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1 Introduction

A local excitation of a quantum chaotic system spreads out over the entire system. This

delocalization of the quantum information is called “scrambling”. It has been believed

that the scrambling is related to the quantum chaos or the butterfly effect: initially similar

states evolves completely different state at the late time. The scrambling behaviour in

strongly coupled systems attracts much attention in the context of black hole physics or

AdS/CFT correspondence [1–3].

It has been conjectured that “Back holes are the fastest scramblers in nature” [4].

They demonstrated the delocalization of local information on a black hole horizon and

estimated its time scale as t∗ ∼ β lnS where β is the inverse Hawking temperature and S

is the Beckenstein-Hawking entropy. This time scale is much quicker than that for usual

quantum many body systems. In ref. [5], using the AdS/CFT correspondence, they devel-

oped a formulation to quantify the scrambling in more concrete way. (See also refs. [6–14])

They found that the scrambling behaviour can be read out from the mutual information

or correlation function between two boundaries of an eternal AdS black hole. Especially,

the correlation function relates to the out-of-time-order correlator (OTOC). In ref. [15],

it has been proposed that the OTOC can be a measure of the quantum chaos and define

the “quantum Lyapunov exponent” from the OTOC. It has also been conjectured that the
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Figure 1. (a) String profile of the holographic EPR pair for a fixed time slice. It is given

by the semicircle whose radius is time-dependent. Endpoints of the string corresponds to the

quark and antiquark. (b) Spacetime structure of the string worldsheet. Two time-like boundaries

correspond to the quark and antiquark. They are causally disconnected but connected by the

Einstein-Rosen bridge.

Lyapunov exponent is bounded by the temperature: λL ≤ 2π/β. Since the holographic

calculation suggests that the “Lyapunov exponent” saturates the bound λL = 2πT , the sat-

uration of the bound is regarded as a sufficient condition that the field theory has its gravity

dual. The Sachdev-Ye-Kitaev model [16, 17], a quantum mechanics of Majorana fermions

with all to all interactions, is one of the examples which saturate the bound. This model is

expected to describes a “quantum” black hole and, thus, actively studied in recent years.

We propose one of the simplest models which exhibits the fast scrambling: holographic

Einstein-Podolsky-Rosen (EPR) pair [18, 19]. The conventional EPR pair is composed of

two entangled electrons. In the holographic EPR pair, on the other hand, the quark and

antiquark in N = 4 super Yang-Mills theory (SYM) are considered. They are dual to

a fundamental string hanging from the AdS boundary. The string endpoints correspond

to the quark and antiquark. Endpoints are uniformly accelerated in opposite direction.

Figure 1a shows the string profile of the holographic EPR pair. The spacetime structure

of the string worldsheet is shown in figure 1b. From the figure, it is clear that the quark

and antiquark are causally disconnected but connected by a non-traversable Einstein-Rosen

bridge. Such a eternal black hole spacetime is identified with strongly entangled state of two

copy of CFTs [20, 21]. Left and right quarks are causally disconnected but entangled. That

is reason why the accelerating quark-antiquark pair is called the holographic EPR pair. In

fact, ref. [22] showed the violation of the Bell inequality for the holographic EPR pair.

We give a tiny perturbation to the antiquark (left CFT) following the idea of ref. [5].

If the system exhibit chaos, the quantum state of the antiquark is scrambled by the per-

turbation and, as the result, the subtle relation between quark and antiquark is destroyed.

We measure the strength of the entanglement by the correlation function between quark

and antiquark, which is equivalent to the OTOC. We will see that the proper time scale of

the decay of the correlation is given by τ∗ ∼ β lnS where β is the inverse Unruh tempera-

ture and S is the thermal entropy of the quark and gluons surrounding it. The Lyapunov
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exponent read from the OTOC saturates the bound as λL = 2π/β. The dual picture of

the EPR pair is the probe string in the fixed background. In that sense, the dual theory is

not Einstein gravity. Nevertheless, we can see the fast scrambling.

The organization of this paper is as follows. In section 2, we introduce the holographic

EPR pair as a solution in wide class of time dependant string solutions. We also see that

the spacetime structure of the string worldsheet is same as an eternal AdS black hole. In

section 3, we explicitly construct the string solution with a perturbation. Here, we consider

the tiny change of the acceleration as the perturbation. The geodesic distance between two

endpoints of the perturbed string along the worldsheet is computed. In section 4, we

compute the correlation function between the quark and antiquark. It decays quickly and

we find the fast scrambling result. We also evaluate the Lyapunov exponent and find

that it saturates the bound in ref. [15]. The effect of the decreased acceleration is also

considered. It changes the causal structure of the worldsheet drastically and creates the

“one-way traversable wormhole”. We see the divergence of the correlation in this case. In

section 5, we consider the “undo” of the change of the acceleration: first we change the

acceleration as a → a′ and, after a while, return it to a original value as a′ → a. We find

that, even for this case, the EPR pair exhibits the fast scrambling. The final section is

devoted to conclusion.

