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1 Introduction

Since Hawking’s proposal [1] that a black hole can completely evaporate through Hawking

radiation, physicists have realized that quantum effects, despite its weakness, have the

potential to affect the large-scale structure of black holes. However, to this day, there has

not yet been a satisfactory understanding on this topic, leaving many unsettled issues,

including most notably the information loss paradox [2–5] and related proposals such as

the fuzzball [6–10] and the firewall [11–13]. Many believe that a rigorous detailed analysis

including the quantum effect is imperative.

Hence we aim to provide a rigorous detailed description of the black-hole geometry

with the back reaction of quantum fields taken into consideration. In this paper, we focus

on static, spherically symmetric black holes. We will give explicit expressions of general so-

lutions to the semi-classical Einstein equation. Following Christensen and Fulling [14], we

assume that the underlying quantum fields responsible for the quantum energy-momentum

tensor are 4D conformal matters. Unlike its 2D analogue [15], its energy-momentum ten-

sor is not uniquely fixed by the trace anomaly and conservation law. Instead of making

additional assumptions to uniquely determine the energy-momentum tensor, we keep its

full generality in our analysis.

There are numerous related works in the literature. Let us comment on some of those

closely related. Vacuum energy-momentum tensors derived from 2D models of quantum

field theories are extensively studied in ref. [16]. It was shown that, depending on the

quantum model of vacuum energy-momentum tensor and the vacuum state, the back-

reacted near-horizon geometry falls into three qualitatively different classes. In one of the

three classes, the back reaction of quantum fields is insignificant, while the event horizon

is removed in the other two classes.

In one of the two classes that are horizonless, the horizon is replaced by a local min-

imum of the areal radius, resembling the throat of a traversable wormhole [16]. Similar

results were also obtained in refs. [17, 18]. (The resemblance between the black holes and

wormholes was also noted in refs. [19–21] based on different reasonings.) The static geom-

etry of the interior space with a star composed of an incompressible fluid or a thin shell

was studied in ref. [22]. The dynamical case including the effect of Hawking radiation was

explored via numerical simulation in ref. [23], and then analytically in ref. [24].

In the other horizonless class of solutions, there is neither a horizon nor a wormhole-like

structure [16].

The progress achieved in this work is mainly the use of 4D (instead of 2D) models of

quantum vacuum energy-momentum, and its generality that covers all static solutions with

spherical symmetry. All three classes of solutions found in various 2D models of vacuum

energy are present in this 4D model, and we note that the presence of the event horizon

requires fine tuning. The back reaction due to 4D conformal fields has also been studied in

ref. [25], but it was done in a manner different from this work, and only the wormhole-like

class was discussed. Furthermore, we emphasize the mathematical rigor of our results, with

our calculations carried out in both perturbative and non-perturbative approaches.

The plan of this paper is as follows. We first lay out in section 2 the assumptions

behind the mathematical formulation we use to determine the black-hole geometry. The
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general perturbative solution at the first order is given in section 3, section 4 and section 5

in three different coordinate systems, each with its advantages and disadvantages. The

non-perturbative analysis is carried out in section 6. The result is consistent with the

perturbative solution. The perturbative and non-perturbative solutions together depict a

comprehensive picture of the black-hole geometry.

2 Semi-classical einstein equation and 4D conformal matter

2.1 Semi-classical Einstein equation

In this section, we define the theoretical framework on which the analysis in this paper is

based. It is essentially Einstein’s theory of gravity sourced by 4D conformal quantum fields

through its expectation value of the quantum energy-momentum operator.

First, we assume that the space-time geometry is determined by the semi-classical

Einstein equation

Gµν = κ〈Tµν〉 (2.1)

at large scales. Here 〈Tµν〉 is the expectation value of the quantum energy-momentum

operator Tµν in the underlying quantum field theory. A priori 〈Tµν〉 does not have to be

the vacuum expectation value. But in the perturbative calculation, we will assume that

〈Tµν〉 is of O(κ0), so that the right hand side of eq. (2.1) vanishes in the classical limit

κ→ 0. In this sense, it is a vacuum expectation value which comes purely from quantum

effects. On the other hand, in the non-perturbative analysis, it can be the expectation

value of an arbitrary state.

In this work, we further assume that the energy-momentum tensor 〈Tµν〉 in eq. (2.1)

is given as that of 4D conformal quantum fields. The advantage of considering conformal

matters is that 〈Tµν〉 is constrained by the Weyl anomaly, leaving fewer uncertainties in

〈Tµν〉, which is typically difficult to evaluate directly.

For 4D conformal quantum fields, the trace of the energy-momentum tensor is given

by the 4D Weyl anomaly

〈Tµµ〉 = c4F + a4G, (2.2)

which depends on two conformal charges c4 and a4 characterizing the conformal fields.

Here

F ≡ CµνλρCµνλρ = RµνλρRµνλρ − 2RµνRµν +
1

3
R2, (2.3)

G ≡ RµνλρRµνλρ − 4RµνRµν +R2, (2.4)

where C is the Weyl tensor and G is the Gauss-Bonnet term.

The last assumption we shall make in this paper is that the configurations under study

are static and spherically symmetric. Locally, the metric can be put in the form

ds2 = −eρ(r)

[
dt2 − dr2

F (r)

]
+ r2dΩ2. (2.5)
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The coordinate r is called the “areal radius”, in terms of which the area of a symmetric

sphere is always 4πr2. It is not necessarily monotonically increasing in the radial direction.

We also define a “proper radial coordinate” z by

dz2 =
eρ(r)

F (r)
dr2. (2.6)

The metric can then be expressed as

ds2 = − eA(z)

B2(z)
dt2 + dz2 +B(z)dΩ2, (2.7)

where the two parametric functions A(z) and B(z) are related to ρ(r) and F (r) by

eq. (2.6) and

r2 = B(z), eρ(r) =
eA(z)

B2(z)
. (2.8)

For a static, spherically symmetric configuration, the only non-vanishing components

of the energy-momentum tensor 〈Tµν〉 are

〈T tt〉, 〈T rr〉 = 〈T zz〉, 〈T θθ〉 = 〈T φφ〉. (2.9)

The three independent components of the energy-momentum tensor (say, 〈T tt〉, 〈T rr〉 and

〈T θθ〉) are constrained by the conservation law

∇µ〈Tµν〉 = 0, (2.10)

as well as the anomaly equation (2.2). There is thus only one independent functional degree

of freedom in the energy-momentum tensor. We can arbitrarily specify 〈T rr〉 (or 〈T zz〉) to

be any given function of r (or z) from which all other components of 〈Tµν〉 are fixed.

The metric (2.5) (or (2.7)) has two independent functional parameters ρ(r) and F (r)

(or A(z) and B(z)) to be solved from the semi-classical Einstein equation (2.1). Cor-

respondingly, only two of the 10 equations in eq. (2.1) are independent. For conformal

matters, it is convenient to take the trace of the semi-classical Einstein equation

Gµµ = κ〈Tµµ〉, (2.11)

where 〈Tµµ〉 is given by the Weyl anomaly (2.2), as one of the two independent equations.

In the following, we will take the other independent equation to be

Grr = κ〈T rr〉, (2.12)

or

Gzz = κ〈T zz〉, (2.13)

depending on our choice of coordinates.

– 4 –
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2.2 Energy-momentum tensor and Weyl anomaly

The most general static, spherically symmetric stress tensor constrained by the conservation

law has only two functional degrees of freedom. Following Christensen and Fulling [14],

the energy-momentum tesnor can be parametrized by the trace 〈Tµµ〉 and

Θ ≡ 〈T θθ〉 −
1

4
〈Tµµ〉. (2.14)

In addition, there are 2 dimensionless constant parameters K and Q which are a priori of

order 1, corresponding to different choices of boundary conditions.

For the Schwarzschild background (2.5) with

ρ(r) = log

(
1− a

r

)
, F (r) =

(
1− a

r

)2

, (2.15)

we obtain the following expression for the most general time-independent, conserved and

spherically symmetric stress tensor by integrating the conservation law;

〈T tt〉 = − 1

r(r − a)
[q +H(r) +G(r)] +

1

2
〈Tµµ(r)〉 − 2Θ(r), (2.16)

〈T rr〉 =
1

r(r − a)
[q +H(r) +G(r)] , (2.17)

〈T tr〉 =
1

(r − a)2
k, (2.18)

〈T θθ〉 = Θ(r) +
1

4
〈Tµµ〉, (2.19)

while

〈T rt〉 = −
(

1− a

r

)2
〈T tr〉, (2.20)

〈T φφ〉 = 〈T θθ〉, (2.21)

and the two functions H and G are defined by

H(r) =
1

2

∫ r

a

(
r′ − a

2

)
〈Tµµ(r′)〉dr′, (2.22)

G(r) = 2

∫ r

a

(
r′ − 3a

2

)
Θ(r′)dr′. (2.23)

The integration constants q and k are related to the parameters Q and K in ref. [14] via

q =
4(Q−K)

a2
, (2.24)

k =
4K

a2
, (2.25)

which are of order O(a−2).

