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1 Introduction

Conformal anomalies provide an important tool for analyzing CF'Ts in various dimensions.
In particular, they were instrumental in the early tests of the AdS/CFT correspondence,
where the large- N central charges of N' = 4 SYM were successfully reproduced by a gravity
computation in [1]. Subsequently, the match was extended to finite N in this theory and
others by taking into account higher order effects in the bulk; theories with 1/N effects
were discussed in [2], and theories with 1/N? corrections were explored in [3-8]. The
higher-derivative corrections for related quiver theories were studied in [9-12]. In some
cases, exact knowledge of the field theory central charges was used to infer the precise form
of higher-derivative supergravity corrections, as in [13].

In this paper, we are concerned with N' = (0,2) and N/ = 1 superconformal field
theories in two and four dimensions, respectively. In such theories, the stress-energy tensor
is part of a supermultiplet that includes the U(1)z R-symmetry current. As a consequence,
the central charges can be derived exactly from the knowledge of the U(1)g 't Hooft
anomalies. Since there might be many global U(1) symmetries, the determination of the
central charges is tantamount to identifying the correct U(1)z symmetry among the many
possibilities. In [14] it was proven that the exact R-symmetry of N/ = 1 theories in four
dimensions is the one that maximizes the central charge a. More recently, a similar result
was proven for two-dimensional ' = (0, 2) theories [15], where it was shown that the exact
R-symmetry extremizes the right-moving central charge cr. The supergravity duals of
these procedures were described first in [16] and subsequently [17, 18] for a-maximization
and in [19] for c-extremization at the two-derivative level.

Theories with these amounts of supersymmetry appear in numerous string theory
constructions, where they describe the low-energy worldvolume physics of various brane
configurations. Of particular interest to us will be setups consisting of N parallel Mb5-
branes, whose worldvolume is described by a six-dimensional N' = (2,0) supersymmetric
theory. Very little is known about this theory, but one fruitful approach has been to wrap
the branes around one or two Riemann surfaces and study the resulting low-energy effective
theories [20-34]. This procedure can give rise to interesting four-dimensional N' = 1 as well
as two-dimensional N = (0, 2) superconformal field theories. The exact central charges of
these theories were computed by a-maximization [35-37] and c-extremization [15, 38].

The near-horizon limit of the backreacted geometries that arise from these M5-brane se-
tups interesting dual AdSs [39] and AdS3 [40] solutions in supergravity. The central charges
can then be computed at leading order in N using standard holographic techniques, and
they agree with the exact CFT results. Typically, these leading order contributions scale
as N3. In this paper we wish to reproduce the first subleading (order 1/N?) corrections
to these central charges by considering various higher-derivative corrections to the super-
gravity theory and computing the corrections to the AdS; and AdSs geometries describing
the near-horizon limit of these brane setups. The case of Mb5-branes wrapped around spe-
cial 4-cycles of compact Calabi-Yau manifolds, which in the near-horizon limit give rise to
AdS3 x S? solutions of ungauged 5d A" = 1 supergravity [41], have been analyzed from



the point of view of higher derivative supergravity in [42]. In our setups we will have to
deal with two additional complications: the presence of gauged isometries and non-trivial
hypermultiplets.

Since the eight-derivative corrections to 11d supergravity are not known in closed form,
we will use a rather indirect strategy. We will focus on N' = 1 five-dimensional supergravity,
which is a consistent truncation of the eleven-dimensional theory that contains all the
solutions of interest. The advantage of the five-dimensional formulation is the availability
of powerful off-shell techniques which have made it possible to compute the supersymmetric
completion of the Weyl? [17] as well as the R? [43] terms.

Our strategy will be as follows: first we consider the well-known CP-odd eight-
derivative correction of 11d supergravity Cs A Xg to derive the subleading corrections to
the five-dimensional Chern-Simons terms. We then embed both the leading and subleading
Chern-Simons terms in a fully supersymmetric five-dimensional Lagrangian. Finally, using
off-shell techniques, we compute the corrections to the AdS; and AdS3 x ¥, geometries
and reproduce the central charges of the dual theories.

A tantalizing outcome of our analysis is that on top of the “explicit” higher-derivative
corrections to the action, it is necessary to introduce 1/N corrections to the Killing vectors
that gauge the global symmetries of the hypermultiplet sector. This can be seen as the
gauged counterpart of 1/N corrections to the universal hypermultiplet geometry studied
in [44-48] for compactifications of M-theory on Calabi-Yau manifolds.

The paper is organized as follows. In section 2 we review the main field theory results
that we wish to reproduce from the supergravity side. In particular, we will briefly review
the techniques of a-maximization and c-extremization and present the central charges for
the IR SCFTs describing M5 branes wrapped on one or two Riemann surfaces. In section 3
we present the supergravity conventions and techniques that will be used throughout the
paper. More importantly, we construct general AdSs; and AdSz x ¥, solutions in the
presence of higher-derivative corrections. In section 4 we specialize the considerations of
the previous section to the case of M5-branes wrapped on one or two Riemann surfaces.
This allows us to holographically reproduce the central charges of the dual SCFTs and
derive the specific subleading corrections to the Killing vectors. We conclude in section 5
with some open problems and possible directions for future work.

2 Field theory

In this section, we review the results from two- and four-dimensional field theory that we
will aim to reproduce from a supergravity perspective.

2.1 Four dimensions

The bosonic sector of the four-dimensional N/ = 1 superconformal algebra is SO(4,2) x
U(1)g. The latter factor is the four-dimensional R-symmetry, the knowledge of which has
many useful consequences. In particular, knowing the R-charges of a given theory allows
the computation of the central charges a and ¢, which are given by:

3 1

_ 3 _
= o5 BYR* —ToR] c= o

a [9TrR® — 5TrR] . (2.1)



One advantage of these formulae is that the traces can sometimes be computed even in
theories which have no known Lagrangian descriptions, such as theories that come from
compactifying M5-branes.

In many cases of practical interest, the R-symmetry is not immediately obvious. In
particular, for any candidate symmetry Ry, it is possible that a putative superconformal R-
symmetry could mix with non-R global symmetries F7, yielding a family of R-symmetries
Ri(s!) = Ry + Y., s'F;. To determine the values of s’ that correspond to the unique
superconformal R-symmetry, we must employ a-maximization [14], and find the (local)
maximum of R;(s?). Since this cubic function can have at most one local maximum, this
procedure uniquely determines the R-symmetry.

A useful alternate perspective on a-maximization can be found by using the anomaly
polynomial. Recall that a chiral fermion in a four-dimensional theory with charge ¢ under
a U(1) global symmetry F has a six-form anomaly polynomial given by:

Is = (F) ATy = Ler(FP — Loy (Fpu(T), (22)

6 24
where ¢ (F) is the first Chern class of F and p; (T') is the first Pontryagin class of the tangent
bundle of the four-dimensional spacetime. For theories that come from M5-branes wrapped
on a Riemann surface X, we have the advantage of knowing the 8-form anomaly polynomial
Ig of the (2,0)-theory, and can reproduce the four-dimensional anomaly polynomial by
integrating Is over ¥. In particular, the M5-brane anomaly polynomial is given by [49-51]:

— %g p2(N) — po(T) + E (p1(T) —pl(N))2 + rGhG(Qh4G+1)

Iy 1

p2(N),  (2.3)

where N and T are the normal and tangent bundles, p; is the i*" Pontryagin class, and r¢g
and hg are the rank and Coexter number, respectively, of the type of (2,0) theory being
considered. For example, for the Ax_1 theory, r¢ = N — 1 and hg = N. The dimension
of the group is given by dg = rg(hg + 1).

Consider wrapping an Mb-brane on a Riemann surface > whose normal bundle is
U(1)?2, with Chern numbers p and ¢. Supersymmetry requires that p + ¢ = 2g — 2, where
g is the genus of 3. It will be useful to parametrize the supersymmetric solutions via:

p=0+2)(@-1), q¢=>0-2)(g—1). (2.4)

Some linear combination of these two U(1)’s is the R-symmetry, which can then potentially
mix with a linear combination corresponding to a non-R symmetry. We can encode this
mixing into an ambiguity in the individual Chern roots, which is then reflected in the
coefficients of the 6-form anomaly polynomial we get when integrating Ig over ¥ [36]. By
identifying the coefficients of eq. (2.2) with Tr R} and Tr R;, we can then use a-maximization
to find the superconformal R-symmetry. A major advantage of this technique is that it
not only gives the exact (i.e., not only large N) answer, but can also be used despite the
absence of a four-dimensional Lagrangian.



The final result for the central charges is [36]:

3+ ko? — k(14 0)(9 + 210 + 902)22

=lg—1 2.
3+ ko? — k(14 0)(6 — k¢ + 170 + 902)22
=lg—1 2.6
where the two parameters ¢ and ( are defined as:
oc=ha(1+hg), (=+02+ (1+40+ 302)22, (2.7)

while x = 1 for S and x = —1 if the Riemann surface is hyperbolic (g > 1). The case of
T?, with g = 1 and x = 0, must be treated separately and leads to the central charges:
1 3/2
o = [Plred +30)"" (2.8)
48 V1+o
|z| ra(2 + 30)V1+ 30

c=13 Nirw: . (2.9)

Notice that for Ay_; these central charges grow as N? in the large N limit. Furthermore,

they contain an infinite number of 1/N corrections. The order N3 coefficient of these
central charges was successfully matched to a supergravity computation [36]. In this paper
we will extend this matching to the first subleading coefficient of order N. For this reason,
it is useful to write the explicit form of the leading and subleading terms of the above
expressions. For k = 1 we have:

Kk —9kz% + (3224- 1)3/2N3 (Z2 + 1) <ﬁ+ V322 + 1)

=|lg—1 - N +... 2.1
a=lg—1i 4822 1622 o]y (210)
-9 2 3 2 1 3/2
c=lg—1| K KZ —i—(z—i—) N3
4822
22 (2\/322 +1-— n) +3 (m + 322 + 1)
— N+ ... 2.11
192 + : (2.11)
while the kK = 0 case leads to:
\/§|Z| 3 \/§’Z’
= N?° — N+ ... 2.12
“T 16 6 T (2.12)
co V3l el (2.13)
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We will derive these results from a gravity computation in section 4.4.

2.2 Two dimensions

A two-dimensional analog of a-maximization was recently found by Benini and Bobev
in [15, 38]. In two-dimensional theories with (0,2) SUSY, there is a U(1) gz associated with



the right-movers. In general, the superconformal R-symmetry is related to the right-moving
central charge cg by cgr = 3k%F, where Ef*% is the leading coefficient in the two-point func-
tion of the right-moving R-current. If there are additional Abelian global symmetries in
the theory, then just as in four dimensions, the R-symmetry can appear to be ambigu-
ous. The main result of [15, 38] is that the superconformal R-symmetry is determined by

extremizing:
CRJ(t[) =3 <k‘RR + 2 Zt[kIR + Zt[tjk‘l‘]> . (2.14)
I 1J
where the k77 are the coefficients of the flavor current two-point functions (albeit, for left-

movers, with an additional minus sign). Since cg is quadratic, it has a unique extremizing
solution, which is a minimum for the directions corresponding to right-moving symmetries
and maximum for the directions along the left-moving symmetries. Thus this procedure is
simply called “c-extremization”.

Also, just as in four dimensions, we can consider the anomaly polynomial for a two-
dimensional fermion charged under Abelian symmetries F{. The anomaly four-form is
given by:

k
Ii=k"er (F') e (F7) = Sop(T) (2.15)
where k/Y = TtF'F7 and k = Try® = ng — nr, the difference in the number of right-
moving vs. left-moving Weyl fermions. Just as in four dimensions, if we wrap M5-branes on
a suitable four-dimensional space, we can integrate the 8-form over the compact space and
read the appropriate charges off of I;. These charges can then be used to do c-extremization.

