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1 Introduction

Inflationary cosmology [1–5] is now getting established by the recent precise observations

of the Universe such as the WMAP [6] and the Planck [7]. For example, the spectral

index and the tensor-to-scalar ratio are constrained by the Planck+WP+highL+BAO to

ns = 0.9608 ± 0.0054 at 68% CL and r < 0.111 at 95% CL, respectively. On the other

hand, the BICEP2 claimed that they discovered r = 0.16+0.06
−0.05 after foreground subtraction

with r = 0 disfavored at 5.9σ [8]. The large value of r claimed by the BICEP2 implies a

large-field inflation because of the Lyth bound [9]. By the way, the renowned Starobinsky

model [1] is fully consistent with the Planck data by predicting a very small tensor-to-scalar

ratio r ' 4× 10−3, being a large-field inflationary model also. There are some arguments

in the literature [10–12] that the BICEP2 collaboration underestimated the foreground,

so that r ' 0 may still be consistent with the data. Therefore, the inflationary models

with r . 0.1 are still alive in the present situation. The actual value of r is going to be

established by new observations in a not so distant future.

Under such circumstances, we are interested in embedding the inflationary models

consistent with current observations into a more general framework motivated by particle

physics and a fundamental theory of quantum gravity such as superstrings or M-theory. It is

natural to consider supergravity [13–15] for that purpose because (i) supergravity emerges

as the low-energy effective action of superstrings, and (ii) the energy scale of inflation is

higher than the electroweak scale but is lower than the Planck scale where some unknown

UV effects may come in. We pursue minimal realizations of inflation in supergravity, by

minimizing a number of the matter d.o.f. involved.

– 1 –



J
H
E
P
1
2
(
2
0
1
4
)
0
6
2

Describing inflation and, in particular, a large field or chaotic inflation [16] in super-

gravity is known to be non-trivial, because of the presence of the exponential factor and

the negatively definite term in the F -type scalar potential. A shift symmetry of the Kähler

potential plays the crucial role in the model building of chaotic inflation in supergrav-

ity [17, 18]. In those pioneering papers yet another chiral superfield (sometimes called the

(s)Goldstino or Polonyi superfield) of the R-charge 2, with the vanishing vacuum expecta-

tion value, was introduced to allow a positively definite inflationary scalar potential. Later

on, some extensions of that idea with more general chaotic inflationary potentials were in-

troduced in supergravity in refs. [19–21]. A different approach for inflation in supergravity

with vector or tensor supermultiplets was proposed in ref. [22], and it was extended to

embed arbitrary scalar potentials in refs. [23, 24]. All those methods employ the second

superfield, in addition to that containing inflaton.

Inflation with a single superfield, or “sGoldstino inflation”, was previously studied in

refs. [25–27], and it was concluded that a large-field inflation is virtually impossible in that

case [27] (see also [28]). Recently, new models with a nilpotent chiral Goldstino superfield

were proposed [29, 30], which lead to the standard Volkov-Akulov action for Goldstino in

nonlinearly realized supersymmetry, and a large field inflation is possible. Though those

models have only one dynamical complex scalar, their fermionic sectors are much more

complicated. In this paper we adopt the standard (linearly realized) supergravity, with

only one chiral (inflaton) superfield, eluding the known no-go statements. It is worth

mentioning here that there is another minimal scenario in which inflation is driven by

gravitino condensation [31], though with the use of a dilaton chiral superfield in conformal

supergravity, in order to make gravitino lighter than the Planck scale.

In our previous short paper [32] we proposed some new supergravity models, realizing

a large field inflation and extending the quadratic [16] and the Starobinsky [1] models, by

using a single (inflaton) chiral superfield only, in the standard supergravity. The required

degrees of freedom, other than those of the standard supergravity including graviton and

gravitino, were reduced by half from those available in the literature where either an extra

chiral [17–21] or an extra vector [22–24] superfield are required, in addition to the inflaton

supermultiplet. A discovery of the fact that a large field inflation is possible in supergravity

with a single chiral superfield was exciting, though the scalar potential, which we obtained

in a very straightforward way, was not very transparent or illuminating enough, in contrast

to the simple scalar potentials of refs. [19–21] and refs. [23, 24]. The reason is that the

suitable Kähler potentials and superpotentials were found by a trial and error procedure in

ref. [32]. Moreover, supersymmetry (SUSY) was broken in the vacuum at the inflationary

scale in some of the models presented in ref. [32]. Though it is not necessarily a problem, it

may be inconsistent with the low-energy SUSY scenario incorporating the gauge coupling

unification and reducing the hierarchy problem of scalar masses.

The purpose of this paper is to present a new, special and much larger class of the

minimal models, employing a single chiral superfield, which (i) lead to very simple and

(almost) arbitrary scalar potentials, and (ii) preserve SUSY at the end of inflation. We

show that it is possible to get a single field scalar potential, like the one of global SUSY F -

term, in the proposed class of supergravity models when using the stabilization mechanism

to be explained in section 3.
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The paper is organized as follows. In the next (and main) section 2 we propose a class of

models that lead to nearly arbitrary positively semi-definite inflationary potentials, by using

only a single chiral superfield. We give further support to our framework by arguing about

viability of the stabilization mechanism and stability of inflation against possible inflaton

couplings to other sectors of the theory in sections 3 and 4, respectively. In section 5

we summarize our results. More studies of the viability of our stabilization mechanism

for various Kähler potentials are given in appendix A. Some variations of the Starobinsky

scalar potential in supergravity with a single chiral superfield are collected in appendix B.