Here, Q = 0, or equivalently, q = −k does not lead to the divergent outgoing energy

flux but the incoming energy flux diverges at the past horizon, while the condition q = k
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gives divergence of the outgoing energy flux at the future horizon but no divergence in

incoming energy flux. The condition q = k = 0, gives no divergent energy flux while q = 0

generally provides non-zero energy flux in the asymptotic region. For example, the energy-

momentum tensor which satisfies the conditions 〈T θθ〉 = 0 and the anomaly condition (2.2)

has the following asymptotic behavior;

〈T tt(r →∞)〉 = −
a2q + 6

5(c4 + a4)

a2r2
+O(r−3), (2.26)

〈T rr(r →∞)〉 =
a2q + 6

5(c4 + a4)

a2r2
+O(r−3) . (2.27)

The condition q = k = 0 corresponds to the Hartle-Hawking vacuum, in which the incoming

and outgoing energy fluxes are finite but balanced with each other. For q = −6(c4+a4)
5a2

and

k = 0, the incoming and outgoing energy fluxes in the asymptotic region are zero but

there is divergence at r = a. This condition corresponds to the Boulware vacuum. The

Hartle-Hawking vacuum was considered physical, and the Boulware vacuum unphysical,

because of the divergence in the energy flux. In this work, we do not jump into the same

conclusion before closely examining the solutions.

Note that if k 6= 0, the energy-momentum tensor breaks the time-reversal symme-

try, so the metric will not be static, even though the energy-momentum tensor is time-

independent. We shall assume that k = 0 except briefly commentting on the case k 6= 0 in

section 3.4.

Explicit expressions of the energy-momentum tensor can now be given as follows. For

the Schwarzschild background,

RµνλρRµνλρ =
12a2

r6
, RµνRµν = 0, R = 0. (2.28)

As a result,

F = G =
12a2

r6
, (2.29)

and the trace anomaly (2.2) is

〈Tµµ〉 =
12(c4 + a4)a2

r6
. (2.30)

At the first order in the perturbation theory, this is the only place where the conformal

charges appear in the semi-classical Einstein equation, hence they only appear in the com-

bination (c4 + a4) in the first order perturbative solution.

For the Weyl anomaly (2.30), we have

H(r) =
3(c4 + a4)(3r5 − 5a4r + 2a5)

10a2r5
, (2.31)

G(r) =
3(c4 + a4)(r5 + 5a4r − 6a5)

10a2r5
+ 2

∫ r

a

(
r′ − 3a

2

)
〈T θθ(r′)〉dr′. (2.32)

One can thus compute the energy-momentum tensor using eqs. (2.16)–(2.19) for the

Schwarzschild background.
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The expressions above given in terms of the areal radius r can be easily generalized to an

arbitrary radial coordinate y for the most general static, spherically symmetric background,

ds2 = −eρ(y)dt2 + h(y)dy2 + r2(y)dΩ2. (2.33)

The radial component of the metric h(y) is related to those in other coordinates as

h(y)dy2 =
eρ(r)

F (r)
dr2 = dz2. (2.34)

For instance, h(y) = 1 for y = z, and h(y) = eρ(r)

F (r) for y = r. By integrating the conservation

equations, the energy-momentum tensor is found to be

〈T tt〉 = −e
−ρ(y)

r2(y)
[q +H(y) +G(y)] +

1

2
〈Tµµ(y)〉 − 2Θ(y), (2.35)

〈T yy〉 =
e−ρ(y)

r2(y)
[q +H(y) +G(y)] , (2.36)

〈Tty〉 = −
k e−ρ(y)/2

√
h(y)

r2(y)
, (2.37)

〈T θθ〉 = 〈T φφ〉 = Θ(y) +
1

4
〈Tµµ〉, (2.38)

where H and G are given by

H(y) =
1

4
G(y) +

1

2

∫ y

ȳ
eρ(y′)ρ′(y′)r2(y′)〈Tµµ(y′)〉dy′, (2.39)

G(y) =

∫ y

ȳ
eρ(y′)r(y′)

(
2r′(y′)− ρ′(y′)r(y′)

)
Θ(y′)dy′. (2.40)

The primes on a variable (e.g. ρ′ and r′) indicate the derivative with respect to the radial

coordinate y. The constant ȳ is the location of the horizon where ρ→ −∞. The divergence

of the energy-momentum tensor at the horizon is parametrized by the constant q (with

H(y) +G(y) vanishing at y = ȳ), assuming that Θ(y) is finite there.1

For instance, in terms of A(z), B(z) and the proper radial coordinate z (see eq. (2.7)),

H and G are

H(z) =
1

4

∫ z

z̄

eA(z′)

B(z′)

(
A′(z′)− B′(z′)

B(z′)

)
〈Tµµ(z′)〉dz′, (2.41)

G(z) = −
∫ z

z̄

eA(z′)

B(z′)

(
A′(z′)− 3

B′(z′)

B(z′)

)
Θ(z′)dz′. (2.42)

The metric for a static, spherically symmetric space-time can in principle be solved

from the semi-classical Einstein equation (2.1) for an arbitrary assignment of 〈T θθ〉. In

the following, we shall find the solution of the metric both perturbatively and non-

perturbatively for arbitrary 〈T θθ〉. In the perturbative analysis, we find the first order

1In general, r′(y) and ρ′(y) could diverge as y → ȳ if eρ(y) → 0 there. We assume that the integrands

are still finite at y = ȳ, as in the case of the Schwarzschild metric.
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correction to the Schwarzschild metric. The non-perturbative analysis is carried out in

a small neighborhood of an arbitrary point in space. Putting the perturbative and non-

perturbative results together, we get a consistent picture of the black-hole geometry in-

cluding the back reaction of the energy-momentum tensor of 4D conformal quantum fields.

3 General perturbative solution in areal radius

In the following, we will solve the first order perturbative correction to the Schwarzschild

metric due to the energy-momentum tensor of 4D conformal quantum fields with full gen-

erality, and we will classify the solutions according to their near-horizon geometry. In this

section, we shall use the areal radius r as the coordinate parametrizing the radial direction.

In the next two sections we will use other radial coordinates.

3.1 Perturbative analysis

Here we consider the ansatz (2.5) for the metric. The parametric functions ρ(r) and F (r)

are expanded in powers of the Newton constant κ as

ρ = ρ0 + κρ1 + κ2ρ2 + · · · , (3.1)

F = F0 + κF1 + κ2F2 + · · · , (3.2)

where ρn and Fn are of O(κ0). Note that [κ] = L2 and [ρ1] = [F1] = L−2 in terms of the

dimension of length L. The 0-th order solution is given by the Schwarzschild metric:

ρ0 = log

(
1− a

r

)
, (3.3)

F0 =

(
1− a

r

)2

, (3.4)

where a is the Schwarzschild radius. We shall solve the semi-classical Einstein equation (2.1)

perturbatively in the κ-expansion for the leading order perturbative correction ρ1, F1. We

assume that the energy-momentum tensor comes from quantum effects and are of O(κ0).

For any given radial pressure 〈T rr〉, the metric correction ρ1 and F1 can then be directly

solved from the semi-classical Einstein equations (2.12) and (2.11). Eq. (2.12) is

F1(r)

(r − a)2
+

(r − a)ρ′1 − ρ1

r2
= 〈T rr〉. (3.5)

It allows one to express F1 in terms of ρ1:

F1(r) = (r − a)2

[
〈T rr〉 −

(r − a)ρ′1 − ρ1

r2

]
. (3.6)

Plugging this into the other equation (2.11), we turn it into a second order differential

equation for ρ1 only:

(2r − 3a)(r − a)ρ′′1 + 2(2r − 3a)ρ′1 = J(r), (3.7)

where

J(r) ≡ r2(4r − 3a)〈(T rr)′〉+ 6r(2r − a)〈T rr〉 − 2r2〈Tµµ〉. (3.8)

– 8 –
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We can then solve ρ1 from this second order differential equation as

ρ1(r) = C0 +

∫ r

r0

dr′
1

(r′ − a)2

[
C1 +

∫ r′

r0

dr′′
(r′′ − a)2J(r′′)

(2r′′ − 3a)(r′′ − a)

]
, (3.9)

with integration constants C0 and C1. After finding the solution of ρ1, one can easily

compute F1 from eq. (3.6).

The first order corrections in the κ-expansion, ρ1(r) and F1(r), are now written in

terms of 〈T rr〉 and 〈Tµµ〉. The trace of the energy-momentum tensor 〈Tµµ〉 is given

by (2.30) for the Schwarzschild background, while 〈T rr〉 is expressed as (2.17) (with (2.31)

and (2.32)) which diverges in general at r = a. Since this divergence is related to the

coordinate singularity in the (t, r)-coordinates, we assume that 〈T θθ〉, which is invariant

under the coordinate transformation in the (t, r)-directions, does not diverge at r = a.

Under this assumption, it would be convenient to express the results in terms of 〈T θθ〉, or

equivalently, of Θ.

To calculate the energy-momentum tensor in the limit r → a, we expand

eqs. (2.16), (2.17), (2.31) and (2.32) in powers of (r − a) and find

〈T tt(r → a)〉 = − q

a(r − a)
+
q + 6(c4 + a4)

a4
− 〈T θθ(r → a)〉, (3.10)

〈T rr(r → a)〉 =
q

a(r − a)
+
−q + 6(c4 + a4)

a4
− 〈T θθ(r → a)〉. (3.11)

We shall thus represent 〈T rr〉 (for all r, not only for r close to a) as

〈T rr(r)〉 =
q

a(r − a)
+ f(r), (3.12)

where

f(r) ≡ − q

ar
+

1

r(r − a)
[H(r) +G(r)] . (3.13)

Here, H(r) and G(r) are given by (2.31) and (2.32), respectively. The function f(r) is

determined by 〈T θθ〉 and q, and it is regular at r = a (assuming that 〈Tθθ(a)〉 is finite).

