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1 Introduction

The study of supersymmetric gauge theories on compact manifolds has attracted much

attention in recent years. After the seminal work by Pestun [1], the method of supersym-

metric localization has been applied to compute partition functions of theories formulated

on compact manifolds of various dimensions. A comprehensive approach to rigid super-

symmetry in curved backgrounds has been also proposed [2].
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In this paper we focus on 5d N = 1 theories. Exact results for partition functions

of N = 1 theories on S5 and S4 × S1 were derived in [3–10] and [11–13]. In the case of

the squashed S5, the partition function ZS5 was shown to localize to a matrix integral of

classical, 1-loop and instanton contributions. The latter in turn comprises of three copies

of the equivariant instanton partition function on R4 × S1 [14, 15] with an appropriate

identification of the equivariant parameters, each copy corresponding to the contribution

at a fixed point of the Hopf fibration of S5 over CP2. The S4 × S1 case is similar with

the instanton partition function consisting of the product of two copies of the equivariant

instanton partition function on R4×S1, corresponding to the fixed points at the north and

south poles of S4.

Our first result is the observation that, by manipulating the classical and 1-loop part

to a form which respects the symmetry dictated by the gluing of the instanton factors, it

is possible to rewrite ZS5 and ZS4×S1 in terms of the same fundamental building blocks,

which we name 5d holomorphic blocks B5d. In formulas:

ZS5 =

∫
dσ
∣∣∣∣∣∣B5d

∣∣∣∣∣∣3
S
, ZS4×S1 =

∫
dσ
∣∣∣∣∣∣B5d

∣∣∣∣∣∣2
id
,

where the brackets
∣∣∣∣∣∣ . . . ∣∣∣∣∣∣3

S
and

∣∣∣∣∣∣ . . . ∣∣∣∣∣∣2
id

glue respectively three and two 5d holomorphic

blocks, as described in details in the main text. This result is very reminiscent of the

3d case where S2 × S1 and S3 partition functions were shown to factorize in terms of

the same set of building blocks, named 3d holomorphic blocks B3d
α , glued with different

pairings [16, 17]:1

ZS3 =
∑
α

∣∣∣∣∣∣B3d
α

∣∣∣∣∣∣2
S
, ZS2×S1 =

∑
α

∣∣∣∣∣∣B3d
α

∣∣∣∣∣∣2
id
.

Holomorphic blocks in three dimensions were identified with solid tori or Melving cigars

Mq = D2 × S1 partition functions, the subscripts id, S refer to the way blocks are fused

which was shown to be consistent with the decomposition of S2 × S1 and S3 in solid

tori glued by id and S elements in SL(2,Z). The index α labels the SUSY vacua of the

semiclassical R2×S1 theory but it also turns out to run over a basis of solutions to certain

difference operators which annihilates 3d blocks and 3d partition functions [17, 19, 20].

In fact, the similarity between the structure of 5d and 3d partition functions is not just

a coincidence, but it is due to a deep relation between the two theories. For example we

consider the 5d N = 1 SCQCD with SU(2) gauge group and four flavors on S4×S1 and S5

and show that, when the masses are analytically continued to certain values, 5d partition

functions degenerate to 3d partition functions of the SQED with U(1) gauge group and

four flavors respectively on S2 × S1 and S3. Schematically:

ZSCQCD
S5 =

∫
dσ
∣∣∣∣∣∣B5d

∣∣∣∣∣∣3
S
−→ ZSQED

S3 =
∑
α

∣∣∣∣∣∣B3d
α

∣∣∣∣∣∣2
S
,

and

ZSCQCD
S4×S1 =

∫
dσ
∣∣∣∣∣∣B5d

∣∣∣∣∣∣2
id
−→ ZSQED

S2×S1 =
∑
α

∣∣∣∣∣∣B3d
α

∣∣∣∣∣∣2
id
,

1For a proof of the factorization property of 3-sphere partition functions see [18].
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where the 5d id and S gluings reduce to the corresponding pairing for 3d theories in-

troduced in [17]. The mechanisms that leads to this degeneration is the fact that, upon

analytic continuation of the masses, 1-loop terms develop poles which pinch the integra-

tion contour. Partition functions then receive contribution from the residues at the poles

trapped along the integration contour. This result is roughly the compact version of the

degeneration of the instanton partition function to the vortex partition function of simple

surface operators [21–24], since S2×S1 and S3 are codimension-2 defects inside respectively

S4 × S1 and S5.

The fact that when analytically continuing flavor parameters partition functions degen-

erate to sum of terms annihilated by difference operators is quite general, for example this

is the case also for the 4d superconformal index [25]. In the case of the degeneration of 4d

instanton partition functions to surface operator vortex counting, this mechanism has been

related, via the AGT correspondence, to the analytic continuation of a primary operator

to a degenerate primary in Liouville correlators [21]. We can offer a similar interpretation

of the rich structure of the degeneration of 5d partition functions in the context of the

correspondence, proposed in [26], between 5d partition functions and correlators with un-

derlying symmetry given by a deformation of the Virasoro algebra known as Virq,t. In [26]

two families of such correlators, dubbed respectively S and id-correlators, were constructed

by means of the bootstrap approach using the explicit form of degenerate representations

of Virq,t as well as an ansatz for the pairings of the Virq,t chiral blocks, generalizing the

familiar holomorphic-antiholomorphic square. The two families of correlators differ indeed

by the pairing of the blocks and are endowed respectively with 3-point functions CS and

Cid. In [26] it was checked that ZS5 and ZS4×S1 partition functions of the 5d N = 1

SCQCD with SU(2) gauge group and Nf = 4 are captured respectively by 4-point S and

id-correlator on the 2-sphere.

In this paper we provide another check showing that 1-point torus correlators capture

the N = 1∗ SU(2) theory, that is the theory of a vector multiplet coupled to one adjoint

hyper. We also reinterpret and clarify the degeneration mechanisms of 5d partition func-

tions in terms of fusion rules of degenerate Virq,t primaries. In particular, the pinching

of the integration contour for the 5d partition functions is described in detail using the

language of Virq,t correlators.

As pointed out in [27], 3-point functions can also be used to define the reflection

coefficients, which in turn encode very important information about the theory. In the

case of Liouville theory a semiclassical reflection coefficient, which is perturbative in the

Liouville coupling constant b0, can be obtained from a “first quantized”-type analysis. In

the so-called mini-superspace approximation [28], one can solve the Schrödinger equation

for the zero-mode of the Liouville field which scatters from an exponential barrier. The

same equation appears when studying the radial part of the Laplacian in horospheric coor-

dinates on the hyperboloid SL(2,C)/SU(2) (Lobachevsky space) (see for instance [29–31]

and further references in the main text).

In this case, the reflection coefficient can be expressed as a ratio of so-called Harish-

Chandra c-functions for the root system of the underlying sl(2) Lie algebra. In fact, this

procedure is purely group-theoretic (see also [32, 33]) and can be generalized to the case of
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quantum group deformations. The results appear to be given in terms of products of factors

associated to the root decomposition of the relevant (quantum) algebra. These factors, in

turn, are given in terms of certain special functions which are typically Gamma functions

and generalizations thereof [34]. An important observation in [35] is that one can obtain

the exact non-perturbative Liouville reflection coefficient by considering the affine version

of the sl(2) algebra. While the non-affine version produces the semiclassical reflection

coefficient, the affinization procedure, which includes the contributions from the affine root

(equivalently, from the infinite tower of affine levels), generates the exact non-pertubative

result. In a sense, the affinization procedure plays the role of a “second quantization”,

restoring the non-perturbative dependence in the Liouville parameter 1/b0.

Inspired by this remarkable observation we checked whether our exact reflection co-

efficients, for the two types of geometries/correlator-pairings considered in [26], could be

reproduced by a similar affinization procedure, starting from a suitable choice of Harish-

Chandra c-functions. We found that this is indeed the case. Our reflection coefficients can

be obtained by affinizing the ratio of Harish-Chandra functions given in terms of q-deformed

Gamma functions Γq and double Gamma functions Γ2 for the id- and S-pairing, respec-

tively. The Γq function appears in the study of the quantum version of the Lobachevsky

space, which involves the quantum algebra Uq(sl(2)).2 The appearance of the Γ2 function

is harder to directly relate to a specific quantum group construction, even thought it has

been conjectured to be part of a hierarchy of integrable structures [34].

It is quite remarkable to observe that the affinization mechanisms works for the situa-

tion in object in this paper precisely as it did for Liouville theory. In particular, it is highly

non-trivial that such procedure is capable of restoring the SL(3,Z) invariance of the 5d

S-pairing after the infinite resummation. We believe that this occurrence deserves further

investigations.

To shed more light on the type of special functions appearing in our reflection coef-

ficients, we consider scattering of excitations in integrable spin-chains, which are proto-

typical representatives in the universality classes of 2-dimensional integrable systems. We

find that the special functions in our reflection coefficients are indeed typical of scattering

processes between particle-like excited states in different regimes of the XXZ system, ob-

tained as limiting cases from the XYZ spin-chain. In particular, the id -pairing produces

Γq functions that characterize the scattering in the antiferromagnetic regime of the XXZ

spin-chain, while the S -pairing produces Γ2 functions, related to the scattering on the XXZ

chain in its disordered regime (and also, for instance, in the Sine-Gordon model). The link

between reflection coefficients, Harish-Chandra functions and scattering matrices of inte-

grable systems is in essence the one anticipated in the work of Freund and Zabrodin (see

for instance [34] and further references in the main text). In this sense, we can establish a

direct connection between the axiomatic properties of the q-deformed systems underlying

gauge theory partition functions, their semiclassical images consisting of quantum mechan-

ical reflections from a potential barrier, their geometric pictures in terms of group theory

data, and the exact analysis of 2-dimensional integrable hierarchies.

2A lattice version of Liouville theory has been suggested in [36] to be related to the quantum algebra

Uq(sl(2)) via a certain Baxterisation procedure. This procedure can be thought of as a technique to

consistently introduce the dependence on a spectral parameter in an otherwise constant R-matrix structure.
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The underlying presence of the q-deformed Virasoro symmetry is strongly suggestive

that the properties of the q-conformal blocks and of the emerging integrable systems should

be intimately tied together. In particular, we expect that a significant part will be played

by the q-deformed Knizhnik-Zamolodchikov equation [37, 38], and, correspondingly, by the

integrable form-factor equations3 [39, 40].

The appearance of the XXZ spin-chain in connection with reflection coefficients is not

surprising since, as it was shown in [26], the 3-point functions CS and Cid were ultimately

derived from 3d N = 2 theories whose SUSY vacua can be mapped to eigenstates of

spin-chain Hamiltonians [41, 42]. For further results in this direction see [43–46].

2 5d holomorphic blocks

In this section we study 5d N = 1 theories formulated on the squashed S5 and on S4×S1.

We begin by recording the expressions obtained in the literature for the partition functions

ZS5 and ZS4×S1 . We then show that ZS5 and ZS4×S1 can be decomposed in terms of 5d

holomorphic blocks B5d. We also show how S5 and S4×S1 partition functions degenerate to

S3 and S2×S1 partition functions when masses are analytically continued to suitable values.

2.1 Squashed S5 partition functions and 5d holomorphic blocks

In a series of papers [3–10] the 5d N = 1 supersymmetric gauge theory has been formulated

on S5 with squashing parameters ω1, ω2, ω3, and the partition function has been shown to

localize to the integral over the zero-mode of the vector multiplet scalar σ which takes value

in the Cartan subalgebra of the gauge group, which we take to be SU(N) with generators

Ta normalized as TrR(TaTb) = C2(R)δab, with C2(F ) = 1/2 for the fundamental. The

integrand includes a classical factor Zcl(σ), a 1-loop factor Z1-loop

(
σ, ~M

)
and an instanton

factor Zinst

(
σ, ~M

)
ZS5 =

∫
dσ Zcl(σ)Z1-loop

(
σ, ~M

)
Zinst

(
σ, ~M

)
, (2.1)

where we schematically denote by ~M all mass parameters of the theory and the explicit

expressions of the factors depend on the field content of the 5d N = 1 theory under

consideration.

The instanton partition function Zinst

(
σ, ~M

)
receives contributions from the three fixed

points of the Hopf fibration over the CP2 base, and, as show in [8, 9], takes the following

factorized form:

Zinst

(
σ, ~M

)
=
∣∣∣∣∣∣Zinst

∣∣∣∣∣∣3
S
, (2.2)

where Zinst coincides with the equivariant instanton partition function on R4 × S1 [14, 15]

with Coulomb and mass parameters appropriately rescaled and with equivariant parameters

ε1 = e1
e3

and ε2 = e2
e3

:

Zinst = ZR4×S1

inst

(
iσ

e3
,
~m

e3
;
e1

e3
,
e2

e3

)
, (2.3)

3We thank Samson Shatashvili for communication on this point.
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where

mj = iMj + E/2 , j = 1, · · · , Nf , (2.4)

and E = ω1 + ω2 + ω3. We also introduced the notation:∣∣∣∣∣∣(. . . )∣∣∣∣∣∣3
S

:= (. . .)1(. . .)2(. . .)3 , (2.5)

where the sub-indices 1, 2, 3 refer to the following identification of the parameters e1, e2, e3

to the squashing parameters ω1, ω2, ω3 in each sector:

e1 e2 e3

1 ω3 ω2 ω1

2 ω1 ω3 ω2

3 ω1 ω2 ω3

(2.6)

Explicitly we have:

(Zinst)1 = ZR4×S1

inst

(
iσ

ω1
,
~m

ω1
;
ω2

ω1
,
ω3

ω1

)
, (Zinst)2 = ZR4×S1

inst

(
iσ

ω2
,
~m

ω2
;
ω1

ω2
,
ω3

ω2

)
,

(Zinst)3 = ZR4×S1

inst

(
iσ

ω3
,
~m

ω3
;
ω1

ω3
,
ω2

ω3

)
. (2.7)

Notice that since the instanton partition function can be expressed in terms of the

parameters

q = e2πie1/e3 , t = e2πie2/e3 , (2.8)

the pairing defined in eq. (2.5) enjoys an SL(3,Z) symmetry which acts S-dualizing the

couplings q and t.

The classical factor contains the contribution of the Yang-Mills action given by4

Zcl(σ) = e
2πi

ω1ω2ω3g
2 Tr(σ2)

= e
− 2πi
ω1ω2ω3g

22C2(ad)

∑
α[iα(σ)]2

(2.9)

where we denoted by α a root of the Lie algebra of the gauge group and we used that

2C2(ad)
∑

ρ ρ(σ)2 =
∑

α α(σ)2. We can try to bring this term in the SL(3,Z) factorized

form as the instanton contribution. We begin by rewriting the classical term by means of

the Bernoulli polynomial B33, defined in appendix A.1, as

Zcl(σ) =
∏
α

e
− 2πi

3!