In appendix C we propose a mechanism for the possible origin of the key quartic term in

the Kähler potential via integration of heavy superfields.

2 Designing arbitrary inflationary potentials in supergravity

In ref. [32] our method and results were not practical enough, in order to derive explicit

scalar potentials suitable for inflation, because the scalar potential derived from our Kähler-

and super- potentials of supergravity had a complicated form.

One of the technical reasons was the real part ReΦ that was effectively fixed to a non-

zero value Φ0. It is actually more convenient to redefine the superfield so that the vacuum

expectation value (VEV) of its leading scalar field component vanishes. Let us consider

the following Kähler potential:1

K = −3 ln
[
1 +

(
Φ + Φ̄

)
/
√

3
]
. (2.1)

It has a shift symmetry, Φ → Φ + ia, with a real parameter a. We implicitly assume

here that there is a stabilization term, like ζ
(
Φ + Φ̄

)4
, under the logarithm (it is discussed

at length in section 3). The square root factor is introduced to obtain the canonically

normalized kinetic terms. The kinetic term and the scalar potential are

Lkin =−
(

1 +
(
Φ + Φ̄

)
/
√

3
)−2

∂µΦ̄∂µΦ, (2.2)

V =
(
1+
(
Φ+Φ̄

)
/
√

3
)−3

(1+
(
Φ+Φ̄

)
/
√

3
)2
∣∣∣∣∣WΦ−

√
3

1+
(
Φ+Φ̄

)
/
√

3
W

∣∣∣∣∣
2

−3 |W |2
 , (2.3)

respectively. When setting 〈ReΦ〉 = 0, they are simplified to

Lkin = −∂µΦ̄∂µΦ, (2.4)

V = |WΦ|2 −
√

3
(
W̄WΦ +WW̄Φ̄

)
. (2.5)

Let us now consider the superpotentials having the form

W (Φ) =
1√
2
W̃ (−

√
2iΦ), (2.6)

1We take the units where the reduced Planck mass is set to one (MG = MP/
√

8π = 1) unless it is

otherwise stated.
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where W̃ is a real function of its argument [19–21] (i.e. all coefficients of its Taylor expansion

are real) up to an overall phase that is unphysical. Then the scalar potential is greatly

simplified to

V = |WΦ(iImΦ)|2 =
(
W̃ ′(χ)

)2
, (2.7)

where the prime denotes differentiation with respect to its argument, and χ =
√

2ImΦ is

the canonically normalized inflaton field. Demanding a real function W̃ may look like a

strong condition, but it is obviously satisfied in the case of a monomial superpotential that

is sufficient for the simplest chaotic model with a quadratic potential. On the one hand,

even if the reality or phase alignment condition is not the case, inflation could occur with

a straightforwardly obtained but a little more complicated scalar potential (2.5). On the

other hand, if it is satisfied at a high-energy scale, the functional form of W̃ is preserved

by the non-renormalization theorem [33–35].

The superpotential can be viewed as a small explicit breaking of the shift symmetry

in the sense of ’t Hooft [36]. Hence, one expects the shift symmetry breaking terms to

be suppressed by the same scale as the superpotential also in the Kähler potential due

to quantum corrections. Those effects are beyond the scope of this paper since we are

interested in a simple classical framework in the first place. See, however, refs. [37, 38] for

studies of those extra contributions.

It is also possible to switch the roles of the real and imaginary parts by a field redefi-

nition. When we start with

K = −3 ln
(

1 +
(
−iΦ + iΦ̄

)
/
√

3
)

(2.8)

and a superpotential W with real coefficients, after stabilization of the imaginary part

〈ImΦ〉 = 0, the scalar potential reads

V = |WΦ(ReΦ)|2 =
(
W̃ ′ (φ)

)2
, (2.9)

where φ =
√

2ReΦ is the canonically normalized inflaton field, and the real function W̃ is

defined by W (Φ) = 1√
2
W̃ (
√

2Φ).

This way a very large class of inflationary potentials can be obtained by using only one

chiral superfield. The only restriction is that the scalar potential should be square of some

real function. And it is automatically positively semi-definite that is quite comfortable for

phenomenological purposes. It is not difficult to obtain a vacuum with the vanishing cosmo-

logical constant also. After that it is always possible to add a constant to the superpotential

in order to cancel a SUSY breaking. Adding a constant to the superpotential does not affect

the scalar potential because the latter is determined by the derivative of the former.