2 Holographic EPR pair

2.1 Exact solution for time dependant open strings

We consider string dynamics in Poincare AdS5 spacetime:

ds2 =
ℓ2

z2
(−dt2 + dz2 + dx2 + dy21 + dy22) , (2.1)

where ℓ is the AdS radius. We will take the unit of ℓ = 1 hereafter. For simplicity, we will

focus only on the string dynamics in the subspace spanned by (t, z, x) although taking into

account the dynamics in (y1, y2) is straight forward. The string dynamics is described by

the Nambu-Goto action:

SNG = − 1

2πα′

∫

d2σ
√
−h , (2.2)

where h is the determinant of the string induced metric. In ref. [23], it has been shown

that equations of motion for the string are solved by

t =
ḟt(τ)

σ
+ ft(τ) , x =

ḟx(τ)

σ
+ fx(τ) , z =

1

σ
. (2.3)

We parametrized the string worldsheet by (τ, σ). Here, ft(τ) and fx(τ) are free functions

satisfying

− ḟ2
t + ḟ2

x = −1 . (2.4)

The AdS boundary corresponds to σ = ∞. The condition (2.4) implies that the worldsheet

coordinate τ represents the proper time of the string endpoint. The string induced metric

for eq. (2.3) is given by

ds2h = −[σ2 −M(τ)]dτ2 + 2dτdσ , (2.5)

– 3 –



J
H
E
P
1
1
(
2
0
1
7
)
0
4
9

where we define

M(τ) ≡ −f̈2
t + f̈2

x =
f̈2
x

1 + ḟ2
x

. (2.6)

This is the square of the acceleration of string endpoint. The metric (2.5) represents the

two dimensional part of Vaidya-BTZ spacetime.

2.2 Holographic EPR pair

In refs. [24, 25], it has been realized that the holographic EPR pair solution is obtained as

a special case of eq. (2.3):

ft(τ) =
1

a
sinh aτ , fx(τ) = −1

a
cosh aτ . (2.7)

They satisfies eq. (2.4) and M(τ) = a2. The string endpoint has a constant proper accel-

eration a. For this solution, we can check the relation1

x2 + z2 = t2 +
1

a2
. (2.8)

For fixed t-slice, the string profile is semi-circle whose radius is given by
√
t2 + a−2.

Figure 1a shows string profile in (x, z)-plane for fixed t. We will regard the endpoints

at x > 0 and x < 0 as the quark and antiquark, respectively. Our worldsheet coordinates

(τ, σ) only cover the part of the semicircle shown by red curve. We need an analytic contin-

uation of the solution to cover the whole semicircle. For the analytically continuation, we

focus on the induced metric of the holographic EPR pair, which represents a static black

hole spacetime in ingoing Eddington-Finkelstein coordinates:

ds2h = −[σ2 − a2]dτ2 + 2dτdσ . (2.9)

For the maximal extension of the spacetime, we define null coordinates (U, V ) as

U = eaτ , V = −σ − a

σ + a
e−aτ ⇐⇒ τ =

1

a
lnU , σ = a

1− UV

1 + UV
. (2.10)

In terms of (U, V )-coordinates, the induced metric becomes

ds2h = − 4dUdV

(1 + UV )2
. (2.11)

This is nothing but AdS2 spacetime. The EPR string solution is written as

t =
1

a

U + V

1− UV
, x = −1

a

U − V

1− UV
, z =

1

a

1 + UV

1− UV
. (2.12)

The (U, V )-coordinates cover the whole semicircle including light blue curve shown in

figure 1a.

1The AdS geometry (2.1) has an isometry: t′ = 2ℓa−1t/ξ, x′ = ℓ(−t2+x2+z2−a−2)/ξ and z′ = 2ℓa−1z/ξ

where ξ = −t2 + (x− a−1)2 + z2. The EPR string solution is obtained by the coordinate transformation of

a straight string sitting at x′ = 0.
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Figure 1b shows the spacetime structure of the string worldsheet. The (τ,σ)-coordinates

cover only the top-left of the full spacetime. While the induced metric is regular at σ = 0