[
B33

(
iα(σ)+ 1

g22C2(ad)
+E

2

)
−B33

(
1

g22C2(ad)
+E

2

)]
. (2.10)

Each factor in the above expression can in turn be factorized thanks to the following

identity [47]

e−
2πi
3!
B33(z) =

3∏
k=1

Γq,t

(
z

e3

)
k

=
∣∣∣∣∣∣Γq,t( z

e3

) ∣∣∣∣∣∣3
S
, (2.11)

4To simplify formulas we define g2 =
g2YM
4iπ2 .
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where the elliptic gamma function Γq,t is defined in appendix A.4. Hence by applying the

identity (2.11) to each Bernoulli factor we obtain:5

Zcl(σ) =
∣∣∣∣∣∣Zcl

∣∣∣∣∣∣3
S
, (2.12)

with

Zcl =
∏
α

Γq,t

(
1
e3

(
iα(σ) + 1

g22C2(ad)
+ E

2

))
Γq,t

(
1
e3

(
1

g22C2(ad)
+ E

2

)) . (2.13)

We can therefore write the partition function as:

ZS5 =

∫
dσ Z1-loop

(
σ, ~M

) ∣∣∣∣∣∣F∣∣∣∣∣∣3
S
, (2.14)

with

F = ZclZinst , (2.15)

where Zcl and Zinst are given respectively in (2.13) and (2.3).

We can give another representation of the partition function where we bring also the

1-loop contribution to an SL(3,Z) factorized form as in [8]. We remind that a vector

multiplet contributes to the partition function with

Zvect
1-loop(σ) =

∏
α>0

S3(iα(σ))S3(E + iα(σ)) , (2.16)

while a hyper multiplet of mass M and representation R gives

Zhyper
1-loop(σ,M,R) =

∏
ρ∈R

S3

(
iρ(σ) + iM +

E

2

)−1

, (2.17)

where S3 is the triple sine function defined in appendix A.2. Using the relation (A.6), the

vector multiplet contribution can be written as

Zvect
1-loop(σ) =

∏
α>0

e−
πi
3!

[B33(iα(σ))+B33(iα(σ)+E)]
(

1−e
2πi
ω1

[iα(σ)]
)(

1−e
2πi
ω2

[iα(σ)]
)(

1−e
2πi
ω3

[iα(σ)]
)

×
3∏

k=1

(
te

2πi
e3

[iα(σ)]
; q, t

)
k

(
qe

2πi
e3

[iα(σ)]
; q, t

)
k
, (2.18)

where (z; q, t) =
∏
i,j≥0

(
1− zqitj

)
denotes the double (q, t)-factorial, while the sub-index

k refers to the way q, t defined in (2.8) are related to the squashing parameters according

to (2.6). Each factor
(
te

2πi
e3

[iα(σ)]
; q, t

)
k

(
qe

2πi
e3

[iα(σ)]
; q, t

)
k

can in turn be identified with

the 1-loop vector multiplet contribution to the R4 × S1 theory [14, 15, 48] appropriately

rescaled, and with equivariant parameters as in (2.8). We can equivalently factorize the

vector multiplet 1-loop term in the following more compact form:

Zvect
1-loop(σ) =

∏
α

e−
πi
3!
B33(iα(σ))

3∏
k=1

(
e

2πi
e3

[iα(σ)]
; q, t

)
k
. (2.19)

5A Chern-Simons term can be similarly dealt with by writing cubic terms as sums of B33.

– 7 –



J
H
E
P
1
2
(
2
0
1
4
)
0
4
0

Analogously, the hyper multiplet factor can be written as

Zhyper
1-loop(σ,M,R) =

∏
ρ∈R

e
πi
3!
B33(iρ(σ)+iM+E

2 )
3∏

k=1

(
e

2πi
e3

[iρ(σ)+iM+E
2 ]; q, t

)−1

k
, (2.20)

where
(
e

2πi
e3

[iρ(σ)+iM+E
2 ]; q, t

)−1

can be identified with the 1-loop hyper multiplet contri-

bution to the R4 × S1 partition function [14, 15, 48]. The full 1-loop contribution to the

partition function as can be therefore written as

Z1-loop

(
σ, ~M

)
=
∏
R

∏
α
ρ∈R

e−
πi
3!

[B33(iα(σ))−B33(iρ(σ)+mR)]
3∏

k=1

(
e

2πi
e3

[iα(σ)]
; q, t

)
k(

e
2πi
e3

[iρ(σ)+mR]
; q, t

)
k

(2.21)

where mR = iMR +E/2 is the mass of a multiplet in the representation R. If we consider

(pseudo) real representations, for each weight ρ there is the opposite weight −ρ, in which

case the Bernoulli sum to a quadratic polynomial which can be easily factorized in terms of

elliptic Gamma functions as we did for the classical term. In fact, in this case the Bernoulli

from the 1-loop factor will amounts to a renormalization of the gauge coupling constant.

To see this, let us consider Nf fundamentals of mass Mf and Nf anti-fundamentals of

mass M̄f , with f = 1, . . . , Nf , and Na adjoints of mass Ma, a = 1, . . . , Na. The total

contribution from 1-loop Bernoulli terms is (up to a σ-independent constant)

e
− 2πi
ω1ω2ω3

∑
α[iα(σ)]2

2C2(ad) [E4 Nf−
1
4

∑
f (mf+m̄f )+C2(ad)(E2 (Na−1)−

∑
ama)] , (2.22)

since
∑

ρ ρ(σ) = 0 for SU(N). Comparing the above expression with the classical

action (2.9), it is easy to obtain the factorized version of (2.22) by shifting the gauge

coupling constant in (2.13), according to

1

g2
→ 1

g2
+
E

4
Nf −

1

4

∑
f

(mf + m̄f ) + C2(ad)

(
E

2
(Na − 1)−

∑
a

ma

)
. (2.23)

Therefore also the total 1-loop contribution admits a factorized form:

Z1−loop

(
σ, ~M

)
=
∣∣∣∣∣∣Z1-loop

∣∣∣∣∣∣3
S
. (2.24)

Putting all together we can finally write (up to constant prefactors):

ZS5 =

∫
dσ
∣∣∣∣∣∣B5d

∣∣∣∣∣∣3
S
, (2.25)

where B5d, the 5d holomorphic block, is defined as

B5d = Z1-loop Zcl Zinst . (2.26)

It is important to note the way we factorize 1-loop and classical terms is not unique. We

have seen an example of this for the vector multiplet contribution. We will now see more

precisely how to track this ambiguity in an example.
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The SU(2) superconformal QCD. We consider the superconformal QCD (i.e. SC-

QCD) with SU(2) gauge group. In this case, the Coulomb branch parameter can be written

as σ = i
(
a1 0
0 a2

)
with a1 = −a2 = a and the vector multiplet is coupled to four fundamental

hyper multiplets with masses Mf , f = 1, 2, 3, 4. The total 1-loop contribution is given by:

Z1−loop

(
a, ~M

)
=

S3 (a1 − a2)S3 (a2 − a1)∏
f S3 (a1 +mf )S3 (a2 +mf )

. (2.27)

Collecting theB33 factors coming from the factorization of the S3 functions in (2.27) we find:

B33(2a)+B33(−2a)−
∑
f

[B33(a+mf )+B33(−a+mf )] = − 6a2

ω1ω2ω3

∑
f

mf+const , (2.28)

where the constant denotes a-independent terms. We then combine 1-loop and the classical

Yang-Mills action

Zcl(a) = e
− 2πi
ω1ω2ω3

a2

g̃2 ,

where g̃2 = g2/2 obtaining:

Zcl(a) Z1-loop

(
a, ~M

)
= e
− 2πia2

ω1ω2ω3

(
1
g̃2
− 1

2

∑
f mf

) 3∏
k=1

(
e

2πi
e3

[±2a]
; q, t

)
k∏4

f=1

(
e

2πi
e3

[±a+mf ]
; q, t

)
k

, (2.29)

where for compactness we have employed the shorthand notation f(±a) = f(a)f(−a). The

next step is to write the exponential as a sum of B33,

e
− 2πia2

ω1ω2ω3

(
1
g̃2
− 1

2

∑
f mf

)
=
e
− 2πi

3!
B33(±a+ 1

g̃2
− 1

2

∑
f mf+κ)

e−
2πi
3!
B33(±a+κ)

× e−
4πi
3!
B33(κ)

e
− 4πi

3!
B33

(
1
g̃2
− 1

2

∑
f mf+κ

) . (2.30)

In this expression the coefficient κ appearing only on the r.h.s. is completely arbitrary

and can be identified with the ambiguity of the factorization. Finally we apply the iden-

tity (2.11) to each Bernoulli factor in (2.30) and obtain the SQCD 5d holomorphic blocks:6

B5d =

(
e

2πi
e3

[±2a]
; q, t

)
∏
f

(
e

2πi
e3

[±a+mf ]
; q, t

) · Γq,t

(
±a+1/g̃2−

∑
f mf/2+κ

e3

)
Γq,t

(
±a+κ
e3

) · Zinst . (2.31)

2.2 S4 × S1 partition functions and 5d holomorphic blocks

The partition functions for 5d N = 1 supersymmetric gauge theory on S4 × S1 has been

computed in [11–13] and reads

ZS4×S1 =

∫
dσ Z1-loop

(
σ, ~M

)
Zinst

(
σ, ~M

)
, (2.32)

where σ is the Coulomb branch parameter. The instanton part receives contributions from

the fixed points at north and south poles of the S4 and can be written as

Zinst =
∣∣∣∣∣∣Zinst

∣∣∣∣∣∣2
id
, (2.33)

6We are dropping a-independent elliptic Gamma factors.
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where as before Zinst coincides with the equivariant instanton partition function on R4×S1

with Coulomb and mass parameters appropriately rescaled, and a particular parameteri-

zation of the equivariant parameters:

Zinst(σ, ~m) = ZR4×S1

inst

(
iσ

e3
,
~m

e3
;
e1

e3
,
e2

e3

)
, (2.34)

with mj = iMj +Q0/2 and Q0 = b0 +1/b0. We also introduced the 5d id-pairing defined as∣∣∣∣∣∣(. . . )∣∣∣∣∣∣2
id

:= (. . .)1(. . .)2 , (2.35)

where the 1,2 sub-indices means that the e1, e2, e3 parameters assume the following values:

e1 e2 e3

1 b−1
0 b0 2πi/β

2 b−1
0 b0 −2πi/β

with β the circumference of S1 and b0 the squashing parameter of S4.

Due to the property (A.28) the elliptic Gamma function satisfies
∣∣∣∣∣∣Γq,t(z)∣∣∣∣∣∣2

id
= 1 and

the classical term Zcl defined in eq. (2.13) “squares” to one:∣∣∣∣∣∣Zcl

∣∣∣∣∣∣2
id

= 1 . (2.36)

We can therefore write

ZS4×S1 =

∫
dσ Z1-loop

(
σ, ~M

) ∣∣∣∣∣∣F∣∣∣∣∣∣2
id
, (2.37)

with F defined in eq. (2.15).

The 1-loop contributions of vector and hyper multiplets are given respectively by

Zvect
1-loop(σ) =

∏
α>0

Υβ (iα(σ)) Υβ (−iα(σ)) , (2.38)

and

Zhyper
1-loop(σ,M,R) =

∏
ρ∈R

Υβ

(
iρ(σ) + iM +

Q0

2

)−1

, (2.39)

where Υβ is defined in appendix A.3. Also in this case it is possible to bring the 1-loop

term in a factorized form. Indeed if we use again that
∣∣∣∣∣∣Γq,t(z)∣∣∣∣∣∣2

id
= 1 we can write

Zvec
1-loop(σ) =

∣∣∣∣∣∣Zvec
1-loop

∣∣∣∣∣∣2
id
, Zhyper

1-loop

(
σ, ~M

)
=
∣∣∣∣∣∣Zhyper

1-loop

∣∣∣∣∣∣2
id
, (2.40)

with Zvec
1-loop,Z

hyper
1-loop coinciding with the corresponding factors obtained from the factoriza-

tion of 1-loop terms on S5, which implies that

ZS4×S1 =

∫
dσ
∣∣∣∣∣∣B5d

∣∣∣∣∣∣2
id
. (2.41)
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Hence we surprisingly discover that for a given theory, the S5 and S4×S1 partition functions

can be factorized in terms of the same 5d blocks B5d. This is very reminiscent to what

happens in 3d, where the partition function for S3
b and S2 × S1 can be expressed via the

same blocks, paired in two different ways [17].

It would be very interesting to test whether partition functions on more general 5-

manifolds can be engineered by fusing our B5d blocks with suitable gluings.

2.3 Degeneration of 5d partition functions

An interesting feature of S5 and S4×S1 partition functions (2.1), (2.32) is that for particular

values of the masses 1-loop factors develop poles which pinch the integration contour. The

partition functions can then be defined via a meromorphic analytic continuation which

prescribes to take the residues at the poles trapped along the integration path. Here we

will consider a particular example, the SU(2) theory with four fundamental hyper multiplets

with masses Mf , f = 1, . . . , 4 on S5. In this case when two of the masses, say M1,M2,

satisfy the following condition:

M1 +M2 = i(ω3 + E) or m1 +m2 = −ω3 , (2.42)

where mi are defined in (2.4), the partition function receives contribution only from two

pinched poles located at

a1 = m1 = −m2 − ω3 = −a2 , a1 = m1 + ω3 = −m2 = −a2 . (2.43)

This is reminiscent of the degeneration of a Liouville theory 4-point correlation function

when one of the momenta is analytically continued to a degenerate value. The AGT

setup explains that the degeneration limit corresponds on the gauge theory side to the

reduction of 4d partition functions to simple surface operator partition functions [21–24].