Our approach to the inflationary model building in supergravity is as powerful as

those of refs. [19–21, 23, 24] in the sense that the superpotential leading to an arbitrary

positively semi-definite scalar potential can be approximately reconstructed by taking its

square root, Taylor expanding it, and then integrating. At the same time, our method is

more economical in the sense that only a single chiral superfield (other than the standard

gravitational multiplet containing graviton and gravitino) is used.
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Example 1: a monomial potential. The 2n-th power monomial potential V =

|c2n|2φ2n follows from the following superpotential (in the notation of eqs. (2.8) and (2.9)):

W =
2n/2c2n

n+ 1
Φn+1. (2.10)

In particular, a quadratic potential V = m2φ2/2 is obtained from the superpotential

W =
1

2
mΦ2. (2.11)

Example 2: the Starobinsky potential. The Starobinsky inflationary scalar potential

is reproduced by the superpotential

W =

√
3

2
m

(
Φ +

√
3

2

(
e−2Φ/

√
3 − 1

))
. (2.12)

When using the current framework, it’s easy to obtain a set of the deformed Starobinsky

models [23, 39] also. The “α-deformed” superpotential

W =

√
3α

2
m

(
Φ +

√
3α

2

(
e−2Φ/

√
3α − 1

))
(2.13)

leads to the scalar potential

V =
3α

4
m2
(

1− e−
√

2/3αφ
)2
. (2.14)

In appendix B we demonstrate some other ways of getting the similar (or the same) de-

formed Starobinsky potentials generalizing those of ref. [32].

Example 3: a “symmetry breaking” potential. The “symmetry breaking”-type

potential (our inflaton is assumed to be a singlet),

V = λ
(
φ2 − v2

)2
, (2.15)

can be used for a new [4, 5], chaotic [16], or topological [40–42] inflation, depending on the

values of the parameters and the initial conditions, see e.g. a review [43] . It is obtained

from the following superpotential:

W =
√
λ

(
2

3
Φ3 − v2Φ

)
. (2.16)

Example 4: a sinusoidal potential. The sine-modulated inflationary scalar potential

V = V0
2 (1− cosnφ) for natural inflation [44, 45] follows from the superpotential

W =

√
2V0

n

√
1− cos

√
2nΦ cot

nΦ√
2
. (2.17)
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3 Confirmation of stabilization

To demonstrate viable stabilization, we assume a specific Kähler potential and a generic

superpotential,

K = −3 ln

(
1 +

(
Φ + Φ̄

)
+ ζ

(
Φ + Φ̄

)4
√

3

)
, (3.1)

W =
1√
2
W̃ (−

√
2iΦ). (3.2)

Note that the stabilization term (proportional to ζ) does not break the shift symmetry.

Other symmetry-preserving terms, (Φ + Φ̄)n, may appear in the Kähler potential. In the

presence of such terms, inflation can still be realized as long as the non-inflaton field is

stabilized, but the resulting inflaton potential will be corrected and become complicated.

This type of the stabilization term was first introduced in ref. [46] and recently was used

in refs. [32, 39, 47, 48]. Though some explanations of the mechanism are given in those

references,2 we analyze it here again, in our specific setup, for the sake of self-completeness

and transparency. The Kähler metric is

KΦΦ̄ =
1− 12

√
3ζ
(
Φ + Φ̄

)2 − 4ζ
(
Φ + Φ̄

)3
+ 4ζ2

(
Φ + Φ̄

)6[
1 +

Φ+Φ̄+ζ(Φ+Φ̄)
4

√
3

]2 . (3.3)

We assume ζ & O(1) so that the real part (non-inflaton) must be smaller than one, in

order to keep the canonical sign of the kinetic term. The scalar potential is

V = A−1
[
B−1 |WΦ|2 −

√
3
(

1 + 8
√

2ζφ3
)
B−2

(
WΦW̄ + W̄Φ̄W

)
v +72ζφ2

(√
3 +
√

2φ+ 4ζφ4
)
B−3 |W |2

]
, (3.4)

where Φ = 1√
2

(φ+ iχ) with φ and χ real, and

A = 1− 24
√

3ζφ2 − 8
√

2ζφ3 + 32ζ2φ6 , (3.5)

B = 1 +

√
2φ+ 4ζφ4

√
3

. (3.6)

The expectation value of φ is obtained by truncating the higher order terms beyond

O(φ) in the stationary condition Vφ = 0,

φ=
4
√

6W̃ ′(χ)2 − 3
√

6W̃ (χ)W̃ ′′(χ)

2
(
108
√

3ζW̃ (χ)2+
(
72
√

3ζ+14
)
W̃ ′(χ)2−12W̃ (χ)W̃ ′′(χ)+3W̃ ′′(χ)2−3W̃ ′(χ)W̃ ′′′(χ)

)
2As was pointed out to us by the referee, our setup is different from the case of two superfields, where the

quartic term of the stabilizer (Polonyi) field appears in the low-energy effective theory of the O’Raifeartaigh

model coupled to supergravity [49]. In appendix C we briefly discuss the possible origin of the shift-

symmetric quartic term of Φ used in our approach.
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' 4
√

6− 3
√

3εE

4
(

54
√

3ζE + 36
√

3ζ − 3
√

2εE + 7
) , (3.7)

where ε = 1
2(V ′(χ)/V (χ))2 is the slow-roll parameter. The first equality holds both during

inflation and at the vacuum. In the second equality, we have used V ' |W̃ ′(χ)|2 and have

neglected the terms proportional to the slow-roll parameters, unless they are accompanied

by the enhancement factor

E ≡

(
W̃ (χ)

W̃ ′(χ)

)2

, (3.8)

so that it is valid during inflation. For example, in the monomial superpotential case,

E =
(χ
n

)2
and it is large (E > 1) during the large field inflation (|χ| > 1) for n of the order

one. In the case of the Starobinsky potential (2.12), we find E =
(

χ

1−e−
√

2/3χ
−
√

3
2

)2
, and

it is also large during inflation. Thus, typically, E is of the order χ2, and
√
εE is roughly

of the order one. In summary, we have

φ ' O
(
10−2ζ−1E−1

)
∼ O

(
10−2ζ−1χ−2

)
, (3.9)

during inflation. It is smaller than one indeed, being also consistent with the truncation

above. The kinetic term is approximately canonical.

