regular as Schnabl’s original solution for the

bosonic string. Let us see what happens from a numerical perspective. In what follows,

we are going to analyze the solution using the usual L0 level expansion scheme.

3 Level expansion analysis

In this section, we are going to analyze the level expansion of the simple tachyon vacuum

solution (2.14). The analysis of a string field using the traditional L0 level expansion

scheme is important since this information tells us if the solution behaves as a regular

element in the state space constructed out of Fock states. Specifically the analysis of the

coefficients appearing in the L0 level expansion provides one criterion for the solution being

well defined [5, 24]. Moreover the L0 level expansion of the solution brings an additional

way to numerically test Sen’s first conjecture.

3.1 L0 level expansion of the simple tachyon vacuum solution

To expand the simple tachyon vacuum solution (2.14) in the Virasoro basis of L0 eigen-

states, we start by writing the function 1/
√
1 + λK as its integral representation (2.34).

Plugging this integral representation (2.34) into the expression for the simple tachyon vac-

uum solution (2.14), we obtain

Ψλ =
1

πλ

∫ ∞

0
dsdt

1√
st
e−s−tΩλtcΩλs +Q

{
1

π

∫ ∞

0
dsdt

1√
st
e−s−tΩλtBcΩλs

}
, (3.1)

where the wedge state Ωt can be expressed in terms of the scaling operator Ur [4, 18]

Ωt = e−tK = U †
t+1Ut+1|0〉, where Ur ≡

(
2

r

)L0

. (3.2)

– 7 –
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Let us write rather general formulas which will be very useful for the L0 level expansion

analysis of a string field constructed out of elements in the KBcγ subalgebra,

e−t1Kce−t2KBce−t3K =
r cos2

(
πx
r

) (
π(r − 2y)− r sin

(
2πy
r

))

4π2
Ũrc

(
2 tan

(
πx
r

)

r

)
|0〉

+
r cos2

(πy
r

) (
π(r + 2x) + r sin

(
2πx
r

))

4π2
Ũrc

(
2 tan

(πy
r

)

r

)
|0〉

+
∞∑

k=1

(−1)k+122k−1
(
1
r

)2k−3
cos2

(
πx
r

)
cos2

(πy
r

)

(4k2 − 1)π2
Ũrb−2kc

(
2 tan

(
πx
r

)

r

)
c

(
2 tan

(πy
r

)

r

)
|0〉,(3.3)

r = t1 + t2 + t3 + 1, x =
1

2
(t3 − t1 − t2), y =

1

2
(t2 + t3 − t1), (3.4)

e−tKBγ2e−tK =
2

π

∞∑

k=1

Ũ2t+1
(−1)k+1

4k2 − 1

(
2

2t+ 1

)2k−1

b−2kγ
2(0)|0〉, (3.5)

where the operator Ũr is defined as

Ũr ≡ · · · eu10,rL−10eu8,rL−8eu6,rL−6eu4,rL−4eu2,rL−2 . (3.6)

To find the coefficients un,r appearing in the exponentials, we use

r

2
tan

(
2

r
arctan z

)
= lim

N→∞

[
f2,u2,r

◦ f4,u4,r
◦ f6,u6,r

◦ f8,u8,r
◦ f10,u10,r

◦ · · · ◦ fN,uN,r
(z)
]
(3.7)

= lim
N→∞

[
f2,u2,r

(f4,u4,r
(f6,u6,r

(f8,u8,r
(f10,u10,r

(· · · (fN,uN,r
(z)) . . . )))))

]
,

where the function fn,un,r
(z) is given by

fn,un,r
(z) =

z

(1− un,rnzn)1/n
. (3.8)

Employing the set of equations (3.2)−(3.6) for the solution (3.1), we obtain

Ψλ =
1

2π2λ

∫ ∞

0
dsdt

1√
st
e−s−tr2 cos2

(πx
r

)
Ũrc

(
2 tan

(
πx
r

)

r

)
|0〉+Qexact term, (3.9)

where

r = λ(s+ t) + 1, x =
λ

2
(s− t). (3.10)

Since in the evaluation of the vacuum energy, the Qexact term will not contribute, we only

need to consider the first term on the right hand side of equation (3.9). Let us study in

some detail this first term

Ψ
(1)
λ ≡ 1

2π2λ

∫ ∞

0
dsdt

1√
st
e−s−tr2 cos2

(πx
r

)
Ũrc

(
2 tan

(
πx
r

)

r

)
|0〉, (3.11)

with r and x given by equation (3.10).
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By writing the c ghost in terms of its modes c(z) =
∑

m cm/zm−1 and employing

equations (3.6) and (3.11), we can expand Ψ
(1)
λ in terms of the elements contained in the