In particular the S4 SCQCD partition function, in this limit, reduces to its codimension-2

BPS defect theory, the S2 SQED Higgs branch partition function [49, 50]. Therefore we

expect that, when the masses are analytically continued to the values (2.42), the squashed

S5 SCQCD partition function will degenerate to its codimension-2 defect theory, the 3d

SQED defined on the squashed 3-sphere S3
b which we record below. The S3

b Higgs branch

partition function of the U(1), N = 2 theory with 2 charge plus and 2 charge minus chirals,

takes the following form [16]:

ZS3
b

=
∑
i=1,2

G
(i)
cl G

(i)
1−loop

∣∣∣∣∣∣Z(i)
V

∣∣∣∣∣∣2
S
, (2.44)

where the sum runs over the two SUSY vacua of theory and

G
(i)
cl = e−2πiξm3d

i , G
(i)
1−loop =

∏
j,k=1,2

sb

(
m3d
j −m3d

i + iQ/2
)

sb
(
m̃3d
k −m3d

i − iQ/2
) , j 6= i , (2.45)

Z(i)
V =

∑
n≥0

∏
j,k=1,2

(
ykx
−1
i ; q

)
n(

qxjx
−1
i ; q

)
n

(
u3d
)n
, (2.46)
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where b is the squashing parameter of the ellipsoid, Q = b+ 1/b, and sb is the double sine

function defined in appendix A.1. The vortex partition functions Z(i)
V are basic hypergeo-

metric functions defined in (B.12) with coefficients:

xi = e2πbm3d
i , yi = e2πbm̃3d

i , z3d = e2πbξ, q = e2πib2 ,

x̃i = e2πm3d
i /b, ỹi = e2πm̃3d

i /b, z̃3d = e2πξ/b, q̃ = e2πi/b2 , (2.47)

and ∏
j,k=1,2

xjy
−1
k = r,

(
u3d
)

= qr
1
2

(
z3d
)−1

. (2.48)

Finally the 3d S-pairing is defined as [17]:∣∣∣∣∣∣f(x; q)
∣∣∣∣∣∣2
S

= f(x; q)f(x̃; q̃) . (2.49)

We will now show how to reconstruct (2.44) from the residues of the S5 partition function

at the pinched poles. We begin by analyzing the SCQCD instanton contribution which is

given by:

Zinst = ZR4×S1

inst

(
~a

e3
,
~m

e3
;
e1

e3
,
e2

e3

)
=
∑
~Y

z|
~Y |F~Y (~a, ~m)

V~Y (~a)
, z = e

2πi
e3g̃

2 . (2.50)

The numerator F~Y (~a, ~m) encodes the contribution of the four hyper multiplets and the

denominator V~Y (~a) is due to the vector multiplet and we refer to appendix B for explicit

expressions. As explained in appendix B, when the Coulomb branch parameters take the

values a1 = m1 = −m2 − ω3 = −a2, the instanton partition function (2.50) degenerates to

a basic hypergeometric function. In particular the instanton partition function in the first

sector becomes:

(Zinst)1 = ZR4×S1

inst

(
~a

ω1
,
~m

ω1
;
ω2

ω1
,
ω3

ω1

)
−−−−−−−−−−−−−→
(a1,a2)→(m1,m2+ω3)

2Φ1

(
A,B;C, e

2πi
ω2
ω1 ;u

)
, (2.51)

where A,B,C, u parameters are defined in (B.11) and we replaced e1, e2, e3 in eq. (B.10)

with their values in terms of ωi in sector 1 as in (2.6). In sector 2 we use (B.13) and the

appropriate values of ei in terms of ωi to find:

(Zinst)2 = ZR4×S1

inst

(
~a

ω2
,
~m

ω2
;
ω1

ω2
,
ω3

ω2

)
−−−−−−−−−−−−−→
(a1,a2)→(m1,m2+ω3)

2Φ1

(
Ã, B̃; C̃, e

2πi
ω1
ω2 ; ũ

)
, (2.52)

where the tilde symbol indicates ω1 ↔ ω2. Finally in sector 3, once the ei are expressed in

terms of the ωi according to (2.6), all the parameters are rescaled by ω3 yielding a trivial

degeneration, as explained in appendix B:

(Zinst)3 = ZR4×S1

inst

(
~a

ω3
,
~m

ω3
;
ω1

ω3
,
ω2

ω3

)
−−−−−−−−−−−−−→
(a1,a2)→(m1,m2+ω3)

1 . (2.53)

Putting all together we find that∣∣∣∣∣∣Zinst

∣∣∣∣∣∣3
S
−−−−−−−−−−−−−→
(a1,a2)→(m1,m2+ω3)

∣∣∣∣∣∣ 2Φ1(A,B;C, e
2πi

ω2
ω1 ;u)

∣∣∣∣∣∣2
S

=
∣∣∣∣∣∣Z(1)

V

∣∣∣∣∣∣2
S
, (2.54)
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which shows that remarkably the 5d S-pairing reduces to the 3d S-pairing. Furthermore

by identifying the coefficient A,B,C of the basic hypergeometrc function with those of

the vortex partition function Z(1)
V , as required by last equality in eq. (2.54), we obtain the

following dictionary between 3d and 5d masses:

m3d
1 = −im1 , m3d

2 = −im2 , m̃3d
1 = im3 , m̃3d

2 = im4 , (2.55)

while by matching the expansion parameters we find

iξ = 1/g̃2 . (2.56)

Finally, we also identify

ω2 =
1

ω1
= b . (2.57)

In complete analogy for the other pole, located at a1 = m1 +ω3 = −m2 = −a2, upon using

the dictionary (2.55), we find∣∣∣∣∣∣Zinst

∣∣∣∣∣∣3
S
−−−−−−−−−−−−−→
(a1,a2)→(m1+ω3,m2)

∣∣∣∣∣∣Z(2)
V

∣∣∣∣∣∣2
S
. (2.58)

We next consider the 1-loop term given in (2.27). Since this term has poles when (a1, a2)

take the two values in (2.43) and since we are only interested in showing that the degener-

ation of the S5 partition function reproduces the S3
b partition function up to a prefactor,

we evaluate the ratio of the residues at each pole. This ratio is finite and, by using the

property (A.9), it is straightforward to show that it reproduces the ratio of the S3
b 1-loop

terms in the two SUSY vacua, given in eq. (2.45):

Z1−loop

∣∣∣
(a1,a2)→(m1,m2+ω3)

Z1−loop

∣∣∣
(a1,a2)→(m1+ω3,m2)

=
G

(1)
1−loop

G
(2)
1−loop

. (2.59)

Similarly, it is simple to show that the ratio of the residues of the classical term at the

points (2.43) reproduces the ratio of the S3
b classical terms in the two SUSY vacua, given

in eq. (2.45):

Zcl

∣∣∣
(a1,a2)→(m1,m2+ω3)

Zcl

∣∣∣
(a1,a2)→(m1+ω3,m2)

= e
− 2πi
ω1ω2ω3

(m2
1−m

2
2)

g̃2 = e
2πi(m1−m2)

ω1ω2g̃
2 = e2πiξ(m3d

1 −m3d
2 ) =

G
(1)
cl

G
(2)
cl

, (2.60)

where we used m2
1 −m2

2 = −ω3(m1 −m2) and the dictionary (2.55), (2.56).

Finally putting all together we obtain the promised result:

ZSCQCD
S5 −−−−−−−−→

m1+m2=−ω3

2∑
i

G
(i)
cl G

(i)
1−loop

∣∣∣∣∣∣Z(i)
V

∣∣∣∣∣∣2
S

= ZSQED
S3 . (2.61)

Notice that there are two extra choices for the degeneration condition, which would have

led to the same result:

m1 +m2 = −ω1 , with ω2 =
1

ω3
= b ,

m1 +m2 = −ω2 , with ω1 =
1

ω3
= b . (2.62)
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The three possibilities correspond to choosing one of the three maximal squashed 3-spheres

inside the squashed 5-sphere.

In a similar manner, it is possible to show that the partition function of the SCQCD

on S4 × S1, when two of the masses satisfy the condition

m1 +m2 = −b0 , (2.63)

reduces to the SQED partition function on S2 × S1:7

ZSCQCD
S4×S1 −−−−−−−−→

m1+m2=−b0

2∑
i

G
(i)
cl G

(i)
1−loop

∣∣∣∣∣∣Z(i)
V

∣∣∣∣∣∣2
id

= ZSQED
S2×S1 , (2.64)

with the 3d angular momentum fugacity q related to the 5d parameters by q = eβ/b0 . Also

in this case there is another possible degeneration condition m1 + m2 = − 1
b0

, which leads

to the same result but with the identification q = eβb0 . The two choices, correspond to the

two maximal S2 inside the squashed S4.

2.3.1 Higher degenerations

In the previous section we focused on particular analytic continuations of the 5d

masses (2.43), (2.63) which degenerate partition functions to a bilinear combination of

solutions to basic hypergeometric difference equations. The degeneration mechanism is ac-

tually much more general, for example the 1-loop factor of the SCQCD on S5 develops poles

pinching the integration contour when two of the masses satisfy the following condition:

m1 +m2 = −(n1ω1 + n2ω2 + n3ω3) = −~n · ~ω , n1, n2, n3 ∈ Z+ . (2.65)

In this case the integral localizes to a sum over the following set:

{a∗} : a1 = m1 + (~n− ~p) · ~ω , a2 = m2 + ~p · ~ω , (2.66)

where

pk ∈ {0, 1, · · · , nk} , k = 1, 2, 3 . (2.67)

Evaluating the residues at points (2.66) we find:

ZSCQCD
S5 −−−−−−−−−→

m1+m2=−~n·~ω

∑
{a∗}

Res
[
Z1−loop

]
(Fp2,p3)1 (Fp3,p1)2 (Fp2,p1)3 , (2.68)

where (Fpi,pj ) denotes the value of classical and instanton parts at the pole

(Fpi,pj )k =
(
Zpi,pjcl

)
k

(
Zpi,pjinst

)
k
, with i 6= j 6= k = 1, 2, 3 , (2.69)

and, as usual, the subscript k means that in each sector we express the ei in terms of the

ωis according to the dictionary (2.6).

7The explicit expression of the Higgs branch partition function ZSQED

S2×S1 can be found in [26].
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The residue of the instanton contribution is given by:

Zp2,p1

inst =
∑

Y 1=(p2, p1)
Y 2=(n2−p2, n1−p1)

Fp2,p1

Vp2,p1

z|
~Y | , (2.70)

where Fp2,p1 and Vp2,p1 are defined in eqs. (B.16) and (B.17). In this case the analytic

continuation of the masses restricts the sum to hook Young tableaux with p2 rows and p1

columns, and with n2− p2 rows and n1− p1 columns respectively. Furthermore Zp3,p2

inst and

Zp3,p1

inst are obtained from Zp2,p1

inst by appropriately renaming/permuting the pi.

The value of the classical term Zp2,p1

cl is computed in eqs. (B.19), (B.21) and the

identification of the pi as well as of the ei is like in the instanton case discussed above.

In the next section we will provide an interpretation of the degeneration (2.68) using

the correspondence between the S5 SCQCD partition functions and a 4-point q-deformed

correlators. In particular the analytic continuation (2.65) will be mapped to the analytic

continuation of the momentum of one of the primaries to a higher level degenerate momen-

tum. Clearly the degeneration mechanism of 5d partition functions, due to the analytic

continuation of the masses, is not limited to the SCQCD, but it extends to more general

quiver gauge theories which via the 5d/q-CFT correspondence are mapped to higher point

correlation functions.

3 5d partition functions as q-correlators

In [26] it was proposed that the 5d partition functions discussed in the previous section are

captured by a novel class of correlators, dubbed q-correlators or q-CFT correlators, with

underling q-deformed Virasoro symmetry (Virq,t).8

Deformed Virasoro and WN algebras were introduced in [53–56], using a correspon-

dence between singular vectors and multivariable orthogonal symmetric polynomials or

using the Wakimoto realization at the critical level. It was also independently shown that

the deformed Virasoro algebra emerges as a symmetry in study of the Andrews-Baxter-

Forester (ABF) model [57, 58].

Considering expressions (2.14) and (2.37) for partition functions, the match to q-

correlators requires to identify

Z1-loop(σ, ~m)⇔ 3− point function factors , (3.1)

and

F = Zcl Zinst ⇔ Virq,t chiral blocks . (3.2)

The connection between Virq,t chiral blocks and the 5d Nekrasov instanton function on

R4×S1 was discussed already in the context of the 5d AGT correspondence [59–63].9 Our

8The flux-trap realisation of 3d and 5d theories [51], should allow to gather evidences of the appearance

of a q-deformed version of Liouville theory from M5 branes compactifications, along the lines of [52].
9See [64–67] for recent developments.
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proposal includes the interpretation of Zcl as the q-deformation of the factor fixed by the

conformal Ward identities.10 Indeed, it is easy to check that since

lim
e3→∞

Γq,t(x/e3) ' e−
2π
3!
B33(x|~e) ,

in the undeformed Virasoro limit, that is e2 = b0 = 1/e1 and e3 = 2πi
β → ∞, the classical

term Zcl, upon identifying the Coulomb branch parameter with the internal momentum in

the correlator as α = Q0/2 + a, reduces to:

Zcl → e
− 2πi
e1e2e3

a2

g̃2 = z−a
2

= zα(Q0−α)z−Q
2
0/2 , (3.3)

which is the part depending on the internal momentum of the conformal factor multiplying

chiral Virasoro conformal blocks.

In [26] a novel class of non-chiral, modular invariant q-correlators was defined and

proved to capture the full partition function of 5d theories on compact manifolds. In par-

ticular, the two cases S5 and S4×S1 are related to q-CFT correlators with symmetry given

by different tensor products of Virq,t algebra and different 3-point functions. In details:

• squashed S5: correlators have symmetry (Virq,t)3 and 3-point function11

CS(α3, α2, α1) =
1

S3(2αT − E)

3∏
i=1

S3(2αi)

S3(2αT − 2αi)
. (3.4)

This q-CFT was dubbed S-CFT in [26], since degenerate correlators reproduce par-

tition functions for 3d theories on S3
b and, as reviewed in the previous section, in

the block factorized expression of the partition function, the blocks are glued by an

S-pairing [17].

• S4 × S1: correlators have symmetry (Virq,t)2 and 3-point function

Cid(α3, α2, α1) =
1

Υβ(2αT −Q0)

3∏
i=1

Υβ(2αi)

Υβ(2αT − 2αi)
. (3.5)

This q-CFT was dubbed id-CFT in [26], since degenerate correlators are equivalent

to 3d partition functions on S2 × S1, that in the block factorized expression involves

an id-pairing [17].

The 3-point functions were derived in [26] by means of the bootstrap approach, studying

the crossing symmetry invariance of 4-point correlators with the insertion of a level-2

degenerate state. These degenerate correlators were in turn argued to reproduce partition

functions of certain 3d theories defined on codimension-2 submanifolds of the 5d space. The

degenerate correlators were constructed in [26] exploiting modular invariance and the fact

that they are bounded to satisfy certain difference equations. However, these correlators

10For a study of q-deformed SU(1, 1) Ward identities see [68, 69].
11Where 2αT = α1 + α2 + α3.
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can also be obtained as a limit of non-degenerate correlators, analytically continuing the

momenta of the states to degenerate values. This is the q-CFT analogue of the degeneration

mechanism discussed in the previous section, that permits to obtain 3d partition functions

as a limit of 5d partition functions. We will focus on this limit later in this section.

