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1 Introduction

Hydrodynamics is an effective theory of fluids valid at sufficiently long times and sufficiently

large distances. Classical hydrodynamics is formulated by combining conservation laws for

energy, momentum, and other charges (such as the particle number in non-relativistic

systems) with the constitutive relations expressing the conserved fluxes in terms of the
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hydrodynamic variables: local temperature, fluid velocity, and charge density [1]. The

constitutive relations are written down on the basis of symmetry, using the derivative

expansion. The constitutive relations which contain no derivatives of the hydrodynamic

variables are said to describe “perfect fluids”, corresponding to “zeroth-order” hydrody-

namics. The constitutive relations which contain up to one derivative of the hydrodynamic

variables are commonly said to describe “viscous fluids”, corresponding to “first-order” or

“Navier-Stokes” hydrodynamics. One can proceed by adding terms with more derivatives

of the hydrodynamic variables to the constitutive relations, hoping to improve the hydro-

dynamic description of the actual physical fluids. The constitutive relations which contain

up to n derivatives of the hydrodynamic variables then give rise to nth-order hydrodynam-

ics. In this paper, we will use simple facts from the theory of complex curves in order to

study some aspects of convergence of the above derivative expansion. Our focus will be

on relativistic fluids, and we shall illustrate general results with the examples of strongly

interacting quantum field theories possessing a dual holographic description.

A neutral homogeneous and isotropic relativistic fluid whose energy-momentum tensor

is conserved supports collective excitations in the form of shear and sound hydrodynamic

modes [2]. The collective modes arise from the analysis of linearised fluctuations of energy

and momentum densities around the equilibrium state at temperature T . The mode’s

frequency ω is related to the wave vector q by the dispersion relation ω = ω(q). In

hydrodynamics, the dispersion relations are given by

Shear mode: ωshear(q) = −iDq2 + · · · , (1.1)

Sound mode: ω±sound(q) = ±vs|q| − i
Γs
2

q2 + · · · , (1.2)

where vs is the speed of sound, and D and Γs can be expressed through relevant transport

coefficients. In ds spatial dimensions, we have

D =
η

ε+ p
, (1.3)

Γs =
1

ε+ p

[
ζ +

2ds − 2

ds
η

]
, (1.4)

where ε and p are the equilibrium energy density and pressure, and η and ζ are the shear

and bulk viscosities. The shear mode (1.1) describes diffusion of the transverse (to the

wave vector) velocity fluctuations which are damped by the shear viscosity. The sound

mode (1.2) describes propagation of the longitudinal velocity fluctuations together with the

fluctuations in the energy density and pressure. The terms written down in (1.1) and (1.2)

represent the contributions from first-order hydrodynamics, while the ellipses denote terms

with higher powers of q, which can be matched to transport coefficients in second- and

higher-order hydrodynamics [3–5]. To all orders in the hydrodynamic derivative expansion,

the dispersion relations (1.1), (1.2) are represented by infinite series in q.

Are these hydrodynamic series convergent? If so, what are their radii of convergence

and what determines them? If the series are only asymptotic, can they be resummed?

The shear mode (1.1) appears to be an expansion in powers of q2, whereas the sound
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mode (1.2) seems to contain odd and even powers of |q| =
√

q2 in its real and imaginary

part, respectively. Can we prove that no other power of q2 or non-analytic terms appears

in the hydrodynamic expansions at any order?1 These questions were considered in our

recent short paper [8], and we shall provide more details here.

In general, proving convergence of a perturbative series and finding the correspond-

ing radius of convergence may constitute rather difficult (and rather different) problems.

For example, the convergence of the so called 1/Z series representing the lowest energy

eigenvalue of the two-electron atom with the nucleus of charge Z was rigorously proven

by Kato in 1951 [9] but reliably computing the actual value of the radius of convergence

from the series coefficients and their Padé extensions remained a controversial problem for

many decades [10, 11]. Yet another example is the series solution to Kepler’s equation

whose “mysterious” convergence properties were discussed by the giants such as Laplace

and Cauchy and were finally understood as arising from the critical points of the associated

curve in the complex eccentricity plane (see appendix C).

The problems involving re-summing all-order hydrodynamic expansions and finding

the radius of convergence of hydrodynamic series have been previously addressed in the lit-

erature. All-order linearised hydrodynamics was investigated by Bu and Lublinsky [12, 13]

using fluid-gravity correspondence. Re-summations of the hydrodynamic derivative expan-

sion have been also considered in the framework of kinetic theory [14] and in cosmological

models [15]. By far the largest body of work on the subject has been done in the setting

of the boost-invariant flow, where the gradient expansion in the position space typically

produces asymptotic rather than convergent series, and the Borel-Padé and “resurgence”

methods [16] can be used to re-sum the series and extract information about gapped modes

in the spectrum from the hydrodynamic series [17–26]. In ref. [27], Withers studied the

convergence properties and analytic continuation of a dispersion relation for the shear-

diffusion mode in a holographic model involving a dual Reissner-Nordstrom-AdS4 black

brane. There, a finite radius of convergence resulted from a branch point singularity at a

certain value of the purely imaginary momentum. From the point of view of the quasinor-

mal spectrum, this point corresponds to the collision of the modes or level-crossing, very

similar to the discussion in ref. [8] and in the present paper.

The prediction of classical hydrodynamics is that the above frequencies ω(q) appear

as poles of the retarded two-point functions2 of the energy-momentum tensor in thermal

equilibrium, as q → 0 [2, 28]. Assuming that the prediction of classical hydrodynamics

is correct and that the actual response functions computed from quantum field theory

(viewed as functions of ω) indeed have isolated poles at ω = ω(q) with ω(q → 0) → 0,

we can define the function ω(q) as the location of the relevant pole. In what follows, we

shall discuss several models where the poles of the full response functions can be readily

analysed, both analytically and numerically, for generic values of q, either real or complex,

1In this paper, we consider classical hydrodynamics only, ignoring the effects of statistical fluctuations

such as those discussed for example in refs. [6, 7]. Such fluctuation effects are suppressed in the holographic

models we study below.
2We shall often call the retarded two-point functions “response functions”, as they form the basis of the

linear response theory.
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small or large. This will allow us to study the analytic properties of the derivative expansion

in hydrodynamics by studying the dispersion relations ω(q) obtained from the poles of the

relevant retarded functions in thermal equilibrium.

In general, the hydrodynamic dispersion relations arise as solutions to

P (q2, ω) = 0 , (1.5)

where P is proportional to the inverse of the corresponding retarded two-point function.3

The hydrodynamic dispersion relations ω(q) are solutions to (1.5) obeying ω(q → 0) →
0, where q2 and ω are treated as complex variables. We shall refer to P (q2, ω) as the

hydrodynamic spectral curve. In order to obtain P (q2, ω) from classical hydrodynamics,

we choose a set of hydrodynamic variables ϕa (such as the fluid velocity and temperature),

and linearise the hydrodynamic equations about the equilibrium state, ϕa = ϕ
(eq)
a +δϕa. In

the absence of external sources, the hydrodynamic equations are homogeneous and, upon

Fourier transforming, can be written as a set of linear algebraic equations, Kabδϕb = 0.

The hydrodynamic spectral curve is then simply P = detK.

In nth-order (classical) hydrodynamics, P (q2, ω) is a polynomial of a finite order, and

eq. (1.5) defines a complex algebraic curve. The theorems of analysis such as the implicit

function theorem and the theorem of Puiseux then determine the structure and properties

of ω(q). In particular, these theorems guarantee that for any finite order of the derivative

expansion, the dispersion relations ω(q) are given by series converging in some vicinity of

the origin (q2, ω) = (0, 0), and the same is true as n→∞, provided P (q2, ω) is an analytic

function at (0, 0). We discuss the spectral curve and the associated dispersion relations of

the hydrodynamic modes in section 2 of the paper.

In addition to the spectral curve, we shall also study the retarded functions of the

energy-momentum tensor. As a simple example, the prediction of 1st-order hydrodynamics

for the retarded function of the transverse momentum density is [2]

GR⊥,⊥(q2, ω) =
(ε+p)Dq2

iω −Dq2
, (1.6)

where D = η/(ε + p), as before. When viewed as a function of ω, there is a simple pole

given by the shear mode dispersion relation (1.1). When viewed as a function of two

variables q2 and ω, one can immediately see that the point (q2
∗, ω∗) = (0, 0) is a singular

point of GR(q2, ω), such that the value of the response function at (q2
∗, ω∗) is undefined.

This is commonly expressed by saying that the limits ω → 0 and q→ 0 do not commute.

Such indeterminacy-type singularities in physical response functions can also exist at finite

non-zero (q2
∗, ω∗). This was recently explored for the sound mode (retarded function of the

energy density) in refs. [29–31], where the phenomenon of the indeterminacy-type singular-

ities at non-zero (q2
∗, ω∗) was called “pole-skipping”. Put differently, pole-skipping happens

when P (q2
∗, ω∗) = 0, and the residue of the corresponding pole of GR(q2, ω) vanishes at

(q2
∗, ω∗). In the example of eq. (1.6), the “skipping” of the shear pole happens at the origin.

3Here, the proportionality is assumed to be trivial in the sense that the equations G−1
R = 0 and (1.5)

are equivalent.
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A study of pole-skipping at non-zero (q2
∗, ω∗) will be another focus of our paper.4 In fact,

the original motivation for our work was to see whether the pole-skipping singularities in

response functions and the non-zero radius of convergence of the hydrodynamic derivative

expansion might be related to each other.

To illustrate our approach in a simple exactly solvable example, in section 3 we discuss

the holographic bottom-up model studied, in particular, by Davison and Goutéraux in

ref. [33]. The advantage of the model is that the effects of translation symmetry breaking

on hydrodynamics can be studied in a controlled manner, and that the hydrodynamic and

non-hydrodynamic degrees of freedom can be easily separated. The explicit breaking of

the translation symmetry means that momentum is no longer conserved, and the sound

mode is absent from the spectrum as q → 0. Thus, the only modes with ω(q → 0) = 0

are the diffusive modes of the energy and charge densities. For a certain special value of

the translation symmetry breaking parameter in the model, the response functions of the

energy and charge densities can be found exactly for all (not just small) momenta [33].

One then finds the following dispersion relation for the diffusive modes:

w(q) = − i
2

(
1−

√
1− 4q2

)
= −iq2 − iq4 + · · · . (1.7)

It is clear that the corresponding hydrodynamic series converges in the circle |q| < |qc| =
1/2 due to the branch point singularities at qc = ±1/2. We shall study the exact and

approximate spectral curves and obstruction to convergence in this model in section 3.

Our main example, considered in section 4, is the N = 4 supersymmetric SU(Nc)

Yang-Mills theory at infinite Nc and infinite ’t Hooft coupling, which we will abbreviate as

“strongly coupled N = 4 SYM theory”. In this theory, real-time equilibrium correlation

functions can be calculated by the methods of holographic duality [34, 35] (see for example

refs. [36–39] for an introduction to the holographic duality and applications). The disper-

sion relations of the shear and sound modes in the strongly coupled N = 4 SYM theory

obtained by holographic methods are shown in figure 1. Using the units ~ = c = 1, we plot

the dispersion relations in terms of dimensionless variables w ≡ ω/2πT and q ≡ |q|/2πT .

The function w(q) for the shear mode is purely imaginary for real q, while w(q) for the

sound mode has both real and imaginary parts for real q. The functions w(q) in figure 1

appear to be smooth and generally unremarkable functions of real positive q. Their be-

haviour at q � 1 has a clear hydrodynamic interpretation [40, 41] fully compatible with

eqs. (1.1), (1.2), and their asymptotics as q → ∞ were studied in refs. [42, 43]. Thus, at

least in the case of the N = 4 SYM theory, if the series (1.1), (1.2) have finite radii of

convergence, the obstacle to convergence must lie either at negative q =
√

q2, or more gen-

erally, at complex momenta. By studying complex q, one indeed finds that the functions

w(q) in the N = 4 SYM theory have finite non-zero radii of convergence: |qsound
c | =

√
2,

and |qshear
c | ≈ 1.49 [8]. In section 4, we show in detail how the finite radius of conver-

gence arises from the quasinormal mode level-crossing in the shear and sound channels,

4The connection between the pole-skipping values (q2
∗, ω∗) and the growth of the out-of-time-ordered

four-point correlation functions (OTOC) of local operators in quantum field theory has been studied in

refs. [29–32].
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Figure 1. Dispersion relations of the hydrodynamic modes in the strongly coupled N = 4 SYM

theory, obtained using the dual holographic description. The dispersion relations are plotted in

terms of dimensionless w ≡ ω/2πT and q ≡ |q|/2πT , with complex w as functions of real positive

q. The left panel shows wshear(q) for the shear mode, the right panel shows w+
sound(q) for one of the

two sound modes. In the left panel, the actual −Imwshear(q) for the shear mode is shown by the

solid red curve, and the analytic hydrodynamic approximation to O(q8) (computed in section 4.1)

is shown by the dashed blue curve. The blue dot indicates the pole-skipping point at q∗ =
√

3/2,

w∗ = −i, discussed in section 4.7. The right panel shows Rew+
sound(q) (solid red curve) and

−Imw+
sound(q) (dashed red curve) for the “+” sound mode. The straight dotted line indicates the

light cone Rew = q.

and demonstrate that the level-crossing phenomenon is also observed in the scalar channel

of the correlators.