As the energy-momentum tensor is assumed to come from quantum effects, q should be of

O(κ0a−2).

The results (3.6) (3.9) are now expressed in terms of f(r) as

ρ1(r) = C0 +
C1

r − a
+W (r)− q

4a(r − a)

[
2(7a2 + 8ar − 4r2)

+ a(3a− 2r)

(
4 log

(
r − a
a

)
+ 9 log

(
3a− 2r

a

))]
, (3.14)

F1(r) = − (r − a)

{
[−2C0(r − a)− 4C1]

2r2

+
q
[
7a2 − 2r2 + 13ar + 9a(2a− r) log

(
2r−3a
a

)
+ 4a(2a− r) log

(
r−a
a

)]
2ar2

− (r − a)f(r) +
1

2r2

[
V (r)− 2(r − a)W (r)

]}
, (3.15)
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where

W (r) ≡
∫ r

a
dr′′

1

(r′′ − a)2

V (r′′)

2
, (3.16)

V (r) ≡ −2

∫ r

a
dr′

r′(a− r′)
(3a− 2r′)

[
6(a− 2r′)f(r′) + 2r′〈Tµµ(r′)〉+ r′(3a− 4r′)f ′(r′)

]
. (3.17)

There are two integration constants C0 and C1. The constant C0 corresponds to a

scaling of the time coordinate t; and C1 to a shift of the Schwarzschild radius a. They are

fixed by specifying the asymptotic conditions at r →∞: the choice of t in the asymptoti-

cally flat spacetime fixes C0; and the asymptotic total energy (which depends on the choice

of f(r)) determines C1.

Eqs. (3.14) and (3.15) give the most general first order perturbation of the

Schwarzschild metric for a 4D conformal matter field in any state according to the semi-

classical Einstein equation (2.1). The energy-momentum tensor 〈Tµν〉 of any quantum state

is specified by a function f(r) and a constant q through eq. (3.12), with the rest of the

energy-momentum tensor determined through the Weyl anomaly and conservation law.

3.1.1 Analysis in the limit r → ∞

Now we consider the solution (3.14)–(3.15) in the two limits r → ∞ and r → a. In the

asymptotic region at large r, the asymptotic expressions of the metric is given by

ρ1(r) ' 〈T θθ(∞)〉r2 + (7a〈T θθ(∞)〉+ 3γ1)r + S log(r)

+

[
C0 − 2q +

9

2
q log(2)− 13

2
q log(a)

]
−
[

6(c4 + a4)

5a
+ aq +

3a

2
(9a2〈T θθ(∞)〉+ 4γ0 + 6aγ1)

]
log(r)

r

+
1

a

[
C1 −

24

5a
(c4 + a4)− 29

4
aq − 27a3〈T θθ(∞)〉 − 12aγ0 − 21a2γ1

− 9

4
aq log(2) +

13

4
aq log(a)

]
1

r
+O

(
1

r2

)
, (3.18)

F1(r) ' (3a〈T θθ(∞)〉+ γ1)r + S log(r)

+

[
C0 −

6(c4 + a4)

5a2
−3q+

9

2
q log(2)− 13

2
q log(a)−19a4〈T θθ(∞)〉−5γ0−10aγ1

]
−
[

36(c4 + a4)

5a
+ 6aq + 69a3〈T θθ(∞)〉+ 24aγ0 + 42a2γ1

]
log(r)

r

+

[
− 2aC0 + 2C1 −

18(c4 + a4)

5a
− 9aq

4
+ κG1

− 11a3〈T θθ(∞)〉 − 7aγ0 − 12a2γ1 −
27aq

2
log(2) +

39aq

2
log(a)

]
1

r
+O

(
1

r2

)
,

(3.19)

where

S ≡ 12(c4 + a4)

5a2
+ 2q + 21a2〈T θθ(∞)〉+ 6γ0 + 12aγ1. (3.20)
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The constant parameters γ0, γ1 andG1 are defined by the large-r expansion ofG(r) (2.32) as

G(r) ' 〈T θθ(∞)〉r2 + γ1r +
3(c4 + a4)

10a2
+ γ0 +

G1

r
+O(1/r2), (3.21)

and 〈T θθ(∞)〉 is the angular pressure in asymptotically flat region, 〈T θθ(r →∞)〉. As the

anomaly (2.30) goes to 0 in the asymptotically flat region

〈Tµµ(r →∞)〉 = 0, (3.22)

the part independent of r in 〈Tµν(r →∞)〉 represents a thermal equilibrium state at spatial

infinity parametrized by 〈T θθ(∞)〉.

3.1.2 Analysis in the limit r → a

In the near-horizon limit r → a, we parametrize C0 and C1 in terms of two parameters c̃0

and c̃1 defined by

C0 = c̃0 −
9

2
q, C1 =

9

2
aq + c̃1. (3.23)

Here, [C0] = L−2 and [C1] = L−1 for the dimension of length L, and c̃0 ∼ O(a−2) and

c̃1 ∼ O(a−1). Then the solution is approximated by

ρ1(r) = − qa

(r − a)
log

(
r − a
a

)
+
c̃1 − qa
(r − a)

+ 2q log

(
r − a
a

)
+ c̃0

+

[
−5

2

q

a
− 3af(a) + a〈Tµµ(a)〉 − 1

2
a2f ′(a)

]
(r − a) +O((r − a)2), (3.24)

F1(r) = − 2q(r − a)

a
log

(
r − a
a

)
+

2c̃1

a2
(r − a)

+

[
6

a2
q log

(
r − a
a

)
+
c̃0

r2
− 4c̃1

a3
+ f(a)

]
(r − a)2 +O((r − a)3). (3.25)

From these expressions we see that, in the near-horizon region, the perturbation at the

leading order depends only on the Schwarzschild radius a and the constant parameter q,

but not on the conformal charges or the tangential pressure 〈Tθθ(a)〉.
Clearly, the perturbation theory fails at r = a where ρ1 diverges, while it provides a

good approximation at large r. To find out the range of r where the perturbation theory

works, we examine the order of magnitude of some geometric quantities at r = a:

R = −κ
[

5q

a2
log

(
r − a
a

)
+O((r − a)0)

]
+O(κ2), (3.26)

RµνR
µν = O(κ2), (3.27)

RµνλσR
µνλσ =

12a2

r6
+ κ

[
2q

a4
log

(
r − a
a

)
+O((r − a)0)

]
+O(κ2). (3.28)

Noting q = O(a−2), the quantum correction of RµνλσR
µνλσ is sufficiently small as long as

r − a� ae−a
2/κ. (3.29)
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Therefore, the perturbative expansion for the geometry is expected to be valid in this

region. On the other hand, the perturbative corrections for ρ and F , as is shown in (3.24)

and (3.25), become comparable to the leading order terms around the region

r − a ∼ O
(κ
a

)
. (3.30)

This implies that the expressions (3.24) and (3.25) are valid only for

r − a & O
(κ
a

)
, (3.31)

since they are calculated by assuming that r − a ∼ O(κ0a). The quantum corrections for

geometric quantities above are all of O(κ log κ) or smaller in (3.31) so we expect that the

perturbation theory is valid in the range defined by eq. (3.31).

Within the range of validity of the perturbation theory, the quantum correction is

most significant around the region (3.30) although it can in principle be even larger in

the non-perturbative domain. The energy-momentum tensor (3.10) and (3.11) around the

region (3.30) is estimated to be

|〈T tt〉| ∼ |〈T rr〉| ∼ O
(

1

κa2

)
. (3.32)

This is what one would expect, according to the Einstein equation, of the energy-momentum

tensor for a spacetime region in which the curvature is of O(1/a2).2 On the other hand, in

comparison with the classical vacuum energy (which is exactly zero), the quantum vacuum

energy is relatively high. For a black hole of a few solar mass, the energy density can be

as high as O(MeV4).

3.2 Classification of solutions

To understand the quantum-corrected near-horizon geometry in more details, we examine

the perturbative solution in the neighborhood (3.31). According to (3.3) and (3.24), we find

ρ = ρ0 + κρ1 + · · · =
[
1− κaq

(r − a)

]
log

(
1− a

r

)
+ · · · , (3.33)

and using (3.4) and (3.25), we find

F = F0 + κF1 + · · · = (r − a)2

a2

[
1− 2κaq

(r − a)
log

(
r − a
a

)]
+ · · · . (3.34)

These expressions determine the near-horizon geometry to the first order in the perturba-

tion theory. The nature of the near-horizon geometry depends on the sign of the parameter

q. The Hartle-Hawking vacuum corresponds to the condition q = 0, while q would be neg-

ative in the Boulware vacuum, as we have seen in an example in section 2.2. We consider

the three possibilities: q < 0, q = 0 and q > 0, separately in the following.

2In a self-consistetn model [26–32], (3.32) is obtained.
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3.2.1 Wormhole-like throat (q < 0)

If q < 0, in the limit r → a (moving towards r = a from distance), we have

ρ ' ρ0 + κρ1 '
[
1 +

κ|q|a
r − a

]
log

(
r − a
a

)
+ · · · , (3.35)

F ' F0 + κF1 '
1

a2
(r − a)2

[
1 +

2κ|q|a
r − a

log

(
r − a
a

)]
+ · · · . (3.36)

The perturbation theory breaks down when r is too close to the Schwarzschild radius:

r − a� κ|q|a. (3.37)

Hence the existence of the horizon at r = a is not guaranteed.