In [26] the 4-point non-degenerate correlator on the 2-sphere was analyzed and identi-

fied with the N = 1 5d SU(2) theory with four fundamental flavors. Below we give another

example showing how the 1-point torus correlator captures the N = 1∗ SU(2) theory, that

is the theory of a vector multiplet coupled to one adjoint hyper of mass M . Since the map

between the 5d instanton partition functions and Virq,t blocks is established we focus only

on the 1-loop part of the partition function.

3.1 An example: Torus with one puncture

• id-CFT: for this q-CFT, the 3-point function is given in formula (3.5). As in standard

2d CFT, we assume that the correlator can be decomposed as a product of 3-point

functions and q-deformed conformal blocks. In particular, denoting by α the internal

state and by α1 the external puncture, the 3-point function contribution to the 1-

point torus correlator can be written as

Cid(Q0 − α, α1, α) =
Υβ(2α1)

Υβ(α1)Υβ(α1)

Υβ(−Q0 + 2α)Υβ(Q0 − 2α)

Υβ(α1 −Q0 + 2α)Υβ(α1 +Q0 − 2α)
. (3.6)

As usual we relate the internal state α to the gauge theory Coulomb branch parameter

and the external state α1 to the mass of the adjoint hyper multiplet. The precise

dictionary reads

α =
Q0

2
+ a , α1 =

Q0

2
+ iM , (3.7)

and, up to factors independent on the Coulomb branch parameters, the (3.6) can be

written as

Cid(Q0 − α, α1, α) ∼ Υβ(2a)Υβ(−2a)

Υβ(Q0

2 + iM + 2a)Υβ(Q0

2 + iM − 2a)
. (3.8)

This is the S4 × S1 1-loop contribution for an SU(2) vector coupled to an adjoint

hyper, multiplied by the Vandermonde, confirming that the 1-point torus correlator

is related to the 5d N = 1∗ SU(2) theory.

• S-CFT: as in the previous example, we name α the internal state and α1 the external

state. The 3-point function contribution for the 1-punctured torus is given by

CS(E − α, α1, α) =
S3(2α1)

S3(α1)S3(α1)

S3(−E + 2α)S3(E − 2α)

S3(α1 − E + 2α)S3(α1 + E − 2α)
. (3.9)

Relating q-CFT quantities to gauge theory quantities as

α =
E

2
+ a , α1 =

E

2
+ iM , (3.10)
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we obtain

CS(E − α, α1, α) ∼ S3(2a)S3(−2a)

S3

(
E
2 + iM + 2a

)
S3

(
E
2 + iM − 2a

) , (3.11)

that is the S5 1-loop contribution of an SU(2) vector and an adjoint hyper of mass

M , multiplied by the Vandermonde. Also for the S-CFT case, we confirm that the

1-punctured torus correlator is related to the 5d N = 1∗ SU(2) theory.

It is worth noting when the adjoint mass is analytically continued to the particular

values M = i
2(Q0−2b0) or M = i

2(ω1+ω2−ω3) for the S4×S1 and S5 theories respectively,

the vector and the adjoint almost completely simplify each other leaving a q-deformed Van-

dermonde only. This kind of simplification has already been observed in [6] and interpreted

as global symmetry enhancement, and further studied in [10].

3.2 Degeneration of q-correlators

We now study the degeneration of q-CFT correlators, that is, we consider the case where

the momenta of the states are analytically continued to degenerate values, corresponding

to degenerate representations of the q-deformed Virasoro algebra. In particular, we are

interested in determining the set of internal states in the case when one of the external

states is degenerate. To this end, we analyze the OPE for q-CFT states and study the limit

where one of the ingoing states assumes a degenerate momentum. We focus here on the

S-CFT, reminding that for this theory, the 3-point function of non-degenerate primaries is

given by

CS(α2, α1, α)=
S3(2α2)S3(2α1)S3(2α)

S3(α1+α2+α− E)S3(−α1+α2+α)S3(α1−α2+α)S3(α1+α2−α)
. (3.12)

In analogy with the standard CFT case, we can obtain fusion rules between primaries in

terms of the 3-point function

Vα2(z)Vα1(0) '
∫

dα CS(α2, α1, α)[VE−α](z) (3.13)

for z → 0.12 As discussed in appendix A.2, the triple sine function S3 has an infinite set

of zeros distributed along two semi-infinite lines separated by an interval E. This implies

that the 3-point function (3.12), as a function of the variable α, has an infinite number of

poles and an infinite number of zeros. In particular, the poles are distributed along four

pairs of semi-infinite lines, each separated by E. In details, they are located at

α =


−∆+ + E − ~n · ~ω; −∆+ + 2E + ~n · ~ω

∆− − ~n · ~ω; ∆− + E + ~n · ~ω
−∆− − ~n · ~ω; −∆− + E + ~n · ~ω

∆+ − E − ~n · ~ω; ∆+ + ~n · ~ω

(3.14)

12A similar computation for the case of Liouville and H+
3 theory is carefully described in [70].
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Im (Δ+)

Im (Δ−)

−Im (Δ+)

Im (α)

Re(α)
EE

2

−Im (Δ−)

Figure 1. Integration path for the fusion of two non-degenerate states.

where we defined ∆± = α1±α2, ~n ·~ω = n1ω1 +n2ω2 +n3ω3 and n1, n2, n3 are non-negative

integers. The zeros are located at

α = {−~n · ~ω/2 , E/2 + ~n · ~ω/2} . (3.15)

In the case where α1 and α2 are non-degenerate states it results Re(α1) = Re(α2) =

E/2 and the 3-point function (3.12) is analytic in the strip Re(α) ∈ (0, E), see figure 1.

The integration in formula (3.13) is performed along the path α = E/2 + iR+ without

encountering any pole, which implies that the OPE of two non-degenerate states produces

a complete set of non-degenerate states. This is in agreement with the fact that in the

bootstrap decomposition of non-degenerate correlators, internal channels include the full

spectrum of non-degenerate states. Indeed, the internal states result form the fusion of

external non-degenerate states.

We now consider the case where one of the states in the OPE, say α2, is associated to

a degenerate representation, i.e. α2 = −~n · ~ω/2 for a certain set of non-negative integers

n1, n2, n3. This OPE is computed via meromorphic analytical continuation as shown in [71],

that is we set α2 = −~n·~ω/2+iδ and consider the limit δ → 0. In this limit, due to the factor

S3(2α2) in the numerator of the 3-point functions, the OPE vanishes on the complex plane,

except on the points where the denominator of the 3-point function becomes singular. As

shown in figure 2, the integration path in (3.13) is deformed, and the integral receives

contribution only from the discrete set of points where the denominator develop double

poles, that are located at

α = α1−~s·~ω/2 for any sk ∈ {−nk,−nk+2, . . . , nk−2, nk} where k = 1, 2, 3. (3.16)
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1
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ω
1

2
−

ω
1

2

+iδ

−iδ

Figure 2. Pinching of the integration contour as the 3-point functions are continued to the degen-

erate values.

The result is computed by picking the residues at these poles, and shows that the OPE of

a non-degenerate state with a degenerate state, include only a finite set of primaries, as

in standard CFT. For instance, in the simplest case where we take n = (0, 0, 1) (that is,

α2 = −ω3/2), there are only two contributing poles located at

α = α1 ± ω3/2 . (3.17)

This produces the fusion rule

[α]×
[
−ω3

2

]
=
[
α− ω3

2

]
+
[
α+

ω3

2

]
, (3.18)

which is analogous to the well-know fusion rule between a level-2 degenerate state and a

non-degenerate state in Liouville CFT.

From these degenerate fusion rules, we can conclude that the internal channel of a

degenerate 4-point function includes only a discrete set of states. In particular, in the case

where one of the four external states assumes the lowest degenerate momentum −ω3/2,

the internal channel includes only 2 states. We have encountered this result already in

section 2.3 in the gauge theory setup. Indeed, as we have already mentioned, the degenera-

tion of 5d partition functions to 3d partition functions is the gauge theory realization of the

degeneration limit of q-correlators, where the degeneration of the external state momentum

in the q-correlator corresponds to an analytical continuation of the mass parameters in the

gauge theory. In particular, in the gauge theory degeneration limit, the Coulomb branch

integral reduces to the sum over the two points given in (2.42), that correspond to the
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momenta of the two internal states given in (3.17). Considering a generic degenerate state

α2 = −~n · ~ω/2, the total number of contributing double poles is (n1 + 1)(n2 + 1)(n3 + 1)

which yields the same number of states in the OPE. In the particular case of the 4-point

correlator with a degenerate insertion α2 = −~n · ~ω/2, the (n1 + 1)(n2 + 1)(n3 + 1) internal

states should correspond to the independent solutions of a certain difference operator. This

is the q-CFT analogue of the higher degeneration of S5 partition functions described in

section 2.3.1.

4 Reflection coefficients

As we reviewed in the previous section, the two families of deformed Virasoro theories

which we have been discussing, the id-CFT and S-CFT, were constructed in [26] by means

of the bootstrap method. This approach does not rely on the Lagrangian formulation of

the theory which in the present case is indeed not available and it is purely axiomatic since

it uses the representation theory of the deformed Virasoro algebra and an ansatz for the

way Virq,t blocks are paired to construct correlators.

However it would still be useful to develop a more physical or at least a geometrical

(rather than purely algebraic) understanding of these theories. For this reason in this

section we focus on reflection coefficients.

In Liouville field theory (LFT) the reflection coefficient can be defined in terms of

3-point functions, hence derived axiomatically from the bootstrap approach. However, it

can also be obtained from a semiclassical analysis studying the reflection from the Liouville

wall. In this sense the reflection coefficient bridges between the axiomatical and the semi-

classical approach and appears to be an interesting object to study in the q-deformed cases.

Furthermore, as we will see, reflection coefficients constructed from id-CFT and S-CFT

3-point functions are different, hence they are sensitive to the way Virq,t blocks are paired

to construct correlators. Therefore we expect that the study of reflection coefficients will

help us to put into perspective the relation between the two families of q-Virasoro systems

and LFT.

4.1 Liouville Field Theory

In LFT the reflection coefficient is defined as the following ratio of DOZZ 3-point

functions [27]

RL(P ) =
C(Q0 − α, α2, α1)

C(α, α2, α1)
, P = iα− iQ0/2 , (4.1)

where Q0 = b0 +1/b0 and b0 is the Liouville coupling. Using the DOZZ formula for 3-point

functions [27, 72, 73]13

C(α3, α2, α1)=
Υ(2α3)Υ(2α2)Υ(2α1)

Υ(α1+α2+α3−Q0)Υ(−α1+α2+α3)Υ(α1−α2+α3)Υ(α1+α2 − α3)
, (4.2)

one finds:

RL(P ) =
Υ(−2iP )

Υ(2iP )
= − Γ(2iP b0)Γ(2iP/b0)

Γ(−2iP b0)Γ(−2iP/b0)
. (4.3)

13We are neglecting a prefactor, which is not important for the present analysis.
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The reflection coefficient can be also obtained from a semiclassical analysis known an

as the mini-superspace approximation [28], where one ignores oscillator modes and focuses

on the dynamics of the zero-mode φ0 of the Liouville field, governed by the Hamiltonian [27]

H0 = − 1

12
− 1

2

∂2

∂φ2
0

+ 2πµe2b0φ0 . (4.4)

The Schrödinger equation for the zero-mode of the Liouville field which scatters from an

exponential barrier, since at φ0 → −∞ the potential vanishes, has stationary asymptotic

solutions of the form

ψ ∼ e2iPφ0 +R(P )e−2iPφ0 . (4.5)

Given that the eigenvalue problem

− ∂2
φ0
ψP + 4πµe2b0φ0ψP = 4P 2ψP (4.6)

is solved by the modified Bessel function of the first kind, the reflection amplitude R(P )

can be easily extracted and reads

R(P ) ∼ Γ(2iP/b0)

Γ(−2iP/b0)
. (4.7)

This is a semi-classical result valid when b0 → 0, indeed it captures only a part of the exact

reflection coefficient (4.1). Therefore RL(P ) can be considered the full quantum completion

(i.e. including the non-perturbative 1/b0 contribution) of the reflection amplitude R(P )

computed from the 1st quantized Liouville theory.

There is also another (geometric) realization of the above problem, related to harmonic

analysis on symmetric spaces. Often, 1d Schrödinger problems can be mapped to free

motion of particles in curved spaces, where a potential-like term arises once the flat kinetic

term is isolated from the Laplace-Beltrami operator. This is indeed the case for the Liouville

eigenvalue problem (4.6) which appears in the study of the Laplace-Beltrami operator on

the hyperboloid {
(X0, X1, X2, X3) ∈ R3,1

∣∣∣ X2
0 −X2

1 −X2
2 −X2

3 = 1
}
. (4.8)

Parameterising the hyperboloid (4.8) by horospherical coordinates (x, r, φ) as

X0 =cosh
x

2
+
r2

2
e−x/2; X1 =− sinh

x

2
− r

2

2
e−x/2; X2 =re−x/2 cosφ; X3 =re−x/2 sinφ,

(4.9)

the Laplace-Beltrami operator defined by

∇2 =
1√

det g
∂i
√

det g gij∂j , i = x, r, φ ,

with gij = ∂i ~X · ∂j ~X the induced metric, yields:

∇2Φ =

(
4∂2

x − 4∂x + ex∂2
r +

ex

r
∂r +

ex

r2
∂2
φ

)
Φ . (4.10)
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Upon the reduction

Φ(x, r, φ) = ρ(r)ex/2ψ(x) , ρ′′ + ρ′/r = −4kρ ,

the Laplace-Beltrami operator becomes:

∇2Φ = ρ(r)ex/2
(
4∂2

xψ(x)− 4kexψ(x)− ψ(x)
)
, (4.11)

corresponding indeed to the Hamiltonian H0 given in (4.4). The free motion −∇2Φ = λ2Φ

is in turn translated into the Liouville eigenvalue equation (4.6)

− ∂2
xψλ(x) + kexψλ(x) = λ2ψλ(x) , (4.12)

with asymptotic solutions of the form

ψλ(x) ∼ c(λ)eiλx + c(−λ)e−iλx as x→ −∞ . (4.13)

The coefficients c(±λ) are known in this context as Harish-Chandra c-functions, which for

the hyperboloid (4.8) are given by:14

c(λ) =
1

Γ(1 + 2iλ)
, (4.14)

yielding
c(−λ)

c(λ)
= − Γ(2iλ)

Γ(−2iλ)
, (4.15)

which, with the identification P/b0 = λ, corresponds to the semiclassical result (4.7).

