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1 Introduction

A large class of five-dimensional (5d) supersymmetric quantum field theories with eight

supercharges has been constructed by 5-brane web diagrams, which were originally consid-

ered in [1, 2]. The 5-brane web diagrams consist not only of D5-branes and NS5-branes but

also of (p, q) 5-branes. Furthermore we may include orientifolds such as an O7±-plane, an

O5±-plane and also an ON0-plane. The inclusion of O-planes can realize 5d gauge theories

with gauge groups of USp, SO for example.

A simple example of 5d gauge theories is the pure SU(2) gauge theory. In fact, we

have two distinct pure SU(2) gauge theories depending on the discrete theta angle θ [3–5].

The two theories exhibit a different flavor symmetry at the ultraviolet (UV) fixed point.

One superconformal field theory (SCFT) has an SU(2) flavor symmetry, called E1 theory

(θ = 0), whereas the other SCFT has a U(1) flavor symmetry, called Ẽ1 theory (θ = π).

The two theories are constructed by different 5-brane web diagrams [1, 2] and the flavor
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symmetry enhancement can be seen from 7-branes attached to the external 5-branes [6].

The discrete theta angle is discussed in the context of the type I’ string theory in [7] as

well as in terms of the decomposition of an O7−-plane [8].

The pure SU(2) gauge theory has another 5-brane web construction using an O5-plane.

A D5-brane on top of an O5+-plane yields an Sp(1) gauge group which is isomorphic to an

SU(2) gauge group. In fact, it has not been known how to encode the information of the

discrete theta angle into the 5-brane web with an O5-plane. For maximally supersymmetric

5d Sp(N) gauge theories, the difference between an O4+-plane and an Õ4
+

-plane could

explain the discrete theta angle [9, 10]. Therefore, one might think that we may use an

Õ5
+

-plane instead of an O5+-plane to realize the pure SU(2) gauge theory with θ = π.

However, it has been pointed out in [11, 12] that such a construction rather yields the 5d

Sp(1) gauge theory with one massless flavor. Hence, it has not been clear how to distinguish

the pure Sp(1) gauge theories with a different discrete theta angle from the 5-brane web

diagrams with an O5-plane.

In order to address this issue, we first move to the M-theory picture as follows: we

consider the compactification of the 5-brane web diagram with an O5-plane on a circle.

Then, T-duality along the circle gives rise to D4/NS5-branes from (p, q) 5-branes as well

as two O4-planes from one O5-plane. An M-theory uplift of this type IIA picture yields

the configuration of M5-branes under the existence of two OM5-planes [9, 13–15], which

is nothing but the 5d Seiberg-Witten curve for the 5d theory realized on the 5-brane web

diagram with the O5-plane [16, 17]. Although the Seiberg-Witten curve for the 5d Sp(N)

theory with Nf flavors has been proposed in [16] with this method, the discrete theta angle

has not been clear for the Nf = 0 case.

We will see that the difference between the E1 theory and the Ẽ1 theory is achieved by

different boundary conditions for the two OM5-planes which arise by performing T-duality

for the O5-plane and uplifting to M-theory, resulting in two different Seiberg-Witten curves.

This analysis indicates that 5-brane webs for the E1 theory and the Ẽ1 theory are different

at least when compactified on a circle.

Once we obtain the 5d Seiberg-Witten curve of the 5d theory on a circle, one can

reproduce the original 5-brane web diagram by taking a decompactification limit of the

circle [2]. However, this procedure not just reproduces the originally expected 5-brane

web diagram in the weak coupling region. It is remarkable that the different shapes of web

diagrams are obtained depending on the value of gauge coupling constant and the Coulomb

moduli parameter. Especially, it is also possible to obtain a 5-brane web diagram of the

pure Sp(1) gauge theory in the “strong coupling region”, where the gauge coupling square

is negative 1/g2 < 0, whose configuration have not been discussed before.1 We will see

that the strong coupling behavior of the 5-brane web diagram for the E1 theory is different

from that for the Ẽ1 theory. The analysis introduces various intriguing configurations for

a 5-brane web diagram with an O5-plane.

1Rigorously, the region 1/g2 < 0 does not make sense as the original gauge theory. But it still makes

sense as a relevant deformation of the SCFT realized on the UV fixed point of the original gauge theory.

Throughout this paper, “strong coupling” denotes the case 1/g2 < 0.
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The difference of the web diagrams for the E1 theory and the Ẽ1 theory are under-

stood more uniformly by adding one flavor, which makes the E2 theory. We also study the

Seiberg-Witten curve of this E2 theory and its decompactification limit. We confirm that

the web diagram for the E1 theory and the Ẽ1 theory are obtained by the different limit

where mass parameter goes to −∞ and +∞, respectively. When shifting the mass parame-

ter for the flavor, a generalized version of “flop transition” arises, which plays an important

role in differentiating the flavor decoupling limit to the E1 theory from the decoupling limit

to the Ẽ1 theory by allowing different flop transitions in the strong coupling region.

The organization of this paper is as follows. In section 2, we consider the way to

distinguish the E1 theory from the Ẽ1 theory from a circle compactification of the 5-

brane web diagrams. We propose boundary conditions of 5d Seiberg-Witten curves at the

two OM5-planes which originate from an O5-plane. We find two types of the boundary

condition and argue that the different boundary conditions yield the 5d Seiberg-Witten

curves for the pure Sp(1) gauge theories with the two different discrete theta angles θ. The

method investigated in this section will be also useful to construct the 5d Seiberg-Witten

curve from a generic 5-brane web diagram with an O5-plane. In section 3, we consider

the decompactification limit of the 5d Seiberg-Witten curves of the E1 and the Ẽ1 theory

obtained in the previous section. We classify all the types of the 5-brane web diagrams

with an O5-plane for the Sp(1) gauge theories with θ = 0 and θ = π. In section 4, we also

classify all the different types of the 5-brane web with an O5-plane for the Sp(1) gauge

theory with one flavor. We find that the phases of the E2 theory consistently reduces to

the phases of the E1 and the Ẽ1 theory by decoupling one flavor. We then conclude in

section 5 with a summary of the results found in this paper. In appendix A, we utilize

the boundary conditions of two OM5-planes to compute the 5d Seiberg-Witten curves of

the EN theory with 0 ≤ N ≤ 8. In appendix B we classify all the types of the 5-brane

web diagram without orientifold of the E2 theory and see the consistent results obtained

in section 4. Appendix B also summarizes the detailed structure of all the types of the

5-brane web diagram with an O5-plane for the E2 theory.

2 5d Seiberg-Witten curves of the E1 and Ẽ1 theories

In this section, we discuss a method which enables us to compute 5d Seiberg-Witten curves

based on a web diagram including an O5-plane. As a 5-brane web configuration with an

O5-plane describes a 5d N = 1 Sp(N) gauge theory, our method is about computing the

5d Seiberg-Witten curves of 5d Sp(N) theories. Here, we focus on 5d Sp(1) gauge theories

as generalization to higher rank Sp(N) as well as adding flavors is straightforward.

5dN = 1 Sp(1) gauge theory with Nf ≤ 7 flavors enjoys global symmetry enhancement

SO(2Nf )×U(1)→ ENf+1 at UV fixed point2 [3–5, 18, 19]. The theory has discrete theta

angle θ = 0, π (mod 2π). When the theory has flavors, the effect of the non-trivial discrete

theta angle is equivalent to flipping the sign of the mass of a flavor, and hence it is equivalent

to the original theory. On the other hand, when the theory has no matter (Nf = 0), such

2We use the following convention of ENf+1: E8, E7, E6, E5 = SO(10), E4 = SU(5), E3 = SU(3) ×
SU(2), E2 = SU(2)×U(1), E1 = SU(2), Ẽ1 = U(1).
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Figure 1. Web diagram for 5d SU(2) theory of enhanced E1 = SU(2) and Ẽ1 = U(1) global

symmetries.

discrete theta angle gives rise to two physically inequivalent theories. The enhanced global

symmetries are different depending on discrete theta angle. It is E1 = SU(2) for θ = 0, while

Ẽ1 = U(1) for θ = π. The corresponding SU(2) brane configurations show a clear difference

as in figure 1. The Seiberg-Witten curves for the E1 theory and the Ẽ1 theory hence show

clear differences as written in [20, 21]. Expressed in a brane web diagram with an O5-plane,

on the other hand, the E1 and Ẽ1 configurations seem indistinguishable. In other words,

on (p, q) 5-brane web shown in figure 2, discrete theta angle seems not manifest, as the

charges of (p, q) 5-branes toward O5-plane are fixed by charge conservation. We however

claim that it is still possible to obtain E1 and Ẽ1 Seiberg-Witten curves by giving different

boundary conditions on an orientifold-plane.