(UV = 1), the string solution (2.3) diverges at σ = 0 in general. The “singularity” σ = 0

corresponds to the Poincaré horizon of the background AdS5 spacetime. Once we take the

global coordinates for the target spacetime, we can eliminate the coordinate singularity

and extend the solution into σ < 0. In this paper, however, we focus only on the Poincaré

patch of AdS5 and regard σ = a as the event horizon of the string worldsheet.2

From figure 1a, it is clear that the left and right boundaries are connected by a non-

traversable wormhole: there are two copy of causally disconnected CFTs. Such a spacetime

is identified with the thermofield double state [20, 21]:

|Ψ〉 = 1√
Z

∑

n

e−βEn/2|n〉L|n〉R , (2.13)

where En is the energy eigenvalue and |n〉L,R is its eigenstate in left and right CFTs. In

terms of the thermofield double state, the expectation value of an operator OR in the right

CFT is equivalent to the thermal expectation value: 〈Ψ|OR|Ψ〉 = Z−1tr[e−βHROR] where

HR is the Hamiltonian of the right CFT. The thermal density matrix ∼ e−βHR originates

from the entanglement of the left and right CFTs. In the view of the thermofield double

state, the back hole entropy is obtained from the entanglement entropy.

2.3 Thermodynamical variables

It is known that an accelerating point particle appears to be in a heat bath at the Unruh

temperature [26]:

T = β−1 =
a

2π
. (2.14)

This coincides with the Hawking temperature obtained from the string induced metric (2.9).

It has also been confirmed that the quark and antiquark have the thermal entropy and

energy:

S =

√
λ

3
, E =

4

3

√
λT . (2.15)

See the Supplemental Material of ref. [19] or refs. [27, 28] for the derivation of above

expressions. To obtain above expressions, we change target space coordinates in which the

holographic EPR pair seems static. From the onshell action of the string in the coordinate

system, entropy and energy can be computed. The energy is not accompanied by the

translation of t in eq. (2.1) but by time translation in other coordinate system.

How do quarks gain non-zero thermal entropy? This is not a property of free SYM.

In the strongly coupled SYM plasma, a quark attracts gluons and form a cloud of gluons

around it [19]. The cloud of gluons generates the non-zero entropy. In that sense, quarks

in SYM should be regarded as quasiparticles.

2This would be justified if we consider an AdS black holes with an infinitesimal mass as the target

spacetime.
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3 Holographic EPR pair with a shock

3.1 Perturbed holographic EPR string

Since we know wide class of the exact solutions (2.3), we can give a perturbation by an

analytic way as studied in ref. [29]. As the perturbation, we consider tiny change of the

acceleration for the quark at τ = τ0:

ft(τ) =

{

1
a sinh aτ (τ ≤ τ0)
1
a′ sinh[a

′τ + c1] + c2 (τ > τ0)
,

−fx(τ) =

{

1
a cosh aτ (τ ≤ τ0)
1
a′ cosh[a

′τ + c1] + c′2 (τ > τ0)
,

(3.1)

where c1, c2 and c′2 are constants. From continuity of above functions and their derivatives,

these constants are chosen as

c1 = −(a′ − a)τ0 , c2 =

(

1

a
− 1

a′

)

sinh aτ0 , c′2 =

(

1

a
− 1

a′

)

cosh aτ0 . (3.2)

They are C1-functions and their second derivatives are discontinuous. One can also check

that −ḟ2
t + ḟ2

x = −1 is satisfied. Substituting above expressions into eq. (2.6), we have

M(τ) = a2 + (a′2 − a2)θ(τ − τ0) . (3.3)

Then, the induced metric becomes 2d part of the Vaidya-BTZ spacetime with the ingoing

shock. We will refer the null surface τ = τ0 as the shock surface.

Note that δa = a′ − a can be both positive and negative in our setup because it is just

a deviation of the acceleration caused by an external force. On the other hand, in case of

Vaidya spacetime, we cannot reduce the black hole mass unless we consider “unphysical”

matter which violates the null energy condition. For a while, we will focus on the case of

δa > 0. In section 4.3, we will consider the case of δa < 0.

Figure 2 shows the time evolution of the perturbed string. Since ḟt and ḟx have kinks

at τ = τ0, the string profile specified by eq. (2.3) also have a kink. As the parameter for

this figure, we took τ0 = −14.51, a = 1 and a′ = a + 10−6. Especially, the change of the

acceleration is really tiny: δa = 10−6. Nevertheless, it causes a significant change in the

profile of the string around at t = 0. This is a string realization of the phenomena found in

BTZ black hole [5]: the early infalling quanta can create a strong shock wave by the effect

of the blue shift at the white hole horizon.