The hyperboloid (4.8) is isomorphic to the Lobachevsky space SO0(1, 3)/SO(3) '
SL(2,C)/SU(2). In the study of group manifolds the Laplace-Beltrami operator appears

from the analysis of the quadratic Casimirs. In particular, horospheric coordinates can

be introduced for any hyperbolic symmetric space, reflecting the Iwasawa decomposition

of the group manifold. The plane wave asymptotic behaviour of the eigenfunctions of the

reduced Laplace-Beltrami operator is then governed by the Harish-Chandra c-functions

as in the case of the hyperboloid. In fact, c-functions of any classical symmetric space

can be expressed as a product of Gamma functions (Gindikin-Karpelevich formula, see for

instance [74], cf. [75]). In horospherical coordinates (e.g. [35]), one has

c(λ) =
∏
α∈∆+

1

Γ(l + λ · α)
, (4.16)

where λ is a spectral parameter for the eigenvalues of the Laplacian, ∆+ denotes the positive

roots of the Lie algebra of the group modelling the symmetric space, and l = 1 for finite

dimensional Lie algebras or l = 1/2 for the affine version thereof. The reflection coefficient

of the associated quantum mechanical system can be computed as the ratio c(−P )/c(P ),

where the momentum P is parameterised by λ · α.

14We neglect inessential factors.
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As we already observed, the semiclassical reflection coefficient R(P ) (4.15) or (4.7)

reproduces only part of the exact LFT reflection coefficient RL(P ) (4.3). There is however

a group theoretic method [35] to obtain the non-perturbative or 2nd quantized completion

of the LFT reflection coefficient. To this end, one considers the extension of the root

system, which in the sl(2) case contains only one positive root α1, by the affine root α0 so

that upon affinization sl(2)→ ŝl(2) the positive roots become:

α0 + nδ, nδ, α1 + nδ, δ ≡ α0 + α1, n ∈ Z+
0 . (4.17)

The Harish-Chandra function is then given by the product (4.16) over the extended root

system and, choosing the parameterization

λ · δ = τ, λ · α1 = 2iP/b0 − 1/2, λ · α0 = τ − 2iP0/b0 + 1/2 , (4.18)

becomes

c(P )−1 ≡
∏
n≥0

Γ(1/2 + λ · (α1 + nδ))
∏
n≥0

Γ(1/2 + λ · (α0 + nδ))
∏
n≥1

Γ(1/2 + λ · nδ)

= Γ(2iP/b0)
∏
n≥1

Γ(2iP/b0 + nτ)Γ(1− 2iP/b0 + nτ)Γ(1/2 + nτ) . (4.19)

It is easy to check that the n = 0 factor reproduces the non-affinized/semiclassical result

while the ratio of c-functions

c(−P )

c(P )
=

Γ(2iP/b0)

Γ(−2iP/b0)

∏
n≥1

Γ(2iP/b0 + nτ)Γ(1− 2iP/b0 + nτ)

Γ(−2iP/b0 + nτ)Γ(1 + 2iP/b0 + nτ)

∼ − Γ(2iP/b0)

Γ(−2iP/b0)

Γ(2iP/b0τ)

Γ(−2iP/b0τ)
, (4.20)

upon identifying τ = 1/b20, reproduces the exact LFT reflection coefficient RL (4.3).

The above discussion suggests to regard the affinization as a prescription for an effective

2nd quantization. As we are about to see, this prescription works remarkably well for our

q-Virasoro systems.

4.2 id-CFT

We begin by computing the id-CFT reflection coefficient in terms of the id-pairing 3-point

functions given in (3.5):

Rid(P ) =
Cid(Q0 − α, α2, α1)

Cid(α, α2, α1)
=

Υβ(−2iP )

Υβ(2iP )
, P = iα− iQ0/2 , (4.21)

which can be rewritten in terms of the q-deformed Γ function:

Γq(x) :=
(q; q)

(qx; q)
(1− q)1−x , (4.22)

as

Rid(P ) ∼ (1− q)4iP b0

(1− t)−4iP/b0

1− q2iP b0

1− t−2iP/b0
× Γq (2iP b0) Γt (2iP/b0)

Γq (−2iP b0) Γt (−2iP/b0)
, (4.23)

with q = eβ/b0 and t = eβb0 .
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The above expression suggests that in this case the 1st quantized reflection coefficient

should be captured by a c-function expressed in terms of products over the sl(2) root system

of q-deformed (with deformation parameter t) Gamma functions

c(λ) =
1

Γt(l + λ · α)
, (4.24)

while the affinization prescription should allow to recover the non-perturbative reflection

coefficient (4.23). Indeed proceeding as in the LFT case (4.17), (4.18), we obtain

c(P )−1 =
∏
n≥0

Γt(2iP/b0 + nτ)Γt(1− 2iP/b0 + (n+ 1)τ)
∏
n≥1

Γt(1/2 + nτ) , (4.25)

which, after dropping P -independent factors and defining q = tτ , becomes

c(P ) ∼
(
t2iP/b0 ; q, t

)(
qt1−2iP/b0 ; q, t

)
=

(
t2iP/b0 ; q, t

) (
t1−2iP/b0 ; q, t

)(
t1−2iP/b0 ; t

) . (4.26)

It is immediate to verify that the ratio of c-functions

c(−P )

c(P )
=

(1− q)4iP b0

(1− t)−4iP/b0

1− q2iP b0

1− t−2iP/b0

Γq (2iP b0) Γt (2iP/b0)

Γq (−2iP b0) Γt (−2iP/b0)
, (4.27)

reproduces Rid once we set τ = 1/b20. Since Γq → Γ as q → 1, we can also check that, as ex-

pected, in the β → 0 limit the id-CFT reflection coefficient Rid reduces to the LFT one RL.

The c-function (4.24), suggested by the naive q-deformation of the Liouville case,

actually appears in [30] (see also [34, 76, 77]) as the genuine c-function in the quan-

tum Lobachevsky space.15 In that case the relevant quantum group is Uq(sl(2)), and

the quadratic Casimir can be studied introducing horospherical coordinates in the quan-

tum space. The eigenvalue problem and asymptotic analysis then leads exactly to (4.24).

In particular the eigenvalue problem from which the c-function is derived is a discretized

version of the Schrödinger-Liouville equation (4.12).16

Finally, let us explain why we can expect the affinization procedure to work also in

the case of a quantum affine algebra Uq(ĝ), with g a simple Lie algebra. In fact, once we

assume a specific form of the c-function for the non-affine part g, we can rely on the fact

that the root structure is the same for Uq(ĝ) as it is for the undeformed affine case ĝ [79].

This is made particularly evident in what is known as Drinfeld’s second realization [80] of

quantum affine algebras. In this realization, to each of the infinite roots (4.17) is associated

a particular generator labelled by the integer level n. Roots are divided into positive and

negative, and naturally ordered according to increasing or decreasing n. The specification

of the algebra is then completed by assigning a set of relations between the generators at

the various levels.
15The identification follows from q−2 → t, 2iθ → λ · α.
16This is also very similar to the expression for the Laplacian on the complex q-plane that can be found

in [78], formula (22). In notations of [78] and upon the change of variables z = logx, one obtains

h0f(z) = − 1

z2
(
q − 1

q

) [1

q
f(qz) + q f

(
z

q

)
−
(
q +

1

q

)
f(z)

]
.
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4.3 S-CFT

The reflection coefficient constructed in terms of the S-CFT 3-point functions (3.4) is

given by:

RS(P ) =
CS(E − α, α2, α1)

CS(α, α2, α1)
=
S3(−2iP |~ω)

S3(2iP |~ω)
, P = iα− iE/2 . (4.28)

In this case if we take a c-function given in terms of Barnes double Gamma functions

c(P ) =
1

Γ2(2iP/κ|e1, e2)
, e1 + e2 = 1 , (4.29)

while keeping the sl(2) root system, and apply the affinization prescription we obtain

c(P )−1 =
∏
n≥0

Γ2(2iP/κ+nτ |e1, e2)Γ2(1− 2iP/κ+ (n+ 1)τ |e1, e2)
∏
n≥1

Γ2(1/2 + nτ |e1, e2)

∼ Γ3(2iP/κ|e1, e2, τ)Γ3(e1+e2+τ−2iP/κ|e1, e2, τ)=S3(2iP/κ|e1, e2, τ)−1. (4.30)

Finally, using S3(κX|κ~ω) = S3(X|~ω), we get

c(P ) = S3(2iP |~ω) , ~ω = κ(e1, e2, τ) , (4.31)

from which it follows that the ratio c(−P )/c(P ) reproduces the exact reflection

coefficient (4.28).

Notice that the Barnes Γ2 function appears already in the affinized version of the

Liouville c-function given in eq. (4.19) which indeed can be rewritten as

c(P )−1 ∼ Γ2

(
2iP |b0, b−1

0

)
Γ2

(
Q0 − 2iP |b0, b−1

0

)
, (4.32)

so in a sense we may regard RS as arising from a 2nd affinization, or multi-loop algebra of

sl(2). Even if we are not aware of an explicit way to construct a space whose c-function

is given by Γ2 functions, it has been strongly motivated for example in [34] that such

generalised c-functions should naturally be associated to such a construction, and to general

families of integrable systems, whose S-matrix building blocks are indeed Γn functions or

deformations thereof (as we saw in the id-CFT) (see also e.g. [81]).

Before ending this section, let us observe that the reflection coefficients Rid and RS
satisfy the unitary condition Rid,S(P )Rid,S(−P ) = 1 by construction, and have zeros and

poles determined by the factors Γq and Γ3 respectively. Moreover, we saw the Lie algebra

sl(2) played a prominent role in the study of the reflection coefficients through c-functions.

As we are going to show in the next section, all these elements are of fundamental impor-

tance in integrable systems, and it is therefore natural to ask which known models feature

the same structures we have just seen.
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5 S-matrices

In the previous sections we have shown how it is possible to reproduce the reflec-

tion coefficients via an affinization procedure starting from putative Harish-Chandra

c-functions [31, 77] (see also [82], comments following formula (217)). In this section we

will connect these coefficients to known scattering matrices of integrable spin-chains and

(related) integrable quantum field theories. Typically, the S-matrices are built by taking

the ratio of the two Jost functions J(u) with opposite arguments, as they appear in the

plane-wave asymptotics of the scattering wave function:

ψ(x) ∼ J(−u)eipx + J(u)e−ipx, x→ −∞, S(u) =
J(u)

J(−u)
, (5.1)

with p the momentum of the particle and u the corresponding rapidity (for massive rela-

tivistic particles, E = m coshu and p = m sinhu).

We will find a relationship between known S-matrices/Jost functions computed in the

literature and the c-functions we have been using, before the affinization takes place. The

affinization

sl(2) −→ ŝl(2) (5.2)

produces then the final expression for the reflection coefficients.

The starting point will be the S-matrix for two excitations of the XYZ spin-chain [83].

The Hamiltonian for the XYZ chain17 reads

H = −1

4

N∑
n=1

(
Jx σ

x
n σ

x
n+1 + Jy σ

y
n σ

y
n+1 + Jz σ

z
n σ

z
n+1

)
, (5.3)

where the sum is over all the sites of a chain of N sites, and the spin at each site is 1
2 . We

consider definite z-component of the spin, with the operators σin being the Pauli matrices

at site n.

The connection with the integrable 8-vertex model [86] is obtained by imposing the

following parameterization in terms of Jacobi elliptic functions:

Jx = J
[
cn2(λ, k′) + k sn2(λ, k′)

]
, Jy = J

[
cn2(λ, k′)− k sn2(λ, k′)

]
Jz = −J dn(λ, k′), k′ ≡

√
1− k2, (5.4)

where we will assume J > 0, and the modulus k, the complementary modulus k′ and the

argument λ to be a priori complex.18 In this fashion, the Hamiltonian (5.3) can be directly

obtained (apart from an overall factor and a constant shift) from the transfer matrix of

the 8-vertex model by taking its logarithmic derivative [88], in the spirit of the quantum

inverse scattering method (cf. also [89] and appendix C).

17The literature on this topic is extremely vast. We will mainly follow [84] for the purposes of this section.

For recent work on the XYZ chain, see for instance [85].
18The properties of the elliptic functions that we will need here can be found in appendix A of [84]

or in [87].
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One starts focusing on a particular region of the parameter space in the Hamilto-

nian (5.3), corresponding to the so-called principal regime

|Jy| ≤ Jx ≤ −Jz. (5.5)

Any other region of the parameter space can be reached starting from (5.5) and performing

suitable transformations [88]. In this regime, let us recast the Hamiltonian in the following

form:19

H = −Jx
4

N∑
n=1

(
σxn σ

x
n+1 + Γσyn σ

y
n+1 −∆σzn σ

z
n+1

)
,

Γ ≡ Jy
Jx
, ∆ = −Jz

Jx
, Jx ≥ 0, ∆ ≥ 1. (5.6)

One can see from Jx ≥ 0 and ∆ ≥ 1 that the chain is in an antiferromagnetic region, where

the alignment of spins along the z-axis is energetically disfavoured. The ground state is

a Dirac sea of filled levels over the false vacuum (which is the ferromagnetic one with all

spins aligned), and the excitations are holes in the sea. These excitations scatter20 with a

well defined S-matrix, which can in principle be obtained using the method of Korepin [93].

In [77], the corresponding Jost function is written in terms of parameters γ and τ as an

infinite product of Γq functions with shifted arguments, specifically

J(u) =

∞∏
m=0

Γq(iu+ rm)Γq(iu+ rm+ r + 1)

Γq
(
iu+ rm+ 1

2

)
Γq
(
iu+ rm+ r + 1

2

) , (5.7)

where

q = e−4γ , r = − iπτ
2γ

, (5.8)

u being a spectral parameter equal to the difference of the incoming particle rapidities

u = u1 − u2, and we should set21 τ = i
2
K′

K , where K and K ′ (called, respectively, I and I ′

in [90]) are the complete elliptic integrals of the first kind

K =

∫ π
2

0

dt√
1− k2 sin2 t

, K ′ =

∫ π
2

0

dt√
1− k′2 sin2 t

, k′ 2 = 1− k2.

Our two reflection coefficients corresponding, respectively, to the id- and to the

S-pairing, as obtained in the previous sections, can be related to different limits of the

above Jost function before the affinization procedure.