Boundary condition for an O4-plane system. It is instructive to recall how Seiberg-

Witten curves for 4d N = 2 pure Sp(N) gauge theory can be obtained from brane config-

urations. We first uplift type IIA theory to M-theory, where a D4/NS5-brane becomes an

M5-brane and an O4-plane becomes an OM5-plane. As discussed in [22, 23], the idea is to

consider the covering space of the brane configuration with an OM5-plane which includes

the mirror pair of the branes. The structure of Seiberg-Witten curves is then expressed in

terms of an even function with respect to v which parametrizes the transverse directions

of an OM5-plane. The behavior of the M5-brane near the OM5-plane should be the M-

theory uplift of the configuration of the two NS5-branes bending toward each other to be

connected on the O4-plane. This leads to a form of the Seiberg-Witten curve which has a

double root at v = 0 [22]

t2 +
(
v2B(v2)− 2

)
t+ 1 = 0, (2.1)

where B(v2) is an even function of v, respecting the invariance under v ↔ −v.

Boundary condition for an O5-plane system. In a similar fashion, we consider a

web diagram with an O5-plane and its covering space which includes its mirror pair as

shown in figure 2. Here, D5-branes are extended along the 012345-directions and NS5-

branes are extended along the 012356-directions. Since the difference of the RR-charge

of an O5+-plane and that of an O5− plane is two, a (2, 1) 5-brane and a (−2, 1) 5-brane

are attached to the O5-plane to satisfy the charge conservation. By compactifying the

x5-direction on a circle and taking T-duality along this direction, one can consider a type
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Figure 2. Covering space web configuration for 5d Sp(1) theory and corresponding toric-like

diagram.

IIA configuration where the O5-plane splits into two O4-planes on the circle. Uplifting this

brane configuration to M-theory, we obtain an M5-brane with two OM5-planes. To describe

this M-theory configuration which is 5d Seiberg-Witten curve, we use the coordinates

w = e
− v
RA = e

− 1
RA

(x6+ix5)
, t = e

− 1
RM

(x4+ix11)
, (2.2)

where RA is the compactification circle radius along x5 = x5 + 2πRA, while RM is the M-

theory circle radius x11 = x11 + 2πRM . Parametrizing the circle by an angle, θA = x5/RA,

if one of the OM5-planes is located at θA = 0, the other OM5-plane is placed at θA = π.

In the following, we use the convention that two OM5-planes are located at w = 1 and

w = −1. It requires that the Seiberg-Witten curve should be invariant under w ↔ w−1.

As discussed above, a double root boundary condition is imposed at each position of an

OM5-plane. Since we have two OM5-planes, we need to impose boundary conditions both

at w = 1 and w = −1.

As discussed in [2], the toric diagram, which is the dual graph of the original (p, q)

5-brane web diagram, tells us which monomial should appear in the Seiberg-Witten curve.

We assume that this method is available also for the toric-like diagram of the covering space

for the 5d Sp(1) theory with no flavors, given in figure 2. Taking into account the invariance

under w ↔ w−1, the corresponding toric-like diagram leads to a quadratic polynomial of t as

t2 + q−1
(

(w3 + w−3) + a(w2 + w−2) + b(w + w−1) + c
)
t+ 1 = 0, (2.3)

where a, b, and c are coefficients which will be determined by imposing the boundary con-

ditions. Here, we used possible rescalings of the curve. For example, overall rescaling is

used to fix the constant to be 1, and a coordinate rescaling of t is used to fix the coefficient

of t2 to be 1. Note that asymptotic behaviors at large w determine the coupling of the

theory or equivalently the instanton factor q [21]. We extrapolate the configuration in the

large t ∼ w3 region, which is originally the (3, 1) 5-brane, and that in the large t−1 ∼ w3

region, which is originally the (3,−1) 5-brane, to the w = 1 axis and identify the distance

between them as q−2 so that q is the same instanton factor for the 5d SU(2) theory [24].

This makes the coefficient of w3 + w−3 to be given by q−1.

Ẽ1 boundary condition. We now impose the boundary conditions on the OM5-planes for

the pure Sp(1) Seiberg-Witten curve as follows: for w = 1 and w = −1, the curve take the

form of a complete square:

For w = 1 : t2 + q−1(2 + 2a+ 2b+ c) + 1 = (t− 1)2,

For w = −1 : t2 + q−1(−2 + 2a− 2b+ c) + 1 = (t− 1)2. (2.4)
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The solution to the boundary conditions is b = −1 and c = −2a− 2q where a is identified

as the Coulomb branch moduli parameter U . Hence this determines the Seiberg-Witten

curve for the pure Sp(1) theory

t2 + q−1
(

(w3 + w−3) + U(w2 + w−2)− (w + w−1)− 2(U + q)
)
t+ 1 = 0, (2.5)

To compare it with the standard Weierstrass form, we introduce a coordinate which

takes into account mirror image of the O5-plane so that it is manifestly invariant under

w ↔ w−1

x ≡ w + w−1. (2.6)

The Seiberg-Witten curve is then written as

t2 +
(
q−1(x2 − 4)(x+ U)− 2

)
t+ 1 = 0. (2.7)

By making a complete square of the t-terms, we can rewrite it to be a curve that describes

a genus one curve written as a quartic curve

y2 =
(

(x2 − 4)(x+ U)− 4q
)

(x+ U), (2.8)

where y = 2q(x2−4)−
1
2

[
t+ 1

2

(
q−1(x2−4)(x+U)−2

)]
. Following the procedure converting

a quartic curve into a Weierstrass form, given in appendix A in [25], we have a 5d Sp(1)

Seiberg-Witten curve which is obtained from a web diagram with an O5-plane

Y 2 = 4X3 − gO5
2 X − gO5

3 , (2.9)

where

gO5
2 =

4

3

(
U4 − 8U2 − 24 q U + 16

)
,

gO5
3 = − 8

27

(
U6 − 12U4 − 36 q U3 + 48U2 + 144 q U + 216q2 − 64

)
. (2.10)

It is straightforward to check whether this curve is equivalent to the 5d SU(2) curve asso-

ciated with Ẽ1 = U(1) global symmetry whose Weierstrass form is given in [21]

gẼ1
2 =

1

12
U4 − 2

3
U2 − 2χẼ1

2 U +
4

3
,

gẼ1
3 =

1

216
U6 − 1

18
U4 − 1

6
χẼ1

2 U3 +
2

9
U2 +

2

3
χẼ1

2 U − 8

27
+ χẼ1

2 χẼ1
2 . (2.11)

The agreement can be seen by the following identification

χẼ1
2 = q, gẼ1

2 =
(
− 4
)−2

gO5
2 , gẼ1

3 =
(
− 4
)−3

gO5
3 . (2.12)

We therefore find that the boundary condition (2.4) gives rise to the Seiberg-Witten curve

for the pure Sp(1) theory with the Ẽ1 enhanced global symmetry.
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E1 boundary condition. We now consider another boundary condition that leads to the

theory of the E1 global symmetry. Unlike (2.4), when we impose the boundary condition

for w = 1 and w = −1,

For w = 1 : t2 + q−1(2 + 2a+ 2b+ c) + 1 = (t+ 1)2,

For w = −1 : t2 + q−1(−2 + 2a− 2b+ c) + 1 = (t− 1)2. (2.13)

The solution to the boundary conditions is b = −1 + q and c = −2a = −2U where U is the

Coulomb moduli. This leads to the curve

t2 + q−1
(
w3 + w−3 + U(w2 + w−2)− (1− q)(w + w−1)− 2U

)
t+ 1 = 0, (2.14)

which is different from (2.5). As done for the previous case, it is easy to express it in a

more familiar a genus one curve as

y2 =
(

(x− 2)(x+ U) + q
)(

(x+ 2)(x+ U) + q
)
, (2.15)

where x and y are the same as defined before. As a Weierstrass form, the curve is given by

Y 2 = 4X3 − gO5
2 (2)X − gO5

3 (2), (2.16)

with

gO5
2 (2) =

4

3

(
U4 − 8(1 + q)U2 + 16(q2 − q + 1)

)
, (2.17)

gO5
2 (2) = − 8

27

(
U6 − 12(1 + q)U4 + 24(2q2 + q + 2)U2 − 32(2q3 − 3q2 − 3q + 2)

)
.