The particular example we are going to study in the following is M5-branes wrapped
on the product of two Riemann surfaces. In this case, the c-extremization procedure leads
to the left and right central charges [15]:

mne 0%P + 30 (2725 — 6Kk1K22122 + K1K3) — IK1K22122

- , 2.16
ChR=TETY o(Kk1ke — 32122) — 32122 ( )
mna 0P + 20 (32123 — 8k1koz122 + KIK3) + 32122(2122 — 2K1K2)
cL =ra , (2.17)
4 U(/illig — 32122) — 32’12’2
where we have defined:
P = 32725 + K325 + K327 — Sk1koz122 + 3KIKS, (2.18)

o = hg(hg + 1) as before, and for each Riemann surface we define:

1> g = 17
N = 2.19
’ {2!91'—1!, gi # 1. (2.19)



As before, it is convenient to expand the expressions above for Ay_; to order N:

P

R1R9 — 3212’2

1 omn2
n 92328 +12K3 21 23 + 12k323 20+ ki ko (92323 — 227 K3 — 223 KT +3K1 Koz1 22— KIK3

N3

In

2 (/illig —3Z122)2
+.. ] (2.20)
mn2

CrR —C[, = IT(/ﬂ/iQ—i-ZlZQ)N—I-... . (2.21)

These results will be derived from a gravity computation in section 4.5.

3 N =1 SUGRA review & solutions

In this section, we will discuss A/ = 1 supergravity in five dimensions with supersymmetric
higher-derivative corrections, and construct supersymmetric AdSs and AdS3 x X, solutions
in this higher-derivative theory. The discussion of this supergravity theory takes place using
the superconformal tensor calculus, but we will omit the details of the derivations of the
actions and the gauge fixing that needs to happen to obtain Poincaré supergravity from
the superconformal supergravity. Some more details of this gauge fixing (and references)
are given in appendix B; however, since all that is needed to find the solutions we are
interested in are the gauge-fixed actions and supersymmetry variations, these details can
safely be skipped.

3.1 Off-shell multiplets & variations

For computations involving higher-derivative corrections to supergravity theories, it is very
useful to have an off-shell formulation of the supersymmetry multiplets, because the off-
shell supersymmetry transformations are exact and do not receive any corrections at higher-
derivative orders. In contrast, if the supersymmetry algebra only closes on-shell, then as
the equations of motion get modified by higher-derivative corrections, the supersymmetry
transformations must also get corrected in order to maintain closure of the algebra.

In five dimensional N' = 1 supergravity, there is an off-shell superconformal formula-
tion available for the Weyl multiplet containing the graviton as well as for vector multiplets.
Unfortunately, the theories we will obtain from the near-horizon limit of M5-branes wrap-
ping a Riemann surface also have a hypermultiplet sector, and for these we only have
an on-shell representation of the multiplet.! However, we will find that having off-shell
information even for only part of the theory will aid us in our analysis.

The off-shell standard‘Weyl multiplet contains the fiinfbein e}, the gravitini @Z)f“ and
bosonic auxiliary fields V,;?, Ty, D, and by, along with a fermion auxiliarino x'. Here, 1
and a, b are curved and flat five-dimensional indices respectively, while i and j are doublet
indices (i,j = 1,2) of SU(2). T, is an antisymmetric tensor, while V,/ is symmetric in
its upper indices. Our conventions for SU(2) and for spinors are detailed in appendix A.1.

!The off-shell formalism for hypermultiplets requires an infinite number of fields [52].



We will also have ny + 1 off-shell U(1) vector multiplets, each containing a gauge field Ai
(with field strength F’ lfl,), a real scalar p’, a gaugino \'?, and an auxiliary field Yé which
is also a doublet of SU(2).

Finally, we will have nj on-shell physical hypermultiplets with scalars ¢* and fermions
¢A. Here X runs from 1 to 4ny, while A runs from 1 to 2ny, so we have four real scalars and
two SU(2)-Majorana fermions in each hypermultiplet. The superconformal tensor calculus
will also require an extra, non-physical compensator hypermultiplet [53]. To get Poincaré
supergravity in the superconformal formalism, we need to gauge fix the superconformal
symmetries, which will entirely fix this compensator hypermultiplet (so that it disappears
from the action) as well as set the Weyl multiplet field b, = 0. We give more details on
the superconformal fields and actions including compensators in appendix B, here we will
always use the gauge-fixed variations and actions.

The ng+1 hypermultiplets (i.e., including the compensator) parametrize a hyperkahler
manifold, of which the physical hypermultiplets parametrize a quaternionic submanifold.?
Important data of this manifold is given by the vielbein f}f (¢) and associated quaternionic
metric hxy (q) (both quantities are of the physical quaternionic manifold, so X runs from 1
to 4nyr), and Killing vector parameters k’f{ (¢) which determine the charges of the physical
hyperscalars under the gauge group. These parameters also determine associated moment
maps P}j (q). More details on the hyperscalar quantities can be found in appendix D
(especially section D.4).

In summary, the bosonic fields that survive the superconformal gauge fixing are given
by: e Vu s Tup, D; AIIN o, Yé (I=1,--- ,ny+1);¢°~ (X=1,--- ,ny).

For bosonic solutions, all the gauge-fixed fermionic variations are:

. 1 1
51/}; = ( 4 Wy ’Yab) e -V jﬁ] +4iT <'7ab'7u - 3’7u7ab> €

1 g i -
+ 3 m Y€ - 6gple}”6j, (3.1)
- D 1 1 )
5X'L ZG _ GZ ab]_— 24 a ,yc aszJGJ 6,Yabchachd61
1
+ 219P yabTabP]e] + 87ab70V Tope' — fvaVbTabe (3.2)
. 1 4 y 1
SN = 17 “bFabe - 57“ wplet — Y“%j + 3P Ly et + 3p 'y“TZfe] + 69P pJP”ej,
1 1
0¢H = 5 (Oud™ + g Akt ) X' e — Sop" k7 [¥ ei, (3.3)
where we have defined:
VuTub = 0T — 20,1, T (3.4)
and:
ij _ ij k(iy,3)
Fi, =20,V —2vvI (3.5)
g 1 y
TV =V — §gA£P]” — w%@aqx, (3.6)

2We refer to appendix D for more details and references.



where wé? is the SU(2) part of the spin connection on the hyperscalar manifold (see
appendix B).
In the following, it will sometimes be useful to split objects with SU(2) indices into a

trace and a traceless part. We will denote the latter with a prime, so e.g.:
ij _ Lcij rij
vy = 553Va+V J. (3.7)

Note that SU(2) indices are raised and lowered with €;; and €7, not with di;, in equations
like (3.5). Our conventions for SU(2) indices are detailed in appendix A.1.

3.2 Two- and four-derivative actions

Here we will discuss the two- and four-derivative actions in the off-shell formalism. Once
again, we only report the gauge-fixed Lagrangians; for more information about the gauge
fixing, see appendix B.2.

3.2.1 Two derivative supergravity

The two-derivative supergravity action is constructed in the superconformal formalism by
first constructing the superconformal-invariant action and then gauge fixing to Poincaré
supergravity. More details on the superconformal action is given in appendix B; here we
will only state the gauge-fixed Poincaré supergravity Lagrangian. Note that the Weyl
multiplet field b, = 0 everywhere.

At two derivatives, the action is completely specified by a gauge coupling parameter g
and a cubic polynomial in the p!:

C=Crip'p’p", (3.8)

where Cf i are totally symmetric constants.

Let us also define:
Cr = 3Crxp’ p", Cry = 6Crixp™, (3.9)

and (C~1)!” is the matrix inverse to Cr; (which we assume exists).

In terms of these, the two-derivative bosonic Lagrangian is:

1 1 -
e 1Lp = G gFTRs 4 5Cr 70ap’0%p” — Cry YY"V 4 8(C - 1)D

208 . 16 1, 3 1 0 ivoos
<3€—3) TT o+ <4C+4> R —8CxFLET™ + G LT Oy AL FAF S
— hxy (9ag™ + gALKY) (0°¢" + gA™ kY ) + 29Y PP — g% 0! p” kiKY hxy
+ 59%0" " Py Pyij + 270, (3.10)



The full equations of motion can be found in appendix B.3. Here, we mention that the

equations of motion for the auxiliary fields Y;Z, Ty, 17 , and D respectively give:

ja
_INIJT
1
T = 178(311«15,, (3.12)
Vi = igAéP}j + w{0.q™ = T =0, (3.13)
C=1. (3.14)

Note that D is not determined by its own equation of motion, but can be determined
by the other equations of motion. Rather, its equation of motion (3.14) gives a constraint
on the scalars that can be seen to give the correct normalization factor 1 for the Einstein-
Hilbert term in the action. Using these equations of motion, we can write the full two-
derivative on-shell Lagrangian:

_ 1 1
e LR on—shen = R+ §C1J5aﬂlaap‘] + Z(CIJ —C1Cy)FIF,
1
+ ZeileﬂypUTC]]KAﬁFI;]AFplg — hXY (8aqX + gAikf) (aan + gAI“k:}/)
C1J g 1 g
+9°(CY)7 PiPY — g?p" o kT kY hxy + 592P1PJP}‘7P@,J, (3.15)

which has to be supplemented with the constraint C = 1, which should be solved before
taking variations of (3.15).

3.2.2 Four derivative corrections

We would now like to consider the higher-derivative corrections to this action. There are
three curvature-squared terms which could appear in principle, but we can remove one of
them by a field redefinition.> We can choose to remove the Ricci squared term, leaving a
Weyl squared term and a Ricci scalar squared term. The full supersymmetric action at four
derivatives will be given by the supersymmetric completions of these two four-derivative
curvature terms.? These two actions will introduce two new sets of parameters cr, by, which
should be seen as small parameters compared to the curvature of solutions in order for the
derivative expansion to be meaningful.

3In pure general relativity with no cosmological constant, we can remove two of the invariants by the
two-parameter field redefinition
9w = Guw + €0 (aRguw + BRw) - (3.16)

However, in the given theory, a general redefinition of this form would also change Newton’s constant by
something proportional to the effective cosmological constant, essentially the potential for the scalars. Since
we choose to leave the Newton’s constant fixed (though we will see in (4.50) that the effective G'n does get
shifted), we are left with only a one-parameter field redefinition.

“In principle, one could wonder whether there are any other four-derivative Lagrangians that contain,
say, higher derivatives in the hyperscalars only. However, since for all our solutions we are only interested
in hyperscalars that are constant and moreover covariantly constant, any such possible Lagrangians could
not contribute to our results.