Before the shock τ ≤ τ0, we use (U, V )-coordinates defined in eq. (2.10). After the

shock, we have M(τ) = a′2. We introduce the other double null coordinates (U ′, V ′) as

U ′ = ea
′τ , V ′ = −σ − a′

σ + a′
e−a′τ ⇐⇒ τ =

1

a′
lnU ′ , σ = a′

1− U ′V ′

1 + U ′V ′
. (3.4)

In terms of (U ′, V ′)-coordinates, the string solution is written as

t =
δa

aa′
sinh aτ0 +

1

a′
U ′e−δaτ0 + V ′eδaτ0

1− U ′V ′
,

x = − δa

aa′
cosh aτ0 −

1

a′
U ′e−δaτ0 − V ′eδaτ0

1− U ′V ′
, z =

1

a′
1 + U ′V ′

1− U ′V ′
,

(3.5)

where δa = a′ − a.

– 6 –
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Figure 2. Time evolution of the string profile for several fixed time slices. Parameters are set as

τ0 = −14.51, a = 1 and a′ = a + 10−6. Horizontal and vertical axes are proportional to x and z

coordinates. They are normalized by
√
t2 + a−2 to make the unperturbed string static.

Since coordinate (U, V ) and (U ′, V ′) are defined individually in τ ≤ τ0 and τ > τ0, we

need to determine the matching condition for (U, V ) and (U ′, V ′) at the shock surface. In

(U, V )- and (U ′, V ′)-coordinates, the shock surface is written as U = eaτ0 and U ′ = ea
′τ0

respectively. Since the coordinates (τ, σ) are common in eqs. (3.4) and (2.10), we can

obtain the matching condition for V and V ′ as

a
1− UV

1 + UV

∣

∣

∣

∣

τ=τ0

= a′
1− U ′V ′

1 + U ′V ′

∣

∣

∣

∣

τ=τ0

. (3.6)

Solving the equation with respect to V ′, we have

V ′ =
δa+ (a+ a′) eaτ0 V

δa eaτ0 V + (a+ a′)
e−a′τ0 . (3.7)

As mentioned in ref. [5], the matching condition becomes simple in the double scaling limit:

δa → 0 , τ0 → −∞ , γ ≡ δa

2a
e−aτ0 : fixed . (3.8)

In this limit, the matching condition is written as

V ′ = V + γ , (3.9)

and the shock surface is given by U = U ′ = 0. Figure 3 shows the causal structure of the

induced metric of the perturbed EPR string in the limit of eq. (3.8).

– 7 –
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Figure 3. Spacetime structure of the perturbed string worldsheet. There is the shift γ in origins

of (U, V )- and (U ′, V ′)-coordinates.

3.2 Geodesic distance

For the purpose of estimating the correlator between quark and antiquark in next section,

we compute the geodesic distance between points in left and right boundaries of the world-

sheet. We take the double scaling limit (3.8) to simplify following expressions. In figure 3,

we show the schematic picture of the geodesic between points L: (U ′
L, V

′
L) and R: (UR, VR).

The shock surface is located at U = U ′ = 0. Geodesics in left and right region connect at

the point M: (0, VM ) which is on the shock surface. To regularize the distance, we put A

and B slightly inside of AdS boundaries. The induced metric of the perturbed EPR string

is locally AdS2 for U 6= 0. Thus, we can embed the geometry of the string worldsheet in

R
2,1 for U < 0 and U > 0 respectively. For U < 0, we define the coordinates of R2,1 as

T1 =
V + U

1 + UV
, T2 =

1− UV

1 + UV
, X1 =

V − U

1 + UV
, (3.10)

One can check −T 2
1 −T 2

2 +X2
1 = −1 and ds2 = −dT 2

1 − dT 2
2 + dX2

1 = −4dUdV/(1+UV )2.

For U > 0, we also define (T ′
1, T

′
2, X

′
1) priming all variables in eq. (3.10). In terms of

(T1, T2, X1), the geodesic distance dRM between R and M is simply written as

cosh dRM = T1(R)T1(M) + T2(R)T2(M)−X1(R)X1(M) . (3.11)

From (T1, T2, X1)|M = (VM , 1, VM ), we have

cosh dRM =
1− URVR + 2URVM

1 + URVR
=

1

az
+

(

1

az
+ 1

)

URVM . (3.12)

At the second equality, we eliminate VR using last expression in eq. (2.12) and, thus, z

appears in this expression. By the same way, the geodesic distance between L and M is

cosh dLM =
1

az
+

(

1

az
+ 1

)

U ′
L(VM + γ) . (3.13)

– 8 –
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Figure 4. String worldsheets and geodesics between boundaries at τR = 0 and τL = 0 for a = 1

and a′ = a + 10−6. The proper times for the shock surface τ0 is chosen so that γ = 1, 2 and 3 in

figures (a), (b) and (c), respectively.