It can be readily checked that it agrees with the Seiberg-Witten curve for E1 [21] given by

gE1
2 =

1

12
U4 − 2

3
χE1

1 U2 +
4

3
χE1

1 χE1
1 − 4,

gE1
3 =

1

216
U6 − 1

18
χE1

1 U4 +

(
2

9
χE1

1 χE1
1 −

1

3

)
U2 − 8

27
χE1

1 χE1
1 χE1

1 +
4

3
χE1

1 , (2.18)

where

χE1
1 = q

1
2 + q−

1
2 . (2.19)

The agreement can be seen by the following identification

UE1 = UO5q−
1
4 , gE1

2 = (−4q
1
2 )−2gO5

2 (2), gE1
3 = (−4q

1
2 )−3gO5

3 (2). (2.20)

We therefore find that the boundary condition (2.13) gives rise to the Seiberg-Witten curve

for Sp(1) theory of E1 enhanced global symmetry.
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Relation between 5d θ-angle and Sp(1) curve for E1 and Ẽ1. We discuss other

possible boundary conditions. The condition is that the Seiberg-Witten curve have double

root at w = 1 and at w = −1, where OM5-planes are located. As discussed previously,

there are two choices, (t − 1)2 or (t + 1)2, for each OM5-plane. Here θA = Arg(w) is the

phase of Type IIA circle and θM = Arg(t) is the phase of M-theory circle. Hence, all

possible choices of the boundary condition are summarized as follows:

(i) For the 1st b.c.,





(ia) (θA, θM ) = (0, 0) : at w = 1, (t− 1)2 = 0,

or

(ib) (θA, θM ) = (0, π) : at w = 1, (t+ 1)2 = 0;

(ii) For the 2nd b.c.,





(iia) (θA, θM ) = (π, 0) : at w = −1, (t− 1)2 = 0,

or

(iib) (θA, θM ) = (π, π) : at w = −1, (t+ 1)2 = 0,

(2.21)

where the 1st boundary condition is for the first OM5-plane and the 2nd boundary condition

is for the second OM5-plane. We have discussed above that (ia) and (iia) give the boundary

conditions for Ẽ1 symmetry, while (ib) and (iia) give the boundary conditions for E1

symmetry. We note that other two choices also yield the Seiberg-Witten curves with an

Wilson line turned on so that the instanton factor becomes q → −q. More precisely, the

choice (ib) and (iib) gives the Ẽ1 curve with q → −q, while the choice (ia) and (iib) gives the

E1 curve with q → −q. We observe hence that for the present case, there is an intriguing

equality between 5d theta angle θ and the two angles θA, θM :

θ =
(

(θA)(ii) − (θA)(i)

)
+
(

(θM )(ii) − (θM )(i)

)
(mod 2π),

= π +
(

(θM )(ii) − (θM )(i)

)
(mod 2π), (2.22)

where (i), (ii) refer to two boundary condition choices in (2.21).

We note that when adding flavors, the boundary conditions corresponding to theta

angle θ = 0 or θ = π give rise to the same Seiberg-Witten curve up to sign flip of masses,

as expected. See appendix A.

3 Decompactification limit of 5d Seiberg-Witten curves of E1 and Ẽ1

In the previous section, we have seen how the discrete theta angle of the 5d pure Sp(1)

gauge theory is realized in terms of the Seiberg-Witten curves, which are the configurations

of M5-branes under the existence of an OM5-plane. In this section, we will see how the

difference with respect to the discrete theta angle appears in the original (p, q) 5-brane web

with an O5-plane in type IIB string theory.

3.1 Strategy to recover 5-brane web from 5d Seiberg-Witten curve

As discussed in [2], it is possible to reproduce (p, q) 5-brane webs from the corresponding

Seiberg-Witten curves. Indeed the two configurations are related by string dualities and a

decompactification limit of the Seiberg-Witten curve reproduces a (p, q) 5-brane web of the

– 8 –
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original 5d theory. We expect that this property remains true even under the existence of

an O5-plane and is applicable to the 5d Seiberg-Witten curves of the E1 and Ẽ1 theories.

In order to take such a decompactification limit, we assume that the complex coordi-

nates of the Seiberg-Witten curves of (2.14) and (2.5) as well as their coefficients depend

on the compactification radius R in the following exponential form3

t = e−R(x4+ix11), w = e−R(x6+ix5), q = e−R(m0+iθ), U = e−R(u+iφ). (3.1)

Here m0 ∝ 1/g2
YM. The decompactification limit corresponds to taking R → ∞ with

the parameterization (3.1). Note that the complex coordinates t, w in (3.1) of the 5d

Seiberg-Witten curves (2.5), (2.14) parameterize the 5-brane web diagram with an O5-

plane. Therefore, such a limit should lead to the original 5-brane web with an O5-plane

instead of the 5-brane web diagram without an O5-plane which also gives rise to the 5d

Sp(1) gauge theory.4

The periodicity condition is imposed on the imaginary part of the exponent and we

can set their fundamental region to be 0 ≤ x11, x5, θ, φ ≤ 2π/R. Supposing that we always

use the values at their fundamental region, the values of the coordinates x11, x5, θ and φ

are of the order O(R−1). Therefore, it is natural to rescale them by R and redefine

t = e−Rx4−ix
′
11 , w = e−Rx6−ix

′
5 , q = e−Rm0−iθ′ , U = e−Ru−iφ

′
. (3.2)

where x′11, x′5, θ′ and φ′ are now of the order O(1).

When we use the parameterization (3.2), the 5d Seiberg-Witten curves (2.14) and (2.5)

of the E1 and Ẽ1 theories can be written in the form

∑

k,l,m

exp
(
RA

(m)
k,l + iB

(m)
k,l

)
= 0, (3.3)

where A
(m)
k,l = −kx4 − lx6 + c

(m)
1 m0 + c

(m)
2 u where c

(m)
1 , c

(m)
2 are some integers, while

B
(m)
k,l = −kx′5 − lx′11 + c

(m)
1 θ′ + c

(m)
2 φ′. The label m is relevant when there are multiple

cases of c
(m)
1 , c

(m)
2 for the same k, l. When there is a single case, we omit the label m for

simplicity of the notation.

3How to determine the radius R dependence for the Coulomb moduli parameter U is non-trivial. For

example, we could have considered another choice [26] as

U = e−R(u+iφ) + e+R(u+iφ) ∝ coshR(u+ iφ),

which makes invariant under the Sp(1) Weyl transformation u + iφ → −u − iφ. This choice may be even

more natural because it naturally reproduce the classical Coulomb moduli parameter in the weak coupling

limit q → 0. If we use this parametrization and take the decompactification limit R→∞, U is the same as

that in (3.1) in the region u < 0 while the region u > 0 is reproduced from the result in the region u < 0.

Since we will see later that the region u > 0 is unphysical, the result is not sensitive to such difference of

the parametrization.
4In fact, the decompactification is not unique. For example, the 5d Seiberg-Witten curve of the 5d pure

Sp(1) gauge theory with or without the discrete theta angle can have two types of the decompactification

limit. One limit leads to a 5-brane web without an O5-plane. The other limit gives rise to a 5-brane web

with an O5-plane. We consider the latter decompactification limit since we are interested in (p, q) 5-branes

with an O5-plane.
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Then the (p, q) 5-brane webs of the E1 and Ẽ1 theories in the presence of an O5-plane

should be reproduced by taking the limit R → ∞ with A
(m)
k.l , B

(m)
k,l fixed for (3.3). When

we take the limit R→∞ while A
(m)
k,l , B

(m)
k,l fixed, the terms in (3.3) with the largest A

(m)
k,l

become dominant. For example, if A
(m1)
k1,l1

> A
(mi)
ki,li

with k1 6= ki, l1 6= li and m1 6= mi, we

see that

exp
(
RA

(m1)
k1,l1

)
�

∑

ki 6=k1,li 6=l1,mi 6=m1

exp
(
RA

(mi)
ki,li

)
, (3.4)

in the limit R → ∞. In this case, it is obvious that (3.3) cannot be satisfied. In order

words, there is no 5-brane inside the region where A
(m)
k,l is the largest in the (x4, x6)-space.

Note that such region depends on the values of the parameters m0 and u. Let us then

consider a case where A
(m1)
k1,l1

is the largest in a region in the (x4, x6)-space and A
(m2)
k2,l2

is the

largest in an adjacent region. Since A
(m)
k,l ’s are continuous parameters, along the boundary

of the two regions we have

A
(m1)
k1,l1

= A
(m2)
k2,l2

(
> A

(mi)
ki,li

)
(ki 6= i1, i2, li 6= l1, l2, mi 6= m1,m2) (3.5)

In this case, the decompactification limit of the Seiberg-Witten curve (3.3) reduces to the

simple equation (3.5) in the R→∞ limit if we drop the information of the phase B
(m)
k,l . The

equation (3.5) gives a line segment in the (x4, x6) space, giving a part of a (p, q) 5-brane web.

Therefore we can reconstruct the 5-brane web diagram from the following strategy.

First we choose some region in the (m0, u)-space. Then we idetnfiy a region in the (x4, x6)-

space where a particular A
(m)
k,l is the largest. Depending on the regions in the (x4, x6)-

space, which A
(m)
k,l becomes the largest is different and we consider all the possible cases.

Then along the boundaries of the regions, there is a linear condition between A
(m)
k,l ’s and

it yields a 5-brane web diagram. For example, the boundary of the two regions gives a

line corresponding to a 5-brane whereas the boundary of the three regions gives a point

corresponding to a vertex of a 5-brane web.

In the following, we explicitly calculate the decompactification limit of the 5d Seiberg-

Witten curves of the E1 and Ẽ1 theories for all the possible regions of the variables and

coordinaters. We will first fix a parameter region of m0, u, and then consider the regions

in the (x4, x6)-space where each A
(m)
k,l is the largest. Since their boundaries yield a 5-brane

web, it is enough to determine the regions where some A
(m)
k,l becomes the largest. We will

see that this calculation indeed reproduces the original (p, q) 5-brane webs in the weak

coupling region while generating a new diagram in the strong coupling region.