,10,



The supersymmetric completion of the Weyl squared term was first calculated in [17]
and contains a mixed gauge-gravitational Chern-Simons term ~ A A R A R. The bosonic
part of the action is given by [17, 43]:

1 64 1024 32
Loe=/—ger {Spfcwcw + 50! D+ —=p'T*D = = DT, P! (3.17)

16 1 1 Iy
_?PICMVpUT;prU+20MV'DUT;WFF{U+EEMVpUAAﬁcypTécaAré_ EGMVpJAA;IL}—ypr/\ i
16 7 s 1 7 s 64 ; 128 ;
+§Yij}-g/TW —3F FinFiy + 37 Vi, T, VT — 3P TNV, TH
256 32 64
- p' RVPT,, T", + N p! RTM™T,, — gpl VT, VITY? +1024p" T T, T, Tpo
2816 64 . 256 ,
—7p THVTMVTPUTPO— — ET'UVTNVT'DUFpU — ?TMVTM pTI/UFpo.
g 128

5 PN, TN Ty, Fiy — 16772, TV, T, FLy — ?pl e””p“’\TWTPUVTTAT} :
where the Weyl tensor in five dimensions is:

1 1
Clwvpo = Ryuvpo— 3 (gupRua —GvpRuc—gusRup "‘QVURMJ) + 12 (gupgua _guagup) R. (3.18)

The supersymmetric completion of the Ricci scalar squared term was computed in [43]
using the superconformal formalism, but using a linear multiplet compensator. This linear
multiplet, together with the Weyl multiplet, can then be embedded in a composite vector
multiplet that is needed for the construction of the Ricci scalar squared action. Since we
use a hypermultiplet compensator instead of a linear one, we need to map our hyperscalar
compensator multiplet into a linear multiplet.> We can do this using the formulae in [54]
for embedding hyperscalar multiplets into linear multiplets. Finally, the bosonic parts of
the composite vector multiplet needed for the action is given by (after gauge fixing):

1

I
— —gol Py, 3.19
p="por' P (3.19)
g 1 ... 3 1 1 8
YV = 56” <—8R 3 (90" Pr)* — §T2 + gTZ +4D — Va/lekI?>
1 g g

+ =TV \2veV]Y, 3.20
NG (3.20)
Eab _ 2\/56[@ <Vb] 4 ;Tb]> ; (3.21)

where we have used the trace and traceless parts of Vaij , Tflj, P}j asin (3.7). In terms of this
composite vector multiplet and the other fields, the bosonic part of the supersymmetric

SNote that the Weyl squared Lagrangian is completely independent of which compensator is used, so
such a translation between compensator multiplets is never necessary there.
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Ricci scalar squared action is given by [43]:
I ij ijy 1 1 I 2 1 I Qv 1 pv ol
Lr2 =+/—gbr {p'Y;; Y7 +2pYVY; — 3PP R — 1P £, - §BE F,
1 26
50 0upd"p + o' pVp — 4" p? <D N 3T2) +4p"F, T

1
+8p'pF,, TH — geu,,p(,AA/” F””F"’\} . (3.22)

The total Lagrangian is then given by Lr + L2 + Lg2; the equations of motion for
the auxiliary fields D and (the trace part of) Yé following from this action give:

16 I 1 I J\2 1 J I
=1- —p D+ — F — —CyF” - F
C cr < 3 p 18[) (CJ ) 12CJ

— by (4pID - %QPJPJYI - ngI - 20192 (0" Ps)" + %pl (CJFJ)2> , (3.23)
V= () 9Py (€)Y esosgPi PN ey
3 1 1
+ (€™ by (90" Px) (—8R — ggQ (0" Pr)* + % (CLFH)? + 4D> : (3.24)

where we have used the leading order (two-derivative) equation of motion for 7" and V' to
simplify the higher-order piece. The auxiliary equation of motion for V and T are quite a
bit more complicated, so we omit them here.

3.3 Supersymmetric solutions

Now, we can discuss finding AdSs and AdSz x X, solutions in our N/ = 1 supergravity
theory with higher-derivative corrections. For our solutions, we will always take constant
hyperscalars (which implies constant k‘;{ . P/, and moreover we will demand that:

kXpl =0, (3.25)
kXAl = 0. (3.26)

These conditions will clearly set the hyperino variation (3.3) identically to zero. See
appendix A.2.2 for more discussion on the hyperino variation and the conditions (3.25)
and (3.26).

We will also take a diagonal SU(2) ansatz, which is an ansatz often used to find
solutions to this theory. This ansatz consists of taking all fields in the Weyl and vector
multiplets that have symmetric SU(2) indices to only consist of the trace part, i.e. V% =
PI/U = Y"1 = 0 in the notation of (3.7). See also appendix A.2.1 for more information.
Note that this is actually a restriction on the allowed possible Plij and thus a restriction
on the hypermultiplets.

— 12 —



When we take this ansatz, the supersymmetry variations can be seen to simplify to
(again, see appendix A.2.1 for more discussion on the simplification of the variations):

1 1
Othy = <a + Wu Yab — V +3 wY + i1 <vam - 3vwab> + ugpIPmu> €, (3.27)

1 i i 1, 1
Sy = (4 D - 6—47“”&1% + VY T — g7V Ty + (T2 = ™ Ty T
1 1
—(v-T)? Tgp'Pp — —~-T 2
+ (1) + 487 99" Pr— 27 Y) (3.28)
1 i 4
oA = <—47 P = S 9pt - *YI + 501 T+ 5 gp o’ Py — 201Y> €, (3.29)

where we have defined € = €' + i€ and similar for the other spinors involved. We do
not need to consider the hyperino variations anymore as we have set them to zero by
demanding (3.25) and (3.26).

3.3.1 Supersymmetric AdSs solutions

To find (maximally) supersymmetric AdSs solutions, we set all spin > 0 fields to zero
(i.e. Vo, = Typ = Fyp = 0, which also automatically implies T, = 0 since we have constant
hyperscalars) and set all scalars to be constants. We take the metric to be:

L2
ds® = = (—dt2 + dr? + dz? + dy? + sz) , (3.30)

which has Ricci scalar R = —20L 2.
The variations (3.28) and (3.29) respectively give:

D =0, (3.31)
1
Yl = gpl (ngPJ) . (3.32)

Additionally, the variation (3.27) must read:

1
0, = Dye+ —e¢

57 ¢ (3.33)

in order for there to be eight linearly independent solutions € to 41, = 0, and thus for the
solution to preserve maximum supersymmetry. This fixes the radius of AdS to be:

1
L= G (90" Py) . (3.34)

We can use the equations of motion (3.23) and (3.24) with our ansatz to get:

C=1+3bp'L72, (3.35)

L
Cr=nr = (gPI)E +9b; L2, (3.36)
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This can be solved exactly when the vector-scalar manifold M, is a homogeneous space

with metric g;; = C;C; — Cyy, since in this case the following tensor has constant entries:

= 1
GEAE ngILgJMgKNCLMN, (3.37)

and obeys the following identity:

= 1
CECmCnpyx = ?75{LCMNP) : (3.38)
Then the solution to (3.36) is:
AIJK
ol =3 CA TR (3.39)
\/CIE g
The radius L is given by:
1 1
Lt'=-P(1+-b 4
5 ( + 1 P) ; (3.40)
where we have defined:
~ 1/3
P= <g3CUKP[PJPK) , (3.41)
bp = 3g2€IJKb[PJPK. (3.42)

As an example we now present the STU-model more explicitly: we have three vector
multiplets and the symmetric tensor Cr g has C1a3 = 1/6 and permutations thereof, with
other components vanishing. In this case we have non-vanishing components C123 =1 /6
and permutations, and we can write the solution for the scalar fields explicitly as:

P 5
Pt = e <1 + ¢° <b2P1P3 + by P Py — 4b1P2P3>> , (similarly for p2,p3) . (3.43)
g

Finally, we note that (3.26) is automatically satisfied but (3.25) is not. We should
see (3.25) as determining the constant values for the hyperscalars as follows: Pr(q) is
a function of the hyperscalars, so p!(q) are as well (due to (3.43)). Then (3.25) gives
us the equation kf p'(q) = 0, which should be thought of as equations determining the
possible (constant) values for the hyperscalars ¢X. We will see an explicit example of this
below in section 4.4 once we specify the specific hyperscalar manifold and k‘;{ , Pr for our
Mb5-brane system.

3.3.2 Supersymmetric AdS3 X X, solutions

We can follow the same procedure to find (quarter-)supersymmetric AdSsz x 3, solutions
to our theory: first, we consider the off-shell supersymmetric variations on our ansatz;
then, we use a few of the simpler auxiliary field equations of motion to fully determine the
solution. This procedure is very similar to that used in [42, 55] to find AdS3 x S? solutions
in higher-derivative ungauged supergravity.
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Our metric ansatz is taken to be:

2fo
2 o e
ds® = 2

(—dt? + d2? + dr?) + 2902 (da? 4 dy?) (3.44)

with fo, go constants and h(x,y) the metric function of the Riemann surface of genus g
spanned by (z,y):

—log 71+x;+y2, for g =0,
h(z,y) = { 3 log2m, for g =1, (3.45)
—logy, for g > 1.
Note that these satisfy:
e (02 +0) h = —r, (3.46)

where k is 1, 0, or —1 for g =0, g = 1, or g > 1 respectively.
We will use the obvious choice for vielbeins:

N 1
el = Zefodat, (L=t,z1) (3.47)
r
el = e Thgh, (b =um,y). (3.48)

All scalars are taken to be constants. We take the components of the gauge fields F!
and the auxiliary field T" along Zg to be their only non-zero components. We note that for
such an ansatz, clearly FF A F' = 0. We can also see that the equation of motion for V at
higher-derivative order simplifies to:

T, =0, (3.49)

in other words, the higher-derivative terms do not contribute to this equation of motion.
We will use this to immediately set T, = 0 in the supersymmetry variations.

We also impose the projection conditions (effectively killing all but one-quarter of the
supersymmetries) on the Killing spinor:

VrE = €, (3.50)
#0€ = 1€, 3.51
Vg ( )

Further, we take the Killing spinor € to only depend on r.
The gravitino variation (3.27) along £, 2 sets Vz = V; = 0 and in addition gives us:

3 4 1
gws = 4Ty + 190" P =0. (3.52)
Similarly, the gravitino variation along i = 2,y gives V; = wfy and:
L7
8135 + Zg,o Pr=0. (3.53)

Finally, the 7 component of the variation gives Vi = 0 and:

4 1
Ore = <3Tx —139P PI> €. (3.54)
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The gaugino variation (3.29) gives us:

16 1
Yi=—Fl + ?’)IT@ + 6gpprPJ. (3.55)
Finally, the auxiliarino variation (3.28) gives us:
1 1
D = fga[@Vm + 6gp P]Tjg + aijg. (3.56)

These SUSY variations can be seen to completely determine the auxiliary fields as well as
provide a relationship between the AdSs radius parametrized by fy and the scalars p’:

gp' Pr = 4e=Fo, (3.57)
1
Tig = —ge*fO, (3.58)
vi=—Fj, (3.59)
S S ey
=—16¢ RT e 5 (3.60)
Fig = e k. (3.61)

Now, we turn to the equations of motion for the auxiliary fields V.Y, D. First of all,
the equation of motion for V' was discussed above in (3.49) and gives us:

1

562909Fi{gP1 = K. (3.62)
We see that F @{y should be constant, which we parametrize by:

Fly = —ale™™, (3.63)

so that the equation of motion for V' reduces to:

1
igaIPI = —kK. (3.64)

Next, we take the equations of motion for D (3.23) and Y/ (3.24). These simplify to:

1
C=1- %6_2909PJ <pla‘] — 2aIp‘]>

— by (Qale_2g°e_f° — ple™290p — 46_2f0p1> . (3.65)
2
ale 290 = (C_I)U gPy — 3 (C_I)U cyreToe290
—a(Cc ) byrefoe20, (3.66)

These equations, together with the constraint gp! Py = 4e~/0 found above, fully determine
the AdSs solution p’, fy, go. We can explicitly solve these equations in general. We first
define:

Crya’ =Cryp?, (3.67)
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i.e. Cryj = 6Cr a®™. We assume this matrix is invertible, with ¢!/ = (C~_1)U. We define
the shorthands:

2
Kri1= —gcy@ — 4brk,

7 (3.68)
L =g PPy, (3.69)
M, = gCYPiKy,, (3.70)
N = ¢3C1yxCHCMCEN Pp Py Py, (3.71)
Ny = 3¢2CryCCT™MCEN PPy Ky 1, (3.72)

where the sub/superscript 1 denotes that a quantity is at subleading order (so is propor-
tional to cr,br). Then the general solutions can be found for fy, go, p:

pl = gCl Pre?% 4+ ClV Ky e, (3.73)
1 1
e fo=2Le20 (14 -M, ), (3.74)
4 4
1 1 1 . 1 NiL 1L%C" Prb
690 — — (14=Lal [ =c;—b Cpy(Zer+br ) -4 = 27 (375
e N ( +5La (601 1>+g/<c s\ et )=ty I (3.75)

For the STU model, with Cj23 = 1/6 as the only components, at leading order (c; =
br = 0) these solutions simplify to [38]:

8ala2a3Tl
3fo -
(e )(o) B e’ (370
1.2 3\2
6 B (a a‘a )
(e 90)(0) = (3.77)
1)\2 2
(p1)3 — (a ) Ay (Similar for p2,p3) ) (3.78)

(0) aa? A2 Ag ’

The solutions are given in terms of the following combinations of a’, gPr:

II = A1A2A3, (379)
1/~ - =
0=2 <A1 v Ayt A3> , (3.80)
A = g (—alPl +a’Py + a3P3) =—k—ga'P, (similar for Ay, As), (3.81)
A = (%)2<(a2P2)2+(a3P3)2—a1P1 (a2Py+a>Py) —2a2Pga3P3> (similar forAg,Ag). (3.82)

We stress that we will not actually need the higher-derivative corrections to the AdSs
background (as opposed to the situation in AdSs; above) to calculate the central charges,
as we will see when we specify the M5 brane system.