According to this approximation, F has a zero at r > a, implying that there is a local

minimum in r outside the horizon.3 We refer to this local minimum in r as the “neck”

or “throat” of a “wormhole-like structure”, as it resembles the geometry of a traversable

wormhole, although it does not lead to another open spacetime. Noting eq. (2.6), the

location of the wormhole neck is where dr/dz = 0, i.e. where

F (r) = 0. (3.38)

With F (r) approximated by F0 + κF1, r − a is of O(κ/a) at the neck. But this means

that the 0-th order, 1st order and 2nd order terms in F are all of O(κ2/a4). Hence it is

not reliable to determine the location of the neck based the first order perturbation in the

r-coordinate.

In section 4, we will see that the perturbation theory in another coordinate system

(using the proper radial coordinate z) allows us to locate the neck with better accuracy. In

section 6.2, we will further confirm this perturbative result by non-perturbative analysis.

3.2.2 Event horizon (q = 0)

When q = 0, we have from eqs. (3.14) and (3.15)

ρ1 ' −
1

(r − a)
∆a+ · · · , (3.39)

F1 ' −
2

a2
(r − a)∆a+ · · · , (3.40)

where

∆a ≡ C1 + 3(c4 + a4)
(5 + 2 log(a))

5a
. (3.41)

These expressions coincide with the perturbation of the Schwarzschild metric for a shift of

the Schwarzschild radius by

a→ a+ ∆a. (3.42)

This means that the black-hole mass receives a quantum correction ∆a/2. We can redefine

the Schwarzschild radius a (tune C1 such that ∆a = 0) to absorb this correction. As a

3To claim that the neck is a local minimum of r, we have checked not only that F = 0 at the neck, but

also that dF
dr

∣∣
neck

> 0.
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result, ρ1 and F1 are only modified at higher orders of the (r − a)-expansion in the near-

horizon region, and the geometry of the Schwarzschild horizon is not significantly modified

by the quantum effect. Only in this case, the perturbation theory is valid down to the

horizon at r = a.

3.2.3 No neck & no horizon (q > 0)

If q > 0, in the limit r → a (moving towards r = a from distance), we have

ρ ' ρ0 + κρ1 '
[
1− κ|q|a

r − a

]
log(r − a) + · · · , (3.43)

F ' F0 + κF1 '
1

a2
(r − a)2

[
1− 2κ|q|a

r − a
log(r − a)

]
+ · · · , (3.44)

from eqs. (3.33) and (3.34). In contrast with the case q < 0, there is no local minimum of r

outside the Schwarzschild radius, because F has no zero for r > a, while the perturbation

theory breaks down in the region

r − a� κ|q|a. (3.45)

Furthermore, since ρ1 → +∞ in the limit r → a, the event horizon is removed as ρ no

longer approaches to −∞, On the other hand, since the perturbation theory does not apply

to the immediate neighborhood of the horizon at r = a, we cannot rule out the existence

of a horizon beyond the range of validity of the perturbation theory.

3.3 Higher order corrections

It is straightforward to calculate the second order corrections to ρ and F . The second

order solutions ρ2 and F2 are calculated by solving the second order semi-classical Einstein

equation and expanded around r = a as

ρ2(r) =
1

2(r − a)2

{
a2q2 − c̃2

1 + 2ac̃1q log

(
r − a
a

)
− a2q2

[
log

(
r − a
a

)]2}
+O

(
(r − a)−1

)
, (3.46)

F2(r) =
c̃2

1

a2
− 2c̃1q

a
+ 2q2 − 2q

a
(c̃1 − aq) log

(
r − a
a

)
+ q2

[
log

(
r − a
a

)]2

+O ((r − a)) . (3.47)

For r ∼ O(κ/a), they are of O(κ−2) and O(κ0a−4) respectively. Then, the leading, first,

and second order terms of the perturbative expansion, (3.1) and (3.2), have the same

order of magnitude, O(κ0a0) for ρ and O(κ2a−4) for F , respectively. This is because

the expressions (3.24), (3.25), (3.46) and (3.47) are calculated under the assumption that

r − a ∼ O(κ0a), and hence, the higher order corrections become comparable to the lower

order terms for r − a ∼ O(κ/a2). This does not imply the breakdown of the perturbative

expansion and the expansion would be valid if it is calculated by using the appropriate

assumption, r − a ∼ O(κ/a2). We will discuss this issue again in the subsequent sections.
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3.4 Time-dependent perturbations

In the above, we have focused on static configurations so that the off-diagonal terms

〈T tr〉 (2.18) and 〈T rt〉 (2.20) can be set to zeros by setting k = 0. When k 6= 0 in

eqs. (2.18) and (2.20), the energy-momentum tensor is still time-independent but we need

to consider a time-dependent perturbation of the metric. We can still use eq. (2.5) as the

ansatz for the metric, but ρ1 and F1 are now time-dependent.

It is straightforward to solve the perturbation of the metric when k is turned on. The

k-dependent terms of the energy-momentum tensor are

〈T tt〉 = 〈T rr〉 = 〈T θθ〉 = 〈T φφ〉 = 0, (3.48)

〈T tr〉 =
k

(r − a)2
. (3.49)

The corresponding solution is

ρ1 =
kt

r − a
, (3.50)

F1 =
2k(r − a)t

r2
. (3.51)

For the most general time-independent conserved tensor (2.16)–(2.21) in the

Schwarzschild background, the solution of the metric perturbation is thus a superposition

of the previous result (3.14)–(3.15) for time-independent metric and the time-dependent

part (3.50)–(3.51).

4 General perturbative solution in proper radial coordinate

In this section, we repeat the derivation of the metric perturbation due to a generic energy-

momentum tensor of 4D conformal quantum fields, but in terms of the proper radial coor-

dinate z, which measures the proper distance along the radial direction. We will see that

certain features of the near-horizon geometry which is obscured in the r-coordinate is more

manifest in the z-coordinate.

The ansatz of the metric is eq. (2.7). The 0-th order terms are given by the

Schwarzschild solution:

B0 = r2
0(z), (4.1)

A0 = log

[(
1− a

r0(z)

)
r4

0(z)

]
, (4.2)

where r0(z) is defined through eq. (2.6) by

dr0(z)

dz
=

√
1− a

r0(z)
. (4.3)

This equation is invariant under a shift of z, so we can simply choose z such that z = 0 at

the horizon, i.e. r0(z = 0) = a. The function r0(z) can then be expanded around z = 0 as

r0(z) = a+
z2

4a
− z4

48a3
+

11z6

2880a5
+ · · · . (4.4)
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The 0-th order solutions to B(z) (4.1) and A(z) (4.2) can also be expanded around z = 0 as

B0(z) = a2 +
z2

2
+

z4

48a2
− z6

360a4
+ · · · , (4.5)

A0(z) = log

(
a2z2

4

)
+

2z2

3a2
− 13z4

90a4
+ · · · . (4.6)

To solve the semi-classical Einstein equation (2.1) for the perturbative expansion

B = B0 + κB1 + · · · , (4.7)

A = A0 + κA1 + · · · , (4.8)

we first solve for A′1(z) algebraically in terms of B1(z), q and f(z) from Gzz = κ〈T zz〉.4

One can then use the expression of A′1(z) to turn Gµµ = κ〈Tµµ〉 into an equation for B1(z)

only, and B1(z) can be solved, at least as an expansion of z. In fact, it would be difficult

to solve the first order equations exactly, and hence, we will focus on the behavior around

z = 0 and use the expansions (4.5) and (4.6).

The general solutions to the first order semi-classical Einstein equations are

B1 = 4a2q log

(
z

a

)
+B10 +B11

(
z

a
+

z3

12a3
+ · · ·

)
+
a2

6

[
5q + 3a2f(0)

](z
a

)2

+ · · · , (4.10)

A1 =
B11

a2

(
2a

z
+

4z

3a
+ · · ·

)
+ 8q

[
1− 1

3

(
z

a

)2]
log
(z
a

)
+A10

+
1

9a2

[
−6B10 + 4a2q + 18(c4 + a4) + 3a4f(0)

] (z
a

)2
+ · · · . (4.11)

There are three integration constants A10, B10 and B11 in the general solution for the

first order perturbation. A10 can always be set to 0 by rescaling the time coordinate t.

B10 corresponds to a shift of the Schwarzschild radius a, and thus can be absorbed by a

redefinition of a. B11 corresponds to a shift of the z-coordinate. In the following, we put

B10 = B11 = A10 = 0.

Unless q = 0, we have B1(z) → ±∞ as z → 0, and the perturbation theory is valid

only in the region sufficiently far away from the point z = 0. The near-horizon geometry

can be classified into three categories depending on whether q < 0, q = 0 or q > 0, as we

have seen in the previous section. We consider each case separately in the following.

4.1 Wormhole-like throat (q < 0)

Let us now focus on the case q < 0. We have seen in section 3.2.1 that there is a wormhole-

like throat in this case, i.e. a local minimum of the areal radius r, or equivalently, a local

4Note that 〈T zz〉 = 〈T rr〉, so we can use eq. (3.12) to set

〈T zz(z)〉 =
q

a(r0(z)− a)
+ f(z) (4.9)

for an arbitrary smooth function f(z).
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minimum of B(z). We will see that the perturbative analysis in the z-coordinate for this

case better displays details about the near-horizon geometry. On the other hand, the

perturbative analysis in the r-coordinate in section 3.2.1 has the advantage that the first

order solutions can be obtained without using the expansion in the radial coordinate, and

hence, the integration constants around r = a can be related to those in the asymptotically

flat region.

