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Abstract: In this paper we investigate the large-N behavior of 5-dimensional N = 1

super Yang-Mills with a level k Chern-Simons term and an adjoint hypermultiplet. As

in three-dimensional Chern-Simons theories, one must choose an integration contour to

completely define the theory. Using localization, we reduce the path integral to a matrix

model with a cubic action and compute its free energy in various scenarios. In the limit

of infinite Yang-Mills coupling and for particular choices of the contours, we find that the

free-energy scales as N5/2 for U(N) gauge groups with large values of the Chern-Simons ’t

Hooft coupling, λ̃ ≡ N/k. If we also set the hypermultiplet mass to zero, then this limit

is a superconformal fixed point and the N5/2 behavior parallels other fixed points which

have known supergravity duals. We also demonstrate that SU(N) gauge groups cannot

have this N5/2 scaling for their free-energy. At finite Yang-Mills coupling we establish the

existence of a third order phase transition where the theory crosses over from the Yang-

Mills phase to the Chern-Simons phase. The phase transition exists for any value of λ̃,

although the details differ between small and large values of λ̃. For pure Chern-Simons

theories we present evidence for a chain of phase transitions as λ̃ is increased.

We also find the expectation values for supersymmetric circular Wilson loops in these
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1 Introduction and main results

There has been much interest in 5-dimensional supersymmetric gauge theories, in part

because of their relation to 6D (2, 0) superconformal field theories [1–3]. Using localization

it is possible to compute the free-energies of N = 1 and N = 2 super Yang-Mills (SYM) on

S5 [4–7]. In particular, at the N = 2 point in [7] and more generally in [8, 9] it was shown

that the free-energy of N = 1 SYM with an adjoint hypermultiplet behaves as N3 in the
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planar limit at strong coupling, with the coefficient dependent on the hypermultiplet mass.

The N3 behavior is consistent with supergravity considerations, where one can show that

the free-energy of the 6D theory compactified on S5 × S1 also scales as N3 [10, 11]. One

also finds N3 behavior on squashed spheres, where the only difference with the sphere is

an overall volume factor in the free-energy [12].

Other 5-dimensional theories of interest are superconformal fixed points [13, 14], which

are the infinite coupling limits of certain SYM theories. The conformal fixed points can

be divided into three main classes. The first has super Yang-Mills with exceptional gauge

groups. We won’t speak further about these here.

The second class is super Yang-Mills with a USp(N) gauge group. These theories

are interesting because they have known holographic AdS6 duals [15, 16]. Recently, using

a brane network construction this class of USp(N) theories were generalized to quiver

theories and their AdS6 duals [17]. The gauge theories were studied using localization

in [18] and [19]. Here it was observed that the free-energies behave as N5/2 and agree with

the corresponding supergravity computation on the AdS6 duals.

The third type of 5-dimensional superconformal theory, and the principle focus of this

paper, is a strong coupling limit of U(N) or SU(N) SYM with a Chern-Simons (CS) term

in the action. U(N) and SU(N) are the only groups that allow for a nontrivial CS action.

Consideration of a CS term is not just an idle exercise, as it can be generated by integrating

out massive hypermultiplets in complex representations [9, 13, 14]. The CS level k is quan-

tized, but we are interested in the case of large k, where one can define an ’tHooft parameter

λ̃ = N/k, with λ̃ fixed in the large-N limit, and essentially continuous. One of the inter-

esting issues we observe here is that the large-N behavior is significantly different between

the U(N) and SU(N) theory because of the cubic nature of the action. In particular, with

a proper choice of contour the U(N) free-energy exhibits N5/2 behavior at large λ̃, analo-

gous to the USp(N) Yang-Mills result in [18]. Such behavior does not seem possible for the

SU(N) free-energy. The N5/2 dependence suggests the possible existence of an AdS6 su-

pergravity dual, although we presently do not know of one. In fact, there are other reasons

to believe that a supergravity dual might not exist, as we will explain later in the paper.

Another interesting issue is the interplay between SYM and CS behavior. In the large

N limit we should expect a sharp crossover between an SYM phase and a CS phase. To

investigate this crossover we consider having finite ’tHooft parameters λ̃ and λ ≡ g2YMN/r,

where r is the S5 radius, which leads to an action with cubic and quadratic pieces. Here

we will find a phase transition as the ratio

κ ≡ 8π2
λ̃

λ
(1.1)

reaches a critical value. The critical values are different for U(N) and SU(N) and they

are also different for small or large values of the ’tHooft parameters. But in all cases the

phase transition is third order.

In order to investigate the 5-dimensional SYM-CS theory on S5 we will use the local-

ization results in [4, 6]. Localization reduces the path integral to a matrix integral, vastly

simplifying the computations. We then proceed to solve the matrix model in the large-N
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limit, both analytically and numerically. As we will see, at weak coupling our matrix model

will simplify to a cubic matrix model with a logarithmic potential between the eigenvalues,

which was well studied in the context of 2D quantum gravity [20]. In this case the model

can be solved by saddle point [21], leading to a generic solution with a continuous distribu-

tion of eigenvalues lying on two cuts. Different solutions to the matrix model correspond to

different choices of an integration contour [22, 23], whose choice is necessary to completely

define the theory.

At infinite λ, we have a “pure CS” model, where the action is entirely cubic. If we

also have λ̃≪ 1, which we call the pure CS model at weak coupling, then the model has a

Z3 symmetry in the complex plane and we can look for solutions that are Z3-symmetric.

Indeed such a solution exists, which we refer to as the Z3 solution, and is a limit where the

end of one of the two cuts of the general solution meets the side of the other cut. There are

also three distinct single-cut solutions, which break the Z3 symmetry but are transformed

into each other under the Z3 group [24]. One of the solutions is real, in that the cut is

invariant under complex conjugation, while the other two solutions are complex conjugates

of each other. The Z3-symmetric solution is valid for both U(N) and SU(N) gauge groups,

but the single-cut solutions only apply to U(N) and not SU(N) since the eigenvalues do

not preserve the traceless condition for the scalar fields.

The free-energy is computable for the Z3-symmetric and single-cut solutions, where

in both situations it scales as N2. The free-energy is the same for the single-cut solutions

because of the Z3 symmetry, but as we will show, it is higher than the free-energy for the

Z3-symmetric solution.

As we increase λ̃, the Z3 symmetry is explicitly broken by the determinant factors

in the matrix model. Starting with the complex single-cut solutions, half the eigenvalues

migrate exponentially close to the positive real axis and extend out to order λ̃1/2, while the

other half move toward the positive (negative) imaginary axis and extend out to the same

order. Moreover, the eigenvalues on the real axis are part of a single cut, but numerical and

analytic evidence shows that those on the imaginary axis split into order λ̃1/2 separate cuts,

indicating the crossing of phase transitions as the coupling is increased. The existence of the

phase transitions likely complicates the search for supergravity duals, since they appear at

large λ̃ where a dual would also be found. The real single-cut solution behaves significantly

differently from the single-cut complex solutions. Here the eigenvalues remain on a single

cut of finite extent as λ̃ approaches infinity.

If we instead start with the Z3 solution,1 then as we increase λ̃ the number of real

eigenvalues increases from a third to a half the overall number and their profile closely

approaches the profile of the complex solutions along the real line. However, the complex

eigenvalues should appear in conjugate pairs and distribute themselves equally toward the

positive and negative imaginary axes. We expect their profiles to look like the imaginary

part of the combined complex solutions, breaking into multi-cuts on both sides of the real

line, but with half the density.

1We will continue to refer to this solution as the Z3 solution, even though the Z3 symmetry is explicitly

broken away from weak coupling.
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The dominant contribution to the real part of the free energy comes from the eigen-

values on or near the real line, where one finds the approximate result

Re (Fstrong) ≈ −9π

20
N2λ̃1/2 , (1.2)

at the superconformal point with zero hypermultiplet mass. Given the N dependence of

λ̃, this gives the aforementioned N5/2 behavior. The eigenvalues along the imaginary axis

contribute the same order to the imaginary part of the free-energy. However, the imaginary

part cancels out for the Z3 solution and (1.2) is the complete free-energy. The real single-

cut solution also has a real free-energy. However, because the eigenvalues have finite extent

as λ̃→ ∞, the free-energy only scales as N2 in this limit.

One can also compute the expectation value of a Wilson loop around a great circle of

the S5 using localization [9, 25]. However, because the CS term breaks charge conjugation

invariance, the Wilson loop in a fundamental representation differs from the Wilson loop

in the anti-fundamental representation. At weak coupling, the difference is just a sign for

the log of the Wilson loop. However, at strong coupling the difference is more pronounced.

For the fundamental representation we find that log(〈W 〉) ∼
√

λ̃, while it is relatively

suppressed for the anti-fundamental representation.

Going back to the case with finite λ, we will argue that the single-cut solution below

the phase transition can continuously connect to a double-cut solution above the transition

which has lower free-energy than the complex single-cut solutions. The eigenvalue distribu-

tion of this double-cut solution is symmetric about the real axis and hence the free-energy

is real. As we approach the pure CS case at strong coupling, the free-energy is the same

as in (1.2).

This paper is organized as follows: in section 2 we briefly review the matrix model

obtained by localization of the SYM-CS theory on S5. In section 3 we solve the pure CS

matrix model at weak coupling where it reduces to a purely cubic matrix model with a loga-

rithmic interaction potential. In section 4 we solve the strong coupling limit of the pure CS

model using particular approximations that we check with numerical solutions. In section 5

we calculate the Wilson loop expectation values for the different pure CS solutions. In sec-

tion 6 we generalize our results to quiver theories. In section 7 we consider the case of finite

λ and study the phase transitions at both weak and strong coupling. In section 8 we offer

some concluding remarks. Various technical discussions are contained in the appendices.