One of our main results concerns the response functions of the energy-momentum

tensor in the strongly coupled N = 4 SYM theory. It was shown in refs. [29, 31] that there

is a pole-skipping singularity in the retarded two-point function of the energy density at

(q2
∗,w∗) = (−3/2, i), at which point the sound pole is “skipped”. The sound dispersion

curves pass through the point (q2
∗,w∗), as illustrated in figure 2. We observe that in close

analogy with the sound mode, the shear mode dispersion relation (1.1) passes through the

point q2
∗ = 3/2, w∗ = −i (see figure 1). It turns out that this is not an accident: we will

show that the pole-skipping phenomenon in the strongly coupled N = 4 SYM theory is

exhibited not only by the response functions which give rise to the sound mode (energy

density correlations), but also by the response functions which give rise to the shear mode

(transverse momentum density correlations). Moreover, we find that the pole-skipping at

non-zero complex momentum also occurs in response functions of those components of the

energy-momentum tensor that are not related to hydrodynamic modes. For example, for q

along the z direction, the fluctuations of T xy are gapped, and the response function of T xy

has no hydrodynamic singularities. Nevertheless, the gapped singularities of the retarded

function of T xy pass through (q2
∗,w∗) = (−3/2,−i), at which point one of the gapped

poles is “skipped”. This is illustrated in figure 3. In other words, all retarded functions

of Tµν in strongly coupled N = 4 SYM theory exhibit pole-skipping at |q∗| =
√

3/2 and

|w∗| = 1. The retarded functions of the energy-momentum tensor and the convergence of

the derivative expansion in the N = 4 SYM theory are discussed in section 4.

A natural question to ask is whether pole-skipping happens within the domain of

validity of the hydrodynamic approximation, as far as the convergence of the hydrodynamic
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Figure 2. The analytically continued sound mode frequencies in the strongly coupled N = 4 SYM

theory, obtained using the dual holographic description. The dimensionless frequencies w±
sound of

the two sound modes are plotted for purely imaginary dimensionless spatial momentum q, with the

“+” branch in red and the “−” branch in blue. The frequencies w±
sound are purely imaginary at

imaginary q. At small momenta, the curves are linear with slopes ±vs, with vs = 1/
√

3. The curves

pass through pole-skipping points (q∗,w∗) = (±i
√

3/2, i) indicated by the blue dots.

-1.5 -1.0 -0.5 0.5 1.0 1.5

-6

-4

-2

2

Figure 3. The first two (closest to the origin) poles of the retarded function of T xy in the strongly

coupled N = 4 SYM theory, obtained using the dual holographic description. The locations of the

poles are plotted as functions of the dimensionless wave vector for q purely imaginary, with Rew

shown in blue, and Imw shown in red. The dots indicate the points (q∗,w∗) = (±i
√

3/2,−i),
where the response function of T xy exhibits pole-skipping.

derivative series is concerned. In other words, if the hydrodynamic dispersion relation wi(q)

has a finite radius of convergence |qic| and pole-skipping in the corresponding response

function happens at |qi∗|, how does |qic| compare with |qi∗|? In the strongly coupled N = 4

SYM theory we have |qsound
c | =

√
2, |qshear

c | ≈ 1.49 [8], and |q∗| =
√

3/2. Thus |q∗| < |qc|,
and therefore pole-skipping in correlation functions takes place within the convergence

domain of the hydrodynamic derivative expansion. On the other hand, in the model of

ref. [33], we have |qc| = 1/2, |q∗| =
√

2, hence |q∗| > |qc|, so pole-skipping occurs outside

the convergence domain of the hydrodynamic derivative expansion. This indicates that

the “skipping” of hydrodynamic poles in retarded functions of energy and momentum
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densities is not directly related to the convergence radius of the derivative expansion in

hydrodynamics.

More generally, pole-skipping singularities in real-time response functions at non-zero

momentum do not have to have any relation to hydrodynamics at all. As an example,

we consider response functions of spin-zero operators in 1+1 dimensional conformal field

theory (CFT). For a primary operator, the Euclidean correlation function on R2 is fixed

by conformal symmetry. Performing a conformal transformation to the cylinder R × S1

gives Euclidean thermal correlations functions [44], which can be Fourier transformed and

analytically continued to produce exact real-time retarded functions GR(w, q) [34]. These

functions have no hydrodynamic poles, yet we will see that there is an infinite number of

pole-skippings at non-zero values of (q∗,w∗). We discuss this in detail in section 5. Our

conclusions and discussion of the issues raised in the paper appear in section 6.

2 Hydrodynamic dispersion relations as Puiseux series

2.1 Hydrodynamic spectral curves

We start with a brief review of how the hydrodynamic dispersion relations are derived. Con-

sider hydrodynamics of a neutral homogeneous and isotropic relativistic fluid in flat space

in ds spatial dimensions. We are interested in linearised fluctuations in a homogeneous

and isotropic equilibrium state, Tµν = Tµνeq. + δTµν , where Tµν denotes the expectation

value of the symmetric energy-momentum tensor operator, and the equilibrium state is

characterised by T 00
eq. = ε, T ijeq. = pδij , T 0i

eq. = 0, where ε and p are the equilibrium en-

ergy density and pressure. The equations of hydrodynamics follow from the conservation

of the energy-momentum tensor, ∂µT
µν = 0. Translation invariance of the equilibrium

state implies that we can Fourier transform the fluctuations and take all variables to be

proportional to exp (−iωt+ iq·x). Furthermore, rotation invariance allows us to choose

the direction of the z axis along q. We then have the following system of conservation

equations for the linearised fluctuations:

−ω δT 0a + qz δT
za = 0 , (2.1a)

−ω δT 00 + qz δT
z0 = 0 , (2.1b)

−ω δT 0z + qz δT
zz = 0 , (2.1c)

where we use the index a and subsequent Latin indices to denote any of the ds − 1 spatial

directions orthogonal to z.

The above conservation equations need to be supplemented by the constitutive rela-

tions which express δTµν in terms of the hydrodynamic degrees of freedom. For linearised

hydrodynamics, a convenient choice of the degrees of freedom is the energy density δT 00

and momentum density δT 0i. This choice implies that we only need the constitutive rela-

tions for the spatial stress, δT ij = δT ij(δT 00, δT 0k). The constitutive relations will contain

derivatives of δT 00 and δT 0k, as is needed for example to describe the viscosity of fluids.

We will organise the constitutive relations according to the number of derivatives of the

– 8 –
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hydrodynamic variables. The hydrodynamics of k-th order is determined by the consti-

tutive relations in which δT ij contains up to k derivatives of δT 00 and δT 0i. It is then

straightforward to write down the linearised constitutive relations at any order, by noting

that under the spatial SO(ds), the stress fluctuation δT ij is a rank-two tensor, momentum

density δT 0i is a vector, and the energy density δT 00 is a scalar. For example, in the

first-order hydrodynamics of ref. [1], we have

δT ij = δij
∂p

∂ε
δT 00

− 1

ε+ p

[
η

(
∂i δT

0j + ∂j δT
0i − 2

ds
δij∂kδT

0k

)
+ ζδij∂k δT

0k

]
+ · · · , (2.2)

where η is the shear viscosity, ζ is the bulk viscosity, and the ellipses denote terms with

more than one derivative of δT 00, δT 0i. Combining the constitutive relations (2.2) with

the conservation equations (2.1) gives a system of linear equations for the fluctuations δT 00

and δT 0i. The equations have non-trivial solutions provided the corresponding determinant

vanishes:

P1(q2, ω) ≡
(
ω + iDq2

)ds−1 (
ω2 + iΓsωq2 − v2

sq
2
)

= 0 , (2.3)

where v2
s = ∂p/∂ε is the speed of sound squared, and D, Γs are defined by eqs. (1.3), (1.4).

In fact, rotation invariance implies that the most general linearised constitutive rela-

tions in momentum space take the following form:

δTnm = − iA
(
qnδT 0m + qmδT 0n

)
+ δT 00 (Bqnqm + Cδnm)

+ iqlδT
0l (Dqnqm + Eδnm) , (2.4)

where A, B, C, D, E are scalar functions of ω and q2. Substituting the constitutive

relations (2.4) into the conservation equations (2.1), we find a system of ds+1 linear equa-

tions for ds+1 hydrodynamic variables. This system has non-trivial solutions provided the

determinant of the corresponding matrix vanishes. The vanishing of the determinant is

equivalent to the vanishing of

P (q2, ω) ≡ F ds−1
shearFsound , (2.5)

where

Fshear(q
2, ω) ≡ ω + iq2γη(q

2, ω) = 0 , (2.6)

Fsound(q2, ω) ≡ ω2 + iωq2γs(q
2, ω)− q2H(q2, ω) = 0 . (2.7)

Here the coefficients are γη ≡ A, γs ≡ 2A−E −Dq2, H = Bq2 + C. Thus, the shear and

the sound modes decouple as a consequence of rotation invariance.5

5See refs. [12, 13] for a study of “resummed” holographic hydrodynamics to all orders in the derivative

expansion. In our language, this amounts to studying the functions γη(q2, ω), γs(q
2, ω), H(q2, ω) in a

holographic model.
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If the constitutive relations (2.4) are given by a local derivative expansion, then the

functions γη(q
2, ω), γs(q

2, ω) and H(q2, ω) are power series in ω and q2 with finite values

at ω = 0, q2 = 0:

γη(0, 0) = D , γs(0, 0) = Γs , H(0, 0) = v2
s , (2.8)

with vs, D and Γs as above. Truncating the derivative expansion at order k then gives a

sequence of algebraic equations defined by finite polynomials in q2 and ω,

F
(k)
shear(q

2, ω) = 0 , (2.9)

F
(k)
sound(q2, ω) = 0 . (2.10)

For general complex ω and q2, eqs. (2.6), (2.7), or (2.9), (2.10) define complex algebraic

curves6,7 which we will call hydrodynamic spectral curves. The complete dispersion rela-

tions of the i-th mode, ωi = ωi(q
2), can be obtained by solving eqs. (2.6), (2.7) for ω, while

the corresponding approximate expressions arising in k-th order hydrodynamics are found

from eqs. (2.9), (2.10). The hydrodynamic dispersion relations are the solutions which sat-

isfy ωi(q
2 → 0) = 0. They correspond to infinite relaxation times for infinite-wavelength

perturbations of conserved densities, i.e. to the conservation of energy and momentum.

Note that the polynomials F
(k)
shear(q

2, ω), F
(k)
sound(q2, ω) are not defined uniquely be-

cause of the freedom to organise the derivative expansion in hydrodynamics, such as the

choice of “frame” and the use of on-shell conditions [2, 46]. As an example, the con-

servation equations (2.1) imply that the factors of ω in the constitutive relations (2.4)

can be eliminated at each order in the derivative expansion. Thus one can organise the

derivative expansion in such a way that the functions γη(q
2, ω), γs(q

2, ω) and H(q2, ω)

are all ω-independent at each given order in the expansion. Then eqs. (2.9), (2.10) give

simple explicit expressions for ωshear(q
2) and ωsound(q2) in terms of three scalar functions

γη(q
2), γs(q

2) and H(q2), whose small-q limits are given by eq. (2.8). In this way of im-

plementing the derivative expansion, the hydrodynamic dispersion relations are the only

solutions to (2.9), (2.10). Of course, other choices of organising the derivative expansion

are possible where the ω-dependence in γη(q
2, ω), γs(q

2, ω) and H(q2, ω) is retained, and

non-hydrodynamic (gapped) modes appear in addition to the hydrodynamic modes.

The above discussion was in the context of classical hydrodynamics. A similar fac-

torisation of the shear and sound modes happens in the full response functions of the

energy-momentum tensor, without any hydrodynamic assumptions [41]. For example, for

the wave vector along z, the shear mode is described by fluctuations of δT 0a, where the

direction a is orthogonal to z. The condition that the inverse of the equilibrium response

function of the T 0a operator vanishes can be written as Pshear(q
2, ω) = 0. In general,

Pshear(q
2, ω) is a complicated function which describes both hydrodynamic (long-distance,

long-time) and non-hydrodynamic (short-distance, short-time) physics. For small (appro-

priately defined) q2 and ω, the exact Pshear(q
2, ω) will reduce to the above Fshear(q

2, ω),

6Eq. (2.5) is an example of a reduced curve f(x, y) =
∏
i gi(x, y), where each gi can be considered

independently [45].
7The equations F ds−1

shear = 0 and Fshear = 0 define the same curve. To avoid any confusion, by the “shear

curve”, we shall always mean the definition Fshear = 0.
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provided hydrodynamics is a valid effective description of the system. The same applies

to the sound mode: the condition that the inverse of the equilibrium response function

of the T 00 operator vanishes can be written as Psound(q2, ω) = 0. For small (relative to

the appropriately defined scale) q2 and ω, the exact Psound(q2, ω) will reduce to the above

Fsound(q2, ω), provided hydrodynamics is a valid effective description of the system. In

this paper, we will only be studying physical systems in which the near-equilibrium physics

governed by the conserved densities can be described by classical hydrodynamics. In other

words, we will assume that the functions γη(q
2, ω), γs(q

2, ω), H(q2, ω) are defined by the

exact response functions of the Tµν operator.

2.2 Small-momentum expansions

For a given spectral curve, the small-q2 expansion of the hydrodynamic dispersion relation

ωi(q
2) can be found using the theorem of Puiseux (see appendix A and refs. [45, 47, 48]).

Starting with the shear mode, let us assume that γη(q
2, ω) is analytic at (q2, ω)=(0, 0)

and thus eq. (2.6) defines an analytic curve for complex (q2, ω) ∈ C2. This is of course not

guaranteed a priori and should be established by independent methods, e.g. by finding the

exact response function.8 The analyticity of γη(q
2, ω) implies that Fshear(q

2, ω) is analytic

at the origin as well, and, since ∂Fshear/∂ω = 1 6= 0 at (0, 0), the origin is a regular point

of the analytic curve (2.6). Then the analytic implicit function theorem (see appendix A)

guarantees that for sufficiently small q2 and ω, there exists a unique solution of eq. (2.6)

of the form

ωshear(q
2) = −i

∞∑
n=1

cnq
2n = −ic1q

2 +O(q4) , (2.11)

convergent in a neighbourhood of q2 = 0. The radius of convergence is determined by the

location of the nearest to the origin critical point of the curve (2.6).