Virasoro basis of L0 eigenstates. For instance, let us expand Ψ
(1)
λ up to level two states

Ψ
(1)
λ = t(λ)c1|0〉+ v(λ)c−1|0〉+ w(λ)L−2c1|0〉+ · · · , (3.12)

where the coefficients of the expansion t(λ), v(λ) and w(λ) are given by the following

integrals

t(λ) =

∫ ∞

0
dsdt

e−s−t(λ(s+ t) + 1)2 cos2
(

πλ(s−t)
2(λ(s+t)+1)

)

2π2λ
√
st

, (3.13)

v(λ) =

∫ ∞

0
dsdt

2e−s−t sin2
(

πλ(s−t)
2(λ(s+t)+1)

)

π2λ
√
st

, (3.14)

w(λ) =

∫ ∞

0
dsdt

e−s−t
(
4− (λ(s+ t) + 1)2

)
cos2

(
πλ(s−t)

2(λ(s+t)+1)

)

6π2λ
√
st

. (3.15)

These integrals are convergent provided that the parameter λ belongs to the interval

(0,+∞). By performing the change of variables

s → 1

2
(u− uη), t → 1

2
(u+ uη), dsdt → u

2
dudη, (3.16)

where u ∈ [0,∞) and η ∈ (−1, 1), and employing numerical values for the parameter λ, we

are going to numerically evaluate the integrals.

3.2 Level truncation evaluation of the vacuum energy

Since in subsection 2.2 we have shown the validity of the equation of motion contracted

with the solution itself, we can write the following expression for the normalized value of

the vacuum energy

Eλ =
π2

3
〈Ψλ, QΨλ〉. (3.17)

Plugging the simple tachyon vacuum solution (3.9) into equation (3.17), and using the

fact that the second term on the right hand side of equation (3.9) does not contribute since

it is a BRST exact term, we obtain

Eλ =
π2

3
〈Ψ(1)

λ , QΨ
(1)
λ 〉, (3.18)

where the string field Ψ
(1)
λ is defined in equation (3.11). As described in the bosonic

case [1, 4, 19, 24], it is convenient to replace the string field Ψ
(1)
λ with zL0Ψ

(1)
λ in the L0

level truncation scheme, so that states in the L0 level expansion of the solution acquire

different integer powers of z at different levels. This parameter z is needed because we

will use Padé approximants to evaluate the normalized value of the vacuum energy (3.18).

After doing the calculations, we will simply set z = 1.

– 9 –
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By writing the c ghost in terms of its modes and employing equations (3.6) and (3.11),

the string field Ψ
(1)
λ can be readily expanded and the individual coefficients can be numer-

ically integrated. As an example, employing some specific values for the parameter λ, let

us write the string field expanded up to the level fourth states

Ψ
(1)
λ=1/4=0.94629 c1|0〉+ 0.138297 c−1|0〉+ 0.487297L−2c1|0〉+ 0.0574864 c−3|0〉

− 0.19709L−4c1|0〉+0.0390564L−2c−1|0〉+0.166056L−2L−2c1|0〉+ · · · , (3.19)

Ψ
(1)
λ=1/2=0.635128 c1|0〉+ 0.148658 c−1|0〉+ 0.163151L−2c1|0〉+ 0.085191 c−3|0〉

− 0.06659L−4c1|0〉+0.0144386L−2c−1|0〉+0.056610L−2L−2c1|0〉+ · · · , (3.20)

Ψ
(1)
λ=3/4=0.543591 c1|0〉+ 0.141941 c−1|0〉+ 0.0544315L−2c1|0〉+ 0.09104 c−3|0〉

− 0.02977L−4c1|0〉+0.0006467L−2c−1|0〉+0.031485L−2L−2c1|0〉+ · · · , (3.21)

Ψ
(1)
λ=1=0.509038 c1|0〉+ 0.13231 c−1|0〉 − 0.00157617L−2c1|0〉+ 0.08933 c−3|0〉

− 0.01357L−4c1|0〉−0.0069469L−2c−1|0〉+0.023157L−2L−2c1|0〉+ · · · , (3.22)

Ψ
(1)
λ=5/4=0.498059 c1|0〉+ 0.12281 c−1|0〉 − 0.0371919L−2c1|0〉+ 0.085046 c−3|0〉

− 0.00471L−4c1|0〉−0.0112661L−2c−1|0〉+0.020254L−2L−2c1|0〉+ · · · . (3.23)