2 Matrix model for N = 1 5D Yang-Mills with Chern-Simons and mat-

ter

In order to study the properties of 5D CS theory with matter we will use results of super-

symmetric localization [4, 6]. Localization reduces the S5 partition function of 5D SYM

with a CS term and a matter multiplet in the R representation to the matrix integral

Z =

∫

Cartan

[dφ] e
− 8π3r

g2
Y M

Tr(φ2)−πk
3
Tr(φ3)

Zvect
1−loop(φ)Z

hyper
1−loop(φ) +O(e

− 16π3r

g2
Y M ) , (2.1)
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where the one-loop contributions are given by

Zvect
1−loop(φ) =

∏

β

∏

t 6=0

(t− 〈β, iφ〉)(1+ 3

2
t+ 1

2
t2) , (2.2)

and

Zhyper
1−loop(φ) =

∏

µ

∏

t

(

t− 〈iφ, µ〉 − im+
3

2

)−(1+ 3

2
t+ 1

2
t2)

. (2.3)

Here β are the roots, µ are the weights in R, r is the radius of S5, and m = −iMr with M

being the mass of the hypermultiplet. This matrix model was studied in detail in [8, 9, 26]

for the planar limit of SU(N) SYM theory, usually ignoring the CS term, and in [18, 19] for

5D superconformal theories. The most interesting behavior occurs when we have a single

hypermultiplet in the adjoint representation.

In the large N limit the matrix integral in (2.1) is dominated by the saddle point. The

matrix integral (and thus the corresponding saddle point equations) takes the same form

for either U(N) or SU(N) gauge groups, but for SU(N) the sum of the eigenvalues φi of the

matrix φ is constrained to be zero. For SYM with no CS term the solution automatically

satisfies the constraint because of a Z2 symmetry, hence there is little distinction between

the two groups. However, a CS term breaks the Z2 symmetry and the constraint has to be

enforced using a Lagrange multiplier.

If we consider the hypermultiplet to be in the adjoint representation, then in the large

N limit for U(N) or SU(N) the partition function (2.1) is dominated by the saddle point

satisfying the equations

πN

λ̃

(

φ2i + 2κφi − µ
)

= π
∑

j 6=i

[

(

2− (φi − φj)
2
)

coth(π(φi − φj))

+
1

2

(

1

4
+(φi−φj−m)2

)

tanh(π(φi−φj−m))

+
1

2

(

1

4
+(φi−φj+m)2

)

tanh(π(φi−φj+m))

]

, (2.4)

where κ is defined in (1.1). We have also included a Lagrange multiplier µ which we set to

zero for U(N), or adjust so that
∑

i φi = 0 for SU(N) . Since m and λ−1 have explicit r

dependence, the theory is superconformal only when these terms are zero.

The saddle point equation in (2.4) is difficult to solve exactly, so we will proceed by

considering its weak and strong coupling limits. Under some assumptions the equation

simplifies in these limits and can be solved analytically using standard matrix model tech-

niques (see for example [27]). In order to check the validity of our assumptions, we compare

our analytical results for the approximate equations with the numerical solutions of the

exact equations.

To obtain the numerical solutions we will use an idea similar to one used in [28] for

the ABJM matrix model. The N algebraic equations in (2.4) come from minimizing the

free-energy F with respect to the eigenvalues, − ∂F
∂φi

= 0. Instead of solving this directly,
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we introduce a “time” dependence for the matrix model eigenvalues φi(t) and solve the

“heat” equation

τ
dφi
dt

= −∂F
∂φi

. (2.5)

At large time-scales t → ∞, with an appropriate choice of τ the solution of (2.5) relaxes

and approaches the solution of the saddle point equations.

3 Weak coupling

In the weak coupling limit (λ, λ̃≪ 1) we assume that the separations between eigenvalues

are small, i.e. |φi − φj | ≪ 1. Under this assumption, (2.4) reduces to

πN

λ̃

(

φ2i + 2κφi − µ
)

≈ 2
∑

j 6=i

1

φi − φj
. (3.1)

In the large-N limit (3.1) is well approximated by the integral equation

πN

λ̃

(

φ2 + 2κφ− µ
)

≈ 2

∫

−ρ(φ
′) dφ′

φ− φ′
, (3.2)

where the eigenvalue density is normalized to
∫

ρ(φ)dφ = 1.

A general solution of (3.1) has two cuts and we can use standard matrix model tech-

nology to find these more general solutions. Defining the resolvent,

w(φ) =

∫

ρ(φ′)dφ′

φ− φ′
, (3.3)

it is straightforward to show using the equations of motion and its asymptotic behavior

that w(φ) has the general form

w(φ̃) =
π

2λ̃



φ̃2 − κ2 − µ−

√

(φ̃2 − κ2 − µ)2 − 4λ̃

π
φ̃+B



 , (3.4)

where φ̃ = φ+ κ. It then follows that the eigenvalue density is

ρ(φ) =
1

2λ̃

√

−B +
4λ̃

π
φ̃− (φ̃2 − κ2 − µ)2 . (3.5)

There are four branch points bounding the two eigenvalue cuts, and a free parameter B

that adjusts their filling fractions.

If the Yang-Mills coupling is small in comparison to the CS coupling, then we expect

the relevant solution of (3.2) to have a single cut along the real axis. This corresponds to

choosing

B = −(κ2 + µ− b2)(κ2 + µ+ 3b2) (3.6)

where b satisfies the equation

b(κ2 + µ− b2) =
λ̃

π
. (3.7)
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For this choice of B two of the branch points merge and the resolvent becomes

w(φ̃) =
π

2λ̃

(

φ̃2 − κ2 − µ− (φ̃+ b)

√

(φ̃− b)2 − 2(κ2 + µ− b2)

)

, (3.8)

which gives an eigenvalue density

ρ(φ) =
1

2λ̃
(φ̃+ b)

√

2λ̃

b π
− (φ̃− b)2 (3.9)

between the square-root branch points at φ = b− κ±
√

2(κ2 + µ− b2).

In the SU(N) case we have that

0 =

∫

dφ φρ(φ) =
π

4λ̃
(κ2 + µ− b2) ((3b− κ)(b− κ) + µ) , (3.10)

which leads to µ = (κ− 3b)(b− κ). The density then becomes

ρ(φ) =
1

2λ̃
(φ̃+ b)

√

8b(κ− b)− (φ̃− b)2 , (3.11)

and the relation in (3.7) is now

4b2(κ− b) =
λ̃

π
. (3.12)

In both the U(N) and SU(N) cases there is a phase transition when λ becomes large

enough. This would occur when, say, the radius r is decreased. In terms of the densities

in (3.9) and (3.11), this happens when the zero at φ̃ = −b coincides with the left branch

point. In the U(N) case where µ = 0, the critical value occurs when κ2 = 3b2. Using (3.7)

this corresponds to

κ = κcrit ≡
√
3

(

λ̃

2π

)1/3

, (3.13)

from which it follows that

λ =
2√
3
(2π)7/3λ̃2/3 . (3.14)

For SU(N) the critical value happens when κ = 3
2b, and so using (3.12)

κcrit =
3

2
(λ̃/2π)1/3 , (3.15)

and thus

λ =
4

3
(2π)7/3λ̃2/3 . (3.16)

If κ > κcrit, then all eigenvalues are real. If κ < κcrit, then s

ome of the eigenvalues are complex. We will study the phase transitions more closely

in section 7, where we show that the transition is third order.
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3.1 The weakly coupled pure CS model

Taking κ = 0 so that the YM coupling is infinite, we go beyond the critical point and

the matrix model reduces to the pure CS model. For the weakly coupled U(N) case, the

equations in (3.1) and (3.2) have an invariance under the Z3 transformation φi → ωφi,

ω = e2πi/3, hence one can look for solutions that are also Z3-symmetric. Such solutions

will have three branches, where the eigenvalues sit at φi, ωφi and ω2φi, with φi positive

real. We can then write (3.1) as

πN

λ̃
φ2i ≈ 2

N/3
∑

j 6=i

1

φi − φj
+ 2

N/3
∑

j

1

φi − φjω
+ 2

N/3
∑

j

1

φi − φjω2
, (3.17)

which can be rewritten as

πN

λ̃
φ2i ≈ 6

∑

j 6=i

φ2i
φ3i − φ3j

+
2

φi
. (3.18)

Letting Φi = φ3i , and taking the large N limit we can turn (3.18) into the integral equation

π

λ̃
≈ 2

∫

− ρ̂(Φ′)
Φ− Φ′dΦ

′ , (3.19)

where the density of eigenvalues is normalized to
∫

ρ̂(Φ)dΦ = 1. Using standard matrix

model techniques, one finds that

ρ̂(Φ) =
1

2λ̃

√

4λ̃

πΦ
− 1 . (3.20)

In this case the cut runs between the origin and Φ = 4λ̃/π. In terms of φ, there are three

cuts emanating out of the origin and running toward the square root branch points at

φ = (4λ̃/π)1/3ωn for n = 0, 1, 2. The origin is also a square root branch point, with the

three directions of the cuts determined by keeping ρ(φ)dφ positive definite. The eigenvalue

distribution for this solution is shown in figure 1a. Because of the Z3 symmetry, the average

of the eigenvalues is 〈φ〉 = 0, thus, there is no distinction between U(N) and SU(N) for

this type of solution.

The Z3 solution can also be obtained from (3.4) and (3.5) by setting the filling fraction

parameter B = 0. In this limit the side of one of the two cuts collides with a branch point

of the other cut, leaving three symmetric cuts.

The single-cut solutions obtained from (3.8) by setting κ = 0 are not Z3-symmetric,

but transform into each other under Z3 transformations. For U(N) the eigenvalue density

has the form in (3.9) where b satisfies

b3 = − λ̃
π
. (3.21)

This equation has three roots corresponding to the three different solutions, as shown in

figure 1b. If one attempts to generate single-cut SU(N) solutions using the eigenvalue

density in (3.9) with

b3 = − λ̃

4π
, (3.22)

– 8 –



J
H
E
P
1
2
(
2
0
1
4
)
0
4
9

(a) Eigenvalues of the Z3 solution for N = 123,

λ̃ = 0.02.