We note that both (3.26) and (3.25) still need to be satisfied. As in the AdSs case, we
can view (3.25) as fixing the (constant) hyperscalars. The equation (3.26) represents a real
restriction on the possible gauge field strengths given by a’ that preserve supersymmetry.

,17,



These constants ! thus must satisfy:

1
590! Pr=—#, (3.83)

kXal = 0. (3.84)

These are two non-trivial relations the a! must satisfy. In the M5-brane solution below in

section 4.5, we will have three parameters (a',a?,a?); we can then view kf( a! =0 as fixing

a® in terms of a', a2, and view ga! Py /2 = —k as allowing us to parametrize a', a? in terms

of k and a free parameter 2.

4 Mb5-branes wrapped on Riemann surfaces

In this section we determine the specific form of the actions that describe Mb5-branes
wrapped on one or two Riemann surfaces. Our strategy will be as follows:

e we determine the geometry of the scalars in the vector and hyper multiplets. The

former was determined in [18], and we will argue that the latter is described by
SU(1,2)/U(2).

e Using the results of [49] we derive the form of (some of) the Chern-Simons terms
appearing in the 5d effective action at subleading order.

e We fix the form of the four-derivative terms by completing the Chern-Simons terms
to supersymmetric invariant structures.

This allows us to derive the main results of this paper, the subleading corrections to a and
¢ for M5-branes wrapped on one Riemann surface, and ¢y, and cg for M5-branes wrapped
on two Riemann surfaces. When compared to the field theory results derived using a-
maximization [35] and c-extremization [15] respectively, we find complete agreement.

4.1 The scalar geometry at two derivatives

We begin by briefly reviewing the reduction of 7d U(1)? gauged supergravity on a Riemann
surface Yo of genus go, as presented in [18]. This will immediately give us the scalar
geometry for the vector multiplet. As explained in [18], only two of the four hyperscalars
are kept in this truncation, so the geometry of the scalars in the hypermultiplet is not
immediately visible from the resulting 5d action. We will show that we can introduce
two additional hyperscalars that, together with the two retained in the compactification,
parametrize the quaternionic manifold SU(1,2)/U(2). Even though the final results will
not be affected by the precise quaternionic geometry in the hypermultiplet sector, this
allows us to make the discussion more concrete. Some details and references on the 7d
U(1)? gauged supergravity can be found in appendix C. For the purposes of defining some
useful symbols, however, we note here that the truncation we consider contains a gauge
coupling m, and its field content has two scalars A1, A2, two U(1) vector fields F L, F@,
and a three-form potential S.
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We take the metric, field strength, and 3-form to be:

ds? = e*%dsg +e*Bdst (4.1)
; 1 1

FO = §FI + Zin0122, (4.2)
S =c3+c1 Avoly,, (4.3)

where the 7d index i runs over i € {1,2}. The equation of motion for the 3-form S in 7d
leads to the constraint:

1 _
3 = ——e B3N L e +
m

1

V3m

which allows us to eliminate the 3-form in 7d. If we want to have diagonal kinetic terms

(mF' + pQFZ)] : (4.4)

for the three vectors thus obtained, we can use the basis (43, A', A?), where:

A3 = —\/§ <261 — \/;n (p2A1 —|—p1A2)> . (45)

We also note that we can parametrize p4, where A € {1,2}, as:

Ko — 29 K2 + 22

pP1=— 5 P2 = 5 (46)
m m
so that m(p1 + p2)/2 = —ka, as required by 7d SUSY.
If we define:
X3 _ 6%—2>\1—2>\2 Xl _ 6_%4_2)\1 X2 _ 6—%—}-2)\2 H = eB+)\1+)\2 (47)

the resulting 5d Lagrangian reads:

_ 1 Lo r_1 1 I I L
55—R*1—2§I:(X])2F A*F —QE(XI)QdX N #dXT = 2o dH N xdH

+A'ANFPAF3 —V 1

m? p2 1 1 P2 2 2
—(2H4A3/\*A3—|—8B2[4A A *A +8—I;4A A*A

pPip2 1 2 m. .3 1 2
A N eAT = A A*(pa At + p1A )), (4.8)

where the potential V' is given by:

2m? [ 1 1 9 1+ p2 1
V:_H2<X1+X2)_(4m_m m )\x3

2 2 2
p 2 p 2 m 2
+ 51 (O) + g7 (X)) + o (XF)7 (4.9)

It is immediately obvious that in this basis, the geometry of the scalars in the vector

multiplets is given by a symmetric rank three tensor Cjjx whose only non-zero compo-
nents are C23 = 1/6 and permutations thereof. However, as pointed out in [18], this
Lagrangian retains only one hyperscalar while a full hypermultiplet contains four. We will
now argue that the hyperscalars can be chosen to parametrize the quaternionic manifold
SU(2,1)/U(2), and we will identify the isometries that are gauged.
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SU(2,1)/U(2) geometry. We parametrize SU(2,1)/U(2) by the coordinates ¢* =
(p,,x,y). A brief review of quaternionic geometry is presented in appendix D.1. The
metric is given by:

dp? 1

1 |
d32:+8<d + = (ydx — zd > + 2= (do® + dy?) . 4.10
257 T8 (W30 y) p( y°) (4.10)

It is apparent from (4.10) that the metric has translational symmetry in the coordinate
¢ and rotational symmetry in the (x,7) plane.® The corresponding Killing vectors are

given by:’
0 0 x
k=|al+|8]x[v], (4.11)
0 0 Y

where the symbol x denotes the three-dimensional cross product. In the U(1)? case, we
need to specify how we gauge these isometries for each of the three vectors, so that we have
a triplet of vectors kf( , I = 0,A,B, and correspondingly a; and 8;. A straightforward
computation gives the corresponding moment maps:

B 1 0 1 0 T
Pr = </BI + (2a7 — Brr?) p> 1]+ NG Brlxlv]. (4.12)
0 0 Y

where we have defined 72 = 2% + ¢

In order to match the action (4.8) with the on-shell two-derivative action (3.15), we take:
m b p
gos = goy = — 2 go = - (4.13)

9Bz =0, gp1 = m, gp2 =m. (4.14)

In fact, when z = y = 0, we have:

ngzml, gP; :2m—]21, gP2:2m—]£1. (4.15)
p 2p 2p
1
Here we have defined P; = Pr/2 | 0|, which leads to Pr;; = Prd;j/2. Moreover, we
0
identify:
p=H> (4.16)

If we plug this, together with the moment maps (4.15) and the metric (4.10), into the
Lagrangian (3.10), the resulting scalar potential does not depend on . Furthermore,
r =y = 0 is an extremum of this potential.® It is now straightforward to check that for
x =y = 0 the resulting Lagrangian reproduces precisely the Lagrangian in (4.8).

®For a more complete treatment of the isometries, see [56].

"The vector quantities are formed with the (z,,y) components of the corresponding vector, for example
k= (k" k" kY).

8We have checked that it is in fact a minimum of the potential for the solutions of interest in this paper.
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We note that while the above can be taken as evidence that the hyperscalars
parametrize the manifold SU(2,1)/U(2), it does not constitute a proof of this fact, since
we have used a truncation with only one hyperscalar rather than the four required to form
a complete hypermultiplet.

4.2 The Chern-Simons terms at four derivatives

In this section we compute the Chern-Simons couplings that appear in the 5d effective
action by reducing the relevant terms directly from 11d. The Chern-Simons terms at the
two-derivative level were derived in appendix G of [38], and they were shown to reproduce
the matrix of 't Hooft anomalies in the dual field theory at large N. Here we derive the
corrections to these Chern-Simons couplings arising from four-derivative terms, which in
turn reproduce the first 1/N corrections to the 't Hooft anomaly matrix of the dual field
theory. We follow closely the notation and results of [49]. The main result that we use is
the CS terms in 7d at leading and subleading order:

27TN3 my 4 0
LlScs + LiBes = T (5> Py (A)

sy ((i)zpm +pa(A) - (i)zp%f) (417)

ACYN (2> p1<R>p1<A>><O>’

4 m 2

where p(A) and p(R) are the Pontryagin classes built out of the SO(5) and tangent bundle
connections, respectively. The superscript (0) simply means that we have to take the
Chern-Simons form of the various terms, so that for example dpgo) (A) = pa(A).

We only need:

pi(4) = ! (1)2trF2, (4.18)

pa(A) = é <217T>4 <(trF2)2 - 2trF4> , (4.19)

and analogous formulae for p(R) where F is replaced by R (the curvature two-form). As a
consequence, we have for example:

4

(2(4)© = % (;ﬂ) te(AF)tr (F2) + ..., (4.20)
4

(pa(A)© = % (;ﬁ) (be(AF)tr (F?) - 2tr (AF®)) + ..., (4.21)

where the ellipses denote terms that do not contribute when we truncate to the Cartan

subalgebra of SO(5).
We temporarily reintroduce the SO(5) indices for the gauge fields: A = A/, The two
Cartan generators are taken to be:

Al = (;) A2 A% = (;) A3 (4.22)
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The factor 1/2 ensures that the normalization of the vector fields is consistent with the
one we have been using for the 5d gauge fields, as we show at the end of this subsection.
We have:

tr(F2) = FI Rl — p12p21 | p2lpl2 | piptd | pl3pst (4.23)
— 8(FY)? =8 (F?) +... (4.24)

where once again the ellipses denote generators that are not in the Cartan subalgebra.
Analogously, we have:

tr(AF)tr (F2) =4 x 16 (A" P!+ 42F%) ((F1)" + (F%)°) (4.25)
tr (AF?) =2 x 164" (F1)’ +2 x 1642 (F?)°. (4.26)
We can now write down the explicit form of the relevant CS terms:
N3 /m\4 2
Lies =135 () (A'F (F)?) (4.27)
7d N myt (1 13 _ Lo o
£lhos = 53 (3) <—4A1 (F)" = 747 ()

1

11 1 (122
+2AF(F) yT

(A'F' + A°F?) tr (R?) + .. > , (4.28)
where the ellipses denote terms that involve only the curvature two-form and which vanish
when integrated over one Riemann surface. It is now straightforward to reduce the above
terms to 5d, using F4 = p4/2 on the Riemann surface (which is consistent with (4.2)):

N3 /my4
L{tcs = 62 (5> (P A'F'F? + p AT F?) (4.29)
N /m\#4 2 2
L{cs = 42 (5) 72 (— pr AL (F1)" — pa A (F?)" + po AVFYF? + p AV F2F?
o2 (plAl +p2A2) tr(R2) + .. ) ) (4.30)

Here 75 is related to the volume of the Riemann surface’ on which we have reduced from
seven to five dimensions:

27’[‘, 92:1,

4.32
47T|92_1|>927£1' ( )

VOl(Eg) = 271'772 = {

It is now straightforward to check that the normalization we have been using in (4.22) is

the correct one. For the 7d system of M5 branes, we have:

2\° 372 1
Gud—(Z2) 22— 4.33
<m) 16 N3’ (4:33)

9We are working with a metric on ¥ of fixed scalar curvature Ry = 2x. Then for g # 1, the formula for
the Euler character gives:

2-2g=x(¥) = ﬁ / V9=Rs = % vol(%), (4.31)

from which the result follows. The convention for g = 1 is fixed separately.
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which, using G7¢ = G3%vol(Xs), leads to:

1 m\° 2
T = (=) NPT, 4.34
167G (3) ¥gam (4.34)
Many conventions fix units as m = 2, which is equivalent to fixing Rgs = 1/2 (and

Rags, = 1 for the AdS7 x S4 solution) in the 11d reduction to 7d. Our CS term coming
from the two-derivative action L in (3.10) is:

1
LrD ﬁC[JKAI/\FJ/\FK (4.35)
1 kip 171 2 k;b 112 2
= ——A'F'F*— =AF°F 4.36
167Gy ( k;’p k}f ’ (4.36)

where we have used the correct Cr i and used k}/’AI = 0 to find the “effective” CS terms
for A', A%2. Now, using (4.34) and the expressions derived earlier for the constants k}/), we
can see that our CS terms (4.36) are identical to (4.29).