The throat is located where B ' B0 + κB1 has a vanishing first derivative. The

condition B′(z0) = 0 implies that

z ≡ z0 '
√
−4κa2q + · · · . (4.12)

Clearly, the wormhole throat exists only if q < 0.

Assuming that q < 0, we expand B and A around the neck at z = z0 and find

B(z) ' a2 + κ

[
B10 − 2a2q + 4a2q log

(
z0

a

)]
+ (z − z0)2 +O(κ3/2), (4.13)

A(z) ' log(κq) + κ

[
−8q

3
+ 8q log

(z0

a

)]
+

[
1

a
√
−κq

− 4
√
−κq
3a

]
(z − z0) +O(κ3/2),

(4.14)

for the neighborhood of z = z0 in which

|z − z0| . O(κ1/2). (4.15)

The expansion of A(z) is singular in the limit κa2q → 0 unless the constraint (4.15)

is imposed.

The second term of B(z) (4.13) can always be absorbed in the first term a2 by a

redefinition of a. The expansion of B(z) in powers of (z − z0) is free of the linear term, as

z0 is chosen to be the point of local extremum. Note that the coefficient of the quadratic

term (z − z0)2 is always 1 (up to O(κ) correction) independent of all parameters. We will

see below that this feature persists in the non-perturbative analysis.

The first three terms (the constant part) of A(z) can always be set to 0 by a scaling of

the time-coordinate t. Note that the conformal charges c4, a4 do not appear in eq. (4.13)

nor (4.14). In terms of the radial distance coordiante z, the conformal anomaly has little

effect on the near-horizon geometry when q < 0.

4.2 Event horizon (q = 0)

For the case q = 0, the solution is approximately

B = a2 +
z2

2
+ κ

a2

2
f(0)z2 + · · · , (4.16)

A = 2 log
(az

2

)
+

2z2

3a2
+ κ

[
2(c4 + a4)

a4
+
f(0)

3

]
z2 + · · · (4.17)

according to eqs. (4.5), (4.6), (4.10) and (4.11). Since the first order correction of O(κ)

starts only at O(z2), so the near-horizon geometry is only slightly modified in a small

neighborhood of z = 0. It is essentially the same as the Schwarzschild spacetime. This is in

agreement with the result in section 3.2.2 which was obtained in terms of the r-coordinate.
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4.3 No neck & no horizon (q > 0)

For q > 0, we derive from eqs. (4.5), (4.6), (4.10) and (4.11) the first order perturbation

near the horizon:

B(z) ' a2 +
z2

2
+ 4κa2q log

(z
a

)
+ · · · , (4.18)

A(z) ' 2 log
(az

2

)
+

2z2

3a2
+ 8κq log

(z
a

)
+ · · · . (4.19)

According to these expressions, the areal radius has no local minimum and it vanishes

somewhere around z ∼ ae−1/(4κq), where A(z) ∼ O(1/(κq)) and B(z) ∼ 0 for a2 � κ.

Strictly speaking, the perturbation theory is valid only for

z � ae−1/(4κq), (4.20)

but it shows that the horizon can only exist, if it does exist, in the microscopic range of

the areal radius.

What we have seen in this section is that, in the large-scale geometry, there is no

horizon for both q < 0 and q > 0. The horizon exists only when q is fine-tuned to exactly

0. This result is also compatible with the calculation in the r-coordinate in section 3.2.3.

4.4 Higher order corrections

We have seen that the geometry near the horizon is modified by perturbative corrections.

This happens because the perturbative expansion around the Schwarzschild solution is

calculated by assuming r− a ∼ O(κ0), or equivalently, z ∼ O(κ0), and hence, higher order

terms can be comparable to lower order terms if z is sufficiently small as z2 ∼ O(κ). More

explicitly, perturbative expansion of A(z) and B(z) are expressed as

A(z) = log

(
z2

4a2

)
+

2z2

3a2
+ 8κq log

(z
a

)
+ · · · , (4.21)

B(z) = a2 +
z2

2
+ 4a2κq log

(z
a

)
+ · · · . (4.22)

The first and second terms of the expressions above come from the 0-th order terms of

the perturbative expansion and the third terms are first-order corrections. If z is small as

z2 ∼ O(κ), only the first terms give O(κ0) contributions but both the second and third

terms become of O(κ). For q < 0, the local minimum of B(z) moves to the outside of the

horizon because the second term and third term in eq. (4.22) are comparable in this region.

The structure around the local minimum might be modified if the higher order terms in

eq. (4.22) become comparable to these terms when z2 ∼ O(κ). In the following, we will

calculate the second order corrections and show that they do not modify the structure of

the neck at leading order.

We consider the perturbative expansion to the second order

B = B0 + κB1 + κ2B2 + · · · , (4.23)

A = A0 + κA1 + κ2A2 + · · · . (4.24)
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The general solutions for B2 and A2 are calculated from the second order terms of the

semi-classical Einstein equation as

B2 = B20 − 4a2q2 log z +B21
z

a
+O(z2), (4.25)

A2 =
B21

a2

(
2

z
+

4z

3a

)
− 16q2 (log z)2 +A20 +O(z2). (4.26)

The integration constants A20, B20 and B21 can be set to zero by rescaling the time

coordinate t, shifting the Schwarzschild radius a and shifting the z-coordinates, respectively,

as for those at the first order. Then, for z2 ∼ O(κ), the above expressions have only O(κ0)

terms, which give contributions of O(κ2) to B and A. Therefore, the expressions (4.21)

and (4.22) are sufficient to determine the behavior of A and B up to O(κ2).

In order to see why the perturbative expansion for ρ and F in terms of r-coordinate

is not good for r − a ∼ O(κ), we write the proper radial coordinate z as a function of r.

From eq. (4.22), z2 is expressed as

z2 = 2(r2 − a2)− 4a2κq log

(
r2 − a2

a2

)
− 16a4κ2q2

r2 − a2
log

(
r2 − a2

a2

)
+O(κ3), (4.27)

assuming that r−a ∼ O(κ0). As the expression above is calculated from the first 3 terms in

eq. (4.22), which give O(κ) contributions for z2 ∼ O(κ), all terms in eq. (4.27), including

higher order terms, become O(κ) and comparable. This implies that the perturbative

expansion in terms of r (which is calculated assuming r− a ∼ O(κ0)) does not give a good

expansion for r − a ∼ O(κ), and higher order terms give contributions of the same order.

5 Perturbative solution near Schwarzschild radius

In the previous sections, we have studied perturbations around the Schwarzschild solution.

In general, the first-order correction becomes very large near the Schwarzschild radius

r = a, implying that the perturbative expansion around the Schwarzschild solution is not

good near the Schwarzschild radius. However, the perturbative expansion there is simply

the small-κ expansion for the semi-classical Einstein equation. Assuming that the semi-

classical Einstein equation has a solution for arbitrary κ, the perturbative expansion should

be possible at arbitrary r. This implies that the zero-th order solution in the perturbative

expansion is not given by the Schwarzschild solution near the Schwarzschild radius. In this

section, we focus on the solution near the Schwarzschild radius and study the perturbative

expansion there.

The perturbative expansion around the Schwarzschild solution is valid for

r − a� κ

a
, (5.1)

but it is not good if r is very close to the Schwarzschild radius as

r ∼ a+
κ

a
, (5.2)
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and hence we consider the perturbative expansion in this region. In order to focus on this

region, we introduce the tortoise coordinate x as

dx2 =
dr2

F (r)
= e−ρ(x)dz2, (5.3)

and then, the metric is expressed as

ds2 = −eρ(x)
[
dt2 − dx2

]
+ r2(x)dΩ2. (5.4)

We focus on the geometry near r = a. In eq. (5.1), where the expansion around the

Schwarzschild solution is good, eρ(x) is given by

eρ(x) = 1− a

r(x)
, (5.5)

and approaches to O(κ) as r goes to r = a + O(κ). For the junction condition for the

expansion in (5.1) and that in (5.2), eρ(x) must behave as

eρ(x) = O(κ). (5.6)

Therefore, in (5.2), ρ(x) and r(x) should be expanded as

eρ(x) = κeρ̃0(x)+κρ1(x) + · · · , (5.7)

r(x) = a+ κr1(x) + · · · . (5.8)

We solve the semi-classical Einstein equation, (2.11) and (2.12), in the expansion above

to first order, ρ1(x) and r1(x). The trace part of the energy-momentum tensor is given

by the trace anomaly (2.2), while 〈T xx〉 is given by (2.36). Near the Schwarzschild radius,

they are expressed in terms of the expansion above as

〈Tµµ〉 =
c4

3κ2
e−2ρ̃0(x)ρ̃′′ 20 (x) +O(κ−1), (5.9)

〈T xx〉 =
qe−ρ̃0(x)

κa2
+O(κ0). (5.10)

Here, we assumed that 〈T θθ〉 does not diverge as eρ(x) → 0, and hence, H(x) and G(x) are

of O(κ).