-0.4 -0.2 0.0 0.2 0.4

-0.4

-0.2

0.0

0.2

0.4

(b) Eigenvalues of the three single-cut solutions

for N = 51, λ̃ = 0.1.

Figure 1. Eigenvalues for the pure CS model at weak coupling. The blue regions are the integration

regions in the complex plane where Re(φ3) > 0 so that the path integral converges. The distributions

were computed numerically using the heat equation on (3.1).

it does not work. Starting at one of the branch points and following a trajectory such that

ρ(φ)dφ is positive definite, one finds that the curve runs out to infinity instead of to the

other branch point. From this we conclude that there are no single-cut solutions for SU(N).

We next consider the free-energy for the Z3 and the single-cut solutions. In the large-N

limit the free-energy is given by

F =
kNπ

3

∫

C
φ3ρ(φ)dφ− N2

2

∫

C
dφdφ′ρ(φ)ρ(φ′) log(φ− φ′)2 −N2C (3.23)

where the contour C is determined by the filling parameter B in the resolvent. The last

term in (3.23) comes from the first subleading term in the expansion of the full matrix

model potential. Carrying out the expansion, one finds

C =
1

8
log 2 + log π +

7ζ(3)

16π2
(3.24)

Details for computing the integrals in (3.23) can be be found in appendix B, where we

show that

F = N2

(

1

2
− 1

3
log

λ̃

π
− C

)

(3.25)

for the Z3 solution and

F = N2

(

1

2
− 1

3
log

λ̃

π
+

1

2
log 2− C

)

. (3.26)

for the single-cut solutions. The free-energy for both solutions scales as N2, but the Z3

solution has lower free-energy and is thus the energetically preferable cut configuration.

– 9 –
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The cut configuration is actually determined by the choice of an integration contour [22,

23]. In order for the path integral to converge the integration over the eigenvalues must

asymptote into the blue regions in figure 1. Each eigenvalue integral then connects two of

the three regions. One of the regions has to be the one that covers the positive real axis

if we are to have a solution that continuously connects onto the pure Yang-Mills solution.

This would then exclude the single-cut solution shown in red dots in figure 1b. If the other

end of the integration region is the same for all eigenvalues, then this would correspond to

one of the two remaining single-cut solutions. However, if half the eigenvalues asymptote

into the region bordering the positive imaginary axis and the other half into the region

bordering the negative imaginary axis, then this gives the Z3-symmetric configuration.2

4 Strong coupling with adjoint matter

We now suppose that the couplings are large, λ, λ̃ ≫ 1. We can then assume that

|Re(φi − φj)| ≫ 1 for most i and j, in which case we can approximate (2.4) as

N
π

λ̃
(φ2i + 2κφi + µ) =

(

9

4
+m2

)

π
∑

j 6=i

sign(Re(φi − φj)) . (4.1)

Assuming that the Re(φi) are ordered, we get the relation

φ2i + 2κφi + µ = χ
2i−N

N
, (4.2)

and an eigenvalue density

ρ(φ) =
1

χ
(φ+ κ) , (4.3)

where

χ ≡
(

9

4
+m2

)

λ̃ . (4.4)

In the U(N) case with µ = 0, this means that the eigenvalues range between φ− and φ+,

where

φ± = −κ+
√

κ2 ± χ . (4.5)

It is then clear that a transition occurs when the argument of the square root in φ− vanishes,

which occurs when

κ = κcrit ≡ χ1/2 =

√
9 + 4m2

2
λ̃1/2 . (4.6)

Similar to weak coupling, all eigenvalues lie on the real line when κ is above (4.6), but

some are complex when κ is below (4.6).

In the SU(N) case we must set

∫ φ+

φ−

ρ(φ)φ dφ = 0 , (4.7)

2Note that having the eigenvalues on different contours is consistent with gauge invariance.
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which leads to the relation

1

3
φ3+ +

1

2
κφ2+ =

1

3
φ3− +

1

2
κφ2− , (4.8)

where φ+ and φ− are again the endpoints of the eigenvalue distribution. Combining this

with the relations

φ2+ + 2κφ+ − µ = χ

φ2− + 2κφ− − µ = −χ , (4.9)

we obtain the sytem of three equations that define the endpoints of the cut φ± and the

Lagrange multiplier µ.

Introducing new variables ψ± ≡ φ+ ± φ−, we can rewrite (4.8) and (4.9) as

ψ+ψ− + 2κψ− = 2χ

ψ+(ψ+ + κ) + 2µ = 0

4

3
χ2 + ψ+(ψ+ + 2κ)3 = 0 . (4.10)

This last equation has a critical point when

(ψ+ + 2κ)3 + 3ψ+(ψ+ + 2κ)2 = 0 , (4.11)

which is satisfied when ψ+ = −κ/2. Substituting back into (4.10), we find

κcrit =
2
√
2

3
χ1/2 =

1

3

√

2(9 + 4m2)λ̃ (4.12)

for the critical value. In section (7) we will further study these critical points, where we

will show that the phase transition stays third-order for strong coupling.

4.1 Chern-Simons with adjoint matter

We now assume that κ = 0 such that the theory is pure CS and we are past the phase

transition. As we move to stronger coupling for λ̃, the Z3 symmetry breaks as the de-

terminant factors diverge from the Vandermonde form. We still expect there to be the

analog of the three single-cut solutions in section 3.1, that is one solution with an eigen-

value distribution symmetric about the real axis and the other two complex conjugates

of each other. We also expect an analog of the Z3 solution, which has a branch on the

real line and two complex branches that are conjugate to each other. We still assume that

|Re(φi − φj)| ≫ 1 for generic eigenvalues and that the Re(φi) are ordered. Hence, the

eigenvalues still satisfy (4.2) and (4.3), with κ = 0.

For the case of U(N) with µ = 0, we see that the the righthand side of (4.2) is positive

if i ≥ N/2, hence these eigenvalues are on the positive real line and run between the origin

and φ+ =
√

λ̃(9/4 +m2). However, for i < N/2, the righthand side of (4.2) is negative

and the corresponding eigenvalues lie on the imaginary axis. If the imaginary eigenvalues

have the same sign, then the solution connects to one of the complex single-cut solutions at

– 11 –
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Figure 2. Example of strong coupling solution λ̃ = 750, N = 87.

weak coupling and the free-energy is complex. Alternatively, the eigenvalues could divide

up such that the imaginary eigenvalues appear with their conjugates, in which case the

free-energy is real. We will continue to refer to this as the Z3 solution since this is the one

that connects to the Z3 weak coupling solution.

Note that these branches cannot lie exactly on the imaginary axes, since the approx-

imations used for cothπ(φi − φj) and tanhπ(φi − φj) break down if the real part of the

argument is zero. Instead we should assume that the eigenvalues satisfy |Im(φi − φj)| ≫
|Re(φi − φj)| ≫ 1, with the ratio of the imaginary to the real parts diverging as λ̃ → ∞.

A numerical solution of (2.4) at strong coupling is shown in figure 2 and confirms these

assumptions. As shown in the figure, half of the eigenvalues lie on the positive real axis,

while the other half spread in the general direction of the positive imaginary axis, but

with some separation along the real axis. Furthermore, the endpoint toward the imaginary

direction is close to the computed value φ−.

We also see from the numerical solution that the distribution of the eigenvalues along

the imaginary axis is somewhat chaotic. This is partly due to the poles of the coth and

tanh functions along the imaginary axis which lead to less numerical precision.

But more importantly, for high enough λ̃, the single-cut solution no longer exists and

the cut starts bifurcating into multi-cuts along the imaginary direction, with the number

of cuts scaling as λ̃1/2. We interpret the bifurcating of the cuts as evidence for phase

transitions as λ̃1/2 is increased. In appendix C we show the disappearance of the single-

cut solution explicitly by considering the solution for the special point m2 = −1/4, where

the matrix model is solvable analytically. Here we find a critical value λ̃c ≈ 0.976 where the

eigenvalue density goes to zero in the middle of the cut, signifying a splitting into two cuts.

We also argue that a new cut appears when
√
2 λ̃1/2 is increased by 2. More generally, we

believe that a new cut appears when χ1/2 increases by 2. Each appearance of a new cut

signifies a phase transition. The existence of the phase transitions complicates the search

for supergravity duals, and perhaps indicates that they do not exist.

Turning to SU(N), it is straightforward to show that continuous solutions to (4.2) with

κ = 0 do not exist. Setting κ = 0 in (4.8) and (4.9), we are immediately led to

χ3 + 3µ2 χ = 0 , (4.13)
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Figure 3. λ̃-dependence of the free energy at strong coupling. The orange dots represent the

numerical solution while the dashed blue line is the solution in (4.19).

and so

µ = ± i√
3
χ . (4.14)

Hence, the endpoints of the eigenvalue distribution consistent with (4.8) are at

φ+ =

√
2

31/4
χ1/2 e±iπ/12 , φ− = −

√
2

31/4
χ1/2 e±7iπ/12 . (4.15)

But these endpoints cannot be connected by a continuous distribution of eigenvalues be-

cause they lie on different branches. However, we believe there is an approximate solution

where µ = χ, making φi imaginary for all i. Assuming that the conjugates also appear,

then 〈φ〉 = 0, satisfying the traceless condition.

Returning to the U(N) case and using our assumptions about the eigenvalues, we can

approximate the free energy as

F ≡ − logZ ≈
∑

i

πk

3
φ3i −

(9 + 4m2)π

4

∑

i<j

|Re(φi − φj)| . (4.16)

For the Z3 solution this becomes

F ≈
∑

i>N/2

πk

3
φ3i −

(9 + 4m2)π

4

N

2

∑

i>N/2

φi −
(9 + 4m2)π

4

∑

N/2<i<j

(φj − φi) , (4.17)

where the leading contributions from the two complex branches have canceled out. Then

plugging (4.2) into (4.17), we find

F ≈ −(9 + 4m2)3/2π

60
N2λ̃1/2 , (4.18)

which simplifies to

F ≈ −9π

20
N2λ̃1/2 (4.19)

at the superconformal point. For the solutions that have all of their complex roots either

above or below the real line, the free-energy is complex, but the real part matches (4.18).
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Substituting λ̃ = N/k into (4.18) and (4.19), we find N5/2 behavior for the free-energy

at strong coupling. This parallels the strong-coupling behavior of the 5D superconformal

theories in [18]. In our case, by adjusting κ we can transition between the N3 behavior that

one finds for SYM, which is related to the behavior of 6D superconformal theories, andN5/2

behavior which is expected for 5D superconformal theories. Note that the SU(N) theories

will not have the N5/2 behavior, because in the leading approximation their eigenvalues lie

on the imaginary axis and so their contribution to the free-energy cancels.