The mass squared of φ is

Vφφ =
1

3

(
216
√

3ζE + 144
√

3ζ + 28− 12
√

2εE + 6ε− 3η +O(φζE)
)
W̃ ′(χ)2

' 2ζ
(

108
√

3E + 72
√

3
)
H2, (3.10)

where η = V ′′(χ)/V (χ) is another slow-roll parameter. The O (φζE) term is of the order

one, and is neglected in the last expression together with other subdominant terms. The

mass of φ can be easily larger than the Hubble scale H. In this way the real part (non-

inflaton) φ can be stabilized.

The smallness itself of φ compared to one does not ensure validity of approximation in

the previous section because the small nonzero value may break cancellation among terms

in the scalar potential due to the no-scale structure. Now we check that the corrections to

the scalar potential (2.7) induced by the nonzero value of φ in eq. (3.7) are actually smaller

than the leading terms. The scalar potential (up to the leading corrections) is given by

V =W̃ ′ (χ)2 −

(
4W̃ ′ (χ)2 − 3W̃ (χ) W̃ ′′ (χ)

)2

216
√

3ζW̃ (χ)2+
(
144
√

3ζ+28
)
W̃ ′ (χ)2−24W̃ (χ) W̃ ′′ (χ)+6W̃ ′′ (χ)2−6W̃ ′ (χ) W̃ ′′′ (χ)

' W̃ ′ (χ)2

1−

(
8− 3

√
2εE

)2

16
(

54
√

3Eζ + 36
√

3ζ − 3
√

2εE + 7
)
 . (3.11)

The first equality holds both during inflation and at the vacuum, whereas the second

equality is based on the same approximation in the second equality of eq. (3.7) (valid

during large field inflation). The corrections are indeed subdominant and vanish in the

limit of large E (large χ) or large ζ with fixed εE. For example, the numerical value of

– 7 –
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Figure 1. The scalar potential of the stabilised quadratic model. The mass scale and the stabi-

lization strength are set to m = 10−5 and ζ = 1, respectively.

the second term in the parenthesis of eq. (3.11) is −2.93 × 10−3 for (E = 5, ε = 0.1,

and ζ = 1), and −8.61 × 10−3 for (E = 10, ε = 0.1, and ζ = 0.1). These arguments

justify our treatment of the theory as the effective single field inflationary theory where

the kinetic term is approximately canonically normalized and the scalar potential is given

by V ' |W̃ ′(χ)|2 in the large field regime of the inflaton χ.

To convince a reader even more, we calculate numerically the dynamics of inflation.

We take two benchmark models as the examples: (i) the chaotic inflation with a quadratic

potential, and (ii) the Starobinsky potential. We set the inflaton mass and the stabilization

parameter as m = 10−5 and ζ = 1 for simplicity. Note that the stabilization parameter of

the order one works pretty well, as is shown below.

Let us consider the example (i): the chaotic model with a quadratic potential. The

potential of the model with the stabilization proposed in this section is shown in figure 1.

The trajectory of the inflaton field in this model is shown in figure 2. We apply the

initial condition away from the stabilization valley in order to check how the stabilization

mechanism works. The real part (non-inflaton) rapidly oscillates around (damped to) the

instantaneous minimum, and after that the trajectory is approximately that of single-field

inflation. It slightly deviates from the imaginary axis near the end of inflation, and

finally oscillates around the vacuum. The deviation is smaller in the larger inflaton field

value (figure 2) because of eq. (3.9). The fractional difference between the inflaton scalar

potential along the trajectory and the quadratic potential is only within 1.4% or even

smaller well before the end of inflation.

Next, let us consider the example (ii): the Starobinsky model in our framework. The

potential of the model with the stabilization of this section is shown in figure 3. The

trajectory of the inflaton field in the model is shown in figure 4. It is qualitatively similar

– 8 –
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Figure 2. The inflaton trajectory (green) in the stabilized quadratic model. The initial conditions

are φ = 0.14, χ = 15, φ̇ = 0, and χ̇ = 0. The mass scale and the stabilization strength are set to

m = 10−5 and ζ = 1, respectively. The contour plot of logarithm of the potential is shown in purple.

Figure 3. The scalar potential of the stabilized Starobinsky model. The mass scale and stabilization

strength are set to m = 10−5 and ζ = 1, respectively.

to the case of the quadratic model (see figure 2). The fractional difference between the

inflaton scalar potential along the trajectory and the Starobinsky potential is only within

2.2%, or even smaller well before the end of inflation.

– 9 –
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Figure 4. The inflaton trajectory (green) in the stabilized Starobinsky model. The initial condi-

tions are φ = 0.14, χ = 5.7, φ̇ = 0, and χ̇ = 0. The mass scale and the stabilization strength are

set to m = 10−5 and ζ = 1, respectively. The contour plot of logarithm of the potential is shown

in purple.