3.2 Phase structure of the E1 theory

We first start from the Seiberg-Witten curve (2.14) of the E1 theory. Assuming the

parametrization (3.2), the 5d Seiberg-Witten curve (2.14) is written in the form (3.3) with

A2,0 =−2x4, A1,3 =−(x4+3x6−m0), A1,2 =−(x4+2x6−m0+u),

A
(1)
1,1 =−(x4+x6−m0), A

(2)
1,1 =−(x4+x6), A1,0 =−(x4−m0+u),

A
(1)
1,−1 =−(x4−x6−m0), A

(2)
1,−1 =−(x4−x6),

A1,−2 =−(x4−2x6−m0+u), A1,−3 =−(x4−3x6−m0), A0,0 = 0 (3.6)
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Region
3

(Region 2)

(Region 4)

Region 1

u = m0u =
1

2
m0

Figure 3. The phase diagram of the E1 theory. The line between the Region 1 and the Region

3 is u = m0. The boundary of the physical parameter space is given by u = 1
2m0 for m0 ≤ 0 and

u = 0 for m0 ≥ 0.

We then consider all possible regions in the parameter space (u,m0) and determine the

(p, q) 5-brane web in the regions:

Region 1: {u < 0, m0 > 0 } ∪ {u < m0 < 0 },
Region 2: m0 < u, u > 0,

Region 3: m0 < u <
1

2
m0 (< 0),

Region 4:
1

2
m0 < u, m0 < 0. (3.7)

The corresponding region, which will turn out to give the “phase diagram” of the E1 theory,

is depicted in figure 3.

Region 1. The first region we consider is the following parameter region5

{u < 0, m0 > 0 } ∪ {u < m0 < 0 }. (3.8)

In this parameter space, a particular A
(m)
k,l in (3.6) becomes the largest depending on a

subspace in the (x4, x6)-space. For example, the region where A2,0 is the largest is obtained

by solving A2,0 > A
(m)
i,j for ∀i, j,m. However, we find that the independent conditions are

only the following four, A2,0 > A1,3, A1,2, A1,−2, A1,−3 under the assumption (3.8). All the

others can be derived from these four conditions. Rewriting these four conditions explicitly

in terms of x4 and x6, we obtain

x6 >
x4 +m0

3
, x6 >

x4 +m0 − u
2

, x6 <
−x4 −m0 + u

2
, x6 <

−x4 −m0

3
. (3.9)

In this way, we find the region where A2,0 is the largest in the (x4, x6)-space. We can

compute for other A
(m)
k,l in analogous way and the result is summarized in table 1.

5Although the classical gauge coupling becomes negative in some region, the effective gauge coupling is

always positive.
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A
(m)
k,l Independent conditions Region for A

(m)
k,l being the largest

A2,0

A2,0 > A1,3, A1,2,

A1,−2, A1,−3

x6 >
x4+m0

3 , x6 >
x4+m0−u

2 ,

x6 <
−x4−m0+u

2 , x6 <
−x4−m0

3

A1,3 A1,3 > A2,0, A1,2, A0,0 x6 <
x4+m0

3 , x6 < u, x6 <
−x4+m0

3

A1,2

A1,2 > A2,0, A1,3,

A1,−2, A0,0

x6 >
x4+m0−u

2 , x6 > u,

x6 < 0, x6 <
−x4+m0+u

2

A1,−2

A1,−2 > A2,0, A1,2,

A1,−3, A0,0

x6 >
−x4−m0+u

2 , x6 > 0,

x6 < −u, x6 <
x4−m0+u

2

A1,−3 A1,−3 > A2,0, A1,−2, A0,0 x6 <
−x4−m0

3 , x6 < −u, x6 <
x4−m0

3

A0,0

A0,0 > A1,3, A1,2,

A1,−2, A1,−3

x6 >
−x4+m0

3 , x6 >
−x4+m0−u

2 ,

x6 <
x4−m0+u

2 , x6 <
x4−m0

3

A
(m)
1,1 , A1,0,

A
(m)
1,−1

n/a No region

Table 1. The regions where some A
(m)
k,l becomes larger than any other A

(m′)
k′,l′ ’s for the Region

1 (3.8) of the E1 theory. The second column gives independent relations for ensuring that A
(m)
k,l

in the first column becomes the largest. The last column indicates a region in the (x4, x6)-space

where the A
(m)
k,l in the first column becomes the largest. m in this table is either 1 or 2.

From table 1, one needs to look at boundaries between two regions to recover a 5-

brane web. For example, the boundary between the region where A2,0 is the largest and

the region where A1,3 is the largest is characterized by A2,0 = A1,3, which is rewritten as

x6 =
x4 +m0

3
. (3.10)

This means that the 5d Seiberg-Witten curve reduces to this line in some subspace of

(x4, x6)-space, which corresponds to a partial 5-brane configuration. One can repeat the

same analysis for other possible largest A
(m)
k,l cases and combine all the corresponding

partial configurations together to make a complete 5-brane web digram that is consistent

with all the boundaries of the regions listed in table 1. The result is depicted in figure 4

(a). It is then easy to see that the region labeled A2,0 on the right side of the figure 4 (a)

corresponds (3.9) and the line segment (3.10) is the boundary between the regions labeled

A2,0 and A1,3. Unlike the case for the usual toric diagram, some of the A
(m)
k,l does not become

largest in any region in (x4, x6) space. In fact, it turns out that A
(1)
1,1, A

(2)
1,1, A1,0, A

(1)
1,−1, and

A
(2)
1,−1 never become the largest in the case of (3.8).

It is also instructive to write down the corresponding toric-like diagram (also known

as dot diagram) [21, 27] as in figure 4 (b). From the construction of the 5d Seiberg-Witten

curve from the toric-like diagram, each monomial in the Seiberg-Witten curve corresponds

to either a black dot or a white dot. In other word, A
(m)
k,l given in (3.6) with different

k, l corresponds to different dot in the toric-like diagram. We assign a black dot to A
(m)
k,l
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�m0 + um0 � u �m0 + 3u

0

�u

u

x6

x4

A1,3

A1,2

A1,�2

A1,�3

A0,0

m0 � 3u

A2,0

(a) (b)

Figure 4. (a): the blue letter A
(m)
k,l indicates the largest A

(m)
k,l in the region. The black solid lines

are the boundaries of those regions and give the 5-brane web in the decompactification limit of

the E1 curve in Region 1 (3.8). The thick line denotes the coincident 5-branes. (b): the toric-like

diagram of the E1 theory with a triangulation given by the web in figure (a).

which becomes largest at some region in (x4, x6) space while white dot corresponds to A
(m)
k,l

which does not become largest in any region in (x4, x6) space. Therefore, each face of the

5-brane web corresponds to a black dot. For example, the monomial associated to the

top black dot gives a term related to A1,3, hence when the A1,3 is the largest compared

to the other A
(m)
k,l , we have a face at the top in the 5-brane web. On the other hand,

the white dots correspond to “shrunken face”, which indicates coincident 5-branes. For

example, there is no region where A
(m)
1,1 , A1,0, or A

(m)
1,−1 become the largest and therefore,

they correspond to white dots. The existence of the three “shrunken face” indicates that

there are four coincident branes at x6 = 0. In figure 4 (a) and also in the following figures,

thick lines denote such coincident 5-branes. Here, note that x6 = 0 is the location of the

O5-plane and we also include the mirror image in the web diagram. The four coincident

D5-branes including the mirror images together with an O5−-plane should be interpreted

as an O5+-plane, giving consistent picture with figure 2. Also, if the region where A
(m)
k,l is

the largest and the region where A
(m′)
k′,l′ is the largest share their boundaries, we connect the

corresponding two black dots in the toric-like diagram. For example, the dot corresponding

to A1,2 and A1,−2 should be connected by the line in this case. This rule determines the

“triangulation”6 of the toric-like diagram.

Region 2. Next, we consider the region

u > 0, m0 > 0. (3.11)

In this parameter space, we determine regions in (x4, x6) in which a particular A
(m)
k,l be-

comes the largest. The result is given in table 2. The 5-brane segments in this region (3.11)

can be realized from the boundaries between the regoins in table 2. The web diagram is

given in figure 5.

Remarkably, the result does not depend on the Coulomb branch moduli parameter u.

Even if we move the value of u in the region u > 0, the web diagram does not change at

6For generic toric-like diagram, the smallest unit is not necessarily triangle.

– 13 –



J
H
E
P
1
1
(
2
0
1
7
)
0
4
1

A
(m)
k,l Independent conditions Region for A

(m)
k,l being the largest

A2,0 A2,0 > A1,3, A1,−3 x6 >
x4+m0

3 , x6 <
−x4−m0

3

A1,3 A1,3 > A2,0, A1,−3, A0,0 x6 <
x4+m0

3 , x6 < 0, x6 <
−x4+m0

3

A1,−3 A1,−3 > A2,0, A1,3, A0,0 x6 >
−x4−m0

3 , x6 > 0, x6 >
x4−m0

3

A0,0 A0,0 > A1,3, A1,−3 x6 >
−x4+m0

3 , x6 <
x4−m0

3

A1,2, A
(m)
1,1 , A1,0

A
(m)
1,−1, A1,−2

n/a No region

Table 2. The regions where some A
(m)
k,l becomes larger than any other A

(m′)
k′,l′ ’s for Region 2 (3.11)

of the E1 theory. The second column gives independent relations for ensuring that A
(m)
k,l in the first

column becomes the largest. The last column indicates a region in the (x4, x6)-space where the

A
(m)
k,l in the first column becomes the largest. m in this table is either 1 or 2.