As a further check on our results, we computed the real part of the free-energy numer-

ically as a function of λ̃ for the solution in figure 2. The results of this analysis are shown

in figure 3. Here we see that the approximate result in (4.19) accurately reproduces the

numerical result.

5 Wilson loops

A supersymmetric Wilson loop wrapping the equator of S5 can also be obtained from the

matrix model in (2.1). Such loops were considered in [29] and [9] for 5D SU(N) SYM

theory and in [19] for 5D superconformal theories. One twist to the situation here is that

the CS term in the action is odd under charge conjugation, hence the Wilson loop for the

fundamental representation can be different from the Wilson loop in the anti-fundamental

representation.3

The expectation value of the Wilson loop in the fundamental or anti-fundamental

representation, after localizing, is the expectation value in the matrix model (2.1) [25],

〈W 〉± =
1

N
〈Tr e±2πφ〉 , (5.1)

where the + (−) sign refers to the (anti-) fundamental representation. In the large-N

limit the back-reaction of this term on the eigenvalue distribution is negligible, hence the

expectation value of the loop is well approximated by

〈W 〉± =

∫

dφρ(φ)e±2πφ , (5.2)

where ρ(φ) is the eigenvalue density computed in the previous sections.

In the rest of this section we consider the Wilson loop for the pure CS models at weak

and strong coupling.

5.1 Purely cubic model at weak coupling

At weak coupling we have studied two types of solutions, the Z3 solution and the single-cut

solutions. Let us consider Wilson loops for these configurations separately.

3However in 3d CS theory, which also has an action odd under charge conjugation, Wilson loops in the

fundamental and anti-fundamental representations behave in the same way (see for example [27]).
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5.1.1 Z3 symmetric solution

The Z3 solution is given by (3.5) with B = κ = µ = 0. This solution consists of three

branches that can be mapped into each other by e2πi/3 rotations. All three branches

contribute to the integral (5.2), leading to the expression

〈W 〉±Z3
=

φ∗
∫

0

dφ
φ2

2λ̃

√

4λ̃

πφ3
− 1

[

e±2πφ + e±πφ(−1+
√
3i) + e±πφ(−1−

√
3i)
]

, (5.3)

where the first term in the square brackets comes from the integration over the branch on

the real line, while the two other terms come from the rotated branches. The endpoint of

the cut on the real line sits at φ∗ = (4λ̃/π)1/3.

The integral results in the generalized hypergeometric function

〈W 〉±Z3
= 1F3

(

1

2
;
1

3
,
2

3
, 2;±32π2λ̃

27

)

. (5.4)

This expression is real and in the limit λ̃≪ 1 its log is approximately

log〈W 〉±Z3
≈ ±4π2λ̃

3
(5.5)

5.1.2 Single-cut solutions

The three single-cut solutions for U(N) have κ = µ = 0 in (3.9), with b one of the roots

in (3.21). The real root corresponds to the solution symmetric with respect to the real axis,

while the other roots correspond to the single cuts that are completely above or below the

real axis.

For the symmetric solution the Wilson loop is given by the integral

〈W 〉±Z2
=

φ2
∫

φ1

dφ
i

2λ̃



φ−
(

λ̃

π

)1/3




√

(φ− φ1)(φ− φ2) e
±2πφ, (5.6)

where

φ1 = (λ̃/π)1/3(−1− i
√
2) , φ2 = (λ̃/π)1/3(−1 + i

√
2) . (5.7)

Defining the new variable x = 1
i
√
2

(

(λ̃/π)1/3φ+ 1
)

, we can rewrite (5.6) as

〈W 〉±Z2
= −2

1
∫

−1

(
√
2ix− 2)

√

1− x2ea(i
√
2x−1) (5.8)

where a = ±(8π2λ̃)1/3. The integral then gives

〈W 〉±Z2
=
e−a

a

(

a 0F1

(

2,−a
2

2

)

+ J2

(√
2a
)

)

(5.9)
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where 0F1 is the confluent hypergeometric function. This expression is real and for λ̃≪ 1

its log behaves as

log〈W 〉±Z2
≈ ∓3

2
(π2λ̃)1/3 . (5.10)

The Wilson loop for the other two single-cut solutions can be found by rotating φ

in (5.6) by e±2πi/3. This is equivalent to rotating a in (5.9) by e±2πi/3. Hence for λ ≪ 1

the log of the Wilson loops for these configurations are

log〈W 〉±n ≈ ∓3

2
(π2λ̃)1/3e2πin/3 . (5.11)

Note that there is significantly different behavior between the Wilson loops for the Z3

solution and the single-cut solutions. Not only is the power of λ̃ different between (5.5)

and (5.10), but so too is the sign.

5.2 Pure CS model at strong coupling

We next consider the Wilson loops in the strong coupling limit where λ̃ ≫ 1. We first

consider configurations where the imaginary eigenvalues are all above the real axis, as in

figure 2. Substituting the density in (4.3) into the integral (5.2) with κ = 0, we obtain

〈W 〉±strong =

∫

C

dφ
φ e±2πφ

χ
, (5.12)

where χ is defined in (4.4) and the contour C runs along the real axis up to φ+ = χ1/2

and the imaginary axis to φ− = iχ1/2. Evaluating the integral, we obtain a complex result

with components

Re
(

〈W 〉±strong
)

=
1

2πχ

((

±χ 1

2 − 1

2π

)

e±2πχ1/2
+χ

1

2 sin 2πχ
1

2 +
1

2π
cos 2πχ

1

2

)

, (5.13)

Im
(

〈W 〉±strong
)

=± 1

2πχ

(

1

2π
sin 2πχ1/2 − χ1/2 cos 2πχ1/2

)

. (5.14)

Since λ̃ ≫ 1, there is clearly a significant difference between 〈W 〉+ and 〈W 〉−. In the

former case, the real component is approximately

Re
(

〈W 〉+strong
)

≈ 1

2π
χ−1/2 e2πχ

1/2
, (5.15)

while Im
(

〈W 〉+strong
)

→ 0 at strong coupling when λ̃≫ 1. Therefore, the log of the Wilson

loop is approximately

log
(

〈W 〉+strong
)

≈ 2π χ1/2 = 2π

√

λ̃

(

9

4
+m2

)

(5.16)

In the case of 〈W 〉−, the real part does not have the exponentially growing piece in (5.15),

therefore its log is much smaller than (5.16).

For the Z3 configuration, where each complex eigenvalue appears with its conjugate,

Im (〈W 〉±) cancels, while Re (〈W 〉+) is still dominated by the real end-point, thus the log

is also given by (5.16).
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(a) Necklace quiver CS theory with equal levels

in all nodes.

(b) ABJM-like quiver the-

ory.

Figure 4. Schematical representations of different Chern-Simons quiver theories.

6 Chern-Simons quivers

All results in the previous sections can be generalized to different types of quiver theories.

Some examples of 5D quivers where considered in [8, 17, 30] and [9]. But these all con-

sidered quivers with pure Yang-Mills terms in the nodes. Here we will consider quivers

with N = 1 U(N) Chern-Simons vector multiplets in the nodes and with hypermultiplets

in bifundamental representations. These quivers are more similar to the ones considered

in [28, 31] or in the simplest case of two nodes in ABJM theory [32]

The first type of quivers we consider are necklace quivers with n nodes. Each of the

nodes contain U(N) N = 1 Chern-Simons with equal levels k and matter multiplets in the

bifundamental representation. This type of quiver is shown schematically in figure 4a. The

eigenvalues in the saddle-point equations (2.4) split into n groups ψ
(r)
i with r = 1, . . . , n

and i = 1, . . . , N and the equations in the planar limit take the form

πN

λ̃
(ψ

(r)
i )2 = π

[

∑

j 6=i

(

2− (ψ
(r)
i − ψ

(r)
j )2

)

coth(π(ψ
(r)
i − ψ

(r)
j ))

+

(

∑

j

[

1

4

(

1

4
+ (ψ

(r)
i −ψ(r+1)

j −m)2
)

tanh(π(ψ
(r)
i −ψ(r+1)

j −m))

+
1

4

(

1

4
+ (ψ

(r)
i −ψ(r−1)

j −m)2
)

tanh(π(ψ
(r)
i −ψ(r−1)

j −m))

]]

+(m→ −m)

)

. (6.1)

These equations have the obvious solution ψ
(r)
i = ψ

(s)
i for all r and s. The eigenvalues

of each quiver satisfy the same saddle-point equations as a single-node theory (2.4). Thus,
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the solution at strong coupling is given by

φ
(r)
i =

√

(9 + 4m2) λ̃

4

2i−N

N
, (6.2)

In the case wherem = 0, we get the same free-energy as in (4.19), multiplied by the number

of nodes n,

F ≈ −9π

20
N2λ̃1/2n . (6.3)

Likewise, for the Wilson loops we get the same asymptotic behavior as for the single-node

theory,

log (〈W 〉quiv.) ≈ 2π

√

λ̃

(

9

4
+m2

)

(6.4)

The solution we have described above is the only one we aware of for the quiver theo-

ries. Furthermore, numerical simulations do not show the presence of any other solutions,

although a more accurate study of the equations (6.1) could reveal other solutions.