19Upon using formulas (15.7.3a/b/c) in [90], and the parity properties of the Jacobi elliptic functions,

one can show that the parameterization (10.4.17), (10.15.1b), relevant for the treatment of the XYZ chain

in [90], coincides with (5.4). The modulus k in [90] is the same as k here.
20The scattering matrices for excitation-doublets in the disordered regime in particular have been derived

in [91, 92], where interesting connections with the deformed Virasoro algebra are also pointed out.
21See appendix D for the relationships amongst the various parameters used here, and with the parameters

traditionally used in the literature.
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Limit 1. Reproducing the special functions of the id-pairing. Following [84], by

sending k → 0 with λ fixed and real in (5.4) one obtains the following limit:

Jx → J sech2λ ≥ 0, Jy → J sech2λ, Jz → −J sechλ, (5.9)

therefore the Hamiltonian reduces to

H = −J
4

sech2λ
N∑
n=1

(
σxn σ

x
n+1 + σyn σ

y
n+1 − coshλσzn σ

z
n+1

)
. (5.10)

One can see that Γ → 1 and ∆ → coshλ ≥ 1 for real λ. This means that the limiting

chain is an XXZ spin-chain in its antiferromagnetic regime. Moreover, the regime ∆ ≥ 1 is

massive, meaning that the spectrum of excitations (holes in the Dirac sea) has a mass gap.

The limit k → 0 corresponds to sending τ → i∞, since K ′ → +∞ and K → π
2 . If one

performs this limit in the expression (5.7) [77], only part of the k = 0 term survives the

limit and one obtains [76, 94] (up to an overall factor) the Jost function for the scattering

of a kink and an anti-kink in the antiferromagnetic spin-1
2 XXZ spin-chain, in terms of a

ratio of two Γq functions

J(u)→ Γq(iu)

Γq
(
iu+ 1

2

) . (5.11)

The same scattering factor is also obtained (in a slightly different parameterization) in [95],

as a multiplier of the R-matrix for a Uq(ŝl(2)) doublet of excitations of the antiferromagnetic

massive XXZ spin-chain.

The same structure features in our id-pairing reflection coefficient. As we recalled in

section 4.2, the authors of [30] derive the Harish-Chandra function (5.11) by studying the

quantum Lobachevsky space and already point out the connection to the XXZ quantum

spin-chain via (5.11).

Limit 2. Reproducing the special functions of the S-pairing. The second limit

considered in [84] is composed of two operations. Firstly, one performs a transformation

that maps the parameters of the Hamiltonian (5.3) as follows:

Jx → J ′x = −Jz, Jy → J ′y = Jx, Jz → J ′z = −Jy . (5.12)

The above transformation maps the principal regime of the Hamiltonian (5.3) to its

disordered regime:

|J ′z| ≤ J ′y ≤ J ′x.

Secondly, by sending now k → 1 with λ fixed in (5.4) one obtains the following limit:22

J ′x = −Jz → J, J ′y = Jx → J, J ′z = −Jy → −J cos 2λ, (5.13)

therefore the Hamiltonian reduces to

H = −J
4

N∑
n=1

(
σxn σ

x
n+1 + σyn σ

y
n+1 − cos 2λ σzn σ

z
n+1

)
. (5.14)

22The Jacobi functions of modulus k′ =
√

1− k2 reduce according to sn(θ, 0) = sin θ, cn(θ, 0) = cos θ,

dn(θ, 0) = 1 when the modulus k′ goes to 0.
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One can see that Γ → 1 and |∆| → | cos 2λ| ≤ 1 for real λ. This means that the limiting

chain is an XXZ spin-chain in its disordered regime. The regime |∆| ≤ 1 is massless,

meaning that the spectrum of excitations (holes in the Dirac sea), called “spinons” in this

case (with spin equal to 1
2), has no mass gap. For ∆ = 0 the excitations are described by

a theory of free fermions.

The limit k → 1 corresponds to sending τ → 0, since K → +∞ and K ′ → π
2 in this

case. If one performs this limit in the expression (5.7), as pointed out in [77], namely one

first sends q → 1 with r fixed,23 one obtains an infinite product of ordinary Γ functions:

J(u) →
∞∏
m=0

Γ(iu+ rm)Γ(iu+ rm+ r + 1)

Γ
(
iu+ rm+ 1

2

)
Γ
(
iu+ rm+ r + 1

2

) . (5.15)

The corresponding S-matrix is calculated according to (5.1). One can rewrite the resulting

infinite product of Γ functions as

S =
J(u)

J(−u)
→

→
∞∏
n=0

Γ
(

1
2 + nΣ− v

2

)
Γ
(

1
2 + nΣ + v

2

) Γ
(

1 + nΣ + v
2

)
Γ
(

1 + nΣ− v
2

) Γ
(

(n+ 1) Σ + v
2

)
Γ
(

(n+ 1) Σ− v
2

) Γ
(

1
2 + (n+ 1) Σ− v

2

)
Γ
(

1
2 + (n+ 1) Σ + v

2

)
∼

Γ2

(
1−v

2 |1,Σ
)

Γ2

(
1+v

2 |1,Σ
)

Γ2

(
v
2 + Σ|1,Σ

)
Γ2

(
1−v

2 + Σ|1,Σ
)

Γ2

(
1+v

2 |1,Σ
)

Γ2

(
1−v

2 |1,Σ
)

Γ2

(
Σ− v

2 |1,Σ
)

Γ2

(
1+v

2 + Σ|1,Σ
) , (5.16)

where Σ = r and v = 2iu. The Γ2 function is the same function we saw playing a rôle in

the S-pairing calculation, cf. section 4.3. In terms of Jost functions, we have

J(u)→
Γ2

(
1+v

2 |1,Σ
)

Γ2

(
v
2 + Σ|1,Σ

)
Γ2

(
1+v

2 |1,Σ
)

Γ2

(
1+v

2 + Σ|1,Σ
) , (5.17)

which is the analogue of (5.11).24 The above S-matrix is often found re-expressed using an

integral representation (see for instance [97, 98]):

S = exp

[ ∫ ∞
0

sinh(vs) sinh
[
s
(
Σ− 1

2

)]
s cosh

(
s
2

)
sinh(Σ s)

ds

]
. (5.18)

The S-matrix (5.16) has also been obtained directly in the spin-chain setting for a

spin-zero two-particle state of the spin-1
2 XXZ chain in its massless regime [97–99].

23See appendix D for the relationships amongst the various parameters, and with those used in the

literature.
24We observe that, by defining the combination ϕ(v) =

S2( 1
2

+ v
2
|1,Σ)

S2( v
2
|1,Σ)

, we can also rewrite (5.16) as S =
ϕ(v)
ϕ(−v)

. A system whose c-function is given by S2 has been considered in [96].
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Limit 3. Alternative route to the special functions of the S-pairing. By intro-

ducing the variable

δ ≡ λ

K
, (5.19)

one can see, for instance, that the Limit 2 above can be equivalently obtained as δ → 0.

Alternatively, [84] reports a limit where a suitably introduced lattice spacing ε scales to

zero25 alongside with the parameter δ such that

δ → 0, ε→ 0, 2
e−

π
δ

ε
→M finite.

The number of spin-chain sites is also taken to be infinite, hence, in this limit, the discrete

chain tends to a continuum model, which turns out to be the Sine-Gordon theory [101].

The parameter M plays the role of the mass entering the particle dispersion relation in

the continuum model. The Sine-Gordon spectrum is massive and consists of a soliton, an

anti-soliton and a tower of corresponding bound states (the so-called breathers).

Since the Sine-Gordon limit still involves sending δ → 0, we expect a similar type of

S-matrix as in the case of Limit 2. In fact, the limiting expression in terms of an infinite

product of gamma functions famously reproduces (apart from overall factors) the Jost

function for the (anti-)soliton and (anti-)soliton scattering in the Sine-Gordon theory [102],

or, equivalently, for the excitations of the massive Thirring model [93, 103]. The S-matrix

is given by (5.16), with the parameter Σ now related to the Sine-Gordon coupling constant.

The XXZ chain in its disordered regime has been connected to a lattice regularization

of Sine-Gordon and Liouville theory in [104]. A similar relationship between the modular

XXZ chain and the lattice Sinh-Gordon theory has been explored in [105].

We remark that in [46] it was shown that 3d N = 2 solid tori partition functions

satisfy the Baxter equation for the sl(2) XXZ spin-chain. In appendix E we offer another

derivation of this relation showing that the hypergeometric difference equation satisfied by

the 3d holomorphic blocks B3d
α can be mapped to the Baxter equation for the sl(2) XXZ

spin-chain.

For the sake of completeness, we recall that the very same S-matrix (5.16) also features

in the scattering of two spin-1
2 spin-wave excitations propagating on the antiferromagnetic

XXX spin-chain with arbitrary spin Σ representation at each site [106, 107] (the spin Σ

entering the formula in a similar way as the coupling constant does in the case of the

Sine-Gordon model). Namely, for a spectral parameter w and a singlet-triplet system of

excitations,

S = S 1
2
·

sinh
(
π

4Σ(w − i)
)

sinh
(
π

4Σ(w + i)
) exp

[
−i
∫ ∞

0

sin(ws) sinh
[
s
(
Σ− 1

2

) ]
s cosh

(
s
2

)
sinh(Σ s)

ds

]
, (5.20)

where S 1
2

is the S-matrix for spin-1
2 particles, related to the central extension of the sl(2)

Yangian double [108]:

S 1
2

=
Γ
(
−iw2

)
Γ
(

1
2 + iw2

)
Γ
(
iw2
)

Γ
(

1
2 − i

w
2

) · w − iP
w − i

, P = permutation in C2 ⊗ C2. (5.21)

25See also section 6 of [100], where, in their conventions, the lattice spacing enters as Jx → Jx
ε

, Jy → Jy
ε

and Jz → Jz
ε

.
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Let us finally point out that the S-matrix (5.21) appears also in connection with the massless

limit of the su(2) Thirring model [109].

If one proceeds one steps “downwards”, one can take the limit q → 1 of (5.11) and

obtain a Jost function written in terms of a ratio of ordinary Gamma functions. This re-

produces [76] the scattering of two spin-1
2 spin-wave (kink) excitations of the XXX spin-1

2

spin-chain [110, 111], i.e. the triplet part of formula (5.21).26 This limit corresponds to

sending γ ∼ λ→ 0 (see appendix D, where K ′l has been sent to a constant in Limit 1), from

which we see that the Hamiltonian reduces to the one of the antiferromagnetic isotropic

spin-chain, for which one can then use the equivalence of spectra H(∆)↔ −H(−∆) [112].

This in turn produces a similar structure as the mini-superspace Liouville reflection coef-

ficient, which has been obtained in [30] by studying the ordinary Lobachevsky space (see

also [32, 33]). This is in agreement with the fact that in the q → 1 limit the id-CFT reduces

to Liouville theory [26].

We remark that the semiclassical reflection coefficient of the Liouville theory contains

only part of the gamma functions present in formula (5.21).

This is related to the fact that the reflection coefficient, in the semiclassical limit

b0 → 0, can also be interpreted as the S-matrix for the scattering of a quantum mechanical

particle against a static potential27 (mini-superspace approximation [27, 28]). In one case

the potential is given by the Liouville one, in the other case it is given by the (Calogero-

Moser-Sutherland type) potential ∝ sinh−2 x [31] (see also [113]).

The other reflection coefficients we have derived in the previous section, i.e. for the id-

and S-pairing, call for analogous considerations. For the id-pairing, producing the Harish-

Chandra functions of [30], and similarly for the S-pairing, we again retain a reduced number

of the special functions as compared to what characterizes the S-matrices of the integrable

(spin-chain) models we discuss in this section.

Let us finally point out once more that in this whole discussion it is understood that

affinization has yet to be performed. It would be very interesting to study what spin-chain

picture might arise, if any, when the affinization takes place.
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A Special functions

In this appendix we describe few of the special functions and identities used in the main text.

A.1 Bernoulli polynomials

Throughtout this appendix let us denote by

~ω := (ω1, . . . , ωr) ∈ Cr (A.1)

a vector of r parameters. The multiple Bernoulli polynomials Brr(z|~ω) up to cubic order

are defined by [114]

B11(z|~ω) =
z

ω1
− 1

2

B22(z|~ω) =
z2

ω1ω2
− ω1 + ω2

ω1ω2
z +

ω2
1 + ω2

2 + 3ω1ω2

ω1ω2

B33(z|~ω) =
z3

ω1ω2ω3
− 3 (ω1 + ω2 + ω3)

2ω1ω2ω3
z2 +

ω2
1 + ω2

2 + ω2
3 + 3(ω1ω2 + ω2ω3 + ω3ω1)

2ω1ω2ω3
z

− (ω1 + ω2 + ω3)(ω1ω2 + ω2ω3 + ω3ω1)

4ω1ω2ω3
. (A.2)

If not stated otherwise, we will use the shorthand notation Brr(z) := Brr(z|~ω).

A.2 Multiple Gamma and Sine functions

The Barnes r-Gamma function Γr(z|~ω) can be defined as the ζ-regularized infinite

product [114]

Γr(z|~ω) ∼
∏
~n∈Z+

0

1

(z + ~ω · ~n)
. (A.3)

When there is no possibility of confusion, we will simply set Γr(z) := Γr(z|~ω).

The r-Sine function is defined according to [114]

Sr(z|~ω) =
Γr(Er − z)(−1)r

Γr(z)
(A.4)

where we defined Er :=
∑

i ωi. We will also denote Sr(z) := Sr(z|~ω) when there is no

confusion. Also, introducing the multiple q-shifted factorial

(z; q1, . . . qr) :=
∏

k1,...,kr≥0

(
1− zqk1

1 · · · q
kr
r

)
(A.5)

the r-sine function has the following product representation (r ≥ 2) [114]

Sr(z) = e(−1)r iπ
r!
Brr(z)

r∏
k=1

(
e

2πi
ωk

z
; e

2πi
ω1
ωk , . . . , e

2πi
ωk−1
ωk , e

2πi
ωk+1
ωk , . . . , e

2πi ωr
ωk

)
(A.6)
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whenever Im (ωj/ωk) 6= 0 (for j 6= k). General useful identities are

Sr(z)Sr(Er − z)(−1)r = 1 (A.7)

Sr(λz|λ~ω) = Sr(z|~ω); λ ∈ C/{0} (A.8)

Sr(z + ωi)

Sr(z)
=

1

Sr−1(z|ω1, . . . , ωi−1, ωi+1, . . . , ωr)
. (A.9)

Notice for r = 3 we can write

S3(z) = e−
iπ
3!
B33(z)

(
e

2πi
e3
z
; q, t

)
1

(
e

2πi
e3
z
; q, t

)
2

(
e

2πi
e3
z
; q, t

)
3

(A.10)

where q, t are expressed via the e1, e2, e3 parameters as described in (2.6), (2.8), and it is

customary to denote E = ω1 + ω2 + ω3. For r = 2 it is convenient to introduce the double

sine function

sb(z) = S2

(
Q/2− iz|b, b−1

)
∼
∏
k

n1ω1 + n2ω2 +Q/2− iz
n1ω1 + n2ω2 +Q/2 + iz

(A.11)

where it is customary to denote Q = ω1 + ω2, and it is usually assumed b = ω1 = ω−1
2 .

