Skip to main content
Log in

Ultraviolet singularities in classical brane theory

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We construct for the first time an energy-momentum tensor for the electromagnetic field of a p-brane in arbitrary dimensions, entailing finite energy-momentum integrals. The construction relies on distribution theory and is based on a Lorentz-invariant regularization, followed by the subtraction of divergent and finite counterterms supported on the brane. The resulting energy-momentum tensor turns out to be uniquely determined. We perform the construction explicitly for a generic flat brane. For a brane in arbitrary motion our approach provides a new paradigm for the derivation of the, otherwise divergent, self-force of the brane. The so derived self-force is automatically finite and guarantees, by construction, energy-momentum conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Sakellariadou, Formation & evolution of cosmic superstrings: a short review, Fortschr. Phys. 58 (2010) 792 [arXiv:1001.1752] [SPIRES].

    Article  Google Scholar 

  2. P.O. Kazinski, S.L. Lyakhovich and A.A. Sharapov, Radiation reaction and renormalization in classical electrodynamics of point particle in any dimension, Phys. Rev. D 66 (2002) 025017 [hep-th/0201046] [SPIRES].

    ADS  Google Scholar 

  3. D.V. Gal’tsov, Radiation reaction in various dimensions, Phys. Rev. D 66 (2002) 025016 [hep-th/0112110] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  4. B.P. Kosyakov, Exact solutions of classical electrodynamics and the Yang-Mills-Wong theory in even dimensional space-time, Theor. Math. Phys. 119 (1999) 493 [hep-th/0207217] [SPIRES].

    Article  MATH  Google Scholar 

  5. Y. Yaremko, Radiation reaction, renormalization and conservation laws in six-dimensional classical electrodynamics, J. Phys. A 37 (2004) 1079 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  6. A. Mironov and A. Morozov, Radiation beyond four space-time dimensions, Theor. Math. Phys. 156 (2008) 1209 [hep-th/0703097] [SPIRES].

    Article  MATH  MathSciNet  Google Scholar 

  7. D. Galakhov, Self-Interaction and Regularization of Classical Electrodynamics in Higher Dimensions, JETP Lett. 87 (2008) 452 [arXiv:0710.5688] [SPIRES].

    Article  ADS  Google Scholar 

  8. F. Lund and T. Regge, Unified approach to strings and vortices with soliton solutions, Phys. Rev. D 14 (1976) 1524 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  9. A. Dabholkar and J.M. Quashnock, Pinning Down the Axion, Nucl. Phys. B 333 (1990) 815 [SPIRES].

    Article  ADS  Google Scholar 

  10. A. Dabholkar and J.A. Harvey, Nonrenormalization of the Superstring Tension, Phys. Rev. Lett. 63 (1989) 478 [SPIRES].

    Article  ADS  Google Scholar 

  11. E.J. Copeland, D. Haws and M. Hindmarsh, Classical theory of radiating strings, Phys. Rev. D 42 (1990) 726 [SPIRES].

    ADS  Google Scholar 

  12. R.A. Battye and E.P.S. Shellard, String radiative back reaction, Phys. Rev. Lett. 75 (1995) 4354 [astro-ph/9408078] [SPIRES].

    Article  ADS  Google Scholar 

  13. B. Carter, Electromagnetic self interaction in strings, Phys. Lett. B 404 (1997) 246 [hep-th/9704210] [SPIRES].

    MATH  ADS  Google Scholar 

  14. A. Buonanno and T. Damour, Effective action and tension renormalization for cosmic and fundamental strings, Phys. Lett. B 432 (1998) 51 [hep-th/9803025] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  15. A. Buonanno and T. Damour, Gravitational, dilatonic and axionic radiative damping of cosmic strings, Phys. Rev. D 60 (1999) 023517 [gr-qc/9801105] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  16. B. Carter, R.A. Battye and J.-P. Uzan, Gradient formula for linearly self-interacting branes, Commun. Math. Phys. 235 (2003) 289 [hep-th/0204042] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. R.A. Battye, B. Carter and A. Mennim, Linearized self-forces for branes, Phys. Rev. D 71 (2005) 104026 [hep-th/0412053] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  18. P.O. Kazinski and A.A. Sharapov, Radiation back-reaction and renormalization in classical field theory with singular sources, Theor. Math. Phys. 143 (2005) 798 [SPIRES].

    Article  MATH  MathSciNet  Google Scholar 

  19. K. Lechner and P.A. Marchetti, Variational principle and energy-momentum tensor for relativistic electrodynamics of point charges, Annals Phys. 322 (2007) 1162 [hep-th/0602224] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. K. Lechner, Radiation reaction and four-momentum conservation for point-like dyons, J. Phys. A 39 (2006) 11647 [hep-th/0606097] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  21. P.A.M. Dirac, Classical theory of radiating electrons, Proc. Roy. Soc. Lond. A 167 (1938) 148 [SPIRES].

    ADS  Google Scholar 

  22. F. Rohrlich, Classical Charged Particles: Foundation of Their Theory, Addison-Wesley, Reading, MA (1965).

    Google Scholar 

  23. E.G.P. Rowe, Structure of the Energy Tensor in the Classical Electrodynamics of Point Particles, Phys. Rev. D 18 (1978) 3639 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  24. T. Damour, A New and Consistent Method for Classical Renormalization, Nuovo Cim. B 26 (1975) 157 [SPIRES].

    Article  ADS  Google Scholar 

  25. C.-L. He and D.-X. Kong, The motion of relativistic strings in curved space-times, arXiv:1007.4232 [SPIRES].

  26. R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. II, Wiley, New York (1962).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Lechner.

Additional information

ArXiv ePrint: 1011.3746

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lechner, K. Ultraviolet singularities in classical brane theory. J. High Energ. Phys. 2010, 63 (2010). https://doi.org/10.1007/JHEP12(2010)063

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2010)063

Keywords

Navigation