�m0m0

0A2,0

A1,3

A1,�3

A0,0
x6

x4

Figure 5. The blue letter A
(m)
k,l indicates the largest A

(m)
k,l in the region. The black solid lines are

the boundaries of those regions and give the 5-brane web in the decompactification limit of the E1

curve in Region 2 (3.11).

all. Furthermore, this result in table 2 can be reproduced from table 1 by substituting

u = 0, where some of the regions in table 1 disappear. Correspondingly, the web diagram

in figure 5 can be also reproduced from figure 4 by considering u = 0.

The fact that the web diagram does not depend on u in the Region 2 (3.11) and the

result can be reproduced by setting u = 0 for the regoins in table 1 implies that this region

is merely the boundary u = 0 of the Region 1 (3.8) and the region with u > 0,m0 > 0 does

not exist. Indeed there is no phase transition from the web diagram in figure 4 to the web

diagram in figure 5 but the web in figure 5 is simply a special case of the web in figure 4.

As argued in [28], we can interpret that the Region 2 (3.11) corresponds to an “unphysical

region”. Along the boundary, aD = ∂F/∂a vanishes and hence monopole strings become

tensionless, implying that the effective description breaks down. Hence we cannot go over

this boundary.

Region 3. We then move on to the third region given by

m0 < u <
1

2
m0 (< 0). (3.12)

In this parameter region, the regions in the (x4, x6)-space where some A
(m)
k,l is the largest

are summarized in table 3. The corresponding 5-brane web and the toric-like diagram are

depicted in figure 6 (a).
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A
(m)
k,l Independent conditions Region for A

(m)
k,l being the largest

A2,0

A2,0 > A1,3, A1,2, A
(2)
1,1

A
(2)
1,−1, A1,−2, A1,3

x6 >
x4+m0

3 , x6 >
x4+m0−u

2 , x6 > x4,

x6 < −x4, x6 <
−x4−m0+u

2 , x6 <
−x4−m0

3

A1,3 A1,3 > A2,0, A1,2, A0,0 x6 >
x4+m0

3 , x6 > u, x6 >
−x4+m0

3

A1,2

A1,2 > A2,0, A1,3,

A
(2)
1,1, A0,0

x6 <
x4+m0−u

2 , x6 > u,

x6 < m0 − u, x6 <
−x4+m0−u

2

A
(2)
1,1 A

(2)
1,1 > A2,0, A1,2, A0,0 x6 < x4, x6 > m0 − u, x6 < −x4

A
(2)
1,−1 A

(2)
1,−1 > A2,0, A1,−2, A0,0 x6 > −x4, x6 < −m0 + u, x6 > x4

A1,−2

A1,−2 > A2,0, A
(2)
1,−1,

A1,−3, A0,0

x6 >
−x4−m0+u

2 , x6 > −m0 + u,

x6 < −u, x6 <
x4−m0+u

2

A1,−3 A1,−3 > A2,0, A1,−2, A0,0 x6 >
−x4−m0

3 , x6 > −u, x6 >
x4−m0

3

A0,0

A0,0 > A1,3, A1,2, A
(2)
1,1

A
(2)
1,−1, A1,−2, A1,−3

x6 >
−x4+m0

3 , x6 >
−x4+m0−u

2 , x6 > −x4,

x6 < x4, x6 <
x4−m0+u

2 , x6 <
x4−m0

3

A
(1)
1,1, A1,0,

A
(1)
1,−1

n/a No region

Table 3. The regions where each A
(m)
k,l becomes larger than any other A

(m′)
k′,l′ ’s for Region 3 (3.12)

of the E1 theory. The second column gives independent relations for ensuring that A
(m)
k,l in the first

column becomes the largest. The last column indicates a region in the (x4, x6)-space where the

A
(m)
k,l in the first column becomes the largest.

0 �m0 + 3u

�u

u

x6

x4

m0 � u

�m0 + u

0

m0 � u�m0 + u

A2,0

A1,3

A1,2

A
(2)
1,1

m0 � 3u

A
(2)
1,�1

A1,�2

A1,�3

A0,0

(a) (b)

Figure 6. (a): the blue letter A
(m)
k,l indicates the largest A

(m)
k,l in the region. The black solid lines

are the boundaries of those regions and give the 5-brane web in the decompactification limit of the

E1 curve in Region 3 (3.12). (b): the toric-like diagram of the E1 theory with a triangulation given

by the web in figure (a).
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m0

1

2
m0

�1

2
m0

1

2
m0

x6

x4

0A2,0

A1,3

A
(2)
1,1

A
(2)
1,�1

A1,�3

A0,0

Figure 7. The blue letter A
(m)
k,l indicates the largest A

(m)
k,l in the region. The black solid lines are

the boundaries of those regions and give the 5-brane web in the decompactification limit of the E1

curve in Region 4 (3.13).

When we go from the Region 1 (3.8) to the Region 3 (3.12), the web diagram undergoes

a “phase transition”. From the web in figure 4 (a), two 5-branes intersecting with an O5-

plane are separated by a finite distance d = 2m0 − 2u > 0. As we approach the Region

3 (3.12), the distance becomes smaller and smaller and it becomes zero along the boundary

m0 = u. Then in the Region 3 (3.12), the naive distance becomes negative but the analysis

in table 3 indicates that a 5-brane web diagram exists in this region and it is given by one

in figure 6. The diagram in figure 6 (a) shows a particular pattern for a strong coupling

behavior of the web diagram for the E1 theory. In fact, we will see that the strong coupling

behavior of the web diagram is quite different between the web diagram of the E1 theory

and the web diagram of the Ẽ1 theory. In terms of the toric-like diagrams in figure 4

(b) and in figure 6 (b), the different strong coupling behavior is associated to different

triangulations of the toric-like diagram.7 This may be interpreted as a generalization of a

flop transition in the usual toric diagram which contains only black dots.

Region 4. The final region for the parameter space of the E1 curve is given by

u >
1

2
m0, m0 < 0. (3.13)

The relations between the regoins in (x4, x6)-space and the largest A
(m)
k,l are shown in

table 4. The boundaries of the regions in table 4 give rise to a 5-brane web given in figure 7.

Note that in this case also like the region (3.12), the shape of the 5-brane web does

not depend on the Coulomb branch parameter u. Furthermore the results in table 4 can

be reproduced by simply setting u = 1
2m0 for the results in table 3. Therefore the web

diagram in figure 7 is merely a special case u = 1
2m0 of the diagram in figure 6 (1) and the

shape does not change further when we move u. This implies that the Region 4 (3.13) is

an unphysical region.

7Note that some of the white dots in figure 4 (b) turn to black dots in figure 6 (b). In general, whether

the dots in the toric-like diagram are black or white depend on its triangulation as mentioned in [21]. Such

black dots do not increase the dimension of Coulomb moduli space, in this case.
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Ai Independent conditions Region for Ai being the largest

A2,0

A2,0 > A1,3, A
(2)
1,1,

A
(2)
1,−1, A1,−3

x6 >
x4+m0

3 , x6 > x4,

x6 < −x4, x6 <
−x4−m0

3

A1,3 A1,3 > A2,0, A
(2)
1,1, A0,0 x6 <

x4+m0
3 , x6 <

m0
2 , x6 <

−x4+m0
3

A
(2)
1,1 A

(2)
1,1 > A2,0, A1,3, A0,0 x6 < x4, x6 >

m0
2 , x6 < −x4

A
(2)
1,−1 A

(2)
1,−1 > A2,0, A1,−3, A0,0 x6 > −x4, x6 <

−m0
2 , x6 > x4

A1,−3 A1,−3 > A2,0, A
(2)
1,−1, A0,0 x6 >

−x4−m0
3 , x6 >

−m0
2 , x6 >

x4−m0
3

A0,0

A0,0 > A1,3, A
(2)
1,1,

A
(2)
1,−1, A1,−3

x6 >
−x4+m0

3 , x6 > −x4,

x6 < x4, x6 <
x4−m0

3

A1,−2, A
(1)
1,−1,

A1,0, A1,2, A
(1)
1,1

n/a No region

Table 4. The regions where each A
(m)
k,l becomes larger than any other A

(m′)
k′,l′ ’s for the Region

4 (3.13) of the E1 theory. The second column gives independent relations for ensuring that A
(m)
k,l

in the first column becomes the largest. The last column indicates a region in the (x4, x6)-space

where the A
(m)
k,l in the first column becomes the largest.

Phase diagram. By combining the results of the Region 1 (3.8), Region 2 (3.11), Region

3 (3.12) and Region 4 (3.13), the phase structure of the E1 theory in the (m0, u)-space is

given in figure 3. Note that the Region 2 (3.11) and Region 4 (3.13) are unphysical regions.

Effective coupling. After identifying the 5-branes web diagrams of the E1 theory in each

parameter region, it is also possible to compute the effective coupling of the E1 theory. In

order to determine the effective coupling, we first consider the tension of monopole strings.