4 Impact of matter couplings on inflaton dynamics

We realized inflation in supergravity with a single chiral superfield. After all we must

couple the inflaton sector to other matter such as the Standard Model sector or a hidden

sector where SUSY is broken. In this section we consider a few simple ways of coupling and

check whether they affect the inflaton dynamics. We also discuss the inflaton decay briefly.

We assume that the inflaton superpotential and a superpotential of other superfields

are decoupled,

W (Φ, φi) = W (inf)(Φ) +W (other)(φi), (4.1)

where Φ is the inflaton and φi stand for the particle species i other than inflaton. This

form is preserved during the renormalization group running due to the non-renormalization

theorem [33–35].

First, let us consider the case when the Kähler potential of inflaton and that of the

other fields are also decoupled,

K(Φ, φi, Φ̄, φ̄j̄) = −3 ln

(
1 +

1√
3

(
Φ + Φ̄

))
+K(other)(φi, φ̄j̄), (4.2)

where we have implicitly assumed the existence of a stabilization term under the logarithm.

This form is not preserved under the renormalization group running, but we take it just

as a simple example here. Then the derivatives with respect to both the inflaton and the

other fields vanish, so that there is no kinetic mixing between the inflaton and the other

– 10 –
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fields. The scalar potential with the (Φ + Φ̄) being stabilized at the origin is

V = eK
(other)

(
|WΦ|2 −

√
3
(
W (other)W̄Φ̄ +W (other)WΦ

)
+K(other)j̄iDiWDj̄W̄

)
, (4.3)

where DiW = Wi+KiW is the covariant derivative. There are the Hubble induced masses√
3H for the scalars other than the inflaton, so light fields are frozen at the origin during

inflation, whereas heavy fields are decoupled because of their own masses. Therefore, the

dynamics is essentially the single-field inflation. If the SUSY breaking scale W (other) is high,

the inflaton potential receives corrections. This feature is similar to the models with several

chiral superfields — see the discussions of SUSY breaking on inflation in these models in

refs. [50, 51]. The impact of the conformal rescaling, required to move to the Einstein

frame, on SUSY breaking term is very well controlled in the sense that the conformal

factor does not depend on the inflaton because of the shift symmetry [51]. Corrections

proportional to the inflaton superpotential also arise from the third term in eq. (4.3) in the

case there is a large Ki (large VEV in the case of minimal Kähler potential). This is in

contrast to models with the sGoldstino 〈S〉 = 0 and the superpotential W ∝ S because the

value of the superpotential vanishes in these models. In summary, the inflaton potential

is not affected by matter coupling (4.2) if the SUSY breaking scale is low and there is

no large VEV. The latter condition is satisfied due to the Hubble-induced mass. Further

quantitative study will be done elsewhere. Note that high-scale SUSY breaking (inflaton

mass less than the mass of the SUSY breaking field) is also disfavored from the perspective

of gravitino overproduction from inflaton decay — see the text below and ref. [52] for more.

Inflaton can decay into gauge bosons and gauginos, if there is a coupling like

1

4

∫
d2Θ2E cΦWAWA + h.c. , (4.4)

where c is the coupling constant and WA is the superfield strength of a real superfield.

Although this coupling breaks the shift symmetry,3 it could be generated with real c

as the anomaly of an underlying symmetry in the UV theory [53]. The decay rate is

Ng|c|2m3
χ/128πM2

G [54, 55], where Ng is the number of generators of the gauge algebra,

mχ is the inflaton mass, and MG is the reduced Planck mass. Note that the inflaton

cannot decay through the super-Weyl-Kähler and sigma-model anomaly effects [56–58],

because the Kähler potential does not depend on the inflaton. The two-body decay rates

into scalars and spinors are of order mχm
2/M2

G [57, 58], where m is the mass of daugh-

ter particles. The three-body decay rate is sizable of the order |yt|2m3
χ/M

2
G [57, 58],

where yt is the top Yukawa coupling. The decay rate into a pair of gravitinos is∣∣∣G(eff)
χ

∣∣∣2m5
χ/288πm2

3/2M
2
G [54, 55] with the effective coupling constant in our model be-

ing evaluated as
∣∣∣G(eff)
χ

∣∣∣2 = 27
(
m3/2

mχ

)2 (
m2
z

m2
χ−m2

z

)2
[52, 59, 60], where m3/2 is the gravitino

mass, and mz is the mass of the SUSY breaking field z.

3If the coefficient c is real (in our convention Φ transforms in the imaginary direction under the shift

symmetry), the shift symmetry is broken only via non-perturbative effects.
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Next, let us consider the case when the Kähler potentials are summed under the

logarithm,

K(Φ, φi, Φ̄, φ̄j̄) = −3 ln

(
1 +

1√
3

(
Φ + Φ̄

)
− 1

3
J(φi, φ̄j̄)

)
, (4.5)

where J is a hermitian function. This structure can be understood e.g., as the geometrical

sequestering of the inflaton sector and the other sectors [61]. Again we have implicitly

assumed the presence of a stabilization term. For simplicity of our notation, we introduce a

function Ω such thatK = −3 ln Ω or Ω = exp(−K/3). The Kähler metric and its inverse are