Continuing with the sound mode, let us again assume that γs(q
2, ω) and H(q2, ω)

are analytic functions at (0, 0). The function Fsound(q2, ω) is then analytic at the origin

as well. Now we have ∂Fsound/∂ω = 0 at (0, 0), and thus the origin is a critical point of

the spectral curve. On the other hand, ∂2Fsound/∂ω
2 = 2 6= 0 at (0, 0), thus we expect

the sound dispersion relation to have p = 2 branches. The Puiseux series expansions are

then given by eqs. (A.6), (A.7), in other words ω
(j)
sound(q2) can be represented by series in

non-negative powers of (q2)1/mj , where mj are positive integers, and j = 1, 2 labels the

two branches corresponding to the two sound modes. Following the general analysis of

algebraic curves, the integers mj may be found using the Newton’s polygon method (see

refs. [45, 47, 48] for details). For analytic γs and H, we have the expansions

γs(q
2, ω) =

∞∑
n,m=0

γsnmω
nq2m , (2.12)

H(q2, ω) =

∞∑
n,m=0

Hnmω
nq2m . (2.13)

8Moreover, the analyticity fails when the statistical fluctuation effects are taken into account, see foot-

note 1 and ref. [49].
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Figure 4. The Newton polygon for the sound mode.

The coefficients in front of various powers of ω in the expression (2.7) are then given by

ω0 : −
∞∑
k=0

H0kq
2k+2 , (2.14)

ω1 : iq2γs00 +

∞∑
k=1

(iγs0k −H1k) q2k+2 , (2.15)

ω2 : 1 +

∞∑
k=0

(iγs1k −H2k) q2k+2 , (2.16)

ω3 :
∞∑
k=0

(iγs2k −H3k) q2k+2 , (2.17)

... (2.18)

ωn :

∞∑
k=0

(
iγsn−1k −Hnk

)
q2k+2 . (2.19)

The vertices of the Newton polygon are thus given by (0, 1+k0), (1, 1+k1), (2, 0), (3, 1+k3),

(4, 1 + k4), . . ., where k0, k1, . . . are the smallest indices such that H0k0 6= 0 as well as

H0k1 6= 0 or/and γs0k1 6= 0, etc. The Newton polygon for the sound mode is shown in

figure 4, where it is assumed that H00 6= 0 and that either Hn,0 6= 0 or γsn−1,0 6= 0 (or both)

are non-zero for n = 3, 4, . . .. The exponents of x ≡ q2 in the Puiseux series are given by

the negative slopes of the polygon’s lines, i.e. by 1/2 for H00 6= 0. Thus mj = 2, and the

lowest order term in the two branches is

ω = ±
√
H00 (q2)

1
2 + · · · . (2.20)

From the Newton polygon, it is clear that H00 6= 0 is the necessary and sufficient condition

for the fractional powers of q2 to appear in the dispersion relation. In the hydrodynamic

derivative expansion, H00 = ∂p/∂ε = v2
s is the speed of sound squared. One may have

H00 = 0 at the point of a phase transition (see e.g. ref. [50]) in which case the dispersion

relation contains only positive powers of q2.

Generically, for H00 = v2
s 6= 0, the sound mode dispersion relation will be given by

the two branches of Puiseux series in (q2)1/2 converging in some neighbourhood of the

point q2 = 0,

ω±sound(q2) = −i
∞∑
n=1

ane
± iπn

2 (q2)
n
2 = ±a1(q2)

1
2 + ia2q

2 ∓ a3(q2)
3
2 +O(q4) , (2.21)
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where an ∈ R and a1 = cs is the speed of sound. In particular, for q2 = e±iπ|q2|, the

functions ω±sound(q2) are purely imaginary as anticipated in ref. [29].

2.3 Convergence of the hydrodynamic series

The shear and sound dispersion relation series (2.11) and (2.21) have non-zero radii of

convergence as long as the corresponding spectral curves (2.6) and (2.7) are given by the

functions of q2 and ω analytic at the origin (0, 0). One way to find the radius of convergence

of the series is to analyse the behaviour of the coefficients an, cn at large n. This behaviour

will of course depend on the microscopic details of the particular physical system, and may

be difficult to study in practice (see, however, ref. [27]). Instead, here we use the spectral

curves to determine the radii of convergence.

The Puiseux analysis implies that the domain of convergence of Puiseux series centred

e.g. at the origin is the circle whose radius is set by the distance from the origin to the

nearest critical point of the associated spectral curve. Critical points of the spectral curve

F (q2, ω) = 0, where q2, ω ∈ C, are determined by the conditions

F (q2
c , ωc) = 0 ,

∂F

∂ω
(q2

c , ωc) = 0 . (2.22)

There are p > 1 branches of the solution ω = ω(q2) in the vicinity of the critical point,

provided that

F (q2
c , ωc) = 0 ,

∂F

∂ω
(q2

c , ωc) = 0 , . . . ,
∂pF

∂ωp
(q2

c , ωc) 6= 0 . (2.23)

For example, the origin (0, 0) is the critical point (with p = 2) of the sound hydrodynamic

spectral curve (2.7), as discussed in section 2.2. If the spectral curves happen to be known

exactly or approximately (as will be the case in the holographic models we study below),

eqs. (2.22) provide an efficient method to find the radii of convergence, without performing

the large-n analysis of the expansion coefficients.

When the function F (q2, ω) is a polynomial, the condition (2.22) means that the equa-

tion F (q2, ω) = 0, where F (q2, ω) is considered as a polynomial in ω with q2-dependent

coefficients, has multiple roots at ω = ωc. This is equivalent to the condition that the

discriminant of the polynomial F (q2, ω) vanishes. As an example, consider the first-order

hydrodynamics of [1], where the spectral curves following from eq. (2.3) are9

F
(1)
shear(q

2, ω) = ω + iDq2 = 0 , (2.24)

F
(1)
sound(q2, ω) = ω2 + iΓsωq2 − v2

sq
2 = 0 . (2.25)

9As mentioned in section 2.1, the expressions for the truncated spectral curves F (k) at each order k of

the hydrodynamic derivative expansion are not unique due to the freedom allowed by the “frame” choice.

Correspondingly, the critical points determined by the approximate spectral curves F (k) depend on the

“frame” choice. This dependence becomes less and less pronounced with k increasing and disappears in the

limit k → ∞. Thus, although the critical points of the exact spectral curve are “frame”-independent, the

rate of convergence of the approximate location of the critical points to the exact values can be affected by

the “frame” choice.
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These equations are simple enough to be solved explicitly: eq. (2.24) is solved by ω =

−iDq2, whereas the solutions of eq. (2.25) are

ω±sound(q2) = − iΓs
2

q2 ±

√
v2
sq

2

(
1− Γ2

s q2

4v2
s

)
= ±vsq −

iΓs
2
q2 + · · · , (2.26)

where in the expansion we only kept terms quadratic in q ≡
√

q2, since we expect the

coefficients in front of the higher powers of q to be modified by higher-derivative terms in

the hydrodynamic expansion. The series in q on the right-hand side of eq. (2.26) has the

radius of convergence

R
(1)
sound =

2vs
Γs

, (2.27)

determined by the branch points of the square root in eq. (2.26) or, equivalently, by the

zeros of the discriminant10 (−Γ2
s q4 + 4v2

sq
2) of the polynomial (2.25). Since first-order

hydrodynamics can only be trusted for |q| � 2vs/Γs = R
(1)
sound, the result (2.27) is only an

approximation. Alternatively, applying the condition (2.22) to the spectral curve (2.25),

we find

q2
c =

4v2
s

Γ2
s

, ω(sound)
c = −i2vs

Γs
, (2.28)

which coincides with (2.27). In what follows, we will be studying models where the conver-

gence radii of the small-q expansions can be determined from the exact response functions

of the theory, without resorting to the derivative expansion of hydrodynamics.

3 A holographic model with translation symmetry breaking

To illustrate the methods discussed in section 2.3, we consider the holographic model

with translation symmetry breaking [52], studied, in particular, in ref. [33]. The model is a

bottom-up gravity construction in 4d describing a hypothetical dual 2+1-dimensional QFT

with broken translational invariance. In the context of the present paper, the significance

of the construction discussed in ref. [33] lies in the fact that it provides exact analytic

formulae for the current and energy-momentum correlator two-point functions at a special,

self-dual symmetry point (see section 4 of ref. [33] for details). In particular, among the

poles of the correlation function, one finds a gapless excitation whose dispersion relation is

known analytically, possibly a unique example in holography.

The bulk action of the model is given by [33, 52] (see also ref. [31])

S =

∫
d4x
√
−g

(
R− 2Λ− 1

2

2∑
i=1

∂µφi∂µφi −
1

4
FµνF

µν

)
, (3.1)

where Λ = −3/L2 (we set L = 1 in the following). The background solution of interest

involves the AdS-Schwarzschild black brane with translational invariance broken by the

linear dilaton fields, and a vanishing Maxwell field.

10Similar methods have been used in spectroscopy [51].
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First, we recast the setup of ref. [33] in the form more convenient for our purposes,

having in mind the variables used in ref. [41]. The metric at the special symmetry point

has the form (see section 4 of ref. [33])

ds2 = −r
2
0

u
f(u) dt2 +

r2
0

u

(
dx2 + dy2

)
+

du2

4fu2
, (3.2)

where f = 1 − u, and we have used the coordinate u = r2
0/r

2. The horizon is located

at u = 1 and the boundary at u = 0. The Hawking temperature of the background is

T = r0/2π. The dilaton fields are given by φ1 =
√

2r0x and φ2 =
√

2r0y. They will not

play any role in the following.

Considering the Maxwell field fluctuations in the background (3.2), coupled to the

current operator on the boundary, one finds the equations of motion

a′′t +
1

2u
a′t −

1

4uf

(
q2at + wq ax

)
= 0 , (3.3)

a′′x +
1− 3u

2uf
a′x +

1

4uf2

(
qwat + w2ax

)
= 0 , (3.4)

wa′t + qfa′x = 0 , (3.5)

where w = ω/2πT = ω/r0, q = k/2πT = k/r0, and the momentum k is directed along

x. For the gauge-invariant variable (the longitudinal component of the electric field) Ex =

qat + wax [41], the equation of motion reads

E′′x +
w2(1− 3u)− q2f2

2uf(w2 − q2f)
E′x +

w2 − q2f

4uf2
Ex = 0 . (3.6)

The equation (3.6) has 4 regular singular points (located at u = 0, 1, 1 − w2/q2,∞) and

thus is of the Heun type. The indices of this equation are, respectively,

u = 0 : 0, 1/2 (3.7)

u = 1 : ± iw/2 (3.8)

u = 1− w2

q2
: 0, 2 (3.9)

u =∞ :
1

4

(
1±

√
1− 4q2

)
. (3.10)

Note that the local solution at u = 0 does not contain logarithms. The exact solution to

eq. (3.6) can be written as

Ex(u) =
4uf

q
G′(u) +

2f

q
G(u) , (3.11)

where G ≡ a′t is the solution of the hypergeometric equation11

G′′ − 5u− 3

2uf
G′ +

w2 − q2f − 2f

4uf2
G = 0 , (3.12)

11The very fact that an exact solution to the Heun equation can be found via the supplementary hyper-

geometric equation is rather curious and may warrant further reflection.
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obeying the incoming wave boundary condition at u = 1:

G =
q

2iw
x−iw/2 2F1

(
3− 2iw−

√
1− 4q2

4
,

3− 2iw +
√

1− 4q2

4
; 1− iw;x

)
, (3.13)

where x = 1 − u and the normalisation is chosen to ensure Ex → (1 − u)−iw/2 (1 + · · · )
at u→ 1.

3.1 The exact spectral curve

For the boundary value of the electric field, we find

Ex(u = 0; q2,w) ≡ F (q2,w) =
2
√
π Γ(−iw)

Γ [A+(q2,w)] Γ [A−(q2,w)]
, (3.14)

where

A± =
1

4

(
1±

√
1− 4q2 − 2iw

)
. (3.15)

The condition Ex(u = 0) = 0 determines the quasinormal modes and thus the poles of the

corresponding current-current correlators [34, 41]. One can also write down the explicit

analytic expressions for the correlators themselves [33], but this will not be necessary:

the expression F (q2,w) = 0, where F (q2,w) is given by eq. (3.14), is the exact spectral

curve containing all information about the poles of the two-point function. There are two

sequences of quasinormal frequencies

w±n (q2) = −i
(

2n± +
1

2

)
± i

2

√
1− 4q2 , n± = 0, 1, 2 . . . . (3.16)

The solutions E±x,n±(u) themselves (the quasinormal modes) have the form

E±x,n±(u) =
√
u (1− u)−n±−

1
4
± 1

4

√
1−4q2 P±n±(u, q2) , (3.17)

where P±n±(u, q2) are polynomials of degree n± in u with q2−dependent coefficients. In

particular,

E±x,0(u) =
√
u (1− u)−

1
4
± 1

4

√
1−4q2 . (3.18)

Note that apart from the prefactors determined by the indices, the solutions (3.17) are

polynomials, with P±0 = 1. We are especially interested in the gapless mode

w = w+
0 = − i

2

(
1−

√
1− 4q2

)
=
i

2

∞∑
n=1

(−1)n
(

1/2

n

)(
4q2
)n

= −iq2 − iq4 − 2iq6 − 5iq8 − 14iq10 + · · · . (3.19)

The power series in the second line of eq. (3.19) converges in the circle |q2| < 1/4, due

to the branch point singularity of the function at q2 = 1/4 evident from eq. (3.19). The

same conclusion can be obtained by analysing critical points of the spectral curve (3.14).
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Indeed, the critical points are determined by the equations (2.22) whose solutions are

w+
n+

(q2) = w−n−(q2), i.e.

q2
c =

1

4
− (n+ − n−)2 , (3.20a)

wc = − i
2

[1 + 2 (n+ + n−)] . (3.20b)

It is also clear that ∂2
wF (q2

c ,wc) 6= 0 and thus there are two branches of the spectral

curve emerging at each critical point. Put simply, the critical points occur when the two

quasinormal frequencies in eq. (3.16) collide. This happens for real q in case of n+ = n−,

and for purely imaginary q for n+ 6= n−. The critical point closest to the origin q2 = 0 is at

q2 = 1/4 (it corresponds to the collision of the modes w+
0 and w−0 ). This value determines

the radius of convergence of the series in eq. (3.19).