The monopole string can be realized by a D3-brane stretched over a face of a 5-brane web.

Therefore, the tension is related to the area aD of the face. Then the effective coupling

can be given by taking a derivative of aD with respect to a Couomb branch modulus.

In the case of the E1 theory, the aD is given by the area of the face where A1,2 becomes

the largest. For the Region 1, the area is given by

aD,1 = −u(2m0 − 4u). (3.14)

Since u < 0, we consider taking a derivative with respect to −u in order to obtain a positive

effective coupling and the result becomes

τeff,1 =
∂aD
∂(−u)

= 2m0 − 8u. (3.15)

This expression looks different from the standard expression of the E1 theory for example

in [3, 4], but the difference can be absorbed by the redefinition of m0, u.

Let us then move on to the Region 3. The area where A1,2 becomes the largest is

aD,3 = −2u(m0 − 2u). (3.16)
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u
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Region
3

(Region 2)

(Region 4)

Region 1

u = m0u =
1

3
m0

Figure 8. The phase diagram of the Ẽ1 theory. The line between Region 1 and Region 3 is

u = m0. The boundary of the physical parameter region is given by u = 1
3m0 for m0 ≤ 0 and u = 0

for m0 ≥ 0.

Hence the effective coupling in this region is τeff,3 = ∂aD
∂(−u) = 2m0−8u. Namely the effective

coupling in the Region 3 is the same as that (3.15) in the Region 1. In summary, the effective

coupling constant for the E1 theory is given by

τeff = 2m0 − 8u, (3.17)

everywhere inside the physical Coulomb moduli parameter region.

3.3 Phase structure of the Ẽ1 theory

We next consider the 5d Seiberg-Witten curve (2.5) of the Ẽ1 theory. When we use

the parametrization (3.2), the 5d Seiberg-Witten curve (2.5) can be written in the

form (3.3) with

A2,0 =−2x4, A1,3 =−(x4+3x6−m0), A1,2 =−(x4+2x6−m0+u),

A1,1 =−(x4+x6−m0), A
(1)
1,0 =−(x4−m0+u), A

(2)
1,0 =−x4,

A1,−1 =−(x4−x6−m0), A1,−2 =−(x4−2x6−m0+u),

A1,−3 =−(x4−3x6−m0), A0,0 = 0 . (3.18)

We determine the (p, q) 5-brane web in each region by taking the decompactification limit

in the all the regions in the (m0, u)-space:

Region 1: {u < m0 < 0 } ∪ {u < 0, m0 > 0 }
Region 2: m0 > 0, u > 0,

Region 3: m0 < u <
1

3
m0 (< 0),

Region 4: m0 < 0, u >
1

3
m0. (3.19)

The corresponding phase diagram is depicted in figure 8.
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Region 1. The first region we consider is the following,

{u < 0, m0 > 0 } ∪ {u < m0 < 0 }. (3.20)

The strategy to obtain the 5-brane web is again the same as we did in section 3.2. We

determined the regions where a particular A
(m)
k,l becomes the largest in the (x4, x6)-space

under the condition (3.20) for the Region 1. In fact, in the case of (3.20) it turns out that

the regions where a A
(m)
k,l becomes the largest are exactly the same ones in table 1 and we

obtain the same web diagram in figure 4 (a). Note that the decompactification limit yields

the same web diagram in figure 4 although the original Seiberg-Witten curve (2.5) of the

Ẽ1 theory is different from the Seiberg-Witten curve (2.14) of the E1 theory in this case.

Region 2. The second region is

u > 0, m0 > 0. (3.21)

In this case also, the decompactification limit in fact leads to the same web diagram as the

one in figure 5. Again the shape does not depend on the parameter u and the web diagram

can be thought of as a special case of the Region 1 (3.20) characterinzed by u = 0,m0 > 0.

Hence this region (3.21) corresponds to an unphysical region.

Region 3. The third region we consider is

m0 < u <
1

3
m0 (< 0). (3.22)

In this parameter space (3.22), a particular A
(m)
k,l in (3.18) becomes the largest in some

region in the (x4, x6)-space. The results are summarized in table 5. The boundaries of

the regions in table 5 give rise to the 5-brane web in the Region 3 (3.22) and it is depicted

in figure 9.

From the web diagram in figure 4 to the diagram in figure 9, the Ẽ1 theory undergoes

a phase transition as the distance d = 2m0 − 2u becomes negative in the Region 3 (3.22).

However the 5-brane web diagram in figure 9 of the Ẽ1 theory shows a different charac-

teristic compared to the 5-brane web diagram in figure 6 of the E1 theory after the phase

transition. The two NS5-branes come out of the O5-plane in figure 9 whereas a (1,−1)

5-brane and a (1, 1) 5-brane come out of the O5-plane in figure 6. Hence the 5-brane dia-

grams of the E1 theory and the Ẽ1 theory exhibit different structure in the strong coupling

region although they appear to be the same in the weak coupling region as in figure 4.

Region 4. The final region we consider is

m0 < 0, u >
1

3
m0. (3.23)

Each A
(m)
k,l in (3.23) becomes the largest in the subregion in the (x4, x6)-space as in table 6.

The boundaries of the regions in table 6 again yields the 5-brane web given in figure 10. In

this region, the 5-brane web diagram does not depend on the parameter u and the result

in table 6 can be obtained by substituting u = m0
3 to the result of Region 3 in table 5.

Hence the Region 4 (3.23) corresponds to an unphysical region.
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A
(m)
k,l Independent conditions Region for A

(m)
k,l being the largest

A2,0

A2,0 > A1,3, A1,2, A1,−2,

A1,−3, A0,0

x6 >
x4+m0

3 , x6 >
x4+m0−u

2 , x6 >
−x4−m0+u

2 ,

x6 <
−x4−m0

3 , x4 < 0

A1,3 A1,3 > A2,0, A1,2, A0,0 x6 <
x4+m0

3 , x6 < u, x6 <
−x4+m0

3

A1,2 A1,2 > A2,0, A1,3, A0,0 x6 <
x4+m0−u

2 , x6 > u, x6 <
−x4+m0−u

2

A1,−2 A1,−2 > A2,0, A1,−3, A0,0 x6 >
−x4−m0+u

2 , x6 < −u, x6 >
x4−m0+u

2

A1,−3 A1,−3 > A2,0, A1,−2, A0,0 x6 >
−x4−m0

3 , x6 > −u, x6 >
x4−m0

3

A0,0

A0,0 > A2,0, A1,3, A1,2,

A1,−2, A1,−3

x4 > 0, x6 >
−x4+m0

3 , x6 >
−x4+m0−u

2 ,

x6 <
x4−m0+u

2 , x6 <
x4−m0

3

A1,1, A
(1)
1,0,

A
(2)
1,0, A1,−1

n/a No region

Table 5. The regions where each A
(m)
k,l becomes larger than any other A

(m′)
k′,l′ ’s for Region 3 (3.22)

of the Ẽ1 theory. The second column gives independent relations for ensuring that A
(m)
k,l in the first

column becomes the largest. The last column indicates a region in the (x4, x6)-space where the

A
(m)
k,l in the first column becomes the largest.

0m0 � 3u �m0 + 3u

�u

u

x6

x4 1

2
(u�m0)

�1

2
(u�m0)

A2,0

A1,3

A1,2

A0,0

A1,�2

A1,�3

(a) (b)

Figure 9. (a): the blue letter A
(m)
k,l indicates the largest A

(m)
k,l in the region. The black solid lines

are the boundaries of those regions and give the 5-brane web in the decompactification limit of the

Ẽ1 curve in Region 3 (3.22). (b): the toric-like diagram of the Ẽ1 theory with a triangulation given

by the web in figure (a).
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A
(m)
k,l Independent conditions Region for A

(m)
k,l being the largest

A2,0 A2,0 > A1,3, A1,−3, A0,0 x6 >
x4+m0

3 , x4 < 0, x6 <
−x4−m0

3

A1,3 A1,3 > A2,0, A0,0 x6 <
x4+m0

3 , x6 <
−x4+m0

3

A1,−3 A1,−3 > A2,0, A0,0 x6 >
−x4−m0

3 , x6 >
x4−m0

3

A0,0 A0,0 > A2,0, A1,3, A1,−3 x4 > 0, x6 >
−x4+m0

3 , x6 <
x4−m0

3

A1,2, A1,1, A
(1)
1,0

A
(2)
1,0, A1,−1, A1,−2

n/a No region

Table 6. The regions where each A
(m)
k,l becomes larger than any other A

(m′)
k′,l′ ’s for Region 4 (3.23)

of the Ẽ1 theory. The second column gives independent relations for ensuring that A
(m)
k,l in the first

column becomes the largest. The last column indicates a region in the (x4, x6)-space where the

A
(m)
k,l in the first column becomes the largest.

0

�1

3
m0

1

3
m0

x6

x4 A0,0 A2,0

A1,3

A1,�3

Figure 10. The blue letter A
(m)
k,l indicates the largest A

(m)
k,l in the region. The black solid lines are

the boundaries of those regions and give the 5-brane web in the decompactification limit of the Ẽ1

curve in Region 4 (3.23).