4.3 Supersymmetric completion of the Chern-Simons terms at four derivatives

Once we have found all of the Chern-Simons terms at four-derivative order, in principle we
can determine the full Lagrangian from supersymmetrizing these terms. This was originally
done in N/ = 1 5d supergravity for the four-derivative Chern-Simons term A ATr R? in [17],
and recently more general four-derivative supersymmetric invariant Lagrangians in this
theory have been constructed in [43]. Note that the process of finding these completions
crucially depends on the off-shell formalism, because the off-shell SUSY variations are
independent of the action.

As explained in section 3, we only need the two supersymmetric higher-derivative
Lagrangians found in (3.17) and (3.22). The constants cr, by are a priori arbitrary constants,
as they are not fixed by any SUSY considerations; in fact they depend on the details of
the higher-dimensional theory that the 5d theory originates from. In our case, we can fix
these constants by considering the coefficients of the Chern-Simons terms we found in the
previous subsection. However, we are immediately faced with a puzzle; equations (3.17)
and (3.22) show that the higher-derivative corrections to the Chern-Simons terms are of
the form (after integrating out the auxiliary field V):

drA" A PyFY A PR FX, (4.37)

where d € {b,c}, and it is easy to see that there is no possible value for d; that can
reproduce the terms in (4.30).

However, we are overlooking another possible contribution to the order N CS terms.
Indeed, the Killing vector parameters k}p are not determined by SUSY, but depend on the
details of the compactification — in our case they were determined from the reduction
from 7d to 5d of the two-derivative 7d supergravity Lagrangian. This means that they too
might receive corrections at higher order. We will allow kfﬁ (again, with A € {1,2}) but
not k:;f’ to receive corrections and parametrize them as:

kS = k4 4140, (4.38)
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This modifies the moment maps as:

gP —om— 22 0 A p g PL e L g

P o m
953 = H2 2H?2 H?’ 2H?2 H?

H
We need to clarify an important point. In the formula above we have used the relation
between Killing vectors k‘f and moment maps P; induced by the leading order metric
on the hyperscalar manifold. However, it is known that this metric receives higher-order
corrections as well [44-48]. In our case we expect these corrections to shift the value of H
on-shell. Fortunately, as we will see in sections 4.4 and 4.5, subleading corrections to H do
not affect the computation of the central charges.
The change in the Killing vectors will also modify the relation between A3 and A4
from the demand that k¥ Al = 0, giving:
P g . P 4kw( )A1 4k¢(1)

2m 2m m m

—2__ A% (4.40)

In turn, this will contribute to the order N CS terms when we integrate out A3 through
the two-derivative CS term A3 A F!' A F2. Fortunately, such corrections cannot give rise to
terms like A4 A FAA FA| so the latter must necessarily come from the four-derivative CS
terms in (3.17) and (3.22). In fact, we will now show that we can determine the parameters
cr, by and k}b(l) uniquely.

All of the CS terms in the our Lagrangian Liot = L + L2 + L2 in (3.10), (3.17),
and (3.22) are:

1 1 1 1
—Lit D = (Crux ATFTFE — —c; AT Tr R? — fchI}"]: — b ATFF (4.41)
2K9 2K2 4
1 1 1
=53 <A1F2F3 — oA T R? — (24c1 + b;) PJPKAIFJFK> (4.42)
1 kY kY 1
— ﬁ <_1€71/}AlF1F2 o k%AlFQFQ o ZéAAATrR2
K
3 3
& b\ g1 o (2646 214D\ oo
—am? | L+ 2 AR F — g AlFLE
" (24 ! ) " 24 1
Gy | b 25 + & 20y +b
—am? (;i + j) A2F2F2 — 4m? ( 022;: a. 2: 1) A2F2F1> . (4.43)

where wedges are understood, and again we use A € {1,2}. In going from (4.41) to (4.42)
we used the correct Cryx and the leading order equation of motion for V' (3.13). Then,
to go from (4.42) to (4.43) we used the relation k3 AT = 0 to eliminate A® in favor of A4,
and introduced the notation:

kY - kY
Ga=ca— e, ba=ba— bs, (4.44)
k?) k3

and moreover we have used that Py — ngz / k;f = 2m (at least at leading order).
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As discussed before, the leading order expressions for k:}p and thus for P; are such
that the CS term at leading order (4.30) is correct. Now, to find the six higher order

coefficients 5,4,63,k:jﬁ(1), we simply need to compare the coefficients of the terms in our
expression (4.43) to the known coefficients of the CS terms in (4.30) and solve the resulting

six non-degenerate linear equations. The result is:

1 pa 1

5o b= -¢ 4.4
CA 7‘724 3 bA 3CA7 ( 5)
w() _ 1 yp1tp2 1 ko Y1) _ (1)

MU= T T T Nem 2 TR (4.46)

Note that we have thus determined two out of three linear combinations of the ¢; (and by),
so we have not completely determined these coefficients yet. However, we can easily see
that the third linear combination of the ¢; (and by) will never play a role in calculating the
on-shell actions (which will be necessary in the following to calculate the central charge):
e.g. cr always enters the action (3.17) contracted with p! or A’ (or Y/, but on the solutions
we are interested in, Y/ is proportional to one of these two by (3.32) and (3.59)). Then,
we see that e.g.:

~ C3 ~
crpt = cap® + e3p® = ap? + ] (k}/’pl) = éap?, (4.47)
3
because ky p! = 0 from SUSY for all the solutions we are considering. Thus, even though
we have not fully determined cs, its actual value is irrelevant to compute the central charges
because k:f pl = kf( Al' = 0. Of course, the same reasoning applies to bs.

4.4 Four-dimensional central charges

Calculating the central charges of 4d CFTs from the AdSs dual was originally discussed
in [1], and further extended to include higher-derivative corrections in [57-60]. We will use
the notation of [60]. Here, we are interested in calculating the central charge for the 4d
CFTs discussed in section 2.1, which arise from N M5-branes wrapping a Riemann surface
with genus g (and corresponding twist parameters z, k). We will be using the explicit AdSs
solutions we derived in section 3.3.1.

The effective gravitational Lagrangian can be written as:

1
1, 9 9 ) )
e L= m (R + 1296ff + aR + 5R,U,l/ + ’YR,LLl/po) . (448)

Our effective Lagrangian, which we obtain by integrating out everything except the gravi-
tational parts, is given by:

1 3 33 9bp P
—1p _ 1= P2 b P2 2 ( 2 9P 4 P 1
¢ L= Tonan [R< 32bP> + <3 Tt )+ (e T gl (P

- (? [CI(PI)_I]) Ry R + g ler(Pr)™Y RW,MR“”””} . (4.49)

Note that [c;(Pr)™'] = >, ¢;(Pr)™", and we have used the quantities P and bp as defined
in (3.41) and (3.42). To maintain the correct normalization for the Einstein-Hilbert term,
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our effective Newton constant is given by:

1 1 3
——=—(1-—=bp ). 4.50
GF Gy < 32 P) (4.50)
Note that this shift in G affects the value of go. We can then identify the AdS radius L
from the relation:

1 1
=—(1—-—5(1 2 4.51
Geft L( a7z (10a+ 6+7)>, (4.51)
which gives:
2 bp
L=—-— 4.52
P ap (4.52)

which coincides with the expression derived earlier for the AdSs radius in (3.40).
Finally, we should have [60]:

73 4 m\5 [4N3 2\? 9
L3 4 5 (4N3 2\?
Cgrav = 871-@]3\1? <1 — ﬁ(loa + 28 — ’7)) (%) <3 ) 72 <P>
3
X (1 — pr + % [cl(P1)1]> . (4.54)

A final piece of information we need is an explicit expression for H, since it appears in

the Pr’s given in (4.39). As mentioned in section 3.3.1, H is found by solving the equation
k}z’pl (H) = 0, where we have put in the solutions (3.43) for the p! in terms of P; (thus
introducing H through the P; to the equation). Then, the solution to kqul = 0 to leading

1
HQZR (pl +p2+\/P3 — pip2 +P§> : (4.55)

In principle, we could similarly determine the subleading expression for H as well, but we

order is:

omit its expression as the subleading piece of H can be seen not to contribute to P at
subleading order.

We can now fill in the explicit expressions for Pr, taking into account the subleading
corrections of (4.39) and using our expression for H (4.55), and the expressions (4.45)—
(4.46) for the coefficients by, c7, kﬁ(l). Doing this, and expressing all p4’s in terms of ko, 29
using (4.6), we find (leaving out the subscript 2 for &, z):

N3y 327 (—3n + V322 + m2) + K2 (n + V322 + ;-@2)

T 22
Nn (/i + \/m> (22 + /<c2) (456)
32 22 ' ’
N3 322 (=35 + VB 12) + 2 (n+ V324 1)
Cgrav = 96 52
Ny 22 (1= 2V32 4 17) = 3k2 (i 4+ V32 + 42
+ 356 > : (4.57)

which gives us a perfect match to order N with the field theory expressions for the central
charges a and ¢ for kK = +1 given in (2.10)—(2.11) and x = 0 given in (2.12)—(2.13).
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4.5 Two-dimensional central charges

Calculating central charges of 2d CFTs for Lagrangians with higher-derivative corrections
(generalizing Brown-Henneaux [61]) was derived in [62-64] and reviewed in [65]. We will
use the notation of [42, 65]. We will be calculating the central charges of the 2d CFTs
discussed in section 2.2, which arise from N Mb-branes wrapping two Riemann surfaces
with genus g1, g2 (and corresponding parameters 21, k1, 22, k2). We will be using the explicit
AdS3 x ¥, solutions we derived in section 3.3.2; by convention, the X, of the 5d solution
of section 3.3.2 will be the first Riemann surface with parameters z1,x; (meaning the
reduction of the 7d system to 5d happened over the second Riemann surface) — of course,
this does not affect the final answers at all.
The central charge can be calculated by giving the on-shell Lagrangian:

1 3 5
B (cr+cL) = rTen [6290\/01(21)] 3o = —8N3 (%) mmpe?doe3loL. (4.58)
5

The leading part of (4.58) will be given by the on-shell leading order Lagrangian Lp
in (3.10). The subleading part will have three contributions: one from each of the higher
order on-shell Lagrangians L2 in (3.17) and Lp2 in (3.22), and a third contribution from
L coming from the subleading corrections to the k}b’s and corresponding changes to the
Pr’s as given in (4.39).10

We still need to specify the values of the parameters a!, which are the fluxes through
the Riemann surface in the AdSs solution given in section 3.3.2. As mentioned at the end
of section 3.3.2, these parameters must satisfy two restrictions:

kVal =0 (4.59)
1
igaIPI = —K1. (4.60)
We take the first equation to determine a3, so:

3 _ kibl k;pQ

a’=——a — —=a’. (4.61)
Kok
We can fill in this expression into the second equation to obtain:
1 -

— K1 = ggaAPA =m (a' +a?), (4.62)
where we have used the definition of P as in section 4.3. Thus, we can parametrize a', a? as:
1 K1 — 21 2 K1+ 21

- _ , = — . 4.63
“ 2m “ 2m ( )

As an aside, note that this is perfectly consistent with (4.2) and the fact that it should be
equivalent to reduce (from 7d to 5d) over the first or the second Riemann surface.