As mentioned previously, to evaluate the normalized value of the vacuum energy (3.18),

first we perform the replacement Ψ
(1)
λ → zL0Ψ

(1)
λ and then using the resulting string field

zL0Ψ
(1)
λ , we define

Eλ(z) ≡
π2

3
〈zL0Ψ

(1)
λ , QzL0Ψ

(1)
λ 〉. (3.24)

The normalized value of the vacuum energy (3.18) is obtained just by setting z = 1 in equa-

tion (3.24). As we can see, our problem has been reduced to computation of correlation

functions of elements contained in the Virasoro basis of L0 eigenstates. Some details regard-

ing this computation are presented in appendix A. Plugging the level expansions (3.19)–

(3.23) into the definition (3.24), and after evaluating the appropriate correlators, we obtain

Eλ=1/4(z) = −1.47298

z2
− 0.43054 + 1.99584z2 + 0.21657z4 − 2.47629z6 + · · · , (3.25)

Eλ=1/2(z) = −0.66354

z2
− 0.31061 + 0.27892z2 + 0.03277z4 − 0.34469z6 + · · · , (3.26)

Eλ=3/4(z) = −0.48606

z2
− 0.25383 + 0.01408z2 − 0.01013z4 − 0.09796z6 + · · · , (3.27)

Eλ=1(z) = −0.42623

z2
− 0.22157− 0.05273z2 − 0.02121z4 − 0.03456z6 + · · · , (3.28)

Eλ=5/4(z) = −0.40804

z2
− 0.20123− 0.06765z2 − 0.02235z4 − 0.00978z6 + · · · . (3.29)

As in the bosonic case [4, 20], using these kind of series in z for Eλ(z), we will compute

the normalized value of the vacuum energy by the standard procedure based on Padé

approximants. To obtain a Padé approximant of order Pn
2+n(λ, z) for the energy, we will

need to know the series expansion of Eλ(z) up to the order z2n−2.
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For the numerical evaluation of the vacuum energy, we have considered the string field

Ψ
(1)
λ expanded up to the level twelve states, so that we obtain a series expansion for Eλ(z)

truncated up to the order z22. For instance, the explicit expression for the vacuum energy

with λ = 1/4, which includes contributions from the string field Ψ
(1)
λ=1/4 truncated up to

the level twelve states, is given by

Eλ=1/4(z) =− 1.472981

z2
− 0.430541 + 1.995842z2 + 0.073704z4 − 2.717863z6

− 0.0485597z8 + 4.020699z10 + 0.098363z12 − 6.0537501z14

+ 0.033435z16 + 9.266269z18 + 0.284437z20 − 12.515001z22. (3.30)

As an illustration of the numerical method based on Padé approximants, let us

compute the normalized value of the vacuum energy using a Padé approximant of order

P 4
2+4(λ, z). First, we express Eλ(z) as the rational function P 4

2+4(λ, z), in this example we

consider λ = 1/4

Eλ=1/4(z) = P 4
2+4(1/4, z) =

1

z2

[
a0 + a1z + a2z

2 + a3z
3 + a4z

4

1 + b1z + b2z2 + b3z3 + b4z4

]
. (3.31)

Expanding the right hand side of (3.31) around z = 0 up to sixth order in z and equating

the coefficients of z−2, z−1, z0, z1, z2, z3, z4, z5, z6 with the expansion (3.30), we get a

system of algebraic equations for the unknown coefficients a0, a1, a2, a3, a4, b1, b2, b3 and

b4. Solving those equations we get

a0 = −1.47298, a1 = 0, a2 = −0.805856, a3 = 0, a4 = −0.10585, (3.32)

b1 = 0, b2 = 0.254799, b3 = 0, b4 = 1.35235. (3.33)

Replacing the value of these coefficients inside the definition of P 4
2+4(1/4, z) (3.31), and

evaluating this at z = 1, we get the following normalized value of the vacuum energy

P 4
2+4(1/4, z = 1) = −0.914671336. (3.34)

If we naively evaluate the truncated vacuum energy (3.30), i.e., setting z = 1 in the series

before using Padé approximants, we obtain a non-convergent sum. This kind of divergence

is also present in the bosonic case [4], where such behavior has appeared in the canonical

L0 level truncation scheme. And therefore to numerically evaluate the vacuum energy, the

use of Padé approximants has been necessary.