Minimizing d = dLM + dRM with respect to VM , we obtain

d = 2 ln

(

2

az

)

+ ln

[

−(U ′
L − UR − γU ′

LUR)
2

4U ′
LUR

]

+O(z) . (3.14)

At AdS boundaries, UR and U ′
L relate to proper times τR and τL of quark and antiquark as

UR = −e−aτR , U ′
L = eaτL . (3.15)

Therefore, we obtain

dreg = 2 ln
[

cosh
{a

2
(τL + τR)

}

+
γ

2
exp

{a

2
(τL − τR)

}]

. (3.16)

where dreg ≡ [d − 2 ln(2/az)]z=0. The distance becomes longer as γ increases. Figure 4

shows the geodesic for γ = 1, 2, 3 in the target space coordinates (t, x, z). We can see how

the geodesic distance becomes large as γ increases from this figure. We take the proper

times as τR = τL = 0. Without the perturbation, origins of the proper times are chosen

so that t|τR=0 = t|τL=0 = 0. However, because of the effect of the perturbation, the an-

tiquark is slightly accelerated and has time shift. Thus, we have t|τL=0 < 0 in the figure.

The geodesic is stretched between the quark and antiquark along the “waist” of the string

worldsheet. As γ increases, the effect of the perturbation becomes significant and the waist

becomes thicker. In next section, we will find that this can be regarded as a visualization

of the decay of the correlation between the quark and antiquark.

4 Fast scrambling

4.1 Correlation function

As the measure of the entanglement between quark and antiquark, we consider the corre-

lation function of forces acting on quark and antiquark. The mutual information can be

another measure, which is computed from the entanglement entropy. However, the holo-

graphic estimation of the entanglement entropy is unclear for the dynamical probe string.

So, we only focus on the correlation function in this paper. Since we gave a perturbation

– 9 –
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on the holographic EPR pair, the background thermofield double state (2.13) would be

changed as |Ψ〉 → WL(τ0)|Ψ〉 where WL(τ0) is the operation of the tiny change of the ac-

celeration of the antiquark at the proper time τ = τ0. Therefore, the correlation function

between quark and antiquark would be written as

〈FL(0)FR(0)〉W ∼ 〈Ψ|W †
L(τ0)FL(0)FR(0)WL(τ0)|Ψ〉 . (4.1)

Hereafter, we will sometimes omit arguments of operators for τ = 0, e.g. FL(0) = FL.

The conjugate bulk field for the force is x(τ, σ) [30, 31]. This is a massless degree

of freedom. Differentiating the on-shell action of the string with respect to the boundary

value, we can compute the two point functions. Here, instead of following the traditional

way, we use the geodesic approximation to estimate the two point function:

〈FLFR〉W ∼ e−∆d . (4.2)

where ∆ is the conformal weight and d is the geodesic distance between AdS boundaries.

This approximation is effective for large ∆. The conformal weight for the string perturba-

tion x(τ, σ) is ∆ = 1. We will use the geodesic approximation just as a rough estimation

of the correlator.3 To obtain massive fields (∆ ≫ 1), we can consider the Dp-brane in

AdS5 × S5 instead of the F-string. Wrapping a subspace of S5 in the (p− 1)-dimensional

part of the D-brane, we obtain a “string” in AdS5. We have a tower of massive fields on the

D-brane as Kalza-Klein modes.4 Substituting eq. (3.16) into above expression, we obtain

〈FLFR〉W ∼
(

1 +
γ

2

)−2
=

(

1 +
δa

4a
ea|τ0|

)−2

. (4.3)

Note that τ0 takes large negative value because of the limit (3.8). We show the typical time

dependence of the correlation for δa > 0 in figure 5a. (We will discuss the case of δa < 0

in section 4.3.) The effect of the perturbation becomes significant for |τ0| > τ∗ where τ∗ is

the scrambling time:

τ∗ ∼
1

a
ln
( a

δa

)

. (4.4)

From eq. (2.14) and the second equation of eq. (2.15), we have a ∝ E. Thus, we obtain

δa/a = δE/E. From eq. (2.15), we also obtain E ∼ S/β. Therefore, the scrambling time

is rewritten as

τ∗ ∼
β

2π
ln

(

S

βδE

)

. (4.5)

If we assume βδE = O(1), we obtain τ∗ ∼ β/(2π) lnS. The holographic EPR pair is a fast

scrambler.