KIJ̄ = Ω−2

(
1 − 1√

3
Jj̄

− 1√
3
Ji ΩJij̄ + 1

3JiJj̄

)
, K J̄I = Ω

(
Ω + 1

3JiJ
i 1√

3
J i

1√
3
J j̄ J j̄i

)
, (4.6)

where capital Latin indices I, J, . . . run over Φ and i, j, . . . , the J j̄i is the inverse matrix

of Jij̄ , while the indices are raised and lowered by those matrices, e.g., J i = J j̄iJj̄ . Then

the scalar potential is given by

V = Ω−2

((
Ω +

1

3
JiJ

i

)
|WΦ|2 −

√
3
(
W (other)W̄Φ̄ +W (other)WΦ

)
+

1√
3

(
J iWiW̄Φ̄ + J īW̄īWΦ

)
+ J j̄iWiW̄j̄

)
. (4.7)

The Hubble induced mass is
√

2H, so the fields other than the inflaton are stabilized at

their origin during inflation. Assuming that these fields are charged under some unbroken

symmetries, the first derivatives Ji vanish. Then the kinetic mixing effects become negligi-

ble. Similar comments to the case of minimal coupling (4.2) apply here too, but there are no

terms proportional to the inflaton superpotential in eq. (4.7) in the case of sequestered cou-

pling (4.5) (we have again used the phase alignment condition for the inflaton superpoten-

tial). Inflaton dynamics is not affected by matter coupling if the SUSY breaking scale is low.

The inflaton decay is similar to the previous example, but there are no sizable

three-body decays (see ref. [62] for a similar situation). The two-body decay rate into

scalar particles is of the order |Jij |2m3
χ/M

2
G. The effective coupling constant for decay into

two gravitinos is
∣∣∣G(eff)
χ

∣∣∣2 =
∣∣∣(Jz + 2Wz

mχ

)
m2
z

m2
χ−m2

z

∣∣∣2.

5 Conclusion

In this paper we proposed the simple framework for a construction of arbitrary positively

semi-definite single field inflationary potentials in supergravity by using only a single chi-

ral superfield. The scalar potential — see eqs. (2.7) and (2.9) — in our framework has

(approximately) the same form as the F -term in global SUSY theory, and it effectively

becomes a function of a single field (inflaton) due to the stabilization mechanism. The

inflaton does not break SUSY at the vacuum. We verified that our stabilization works, and

we also proposed some simple ways of coupling the inflaton sector to other matter sectors,

without affecting the inflationary dynamics.

Our class of the very economical models provides vast possibilities for realizing cos-

mological inflation in supergravity, which are consistent with the observational data in the

most minimal setup (with a single chiral superfield).
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A Specific stabilization for various Kähler potentials

In this paper we focused on the special Kähler potential and a class of the superpotentials

such that an arbitrary scalar potential is readily available, but there are still many

possibilities leading to a single field inflation from supergravity with a single chiral

superfield, as was already explained in ref. [32]. Here we examine the stabilization quality

in those theories, and justify our treatment.

Let us begin with the “minimal” Kähler potential (see eq. (9) in ref. [32]),

K =
1

2

(
Φ + Φ̄

)2 − ζ (Φ + Φ̄− 2Φ0

)4
. (A.1)

The inflaton is ImΦ, and ReΦ is stabilized by the ζ term. The scalar potential for a general

superpotential W (Φ) reads

V =
e2Φ2

0−ζ(2ReΦ−2Φ0)4

1− 12ζ (2ReΦ− 2Φ0)2

(
|WΦ|2 + 2

(
ReΦ− 2ζ (2ReΦ− 2Φ0)3

) (
WΦW̄ + W̄Φ̄W

)
+4
(

ReΦ− 2ζ (2ReΦ− 2Φ0)3
)2
|W |2

)
− 3e2Φ2

0−ζ(2ReΦ−2Φ0)4

|W |2 . (A.2)

If a deviation of 〈ReΦ〉 from Φ0 is small, it merely results in a small change of the

coefficient at each term in the above expression, so that the inflaton dynamics receives

only a minor change. In fact, the expectation value of ReΦ around Φ0 is found to be small

indeed, similarly to the analysis in section 3,

〈ReΦ〉 − Φ0 ' −
Φ0

(
4Φ2

0 − 1
)

96ζΦ2
0 + 16Φ4

0 + 8Φ2
0 − 1

' O
(
10−1ζ−1

)
(A.3)

for Φ0 ' O(1), where we have neglected the subdominant powers in ImΦ (inflaton) on

dimensional reasons, |WΦ| ∼ |W/Φ|, |WΦΦ| ∼ |W/Φ2|, etc. In this case, a relatively large ζ

is required to suppress the deviation (A.3), e.g. ζ ' O(10) for 〈ReΦ〉−Φ0 ' O(10−2). It is

worth noticing that a correction to the kinetic term, 12ζ(2ReΦ− 2Φ0)2, is also suppressed

to be O(10−1ζ−1). The mass squared of the non-inflaton is

Vφφ '
6
(
16Φ4

0 + (96ζ + 8) Φ2
0 − 1

)
4Φ2

0 − 3
H2, (A.4)
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where Φ = (φ + iχ)/
√

2, and we have used the slow-roll Friedmann equation, V ' 3H2,

and V ' e2Φ2
0(4Φ2

0−3)|W |2. This mass can be larger than the Hubble scale with moderate

values of Φ0 and ζ.