Phase diagram. By summarizing the results in the Region 1 (3.20), Region 2 (3.21),

Region 3 (3.22) and Region 4 (3.23), we can construct a phase diagram for the Ẽ1 theory. A

phase transition occurs when we go from the Region 1 (3.20) to the Region 3 (3.22). The

other two regions are unphysical regions. The corresponding phase diagram is depicted

in figure 8.

Effective coupling. As we obtain the 5-brane web diagram in each region of the parame-

ter space of the Ẽ1 theory, it is possible to compute the effective coupling in the each region.

For the Region 1, the 5-brane web diagram is the same as the one for the Region 1

of the E1 theory and hence the effective coupling is 2m0 − 8u from (3.15). On the other

hand, it turns out that the effective coupling in the Region 3 of the Ẽ1 theory is different

from 2m0 − 8u. The area of the face where A1,2 is the largest is

aD,3 =
1

2
(m0 − 3u)2. (3.24)
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Therefore, the effective coupling is

τeff,3 =
∂aD
∂(−u)

= 3m0 − 9u, (3.25)

which is different from (3.15). Combining the result in (3.15) and (3.25), we can rewrite

the effective coupling constant in a unified manner as8

τeff =
5

2
m0 −

17

2
u− 1

2
|u−m0| . (3.26)

Now we see a sharp phase transition from Region 1 to Region 3 for the Ẽ1 theory due to

the change of the effective coupling. This is consistent with the fact that the Calabi-Yau

threefold for the Ẽ1 admit a flop transition, while the Calabi-Yau threefold for the E1

theory does not admit.

4 Decompactification limit of 5d Seiberg-Witten curve of E2

In section 3, we reproduced 5-brane web diagram with an O5-plane for the E1 and the Ẽ1

theories from the decompactification limit of the 5d Seiberg-Witten curves (2.14) and (2.5),

respectively. We then determined the phase diagrams in the parameter space m0, u of the

E1 and the Ẽ1 theories which show a phase transition between the weak coupling region

and the strong coupling region. In this section, we discuss the Sp(1) theory with one flavor

whose UV fixed point has an enhanced symmetry E2 = SU(2) × U(1). Depending on

how one decouples the flavor, one can obtain either E1 or Ẽ1 theory. We repeat the same

analysis to study the phase structure of the E2 theory. We then take two different flavor

decoupling limits on the phase diagram of the E2 theory and we show that the decoupling

precisely reproduce the phase diagrams of the E1 and Ẽ1 theories discussed in section 3. We

also discuss a realization of the E0 theory from the point of view of the brane configuration

with an O5-plane.

4.1 Phase structure of the E2 theory

We first obtain the 5-brane web diagram of the Sp(1) gauge theory with one flavor from the

5d Seiberg-Witten curve and then determine its phase structure in the parameter space.

The 5d Seiberg-Witten curve of the E2 theory is given by (A.29) in appendix A, which is

obtained a successive flavor decoupling from the curve for Nf = 7 flavors. After rescaling

t, the Seiberg-Witten curve for Sp(1) curve with Nf = 1 flavor takes the following form

t2 +
[
q−1(w3 + w−3) + q−1U(w2 + w−2)− (q−1 −M1

1
2 )(w + w−1)

− (2q−1U + 2M1
− 1

2 )
]
t+ (−w +M1

−1 +M1 − w−1) = 0. (4.1)

8We would like to interpret the last term as the contribution from the massless particle with instanton

charge. We thank Kazuya Yonekura for related discussion.
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As the form of (3.3) of the Seiberg-Witten curve, A
(m)
k,l ’s read

A2,0 = −2x4, (4.2)

A1,3 = −(x4 + 3x6 −m0), A1,2 = −(x4 + 2x6 −m0 + u),

A
(1)
1,1 = −(x4 + x6 −m0), A

(2)
1,1 = −

(
x4 + x6 +

1

2
m1

)
,

A
(1)
1,0 = −(x4 −m0 + u), A

(2)
1,0 = −

(
x4 −

1

2
m1

)
,

A
(1)
1,−1 = −(x4 − x6 −m0), A

(2)
1,−1 = −

(
x4 − x6 +

1

2
m1

)
,

A1,−2 = −(x4 − 2x6 −m0 + u), A1,−3 = −(x4 − 3x6 −m0),

A0,1 = −x6, A
(1)
0,0 = −m1, A

(2)
0,0 = −(−m1), A0,−1 = −(−x6),

where we used the parameterization (3.2) and M1 = e−Rm1−iψ′ . The E2 theory and its

vacua are parametrized by the threee parameters m0,m1 and u. Following the same proce-

dure as done in section 3, determining a 5-brane diagram for the E2 theory is straightfor-

ward. Namely, we divide the parameter region into subregions and then determine which

A
(m)
k,l in (4.2) becomes the largest in each region, as the largest A

(m)
k,l varies depending on

the region in the (x4, x6)-space. The boundaries of the regions then yield the corresponding

5-brane web in the presence of an O5-plane.

We divide the (m0,m1, u)-space into the following sixteen regions and the correspond-

ing phase diagram is depicted in figure 11:

Region 1: m1 < 0, u < m1, u < m0 + 1
2m1,

Region 2: m1 < 0, u > m1, u < 0, u < m0 + 1
2m1,

Region 3: m1 < 0, u > m1, m0 + 1
2m1 < u < 1

2m0 + 1
4m1,

Region 4: m1 < 0, u < m1, m0 + 1
2m1 < u < m0 − 1

2m1,

Region 5: m1 < 0, m0 − 1
2m1 < u < 1

2m0 + 1
4m1,

Region 6: m1 > 0, u < −m1, u < m0 − 1
2m1,

Region 7: m1 > 0, u > −m1, u < 0, u < m0 − 1
2m1,

Region 8: m1 > 0, u > −m1, m0 − 1
2m1 < u < 1

3m0 − 1
6m1,

Region 9: m1 > 0, u < −m1, m0 − 1
2m1 < u < m0 + 3

2m1,

Region 10: m1 > 0, m0 + 3
2m1 < u < 1

2m0 + 1
4m1,

Region 11: m1 < 0, u > 0, m0 > −1
2m1,

Region 12: m1 < 0, u > 1
2m0 + 1

4m1,
3
2m1 < m0 < −1

2m1,

Region 13: m1 < 0, u > 1
2m0 + 1

4m1, m0 <
3
2m1,

Region 14: m1 > 0, u > 0, m0 >
1
2m1,

Region 15: m1 > 0, u > 1
3m0 − 1

6m1, −5
2m1 < m0 <

1
2m1,

Region 16: m1 > 0, u > 1
2m0 + 1

4m1, m0 < −5
2m1.

(4.3)
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1

2
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m1

1

2
m1

3

2
m1 �1

2
m1

Region 1

Region 2

Region 4

Region
5

Region
3

(Region 12)

(Region 13)

(Region 11)

(a) m1 ≤ 0

u

m0�m1/6

�1

2
m1

�m1

�1

2
m1�5

2
m1

1

2
m1

Region 6

Region 7

Region 9

Region
10

Region 8

(Region 16)

(Region 14)

(Region 15)

�3

2
m1

(b) m1 ≥ 0

Figure 11. The phase diagram for the E2 theory with a fixed m1.

We note that the Region 11–Region 16, in fact, correspond unphysical Coulomb branch

moduli space. In other words, the 5-brane web diagram reproduced in these regions do not

depend on the Coulomb modulus u. Furthermore, the web diagram in Region 11 is merely

a special case u = 0 of the web in Region 2. This means that Region 11 is a boundary of

Region 2. Similarly, the 5-brane web diagrams in Region 12, 13, 14, 15, and 16 are realized

as a special case (or a boundary) of Region 3, 5, 7, 8, and 10, respectively. Therefore, the

relevant regions are from the Region 1 to Region 10.

Since Region 1–10 are all inside the region u < 0, it is enough to consider only this

region. The resultant phase diagrams in the (u,m0,m1)-space with fixed Coulomb moduli

parameter u < 0 are summarized in figure 12. The corresponding 5-brane web diagrams

are depicted in figure 12 (b)–(k). We remark that here we omit the information of the

largest A
(m)
k,l ’s and the explicit locations of the boundaries in the figures for simplicity, and

such detailed information is relegated to appendix B.
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�u

u

0u2u5

2
u

1

2
u

Region 1

Region 2Region 3

Region
4

Region
5

Region
10

Region 9

Region 7

Region 6

Region 8

(Region 12)

(Region 13)

(Region 16)

(Region 15)

(a) Phase diagram with fixed u < 0

(b) Region 1 (c) Region 2 (d) Region 3 (e) Region 4 (f) Region 5

(g) Region 6 (h) Region 7 (i) Region 8 (j) Region 9 (k) Region 10

Figure 12. The phase diagram of the E2 theory. The 5-brane web diagram in each region is

depicted in figure (b)–(k).