ONote that one might think that (629063-f0£3) actually receives more than only these subleading cor-
rections, due to subleading corrections of the p'’s, e0, 9, and H. However, it is quite easy to see that
the (leading order) equations of motion actually imply that O ((629°e3f0£R)) /0p" = 0 in our particular
case (and similar for ef0, e9 and H ), so that these subleading corrections vanish. Thus, the only ones that
survive are those due to the actual correction of the k}b’s and the corresponding changes to the Pr’s and A®.
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Also, as in the above AdSj case, we still need to determine the explicit expression for H;
as mentioned in section 3.3.2, H is once again found by solving the equation kz}ppf (H) =0,
where we have put in the solutions (3.73) for the p’ in terms of P; (thus introducing H
through the P to the equation). Then, the solution to k}bpl = 0 to leading order is:

g2 — 1 (a1p2)2 + (a2p1)2 + a'a’pips (4.64)
2m (a2)2p1 + (a1)2p2 ‘ )
In principle, we could similarly determine the subleading expression for H as well, but

we omit its expression as the subleading piece of H can be seen not to contribute to the
on-shell Lagrangian.

Now, we can evaluate (4.58) on-shell for our solution, filling in our expressions for
bI,CI,k}p’(I) that we found in (4.45)-(4.46), as well as the explicit values for a! in (4.63)
and the expression for H found above in (4.64). This gives us:

N3mng 32223 + 25Kk% — 82120K1K2 + 22K3 + 3KIK3

(e +cr)
—(C C =
2 R L 4 K1k — 32129

Nnin

3.3 3 2 2 9 9 3
8(K1ko — 32122)2 (92725 + 12z125K7 + 921 25K1K2 — 223 K1 K2

+1223 20K2 + 321 20K K3 — 222K K5 — /{?/{%) , (4.65)
which is once again a perfect match with the field theory expression (2.20).

Finally, the quantity cr — ¢y, is related to the gravitational anomaly of the field theory
and thus should come from the coefficient of the gravitational CS term in 3d, which in turn
should come from the (reduction of the) 5d mixed gauge-gravitational CS term A A Tr R2.
To integrate this CS term down to 3d, we need to integrate out the A piece, which (after
partial integration) will simply give a factor of —a’vol(31). Thus, the coefficient of the 3d
gravitational CS term, which is proportional to cg — ¢z, is given by [65-68|:

1 1 1 N3 /m\5
— (¢ — = (-= (Z) (—cral) = — (= I
967 (°L — cR) 167rG5( 4) vol(X1)(=era’) = o (2) nnz cra

N
= —ggp k(s + kik2),  (4.66)
which matches with the field theory result (2.21).

5 Conclusions

In this paper we have considered higher-derivative corrections to N' = 1 supergravity in five
dimensions. Using off-shell techniques, we have been able to compute the corrections to
AdSs and AdS3 x 3, geometries in the presence of gauged isometries as well as non-trivial
hypermultiplets.

The main application of our results is for various supersymmetric setups involving
Mb5-branes wrapped around one or two Riemann surfaces. We were able to reproduce the
first subleading corrections to the central charges of the dual SCFTs, which are known
exactly from a-maximization and c-extremization. We extracted the precise data needed
to characterize the supergravity corrections from the subleading corrections to the Chern-
Simons terms, which in turn can be derived from the CP-odd eight-derivative correction
of eleven-dimensional supergravity. A very intriguing outcome of our analysis is that the
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Killing vectors associated to the gauged isometries also receive 1/N corrections. This is
very reminiscent of the analogous corrections to the universal hypermultiplet metric which
were analyzed in [44-48] in the context of Calabi-Yau compactifications of M-theory, where
the changes to the quaternionic metric are proportional to the Euler characteristic of the
compactification manifold. Whether this is just a coincidence or a sign of something deeper
is a matter that we leave to future investigation.

There are many interesting questions left to explore. One is to understand what
the gravity dual of c-extremization is. While the answer is known in the case of
a-maximization [16], the analogous results for c-extremization [19, 69] were analyzed only at
the two-derivative level. In this paper we studied O(N) corrections to the central charges,
but it should also be possible to get a handle on the O(1) corrections by employing tech-
niques along the lines of [10-12].'' It would be intriguing to analyze the corrections to
the Killing vectors in a more systematic way, and to try to understand their structure
in more general gauged supergravity setups. Another very compelling direction would be
to extend our results to asymptotically AdSs supersymmetric black holes, in analogy to
what has been done for asymptotically flat black holes in ungauged supergravity [55]. In
particular, it would be extremely important to determine whether these geometries remain
supersymmetric when higher-derivative corrections are taken into account. If the answer
turned out to be negative, this might constitute a first step towards resolving the 1/16-BPS
black hole puzzle in maximal five-dimensional supergravity [70, 71].
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A SU(2) conventions & variations

A.1 SU(2) & spinor conventions

We use the same SU(2) index conventions as [53], see also [72] for even more details.
Indices i, j, k will always denote SU(2) indices and run over 1,2. Lowering and raising
SU(2) indices happens with the e symbol in usual NW-SE contractions, e.g.:

Ai = EijAj, Al = Ajeji, €19 — —€91 — 612 =1. (Al)

Note that ejke““ = (5;

"We thank Phil Szepietowski for suggesting this to us.
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Often we will deal with SU(2) doublets that have a pair of symmetric SU(2) indices,
e.g. AY. We will also use the equivalent three-vector notation A In general switching
between doublet ij and vector r indices is accomplished by:

VY =iV'o;, (A.2)
where the regular Pauli matrices are defined with indices as (ar)ij . Note that, using € to
raise/lower indices, we have e.g. afj = 10;;.

Our spinor conventions can also be found explicitly in appendix A of [72]. Here we list
the most important facts. We define the charge conjugation operator as:

(M) = a1 (Cro) e (M), (A.3)

where C is the unitary charge conjugation matrix and o = +1 or o = +i depending on
conventions for complex conjugation. Symplectic Majorana spinors, the minimal spinors
in 5d, are spinors A’ where for i = 1,2 the resulting spinor has four complex components;
however, they satisfy A = X and thus symplectic Majorana spinors in 5d have only 8
independent real components in total.

A.2 SU(2) structure of SUSY variations

In this section we derive some general properties regarding the SU(2) structure of the
fermion SUSY variations for our ansatze in section 3.3.

A.2.1 SU(2) fermions
We first consider the SUSY variations of the SU(2) symplectic Majorana fermions, namely
wf“ x' and )\3. They are of the general form:

§¢i = (Aaj + B(i5- ), ) =0, (A.4)

where §'is a (real) unit vector and A and B depend on the fields and are real. This partic-
ular form is not well-suited for explicit computations, because it is difficult to implement
projection conditions. As a consequence, we define the two projectors:

and the two spinors:
e = (Py)men, (A7)
€ = (P-),"e", 8

which satisfy (5 ) jiﬁi = +¢%, The original spinor can be recovered as:
€ =€ +e. (A.9)
Using (A.4), it is straightforward to show that:

(A£iB)em =0. (A.10)
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It is easy to check explicitly that the spinors ei_ and ei are proportional to each other,
and similarly for €& and €2. To study supersymmetric solutions, one can now impose the
projection conditions on, say, € = €. and work with the simple equation

(A+iB)e=0. (A.11)

We can explain the equation above in a different way, which will be useful in the next
subsection. Writing the SUSY variation as d¢' = leej , we notice that the projectors Py
have been designed to commute with Q:

0= (Pi)iijiej = Q" (Py)/ed = Q. = (A+iB)6 el (A.12)
Our “diagonal” SU(2) ansatz with V¥ = Y"1 = PI/ij = 0 means that:

0
g=1|[1], (A.13)

so that the SU(2) structure is aligned with o2, which leads to
€ = € +ie. (A.14)

A.2.2 The hyperino

The discussion in the previous section does not immediately apply to the hyperino ¢4,
which is a USp(2ny) symplectic spinor rather than SU(2). The variation reads:

1, a1 i
0¢H = Siv" (Dag™ + gAckt ) X' + S9p" k7' fixe'. (A.15)

In order to work with SU(2) structures, we use the vielbein:

(i (9ag™ + gALKY) — gp k) 111 12 (A.16)

[N

fiadct =

This variation is of the form:

. 1 -,
FRoct =TXQx ey, TY = (i (Gud™ + 9AGkT) — 9p"kT) . (A17)

where the SU(2) matrix @ is given by:
QY =20 At = 8lo% + Y, (A.18)

where J XY Z.j are the complex structures of the physical hyperscalar manifold [53].

If we want to make use of the projection conditions on the Killing spinor, the discussion
in the previous subsection shows that we should demand that TXQ XYZ.J commutes with
the projectors Py. The condition turns out to be:

§x (TX fXY) ~0. (A.19)
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Using the fact that the J’s obey the quaternionic algebra, one can prove that any vector
can be written as: 1 1

FoxY = 5 x Iy ¥ = STk x (ﬁ X JZY) . (A.20)
Using this relation, the Jacobi identity of the vector product, and (A.19), one sees that the
only solution to (A.19) is § = 0. As a consequence, the only (general) solution to (A.15) is:

Ouq* + gAY =0,  kXpl=0. (A.21)

With constant hyperscalars, these conditions reduce to (3.25) and (3.26).

B Details on N = 1 superconformal supergravity

We use the superconformal actions and variations from [53] (mainly appendices A & B

therein), following their notation with the main exceptions that a{heirs = pl . and

il il
wtheirs - )‘ourS'
B.1 Superconformal action and variations

We have a Weyl multiplet with fields e}, 1%, Vﬁj s Tabs X', D, by ny+1 U(1) vector multiplets
with fields AL, ;1 AT, pT; and ng +1 hypermultiplets with fields ¢, ¢ (the hatted indices
go over the full ny + 1 hypermultiplets, while unhatted indices will only run over the ny
physical ones). To make further contact with [53], note that we are not considering any
tensor multiplets; moreover, because we have U(1) gauge fields, ¢ IIJ{ =f If,( =0.

One can construct a supersymmetric Lagrangian for the vector multiplets given a
symmetric tensor C7ji, and we define C = C’UKpIpJpK and C; = 3C]JK,OJ,OK,C[J =

6C1 i p™. The superconformal vector multiplet bosonic action is then given by [53]:'2

1 1 y 26 1
Lyector = ZCIJFI B’ + §CIJ6a,018aPJ — CIJ}/;§YZ]J + 8C <D + §T2 + 32R>

1
= 8CK I T+ e P CL ke AL\ Fp (B.1)

For the hypermultiplets, there are a number of quantities that are relevant. First, there
is a hypermultiplet metric gy with corresponding vielbeins f)i?; this should define a hy-
perkéhler manifold [53, 73]. There are generators of dilatation and SU(2) symmetries given
by resp. X , k:l)]( . There are also Killing vectors k;( , which describe how the hyperscalars
are charged under the vector multiplet gauge group; these (together with the complex
structures of the hyperscalar manifold) also determine the moment maps PIij . Note that X
indices are raised or lowered with the metric g ¢y, so e.g. k? = k:XkX = gxkakY. For more
information on these hyperscalar quantities, see (especially sections 2.3.2-2.3.3 and section

3.3.2 of) [74]. The superconformal hypermultiplet bosonic action is then given by [53]:

1 5 o . . R . 4
Liyper = — 595y (8aqX — Vajklﬁ])fC + gAékf) <8an — V’”kk}?f + gAI“k}/) + —Dk?

2 9
8 22 1 o ipl L o1 g%
+2—7Tk —ﬁRk +2gY; Pl-j—§gpp krk; (B.2)
2We will already put b, = 0 in some relations in anticipation of the superconformal gauge fixing.