The results of our calculations are summarized in table 1. As we can see, the

normalized value of the vacuum energy evaluated using Padé approximants confirms the

expected analytic result (2.22). Although the convergence to the expected answer gets

quite slow, by considering higher level contributions, we will eventually reach to the right

value of the vacuum energy E → −1.

4 Summary and discussion

We have analyzed a simple tachyon vacuum solution in cubic superstring field theory. Using

this solution, we have tested the validity of the equation of motion contracted with the
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Pn
2+n[λ = 1/4] Pn

2+n[λ = 1/2] Pn
2+n[λ = 3/4] Pn

2+n[λ = 1] Pn
2+n[λ = 5/4]

n = 0 −1.47298157 −0.66354579 −0.48606372 −0.42623492 −0.40804682

n = 2 −1.54937747 −0.82720585 −0.72655866 −0.71701445 −0.71120414

n = 4 −0.91467133 −0.79944201 −0.70410295 −0.74899064 −0.84724417

n = 6 −0.98146315 −0.90224564 −0.84739251 −0.78062826 −0.87849745

n = 8 −0.96055717 −1.02422931 −0.89416027 −0.84178146 −0.80235684

n=10 −0.98359644 −0.92679142 −0.89860136 −0.84459366 −0.78508771

n=12 −0.94981557 −0.93042155 −1.01894842 −0.85194204 −0.78722918

Table 1. The Padé approximation for the normalized value of the vacuum energy
π
2

3 〈zL0Ψ
(1)
λ

, QzL0Ψ
(1)
λ

〉 evaluated at z = 1. The results show the Pn
2+n

Padé approximation for

various values of the parameter λ.

solution itself, and have evaluated Ellwood’s gauge invariant observable. However, the main

result of our paper has been the level truncation analysis of the solution. We have seen

that the solution behaves as a regular element in the state space generated by the Virasoro

basis of L0 eigenstates. We have shown that the computation of the vacuum energy using

the level truncated solution brings a value in agreement with Sen’s conjecture.

Using the level truncation scheme, it would also be interesting to analyze Schnabl

type tachyon vacuum solution which was proposed by Erler [26]. This solution, like the

original Schnabl’s bosonic solution [1], has an extra term known as the phantom term,

this term is necessary for the equation of motion contracted with the solution itself to be

satisfied [3]. The level truncation analysis of Schnabl’s bosonic solution has been carried

out in reference [24], and it has been shown that, to numerically obtain the value of the

vacuum energy, the use of Padé approximants was not necessary. It should be nice to see if

the same phenomenon can happen in the superstring context, namely if the evaluation of

the vacuum energy using the truncated solution leads to a convergent series for the energy.

The main motivation for studying the level truncation analysis of tachyon vacuum

solutions in cubic superstring field theory is to prepare a numerical background in order

to analyze more cumbersome solutions, such as the multibrane solutions [34, 35], and

the recently proposed Erler’s analytic solution for tachyon condensation in Berkovits

non-polynomial open superstring field theory [37]. The presence of higher interaction terms

in Berkovits string field theory action, will bring us challenges for the level truncation

analysis of Erler’s solution. In a future work, we would like to extend the results of our

paper, for instance, to evaluate higher interaction vertices, we will look for an alternative

calculation method that avoids the computation of finite conformal transformations.

These methods known as conservation laws [21, 46, 47] already exist, and we will need to

implement them for our purposes.
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A Details on the level truncation evaluation of the vacuum energy

We first consider some of the ingredients for the calculation of the vacuum energy, then

show a particular example in detail. First of all, recall that for the cubic superstring field

theory, the inner product appearing in the evaluation of the vaccum energy is the standard

BPZ inner product with the difference that we must insert the operator Y−2 at the open

string midpoint. The operator Y−2 can be written as the product of two inverse picture

changing operators Y−2 = Y (i)Y (−i), where Y (z) = −∂ξe−2φc(z).

A general inner product of two vertex operators 〈A,B〉 is given by the evaluation of

the following correlator

〈A,B〉 = 〈Y−2

(
I ◦A(0)

)
B(0)〉, (A.1)

where I(z) = −1/z, is the usual conformal transformation that defines the BPZ inner

product. This definition, together with the identity

〈
n∏

i=1

ξ(xi)

n∏

j=1

η(yj)

m∏

k=1

b(uk)

m+3∏

l=1

c(vl)

p∏

s=1

eqsφ(zs)〉

= −
∏

i<i′

(xi − xi′)
∏

j<j′

(yj − yj′)
∏

i,j

(xi − yj)
−1
∏

k<k′

(uk − uk′)
∏

l<l′

(vl − vl′)
∏

k,l

(uk − vl)
−1

×
∏

s<s′

(zs − zs′)
−qsqs′ , (A.2)

and the expression for the bosonized representation of the superconformal ghost γ = ηeφ,

allows us to compute the relevant terms which appear in the level truncation analysis of

the vacuum energy.