Another type of quiver theory that can be easily generalized from the single-node

solution is an ABJM-like theory with two nodes. Like ABJM, each node has a U(N)

Chern-Simons but with opposite levels k and −k. There are also bifundamental matter

fields connecting the two nodes (see figure 4b).

Denoting the eigenvalues of each node by φi and ψi, we can write down the equations

of motion

πN

λ̃
φ2i = π

∑

j 6=i

(

2− (φi − φj)
2
)

coth(π(φi − φj))

+π
∑

j

[

1

2

(

1

4
+ (φi − ψj −m)2

)

tanh(π(φi − ψj −m)) + (m→ −m)

]

, (6.5)

−πN
λ̃
ψ2
i = π

∑

j 6=i

(

2− (ψi − ψj)
2
)

coth(π(ψi − ψj))

+π
∑

j

[

1

2

(

1

4
+ (ψi − φj −m)2

)

tanh(π(ψi − φj −m)) + (m→ −m)

]

. (6.6)

Because of the symmetry properties of the cubic Chern-Simons term, these equations have

the very nice solution φi = −ψi. Hence, the effective equation for the single node takes the

form

πN

λ̃
φ2i = π

∑

j 6=i

(

2− (φi − φj)
2
)

coth(π(φi − φj))

+π
∑

j

[

1

2

(

1

4
+ (φi + φj −m)2

)

tanh(π(φi + φj −m)) + (m→ −m)

]

. (6.7)

Notice that here we cannot assume that |Re(φi − φj)| ≫ 1 for generic eigenvalues since the

quadratic terms (φi−φj)2 and (φi+φj)
2 on the r.h.s. do not cancel each other. This makes

it difficult to find approximate equations of motion with analytic solutions.
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(a) First kind of solutions to (6.7) N =

50, λ̃ = 1000, m = 0.

(b) First kind of solutions to (6.7) N =

51, λ̃ = 1000, m = 0.

Figure 5. Eigenvalues for the ABJM-like quiver model at strong coupling. The blue regions are

the integration regions in the complex plane where Re(φ3) > 0 so that the path integral converges.

Though we can’t say much about the behavior of the solutions of (6.7) from analytical

calculations, we were able to find different numerical solutions of this quiver model. The

results of the numerical simulations are shown in figure 5. For these solutions we can

clearly see that the eigenvalues do not satisfy |Re(φi − φj)| ≫ 1.

For the solution in figure 5a the eigenvalues are distributed symmetrically about the

real axis and lie close to, but not exactly on the imaginary axis. Furthermore, the separation

between the endpoints stays finite even for large λ̃, a behavior that is also seen for the

solution in (C.39) for pure Chern-Simons with m2 = −1/4. For the solution shown in

figure 5b the eigenvalues also lie close to imaginary axis. However they are clearly not

symmetric with respect to real axis as they all lie in the lower half-plane. In this case the

distance between the endpoints increases with increasing λ̃.

Since all the eigenvalues for these solutions lie close to the imaginary axis, the real

part of the free energy cannot go beyond the usual N2 dependence.

7 The SYM-CS phase transition

In this section we elaborate on the phase transition between super Yang-Mills and Chern-

Simons behavior. The main result is that the phase transition is third order for both weak

and strong coupling.

7.1 U(N)

We start with the U(N) theory at weak coupling. Part of this analysis has previously

appeared in the context of triangulated surfaces in 2D gravity [33–36], but we include it for

completeness. We wish to explore the behavior of the free-energy near the critical point,

κ2 = 3 b2, where κ and b satisfy (3.7) with µ = 0. We first write κ and B in terms of two
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small parameters ǫ and δ,

κ2 = 3L2/3 − ǫ , B = −12L4/3 + 4L2/3ǫ+ L1/3δ , (7.1)

where L ≡ (λ̃/2π) = κ3crit/(3
√
3) . The free-energy in the large N limit is given by4

F = N2

(

1

2L

∫

C
dφρ(φ)

(

1

3
φ3 + κφ2 − 2

3
κ3
)

− 1

2

∫

C
dφdφ′ρ(φ)ρ(φ′) log(φ− φ′)2

)

, (7.2)

where we subtracted off a constant piece to simplify expressions, but will otherwise not

effect the phase structure. Using the more general expression for ρ(φ) in (3.5), the free-

energy, as an expansion in ǫ and δ, is found to be

F = N2

(

−3

4
− 1

3
logL+

3

4
L−2/3ǫ− 1

8
L−4/3ǫ2 − 1

40
L−5/3ǫ δ + . . .

)

, (7.3)

where the expression is valid on either side of the phase transition.

Below the transition we have ǫ < 0 with a single-cut eigenvalue distribution. Hence,

B has the form in (3.6). If we write b = L1/3 + β, then (3.6) implies

B = −12L4/3 + 8L2/3ǫ+ 12L2/3β2 + 4L1/3ǫ β + 12L1/3β3 + . . . , (7.4)

while (3.7) reduces to

L1/3ǫ+ 3L1/3β2 + ǫ β + β3 = 0 . (7.5)

Solving this last equation for β in terms of ǫ and substituting into (7.4), we find

B = −12L4/3 + 4L2/3ǫ+ 8L1/3(−ǫ/3)3/2 + . . . . (7.6)

Comparing this equation with (7.1), we find that δ ≈ 8(−ǫ/3)3/2, and so the free-energy

becomes

F = N2

(

regular terms +
1

15
√
3
L−5/3 (−ǫ)5/2 + . . .

)

. (7.7)

Hence, because the third derivative of F diverges at this point, there is a third-order phase

transition at ǫ = 0.

Let us now continue above the transition to ǫ > 0. We assume that the eigenvalues

lie on the symmetric two-cut solution that connects to the Z3 solution as κ → 0. At the

critical point, three of the four branch points in (3.5) meet at φ̃ = −L1/3. As we move away

from the critical point by increasing ǫ, the branch points spread apart, and the density near

these points is approximately

ρ(δφ) ≈ 1

4πL5/6

√

4δφ3 + 4ǫδφ− δ , (7.8)

where δφ = φ̃+L1/3. We can shift one of the branch points to zero by setting δφ = ∆φ+x,

where ∆φ satisfies the equation

4∆φ3 + 4ǫ∆φ− δ = 0 . (7.9)

4In this section we shift the free energy by − 2

3
κ
3 from (3.23). This will have no effect on the singular

terms of the free energy expansion, but will make some of the expressions nicer.
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In terms of x, the density is

ρ(x) =
1

2πL5/6

√

x(x2 + 3∆φx+ 3∆φ2 + ǫ) . (7.10)

Assuming that ǫ > 0, we see that two of the branch points are at

x = −3∆φ

2
± i∆φ

2

√

3 +
4ǫ

∆φ2
≡ re±iθ . (7.11)

In the limit that ǫ→ 0, ∆φ , δ and r all approach zero.

To determine the correct value of θ, we now insist that the integral of ρ(x) from x = 0

to x = reiθ is positive definite. We can do the integral, which gives

∫ reiθ

0
ρ(x)dx =

1

2πL5/6

∫ reiθ

0
dx
√

x(x2 − 2rx cos θ + r2)

=
r5/2

15πL5/6

√
−2i sin θ

(

2(2 cos 2 θ−1)E

(

1

1−e2iθ
)

+
(

1−2e−2iθ
)

K

(

1

1−e2iθ
))

, (7.12)

where K and E are the complete elliptic integrals of the first and second kind. We then

adjust θ such that (7.12) is positive real. This can be done numerically, where we find

θ ≈ (0.637775)π . (7.13)

Hence the endpoints lie in the second and third quadrants.

It then follows from (7.11) that

∆φ2 =
4 ǫ

9 tan2 θ − 3
, (7.14)

which then can be used in (7.9) to give

δ =
8ǫ3/2

(9 tan2 θ − 3)3/2
(9 tan2 θ + 1) ≈ (1.40907) ǫ3/2 . (7.15)

Substituting this into (7.3), the free-energy above the transition is given by

F = N2
(

regular terms− (0.035223)L−5/3 ǫ5/2 + . . .
)

. (7.16)

Curiously, the coefficient of the ǫ5/2 term in (7.16) is within 10% of the coefficient of the

(−ǫ)5/2 term in (7.7).

Because of the sign in front of the singular term, the free-energy in (7.16) is lower

than the real part of the free-energy of the one-cut solution. This latter case is found

by analytically continuing ǫ in (7.7) to the positive real axis. Hence the singular term is

imaginary. The regular terms are the same in (7.7) and (7.16), showing that the two-cut

solution is energetically favorable.

Turning now to the phase transition at strong coupling, we have that the density

and endpoints of the integration are given by (4.3) and (4.5) respectively. If we are in
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the YM phase with κ > κcrit, where κcrit is defined in (4.6), then the free-energy is well

approximated by

F ≈N2

(

π

λ̃

∫ φ+

φ−

dφ

(

1

3
φ3+κφ2− 2

3
κ3
)

ρ(φ)− (9+4m2)π

8

∫ φ+

φ−

dφdφ′|φ−φ′|ρ(φ)ρ(φ′)
)

.

(7.17)

Using the density and endpoints in (4.3) and (4.5), we find

F ≈ N2 8π

15(9 + 4m2) λ̃2





(

κ2 − (9 + 4m2)λ̃

4

)5/2

−
(

κ2 +
(9 + 4m2)λ̃

4

)5/2




= N2

(

regular terms +
8π

15(9 + 4m2) λ̃2
(−ǫ)5/2

)

, (7.18)

where

ǫ = κ2crit − κ2 , (7.19)

and where κ2crit = (9+ 4m2)λ̃/4. Hence, the third-order phase transition persists at strong

coupling.

On the CS side of the transition, the φ− integration boundary in (7.17) should be

replaced by 0. In this case the free-energy is only made up of regular terms.

7.2 SU(N)

The SU(N) theory has a Lagrange multiplier that could potentially change the nature of

the phase transition. Here we show that although the details differ from the U(N) case,

the phase transition stays third order.