However, note that Dab, # 0 even if b, = 0. See [53] for more details.
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The relevant total superconformal action before gauge-fixing will be given by:

'CSC,total = Lyector + [fhyper (BS)

The multiplets we are using are superconformal multiplets, which means they trans-
form under with regular supersymmetries Q with parameters € as well as superconformal
symmetries S with parameters 7°. The superconformal fermionic variations on a bosonic
background are given by [53]:

o= <3u + 1%‘1(’%’)) ¢ = Vilej iy Tope' — i, (B-4)
ox' = %ZD —~ 6%7 - File; + émabVTabei - éwavbTabei

- iyabchachdei + éT%i + i'y T, (B.5)
N = —iv Fle - %%Ie" —Yej 4+ ply-Te + plr’, (B-6)

1
3

B.2 Gauge-fixing to Poincaré supergravity

0CH = Si™ (Oug™ =V kg ALKY ) Fidei= 5 TR F e+ S 00 kT Fd+k¥ fin' (B)

To go from superconformal supergravity to the regular Poincaré supergravity, we need
to gauge fix the (super)conformal symmetries. This is done by identifying one of the the
hypermultiplets as non-physical and fixing it in order to fix the superconformal symmetries.
This procedure is a bit involved; we sketch the highlights of it here but refer to [53]
(especially section 4) for more details and derivations regarding this gauge-fixing procedure.
See also appendix D on more information regarding the hyperscalar manifold and the gauge
fixing.

Splitting of hypermultiplets. We split the hypermultiplet coordinates into X = (z, X)
where x = 1,--- ;4 and X =5,--- ,4(nyg + 1). The hyperscalars are then given by:

¢ = (%2 q%). (B.8)
The metric g ¢y splits as (see appendix D.4):

d3* = g¢pdgdg”

——MHO hxydgXdg" — gag [dz® + A% dg™] |d2P + AJdg” (B.9)

= 0 xyaq aq Jap |2 xaq Z yaq ) .
which essentially defines the SU(2) connections AS and the metrics gqg, hxy. The SU(2)
connection w¥)x is given by:

1-

Note that it is the metric hxy on the physical hypermultiplet space that must be quater-
nionic [53, 73]; there are also corresponding complex structures JXYZ.J that satisfy the
quaternionic algebra (see also appendix D). The explicit vielbeins of the hyperscalar met-
ric are needed for computations are are listed in section 3 of [53].
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The quantities kX and kfj are the dilatation and SU(2) transformations, and we can

choose them to be:
= (32%,0,0), k;’f = (0,k%,0). (B.11)

YR

The Killing vectors k‘f split as:
. . 1 -
k¥ = <0, —2k> . <ka}< — 0P1> kf) . (B.12)
z
Note that e.g.:

k2 = gop kXK = —92°,

ki kg, = 2y ki Ry + (B Pr) (- Pr).

—~

B.13)
B.14)

—~

The fermionic sector is split into:
¢t = (¢ ¢, (B.15)

where i = 1,2 and A = 1,---,2ng. Only ¢’ should transform under superconformal
S-transformations.

K-gauge. This is fixed by setting b, = 0. Keeping this gauge fixed, i.e. 0b, = 0, fixes
the superconformal transformation parameter Ay, which we have ignored in the previous
discussion as it is not relevant for us.

D-gauge. To get a factor of 1 multiplying R in the two-derivative action (on-shell, after
imposing the equation of motion for D which will be C = 1), we want to set k? = —18, i.e.:

=2 (B.16)

SU(2)-gauge. We fix:

«Q

qla] = Z’ij = Z’L'aj,o7 (Bl?)

i.e., they are constants.
The vector k® generates an SU(2) algebra and are left-invariant vector fields. We can
then choose the constants zf: ; such that (see appendix D.3):

EY = kT = 6, (B.18)
to make expressions involving ke simple. This also means:

K = ol (B.19)
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S-gauge. Finally, we want to fix:
¢'=0. (B.20)

Keeping the S-gauge fixed means fixing 6¢* = 0, which will fix the S-transformation
parameter 7 as a function of €’

1 o N /e
90! (ka . P,) (ka . 5]’“) . (B.21)
Setting this to zero has as solution:
i_ % anpgio L i Lo i
N =57 T'e; + 37 Te" + GIP Pe;. (B.22)

Gauge-fixed Lagrangian & variations. Using the above formulae to fix the rele-
vant quantities, we find the gauge-fixed Poincaré supergravity Lagrangian given by (3.10).
Also, fixing i’ as given above gives us the gauge-fixed supersymmetry variations given
by (3.1)—(3.3).

B.3 Full two-derivative equations of motion

The full two-derivative equations of motion that follow the action (3.10) are:

0=8(C—1),
0=474,
0=—2C1, Y7 4 2gPY,

2
0= % (13C — 1) Ty, — 8CrFY,,

0= C[JVbFJab + GC[JKprJFKab — 16C[V5Tab — 16C[vapJTab

3 ..
+ ZﬁadeeC]JKFb‘{:Fjg - 2ghxyk3§( (B“qy + gAJa]C}]/) - QQPIU T?j,

3 3
0= ichKF“ijg — 3Cry0°p” 0ap™ — C1sV?p” — 6C1 YTV (B.23)
208 1 .
+Cr <8D + TTabTab + 4R) —8Cr FT™ — 2¢° 0" ki kY hxy + g% p” Py Prij,

0= %g“” [icUFfaij, —Cy Y'Y +8(C-1)D+ ? (13C — 1) T%T,
% (C+3)R—8CIFLT™ — hxy (0°¢™ + gA"kT) (0aq” + gALKY)
+29VEPY — g ' p K Y hxy + %92/)1 p! PUPy i + 20518 — %C[VQPI
— i (C+3)R™ + %C}V“V”pl — iclJaapfaapJ — %CUFI“PFJVP

32 ,
-5 (13— 1) T"°T", +16C, F lelp)

+ hxy (04¢X + gATHEY) (07" + ATVEY) — 20R9YY,
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along with the equation of motion for the hyperscalars, which we omit. We can solve (B.23)
for D:

1 2 o IJ . 2
D= —(20;Cy —3C1;) Flovps + I (6 " - pIp‘]> PP+ Lol p kX kY hxy

284 64 32
3 1
— 671cuaapfaa,f’ — gyhxy (0%¢% + gAT k) (8aq” + gALEY). (B.24)

C 7d supergravity conventions

Here we give a quick sketch of the 7d U(1)? gauged supergravity theory that we are consid-
ering. This theory is a truncation of SO(5) gauged maximal supergravity in 7d, so we first
give an overview of this theory. We give the relevant references where more information
on these theories can be found.

C.1 Gauged maximal supergravity

The theory that is obtained by reducing M-theory on an S* is gauged N’ = 4 (maximal)
supergravity in 7d. This was first derived in [75]; we will sketch the (bosonic) theory here
using the notation of [76].

The Lagrangian takes the form [75, 76]:

1 g 1 L 2 2
206%™ Lrg = R+ 5m? (T? = 2T, T) = Te(P,P") — 5 (V/VfFj;’ ) +m? (V;l I C[Wp)

1
fe ! <251J(CS)I/\(dCS)J+m ersr Ly (Cs) (T FMM 4m ™ py (4, F)>~ (C.1)

The gauge group is SO(5), and I,J € {1,---,5} are fundamental indices of this group.
The bosonic field content consists of the graviton, ten Yang-Mills gauge fields A’/ in the
adjoint of SO(5), five antisymmetric three-tensors (C3); in the fundamental of SO(5)4, and
14 scalars which parametrize a SL(5,R)/SO(5). coset; i,j7 = {1,---,5} are fundamental
indices of SO(5).. These scalar degrees of freedom are contained in V;, an element in the
coset; the other relevant scalar quantities are defined through:

v, D,V = (Qu)iig) + (Pu) i) (C.2)

where D is the fully gauge-covariant derivative so that D,V," = 8MVIj + (2m)Ai IVJj .
The T-tensor is defined as:

Ty =V, vt 6y, T =T,;;0". (C.3)

The gauge coupling m is related to the radius of the S* in 11d by Rga = 1/m [77]. Finally,
p2(A, F) denotes the CS terms involving only the gauge fields F, 15;7 ; these are discussed in
detail in section 4.2.
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The fermionic variations are given by:

m - Lo/ vaA pigys iy i glJ
51/1u = |:DN -+ 720T’)/M 40 ( 85“’}/ ) I ]VI VJ FVA
9 .
~ VAo VAo iyy,—1 I ~I
— S0 ) TV, |« C.4
10\/’ < > i l/)\cr:| ( )

m S 1, .
SN = [2 (T] - 55ijT> 7 4 D31 P + A (Fkll“’ = 5rlrkl> VIV IERE

A 1J
20 \/ FA(TH — 469V CM] (C.5)
for resp. the gravitini and gaugini. The supersymmetry parameter e transforms as the
spinor of SO(5), with corresponding Dirac matrices I'; 4# are the 7d spacetime gamma
matrices.

C.2 U(1)2 truncation

There is a simple truncation of the field content to a U(1)? gauge group, as described
in [39, 76] and also used in [18]. We will sketch the relevant information about this trun-
cation from [76] here.

We restrict ourselves to the Cartan gauge fields:

AV =42 AD =A% (C.6)

and also restrict the scalars to:
V;' = diag <e_’\1 e M oM A2 e2/\1+2)‘2> (C.7)

thus defining the two independent scalars A(;. We also restrict to a single three-form,
— 5
SMVﬂ - Cm/p
Thus, this truncation contains two Abelian gauge fields, two scalars, and a single
three-form. This does not necessarily correspond to a consistent truncation of the maximal

theory, as discussed in [76]. The truncated bosonic Lagrangian has the form:

ke IL=R-— meV 50\ +A2))* = (Ou(\ = M2))? — e ER) — e M2 FG,

1 om2e 44 52 _m cHrAaBys S0 S5
1
t g S FED £ mipy(A, F), (C.8)
V _ _862)\1+2/\2 _ 4672)\174)\2 o 4674/\172/\2 4 678)\178)\2. (Cg)

We will not give all of the explicit equations of motion following from this Lagrangian or
the explicit expressions of the supersymmetry variations for this truncation; both can be
found in [76]. Here we will only show the self-duality equation for the three-form (which
is its equation of motion):

1
et (mds \[m — = _FW A F(2)> : (C.10)
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D Hypercomplex and quaternionic geometries

In this appendix we collect some useful facts about the geometry of the hyperscalars. We
will first describe hypercomplex and quaternionic geometries. We then describe how quater-
nionic manifolds can be embedded in hypercomplex manifolds with conformal symmetry.
The precise map between the two allows us to show that the gauge-fixing can be chosen in
a convenient way, thus justifying the choice made in (B.18). We will not discuss various
subtleties, such as &-transformations and the possibility that no metric exists, for the sake
of clarity. We will use the notation and conventions of [78] throughout. For applications
to supergravity, see [74, 79] and especially [53].