As mentioned in ref. [33], the correlation function (4.1) relates to the out-of-time-order

correlator (OTOC) introduced in refs. [15, 34] as followings. For an operator O, we define

3For the pure AdS spacetime, the geodesic approximations give exact results for any ∆ [32].
4We thank Tadashi Takayanagi for suggesting this idea.
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(a) δa > 0 (b) δa < 0

Figure 5. Correlation function for δa > 0 and δa < 0.

the OL = O⊗ 1 and OR = 1⊗OT . Substituting the explicit expression of the thermofield

double state (2.13), we rewrite the correlation function (4.1) as

〈Ψ|W †
L(τ0)FLFRWL(τ0)|Ψ〉

= Z−1
∑

n

〈n|e−βH/2Fe−βH/2W †(τ0)F W (τ0)|n〉

= 〈W †(τ0)F (0)W (τ0)F (iβ/2)〉β .

(4.6)

where 〈· · · 〉β ≡ Z−1tr[e−βH · · · ]. The correlation function relates to the OTOC. From

eq. (4.3), the OTOC behaves at early time as ∼ 1− δa/(4a)ea|τ0| Therefore, the Lyapunov

exponent for the accelerated quark is

λL = a =
2π

β
. (4.7)

This saturates the bound in ref. [15].

4.2 Correlation in the laboratory frame

So far, we took the proper time of the quarks to express the correlation. There is the other

natural time coordinate: the target space time coordinate t which would be regarded as

the laboratory frame. In the limit of eq. (3.8), the relation between the proper time and

target space time coordinate is given by

tL = −γ

a
+

1

a
sinh aτL , tR =

1

a
sinh aτR . (4.8)

Let us focus on the correlation of t = 0 slice. Then, we have τL = a−1 sinh−1 γ and τR = 0

from above expressions. Substituting them into eq. (3.16), we can express the geodesic

distance between two AdS boundaries. The correlation function (4.2) is given by

〈FL(tL = 0)FR(tR = 0)〉W =
4

(1 +
√

1 + γ2)2(γ +
√

1 + γ2)
. (4.9)

– 11 –
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Figure 6. Spacetime structure of the perturbed string worldsheet for the decreased acceleration.

An “one-way traversable wormhole” is created after τL = τc.

The time for the shock injection is written as t0 ≡ tL|τL=τ0 ≃ −γ/δa. Thus, we have

γ = δa|t0|. We cannot find any exponential behaviour in eq. (4.9) in terms of t0. The

scrambling time can be estimated as γ ∼ 1, i.e. |t0| ∼ 1/δa ∼ β(E/δE) ∼ S/δE. We do

not find the fast scrambling in the laboratory frame.

4.3 Decreasing the acceleration

We have considered the case of δa > 0. Here, we focus on the decreasing of the accel-

eration δa < 0. For the negative δa, it is remarkable that the correlation (4.3) blows

up at |τ0| = a−1 ln(2a/|δa|) ≡ τ∗. Figure 5b shows the time dependence of the correlation

for δa < 0.

To see the origin of the divergence, we consider the spacetime structure of the string

worldsheet. Since the shift of the V -coordinates at the shock surface (3.9) becomes opposite,

the spacetime structure of the worldsheet becomes like as in figure 6. For τL > τc, the quark

and antiquark are causally connected, where τc is shown in the figure. (Explicitly, we can

write τc = −|τ0| + a−1 ln(2a/|δa|).) The causal connection is one-way: one can send a

signal from the quark to antiquark, but the opposite is causally forbidden. In that sense,

the initial non-traversable wormhole becomes the one-way traversable wormhole. Points

on left and right boundaries can be connected by a light-like geodesic. Then, the geodesic

distance becomes zero and this is the origin of the divergence of the correlation function.

There is the relation between the correlation function and OTOC only for τL < τc. For

τL > τc, the left CFT is disturbed by the right CFT. Hence, the left Hamiltonian would

be written as HL + θ(τL − τc)HLR(τL) where HLR is the interaction term between left and

right CFTs while the right Hamiltonian is unchanged. Thus, |n〉L cannot be regarded as an

eigenstate for τL > τc. In other words, eq. (4.3) is regarded as the OTOC only before the

divergence. This suggests that, depending on inserted operators, the OTOC can diverge

within finite time. In ref. [35], it has been proposed that a traversable wormhole can be

created by the double trace deformation. Our results would suggest another way to create

the traversable wormhole using the EPR pair.