For instance, employing the above identity (A.2), we have obtained some correlation

functions that are very useful in the evaluation of the vacuum energy presented in subsection

3.2, let us list these correlators

〈Y−2c(x)γ(y)γ(z)〉 =
1

2
(1 + x2)(1 + yz), (A.3)

〈Y−2T (w)c(x)γ(y)γ(z)〉

=
x2 − 2wx− 1

(1 + w2)(w − x)2
〈Y−2c(x)γ(y)γ(z)〉+

1 + x2

(1 + w2)(w − x)
〈Y−2∂xc(x)γ(y)γ(z)〉

+
y2 − 2wy − 1

2(1 + w2)(w − y)2
〈Y−2c(x)γ(y)γ(z)〉+

1 + y2

(1 + w2)(w − y)
〈Y−2c(x)∂yγ(y)γ(z)〉

+
z2 − 2wz − 1

2(1 + w2)(w − z)2
〈Y−2c(x)γ(y)γ(z)〉+

1 + z2

(1 + w2)(w − z)
〈Y−2c(x)γ(y)∂zγ(z)〉. (A.4)

In general a correlation function of the form 〈T (w)Φ1(x)Φ2(y) · · · 〉, where Φi is a

primary field with conformal weight hi, can be computed using the following expression

〈Y−2T (w)Φ1(x)Φ2(y) · · · 〉

=
h1(1 + 2wx− x2)

(1 + w2)(w − x)2
〈Y−2Φ1(x)Φ2(y) · · · 〉+

1 + x2

(1 + w2)(w − x)
〈Y−2∂xΦ1(x)Φ2(y) · · · 〉
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+
h2(1 + 2wy − y2)

(1 + w2)(w − y)2
〈Y−2Φ1(x)Φ2(y) · · · 〉+

1 + y2

(1 + w2)(w − y)
〈Y−2Φ1(x)∂yΦ2(y) · · · 〉

+ · · · . (A.5)

As a pedagogical illustration, we are going to show some steps in the computation

of the normalized value of the vacuum energy for a string field expanded up to level two

states. The expression for this string field is given in equation (3.12), and it can be written

using the corresponding vertex operators as follows

Ψ
(1)
λ = t(λ)c+

v(λ)

2
∂2c+ w(λ)Tc. (A.6)

Plugging the string field (A.6) into the definition of the normalized value of the vacuum

energy (3.24), we obtain

Eλ(z) =
π2

3

[
t2(λ)

z2
〈c,Qc〉+ v2(λ)z2

4
〈∂2c,Q∂2c〉+ w2(λ)z2〈Tc,QTc〉

+ t(λ)v(λ)〈∂2c,Qc〉+ 2t(λ)w(λ)〈Tc,Qc〉+ v(λ)w(λ)z2〈Tc,Q∂2c〉
]
. (A.7)

All correlation functions appearing in equation (A.7) can be evaluated using the cor-

relators (A.3)–(A.5). For instance, let us explicitly compute the correlator 〈Tc,Qc〉, since
Qc = c∂c− γ2, the non-vanishing contribution in the correlator 〈Tc,Qc〉 is given by

〈Tc,Qc〉 = −〈Tc, γ2〉. (A.8)

Employing the definition of the BPZ inner product (A.1), we can evaluate the above cor-

relator by using a parameter ǫ eventually taken to zero

〈Tc,Qc〉 = − lim
ǫ→0

〈Y−2I ◦
(
T (ǫ)c(ǫ)

)
γ2(ǫ)〉, (A.9)

performing the conformal transformation of the vertex operator Tc and using equa-

tion (A.4), we obtain

lim
ǫ→0

〈Y−2I ◦
(
T (ǫ)c(ǫ)

)
γ2(ǫ)〉 = 0. (A.10)

By the same procedure, we can compute all the remaining correlators appearing in equa-

tion (A.7). Therefore at the end we arrive to an expression for the vacuum energy corre-

sponding to a string field truncated up to level two states

Eλ(z) =
π2

3

[
− t2(λ)

2z2
− v2(λ)z2

2
+ 2w2(λ)z2 − t(λ)v(λ) + v(λ)w(λ)z2

]
. (A.11)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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