Exact spectral curves are rare: in addition to (3.14), we are aware of only one example

(involving the exact R-current two-point correlators in N = 4 SYM theory in appropriate

limit [53]) for a QFT in dimension higher than 1+1, and even in that case it is only known

exactly for q2 = 0:

FR(q2 = 0,w) = 2−
(1+i)w

2
Γ [1− iw]

Γ
[
1− (1+i)w

2

]
Γ
[
1 + (1−i)w

2

] . (3.21)

One can use the Weierstrass decomposition

1

Γ(z)
= zeγz

∞∏
n=1

(
1 +

z

n

)
e−

z
n , (3.22)

where γ is the Euler–Mascheroni constant, to write eqs. (3.14), (3.21) as infinite prod-

ucts: this ilustrates explicitly why the critical points determined by the condition (2.22)

correspond to multiple roots of (infinite order) polynomials.

3.2 The hydrodynamic approximation to the spectral curve

The expansion of the expression wF (q2,w) for small w, q (assuming the scaling w → εw,

q2 → εq2 with ε→ 0) truncated at order wk, q2k is a polynomial Fk(q
2,w), with

F1(q2,w) =w + iq2 , (3.23)

F2(q2,w) =w + iq2 − i
[
w2 ln 2− q4 (1− ln 2)

]
, (3.24)

F3(q2,w) =w + iq2 − i
[
w2 ln 2− q4 (1− ln 2)

]
− i

12

[
q6
(
π2 − 6(ln 2− 2)2

)
− 6iq4w ln2 2− 6iw3 ln2 2 + q2w2(π2 − 6 ln2 2)

]
,

(3.25)

and so on. Using this expansion to solve the equation wF (q2,w) = 0 for w perturbatively

in q2, one reproduces the series in eq. (3.19). The equation Fk(q
2,w) = 0 defines the

hydrodynamic spectral curve of order k as discussed in section 2. At each order, the critical

points are determined by the condition (2.22). In figure 5, we plot the corresponding value

|q2
c | for each of the spectral curves Fk(q

2,w) = 0 for k = 2, 3, . . . , 13. The resulting points

converge rapidly to the exact value |q2
c | = 1/4.

– 17 –



J
H
E
P
1
1
(
2
0
1
9
)
0
9
7

0 2 4 6 8 10 12
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Figure 5. The approximations to the exact position of the critical point |q2c | = 1/4 in the holo-

graphic model with broken translation symmetry determined from the hydrodynamic algebraic

curves Fk(q2,w) = 0 as a function of k.

3.3 Pole-skipping in the full response functions

Finally, we comment on the relationship between the critical point defining the hydrody-

namic series radius of convergence and the pole-skipping point in the holographic model

with broken translation symmetry, which occurs at |q2
∗| = 2 > |q2

c | [31]. Because gapless

excitations in the current and the energy density correlators have the same dispersion re-

lation, we can directly use w(q) from eq. (3.19) to discuss both the charge and the energy

sectors. At the pole-skipping point, the hydrodynamic series stated in the second line of

eq. (3.19) diverges but can be resummed using the Borel transform12

Bw(q) =
i

2

∞∑
n=1

(−1)n

n!

(
1/2

n

)(
4q2
)n

(3.26)

= − i
2

[
1− e2q2

(
(1− 4q2)I0(2q2) + 4q2I1(2q2)

)]
, (3.27)

where In(x) is the modified Bessel function. Since this is a series in q2 and not q, the

corresponding Borel integral has the form

Ω(q) =

∫ ∞
0

dt e−tBw(q
√
t) = I1 + I2 + I3 + I4 , (3.28)

where

I1 = − i
2

∫ ∞
0

dt e−t = − i
2
, (3.29)

I2 =
i

2

∫ ∞
0

dt e−te2q2tI0(2q2t) =
i

2

1√
1− 4q2

, (3.30)

I3 = −i
∫ ∞

0
dt e−t(2q2t)e2q2tI0(2q2t) = −2iq2 (1− 2q2)

(1− 4q2)3/2
, (3.31)

I4 = i

∫ ∞
0

dt e−t(2q2t)e2q2tI1(2q2t) = 4i
q2
√

q4

(1− 4q2)3/2
, (3.32)

12An alternative analytic continuation can be provided e.g. by the Mittag-Leffler summation. See e.g.

ref. [54].
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each with their respective region of q for which the integral converges. Together, we find

that the Borel integral representation (3.28) of the series converges for q ∈ C in the region

defined by the function C(q):

C(q) ≡ Re[q2] < 1/4 . (3.33)

This is a significant improvement over the convergence region of the hydrodynamic power

series, |q2| < |q2
c | = 1/4. In particular, the Borel series is well suited for studying purely

imaginary q. By writing q = i`, with ` ∈ R, we see that

C(i`) = Re[−`2] = −Re[`2] ≤ 0 < 1/4 . (3.34)

Hence, the Borel representation of the series converges for all values of imaginary q, in-

cluding w(q) at the chaos point w∗(q∗ =
√

2i) = i. Finally, for q such that C(q) < 1/4, it

is easy to check that the sum of four terms in (3.28) indeed reproduces the full dispersion

relation (3.19).

4 Response functions in strongly coupled N = 4 SYM theory

In this section, we use holographic duality to find the spectral curves, determine the radii of

convergence of hydrodynamic series and analyse the pole-skipping phenomenon in the three

channels of the response function of the energy-momentum tensor in the N = 4 SU(Nc)

SYM theory at infinite ’t Hooft coupling and infinite Nc. The details of the duality are

well known, and the necessary ingredients can be found e.g. in refs. [35, 41, 55]. In short,

holography reduces the study of the response functions to the analysis of the fluctuations

of the dual gravitational background involving a black hole with translationally invariant

horizon — the AdS-Schwarzschild black brane.

The equations of motion describing fluctuations of the gravitational background dual

to finite-temperature N = 4 SYM theory are of the Heun type [56], and the exact analytic

solution for the spectral curve similar to eq. (3.14) is not available. The equations can

be solved perturbatively and analytically in w � 1, q � 1, as was done in refs. [35, 40],

thereby giving a hydrodynamic approximation to the spectral curve, or numerically, for

arbitrary w and q, along the lines of ref. [41]. In this section, we consider and compare

these two approaches.

4.1 Shear mode: hydrodynamic approximation to the spectral curve

We start with the analysis of the shear channel of the energy-momentum tensor response

function [41]. In the hydrodynamic approximation, the spectral curve can be found analyt-

ically from the boundary value of the solution to the ODE obeyed by one of the components

of the shear perturbation in dual gravity (see section 6.2 of ref. [35] for details):

G′′(u)−
(

2u

f
− iw

1− u

)
G′(u) +

1

f

(
2 +

iw

2
− q2

u
+

w2[4− u(1 + u)2]

4uf

)
G(u) = 0 , (4.1)
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where G is regular at u = 1. Rescaling w → λ2w and q2 → λ2q2, assuming λ � 1, and

looking for a perturbative solution of the form

G(u) =
∞∑
n=0

λ2nGn(u) , (4.2)

we find the following equation for coupled components Gn, Gn−1, Gn−2:

G′′n −
2u

f
G′n +

2

f
Gn

+
iw

1− u
G′n−1 +

iw

2f
Gn−1 −

q2

uf
Gn−1

+
w2[4− u(1 + u)2]

4uf2
Gn−2 = 0 , (4.3)

where Gn = 0 for n < 0, and we can set G0(1) = 1, Gi(1) = 0, i ≥ 1, without loss

of generality.13 The explicit formulae for G0(u), G1(u) and G2(u) obeying the boundary

conditions at u = 1 are written in appendix B. The solution of the homogeneous equation

g′′ − 2u

f
g′ +

2

f
g = 0 (4.4)

is given by g = C1 g1(u) + C2 g2(u), where

g1 = u , (4.5)

g2 =
u

2
ln

1 + u

1− u
− 1 . (4.6)

Note that the Wronskian is W (g1, g2) = 1/f . Then one can write the following expression

for Gn, n ≥ 2:

Gn(u) = g1(u)

∫ 1

u
g2(t)f(t)Fn(t)dt− g2(u)

∫ 1

u
g1(t)f(t)Fn(t)dt

+ C1 g1(u) + C2 g2(u) , (4.7)

where

Fn(u) = − iw

1− u
G′n−1 −

iw

2f
Gn−1 +

q2

uf
Gn−1 −

w2[4− u(1 + u)2]

4uf2
Gn−2 . (4.8)

Boundary conditions at u = 1 (regularity of Gn(u) at u = 1 and Gn(1) = 0 for n > 0)

require C1 = 0, C2 = 0. Thus, we have the equation determining Gn from Gn−1 and Gn−2,

Gn(u) =u

∫ 1

u
(1− t2)

(
t

2
ln

1 + t

1− t
− 1

)
Fn(t)dt

−
(
u

2
ln

1 + u

1− u
− 1

)∫ 1

u
t(1− t2)Fn(t)dt , (4.9)

13See appendix C of ref. [57].
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where Fn is given by eq. (4.8). This can be written as

Gn(u) =
u

2

∫ 1

u
t(1− t2) ln

[
1 + t− u− ut
1− t+ u− ut

]
Fn(t) dt

+

∫ 1

u
(t− u)(1− t2)Fn(t)dt , (4.10)

or

Gn(u) =

∫ 1

u

{
ut

2
ln

[
1 + t− u− ut
1− t+ u− ut

]
+ t− u

}
(1− t2)Fn(t) dt . (4.11)

Note that Fn(t) ∼ 1/(1− t) at t→ 1, and so all integrals converge. In particular,

Gn(0) =

∫ 1

0
t(1− t2)Fn(t)dt . (4.12)

The explicit expressions for Gi(0), with i = 1, 2, 3, 4, are written in appendix B. The results

for G0(0), G1(0) and G2(0) coincide with those in ref. [3]. The results for G3(0) and G4(0)

are new. The condition G(0) = 0 at this order in the hydrodynamic expansion defines the

algebraic curve

F (q2,w) = − iw +
q2

2

+
q4

4
− iwq2 ln 2

4
+

w2 ln 2

2

+ iw3

(
π2

24
+ ln 2− 3

8
ln2 2

)
+ q6

(
ln 2

4
− 1

8

)
+ iwq4

(
1

4
− ln 2

8

)
+ q2w2

(
π2

48
− ln 2

2
− ln2 2

16

)
+ q8

(
− 1

16
+
π2

64
− ln 2

8

)
− q4w2

(
π2

96
+ (12− 7 ln 2)

ln 8

96

)
− iq6w

(
π2

96
+ (−5 + ln 4)

ln 64

96

)
+ w4

(
(24− 5 ln 2)

ln2 2

48
+
π2

48
(−4 + ln 8)− 1

2
ζ(3)

)
+ iq2w3

(
−π

2 ln 2

96
+ (−24 + ln 2)

ln2 2

96
+

3

16
ζ(3)

)
= 0 . (4.13)

Here, ζ(z) is the Riemann zeta function. Solving eq. (4.13) perturbatively in q2, one finds

the dispersion relation for the shear mode

w = − i

2
q2 − i(1− ln 2)

4
q4 − i(24 ln2 2− π2)

96
q6

− i(2π2(5 ln 2− 1)− 21ζ(3)− 24 ln 2[1 + ln 2(5 ln 2− 3)])

384
q8 +O(q10) . (4.14)

The first two terms in (4.14) agree with the ones obtained in refs. [35] and [3], respectively.

Encouraged by the success of finding the critical point in the holographic model with

broken translation symmetry in section 3, we can apply the condition (2.22) to the polyno-

mial (4.13). Truncating (4.13) at linear (in w and q2), quadratic, cubic and quartic order,
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Figure 6. Approximations to the position of the critical point in the complex q2c plane in the

shear channel of the N = 4 SYM theory arising from the order k hydrodynamic polynomials

Fk(q2,w) = 0 (circles for k = 2, triangles for k = 3, squares for k = 4). The “exact” position

q2c ≈ 1.8906469± 1.1711505i (see section 4.2) is marked by red asterisks.

correspondingly, we obtain the algebraic curves Fk(q
2,w) = 0 for k = 1, 2, 3, 4. Using the

condition (2.22), we find that there are no solutions at k = 1, whereas for k = 2, 3, 4,

we have

k = 2 : q2
c ≈ −1.380398± 0.865925i , wc ≈ ±0.216481 + 1.097596i , (4.15)

k = 3 : q2
c ≈ 0.164953± 1.151910i , wc ≈ ±0.735771 + 0.164407i , (4.16)

k = 4 : q2
c ≈ 0.548173± 0.988705i , wc ≈ ±0.706672− 0.140043i . (4.17)

In figure 6, the k = 2, 3, 4 approximations are shown in the complex plane of q2
c together

with the “exact” value q2
c ≈ 1.8906469 ± 1.1711505i obtained via the quasinormal level-

crossing method (see section 4.2). In contrast with the holographic model with broken

translation symmetry (see figure 5), the convergence is slow (admittedly, we only have 3

points in the present case). However, we learn an important lesson, namely, that the critical

point can be located at a generic complex value of q2. In the next section, we use a more

efficient method of the quasinormal modes level-crossing to determine the critical points.