A.3 Υβ function

The q-deformed version of the Euler Γ function is defined as

Γq(z) :=
(q; q)

(qz; q)
(1− q)1−z. (A.12)

It has the following classical limit

Γq(z)
q→1−→ Γ(z) (A.13)

and satisfies the functional relation

Γq(1 + z) =
1− qz

1− q
Γq(z). (A.14)

A deformation of the Υ(z) function appearing in Liouville field theory

Υ(z) = Γ2

(
z|b0, b−1

0

)−1
Γ2

(
Q0 − z|b0, b−1

0

)−1
(A.15)

where Q0 := b0 + b−1
0 , is the Υβ(z) function defined as the ζ-regularized infinite product

Υβ(z) ∼
∏

n1,n2≥0

sinh

[
β

2

(
z + n1b0 + n2b

−1
0

)]
sinh

[
β

2

(
Q0 − z + n1b0 + n2b

−1
0

)]
∼
(
eβz; eβ/b0 , eβb0

)(
e−βz; e−β/b0 , e−βb0

)
. (A.16)

By a suitable regularization, important defining properties are

Υβ(z) = Υβ(Q0 − z) (A.17)

Υβ
(
z + b±1

0

)
Υβ(z)

∼

(
eβ(b∓1

0 −z); eβb
∓1
0

)
(
eβz; eβb

∓1
0

) =
1(

eβz; eβb
∓1
0

)(
e−βz; e−βb

∓1
0

) . (A.18)

Using the expressions (2.8) and (2.2), we can finally write

Υβ(z) ∼
(
e

2πi
e3
z
; q, t

)
1

(
e

2πi
e3
z
; q, t

)
2
. (A.19)
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A.4 Jacobi Theta and elliptic Gamma functions

The Jacobi Θ function is defined by [115]

Θ(z; τ) =
(
e2πiz; e2πiτ

) (
e2πiτe−2πiz; e2πiτ

)
(A.20)

and satisfies the functional relation

Θ(τ + z; τ)

Θ(z; τ)
= −e−2πiz, (A.21)

or more generally

Θ (nτ + z; τ)

Θ (z; τ)
=

[
−e2πiz

(
e2πiτ

)n−1
2

]−n
(A.22)

for n ∈ Z+
0 . Another relevant property is [114]

Θ

(
z

ω1
;
ω2

ω1

)
Θ

(
z

ω2
;
ω1

ω2

)
= e−iπB22(z). (A.23)

The elliptic Gamma function Γq,t is defined by [115]

Γq,t(z) =

(
qt e−2πiz; q, t

)
(e2πiz; q, t)

; q = e2πiτ ; t = e2πiσ (A.24)

and satisfies the functional relations

Γq,t(τ + z)

Γq,t(z)
= Θ(z;σ);

Γq,t(σ + z)

Γq,t(z)
= Θ(z; τ), (A.25)

or more generally

Γq,t (nτ + z)

Γq,t (z)
=

n∏
k=1

Θ ((k − 1)τ + z;σ) ;
Γq,t (nσ + z)

Γq,t (z)
=

n∏
k=1

Θ ((k − 1)σ + z; τ)

Γq,t (n1τ + n2σ + z)

Γq,t (z)
=

[
−e2πiz

(
e2πiτ

)n1−1
2
(
e2πiσ

)n2−1
2

]−n1n2

×

×
n1∏
k=1

Θ ((k − 1)τ + z;σ)

n2∏
j=1

Θ ((j − 1)σ + z; τ) (A.26)

for n1, n2 ∈ Z+
0 . Other relevant properties are [47]

Γq,t

(
z

e3

)
1

Γq,t

(
z

e3

)
2

Γq,t

(
z

e3

)
3

= e−
iπ
3
B33(z) (A.27)

where q, t are expressed via the e1, e2, e3 parameters as described in (2.6), (2.8) and

Γq,t

(
z

e3

)
Γq,t

(
e1 + e2 − z

e3

)
= 1 . (A.28)
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B Instanton partition function degeneration

The R4 × S1 instanton partition function (with rescaled parameters and equivariant pa-

rameters ε1,2 =
e1,2
e3

) for the SU(2) SCQCD is given by [14, 15]

ZR4×S1

inst

(
~a

e3
,
~m

e3
;
e1

e3
,
e2

e3

)
=
∑
~Y

z|
~Y |F~Y (~a, ~m)

V~Y (~a)
, with z = e

2πi
g̃2e3 , (B.1)

where ~Y = (Y 1, Y 2) is a vector of Young diagrams, ~a = (a1, a2) = (a,−a) parametrizes

the Coulomb branch and ~m = (m1, . . . ,m4) are the masses of the four fundamental hyper-

multiplets. F~Y (~a, ~m) and V~Y (~a), the contribution of the fundamental hypermultiplets and

of the vector multiplet, are given by:

F~Y (~a, ~m) =
2∏

m=1

∏
(i,j)∈Ym

4∏
f=1

sinh
iπ

e3
[am +mf + (j − 1)e1 + (i− 1)e2] , (B.2)

V~Y (~a) =
2∏

m,n=1

∏
(i,j)∈Ym

sinh
iπ

e3

[
am − an − e1 (Y n

i − j) + e2

(
Y mT
j − i+ 1

)]
×

× sinh
iπ

e3

[
am − an − e1 (Y n

i − j + 1) + e2

(
Y mT
j − i

)]
, (B.3)

where Y m
i is the length of the i-th row of Y m.

Trivial degeneration. Now suppose that m1 + m2 = −e3 and let us evaluate the par-

tition function (B.1) for:

a1 = m1 , a2 = m2 + e3 . (B.4)

We first notice that a shift by e3 in (B.2), (B.3) has a trivial effect, since everything is

rescaled by e3. It is then easy to see that the only non-zero contribution to F~Y comes from

empty Young tableaux Y 1 = Y 2 = ∅. This gives the trivial degeneration

ZR4×S1

inst −−−−−−−−−−−−−→
(a1,a2)→(m1,m2+e3)

1 . (B.5)

Hypergeometric degeneration. Now suppose that m1 +m2 = −e1 and let us evaluate

the partition function (B.1) for:

a1 = m1 , a2 = m2 + e1 . (B.6)

In this case a shift by e1 has a non-trivial effect, and inspecting F~Y , we discover we can fill

in a column in Y 1. So, besides (Y 1, Y 2) = (∅, ∅), we get non-vanishing contributions from

(Y 1, Y 2) = (1n, ∅):

F~Y (~a, ~m) −−−−−−−−−−−−−→
(a1,a2)→(m1,m2+e1)

F1n,∅ =

n∏
k=1

4∏
f=1

sinh
iπ

e3
[m1 +mf + (k − 1)e2] , (B.7)

V~Y (~a, ~m) −−−−−−−−−−−−−→
(a1,a2)→(m1,m2+e1)

V1n,∅ =
n∏
k=1

sinh
iπ

e3
[2m1 + e1 + (n− k + 1)e2]×

× sinh
iπ

e3
[2m1+(n−k)e2] sinh

iπ

e3
[(n−k+1)e2] sinh

iπ

e3
[−e1+(n−k)e2] . (B.8)
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We then simplify the ratio:28

F1n,∅
V1n,∅

=

n∏
k=1

sinh iπ
e3

[m1 +m3 + (k − 1)e2] sinh iπ
e3

[m1 +m4 + (k − 1)e2]

sinh iπ
e3

[m1 −m2 + ke2] sinh iπ
e3

[ke2]

= e
n iπ
e3

[
∑
f 2e2−mf ] ×

n−1∏
k=0

(
1− e

2iπ
e3

[m1+m3+ke2]
)(

1− e
2iπ
e3

[m1+m4+ke2]
)

(
1− e

2iπ
e3

[m1−m2+(k+1)e2]
)(

1− e
2iπ
e3

(k+1)e2
)

= e
n iπ
e3

[
∑
f 2e2−mf ] ×

(
e

2iπ
e3

[m1+m3]
; e

2πi
e2
e3

)
n

(
e

2iπ
e3

[m1+m4]
; e

2πi
e2
e3

)
n(

e
2iπ
e3

[m1−m2+e2]
; e

2πi
e2
e3

)
n

(
e

2πi
e2
e3 ; e

2πi
e2
e3

)
n

, (B.9)

and finally obtain:

ZR4×S1

inst

(
~a

e3
;
~m

e3
;
e1

e3
,
e2

e3

)
−−−−−−−−−−−−−→
(a1,a2)→(m1,m2+e1)

∑
n≥0

F1n,∅
V1n,∅

zn = 2Φ1(A,B;C, q;u) , (B.10)

where

A = e
2iπ
e3

[m1+m3]
, B = e

2iπ
e3

[m1+m4]
, C = e

2iπ
e3

[m1−m2+e2]
, q = e

2πi
e2
e3 ,

r = e
− 2πi
e3

∑
f mf = e

−2πi
e2
e3CB−1A−1 , u = e

2πi
e2
e3 r1/2z , (B.11)

and we have introduced the q-hypergeometric series 2Φ1(A,B;C, q;u) defined by

2Φ1(A,B;C, q;u) =
∑
k≥0

(A; q)k(B; q)k
(q; q)k(C; q)k

uk . (B.12)

It is also easy to see the condition m1 +m2 = −e2 yields the same result with e1 ↔ e2,

in this case the non-empty tableaux will be Y 2 where we can fill a row Y 2 = n = (1n)T :

ZR4×S1

inst

(
~a

e3
;
~m

e3
;
e1

e3
,
e2

e3

)
−−−−−−−−−−−−−→
(a1,a2)→(m1,m2+e2)

∑
n≥0

Fn,∅
Vn,∅

zn = 2Φ1(A,B;C, q̃; ũ) , (B.13)

where the tilde symbol means e1 ↔ e2.

Hook degeneration. Now suppose that m1 + m2 = −~n · ~e and let us evaluate the

partition function (B.1) for:

a1 = m1 + (~n− ~p) · ~e , a2 = m2 + ~p · ~e , (B.14)

with

pk ∈ {0, 1, . . . , nk} . (B.15)

Inspecting F~Y , we observe that for fixed p1, p2, p3, we get a zero from the box

(i, j) = (p2 + 1, p1 + 1) in Y 1, and the box (i, j) = (n2 − p2 + 1, n1 − p1 + 1) in Y 2. There-

fore, non-vanishing contributions are from (Y 1, Y 2) = (∅, ∅) and hook shaped tableaux

28We use m1 +m2 = −e1,
∏n
k=1 f(k) =

∏n
k=1 f(n− k + 1).
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(
Y 1, Y 2

)
= ((p2, p1), (n2 − p2, n1 − p1)). The residue at this point is given by:

F~Y (~a, ~m) −−−−−−−−−−−−−−−−−−−−→
(a1,a2)→(m1+(~n−~p)·~e,m2+~p·~e)

Fp2,p1 =∏
f=3,4

∏
(i,j)∈Y 1

sinh
iπ

e3
[m1 + (~n− ~p) · ~e+mf + (j − 1)e1 + (i− 1)e2]×

×
∏
f=3,4

∏
(i,j)∈Y 2

sinh
iπ

e3
[m2 + ~p · ~e+mf + (j − 1)e1 + (i− 1)e2]×

×
∏

(i,j)∈Y 1

sinh
iπ

e3
[−~p · ~e+ (j − 1)e1 + (i− 1)e2]×

×
∏

(i,j)∈Y 2

sinh
iπ

e3
[−(~n− ~p) · ~e+ (j − 1)e1 + (i− 1)e2]×

×
∏

(i,j)∈Y 1

sinh
iπ

e3
[2m1 + (~n− ~p) · ~e+ (j − 1)e1 + (i− 1)e2]×

×
∏

(i,j)∈Y 2

sinh
iπ

e3
[2m2 + ~p · ~e+ (j − 1)e1 + (i− 1)e2] , (B.16)

V~Y (~a, ~m) −−−−−−−−−−−−−−−−−−−−→
(a1,a2)→(m1+(~n−~p)·~e,m2+~p·~e)

Vp2,p1 =

×
∏

(i,j)∈Y 1

sinh
iπ

e3

[
−e1

(
Y 1
i −j

)
+e2

(
Y 1T
j −i+1

)]
sinh

iπ

e3

[
−e1

(
Y 1
i −j+1

)
+e2

(
Y 1T
j −i

)]
×

×
∏

(i,j)∈Y 2

sinh
iπ

e3

[
−e1

(
Y 2
i −j

)
+e2

(
Y 2T
j −i+1

)]
sinh

iπ

e3

[
−e1

(
Y 2
i −j+1

)
+e2

(
Y 2T
j −i

)]
×

×
∏

(i,j)∈Y 1

sinh
iπ

e3

[
2m1 + 2(~n− ~p) · ~e− e1

(
Y 2
i − j

)
+ e2

(
Y 1T
j − i+ 1

)]
×

× sinh
iπ

e3

[
2m1 + 2(~n− ~p) · ~e− e1

(
Y 2
i − j + 1

)
+ e2

(
Y 1T
j − i

)]
×

×
∏

(i,j)∈Y 2

sinh
iπ

e3

[
2m2 + 2~p · ~e− e1

(
Y 1
i − j

)
+ e2

(
Y 2T
j − i+ 1

)]
×

× sinh
iπ

e3

[
2m2 + 2~p · ~e− e1

(
Y 1
i − j + 1

)
+ e2

(
Y 2T
j − i

)]
. (B.17)

B.1 Classical term

The classical term, up to factors independent of a is,

Zcl =
∏
i=1,2

Γq,t

(
ai+1/g2−

∑
f mf/2+κ

e3

)
Γq,t

(
ai+κ
e3

) (B.18)
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when evaluated at a1 = m1 + (n− p) · e, a2 = m2 + ~p · ~e yields

Zcl
p2,p1

=

Γq,t

(
m1+1/g2−

∑
f mf/2+κ+(~n−~p)·~e
e3

)
Γq,t

(
m1+κ+(~n−~p)·~e

e3

) Γq,t

(
m2+1/g2−

∑
f mf/2+κ+~p·~e
e3

)
Γq,t

(
m2+κ+~p·~e

e3

) . (B.19)

Multiplying (B.19) by

1

Zcl
0,0|(n2,n1)=(0,0)

=
Γq,t

(
m1+κ
e3

)
Γq,t

(
m2+κ
e3

)
Γq,t

(
m1+1/g2−

∑
f mf/2+κ

e3

)
Γq,t

(
m2+1/g2−

∑
f mf/2+κ

e3

) (B.20)

we may rewrite all in terms of Θ’s

Zcl
p2,p1 ∝

(
−e

2πi
e3

(1/g2−
∑
f mf/2)

)−(n1−p1)(n2−p2)−p1p2
×

×
n1−p1∏
k=1

Θ

(
(k−1)e1+m1+1/g2−

∑
f mf/2+κ

e3
; e2e3

)
Θ
(

(k−1)e1+m1+κ
e3

; e2e3

) n2−p2∏
j=1

Θ

(
(j−1)e2+m1+1/g2−

∑
f mf/2+κ

e3
; e1e3

)
Θ
(

(j−1)e2+m1+κ
e3

; e1e2

)

×
p1∏
k=1

Θ

(
(k−1)e1+m2+1/g2−

∑
f mf/2+κ

e3
; e2e3

)
Θ
(

(k−1)e1+m2+κ
e3

; e2e3

) p2∏
j=1

Θ

(
(j−1)e2+m2+1/g2−

∑
f mf/2+κ

e3
; e1e3

)
Θ
(

(j−1)e2+m2+κ
e3

; e1e3

) .