– 12 –
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5 Two shocks

We have changed the acceleration of the antiquark just once: for τ > τ0, the acceleration is

eternally deviated. This may seem unnatural operation. In this section, we will consider the

“undo” of the operation: a → a′ → a. Explicitly, we take the following forms of ft and fx:

ft(τ) =















1
a sinh aτ (τ ≤ τ0)
1
a′ sinh[a

′τ + c1] + c2 (τ0 < τ ≤ τ1)
1
a sinh[aτ + c3] + c4 (τ > τ1)

,

−fx(τ) =















1
a cosh aτ (τ ≤ τ0)
1
a′ cosh[a

′τ + c1] + c′2 (τ0 < τ ≤ τ1)
1
a cosh[aτ + c3] + c′4 (τ > τ1)

.

(5.1)

where

c3 = (a′ − a)(τ1 − τ0) , c4 =

(

1

a
− 1

a′

)

{

sinh aτ0 − sinh[a′τ1 − (a′ − a)τ0]
}

,

c′4 =

(

1

a
− 1

a′

)

{

cosh aτ0 − cosh[a′τ1 − (a′ − a)τ0]
}

,

(5.2)

and c1, c2 and c′2 are defined in eq. (3.2). These constants are determined from the continu-

ity of above functions and their derivatives. Substituting above expressions into eq. (2.6),

we have a rectangular function:

M(τ) = a2 + (a′2 − a2)θ(τ − τ0)θ(τ1 − τ) . (5.3)

Note that, in case of the Vaidya spacetime, we cannot “undo” the mass change if we impose

the null energy condition for the infalling matter.

For τ < τ0 and τ0 < τ < τ1, we use (U, V )- and (U ′, V ′)-coordinates defined in

eqs. (2.10) and (3.4), respectively. For τ > τ1, we also introduce (U ′′, V ′′)-coordinates as

U ′′ = eaτ , V ′′ = −σ − a

σ + a
e−aτ ⇐⇒ τ =

1

a
lnU ′′ , σ = a

1− U ′′V ′′

1 + U ′′V ′′
. (5.4)

By the similar way as the derivation of eq. (3.9), the matching condition at the second

shock surface τ = τ1 is given by

V ′′ = V ′ − γe−a(τ1−τ0) , (5.5)

where we took the double scaling limit (3.8) keeping τ1 − τ0 fixed. In this limit, the first

and second shock surfaces degenerate: the first shock is at U = U ′ = 0 and the second

shock is at U ′ = U ′′ = 0. The matching condition for V and V ′′-coordinates as

V ′′ = V + (1− e−a(τ1−τ0))γ . (5.6)

We can obtain the correlation function for holographic EPR pair with two shock just by

replacing γ → (1− e−a(τ1−τ0))γ in the single shock case. Since we gave two shocks at τ =

– 13 –
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τ0, τ1, the thermofield double state (2.13) would be perturbed as |Ψ〉 → W ′
L(τ1)WL(τ0)|Ψ〉.

The correlation function is given by

〈FLFR〉WW ′ ∼
(

1 +
δa

4a
ea|τ0|

(

1− e−a(τ1−τ0)
)

)−2

, (5.7)

where 〈· · · 〉WW ′ represents the expectation value of theW ′
L(τ1)WL(τ0)|Ψ〉. We again obtain

λL = a = 2π/β. Assuming that the time scale of the change of the acceleration as

τ1−τ0 ∼ T ∼ a, we have 1−e−a(τ1−τ0) = O(1). Therefore, we also have the fast scrambling

result even for the two shock case.

6 Conclusion

We have studied scrambling behaviour of the holographic EPR pair. The gravity picture

of the holographic EPR pair is the fundamental string whose endpoints are accelerated in

opposite direction. The worldsheet metric is given by an eternal AdS2 black hole geometry.

It follows that quarks are in thermofield double state. As a perturbation, we slightly

increased the acceleration of the antiquark. If we give the perturbation at a sufficiently

early time, its effect becomes significant even for a tiny change of the acceleration. It

quickly destroyed the correlation between the quark and antiquark. Its time scale is given

by τ∗ ∼ β lnS. This indicates that the holographic EPR pair is a fast scrambler. From the

early time behaviour of the correlation function, we also estimated the Lyapunov exponent,

λL = 2π/β. This saturates the bound proposed in ref. [15]. The gravity dual of the

EPR pair is not Einstein gravity but the probe string. Our results suggest that the fast

scrambling behaviour or the saturation of the Lyapunov bound do not directly imply the

existence of a dual Einstein gravity. We also slightly decreased the acceleration of the

antiquark. Then, the quark and antiquark are causally connected. In the worldsheet

point of view, the one-way traversable wormhole is created. Two points in boundaries can

be lightlike separated and this cause the divergence of the correlation function. We also

studied the two shock case: the acceleration was changed as a → a′ → a. We again found

the fast scrambling and the saturation of the Lyapunov bound.