4.2 Shear mode: full spectral curve

To compute the spectral curve numerically for all values of q2 and w, it is more convenient

to use the ODE obeyed by the gauge-invariant perturbations. The gauge-invariant shear

mode gravitational perturbations of the AdS-Schwarzschild black brane are described by

the function Z1(u), where u is the radial coordinate ranging from u = 0 (asymptotic

boundary) to u = 1 (event horizon) [41]. The function Z1(u) obeys the equation

Z ′′1 −
(w2 − q2f)f − uw2f ′

uf(w2 − q2f)
Z ′1 +

w2 − q2f

uf2
Z1 = 0 , (4.18)
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where f(u) = 1 − u2, and the solution must obey the incoming wave boundary condition

at the horizon, Z1(u) ∼ (1 − u)−iw/2 as u → 1 [34, 41]. The full shear spectral curve is

then given by

F (q2,w) = Z1(u = 0; q2,w) = 0 . (4.19)

The spectral curve (4.19) can be determined numerically by e.g. using N terms of the

Frobenius series solution at u = 1 [41]. The stability of the numerical procedure is ensured

by checking that adding several more terms to the series does not appreciably change the

result. Applying (numerically) the criterion (2.22) to (4.19), we find the critical point

closest to the origin,

q2
c ≈ 1.8906469± 1.1711505i , wc ≈ ±1.4436414− 1.0692250i , (4.20)

implying the convergence radius of the shear mode dispersion relation |qc
shear| ≈ 1.49131.

There are other critical points with |q2| > |qc
shear|. The first three of them are located at

q2
c,1 ≈ −2.37737 , wc,1 ≈ −1.64659i , (4.21)

q2
c,2 ≈ −3.11051± 0.8105i , wc,2 ≈ ±1.41043− 2.87086i , (4.22)

q2
c,3 ≈ 2.90692± 1.66606i , wc,3 ≈ ±2.38819− 2.13154i . (4.23)

In figures 7 and 8, we show the corresponding quasinormal spectrum (solutions w =

w(q2) of eq. (4.19)) in the complex plane of frequency w, parametrised by q2. The difference

with previous works is that now, we treat q2 as a generic complex variable, q2 = |q2|eiθ, and

vary its phase, θ ∈ [0, 2π], at specific fixed values of the magnitude |q2|. From eq. (4.18), it

is clear that if Z1(u; q,w) is a solution satisfying the incoming wave boundary condition at

the horizon, then Z1(u; q,−w) is also a solution. The spectrum in figures 7 and 8 therefore

appears to be symmetric with respect to the imaginary axis. For real q2, the spectrum

coincides with the one originally found in ref. [58].

At small |q2|, the poles follow closed orbits as the phase θ varies from 0 to 2π (figure 7,

top panels). With the parameter |q2| increasing, the poles start feeling the presence of each

other, and their orbits become more complicated. Finally, at |q2
c | ≈ 2.224, the hydrody-

namic shear pole collides with one of the two closest non-hydrodynamic poles (see figure 7,

bottom panels). For |q2| > |q2
c |, those three poles no longer have closed orbits: as the phase

θ varies from 0 to 2π, they interchange their positions cyclically (figure 7, bottom right

panel). For even larger |q2|, other gapped poles become involved in this collective motion

of quasinormal modes in a similar manner (figure 8).

The phenomenon observed in figures 7, 8 is the quasinormal spectrum level-crossing,

reminiscent of the well-known effect in quantum mechanics. Indeed, for real q2, the real

and imaginary parts of the quasinormal frequencies do not exhibit level-crossing (see e.g.

figures 13 and 14 in ref. [58]). For complex momentum q2 = |q2|eiθ, the real and imaginary

parts of the shear hydrodynamic mode and the nearest gapped mode do cross at the fixed

phase θ ≈ 0.338858π and |q2| = |q2
c | ≈ 2.224, as shown in figure 9. A similar effect at

a purely imaginary momentum was observed by Withers (see figure 3 in ref. [27]), and

numerous instances of pole collisions (i.e. quasinormal level-crossings) at real momenta

were reported earlier (see e.g. [33, 57, 59–68]).
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Figure 7. Quasinormal spectrum (poles of the retarded energy-momentum tensor two-point func-

tion in the N = 4 SYM theory) in the shear channel plotted in the complex w-plane for different

values of the complex momentum q2 = |q2|eiθ. Large dots in all four plots correspond to the loca-

tion of the poles for purely real momentum, q2 (i.e. at θ = 0) [41]. The hydrodynamic shear pole

is the blue pole closest to the real axis in the top left panel. As θ increases from 0 to 2π, each

pole moves in a counter-clockwise direction, following the trajectory of its colour. At |q2| = 1, all

poles follow a closed orbit (top left panel). At |q2| = 2.15 (top right panel), the trajectory of the

hydrodynamic pole intersects the trajectories of the two nearest gapped poles. With |q2| further

increasing to |q2| = 2.21, the poles nearly collide at the positions marked by asterisks (bottom left

panel). The actual collision occurs at the critical point with the momentum (4.20), |q2c | ≈ 2.224.

At |q2| = 2.26 (bottom right panel), the orbits of the three poles closest to the origin (w = 0)

are no longer closed: the hydrodynamic pole and the two gapped poles exchange their positions

cyclically as the phase θ increases from 0 to 2π. This is a manifestation of the quasinormal mode

level-crossing. The dispersion relation w(q2) therefore has branch point singularities in the complex

momentum squared plane at q2c .

4.3 Sound mode: hydrodynamic approximation to the spectral curve

The gauge-invariant perturbation corresponding to the sound mode obeys the equation [41]

Z ′′2 −
3w2(1 + u2) + q2(2u2 − 3u4 − 3)

uf(3w2 + q2(u2 − 3))
Z ′2

+
3w4 + q4(3− 4u2 + u4) + q2(4u5 − 4u3 + 4u2w2 − 6w2)

uf2(3w2 + q2(u2 − 3))
Z2 = 0 . (4.24)

The full sound spectral curve is constructed from the solution Z2(u; q2,w) obeying the

incoming wave boundary conditions at the horizon and is given by

F (q2,w) = Z2(u = 0; q2,w) = 0 . (4.25)
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Figure 8. Quasinormal spectrum (poles of the retarded energy-momentum tensor two-point func-

tion in the N = 4 SYM theory) in the shear channel plotted in the complex w-plane for different

values of the complex momentum q2 = |q2|eiθ. Large dots in all four plots correspond to the lo-

cation of the poles for purely real momentum, q2 (i.e. at θ = 0) [41]. The second critical point

(occuring at |q2c,1| ≈ 2.377) is marked by asterisks in the figures showing the trajectories just before

and just after the pole collision (top panels). With |q2| further increasing, the second pair of gapped

modes becomes involved in the collisions leading to the third critical point at |q2c,2| ≈ 3.214 (bottom

panels).

0.5 1.0 1.5 2.0 2.5 3.0

-2

-1

1

2

Figure 9. Quasinormal spectrum level-crossing: the real (blue curves) and the imaginary (red

curves) parts of the hydrodynamic shear mode and the closest gapped quasinormal mode dispersion

relations plotted as functions of |q2| at the fixed phase θ ≈ 0.338858π of the complex momentum

q2 = |q2|eiθ. At |q2| = |q2c | ≈ 2.224, the level-crossing occurs.
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Similarly to the shear mode case, one can first find a hydrodynamic approxima-

tion to eq. (4.25) analytically. For w � 1 and q � 1, eq. (4.24) can be solved

perturbatively. Writing

Z2(u) =
(
1− u2

)− iw
2

∞∑
n=0

λnzn(u) (4.26)

to enforce the boundary condition at the horizon, rescaling w → λw and q → λq, and

assuming λ� 1, we find the following recurrence relation for the functions zn(u):

z′′n−
3
(
1 + u2

)
w2 −

(
3− 2u2 + 3u4

)
q2

u (1− u2) [3w2 − (3− u2) q2]
z′n −

4u2q2

(1− u2) [3w2 − (3− u2) q2]
zn

+
2iuw

1− u2
z′n−1 −

4iu2wq2

(1− u2) [3w2 − (3− u2) q2]
zn−1

+

(
1 + u+ u2

)
w2 − (1 + u) q2

u (1− u) (1 + u)2 zn−2 = 0 , (4.27)

with z−1 = z−2 = 0. To fourth order in λ, we find the hydrodynamic algebraic curve to be

(see also eq. (4.18) in ref. [3])

F (q2,w) =
q2

2
− 3w2

2
− iwq2 +

w4

16

(
π2 − 12 ln2 2 + 24 ln 2

)
− q4

12
(2 ln 2− 8)

− w2q2

48

(
π2 − 12 ln2 2 + 48 ln 2

)
= 0 . (4.28)

The form of F (q2,w) for general w and q is at present not known to O(λ5). However,

assuming that w can be expanded in a series in powers of q, in ref. [5], F (q2) was computed

to order O(λ5) = O(q5), which was sufficient to find the coefficient in the sound mode

dispersion relation multiplying q4 (i.e. to third order in the gradient expansion):

w = ± 1√
3
q− i

3
q2 ± 3− 2 ln 2

6
√

3
q3 −

i
(
π2 − 24 + 24 ln 2− 12 ln2 2

)
108

q4 +O(q5) . (4.29)

The first two terms in the dispersion relation (4.29) coincide with those obtained in ref. [40].

The third term was found in ref. [3] (see also ref. [69]). The fourth term was computed in

ref. [5]. It appeared earlier in ref. [13] (with an incorrect coefficient in front of ln 2) and

(correctly) in ref. [70] in the context of the fluid-gravity correspondence.

Here, we use the form of the algebraic curve (4.28) and apply the condition (2.22) to

show that in the sound channel, the small w and q expansion of the spectral curve F (q2,w)

qualitatively correctly accounts for two sets of critical points:

q2
c = 0 , wc = 0 , (4.30)

q2
c ≈ 0.34739± 0.56763i , wc ≈ ±0.71165 + 0.39882i . (4.31)

The critical point (4.30) is expected from hydrodynamics, as discussed in section 2.2.

Having in mind the results of section 4.1, we may expect that the hydrodynamic approxi-

mation (4.31) to the position of the non-trivial critical point is not accurate. In section 4.4

we confirm this by finding the critical point exactly.
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Figure 10. Quasinormal spectrum (poles of the retarded energy-momentum tensor two-point

function in the N = 4 SYM theory) in the sound channel plotted in the complex w-plane for

different values of the complex momentum q2 = |q2|eiθ. Large dots in all four plots correspond to

the location of the poles for purely real momentum, q2 (i.e. at θ = 0) [41]. The hydrodynamic sound

poles are the blue and the green poles closest to the real axis. As θ is tuned from 0 to 2π, each pole

moves in a counter-clockwise direction and follows the trajectory of its colour. At |q2| = 1 (top

left panel), all poles follow a closed orbit. At |q2| = 1.95 (top right panel), the trajectory of the

two hydrodynamic sound poles comes close to the trajectories of the nearest gapped poles. With

|q2| further increasing to |q2| = 1.98, the poles nearly collide at the positions marked by asterisks

(bottom left panel). The actual collision occurs at the critical value of the momentum (4.32),

|q2c | = 2. At |q2| = 2.05 (bottom right panel), the orbits of the four uppermost poles are no longer

closed: the hydrodynamic poles and the two gapped poles exchange their positions cyclically as the

phase θ increases from 0 to 2π — again, a manifestation of the quasinormal mode level-crossing.

The dispersion relation w(q) therefore has branch cuts starting at qc.

4.4 Sound mode: full spectral curve

As discussed in section 4.3, the origin (4.30) is a critical point of the sound mode dispersion

relation w = w(q2), as predicted by hydrodynamics (see section 2.2). Proceeding as in

section 4.2, we find the first set of critical points nearest to the origin at

q2
c = ±2i , wc = ±1− i , (4.32)

within the limits of our numerical accuracy. Curiously, although eq. (4.24) looks rather

complicated, one can check that with w and q2 given by (4.32), a simple analytic solution

satisfying the correct boundary conditions at u = 1 and u = 0 is available. Explicitly, the

– 27 –



J
H
E
P
1
1
(
2
0
1
9
)
0
9
7

✶✶

-3 -2 -1 0 1 2 3

-2

-1

0

1

✶✶

-3 -2 -1 0 1 2 3

-2

-1

0

1

Figure 11. Quasinormal spectrum (poles of the retarded energy-momentum tensor two-point

function in the N = 4 SYM theory) in the sound channel plotted in the complex w-plane for

different values of the complex momentum q2 = |q2|eiθ. Large dots in all four plots correspond to

the location of the poles for purely real momentum, q2 (i.e. at θ = 0) [41]. What is shown is the

level-crossing phenomenon for the critical points in eq. (4.35).

two solutions corresponding to the pair of critical points in (4.32) are

(q2
c = 2i,wc = 1− i) : Z2(u) = C+

2 (1− u)−
i(1−i)

2 (1 + u)−
1−i
2 u2 (u− 3i) , (4.33)

(q2
c = −2i,wc = −1− i) : Z2(u) = C−2 (1− u)−

i(−1−i)
2 (1 + u)

−1−i
2 u2 (u+ 3i) , (4.34)

where C±2 are arbitrary constants. Although we were not able to show analytically that

∂wZ(u = 0) = 0 at (4.32) as well, we have verified this numerically to high precision. The

existence of the critical point (4.32) implies that the convergence radius of the sound mode

dispersion relation is given by |qc
sound| =

√
2 ≈ 1.41421. The next set of critical points is

located at

q2
c ≈ −0.01681± 3.12967i , wc ≈ ±1.90134− 2.04492i . (4.35)

The behaviour of poles in the complex frequency plane is shown in figures 10 and 11, and

the quasinormal level-crossing phenomenon is presented in figure 12.