Next, let us consider the logarithmic Kähler potential (see eq. (25) of ref. [32]),

K = −3 ln

[
Φ + Φ̄ + ζ

(
Φ + Φ̄− 2Φ0

)4
3

]
. (A.5)

The inflaton is ImΦ, and ReΦ is stabilized by the ζ term. This is related to eq. (3.1) via

field redefinition, but we do not make assumptions about a superpotential here. The scalar

potential is (see eq. (26) in ref. [32])

V =
9[

Φ + Φ̄ + ζ(Φ + Φ̄− 2Φ0)4
]2

× 1

1− 4ζ(Φ + Φ̄− 2Φ0)3 + 4ζ2(Φ + Φ̄− 2Φ0)6 − 24ζΦ0

(
Φ + Φ̄− 2Φ0

)2
×
[
(Φ + Φ̄ + ζ(Φ + Φ̄− 2Φ0)4) |WΦ|2 − 3

(
1 + 4ζ(Φ + Φ̄)3

) (
W̄WΦ +WW̄Φ̄

)
+ 108ζ(Φ + Φ̄− 2Φ0)2|W |2

]
. (A.6)

After the canonical normalization of the real part, ReΦ = Φ0e
√

2/3φ, the deviation is

evaluated as

〈φ〉 '
√

6
(
WW̄Φ̄ + W̄WΦ

)
288Φ2

0ζ|W |2
∼ O(10−2ζ−1ImΦ−1). (A.7)

This gives rise to the term proportional to |W |2 which is absent in the ideal case ReΦ = Φ0,

and is actually subdominant here. The mass squared of the non-inflaton is

Vφφ ' 1296ζ|W |2, (A.8)

so that there is no difficulty to make the mass larger than the Hubble scale.

Finally, let us consider the Kähler potential used in section 3 of ref. [32],

K = −3 ln

[
Φ + Φ̄ + ζ

(
−iΦ + iΦ̄− 2Φ0

)4
3

]
. (A.9)

In this case the imaginary part ImΦ is stabilized and the real part ReΦ is used as the

inflaton. The scalar potential is

V =
9[

Φ + Φ̄ + ζ(−iΦ + iΦ̄− 2Φ0)4
]2

× 1

1− 12ζ
(
Φ + Φ̄

)
(−iΦ + iΦ̄− 2Φ0)2 + 4ζ2

(
−iΦ + iΦ̄− 2Φ0

)6
×
[
(Φ + Φ̄ + ζ(−iΦ + iΦ̄− 2Φ0)4) |WΦ|2 − 3

(
W̄WΦ +WW̄Φ̄

)
+12iζ(−iΦ + iΦ̄− 2Φ0)3

(
WW̄Φ̄ − W̄WΦ

)
+ 108ζ(−iΦ + iΦ̄− 2Φ0)2|W |2

]
. (A.10)
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The deviation of ImΦ is obtained as

〈ImΦ〉 − Φ0 ' i
−3
(
W̄WΦΦ −WW̄Φ̄Φ̄

)
+ 2ReΦ

(
W̄Φ̄WΦΦ −WΦW̄Φ̄Φ̄

)
864ζ|W |2 − 576ζReΦ

(
W̄WΦ +WW̄Φ̄

)
+ 384(ReΦ)2ζ|WΦ|2

∼ iO(10−2ζ−1(ReΦ)−2). (A.11)

This ensures that the correction terms are subdominant again. The mass squared of the

imaginary part χ =
√

2/32Φ2
0ImΦ is

Vχχ ' 3ζ
(

864|W |2 − 576ReΦ
(
W̄WΦ +WW̄Φ̄

)
+ 384 (ReΦ)2 |WΦ|2

)
, (A.12)

and appears to be O(102ζ(ReΦ)3) times larger than the Hubble scale squared.

According to this appendix and section 3, the non-inflaton field can be strongly sta-

bilized with the parameter ζ that is not much larger than one, which justifies our basic

demand for the inflationary supergravity model to be treated as a single-field inflation.

B Supergravity realizations of the deformed Starobinsky models

In this appendix we demonstrate the other two ways (i.e. different from that in section 2) to

obtain the deformed Starobinsky potentials generalizing the models described in ref. [32].

First, let us recall eq. (32) of that paper, where we employed the no-scale Kähler

potential and the superpotential containing a term with a negative power −n = −1. Let

us now generalize it to an arbitrary negative power as follows:

K = −3 ln
[(

Φ + Φ̄
)
/3
]
, (B.1)

W =
1

n
c−nΦ−n + c0 +

1

3
c3Φ3 . (B.2)

After stabilization of the imaginary part, the scalar potential becomes

V = a+ be−nφ + ce−(n+3)φ + de−(2n+3)φ , (B.3)

where φ =
√

3/2 ln ReΦ is the canonically normalized inflaton, and a = −27Re(c0c3)/2,

b = −9(1+3/n)Re(c−nc3)/2, c = 27Re(c0c−n)/2, and d = 9(1+3/n)|c−n|2/2. The potential

is shown in figure 5. It is possible to choose a = d = −b = −c > 0, which ensures V = 0

in the vacuum φ = 0.