The leading order term of (2.11), which is of O(κ−1), is calculated as

e−ρ̃0(x)ρ̃′′0(x) =
c4

3
e−2ρ̃0(x)ρ̃′′ 20 (x), (5.11)

and a solution is given by

eρ̃0(x) = c̃0e
λ0x, (5.12)

where c0 and λ0 are integration constants. There is another solution which is the solution of

ρ̃′′0(x)− c4e
ρ̃0(x) = 0, (5.13)

which gives large curvature of O(κ−1), and should be excluded as an unphysical solution.
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By substituting the first order solution (5.12), the next-to-leading order terms of the

semi-classical Einstein equation (2.11) and (2.12) give the following differential equations

for ρ1(x) and r1(x):

0 = c̃0e
λ0x + q − aλ0r

′
1(x), (5.14)

0 = −2c̃0e
λ0x + a2ρ′′1(x) + 4ar′′1(x), (5.15)

and they are solved as

ρ1(x) = ρ̄1 + λ1x−
2c̃0e

λ0x

a2λ2
0

, (5.16)

r1(x) = a1 +
c̃0e

λ0x + λ0qx

aλ2
0

, (5.17)

where a1, ρ̄1 and λ1 are integration constants, which can be absorbed by redefinitions of

a, c̃0 and λ0, respectively. The solution to the first order perturbation is obtained as

eρ(x) = κc̃0e
λ0x

(
1− 2κc̃0e

λ0x

a2λ2
0

)
+O(κ3), (5.18)

r(x) = a+ κ
c̃0e

λ0x + λ0qx

aλ2
0

+O(κ2). (5.19)

5.1 Wormhole-like throat (q < 0)

If q < 0, r has a local minimum as we have seen in the previous sections. From eq. (5.19),

the local minimum is located at

x = x0 ≡
1

λ0
log
|q|
c̃0
, (5.20)

and r is expanded as

r(x) ' a+
κq

aλ2
0

(
−1 + log

|q|
c̃0

)
+
κ|q|
2a

(x− x0)2 + · · · . (5.21)

In terms of the proper radial coordinate, B(z) = r2(z) is expanded as

B(z) ' a2 + (z − z0)2 + · · · , (5.22)

where we redefined a again to absorb the O(κ) constant term above. This is consistent

with the result (4.13) in the previous section.

5.2 Event horizon (q = 0)

For q = 0, r is given by

r(x) = a+
κc̃0e

λ0x

aλ2
0

+O(κ2). (5.23)

In this case, r does not have local minimum but approaches to r = a as x→ −∞. The event

horizon is located in the limit x→ −∞ in the tortoise coordinate for classical solution and

hence this behavior is consistent with the event horizon. In the proper radial coordinate,

B(z) = r2(z) is expanded as

B(z) = a2 +
1

2
z2 + · · · , (5.24)

which is also consistent with the result in the previous section, (4.16).
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5.3 No neck & no horizon (q > 0)

For q > 0, (5.19) is a monotonic increasing function and has no local minimum. The areal

radius r can be smaller than a but eρ(x), whose leading order term is given by (5.12),

approaches to zero but never goes to zero, at least in this near-Schwarzschild-radius region.

Therefore, there are no neck or event horizon. In terms of the proper radial coordinate z,

B(z) is expressed as

B(x) = a2 +
1

2
z2 +

4κq

λ2
0

log
λ0z

2
+O(κ2). (5.25)

This is consistent with the result in the previous section if λ0 ∼ a−1.

5.4 Relation to expansion around Schwarzschild metric

In the previous section, we have calculated the perturbative expansion around the

Schwarzschild solution assuming that r − a ∼ O(κ0), and shown that the expression in

terms of the proper radial coordinate z gives a good expansion even for r− a ∼ O(κ). The

second order corrections do not contribute to the leading order terms, which is of O(κ)

of the perturbative expansion for r − a ∼ O(κ), and it is expected that the higher order

terms of the expansion for r − a ∼ O(κ0) would not affect the leading order terms of the

expansion for r − a ∼ O(κ).

The perturbative expansion for r− a ∼ O(κ0) is expressed in terms of z as eqs. (4.21)

and (4.22). The expansions of ρ and r are

ρ(z) = log
(
λ2a2

)
+ log

(
z2

4a2

)
− z2

3a2
+ · · · , (5.26)

r(z) = a+
z2

4a
+ 2aκq log

(z
a

)
+ · · · . (5.27)

Here, we have introduced an additional constant λ which can be absorbed by a redefinition

of the time coordinate t. The proper radial coordinate z is related to the tortoise coordinate

x by (5.3), and the relation can be expressed as

x− x0 '
2

λ
log
(z
a

)
+

z2

6a2λ
. (5.28)

For small z as z2 ∼ O(κ), the constant x0 should behave as x0 ∼ log κ, and hence we write

x0 ≡ −
1

2λ
log (4κĉ0) . (5.29)

Then, z can be expressed as

z

a
= 2(κĉ0)1/2eλx/2

(
1− κĉ0

3
eλx
)
. (5.30)

As a result, ρ and r are rewritten as

eρ(x) = κĉ0e
λx
(

1− 2κĉ0e
λx
)

+O(κ3), (5.31)

r(x) = a+ aκq log(4κĉ0) + κĉ0e
λx + aκqλx+O(κ2). (5.32)

Here, the additional constant aκq log(4κĉ0) can be absorbed by a redefinition of a.
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The expressions above agree with (5.18) and (5.19) if

ĉ0 = c̃0, (5.33)

λ = λ0 =
1

a
. (5.34)

This implies that the perturbative expansions for z2 ∼ O(κ0) (eqs. (4.21) and (4.22)) com-

pletely reproduce the leading order terms of the perturbative expansions for z2 ∼ O(κ), and

hence the higher order corrections to eqs. (4.21) and (4.22) do not contribute to the leading

order terms of the perturbative expansion around the neck. The constant λ is fixed here

since a boundary condition is imposed on the expansion around the Schwarzschild metric.

6 Non-perturbative analysis

In the perturbative analysis, we have seen that the near-horizon region can be classified

into the following three categories: (1) wormhole-like throat: there is a local minimum of

the areal radius, resembling the throat of a traversable wormhole, (2) black-hole horizon:

it is essentially the Schwarzschild event horizon. (3) neither of the above. In this section,

we shall find non-perturbative solutions to the semi-classical Einstein equations. They are

also classified into three categories that are compatible with the perturbative result, while

the non-perturbative solutions also demonstrate new features that are not shown in the

perturbative analysis.

The metric that we will use for the non-perturbative analysis is eq. (2.7), which de-

scribes a generic static, spherically symmetric geometry. For the reader’s convenience, it

is repeated here:

ds2 = − eA(z)

B2(z)
dt2 + dz2 +B(z)dΩ2. (6.1)

We shall solve the functions A(z) and B(z) in a neighborhood of an arbitrary point from

the semi-classical Einstein equation.

As we wish to consider the most general vacuum energy-momentum tensor for a con-

formal matter field, the only constraints on the vacuum energy-momentum tensor are (i)

the anomaly condition (2.2) and (ii) the conservation law (2.10). Similar to the perturba-

tive analysis in section (4), our strategy is to first write down the most general conserved

energy-momentum tensor 〈Tµν〉 compatible with these two constraints, and then solve two

independent semi-classical Einstein equations, e.g.

Gzz = κ〈T zz〉 and Gµµ = κ〈Tµµ〉. (6.2)

While the trace 〈Tµµ〉 is fixed by the anomaly (2.2), the energy-momentum is now uniquely

determined by 〈T zz〉. Equivalently, it is fixed by a constant parameter q together with a

functional degree of freedom that can be attributed to Θ or 〈T θθ〉, as in (2.36) with (2.41)

and (2.42).

With the generic conserved energy-momentum tensor given above, we only need to

solve two of the semi-classical equations (6.2), which are

Gzz = κ(B(z)e−A(z)q + f(z)) (6.3)
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and

Gµµ = κ(c4F + a4G), (6.4)

where f(z) is different from (3.13) but defined by

f(z) ≡ B(z)e−A(z) [H(z) +G(z)] , (6.5)

and H(z) and G(z) are given by (2.41) and (2.42).

By integrating (6.3), A(z) is expressed in term of B(z) as

A(z) = A0 +

∫ z

z0

K(z′)dz′ + log

{
1 + 2κq

∫ z

z0

exp

[
−A0 −

∫ z′

z0

K(z′′)dz′′

]
B2(z′)

B′(z′)
dz′

}
,

(6.6)

where

K(z) =
2

B′(z)
(1 + κf(z)B(z)) +

3B′(z)

2B(z)
, (6.7)

and A0 is the integration constant. Then eq. (6.4) gives the differential equation for B(z).

It is hard to find exact solutions to (6.4), so we shall solve them in a small neighborhood

around a fixed point z = z0. In eq. (6.6), we have used an integral from z0 to z, but it can

be replaced by a different starting point for integration with an appropriate value of A0 In

general, integrands may diverge at z = z0, and then the integration would be defined such

that it has no constant part in its expansion around z = z0.

Since we do not intend to attack the UV problem close to the origin, we shall always

assume that the areal radius r is large in this neighborhood, so that the function B(z)

(which is r2) is finite and much larger than κ. On the other hand, the function A(z) can

be either finite or diverging. (A(z)→ −∞ as z → z0 if there is a horizon at z0.)