For weak coupling, we can carry out a similar analysis as for (7.7) in the U(N) case,

but also including the Lagrange multiplier µ. We will only consider the system in the

YM phase, in which case we can invoke the single-cut density in (3.9). Substituting this

into (7.2), we can write F as

F = N2

(

−1

2
log

L

b
+

L

12b3
+

L2

96b6
− κ3

3L
+

12b2κ− 3bκ2

24b3
+

3

8

)

(7.20)

where b satisfies (3.12). The critical value for κ is given in (3.15), which in terms of L is

κcrit =
3
2L

1/3. Using a slightly different parameterization than we did for the U(N) case,

we set κ = κcrit − ǫ′. After substituting this into (3.12), we can write the series expansion

for b near the critical point as

b = L1/3 +

√

2

3
L1/6(−ǫ′)1/2 + 4

9
(−ǫ′) + 5

√
2

27
√
3
L−1/6(−ǫ′)3/2

+
4

243
L−1/3(−ǫ′)2 − 7

243
√
6
L−1/2(−ǫ′)5/2 + . . . . (7.21)

Putting this expression for b into (7.20) we find

F = N2

(

regular terms +
4
√
2

15
√
3
L−5/6(−ǫ′)5/2

)

, (7.22)

hence, the phase-transition is third order in the weak-coupling limit.
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We can analyze the behavior at strong coupling by including the Lagrange multiplier

µ in the eigenvalue density that appears in (7.17). This modifies the the first line of (7.18)

to to

F ≈ N2 4π

3(9 + 4m2) λ̃2

(

2

5

[

(

κ2 + µ− (9 + 4m2)λ̃

4

)5/2

−
(

κ2 + µ+
(9 + 4m2)λ̃

4

)5/2
]

−µ
[

(

κ2 + µ− (9 + 4m2)λ̃

4

)3/2

−
(

κ2 + µ+
(9 + 4m2)λ̃

4

)3/2
])

(7.23)

Again writing κ = κcrit − ǫ′, where κcrit is given in (4.12), and using (4.10) and (4.10) we

can expand µ near the critical point,

µ =
1

8
κ2crit −

1

2
κcrit(−ǫ′) +

√
2√
3
κ
1/2
crit(−ǫ′)3/2 −

7

12
(−ǫ′)2 + 7

18
√
6
κ
−1/2
crit (−ǫ′)5/2 + . . . (7.24)

Inserting this into (7.23) and expanding, we find

F ≈ N2

(

regular terms +
4π

5
√
6
κ
1/2
crit λ̃

−1(−ǫ′)5/2
)

, (7.25)

hence, the transition stays third order at strong coupling.

7.3 Wilson loops at the phase transition

Wilson loops are useful for investigating phase transitions in gauge theories. In this section

we explore how the phase transition affects the Wilson loop at strong coupling. As we

argued in section 5, the behavior of Wilson loops in the fundamental representation can

differ from those in the antifundamental representation.

For a U(N) gauge theory at strong coupling, the two types of Wilson loops are given by

〈W 〉± =

∫ φ+

φ−

dφ ρ(φ)e±2πφ , (7.26)

where ρ(φ) is given by (4.3) and φ± by (4.5). The integral is easily done, resulting in

〈W 〉± = ± 2

π(9 + 4m2)λ̃

((

φ+ + κ∓ 1

2π

)

e±2πφ+ −
(

φ− + κ∓ 1

2π

)

e±2πφ−

)

. (7.27)

If we are just below the transition, then to leading order this becomes

〈W 〉± ≈ ± 1

2πκ2crit

((√
2κcrit ∓

1

2π

)

e±2π(
√
2−1)κcrit −

(

(−ǫ)1/2 ∓ 1

2π

)

e±2π(−κcrit+(−ǫ)1/2)

)

(7.28)

where ǫ is defined in (7.19).

Taking the log, we get

log(〈W 〉+) ≈ 2π(
√
2− 1)κcrit −

(2π)2

3
√
2κcrit

e−2π
√
2κcrit(−ǫ)3/2 + regular terms (7.29)

Here we see that the singular term is exponentially suppressed at large coupling. If instead

we consider the other Wilson loop, we find

log(〈W 〉−) ≈ 2πκcrit +
(2π)3

3
(−ǫ)3/2 + regular terms . (7.30)

Hence this loop is much more sensitive to the transition.
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8 Discussion

In this paper we have studied the matrix model obtained from 5D supersymmetric SYM-

CS theory on S5. We solved the model in both the weak and strong coupling limits. We

found for an appropriate choice of contour that the free-energy of the U(N) pure CS theory

has the behavior

F ∼ −N2 log λ̃, λ̃≪ 1 (8.1)

−N2
√

λ̃, λ̃≫ 1 (8.2)

The U(N) CS theory is a superconformal fixed point and the N5/2 behavior at strong

coupling is similar to the fixed points in the USp(N) models studied in [18].

However, we have also argued that there exists a series of phase transitions for in-

creasing λ̃, making the existence of a supergravity dual, at the very least, problematic.

Accumulating phase transitions have also appeared in 4D N = 2∗ theories [37, 38], 3D

massive Chern-Simons theories [39, 40], and mass-deformed ABJM theories [41]. Unlike the

5D pure CS model, these theories are not superconformal, still, there might be interesting

connections between the different matrix models that one can explore.

We have also shown the existence of a third order phase transition between an SYM

phase and a CS phase when the SYM coupling reaches a critical value. The phase transition

exists for any positive λ̃, and for both U(N) and SU(N). At weak coupling the matrix model

and the phase transition are precisely what one finds for triangulations of surfaces in 2D

gravity. One important feature of the 2D gravity studies is the presence of a double scaling

limit [42–45], which should also exist for large λ̃ where the relation to random surfaces is less

obvious. It would be interesting to discover a more concrete connection between the double

scaling limit and the 5D SYM-CS theory or even six-dimensional superconformal theories.
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A Numerical analysis details

We use the heat-like equation (2.5) to obtain numerical solutions of the exact equations

of motion (2.4). But the weak coupling limit in (3.1) possesses a Z3-symmetry in the

complex φ plane, while the heat equation breaks the symmetry. This complicates numerical

simulations when there are multiple solutions. In this appendix we briefly describe how we

modify (2.5) in order to obtain the different type of solutions.

A.1 Single-cut solution

There are three different linearly independent single-cut solutions of the form (3.4) which

are related by 2π/3 rotations in the complex φ-plane. These solutions are shown with

different colors in figure 1b.
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Figure 6. Deformation of integration contour in (3.23).

To obtain the different solutions we need to tune τ1 so that the heat equation naturally

drives the eigenvalues to a particular solution. For example, the heat equation will evolve

toward the symmetric one-cut solution if we choose τ to be positive real. After obtaining

one solution we can get the others using τ2 = ωτ1 and τ3 = ω2τ1, where ω = e2πi/3.

A.2 Z3 solution

In order to obtain the Z3 solution (3.20) we divide the eigenvalues into three equal groups,

and use a different τ in the heat equation (2.5) for each group of eigenvalues. Then our

equations look like

τi
dφi
dt

= −∂F
∂φi

. (A.1)

with

τi = τ, −N
2

≤ i ≤ −N + 4

6
;

= ωτ, −N − 2

6
≤ i ≤ N − 2

6
;

= ω2τ,
N + 4

6
≤ i ≤ N

2
; (A.2)

This trick preserves the Z3-symmetry of the algebraic equation − ∂F
∂φi

= 0 inside the heat

equation (2.5). If we had taken the same value of τ for all eigenvalues, the Z3 symmetry

would have been broken and the system would evolve to one of the single-cut solutions,

even if the starting configuration was very close to the Z3 solution.

B Weak coupling free energy

In this appendix we describe the evaluation of the integrals in (3.23) for the free-energy of

the U(N) pure CS model at weak coupling.

The integration contour C and its deformation are shown in figure 6. Using the density

in (3.5) with κ = µ = 0, the first integral in (3.23) can be deformed out to infinity and
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expressed as

kNπ

3

∫

C
φ3ρ(φ)dφ =

N2π2

6λ̃2

(

i

2π

)∮

∞
φ3

√

φ4 − 4λ̃

π
φ+B

=
N2π2

6λ̃2

(

i

2π

)∮

∞
φ5

(

1− 2λ̃

π
φ−3 +

B

2
φ−4 − 2λ̃2

π2
φ−6 + . . .

)

=
N2

3
, (B.1)

which is independent of B.

In the second term we can deform one of integration contours as shown on figure 6, so

that we get

−N
2

2

∫

C
dφdφ′ρ(φ)ρ(φ′) log(φ− φ′)2

= −2πiN2

2

∫ b1

−∞
ρ(φ)dφ

∫

C1
ρ(φ′)dφ′ − 2πiN2

2

∫ b2

−∞
ρ(φ)dφ

∫

C2
ρ(φ′)dφ′

−N
2

4

∮

∞
ρ(φ) log φ2 +

N2

2

∮

∞
φ−3ρ(φ)dφ

1

3

∫

C
φ′3ρ(φ′)dφ′ , (B.2)

where C1 and C2 refer to the two contours of eigenvalues and b1 and b2 are branch points

on those contours. The first integral on the second line is assumed to start and stop at

−∞. For any value of B we have that

−N
2

4

∮

∞
ρ(φ) log φ2 = N2 lim

φ→−∞

(

− π

6λ̃
|φ|3 − log |φ|

)

N2

2

∮

∞
φ−3ρ(φ)dφ

1

3

∫

C
φ′3ρ(φ′)dφ′ =

N2

2

i

2λ̃

∮

∞

φ2dφ

φ3
λ̃

3π
= −N

2

6
. (B.3)

For the other integrals we will consider special cases. Note that the φ′ integrals give the

filling fractions for the contours. For the Z3 solution which has B = 0, we can treat the

problem as having only one contour since the two contours actually touch at the origin.