(B.21)

C Transfer matrices and Baxter operators

We will briefly recall here the notion of Baxter operator for the simplest case of the ho-

mogenoeous Heisenberg (XXX) spin-chain. The main references we follow for this are [116]

and [82].

As anticipated in the discussion following (5.21), the isotropic Heisenberg chain (which

we now take to be ferromagnetic for simplicity, this not affecting the main conclusions of

this appendix) reads

H =
N∑
n=1

(
1− σxnσxn+1 − σynσ

y
n+1 − σ

z
nσ

z
n+1

)
, (C.1)

where we have set Jx = Jy = Jz = 4 and added a constant w.r.t. (5.3), to normalize to zero

the energy of the ferromagnetic ground state. All sites carry a fundamental representation

of su(2).

In the framework of the so-called algebraic Bethe ansatz (ABA), one constructs a Lax

matrix acting as a two-by-two matrix on an auxiliary space also carrying the fundamental

representation of su(2), with matrix-entries acting on the n-th site of the chain:

La,n(ρ) =

(
ρ+ i

2σ
z
n

i
2σ
−
n

i
2σ

+
n ρ− i

2σ
z
n

)
, (C.2)

where σ±n = σxn ± iσ
y
n, and ρ is an auxiliary variable.
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One then construct the so-called monodromy matrix as

Ta(ρ) = La,1 · . . . · La,N =

(
A(ρ) B(ρ)

C(ρ) D(ρ)

)
(C.3)

(· denoting matrix multiplication in the auxiliary space), acting on the auxiliary space as a

two-by-two matrix, with entries A(ρ), B(ρ), C(ρ) and D(ρ) acting on the whole spin-chain.

Because of the relation

Ra1,a2(ρ1 − ρ2)La1,n1(ρ1)La2,n2(ρ2) = La2,n2(ρ2)La1,n1(ρ1)Ra1,a2(ρ1 − ρ2), (C.4)

with the su(2) Yangian R-matrix given by

Ra1,a2(ρ) = ρIa1,a2 + iPa1,a2

(Ia1,a2 being the identity operator, Pa1,a2 the permutation operator on the two isomorphic

auxiliary spaces a1 and a2), one deduces

Ra1,a2(ρ1 − ρ2)Ta1(ρ1)Ta2(ρ1) = Ta2(ρ1)Ta1(ρ1)Ra1,a2(ρ1 − ρ2). (C.5)

In turn, by taking the trace tra1⊗ tra2 on both sides of (C.5), one obtains that the transfer

matrix T (ρ) ≡ tr Ta(ρ) = A(ρ) + D(ρ) commute for two arbitrary values of the auxiliary

variable:

[T (ρ), T (ρ′)] = 0. (C.6)

Being T (ρ), by inspection, an order N polynomial in ρ (with the highest-power coefficient

equal to 1), (C.6) implies that T (ρ) generates N non-trivial independent commuting oper-

ators, given by the corresponding polynomial coefficients. The original Hamiltonian (C.1)

is obtained as

H = −2i

[
d

dρ
lnT (ρ)

]
ρ= i

2

,

hence all the N commuting operators generated by T (ρ) commute with H, and are therefore

integrals of motion. This determines the complete integrability of the problem.

The relations (C.5), sometimes called RTT relations, allows to find the simultaneous

eigenvectors of the Hamiltonian and of all the commuting charges, by utilising B(ρ) as a

creation operator. One first constructs the family of vectors

|Ψ(ρ1, . . . , ρM )〉 = B(ρ1) . . . B(ρM ) |vac〉, (C.7)

with the pseudo-vacuum |vac〉 being any highest-weight T (ρ)-eigenstate in the representa-

tion 1
2

⊗N
in which the spin-chain transforms.29 The vectors (C.7) are not automatically

eigenstates of T (ρ) because of some unwanted terms one obtains when acting with T (ρ) on

29The pseudo-vacuum is typically chosen as the “all-spin-up” ferromagnetic vacuum, whether — as in

the case of this appendix — or not that is the true ground state of H.
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such vectors, which are not proportional to the vector themselves. These unwanted terms

can be cancelled by imposing the following system of M Bethe equations:(
ρj + i

2

ρj − i
2

)N
=

M∏
m6=j

ρj − ρm + i

ρj − ρm − i
. (C.8)

These equations coincide with the quantization condition for the momenta pm, param-

eterised according to eipm =
ρm+ i

2

ρm− i
2

,m = 1, . . . ,M , of M excitations propagating along

the chain and collectively described by a scattering-type wave-function (coordinate Bethe

ansatz ), as originally found by Bethe [117]. Upon imposing (C.8), the vectors (C.7) be-

come eigenstates of T (ρ) and, in particular, they have an energy eigenvalue equal to the

sum of the single-particle dispersion relations
∑M

m=1E(pm). In turn, E(p) is given by the

H-eigenvalue for M = 1.

In order to introduce the Baxter operator, one can re-write the Bethe equations (C.8)

as

αN (ρj) qM (ρj − i) = δN (ρj) qM (ρj + i), j = 1, . . . ,M, (C.9)

where

α(ρ) = ρ+
i

2
, δ(ρ) = ρ− i

2
, qM (ρ) =

M∏
m=1

(ρ− ρm). (C.10)

From this it is clear, by direct subsititution and by using the Bethe equations in the

form (C.9), that the quantity UM (ρ) := αN (ρ) qM (ρ − i) + δN (ρ) qM (ρ + i) vanishes for

ρ = ρj ,∀j = 1, . . . ,M , and it is therefore proportional to qM (ρ). Since it is a polynomial

of order N + M in ρ, UM (ρ) must also be proportional to a polynomial with N roots,

which turns out to be the eigenvalue tM (u) of T (u) on the eigenstate (C.7). One can then

eventually write

tM (ρ) qM (ρ) = αN (ρ) qM (ρ− i) + δN (ρ) qM (ρ+ i). (C.11)

Starting from this equation, Baxter [86] postulated the existence of an operator Q(u),

diagonal in the same basis (C.7) as (hence commuting with) T (u), this time with eigenvalue

qM (u). The equation (C.11) can then be interpreted as a relation between eigenvalues,

projection on eigenstates of in fact a deeper operatorial relation connecting the operators

themselves, called the Baxter equation:

T (ρ)Q(ρ) = αN (ρ)Q(ρ− i) + δN (ρ)Q(ρ+ i). (C.12)

Notice that, due to the highest-weigth property of |vac〉, the coefficient functions αN (ρ)

and δN (ρ) equal the pseudo-vacuum eigenvalues of the operators A(ρ) and D(ρ) in (C.3),

respectively.

The idea of Baxter is that the problem of diagonalising the spin-chain Hamiltonian can

be equivalently reformulated in the one of constructing an operator Q(u) satisfying (C.12)

with certain analiticity requirements. This turns out to provide a more efficient method

than the algebraic Bethe ansatz itself, as it also works in more complicated cases where

the ABA does not apply.
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D Relationships amongst the spin-chain parameters

In order to make contact with the spin-chain parameterization, one might find the following

dictionary useful. If we call qB the parameter called q in [90] (cf. formulae (8.13.52), (15.5.9)

and (15.5.12), for instance), and (qRT , wRT ) the parameters called (q, w) respectively,

in [118], we conclude

qB = q2
RT = e2iπτ , γ = iπ wRT .

Let us now call qFZ what is called q in [94], and which coincides with qB. The variables

(z, qRT ) in [118] are the same as (z, q
1
2
FZ) of [94], where an equivalent expression to (5.7)

is obtained by analysing the formula for the partition function in [118], see also [119]

and [90]. Notice that qB should not be confused with the q appearing in (5.8), where we

use the terminology of [77]. The parameter τ is the same in all three references [77, 118]

and [94]. Finally, the integer n in [94, 118] should be set equal to 2 to recover the XYZ

chain from Baxter’s Zn models.

From the spin-chain perspective, the fact that r should be kept fixed in Limit 2 (5.15)

can be motivated as follows. Formula (7.8) in [86] sets λB = π ζ
K′l

, where the subscript

B in λB indicates that this is the λ variable used in that paper, and K ′l is the complete

elliptic integral of the first kind with modulus l′. By comparing the partition functions

presented in [118] and in [86], one deduces that it must be λRT = λB
2π , which is consistent

with wRT = −i λRT . The modulus k (which we find to be the same in [88] as in [90], hence

the same as we are using here) is related to l′ as in formula (5.5) of [86], namely k = 1−l
1+l ,

l′ =
√

1− l2 being defined below formula (7.8) in [86]. This means that, when k → 1, the

integral K ′l diverges as log k′, sending γ = iπ wRT = π λRT = λB
2 to zero as π

2
ζ
K′l
∼ const

log k′ ,

for “const” a constant if ζ is kept fixed. At the same time, τ goes to zero with the same

speed as i
2
K′

K ∼
const’
log k′ , (with “const′ ” another constant), which confirms that r will tend

to a constant in the limit. On the other hand, by comparing [86] and [90], we conclude

that the λ used in formula (10.4.21) of [90], coincident with the λ we use here, should be

proportional to ζ by some proportionality factor which stays finite in the limit, hence our

λ can be kept finite in the expression for the limiting Hamiltonian.

E XXZ Baxter equation and 3d blocks

The study of reflection coefficients indicates the partition functions/q-CFT correlators we

have been focusing on are related to a class of integrable systems via an underlying infinite

dimensional sl(2) symmetry algebra (q-deformed and/or affine), XXZ spin-chains being

particular representatives. The aim of this section is to explore further the connection

between gauge/q-Virasoro theories and integrable systems. We will provide an alternative

derivation of the result obtained in [46] that the q-difference equation satisfied by the 3d

blocks can be mapped to the Baxter equation of the XXZ spin-chain.

To begin with, let us remind that the two 3d holomorphic blocks B3d
1,2 for the U(1)

theory with two chirals of charge plus and two chirals of charge minus (see for example

section 2.2 in [26]) are proportional to the two solutions of the q-hypergeometric equation

B3d
i (u) = t(u)Ii(u) , Ĥ(A,B;C, q;u)Ii(u) = 0 (E.1)
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where t(u) ∝ θ(λu)/θ(u) for a given constant λ,30 and the q-hypergeometric operator can

be written as

Ĥ(A,B;C, q;u) = Ĥ2(u)T 2
q + Ĥ1(u)Tq + Ĥ0(u); Tqf(u) = f(qu), (E.2)

Ĥ2(u) = −AB−q
−1Cu−1

(q−1)2
, Ĥ1(u) =

(A+B)−(1+q−1C)u−1

(q−1)2
,

Ĥ0(u) = − 1−u−1

(q−1)2
. (E.3)

We will now map the q-hypergeometric operator to an operator of the form

Â(u, Tq) = Â1(u)Tq + Â−1(u)T−1
q − Â0(u). (E.4)

We first compute Â(u, Tq)t(u) to get

Â(u, Tq)t(u) = t(qu)Â1(u)Tq + t
(
q−1u

)
Â−1(u)T−1

q − t(u)Â0(u). (E.5)

Since Â(u, Tq) = 0 as an operatorial equation, we apply Tq on both sides to get

TqÂ (u, Tq) t(u) = t
(
q2u
)(

Â1(qu)T 2
q −

t(qu)

t (q2u)
Â0(qu)Tq +

t(u)

t (q2u)
Â−1(qu)

)
. (E.6)

Imposing

Â1(qu) ∼ Ĥ2(u) , λÂ0(qu) ∼ −Ĥ1(u) , λ2Â−1(qu) ∼ H0(u) , (E.7)

we are led to identify

Â1(u) ∼ −
(
ABCu−1

)1/2 ((
ABC−1

)1/2
u1/2 − (ABC−1)−1/2u−1/2

)
(E.8)

Â−1(u) ∼ −λ−2
(
qu−1

)1/2 (
q−1/2u1/2 − q1/2u−1/2

)
(E.9)

Â0(u) ∼ −λ−1
(
qu−1

)1/2 (
q−1/2(A+B)u1/2 − q1/2

(
1 + q−1C

)
u−1/2

)
. (E.10)

Upon rescaling, we can finally define

Â1(u) =

(
ABC−1

)1/2
u1/2 −

(
ABC−1

)−1/2
u−1/2

q1/2 − q−1/2
(E.11)

Â−1(u) = λ−2
(
q−1ABC

)−1/2 q−1/2u1/2 − q1/2u−1/2

q1/2 − q−1/2
(E.12)

Â0(u) = λ−1
(
q−1ABC

)−1/2 q−1/2(A+B)u1/2 − q1/2
(
1 + q−1C

)
u−1/2

q1/2 − q−1/2
, (E.13)

so that Â(u, Tq)B3d
1,2 = 0 can be identified with the Baxter equation (see appendix C) for

the sl(2) inhomogeneous XXZ spin-chain of length 1 [120], provided

u = qv , ABC−1 = qδ1+l1 , qδ1−l1+1 = 1 , λ2 =
(
q−1ABC

)−1/2
, (E.14)

where v is the spectral parameter, while l1 and δ1 are local parameters on the spin-chain.

In this case the blocks B3d
1,2 can be interpreted as eigenvalues of the Baxter Q-operator, and

Â0(u) as an the eigenvalue of the transfer matrix.

30In the parametrization given in section 2.3 for the S3
b theory, we have λ = e2πbm3d

1 .
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