6.1 Solving A(z) and B(z)

In a sufficiently small neighborhood of a generic point z = z0 which is not a horizon, we

can expand the functions A(z) and B(z) in power of z as

A(z) = A0 +A1(z − z0) +A2(z − z0)2 +A3(z − z0)3 + · · · , (6.8)

B(z) = B0 +B1(z − z0) +B2(z − z0)2 +B3(z − z0)3 + · · · . (6.9)

Plugging them into the semi-classical Einstein equations (6.3) and (6.4), we find straight-

forwardly the solutions for the coefficients An, Bn:

A1 =
2

B1
+

3B1

2B0
+

2κB0

B1
〈T zz(z0)〉, (6.10)

where 〈T zz(z0)〉 =
[
qz0B0e

−A0 + f(z0)
]
, and

A2 = −B
2
0A

2
1 + 3B2

1 − 2B0(2 +A1B1)

4B2
0

+O(κ), (6.11)

B2 =
B1(−8B0 +B2

0A
2
1 − 3B2

1)

4B0(B0A1 − 3B1)
+O(κ), (6.12)
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A3 =
64B3

0 + 16B2
0B

2
1 − 52B0B

4
1 + 27B6

1

96B3
0B

3
1

+O(κ), (6.13)

B3 =
4B0B1 −B3

1

48B2
0

+O(κ), (6.14)

etc. for arbitrary non-zero constants B0, B1.

Notice that this solution is not unique. There is in fact another class of solutions given

by eq. (6.10) and

A2 =
3(B0A1 − 3B1)2

2κc4B2
0A

2
1

+O(κ0), (6.15)

B2 = −3(B0A1 − 3B1)B1

2κc4B0A2
1

+O(κ0), (6.16)

A3 =
288B2

0B
3
1(4B0 − 3B2

1)2

κ2c2
4(4B0 + 3B2

1)5
+O(κ−1), (6.17)

B3 =
48B3

0B
3
1(4B0 − 9B2

1)(4B0 − 3B2
1)

κ2c2
4(4B0 + 3B2

1)5
+O(κ−1), (6.18)

etc. This solution has a singular limit as κ → 0. The energy-momentum tenor for this

configuration is of the Planck scale, presumably due to the presence of classical conformal

matter, rather than being that of a vacuum state. According to the Buchdahl theorem [33],

any static classical matter configuration with a radius less than 9/8 of the Schwarzschild

radius must suffer divergence in pressure. What we see here is that a regular solution

exists for conformal matter due to quantum effect. The energy density and pressure are

regularized to the Planck scale. The same effect was shown in ref. [22] with the 2D model

for the energy-momentum tensor. It was also obtained in a 4D model [26–32].

We shall focus on the solution (6.10)–(6.14) in the following.

Notice also that eq. (6.10) is singular if either B0 or B1 vanishes. While B0 � κ as

it is the areal radius squared at z = z0, it is possible that B1 vanishes at z = z0, which

means that it is a local minimum of the areal radius.

For the case B1 6= 0, A0 is arbitrary, and all other coefficents are fixed for given A0, B0

and B1 as in eqs. (6.10)–(6.14). For the solutions in which there is neither a horizon nor

a wormhole-like structure, the geometry is given by this solution everywhere in in vacuum

as long as B0 is sufficiently large.

On the other hand, even if B1 6= 0 at z = z0, there may be another point z = z′0 where

B1 vanishes when B(z) is expanded around z′0.

There are thus three classes of solutions. One class of solutions has A(z) diverging at

a certain point z = z0, to be discussed in section 6.3. For the other two classes, A(z) is

finite everywhere, but B(z) either has or has no local minimum. We will focus on the class

of solutions with a local minimum of B(z) in section 6.2.

Regardless of whether B1 vanishes, the tangential pressure at the point z = z0 is

〈Tθθ(0)〉 = O(κ) for the solution (6.10)–(6.14). (Incidentally, 〈Tθθ(0)〉 = O(κ−1) for the

solution eqs. (6.15)–(6.18).)
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6.2 Wormhole-like throat (q < 0)

In this subsection, we focus on the nonperturbative solution to the semi-classical Einstein

equations that has a wormhole-like structure, that is, there is a local minimum of the areal

radius r, and we study the solution in a small neighborhood of the wormhole neck.

If r = a is located in finite proper distance from finite r with r 6= a, B(z) should have

a regular expansion around r = a, as (6.9):

B(z) = a2 +B1 (z − z0) +B2 (z − z0)2 +B3 (z − z0)3 + · · · . (6.19)

Let us assume that B1 = 0, then z = z0 is the local minimum of r, and B(z) is expanded as

B(z) = a2 +B2 (z − z0)2 +B3 (z − z0)3 + · · · , (6.20)

with B2 positive.5 Here, a is nothing but the areal radius of the wormhole neck, to which

we shall refer as the quantum Schwarzschild radius. Then K(z), defined by eq. (6.7),

behaves as

K(z) =
1 + a2κf(z0)

B2

1

z
+ (finite), (6.21)

and hence, the second term in (6.6) has a logarithmic divergence in the limit z → z0. For

q 6= 0, the third term in (6.6) behaves as

log

[
−e−A0

κqa4

1 + a2κf(z0)
z−(1+a2f(z0))/B2 + · · ·

]
, (6.22)

and hence, the logarithmic divergences in the second and third terms in (6.6) cancel. The

integration constant A0 in the expression above is also cancelled with the first term in (6.6),

and A(z) is then expanded as

A(z) = log

[
− κqa4

1 + a2κf(z0)

]
+ · · · , (6.23)

in which the leading order term is real only if q < 0. This implies that the assump-

tion (6.20), or equivalently, the local minimum of r appears only if q < 0. This is consistent

with the results in the previous sections.

Now, we have seen that A(z) and B(z) do not diverge for q < 0 and have regular

expansion as (6.8) and (6.9). Next, we consider (6.8) and (6.9) in more details and calculate

the coefficient. Assuming that the local minimum is located at z = z0, so the expansion of

B(z) (6.9) around this point has B1 = 0. Then eq. (6.10) implies that A1 remains arbitrary,

but A0 and B0 must satisfy the relation

〈T zz(z0)〉 = qz0B0e
−A0 + f(z0) = − 1

κB0
. (6.24)

5To be more precise, B2 can be negative in general, but B2 must be non-negative at the first zero of

B1 as one moves towards the center from distance, since B(z) is an increasing function in the asymptotic

region. The argument here (that A(z) does not diverge) can be generalized to B2 = 0 with Bn > 0 for the

first non-zero Bn with n > 0.
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All other coefficients are fixed for given A0 (orB0) and A1. There are only 2 free parameters,

instead of 3 as the case B1 6= 0 simply because the location z0 of the local minimum of

B(z) is another free parameter.

Let us go through the derivation of the solutions (6.10)–(6.14) and (6.15)–(6.18) for

the special case of the wormhole-like structure in more detail. First, while A1 is a free

parameter, A2 and B2 are solved from the semi-classical Einstein equation as

A2 = Y − A2
1

4
, (6.25)

B2 = a2Y − κ〈Tθθ(z0)〉, (6.26)

where

Y ≡
(
16κa4c4

)−1 {
3a4 + 4a2κ[c4(6κ〈Tθθ(z0)〉 − 2)− 3a4]

±
√

9a8+72κa6(2κc4〈Tθθ(z0)〉−2c4−a4)+48a4a4κ2(4κc4〈Tθθ(z0)〉+4c4+3a4)
}
.

(6.27)

The parameter Y has two solutions for the different choices of the sign in eq. (6.27).

In the κ-expansion, the solution with the − sign is approximately

Y =
1

a2
+ κ

6c4 + 4a4

a4
+O(κ2). (6.28)

The solution with the + sign is approximately

Y =
3

8κc4
− 4c4 + 3a4

2a2c4
+O(κ2), (6.29)

which blows up in the limit κ → 0. This means that the energy-momentum tensor is not

that of the vacuum of the conformal field. The same comments below eq. (6.18) apply here.

Demanding that the solution has a classical limit, we should take the first solu-

tion (6.28) of Y . Then

B2 = 1 + κ
6c4 + 4a4

a2
− κ〈Tθθ(z0)〉+O(κ2). (6.30)

When the conformal charges c4, a4 vanish, in the absence of the pressure 〈Tθθ(z0)〉, this

expression reproduces the result B2 = 1 of the Schwarzschild solution. (But there is no

neck in the Schwarzschild solution at z = z0 because it coincides with the horizon.) For a

large black hole, since κ is very small, B2 is positive unless 〈Tθθ(z0)〉 & O(κ−1), and there

is a local minimum of the areal radius at z = z0.