We then find that

−2πiN2

2

∫ b1

−∞
ρ(φ)dφ = lim

φ→−∞
N2

(

π

6λ̃
|φ|3 + π

2λ̃

2

3

λ̃

π
(1 + log(4) + 3 log(φ))

+
2π

4λ̃

(

−2λ̃

3π

)

log

(

4λ̃

π

))

= lim
φ→−∞

N2

(

π

6λ̃
|φ|3 + log |φ|+ 1

3
− 1

3
log

λ̃

π

)

(B.4)

For B = −3
(

π/λ̃
)4/3

there is a single cut with a branch point at φ =
(

−1 + i
√
2
)

(

λ̃/π
)1/3

.

In this case we find

− 2πiN2

2

∫ b1

−∞
ρ(φ)dφ = lim

φ→−∞
N2

(

π

6λ̃
|φ|3 + log |φ|+ 1

3
− 1

3
log

λ̃

π
+

1

2
log 2

)

. (B.5)
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Finally let us consider the cases with B± = −3
(

π/λ̃
)4/3

e±2πi/3, corresponding to

Z3-rotations of the previous solution. It is clear that under the change of variables φ′ =
e∓2πi/3φ that

− 2πiN2

2

∫ b±
1

−∞
ρ±(φ)dφ = lim

|φ|→∞
−2πiN2

2

∫ b1

−|φ|e∓2πi/3

ρ(φ′) dφ′ (B.6)

where ρ(φ) and b1 are the same as as in (B.5). Since the integral only depends on the

absolute value of φ and not its phase, the result is the same as in (B.5). Thus the free

energy is the same for all three single-cut solutions.

Combining (B.3) with (B.4) or (B.5) we find

− N2

2

∫

C
dφdφ′ρ(φ)ρ(φ′) log(φ− φ′)2

= N2

(

1

6
− 1

3
log

λ̃

π

)

, B = 0

= N2

(

1

6
− 1

3
log

λ̃

π
+

1

2
log 2

)

, B = −3

(

π

λ̃

)4/3

e2πin/3 . (B.7)

Therefore,

F = N2

(

1

2
− 1

3
log

λ̃

π
− C

)

B = 0

F = N2

(

1

2
− 1

3
log

λ̃

π
+

1

2
log 2− C

)

B = −3

(

π

λ̃

)4/3

e2πin/3 . (B.8)

C Exact solutions for m2 = −1/4

In this appendix we describe an exact single-cut solution to the full matrix model at the

special value m2 = −1/4. As we emphasized in the main text, while the eigenvalues

lying along the real axis are exponentially close to the exact solution for the strongly

coupled pure CS model, the profile for those along the imaginary axis is not as clear

because the approximations we assume in the solution break down near the imaginary

axis. Furthermore, the numerical results show that while the eigenvalues are close to the

imaginary axis, they appear scattered about it. Therefore, it is very useful to study any

available exact solution to get a better picture of these structures.

At m2 = −1/4 the determinant of the partition function drastically simplifies and the

pure CS eigenvalue equations reduce to

πN

λ̃
φ2i = 2π

∑

j 6=i

coth(π(φi − φj)) . (C.1)

Defining the new variables ui = e2πφi , we can put (C.1) into the standard form

N

2
V ′(ui) =

∑

j 6=i

1

ui − uj
, (C.2)

– 27 –



J
H
E
P
1
2
(
2
0
1
4
)
0
4
9

where

V (u) =
1

24π2λ̃
(log u)3 + log u . (C.3)

In the large N limit, a single cut solution will then have the eigenvalue density

ρ(u) = − 1

π2

√

(a− u)(u− b)

∫ a

b
− du′

(u− u′)
√

(a− u′)(u′ − b)

1

2
V ′(u′) (C.4)

where the end-points a and b are to be determined. The resolvent is then defined as

w(u) =

∫ a

b

ρ(u′)du′

u− u′
→ 1

u
as u→ ∞ . (C.5)

Consistency with the equations of motion and the large u behavior of the resolvent then

leads to the following constraint equations

∫ a

b

du
√

(a− u)(u− b)

1

2
V ′(u) = 0

1

π

∫ a

b

du
√

(a− u)(u− b)

1

2
V ′(u)u = 1 , (C.6)

giving us two complex equations for a and b, and in principle making them determinable.

If we define U(u) = V (u)− log u, then the equations take the more symmetric form

√
ab

π

∫ a

b

du
√

(a− u)(u− b)
U ′(u) = −1

1

π

∫ a

b

du
√

(a− u)(u− b)
U ′(u)u = +1 , (C.7)

The integrals can be done by first assuming that a > b > 0 and then analytically

continuing into the complex plane. In the first integral, by deforming the contour as

demonstrated in figure 7, we can show that

∫ a

b

(log u)2du

u
√

(a− u)(u− b)
=

1√
ab



π(log(−u))2
∣

∣

∣

∣

∣

u→0−

− π3

3



− 2π

∫ 0−

−∞

log(−u)du
u
√

(a− u)(b− u)
.

(C.8)

Integrating by parts, the integral on the r.h.s. becomes

4π√
ab

log(−u) arctanh
(
√

b

a

√

a− u

b− u

)∣

∣

∣

∣

∣

0−

−∞
− 4π√

ab

∫ 0−

−∞

du

u
arctanh

(
√

b

a

√

a− u

b− u

)

. (C.9)

Letting d =
√

a
b and defining y =

√

a−u
b−u , the last integral can be written as

− 4π√
ab

∫ 0−

−∞

du

u
arctanh

(
√

b

a

√

a− u

b− u

)

=
2π√
ab

(d2 − 1)

∫ d

1

2ydy

(d2 − y2)(y2 − 1)
log

d+ y

d− y
.

(C.10)
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Figure 7. Deformation of the integration contour in (C.7).

This integral is solvable, where we find

2π√
ab

(d2 − 1)

∫ d

1

2y dy

(d2 − y2)(y2 − 1)
log

d+ y

d− y
=

2π√
ab

(

π2

6
+

1

2
(log(2d))2 − (log(d− 1))2 + (log(d+ 1))2 − log

d+ 1

d− 1
log(2d)

+Li2

(

− 2

d− 1

)

− Li2

(

d− 1

2d

)

+ Li2

(

d− 1

d+ 1

)

+ Li2

(

d+ 1

2d

)

+
1

2
(log(d− y))2 − log(2d) log(d− y)

∣

∣

∣

∣

∣

y→d

− log
d+ 1

d− 1
log(y − 1)

∣

∣

∣

∣

∣

y→1

)

. (C.11)

Combining all terms, the divergences cancel and using several dilogarithm identities, we

find

√
ab

π

∫ a

b

du
√

(a−u)(u−b)
U ′(u) =

1

4π2λ̃

[

1

2

(

log(b) + 2 log
2d

d+1

)2

+ Li2

(

(

d−1

d+1

)2
)]

.

(C.12)

Using similar techniques, one can also show that

1

π

∫ a

b

du
√

(a−u)(u−b)
U ′(u)u =

1

4π2λ̃

[

1

2

(

log(a)− 2 log
2d

d+1

)2

+ Li2

(

(

d−1

d+1

)2
)]

.

(C.13)

Hence, the conditions in (C.7) can be reexpressed as

1

2

(

log(b) + 2 log
2d

d+ 1

)2

+ Li2

(

(

d− 1

d+ 1

)2
)

= −4π2λ̃

1

2

(

log(a)− 2 log
2d

d+ 1

)2

+ Li2

(

(

d− 1

d+ 1

)2
)

= +4π2λ̃ . (C.14)
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These equations can be rewritten in terms of the φ variables as
(

4π2λ̃

Z

)2

+ Z2 + 2Li2
(

1− e−Z))
)

= 0

φmax + φmin =
4πλ̃

Z
(C.15)

where a = e2πφmax , b = e2πφmin , and Z = 2 log(cosh π
2 (φmax − φmin))

We can also derive an expression for the eigenvalue density ρ(u). Using the identity

1

u− u′
=
u′

u

(

1

u− u′
+

1

u′

)

(C.16)

and the first equation in (C.6), (C.4) can be rewritten as

ρ(u) = − 1

π2

√

(a− u)(u− b)

u

∫ a

b
− du′

(u− u′)
√

(a− u′)(u′ − b)

1

2
V ′(u′)u′ . (C.17)

The constant piece in V ′(u′)u′ does not contribute to the integral. Deforming the contour

to encircle the log branch cut, we then have

ρ(u) =
1

8π3λ̃

√

(a− u)(u− b)

u

∫ 0

−∞

log(−u′)du′
(u− u′)

√

(a− u′)(b− u′)
. (C.18)

Integrating by parts as in (C.9) and using the same substitutions of variables as in (C.9)–

(C.12), we find

ρ(u) =
i

16π3λ̃

1

u

[

4Li2

(

−1− y

1 + y

)

+ 4Li2

(

−1 + y

d− y

)

− 4Li2

(

−1− y

d+ y

)

− 4Li2

(

−d+ y

d− y

)

+2 log b

(

log
d+ y

d− y
− log

1 + y

1− y

)

+

(

log
d+ y

d− y
− log

1 + y

1− y

)2

−2

(

log
d− y

1− y

)2

+ 2

(

log
d− y

1 + y

)2

− 2

(

log
d+ y

d− y

)2
]

. (C.19)

The endpoints are at y = 0,∞, with the distribution crossing over branch cuts from the

logs and dilogarithms.

We first check these results for λ̃ ≪ 1. In this limit the end points in (C.4) approach

a = b = 1. Expanding about d = 1 we find

ρ(φ) = 2πuρ(u) ≈ i

8π2λ̃

y(d− 1)

y2 − 1

(

2 log b+ (d− 1)− 2
d− 1

y2 − 1

)

≈ 1

2λ̃

(

φ+
1

2
(φmax + φmin)

)

√

(φmax − φ)(φ− φmin) , (C.20)

which agrees with the density extracted from (3.4).