We still have some issues and future works to be addressed. For the estimation of the

correlation between the quark and antiquark, we used the geodesic approximation (4.2).

For more precise estimation, we need to compute it from the onshell action. It would be

nice if we can do that following the method in refs. [30, 36].

In the holographic EPR pair, the quark and antiquark are causally disconnected from

the beginning. One can also consider more realistic setup: dynamical creation of the event

horizon on the worldsheet. It has been demonstrated in refs. [37, 38]. It is interesting to

study the scrambling of quarks for the dynamical horizons.

For the computation of the correlation in this work and also in ref. [5], the action of

the system did not play important role. It is just given by the geometrical information, i.e,

geodesics. In recent years, the quantum complexity is regarded as an important quantity

to explore the property of the black hole interior [39, 40]. It has been conjectured that the

complexity is dual to the action of the Wheeler-DeWitt patch [41, 42]. The holographic
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EPR pair would give a simple model to study the complexity. For the evaluation of the

quantum complexity, not only the geometry but also the action is important. The Einstein

gravity and Nambu-Goto action would give a qualitative difference in the complexity.

Note added. When this manuscript was prepared for submission, we noticed a related

work by Shinji Hirano and Nilanjan Sircar [43]. The independent work [44] by J. de Boer,

E. Llabrés, J. F. Pedraza and D. Vegh appeared almost simultaneously, which studies the

related subject to ours.
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[37] M. Chernicoff, A. Güijosa and J.F. Pedraza, Holographic EPR Pairs, Wormholes and

Radiation, JHEP 10 (2013) 211 [arXiv:1308.3695] [INSPIRE].

[38] T. Ishii and K. Murata, Dynamical AdS strings across horizons, JHEP 03 (2016) 035

[arXiv:1512.08574] [INSPIRE].

[39] L. Susskind, Computational Complexity and Black Hole Horizons,

Fortsch. Phys. 64 (2016) 44 [Addendum ibid. 64 (2016) 44] [arXiv:1403.5695] [INSPIRE].

[40] D. Stanford and L. Susskind, Complexity and Shock Wave Geometries,

Phys. Rev. D 90 (2014) 126007 [arXiv:1406.2678] [INSPIRE].

[41] A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Holographic Complexity

Equals Bulk Action?, Phys. Rev. Lett. 116 (2016) 191301 [arXiv:1509.07876] [INSPIRE].

[42] A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Complexity, action and

black holes, Phys. Rev. D 93 (2016) 086006 [arXiv:1512.04993] [INSPIRE].

[43] S. Hirano and N. Sircar, ER = EPR revisited and decoherence, work in progress.

[44] J. de Boer, E. Llabrés, J.F. Pedraza and D. Vegh, Chaotic strings in AdS/CFT,

arXiv:1709.01052 [INSPIRE].

– 17 –

https://doi.org/10.1103/PhysRevLett.115.131603
https://arxiv.org/abs/1412.5123
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.5123
https://arxiv.org/abs/1608.05687
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.05687
https://doi.org/10.1007/JHEP06(2010)078
https://arxiv.org/abs/1003.5332
https://inspirehep.net/search?p=find+EPRINT+arXiv:1003.5332
https://doi.org/10.1007/JHEP10(2013)211
https://arxiv.org/abs/1308.3695
https://inspirehep.net/search?p=find+EPRINT+arXiv:1308.3695
https://doi.org/10.1007/JHEP03(2016)035
https://arxiv.org/abs/1512.08574
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.08574
https://doi.org/10.1002/prop.201500093
https://arxiv.org/abs/1403.5695
https://inspirehep.net/search?p=find+EPRINT+arXiv:1403.5695
https://doi.org/10.1103/PhysRevD.90.126007
https://arxiv.org/abs/1406.2678
https://inspirehep.net/search?p=find+EPRINT+arXiv:1406.2678
https://doi.org/10.1103/PhysRevLett.116.191301
https://arxiv.org/abs/1509.07876
https://inspirehep.net/search?p=find+EPRINT+arXiv:1509.07876
https://doi.org/10.1103/PhysRevD.93.086006
https://arxiv.org/abs/1512.04993
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.04993
https://arxiv.org/abs/1709.01052
https://inspirehep.net/search?p=find+EPRINT+arXiv:1709.01052

	Introduction
	Holographic EPR pair
	Exact solution for time dependant open strings
	Holographic EPR pair
	Thermodynamical variables

	Holographic EPR pair with a shock
	Perturbed holographic EPR string
	Geodesic distance

	Fast scrambling
	Correlation function
	Correlation in the laboratory frame
	Decreasing the acceleration

	Two shocks
	Conclusion