Finally, let us vary the parameter a of eq. (34) in ref. [32]. The Kähler potential is

taken to be the minimal one with the shift symmetry. We redefine the normalization of a

here and take

W = m
[
b− ei

√
2a(Φ−Φ0)

]
. (B.4)

The scalar potential for χ =
√

2ImΦ is then given by

|m|−2e−2Φ2
0V =

(
4Φ2

0 − 3
) (

Reb− e−aχ
)2

+
(

2Φ0Imb−
√

2ae−aχ
)2
− 3(Imb)2. (B.5)

There exist solutions for Reb and Imb that lead to the scalar potential

V = e2Φ2
0 |m|2

(
4Φ2

0 − 3 + 2a2
) (

1− e−aχ
)2

. (B.6)

The shape of this potential is displayed in figure 6.
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Figure 5. The deformed Starobinsky potential (B.3) derived from the superpotential containing a

negative power (B.2). The powers are −0.03,−0.1,−0.3,−1,−3, and −10 from the bottom to the

top. The parameter values are taken as a = −b = −c = d = 1.

Figure 6. The deformed Starobinsky potential (B.6) derived from the superpotential (B.4). The

parameter a is set to −0.1,−0.3,−
√

2/3 (Starobinsky), −3, and −10 from bottom to top. The

height of the potential is normalised to one.

C On the possible origin of the quartic term

The quartic term in the Kähler potential plays the key role in stabilization of the non-

inflaton scalar of the inflaton superfield in our class of models. The simplest interpretation

of the quartic term may be by assuming its presence at the tree level. The quartic term

respects the shift symmetry, while all kinds of terms allowed by the symmetries of the theory

should generically be included into the effective field theory. The remaining questions

are (i) how much the quadratic and cubic terms have to be suppressed, and (ii) what is

the mechanism for their suppression. It requires a separate investigation. However, as a

preliminary test, we find that small quadratic and/or cubic terms destroy the cancellation

of the no-scale type model. Hence, our Kähler potential should be regarded as a tuned

one, in order to suppress the quadratic and cubic terms. Without such tuning, the theory

describes more general inflationary models in supergravity [32].

The quartic term may also originate from some UV-completion of our phenomenolog-

ical supergravity description, such as superstring theory. Unfortunately, exact superstring
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corrections are not available in the literature. Though a thorough study of the origin of

the quartic term from superstring theory is beyond the scope of this paper, we briefly

discuss the possible origin of the quartic term in the QFT framework, which serves as an

existence proof.

In the following, we consider coupling of the inflaton to other superfields, and discuss

the effective terms to be obtained through integrating out these superfields. The idea is

to give the (Φ + Φ̄)-dependent masses to the other superfields. The quantum correction to

the frame function in Jordan frame is known, whose expression depends on the masses of

the fields in the Jordan frame. After integrating out these fields, the quantum corrected

frame function Ω = −3 exp
(
−K

(
Φ + Φ̄

)
/3
)

is left. See appendix B of ref. [63] for the case

of the quartic stabilization term for the stabilizer field.

The quartic term must preserve shift symmetry, so we cannot introduce a coupling to

the superpotential that is holomorphic.4 Therefore, we consider a coupling in the Kähler

potential. Let us suppose the following Kähler potential:

K = −3 ln (−Ω/3) = −3 ln

(
1 +

1√
3

(
Φ + Φ̄

)
− 1

3
A(Φ + Φ̄)J(X, X̄)

)
, (C.1)

where A = A(Φ + Φ̄) is a function of Φ + Φ̄, and J is the kinetic function for other

superfields. If Φ breaks SUSY, it gives X mass by the term like A′′|FΦ|2|X|2, but we do

not want SUSY to be broken above the inflation scale.

Let us take a simple superpotential for X, W = 1
2mX

2, where m is a mass parameter

much larger than the inflaton mass. Masses squared divided by the coefficient of the

kinetic terms for scalar and spinor particles are approximately m2
0 = Ω2m2/9A and

m2
1/2 = Ω3m2/27A2, respectively, in the Jordan frame. Then the one-loop correction to

the frame function Ω is [63]

∆Ω = − 1

16π2

(
(1−A)m2

0 ln

(
m2

0

µ2

)
+m2

1/2 ln

(
m2

1/2

µ2

))
. (C.2)

After expanding A as A
(
Φ + Φ̄

)
= 1 + c1

(
Φ + Φ̄

)
+ c2

(
Φ + Φ̄

)2
+ . . . , one can easily

see that the quartic term appears, as well as the higher and lower order terms. The

full expression is long and is not illuminating. The higher order terms do not affect our

inflationary dynamics as far as it is expanded around the VEV. The zeroth and first order

terms correspond to renormalization of the Newton constant and the field. The coefficients

of quadratic and cubic terms can be eliminated at some renormalization scale µ by tuning

c2 and c3 in the non-minimal coupling function A
(
Φ + Φ̄

)
.

Hence, as was anticipated above, it is possible to obtain the quartic term in
(
Φ + Φ̄

)
from quantum corrections of heavy fields, with some tuning to suppress the unwanted

terms. The origin of the non-minimal coupling in eq. (C.1) should be sought in an

UV-complete framework.

4An exception could be the form of W ∼ eΦW0(X) (shift of Φ changes the phase of the superpotential;

X collectively denotes other superfields). However, Φ can be moved into the Kähler potential by a Kähler

transformation, K ∼ Koriginal + Φ + Φ̄ and W ∼W0(X).
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