Next we can solve the coefficients A3 and B3. They are

A3 = − 2
[
3a2

(
−3a2 + 8κc4 + 16κa2c4Y − 24κ2c4〈Tθθ(z0)〉+ 12κa4

)]−1[
3

8
a4A3

1 − 2κa4c4A
3
1Y + 6κa4a4A1Y

2 − κa2c4A
3
1 −

3

2
κa2a4A

3
1 −

3

2
κa2A1〈Tθθ(z0)〉

+ 3κ2a2c4A
3
1〈Tθθ(z0)〉+ 8κ2a2c4A1〈Tθθ(z0)〉Y − 12κ2a2a4A1〈Tθθ(z0)〉Y
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+ 4κ2c4A1〈Tθθ(z0)〉 − 6κ2c4〈T ′θθ(z0)〉+ 6κ2a4A1〈Tθθ(z0)〉 − 12κ2a4〈T ′θθ(z0)〉

− 12κ2a2c4Y 〈T ′θθ(z0)〉 − 12κ3c4A1〈Tθθ(z0)〉2 + 6κ3a4A1〈Tθθ(z0)〉2

+ 18κ3c4〈Tθθ(z0)〉〈T ′θθ(z0)〉
]

' 1

12
A3

1 +
κ

24
A1

[
32a4Y

2 − 〈Tθθ(z0)〉
a2

]
+O(κ2), (6.31)

B3 = −
[
3
(
−3a2 + κ(8c4 + 12a4 + 16a2c4Y )− 24κ2c4〈Tθθ(z0)〉

)]−1[
−3

2
a4A1Y + 8κa4c4A1Y

2 + 12κa4a4A1Y
2 + 4κa2c4A1Y +

3

2
κa2A1〈Tθθ(z0)〉

−3κa2〈T ′θθ(z0)〉+ 6κa2a4A1Y − 24κ2a2a4A1〈Tθθ(z0)〉Y

− 20κ2a2c4A1〈Tθθ(z0)〉Y − 4κ2c4〈T ′θθ(z0)〉 − 8κ2a2c4Y 〈T ′θθ(z0)〉

− 6κ2a4A1〈Tθθ(z0)〉 − 12κ2a4〈T ′θθ(z0)〉+ κ312c4A1〈Tθθ(z0)〉2

− 4κ2c4A1〈Tθθ(z0)〉+ 12κ3c4〈Tθθ(z0)〉〈T ′θθ(z0)〉+ 12κ3a4A1〈Tθθ(z0)〉2
]

' − A1

6
− κ

3

[
A1(3c4 − 2a4)− 1

2
A1〈Tθθ(z0)〉+ 〈T ′θθ(z0)〉

]
+O(κ2). (6.32)

In the last line of the expressions of A3 and B3, we have used the value of Y in eq. (6.28).

Plugging these back into A(z) and B(z), we get

A(z) = A0 +A1z +

(
1

a2
− 1

4
A2

1

)
z2 +

A3
1

12
z3 +O(z4)

+ κ

[
2(3c4 + 2a4)

a4
z2 +

A1

(
4a4 − a2〈Tθθ(z0)〉

)
3a4

z3 +O(z4)

]
+O(κ2), (6.33)

B(z) = a2 + z2 − A1

6
z3 +O(z4)

+ κ

[
2(3c4 + 2a4)

a2
z2 −

2(3c4 − 2a4)A1 −A1〈Tθθ(z0)〉+ 2〈T ′θθ(z0)〉
6

z3 +O(z4)

]
+O(κ2). (6.34)

For given Weyl anomaly (given c4 and a4) and given tangential pressure at the neck

〈Tθθ(z0)〉, these solutions are parametrized by 3 parameters: a, A1 and z0. However, this

solution around the neck should be continuously connected to the asymptotic Schwarzschild

solution at large distances. We expect that once the classical Schwarzschild radius a0 is

fixed, only two parametric constants remain independent, corresponding to the freedom in

specifying the parameter qz0 and the tangential pressure at the neck 〈Tθθ(z0)〉.

6.3 Event horizon (q = 0)

In this subsection, we consider the class of solutions with even horizons. For q = 0, the

third term in (6.6) vanishes. As is discussed in section 6.2, for the expansion (6.20), A(z)
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has the logarithmic divergence at z = z0 and is expanded as

A(z) = A0 +
1 + a2κf(z0)

B2

1

z − z0
+ · · · . (6.35)

This implies that there is the event horizon at z = z0. The coefficients in the expansion of

B(z) are determined by (6.4) and calculated, for example, as

B2 =
1

2

(
1 + a2κf(z0)

)
, (6.36)

B3 =
a2

3
f ′(z0). (6.37)

Hence A(z) and B(z) are expanded as

A(z) = A0 + 2 log (z − z0) +O
(

(z − z0)2
)
, (6.38)

B(z) = a2 +
1

2

(
1 + a2κf(z0)

)
(z − z0)2 +O

(
(z − z0)3

)
. (6.39)

This is consistent with the results (4.16) and (5.24) in the previous sections.

In a small neighborhood of the horizon, we take the ansatz

A(z) = A0 + 2d0 log(z + d1z
2 + d2z

3 + d3z
4 + · · · ), (6.40)

B(z) = a2 +B1z +B2z
2 +B3z

3 +B4z
4 + · · · , (6.41)

where we have shifted the z-coordinate such that the horizon is located at z = 0 and we

can also scale the t-coordinate to set A0 = 0.

The semi-classical Einstein equations (6.3), (6.4) are solved order by order in the z-

expansion. We find

d0 = 1, (6.42)

B1 = 0, (6.43)

d1 = 0, (6.44)

B2 =
a2

8κ(4c4 + 3a4)

[
3− 4κ(2c4 + 3a4)

a2
+

8κ2c4〈Tθθ(0)〉
a2

±
√

3

a2

(
3a4 − 48κa2(c4 + a4) + 48κ2((c4 + a4)a4 + a2c4〈Tθθ(0)〉)

+ 24κ2a2a4〈Tθθ(0)〉+ 96κ3(c4 + a4)c〈Tθθ(0)〉 − 16κ4c4a4〈Tθθ(0)〉2
)1/2

]
, (6.45)

d2 =
4B2 + κ〈Tθθ(0)〉

6a2
. (6.46)

The choice of the plus sign in the solution of B2 gives

B2 =
1

2
+ κ

(
3(c4 + a4)

a2
− 〈Tθθ〉

2

)
+O(κ2). (6.47)

The choice of the minus sign gives a result

B2 =
3a2

4κ(4c4 + 3a4)
− 8c4 + 9a4

8c4 + 6a4
+O(κ) (6.48)
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that diverges as κ → 0. The latter case clearly does not correspond to a vacuum state.

The same comments below eq. (6.18) apply here.

With B2 given by the solution with a finite value in the limit κ→∞, we find

B3 = −2κ

9
〈T ′θθ(0)〉+O(κ2),

d3 = − κ

18a2
〈T ′θθ(0)〉+O(κ2). (6.49)

Since B1 = 0 and B2 > 0, the function B(z) also has a local extremum at z = 0. But

since eA(z) vanishes at z = 0, it is a horizon and the solution does not apply to the range

z < 0. Hence it is in fact not really a local minimum.

For a given Weyl anomaly (given c4 and a4) and a given 〈Tθθ(0)〉, these solutions are

parametrized by the quantum Schwarzschild radius a and the location of the horizon. When

the solution is identified as part of a global solution which asymptotes to the Schwarzschild

solution at large distances with a given classical Schwarzschild radius, there is only a single

independent parameter, corresponding to the choice of the tangential pressure 〈Tθθ(0)〉.
This is compatible with the perturbative analysis, where it has been shown that the

existence of the horizon demands a fine-tuning of a parameter qz0 to qz0 = 0 exactly. Hence

the number of parameters for the solutions with a horizon is one fewer than the other two

classes of solutions.

6.4 No neck & no horizon (q > 0)

As we discussed in section 6.2, the expansion (6.20) for q > 0 gives complex A(z) at z = z0.

Since A(z) must be real, this implies that r has no local minimum in this case. Hence B1

must be non-zero for q > 0, and K(z) and A(z) have regular expansions only with positive

powers of z and thus there is no horizon.

7 Conclusion

We find in this paper that the event horizon of the Schwarzschild solution can be removed

by the back reaction of quantum energy. Depending on the quantum state, more precisely,

depending on the parameter q in 〈T rr〉 (3.12), the near-horizon region can resemble a

wormhole throat for q < 0, or it has a horizon for q = 0, or it has neither a throat nor a

horizon for q > 0. Notice that the horizon persists only if the parameter q is fine-tuned to

exactly zero. The black hole is horizonless as long as q is not exactly zero. For definiteness,

we have focused on 4D conformal matter fields so that the trace 〈Tµµ〉 is uniquely fixed.

But it should be clear from our calculation that, for a wide class of models, one would

reach the same conclusion about the necessity of fine-tuning for horizon.

It is interesting to ask whether the parameter q is always driven to vanish for a generic

gravitational collapse. In the conventional model of black holes, the answer is proposed to

be affirmative. But it is merely a folklore in the absence of a thorough study of gravitational

collapses. On the other hand, in view of the fuzzball scenario [6–10] or the firewall pro-

posal [11–13], the answer could be negative. A support for the negative answer also comes

from 2D models. For the 2D model of vacuum energy used in ref. [15], the wormhole-like
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structure is observed to appear in a generic gravitational collapse in both analytical [24]

and numerical studies [23].

Although we have only focused on static configurations in this paper. The quantum

vacuum state outside the collapsing matter for an astronomical black hole is expected to

change very slowly over time. The static solution should serve as a good approximation

of this time-dependent process. It will therefore be very interesting to see how different

models of evaporating black holes are connected to different solutions in this paper. For

instance, a 4D self-consistent model which considers both the formation and evaporation

processes [26–31] was shown to be compatible with 4D conformal anomaly [32], so it can

be viewed as approximate time-dependent solutions corresponding to some of the solutions

in this paper. As it does not have a horizon nor a wormhole-like throat, but it has a

Planck-scale tangential pressure, the model is most likely related to the class of solutions

given in eqs. (6.10), (6.15)–(6.18).
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