D.1 Quaternionic like manifolds

On-shell local supersymmetry implies that the hyperscalars parametrize a quaternionic
manifold. In the following, we will use local coordinates ¢~, X =1,...,4r, where r is the
number of hypermultiplets. Furthermore we always assume the existence of a (invertible)
vielbein f}?, 1=1,2, A=1,...,2r. This quantity appears in the supersymmetry trans-
formations of the hyperscalars:

0% = fihec, (D.1)

where the inverse vielbein is defined as:
FARN =065, 8 fs =0l63. (D.2)

Furthermore the vielbein satisfies a reality condition defined by the matrices Eij and p AB
such that:
EE* = —15, pp* = 1oy, (D.3)

namely:
*

iA iBrai A
()" = APE o™ (D.4)
The vielbein and its inverse can be used to define a quaternionic structure:
7Y . piA=jpY
Tx' = —ifX 0 fia, (D.5)

where & are the Pauli matrices. The name “quaternionic” comes from the fact that these
quantities obey the quaternion algebra:

JrXZJsZY _ _57“35XY + erstJtXY‘ (D.ﬁ)

In order for the manifold to be quaternionic, however, the quaternionic structure needs to
be integrable, which amounts to the existence of a torsionless affine connection I'xy?, a
G/{(r,H) connection wx4? and a SU(2) connection wy;/ with respect to which the vielbein
is covariantly constant:

Dx At = Ox i — Ty 25 + flwx,' + RPuxp” = 0. (D.7)
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This equation tells us that the holonomy of the manifold is restricted. Indeed, consider the
spin connection defined as:

QXjBiA = ]YB (ang}A — nyZf%A) . (DS)

If Qx; 54 were a general 4r x 4r matrix, the holonomy would be (a generic subgroup of)
G{(4r). Equation (D.7) is equivalent to:

QXsz‘A = —joi(SBA — UJXBA(Sij, (D.g)

where wx;" is traceless. This implies that the holonomy group is restricted to SU(2) x
GU(r,H). If the SU(2) connection is zero (or rather, pure gauge), the manifold is called
hypercomplex. The conditions above imply that the quaternionic structure is covariantly

constant as well, in the sense that:
DxJy? = 0xJy? —Txy"W Ty ? + Txw? W + 28 x Jy 2 = 0. (D.10)

Quaternionic and hypercomplex manifolds that admit a Hermitian invertible metric
g compatible!® with the affine connection are called quaternionic-Kdihler and hyperkihler
respectively. In an appropriate basis, such a metric can be written as

axy = [$Capeii 7, (D.11)

where C' = e® 1,.. In this case, the holonomy is further restricted to the maximal compact
subgroup of SU(2) x G¢(r, H), namely SU(2) x USp(2r).'* Such manifolds are Einstein and
the SU(2) curvatures are proportional to the complex structures:

R LR R L b g (D.12)

= — = =V 5 V= . .
Xy = gxv i, Xy = gvdxy Ir(r+2)

Notice also that in supergravity, supersymmetry connects v to the normalization of the
Einstein term in the action, so that we have v = —x?, k being the gravitational coupling
constant.

D.2 Conformal symmetry

For the applications to the superconformal tensor calculus, we are interested in hyper-
complex manifolds with conformal symmetry. We will see that it is always possible to
embed any 4r-dimensional quaternionic manifold (the small space in the following) into
a (4r + 4)-dimensional hypercomplex manifold with conformal symmetry (the big space
in the following). We will denote quantities on the big space with hats; for example the
coordinates on the small space will be denoted by X = 1,...,4r and coordinates on the
big space be =1,...,4r + 4.

13The compatibility condition is quite subtle, see [78], however we can roughly think of it as being the
requirement that the affine connection in the formulae above is the Levi-Civita connection associated to
this metric.

"1n principle, one could have USp(2p, 21 — 2p).
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Conformal symmetry is defined by the existence of a so called “homothetic” Killing
vector kX defined as:

~ N ~ N 3 ~
X _ X X1.Z X
Q?k = 8}7]? + F};ZA k7 = i(SY . (D.13)
Three more vectors can be constructed:
e 1oy
X = gkYJA X, (D.14)

In the absence of a metric, one needs to impose some additional requirements that will not
be important for us; see [78].

One can choose coordinates so that the k’s take a convenient form. Concretely,

we choose:
= (Y, 2%, ¢%), a=1,23 X=1,... 4r (D.15)

such that:
X =320,  K=kX=0. (D.16)
Therefore the only non-zero components of the k’s are k. One also introduces the inverse

vectors mg so that:

—

R g = 63, (D.17)

It is also convenient to define a vector Ax as:

Jx?. (D.18)

Jo0 =0, J0 = =2, Ty =2 Ax, (D.19)
o 1 > - > - - - S o

B =R L= F e, TP = A B+ Ty (AZ : kﬁ) . (D.20)
Jo¥ =0, JY =0, ¥ =JyY. (D.21)

The last equation means that the components X,Y of the quaternionic structure form a
(almost) quaternionic structure in the small space. The integrability of the hypercomplex

structure J leads to non-trivial conditions on EO‘, Ay and J, XY. In the following, we only
consider the most important ones; the complete list can be found in [78]. First, k* and mg
are independent of z° and “satisfy” the SU(2) algebra, in the sense that:

. L 1
k7 x 87]<:a = ka, a[amﬁ] = —ima X T?Lg. (D.22)

The geometric meaning of these equations will become apparent when we explicitly con-
struct these vectors in the next section. Furthermore, we have:

HAx =0,  (On +mMax)Ax + Oximia =0, (D.23)
T =0, (O + e x) Iy ¥ = 0. (D.24)
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Finally, we have:

- 1 - 1 A
8[XAy} — §AX X Ay = _ihZ[XJy} (D.25)
where hyy is the induced metric'® on the small space defined as:
1. L
hxy = ~odxy + Ax - Ay. (D.26)

It can be shown that the remaining conditions imply that the small space is quater-
nionic, and that its spin connection &x can be chosen to be:

1 -
Wx = —§AX. (D.27)
D.3 The map from quaternionic to hypercomplex

In the previous section, we have shown that a hypercomplex manifold with conformal
symmetry can be related to a “small” quaternionic manifold. We now construct the inverse
map, that is, an explicit prescription to embed a quaternionic manifold characterized by
the SU(2) spin connection &x and complex structures J. XY into a hypercomplex manifold
with conformal symmetry. This construction is outlined in [78], here we will construct
the embedding explicitly. To conform with the notation of the previous section, the extra
coordinates are labeled by 20 and 2%, so that qX = (zo,za,qx), with the ¢ being the
coordinates on the small space. The ke (zo‘,qX ) need to be left-invariant vector fields
on SU(2). The dependence on ¢~ is not fixed at this point, but in the following we will
take these vectors to be independent of ¢*. This means that our construction differs
slightly from the one outlined in [78]. The advantage will be that we can construct the
hypercomplex manifold explicitly given the quaternionic data. We first need to introduce
an explicit parametrization of SU(2). We use the Euler parametrization:

U(1, 0, ) = 7% 0t — cosg V) sing e , (D.28)

—sin 0 e5(¥=9) cos g o5 (W+e)

so that the (left-invariant) Maurer-Cartan forms (L', L?, L?) and left-invariant vector fields
(,€,6%) read:
L' = sinpdf — cos ¢ sin 0 dip,
L? = cos pdf + sin ¢ sin 0 dip, (D.29)
L? = dip + cos 0 dip,

and:
el = Z?Islg;; +smg0§9 + cot cosgoai
£ = 2111111? (‘)E; + cos 4,0889 —cotf smcpaa (D.30)

151n the equation that follows, we are assuming that there is a metric jxy on the big space. However,
hxy can be defined independently of whether a good metric exists or not, we refer again to [78] for further
details.
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In particular, notice the important property (which follows from the definition of the
Maurer-Cartan forms):

dU = %LkakU. (D.31)

We set:
k9, = €, (D.32)

where the E = (f L2 53) is the triplet of vectors defined in (D.30) and we have identified
(zl, 22, z3) = (¢, 0, ¢). Analogously, the m, are defined from the L’s in (D.29) as:

Madz® = L. (D.33)

It is now evident that k¥ and 7 satisfy the relations (D.22), since the latter reduce to the
conditions: .

[gr,gs] — GT‘Stft, dLT = _§6T8tLS A Lt, (D34)
which are nothing else than the definitions of left-invariant vector fields and left-invariant
1-forms respectively. X

Recall that the vector A x = z%j XO induces the spin connection on the small space
after gauge-fixing, which is accomplished by taking the z* to be constants zj. Therefore
we need to set:

—

Ax (zS‘,qX) = —2Wx (qX) . (D.35)
Analogously, we take:

T (28.0%) = TY (%) (D.36)
The z“ dependence of these quantities is essentially fixed by the requirement that the
complex structures of the big space are integrable. In particular we need to satisfy (D.23)—

(D.24). We therefore take Ax and J, 7 to be independent of z. We then need to know
how SU(2) transformations act on SO(3) indices. We have:

. C o 1 ..
A =i A A= —lig]AY. (D.37)

7

As a consequence, given a SU(2) transformation U, the corresponding SO(3) transformation
MT" is given by:
1
M = JTr (U o Ut 08) , (D.38)

where the trace is taken over the SU(2) indices. Using (D.31), we easily see that:
1
dM"™ = —geSkthM’"t. (D.39)

This means that we can always “covariantize” a fixed (that is, independent of the Euler
angles) SO(3) vector A by considering Aeoy = MT - A = M™A". In fact it is easy to
check that:

(d + Ex) Aoy =0, (D.40)

where we have defined the vector of 1-forms L = (Ly, Lo, Ls).
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In view of property (D.40), we can use the matrix M defined in (D.38) to extend Ay
and fXY to general z:

Ax (2% ¢%) = (MT(z*)Mo) - Ax (2§, ¢%) , (D.41)
Ix ¥ (2%,¢%) = (M7 (2°) Mo) - Ty Y (%), (D.42)

where My is M (%), so that when we gauge fix we obtain the spin connection and complex
structures we started with. With this choice, k% does not depend on ¢*. This is basically
all we need, and the big space is hypercomplex [78].16 Notice that while we always refer to
the Euler parametrization, the definitions above are valid in general. However, the analysis
above shows that once we gauge fix the extra coordinates associated to the compensator
hypermultiplet, we can always choose a particularly convenient gauge as follows:

3
w=z2=0, 22 = 3™ (D.43)
which leads to the conditions:
K =46", m'e = 0", (D.44)

This can be accomplished for arbitrary small quaternionic spaces, justifying the choice
made in (B.18).
D.4 Metric and symmetries

When we have a metric on the small space (so that it is quaternionic-Kéhler), we can also
construct a metric on the big space as follows. We use A= (i, A), where i = 1,2. First,
the vielbein on the large space is determined from (D.19) to be:

s /1.0 o Lo o X _
fij = —leijy/ 52°, ij = gk " Oigs i =0,

<

) To X r (e X X
fia =0, fia = fiAAX k%, fia = Jia, (D 45)
Fid _ i 1 P fm L& P _ /iOA’X'O—_»ij
0 2207 « 2 « ’ X 2 )
TiA ZiA TiA 1A
0 — 07 é{ — O, X == X -

Notice that the index structure in the definition of Pauli matrices is taken to be Eij , so the
indices in the Pauli matrices used above are raised and lowered using the € tensor with the
usual conventions. As explained in the first section, the metric can be obtained by defining
an appropriate matrix C ip- We take:

~ ~

Cap = Cap, Ci;j = €ij, Cia = 0. (D.46)

60nce again, there are subtleties when the manifolds do not have a metric, but these are not important
for our purposes and we refer to [78] for a detailed discussion.
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The metric on the big space is then simply:

. dzO 2
ds® = —( 20) + {Zohxy(q)ququ

+ Gap (dzo‘ — /Tx(z, q) - Eaqu> (dzﬁ — /Ty(z, q) - Eﬁdqy> },

(D.47)

where gxy = 2°hxy is the metric induced on the small space.

Now we briefly turn to symmetries, which are important when we consider gauged
models. Working once again with spaces equipped with a metric, symmetries can be
characterized by vectors kf( :

g™ = Mk (q), (D.48)

which satisfy the Killing equation:
D (xkyyr =0. (D.49)

The moment maps vP;(q) are defined via:
, 1 =
vPr = —4—JXY©yk:f . (D.50)
r

The extension of these symmetries to the hyperkdhler manifold is straightforward. Let us
define k:f as:

=0, ky=k-7 kS =k, (D.51)
where 77 is defined by:
Ly, Y =7 x Jy Y. (D.52)

Equivalently, it is not difficult to show that:
1 - .
_’] = _87JYX X £kIJXY' (D53)
r

As a consequence, we have:
_ 1
vP = =57 = kX Gx. (D.54)
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