4.5 Scalar mode: full spectral curve

In the scalar channel, the gauge-invariant metric perturbation Z3(u) obeys the equation [41]

Z ′′3 −
(1 + u2)

uf
Z ′3 +

w2 − q2f

uf2
Z3 = 0 . (4.36)

The full spectral curve is constructed from the solution Z3(u; q2,w) obeying the incoming

wave boundary conditions at the horizon and is given by

F (q2,w) = Z3(u = 0; q2,w) = 0 . (4.37)

The quasinormal spectrum in the scalar channel has no hydrodynamic modes, but it ex-

hibits the phenomenon of level-crossing for the gapped modes, as shown in figure 13. The
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Figure 12. Quasinormal spectrum level-crossing in the sound channel: the real (blue curves)

and the imaginary (red curves) parts of the hydrodynamic sound mode and the closest gapped

quasinormal mode dispersion relations plotted as functions of |q2| at the fixed phase θ = π/2 of the

complex momentum q2 = |q2|eiθ. At |q2| = |q2c | = 2, the level-crossing occurs.
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Figure 13. Quasinormal spectrum (poles of the retarded energy-momentum tensor two-point

function in the N = 4 SYM theory) in the scalar channel plotted in the complex w-plane for

different values of the complex momentum q2 = |q2|eiθ. Large dots in all plots correspond to the

location of the poles for purely real momentum, q2 (i.e. at θ = 0) [41]. There are no hydrodynamic

modes in this channel, but the gapped modes exhibit the level-crossing phenomena at complex

values of momenta given by eq. (4.38).

first two sets of critical points nearest to the origin are given by

q2
c ≈ −1.25309 , wc ≈ −1.76937i , (4.38a)

q2
c ≈ −1.49704± 0.36674i , wc ≈ ∓1.47977− 2.79404i . (4.38b)

These are branch points in the scalar (gapped) dispersion relation w = w(q2).
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Figure 14. Branch point singularities, branch cuts and the domain of hydrodynamic series conver-

gence for the shear mode in the complex q2-plane (left panel) and the sound mode in the complex

q-plane (right panel).

4.6 Analytic structure of the hydrodynamic dispersion relations

From the discussion above, it is clear that the shear mode dispersion relation wshear(q
2) is

an analytic function of complex q2 in the circle |q2| < |q2
c | ≈ 2.224. Since the appropriate

second derivative of the spectral curve at the critical point is non-zero (i.e. p = 2 in the

Puiseux language of section 2.3; see eq. (2.23)) which corresponds to a collision of two

quasinormal modes, the critical point is the branch point singularity of the square root

type, with the Puiseux series in powers of ±
√
q2 − q2

c providing the extension beyond the

radius of convergence. We show the critical points, the radius of convergence and the

appropriate branch cuts in the complex plane of q2 in figure 14 (left panel).

For the sound mode dispersion relation, considered as a function of q2 ∈ C, the origin is

a branch point, and the corresponding Puiseux series is given by eq. (2.21). It will be more

convenient to consider the sound dispersion relation wsound(q) as a function of complexified

magnitude q ∈ C of the wave-vector q. The critical points, the radius of convergence and

the appropriate branch cuts in the complex plane of q are shown in figure 14 (right panel).

4.7 Pole-skipping in the full response functions

As already discussed in the Introduction, analytically continued hydrodynamic modes ap-

pear to be connected to the parameters of an OTOC related to the microscopic many-

body quantum chaos. The apparent connection is provided by the phenomenon of pole-

skipping [29–32], whereby a pole and a zero of a two-point correlation function collide for

some w, q ∈ C. In the sound channel of the energy-momentum tensor retarded two-point

function, the pole-skipping has been studied in the context of holography [29, 31, 32], effec-

tive field theory [30] and two-dimensional conformal field theory in the limit of large central
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charge [71]. Here, we extend the discussion in refs. [29, 31, 32] to show that pole-skipping

also occurs in other channels.

Consider a retarded two-point function GR(w, q) of the energy-momentum tensor com-

ponents at finite temperature. Schematically, and modulo tensor structure, the correlator

can be written as

GR(w, q) ∼ b(w, q)

a(w, q)
, (4.39)

where a(w, q) necessarily contains a gapless hydrodynamic mode w = w(q) (either shear or

sound) in the appropriate channels [41]. More generally, let Zd = {w = w(q) : a(w(q), q) =

0} and Zn = {w = w(q) : b(w(q), q) = 0}, where we assume for simplicity that all zeros

are simple. Then, pole-skipping occurs at generically complex (q∗,w∗) ∈ P = Zn ∩ Zd.
For theories with available gravity dual descriptions, the set P can be determined di-

rectly either by computing Zn and Zd (the set Zd is nothing but the quasinormal spectrum)

or from the dual gravity equations of motion (see below). In the case of energy-momentum

tensor correlators of the N = 4 SYM theory in the limit of infinite Nc and infinite ‘t Hooft

coupling λ, pole-skipping in the three channels occurs at points (q∗,w∗) given by

Sound channel : q∗ =

√
3

2
i , w∗ = i , (4.40)

Shear channel : q∗ =

√
3

2
, w∗ = −i , (4.41)

Scalar channel : q∗ =

√
3

2
i , w∗ = −i . (4.42)

We observe that |q∗| =
√

3/2, |w∗| = 1 in all three channels. The connection to the

Lyapunov exponent λL and the butterfly velocity vB is given by the formulae

Sound channel : w∗(q∗) =
iλL
2πT

= iO∗ , q∗ = i`∗ , (4.43)

Shear channel : w∗(q∗) = − iλL
2πT

= −iO∗ , q∗ = `∗ , (4.44)

Scalar channel : w∗(q∗) = − iλL
2πT

= −iO∗ , q∗ = i`∗ , (4.45)

where `∗ =
√

3/2, O∗ = 1, and vB = O∗/`∗. It is clear from figures 2 and 1 that the

sound and the shear dispersion relations pass through their respective “chaos” points (4.40)

or (4.41). In the scalar channel, which has no hydrodynamic modes, pole-skipping is

exhibited by (one of the pair of) the lowest-lying gapped modes in the spectrum. This

can be seen from figure 3. Thus, in the N = 4 SYM theory at infinite ‘t Hooft coupling,

the values of λL and vB defined by pole-skipping in the complexified dispersion relations

of the lowest-lying modes (either hydrodynamic or gapped) coincide with those obtained

from the appropriate limit of the OTOC:14

λL = 2πT , vB =

√
2

3
, `∗ =

λL
2πTvB

=

√
3

2
. (4.46)

14To subleading order in the inverse ’t Hooft coupling expansion, the butterfly velocity is vB =√
2/3

(
1 + 23ζ(3)

16
λ−3/2

)
while the relevant (long-distance) Lyapunov exponent remains uncorrected [32].
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In fact, irrespectively of the channel in question, we can define the (maximal holographic)

Lyapunov exponent and the butterfly velocity through the pole-skipping location exhibited

by the mode closest to the origin in the complex plane of w:

λL = 2πT |w∗| , vB =

∣∣∣∣w∗q∗
∣∣∣∣ =
|w∗|
`∗

. (4.47)

Pole-skipping points (q∗,w∗) can be found directly from the dual gravity equations of

motion [29, 31]. To show this explicitly for the N = 4 SYM theory, we follow the arguments

of ref. [31] and examine the horizon behaviour of Einstein’s equations

Eµν ≡ Rµν −
1

2
gµνR− 6gµν = 0 (4.48)

in the infalling Eddington-Finkelstein (EF) coordinates (v, r, xi) with

v = t+ r∗(r) ,
dr∗
dr

=
1

r2f(r)
. (4.49)

We perturb the 5d AdS-Schwarzschild metric ds2 = gµνdx
µdxν = −r2f(r)dv2 + 2dvdr +

r2d~x2 to first order, gµν → gµν + δgµν(r)e−iωv+ikz, and expand the (regular) metric fluctu-

ations around the horizon r = r0 as

δgµν(r) =
∞∑
n=0

δg(n)
µν (r − r0)n . (4.50)

Similarly to what was observed in ref. [31] for the sound channel, we find that in any

channel, there exists a linear combination of the components Eµν , which vanishes identically

at the horizon r → r0 at the pole-skipping values of the parameters (q∗,w∗). Explicitly,

Sound channel : lim
r→r0

Evv = 0 at (q∗,w∗) = (
√

3/2i, i) , (4.51)

Shear channel : lim
r→r0

(
Evx + i

√
2

3
Exz

)
= 0 at (q∗,w∗) = (

√
3/2,−i) , (4.52)

Scalar channel : lim
r→r0

Exy = 0 at (q∗,w∗) = (
√

3/2i,−i) . (4.53)

In other words, pole-skipping occurs at values of the parameters (q∗,w∗) for which the rank

of the matrix Eµν decreases at the horizon.

We note also that for the N = 4 SYM theory, the chaos point |q2
∗| = 3/2 lies within

the radius of convergence of the hydrodynamic series in both the shear (|q2
c | ≈ 2.224) and

the sound (|q2
c | = 2) channels.

5 Pole-skipping and level-crossing in 2d thermal CFT correlators

In a 2d CFT, the (equilibrium) retarded finite-temperature two-point correlation function

of an operator of non-integer scaling dimension ∆ and spin zero in momentum space is
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given by the expression15,16 [34]

GR(w, q) =C∆ Γ

(
∆

2
+
i(w− q)

2

)
Γ

(
∆

2
+
i(w + q)

2

)
Γ

(
∆

2
− i(w− q)

2

)
× Γ

(
∆

2
− i(w + q)

2

)[
cosh (πq)−cos (π∆) cosh (πw)+i sin (π∆) sinh (πw)

]
,

(5.1)

where C∆ is the normalisation constant, and we put TL = TR = T . Note also that here, in

1 + 1 dimensions, the symbol q denotes q/2πT , rather than |q|/2πT . Similar formulae can

be written for integer ∆ [34]. The correlator (5.1) has a sequence of poles at

wn(q) = ±q− i (2n+ ∆) , (5.2)

where n = 0, 1, 2, . . .. These are precisely the quasinormal frequencies of the dual BTZ black

hole [34, 72]. In this section, we shall examine these correlators for their pole-skipping and

level-crossing properties.17,18

5.1 Pole-skipping in the full response functions

The zeros of the correlator (5.1) come from the zeros of the expression in the

square brackets,

cosh (πq)− cos (π∆) cosh (πw) + i sin (π∆) sinh (πw)

= 2 sin
[π

2
(∆ + iw− iq)

]
sin
[π

2
(∆ + iw + iq)

]
, (5.3)

and are given by

∆ + iw− iq = 2n1 , (5.4)

∆ + iw + iq = 2n2 , (5.5)

where n1, n2 = 1, 2, 3, . . .. Note that the zeros of eq. (5.3) with n1, n2 = 0,−1,−2, . . . are

not among the zeros of the correlator since they are identically (i.e. for arbitrary w, q)

cancelled by the poles of the first two Gamma-functions in eq. (5.1).

15In ref. [34], the expression for GR(ω, q) was derived holographically from dual gravity. For integer ∆, it

was further checked in ref. [34] that thus obtained formula coincides (up to normalisation) with the retarded

correlator obtained from 2d CFT.
16The expression for GR(ω, q) in the form (4.16) of ref. [34] assumes w, q ∈ R. To be valid for generic

w, q ∈ C, it has to be rewritten in the form (5.1). We would like to thank D. Vegh for pointing this out.
17Similar issues have been recently independently studied in ref. [73]. The results of ref. [73] agree with

ours whenever they overlap.
18Here, we only consider correlation functions of 2d CFT operators with scaling dimension ∆ and spin

s = 0. The energy-momentum, having ∆ = 2 and s = 2, is not of this type. Its finite-temperature two-

point function (see e.g. refs. [71, 74]) in momentum space has a pole corresponding to a mode propagating

on the light cone. The corresponding dispersion relation line passes through the “chaos” point of that

correaltor [71], just as it does in 4d.
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The pole-skipping phenomenon in GR occures for w and q simultaneously satisfying

the conditions (5.2) and (5.4), (5.5), i.e. for

q∗ = ±i(∆ + n− n∗) , (5.6)

w∗ = −i(n+ n∗) , (5.7)

where n = 0, 1, 2, . . . and n∗ = 1, 2, . . . (here n∗ denotes either n1 or n2), and ∆ is not an

integer.19

We also note that the Euler reflection formula, Γ(z)Γ(1− z) = π/ sinπz, can be used

to rewrite the correlator (5.1) in the form

GR(w, q) = C∆

2π2Γ
(

∆
2 −

i(w−q)
2

)
Γ
(

∆
2 −

i(w+q)
2

)
Γ
(

1− ∆
2 −

i(w−q)
2

)
Γ
(

1− ∆
2 −

i(w+q)
2

) . (5.8)

For integer ∆, the poles of GR are still given by eq. (5.2), but the functional form of

the correlators is somewhat different from (5.1) (see ref. [34]). Here, we focus on the case

of ∆ = 2. For ∆ = 2, one has [34]

GR ∼
(
w2 − q2

) [
ψ

(
1− i

2
(w− q)

)
+ ψ

(
1− i

2
(w + q)

)]
, (5.9)

where ψ(x) = Γ′(x)/Γ(x). The singularities of the correlator (5.9) are simple poles lo-

cated at

wn(q) = ±q− 2i (n+ 1) , n = 0, 1, 2, . . . . (5.10)

In the case of pole-skipping, they are cancelled by the zeros coming from the numerator

w2 − q2, which occur when wn = ∓q. The discrete set of momenta q that satisfies this

condition is

q = ±i(n+ 1) , n = 0, 1, 2, . . . . (5.11)

Therefore, the pole-skipping points for ∆ = 2 are given by

q∗ = ±i(n+ 1) , (5.12)

w∗ = −i(n+ 1) , (5.13)

where n = 0, 1, 2, . . .. In particular, for the pair of poles that lies closest to the origin in

the complex w plane (ones with n = 0 among those in eq. (5.10)),

w±0 (q) = ±q− 2i , (5.14)

the branch w+
0 passes through the (lowest-lying) pole-skipping point q∗ = i, w∗ = −i,

whereas the branch w−0 does not. The branch w−0 passes through the pole-skipping point

q∗ = −i, w∗ = −i, whereas the branch w+
0 does not (see figure 15). Finally, we note that

for ∆ = 1, the correlator is directly proportional to the sum of two ψ−functions [34], and

there is no pole-skipping.