Let us now analyze our results in the limit of large λ̃. In this limit we assume that

|d| ≫ 1, justifying this afterwards. In this case the equations in (C.14) reduce to

log(b) ≈ 2πi

√

2(λ̃+ 1/24)− 2 log 2 log(a) ≈ 2π

√

2(λ̃− 1/24) + 2 log 2 . (C.21)
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In terms of the φ variable this translates to

φmin ≈ i

√

2(λ̃+ 1/24)− 1

π
log 2 φmax ≈

√

2(λ̃− 1/24) +
1

π
log 2 . (C.22)

Note that this is consistent to leading order in λ̃ with the endpoints in (4.5). We can also

see that with these solutions

|d| =
∣

∣

∣

∣

√

a

b

∣

∣

∣

∣

≈ 4 exp

(

π

√

2(λ̃− 1/24)

)

, (C.23)

showing that our approximations are accurate up to exponentially small corrections.

For large λ̃ we expect half the eigenvalues to extend along the positive real direction.

In this region of the complex φ plane we have |d| ≫ |y| ≫ 1, except very close to the

endpoint where y → 0. Away from this endpoint the density in (C.19) is approximately

ρ(φ)=2πuρ(u)≈ i

8π2λ̃

(

4

(

π2

6
+0−0−

(

−π
2

12

))

+(−πi)2−2πi log b−2 log

(

−d
2

y2

)

πi

)

≈ 1

2λ̃
φ , (C.24)

which agrees with (4.3).

The analysis along the imaginary axis is trickier. In this case we have that |y|, |d| ≫ 1,

but which of these is bigger depends on the position along the distribution. It is convenient

to define z = d/y =
√

1−u/b
1−u/a . The density can then be well-approximated by

ρ(φ) ≈ i

8π2λ̃

(

(

2 log b+ log(4(1− z2))
)

log
1 + z

1− z

+2Li2

(

1 + z

2

)

− 2Li2

(

1− z

2

)

)

, (C.25)

up to exponentially small corrections. It is obvious that this is an odd function of z.

Furthermore, this can be integrated to give the relatively simple form

n(w) =

∫ φ

φmin

ρ(φ)dφ

=
i

16π3λ̃

(

1

3
(log(1− w)− logw)[π2 − (logw)2 − 4 logw log(1− w)− (log(1− w))2]

+4Li3(w)− 4Li3(1− w)

+ log(4b)
(

(logw)2 − (log(1− w))2 + 2Li2(w)− 2Li2(1− w)
)

)

, (C.26)

where w = 1+z
2 . n(w) has cuts extending from 1 to +∞ and from 0 to −∞, and the allowed

w on the eigenvalue path are chosen so that n(w) is positive real. The eigenvalue path

follows a contour that alternates crossing the negative branch cut from the bottom and the

– 31 –



J
H
E
P
1
2
(
2
0
1
4
)
0
4
9

(a) (b) (c) (d)

Figure 8. Path of the cut in w-plane.

positive branch cut from the top (see for example figure 8b). If we follow a path such that

we cross each cut m times and return to the same value of w, then n(w) shifts by

n(w) → n(w)− 1

λ̃

(

m2 +
mi

2π
log(4b(w − w2))

)

, (C.27)

where w is evaluated on the principle sheet. In terms of φ we can rewrite the shift as

n(w) → n(w) +
m

λ̃
(m− i φ) , (C.28)

where under the transformation φ→ φ− 2im.

We can now argue using (C.27) that a single contour is not a viable solution for

large λ̃. If we are in the principle branch near the beginning of the contour then n(w) is

approximately

n(w) = −4 i log(4b)

3λ̃π3
(w − 1/2)3 +O((w − 1/2)5) . (C.29)

The three possible choices of contours originating out of the point w = 1/2 are shown in

figure 8a. Along these contours n(w) is positive and increasing. One of the contours heads

directly to the branch point at w = 1, which corresponds to the undesired behavior of

Re(φ) going to negative infinity.

Instead we should choose the contour that leads to the path shown in figure 8b as we

move away from w = 1/2. In this case the contour will cross both branch cuts and start

heading toward the w = 1/2 point, but now in the m = 1 branch. Near this point we

should still insist that n(w) is positive and increasing. Using the expansion in (C.29) and

the shift in (C.27) we find that

n(w) ≈ −4 i log(4b)

3λ̃π3
(w − 1/2)3 − i

2πλ̃
log(b)− 1

λ̃
+

2i

πλ̃
(w − 1/2)2

≈ 8
√
2

3
√

λ̃π2
(w − 1/2)3 +

√
2

√

λ̃
+
i log(2)

πλ̃
− 1

λ̃
+

2i

πλ̃
(w − 1/2)2 , (C.30)

with w chosen so that the imaginary part in (C.30) is zero. Figure 8c shows the contours

near w = 1/2 that satisfy this condition. As can be seen, the contour that heads toward
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(a) λ̃ = 0.8.
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0.4

0.6

0.8

1.0
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ImHΦL
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ÈDΦÈ
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0.008

ΡHΦL

(b) λ̃ = 0.976.

Figure 9. Cut behavior for different λ̃.

w = 1/2 on figure 8c, makes a sharp turn near w = 1/2 and heads toward the w = 1 branch

point, signifying the breakdown of the single cut solution.

This last analysis assumes that λ̃ is real. If instead we allow for a small imaginary

part, then we can change the behavior in figure 8c. For example, let λ̃ = ρeiθ where θ is

assumed to be a small angle. Then for the mth branch (C.30) becomes

n(w) ≈ 8
√
2

3
√
ρπ2

(w− 1/2)3 +
m

ρ
(
√

2ρ−m)− i
m

2ρ
θ(
√

2ρ− 2m) +
i log(2)

πρ
+

2im

πρ
(w− 1/2)2 .

(C.31)

If we then have θ > 2 log(2)
π(

√
2ρ−2m)

then the contour will behave like figure 8d, at least for

small enough m, allowing the contour to continue onto the next branch. However, as m

approaches
√

ρ/2 then the approximation starts breaking down.

Our interpretation of these results is that for large real λ̃ the contour likely splits into or-

der
√

2λ̃/2 separate contours, with each contour roughly between the w = 1/2 points of suc-

cessive branches. This should at least be true for relatively small values ofm. Since the den-

sities are higher for the small values of m, these branches will dominate over the larger val-

ues. If we then give a small imaginary part to λ̃, then we expect the contours in the smaller

m regions to join together. The number of joined contours will increase as we increase θ.

This also suggests that for real λ̃ there will be a succession of phase transitions as λ̃ is

increased, with a transition every time
√

2λ̃ increases by 2. Numerically we have found that

starting at weak coupling, the single contour degenerates at λ̃ = λ̃c ≈ .976. The behavior

of the cut is shown in figure 9. As we see from figure 9b, as λ̃→ λ̃c the density ρ(φ) goes to

zero in the middle of the cut, but still close to the real line. The cut then breaks in two above

λ̃c. As we increase λ̃ above λ̃c we expect the contour to split every time
√

2λ̃ increases by 2
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We can also investigate the single-cut solution where the end points are symmetric

about the real axis. To this end we let a = q eiθ, b = q e−iθ, and so d = eiθ. Subtracting

the first equation in (C.14) from the second we arrive at the relation

log q log

(

cos
θ

2

)

= 2π2λ̃ . (C.32)

This shows that q < 1, thus in the φ plane the real part of the end-points is less than zero.

We also see that the r.h.s. of (C.32) is positive real and so θ < π, hence the end-points

are in the strip −π < Im(φ) < π. Using (C.32) and (C.14) we can express the coupling

entirely in terms of θ,

λ̃ = − 1

π2
log

(

cos
θ

2

)

[

−
(

log

(

cos
θ

2

))2

− 1

2
Li2

(

− tan2
θ

2

)

]1/2

, (C.33)

and thus q in terms of θ,

log q = −2

[

−
(

log

(

cos
θ

2

))2

− 1

2
Li2

(

− tan2
θ

2

)

]1/2

. (C.34)

In the large λ̃ limit one finds that θ → π and log q → − π√
3
up to exponentially small

corrections. Therefore a→ b and the endpoints of the cut approach φ = − 1
2
√
3
± i

2 .

To compute ρ(u) we move slightly away from the limiting values and set θ = π − ǫ in

order to avoid potential divergences. The equations (C.33) and (C.34) then become

λ̃ ≈ − 1

2
√
3π

log
ǫ

2
, log q ≈ − π√

3
−

√
3

2π
ǫ2 log ǫ . (C.35)

We can use the first equation to rewrite the second as

log q ≈ − π√
3
+ 3 λ̃ ǫ2 . (C.36)

The endpoints of the cut then take the form

φmax = − 1

2
√
3
+
i

2
− iǫ

2π
, φmin = − 1

2
√
3
− i

2
+
iǫ

2π
. (C.37)

Substituting these values into (C.19) we obtain

ρ(u) = − 1

2πu

(

i+
2
√
3ǫ

π

)

, (C.38)

or in terms of φ,

ρ(φ) = 2πuρ(u) = −i− 2
√
3 ǫ

π
. (C.39)

We determine the eigenvalue cut between the endpoints by setting

n(φ) ≡
φ
∫

φmin

ρ(φ) dφ = −i
(

φ+
1

2
√
3
+
i

2

)
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Figure 10. Numerical solution symmetric with respect to the real axis for λ̃ = 50.

to be positive real. Clearly this is true if we choose the cut to be parallel to the imaginary

axis such that Re(φ) = − 1
2
√
3
. In figure 10 we show the numerical solution for λ̃ = 50,

which confirms this behavior. Since this cut is of finite extent in the infinite λ̃ limit, the

free-energy can only scale as N2 and not N5/2.

It is interesting to determine the behavior of the Wilson loop for this solution since

it connects to the weakly coupled real single-cut solution in (5.10). Using the eigenvalue

density in (C.39) and the endpoint positions in (C.37), we find that (5.2) gives for the log

of the fundamental Wilson loop,

log〈W 〉+str.symm. = −2
√
3πλ̃ (C.40)

This result parallels the decreasing behavior in (5.10). For other values of m2, including

m2 = 0, we can show numerically that their Wilson loops are also decreasing with λ̃.
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