19Introducing Q = n∗ and N = n+n∗, the pole-skipping condition can be written as q∗ = ±i(∆+N−2Q),

w∗ = −iN , where N = 1, 2, . . . and Q = 1, . . . , N . This coincides with the results in ref. [73]. We would

like to thank R. Davison for pointing out an error in eqs. (5.6), (5.7) in the first version of this paper.
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Figure 15. Pole-skipping and level-crossing points in a 2d CFT correlator of operators with

conformal dimension ∆ = 2, for the smallest in magnitude poles w±
0 and w±

1 . The red stars at

Im q = ±1 correspond to the pole-skipping points and the red dots label the critical points of level-

crossings of w±
0 . The blue stars at Im q = ±2 correspond to the pole-skipping points and the blue

dots label the critical points of level-crossings of w±
1 .

5.2 BTZ spectrum level-crossing

Since the quasinormal spectrum w±n (q) is known explicitly (see eq. (5.2)), the level-crossing

points can be found directly. Such level-crossing points were used above in theories with

gapless excitations to determine the radius of convergence of their hydrodynamic series.

Considering complex q = |q|eiθ, we have

Rew±n = ±|q| cos θ ≡ X , (5.15)

Imw±n = ±|q| sin θ − 2n−∆ ≡ Y , (5.16)

and thus the orbits followed by the poles in the complex w plane when the phase θ changes

from 0 to 2π are circles

X2 + (Y + 2n+ ∆)2 = |q|2 , n = 0, 1, 2, . . . . (5.17)

The poles move counter-clockwise and collide on the imaginary axis of w (moreover, at

integer values of |w| if ∆ is an integer). More precisely, two poles collide when w−n = w+
m,

m 6= n, i.e. when (the case n = 0 or m = 0 is treated separately below)

qc = i (m− n) , (5.18)

wc = −i (m+ n+ ∆) , (5.19)

m,n = 1, 2, . . . , with m 6= n , (5.20)

with the first collision occurring for m = n ± 1, i.e. for qc = ±i, wc = −i (2n+ ∆± 1),

n = 1, 2, . . .. The mode with n = 0, i.e. w±0 = ±q − i∆, has only one neighbour, and the
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Figure 16. BTZ quasinormal spectrum for ∆ = 1/8 in the complex w-plane at complex momentum

q = |q|eiθ, with |q| = 1 and θ changing from 0 to 3π/4. The spectrum at θ = 0 is shown by large dots.

critical points correspond to w−0 = w+
n (i.e. qc = in and wc = −i(n+ ∆)) or w−n = w+

0 (i.e.

qc = −in and wc = −i(n+ ∆), n = 1, 2, . . .). Thus, the zero mode critical points are

qc = ±in , (5.21)

wc = −i (n+ ∆) , (5.22)

n = 1, 2, . . . . (5.23)

The motion of poles in the complex frequency plane and their level-crossings are illustrated

for ∆ = 1/8 and |q| = 1 in figure 16.

For larger |q|, the trajectories intersect but the poles miss each other, so there is no

phenomenon of one trajectory crossing into and continuing as the other. In a sense, here,

we have “level-touching” rather than “level-crossing”. The nearest critical points are thus

qc = ±i , wc = −i (2n+ ∆± 1) , n = 1, 2, . . . , (5.24)

qc = ±i , wc = −i (∆ + 1) , n = 0 . (5.25)

In particular, for ∆ = 2, we have20

qc = i , wc = −3i,−5i,−7i,−9i . . . , (5.26)

qc = −i , wc = −3i,−3i,−5i,−7i, . . . . (5.27)

20These critical points are single poles: the collisions may occur at the same point wc, but the phases are

different for different modes.
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We observe that for non-integer ∆, the values of q corresponding to the pole-skipping and

the level-crossing do not coincide. The same is (trivially) true for ∆ = 1 as well, where

there is no pole-skipping in the correlator at all. For ∆ = 2, however, a curious picture

emerges. Consider again the “sound” mode w±0 (5.14). The imaginary parts of the two

branches obey

Imw±0 = ±Im q− 2 . (5.28)

The pole-skipping points found in section 5.1 are q∗ = i, w∗ = −i and q∗ = −i, w∗ = −i,
and the critical points are qc = ±in, wc = −i(n + 2), n = 1, 2, . . .. For ∆ = 2, and the

mode with n = 1,

w±1 (q) = ±q− 4i , (5.29)

the pole-skipping occurs at q = ±2i and w = −2i. The critical points are located at

qc = ±i(m− 1), wc = −i(m+ 3), m = 2, 3, . . .. This is illustrated in figure 15.

6 Discussion

In this paper, we introduced spectral curves as a useful tool for investigating analytic

properties of gapless collective excitations in classical hydrodynamics.21 We showed that

the dispersion relations of hydrodynamic modes, such as shear and sound modes, are

generically given by Puiseux series expansions in rational powers of the spatial momentum

squared. These series are guaranteed to converge in some vicinity of the origin (the point

with zero frequency ω = 0 and zero spatial momentum q2 = 0 in the (ω, q2) ∈ C2 space), so

long as the analyticity of the spectral curve at the origin can be proven (e.g. by holographic

or other means). Thus, given the analyticity of the spectral curve, the asymptotic nature

of the series for hydrodynamic modes in momentum space can be automatically ruled out.

The radius of convergence of the series is given by the distance from the origin to the critical

point of the spectral curve nearest to the origin. After developing the general theory, we

then used holography as a theoretical laboratory where all these of features can be seen

and analysed explicitly. Before focusing on the main example of the strongly coupled

N = 4 supersymmetric Yang-Mills theory at finite temperature, to illustrate our method,

we first considered the holographic model with broken translation symmetry, where an exact

spectral curve is available. We have shown that the critical points of the spectral curves

can be found by studying quasinormal spectra at complex values of spatial momentum:

the critical points correspond to the collisions of quasinormal frequencies (poles of dual

correlators) in the complex frequency plane at critical (generically, complex) values of

spatial momentum. These values also set the radii of convergence for the dispersion relation.

We call this phenomenon the quasinormal mode level-crossing, in analogy with the well-

known phenomenon of level-crossing for eigenvalues of Hermitian operators.

Applying these methods to the strongly coupled N = 4 supersymmetric Yang-Mills

theory, we found that the gradient expansions for the hydrodynamic shear and sound

modes have finite radii of convergence given by qc
sound =

√
2ω0 for the sound mode and

21See footnote 1.

– 37 –



J
H
E
P
1
1
(
2
0
1
9
)
0
9
7

by qc
shear ≈ 1.49ω0 for the shear mode, where ω0 = 2πT is the fundamental Matsubara

frequency. Thus, in both channels, the hydrodynamic series converge up to the order of

|q|/T ∼ O(10), which is a vast improvement over the naive expectation that |q|/T �
1 provides a natural expansion parameter for hydrodynamic dispersion relations. The

obstruction to convergence in the example of the N = 4 SYM theory comes from the

collision of poles of the two-point correlation function of the energy-momentum tensor at

complex q2.

As mentioned in the Introduction, the problem of extending the hydrodynamic modes

in the complex momentum plane beyond the branch point singularity was recently in-

vestigated by Withers [27] in the context of a holographic model in 2 + 1 dimensions

with finite chemical potential. The shear-diffusion mode series could be Padé-resummed

and extended beyond the branch point singularity, which was in that case located at an

imaginary value of momentum. The main focus of ref. [27] was on the possibility of recov-

ering the full spectrum from the hydrodynamic derivative expansion, similar to recovering

the non-hydrodynamic modes from asymptotic series via Borel resummation and resur-

gence [17, 18, 25]. The quasinormal spectrum in the holographic models with finite tem-

perature T and non-vanishing chemical potential µ such as the one considered in ref. [27] is

rather complicated and changes qualitatively as the parameter T/µ is varied (in particular,

it involves pole collisions even at real values of the momentum) [59, 66, 75–79]. In ref. [27],

the shear-diffusion mode was found to have a radius of convergence inversely proportional

to the chemical potential. Naively, this would imply infinite radius of convergence in the

limit of vanishing µ, in apparent contradiction with our results. However, the result of

ref. [27] was obtained at a specific fixed value of T/µ, and we expect it to change when the

complex momentum behaviour of other gapped modes in the model is taken into account

with T/µ increasing. This will require further study. It would be also interesting to extend

the results of the present work to the sound channel (not considered in ref. [27]) as well

as to other holographic models with finite chemical potential such as the STU model [80],

and other models [81–83], including those in the large D limit [84].

Pole collisions in the correlation functions appear in holographic models in different

contexts [33, 57, 59–68]. No less interesting are collisions among poles and zeros of the

correlators known as pole-skipping [29–32]. What we have shown here is that this phe-

nomenon, known to exist in the sound channel of strongly coupled N = 4 SYM theory [29],

exists also in the shear and scalar channels of the energy-momentum correlators. The con-

jectured connection to the OTOC thus allows one to determine the parameters quantifying

microscopic many-body chaos (scrambling time and butterfly velocity) by considering the

complexified behaviour of the lowest-lying modes (those with the smallest |ω| in the spec-

trum) in any channel, be it a channel with or without hydrodynamic modes. In general,

the critical points and the pole-skipping points are different. We have analysed the 2d CFT

finite-temperature correlators and the spectra of the dual BTZ black hole to demonstrate

this explicitly. What this implies for the relation between chaos and hydrodynamics is that

the “chaos” (or pole-skipping) points can lie within or outside of the radius of convergence

of the hydrodynamic series. In particular, while this is not the case in the holographic

model with broken translation symmetry considered in section 3, we found that in the
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N = 4 SYM theory, pole-skipping points for both of the two hydrodynamic modes lie

within the radius of convergence of the corresponding dispersion relations. This provides

an explanation for the observation of the fast convergence of the hydrodynamic series to

the exact chaos point in ref. [29].

Can finiteness of the convergence radius of the hydrodynamic modes dispersion rela-

tions expansion be taken as a criterion for validity of hydrodynamics? By analogy, one

may think of a free particle whose dispersion relation ω =
√
p2 +m2 −m = p2/2m + . . .

has branch points located at p = ±im, and for which the failure of the convergence of

the gradient expansion corresponds to the breakdown of the non-relativistic approxima-

tion. We hope our results may be of interest for studies of higher-order hydrodynamics

necessary for improving the precision of hydrodynamic predictions and also for justifying

the construction of the effective field theory of hydrodynamics formulated as a gradient

expansion [85–95]. As already mentioned in ref. [8] in the context of the discussion of

the “unreasonable effectiveness” of hydrodynamics as an effective theory, many previous

studies have reported the divergence of the derivative expansion in relativistic hydrody-

namics [15, 17, 18, 18, 25]. Possibly, the asymptotic nature of the expansion appearing in

those publications should be viewed as a reflection of the singular nature of the state about

which this expansion is performed, rather than a generic property of the hydrodynamic

gradient expansion itself. On the other hand, even for a free particle, the momentum space

and position space pictures look different in this respect: the small-momentum expansion

of the corresponding dispersion relation has a finite radius of convergence, whereas e.g. for

the position space propagator, the large-time expansion is only asymptotic.22 This issue

needs further investigation. The role of the non-hydrodynamic degrees of freedom is the

common feature of the mentioned works and the present paper.

Of special interest is the dependence of the radii of convergence on coupling. In ref. [8],

using eq. (2.27) as a crude approximation and the results of refs. [96, 97], we argued that

in the N = 4 SYM theory, the radius of convergence is smaller at weaker coupling. This,

of course, requires the actual study of the spectrum at finite coupling. More generally,

in the context of the problem of interpolating between weak and strong coupling regimes

of the same theory at finite temperature [60, 98], one may note23 that the problem of

convergence of hydrodynamic series has been raised and partially investigated in the 1960s

in kinetic theory [99]. This approach, together with recent studies of relevant issues at

weak coupling [14, 100–102], may deserve more attention in the context of the problem of

the validity of the hydrodynamic description at finite coupling.
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A Analytic implicit function theorem and Puiseux series

Here, we collect the necessary information from complex analysis regarding the following

problem. Given an implicit function f(x, y) = 0, where x, y ∈ C, we would like to find

explicit solution(s) in the form y = y(x), at least locally in the vicinity of some point

(x0, y0), where y(x) may be represented by a finite or infinite series in x. We would like to

determine, furthermore, what sets the radius of convergence of such series.

A simple example is provided by the function f(x, y) = x2 + y2 − 1 = 0. Since

f(x, y) is a polynomial, it determines a complex algebraic curve. Singular points of f(x, y)

are determined by the simultaneous solution of the equations f(x, y) = 0, f,x(x, y) = 0,

f,y(x, y) = 0, where the comma subscript denotes the partial derivative with respect to

the argument after the comma. Clearly, this particular curve has no singular points. It

does, however, have the so-called “points of multiplicity 1” or “one-fold points”, where

f,x(x, y) = 0 or f,y(x, y) = 0 (but not both simultaneously). These are sometimes called

critical points. We are interested in the local behaviour of y = y(x) near a critical point

defined by the conditions f(x, y) = 0, f,y(x, y) = 0. In our example, there are two such

points: (x, y) = (±1, 0). The series representation y = y(x) in the vicinity of e.g. (x, y) =

(1, 0) has two branches:

y = y1(x) = i
√

2(x− 1)
1
2 + i2−

3
2 (x− 1)

3
2 + · · · , (A.1)

y = y2(x) = −i
√

2(x− 1)
1
2 − i2−

3
2 (x− 1)

3
2 + · · · . (A.2)

This is an example of the Puiseux series, i.e. the power series with fractional exponents.

These series converge in the circle with the centre at (x, y) = (1, 0) and radius R = 2 which

is the distance from (1, 0) to the nearest critical point, (x, y) = (−1, 0).

One may be interest in the behaviour y = y(x) in the vicinity of a regular point, where

f,y(x, y) 6= 0, for example, near (x, y) = (0, 1) in our example. Here, since f,y(x, y) 6= 0,
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the implicit function theorem guarantees that we can compute the derivatives y′(x), y′′(x)

and so on, and represent y(x) by the Taylor series in the vicinity of x = 0,

y = y(x) = 1− x2

2
− x4

8
+ · · · . (A.3)

This series is convergent in the circle of radius R = 1, determined by the distance from the

point x = 0 to the nearest critical point(s) at x = ±1.

In general, for an implicit function given by the equation f(x, y) = 0, where f(x, y)

is either a finite polynomial in x and y, or an analytic function at a point (x, y) (i.e.

a polynomial of an infinite degree), the behaviour at a regular point is governed by the

analytic implicit function theorem [103], and the behaviour in the vicinity of a critical

point is determined by the Puiseux theorem. In the former case, y = y(x) is represented

by a Taylor series converging in some vicinity of a regular point. In the latter case, it is

represented by a Puiseux series converging in some vicinity of a critical point. We now

recall some facts from complex analysis [104] and explain the Puiseux construction [45, 47].

Definition. A function, f(x, y), from a neighbourhood of (x0, y0) ∈ C2 to C is called

analytic at (x0, y0) if near (x0, y0) it is given by the uniformly convergent power series

f(x, y) =

∞∑
n,m=0

anm(x− x0)n(y − y0)m . (A.4)

Theorem (Analytic implicit function). If f(x0, y0) = 0 and f,y(x0, y0) 6= 0, there exist

ε > 0 and δ > 0 so that Dε(x0) × Dδ(y0) is in the neighbourhood where f is defined, and

g is a map of Dε(x0) into Dδ(y0) so that f(x, g(x)) = 0 and for each x ∈ Dε(x0), g(x) is

the unique solution of f(x, g(x)) = 0 with g(x) ∈ Dδ(y0). Moreover, g(x) is analytic in

Dε(x0) and

g′(x) = −
∂f
∂x (x, g(x))
∂f
∂y (x, g(x))

. (A.5)

Similarly, one can compute higher derivatives of g(x) and represent it by a Taylor series

around x = x0 convergent in Dε(x0). Note that the statements of the theorem are local,

e.g. the size of the domain Dε(x0) is unspecified, it is only known that it exists for some

ε > 0. In other words, we know that the radius of convergence of the series of g(x) around

x = x0 is non-zero but its value is left unspecified. In the example above, we saw that

the value of the radius of convergence is determined by the distance from the centre of the

expansion x0 to the nearest critical point of f(x, y). Note also that the statements of the

theorem depend crucially on f(x, y) being an analytic function at (x0, y0) (in particular, a

finite order polynomial in x and y).

Now we return to the original problem: for f(x, y) = 0, where x, y ∈ C, find explicit

solution(s) in the form y = y(x), at least locally in the vicinity of some point (x0, y0),

where y(x) may be represented by series (possibly infinite) at x = x0. For simplicity, we

set x0 = 0. First, we check f(0, y). If this is a polynomial in y of degree n, then the

equation f(0, y) = 0 has n roots yi, i = 1, . . . , n. There are two possibilities.
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Local behaviour at regular points: all the roots yi, i = 1, . . . , n of the equation

f(0, y) = 0 are distinct. Then f,y(0, yi) 6= 0, and the analytic implicit function theorem

guarantees the existence of a unique Taylor expansion y = y(x) at x = 0.

Local behaviour at critical points: the equation f(0, y) = 0 has multiple roots.

For simplicity, let y0 = 0 be such a root. Then we have f(0, 0) = 0, f,y(0, 0) = 0,

(∂2f/∂y2)(0, 0) = 0, . . . (∂pf/∂yp)(0, 0) 6= 0, if y = 0 is a zero of f(0, y) = 0 of order p. We

expect p branches of the solutions y = Yj(x), j = 1, . . . , p, at x = 0. They are given by

Puiseux series

y = Yj(x) =

∞∑
k≥k0

akx
k
mj , j = 1, . . . , p , (A.6)

where mj are positive integers, and k0 is a non-negative integer which in general depends

on j. The exponents k0/mj , (k0 + 1)/mj , etc, and the coefficients ak0 , ak0+1, etc, can be

determined by the Newton polygon method (1671), as described e.g. in refs. [45, 47]. The

Puiseux series are converging in some vicinity of the point x = 0 provided f(x, y) is an

analytic function at (x, y) = (0, 0) (or a finite polynomial). If some mj > 1, we necessarily

have among those p branches a family of mj solutions of the form

y = Yl(x) =

∞∑
k≥k0

ak

(
e

2πil
mj

)k
x

k
mj , l = 0, 1, . . . ,mj − 1 . (A.7)

As an example, consider the algebraic curve [48]

f(x, y) = y5 − 4y4 + 4y3 + 2x2y2 − xy2 + 2x2y + 2xy + x4 + x3 = 0 . (A.8)

Since f(0, y) = y3(y−2)2, the points (0, 0) and (0, 2) are critical points with multiplicities 3

and 2, respectively. We expect y = y(x) to be given by 3 branches of Puiseux series at (0, 0)

and by 2 branches at (0, 2). Applying the Newton polygon method [45, 47, 48] at the point

(0, 0), we find m1 = m2 = 2 and k0 = 1, m3 = 1 and k0 = 2, with appropriate coefficients:

y = Y1(x) = i

√
2

2
x

1
2 − 1

8
x+ i

27
√

2

128
x

3
2 − 7

32
x2 + · · · , (A.9)

y = Y2(x) = −i
√

2

2
x

1
2 − 1

8
x− i27

√
2

128
x

3
2 − 7

32
x2 + · · · , (A.10)

y = Y3(x) = −1

2
x2 +

1

8
x4 − 1

8
x5 +

1

16
x6 + · · · . (A.11)

At the point (0, 2), we have 2 branches, as expected:

y = Y4(x) = 2 +
1 + i

√
95

8
x+ · · · , (A.12)

y = Y5(x) = 2 +
1− i

√
95

8
x+ · · · . (A.13)
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B Perturbative solution of eq. (4.1)

Here, we list the explicit expressions for the components of the perturbative solution of

eq. (4.1),

G0(u) =u ,

G1(u) =

(
q2

2
− iw

)
(1− u) + iw

u

2
ln

1 + u

2

=

(
q2

2
− iw

)
(1− u)− iw u

2
Li1

(
1− u

2

)
,

G2(u) =w2

[
u

2
Li2

(
1− u

2

)
+
u

8
Li21

(
1− u

2

)
+

1 + u

2
Li1

(
1− u

2

)]
+ q2

(
q2 − 3iw

2

)
u

2
Li1

(
1− u

2

)
− iwq2

4
Li1

(
1− u

2

)
+ q2

(
q2

2
− iw

)
u lnu+

q4

4
(1− u) ,

as well as the appropriate boundary values,

G0(0) = 0 ,

G1(0) = − iw +
q2

2
,

G2(0) =
q4

4
− iwq2 ln 2

4
+

w2 ln 2

2
,

G3(0) = iw3

(
π2

24
+ ln 2− 3

8
ln2 2

)
+ q6

(
ln 2

4
− 1

8

)
+ iwq4

(
1

4
− ln 2

8

)
+ q2w2

(
π2

48
− ln 2

2
− ln2 2

16

)
,

G4(0) = q8

(
− 1

16
+
π2

64
− ln 2

8

)
− q4w2

(
π2

96
+ (12− 7 ln 2)

ln 8

96

)
− iq6w

(
π2

96
+ (−5 + ln 4)

ln 64

96

)
+ w4

(
(24− 5 ln 2)

ln2 2

48
+
π2

48
(−4 + ln 8)− 1

2
ζ(3)

)
+ iq2w3

(
−π

2 ln 2

96
+ (−24 + ln 2)

ln2 2

96
+

3

16
ζ(3)

)
.

C Kepler’s equation at complex eccentricity

The connection between algebraic curves, their critical points and non-analyticity of asso-

ciated integrals has an interesting history [105]. Newton proved in “Principia” that every

algebraically integrable oval must have singular points: all smooth ovals are algebraically

non-integrable (hence the non-analyticity T ∝ a3/2 in the Kepler’s third law). Moreover,
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Figure 17. Left panel: solutions ψ(τ) of Kepler’s equation (C.4) at e = 0.75 for τ ∈ [0, π] (half

a period): “exact” numerical solution of (C.4) (solid black line), series solution (C.5) truncated at

50 terms (dashed red line) and 60 terms (dotted blue line). The rate of convergence is maximal

at τ = π/2. Right panel: the radius of convergence ec(τ) of the series (C.5) as a function of τ for

τ ∈ [0, π/2]. The red dotted line coresponds to Laplace’s value eL. For 0 < e < eL, the series

converges for all τ ∈ [0, 2π].

*
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* **
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Figure 18. Critical points of the Kepler’s curve (C.4) in the complex eccentricity plane. The blue

dots are the critical points at τ = π/2. The points closest to the origin are located at e ≈ ±0.662743i.

They determine the radius of convergence eL of the series (C.5). For τ < π/2, the critical points

are located at a larger distance from the origin. For example, the critical points at τ = π/4 are

shown by red asterisks. They determine the radius of convergence ec(τ), shown in the right panel

of figure 17. With τ → 0, the three critical points merge at e = 1.

the radius of convergence of the series solving Kepler’s equation is determined by the critical

points in the complex eccentricity plane.

Kepler’s law of motion of a planet in an elliptical orbit with eccentricity e, 0 < e < 1,

is usually expressed in a parametric form [106]

r = a (1− e cosψ) , (C.1)

t =
T

2π
(ψ − e sinψ) , (C.2)
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where r is the magnitude of the radius-vector from the centre of the force to the planet,

a is the major semi-axis of the ellipse, T is the period of revolution and ψ ∈ [0, 2π] is

the parameter known in astronomy as the eccentric anomaly. Knowing ψ(t), one can find

the position of the planet in the polar coordinates (r(t), ϕ(t)) as a function of time using

eq. (C.1) and the equation

tan
ϕ

2
=

√
1 + e

1− e
tan

ψ

2
. (C.3)

Introducing τ ≡ 2πt/T , we rewrite eq. (C.2) as

K = τ − ψ + e sinψ = 0 . (C.4)

Eq. (C.4) is known as Kepler’s equation. The task of finding a solution ψ = ψ(τ) pre-

occupied Kepler, Newton, Lagrange, Laplace, Bessel, Cauchy and other great minds and

led to progress in various mathematical disciplines. To quote V.I. Arnold [105]: “This

equation plays an important role in the history of mathematics. From the time of Newton,

the solution has been sought in the form of a series in powers of the eccentricity e. The

series converges when |e| ≤ 0.662743 . . .. The investigation of the origin of this mysterious

constant led Cauchy to the creation of complex analysis. Such fundamental mathematical

concepts and results as Bessel functions, Fourier series, the topological index of a vector

field, and the “principle of the argument” of the theory of functions of a complex variable

also first appeared in the investigation of Kepler’s equation”.

A formal series solution of Kepler’s equation was found by Lagrange [107] who ap-

parently was not concerned with the series convergence (more details can be found in the

book [108])

ψ(τ, e) = τ +

∞∑
n=1

an(τ)
en

n!
, (C.5)

where

an =
dn−1(sinn τ)

dτn−1
. (C.6)

As pointed out by Laplace [109], the series (C.5) converges for all τ ∈ [0, 2π] as long as

|e| ≤ eL ≈ 0.662743 . . .. For e > eL, the series diverges for some values of τ , in a rather

peculiar manner (see figure 17, left panel).

What determines the radius of convergence ec(τ) of the series (C.5)? This problem

was investigated by Cauchy, Puiseux and Serret in a series of papers in 1849-1859 [108]. In

modern language, the answer is the following. Treat Kepler’s equation (C.4) as a complex

analytic curve in the space of ψ ∈ C, e ∈ C, with τ remaining a real parameter. The

critical points of the curve K = 0 obey eq. (C.4) as well as the equation

∂K

∂ψ
= e cosψ − 1 = 0 . (C.7)
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The critical points closest to the origin in the complex eccentricity plane are shown in

figure 18. Their location is parametrised by τ . The radius of convergence ec(τ) is given

by the distance from the origin to the nearest singularity. This distance is a monotonic

function of τ in the interval [0, π] (half a period), with the minimum at τ = π/2 given

by ec(
π
2 ) = eL. Thus, for 0 < e < eL, the series (C.5) converges for all τ ∈ [0, 2π]. The

dependence of the radius of convergence on τ is shown in figure 17 (right panel).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] L. Landau and E. Lifshits, Fluid mechanics, Pergamon Press, New York U.S.A. (1987).

[2] P. Kovtun, Lectures on hydrodynamic fluctuations in relativistic theories, J. Phys. A 45

(2012) 473001 [arXiv:1205.5040] [INSPIRE].

[3] R. Baier et al., Relativistic viscous hydrodynamics, conformal invariance and holography,

JHEP 04 (2008) 100 [arXiv:0712.2451] [INSPIRE].

[4] S. Bhattacharyya, Constraints on the second order transport coefficients of an uncharged

fluid, JHEP 07 (2012) 104 [arXiv:1201.4654] [INSPIRE].

[5] S. Grozdanov and N. Kaplis, Constructing higher-order hydrodynamics: the third order,

Phys. Rev. D 93 (2016) 066012 [arXiv:1507.02461] [INSPIRE].

[6] Y. Pomeau and P. Resibois, Time dependent correlation functions and mode-mode coupling

theories, Phys. Rept. 19 (1975) 63.

[7] M.H. Ernst and J.R. Dorfman, Nonanalytic dispersion relations for classical fluids, J. Stat.

Phys. 12 (1975) 311.

[8] S. Grozdanov, P.K. Kovtun, A.O. Starinets and P. Tadić, Convergence of the gradient
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