4.2 Interpretation of the phase diagram

We found that different regions for the masses m0,m1 and for the Coulomb moduli param-

eter u yield various different phases for the E2 SCFT as given in figure 12. We see that

some of them are related by a standard flop transition on a usual web diagram. A familiar

example is the transition between Region 1 and Region 2. On the other hand, others are

related by new kinds of transitions, which we would like to interpret as generalized version

of the flop transitions for a web diagram including an O5-plane. We find four types of such

transitions. We depict only the relevant part of the web diagram in figure 13 (a)–(d). We

propose that these transitions are generally valid for any web diagrams.

From the argument of the Seiberg-Witten curves those transitions in figure 13 indeed

exist and one can perform generalized flop transitions if a 5-brane web diagram contains

these local structures. In particular the transition in figure 13 (d) does not involve an

O5-plane and hence one can use the transition even if we an O5-plane is replaced by a [0, 1]

7-brane to which two NS5-branes attach. We note that in section 2.2 (also figure 4) of [29]

we introduced a transition in similar to those in figure 13, which is in fact nothing but a
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(a) Region 2 ↔ Region 3

(b) Region 5 ↔ Region 10

(c) Region 7 ↔ Region 8

(d) Region 9 ↔ Region 10

Figure 13. Four new transitions occurring in the phase diagram of the E2 theory which can be

interpreted as a generalized flop transition on a 5-brane web diagrams with an O5-plane.

successive transition of those in figure 13 (c) and (d). Therefore, the analysis in section 4.1

shows that the transition considered in [29] is indeed possible.

Among the four transitions in figure 13, the transition in figure 13 (b) may have

an intriguing interpretation as a continuous movement of 5-branes across the O5-plane.

This flop transition can be naturally understood by interpreting that the (1,−1) 5-brane

is connected to the mirror image of (1, 1) 5-brane as depicted in the thick red line in

figure 14. The thin black lines are just another copy of this red ones with reflected along

O5-plane. When we move this red lines down until D5 brane goes below the O5-plane,

while moving the black part in a way to be consistent with the reflection, we obtain the

right of figure 14. In this picture in the right, we see that there are two coincident NS5-

branes stuck to the O5-plane and that one of the NS5-brane is connected to the mirror

image of the other NS5-brane. This configuration is consistent with the S-dual of the

configuration with two coincident D5-branes stuck to ON− plane discussed in section 2

of [29]. This observation tells us what happens when we move flavor D5-brane below the

O5-plane, which corresponds to move from positive mass to negative mass (or vice versa).
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Figure 14. Interpretation of the flop transition in figure 13 (b).

4.3 Flow to the E1, Ẽ1 and E0 theories

Recalling that for SU(2) theory with Nf flavors, a flavor decoupling is to take |mi| → ∞
which decouples the hypermultiplet in the fundamental representation associated with mass

mi, and hence make the SU(2) theory of one less Nf − 1 flavors. It is, however, for SU(2)

theory with Nf = 1 flavor, there are two possible flavor decouplings, giving rise to two dif-

ferent SCFTs with different global symmetries, known as E1 and Ẽ1. The decoupling limits

are to take m1 → −∞ and m1 →∞ which result in two different pure SU(2) theory with

discrete theta angle 0 and π, respectively [4]. See also figure 1 for usual 5-brane diagrams.

For configuration of 5-brane web with an O5-plane, it is natural to expect to reproduce

two different phase diagrams for E1 and Ẽ1 theories by taking the decoupling limits on

the phase diagram of the E2 theory. As we will show, it is indeed the case that the limits

m1 → −∞ and m1 →∞ of the E2 theory reproduce the phase diagram for the E1 theory

and the Ẽ1 theory respectively. In particular, the two different strong coupling behaviors

in the E1 and Ẽ1 theories will be also precisely reproduced from the decouplings of the E2

theory. This further supports for the 5-brane web picture for Sp(1) theory in section 3.

Flow to E1 theory. First consider the flavor decoupling limit m1 → −∞ on the phase

diagram of the E2 theory with m1 ≤ 0, given in figure 11 (a), together with the redefinition

of m0 for the E2 theory,

m1 + 2m
(E2)
0 = 2m

(E1)
0 . (4.4)

The relation can be understood from the identification of the Seiberg-Witten curves of the

E2 theory into the E1 theory in the decoupling limit as shown in appendix A. It follows

that in the phase diagram for the E2 theory, (m
(E2)
0 , u) =

(
−1

2m1, 0
)

becomes the origin in

the (m
(E1)
0 , u)-space. With the relation (4.4), it is possible to see that applying the limit

m1 → −∞ to the phase diagram of the E2 theory in figure 11 (a) gives rise to the phase

diagram of the E1 theory in figure 3. After taking the limit, only Region 2 and Region

3 of the E2 theory remain. Region 2 of the E2 theory becomes the Region 1 of the E1

theory, while Region 3 of the E2 theory becomes Region 3 of the E1 theory. As for the

5-brane webs in these regions, we can take the limit m1 → −∞ together with proper shift

in x4 direction for the 5-brane webs for Region 2 and Region 3 depicted in figure 22 and

figure 23 in appendix B.2. The resulting 5-brane web diagrams of Region 2 in figure 12 (c)

and Region 3 in figure 12 (d) in the limit m1 → −∞ exactly yield the 5-brane webs for
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Region 1 in figure 4 and Region 3 in figure 6 of the E1 theory respectively. In particular

the strong coupling behavior of the E1 theory in figure 6 is reproduced from the limit

m1 → −∞ of the 5-brane web in figure 12 (d).

Flow to Ẽ1 theory. Next consider the decoupling limit m1 →∞ on the phase diagram

for the E2 theory with m1 ≥ 0, given in figure 11 (b), together with the redefinition of m0

for the E2 theory,

−m1 + 2m
(E2)
0 = 2m

(Ẽ1)
0 . (4.5)

This is again the identification of the decoupling of the E2 theory to the Ẽ1 theory shown

in appendix A. It follows form (4.5) that (m
(E2)
0 , u) = (1

2m1, 0) becomes the origin in

the (m
(Ẽ1)
0 , u)-space. The relevant regions of the phase diagram of the E2 theory in this

decoupling limit are Region 7 and Region 8 in figure 11 (b). It is then readily to see that the

resulting phase diagram is exactly the same diagram as that of the Ẽ1 theory in figure 8.

Namely, Region 7 of the E2 theory becomes Region 1 of the Ẽ1 theory; Region 8 of the

E2 theory becomes Region 3 of the Ẽ1 theory. Similarly, after taking the limit m1 → ∞
the 5-brane web diagrams for Region 7 in figure 27 and for Region 8 in figure 28 of the E2

theory become the 5-brane web diagrams for Region 1 in figure 4 for Region 3 in figure 9 of

the Ẽ1 theory, respectively. Again the strong coupling behavior of the Ẽ1 theory in figure 9

is reproduced from the limit m1 →∞ of the 5-brane web in figure 12 (i).

From E1 to Ẽ1 via E2. From the discussion above, we find that, by changing the mass

parameter m1 from −∞ to +∞, we can continuously change the web diagram of the E1

theory, which is identified as the E2 theory with m1 = −∞, to that of the Ẽ1 theory, which

is identified as the E2 theory with m1 = +∞. In this process, a sequence of standard

or generalized flop transitions arises, as can be seen from the discussion in sections 4.1

and 4.2. Especially, the web diagrams in the strong coupling region, figure 6 and figure 9,

are connected by the transitions as Region 3→ 4→ 5→ 10→ 9→ 8 in figure 12. Most of

the transitions are standard flop transitions while the transitions in Region 5 → 10 and in

Region 10→ 9 are the new ones, which are depicted in figure 13 (b) and (d). Thus, these

new transitions help us to understand the difference of the discrete theta angle at the level

of web diagram with an O5-plane in the strong coupling region.

Flow to E0 theory. From the 5-brane web of the Ẽ1 theory in Region 3 in figure 9,

we can further take a limit of m0 → ∞ which gives rise to yet another 5d SCFT called

the E0 theory. When we take the limit m0 → ∞ for the 5-brane web in figure 9, the

middle two NS5-branes become infinitely long. Hence the degrees of freedom associated

to the infinitely long NS5-branes decouple and the resulting 5d theory can be effectively

described by a 5-brane web shown in figure 15. Here we introduced a [0, 1] 7-brane at the

end of the two NS5-branes. We can then consider a deformation of the theory by moving

the [0, 1] 7-brane upward. After the Hanany-Witten transition the 5-brane web diagram

becomes the one in figure 16. This is equivalent to a standard web diagram of the E0 theory

in figure 17 by an SL(2,Z) transformation. Therefore, by taking the limit of m0 →∞ from

the 5-brane web of the Ẽ1 theory in figure 9 with the appropriate deformation and the

Hanany-Witten transition, we arrive at the 5-brane web diagram of the E0 theory.
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Figure 15. The 5-brane web di-

agram given by taking the limit

m0 → ∞ for the 5-brane web of

the Ẽ1 in figure 9. A (0, 1) 7-

brane is attached to the end of

the two NS5-branes.

Figure 16. The 5-brane dia-

gram after moving the (0, 1) 7-

branes in figure 15 upward.

Figure 17. A standard 5-

brane web diagram for the

E0 theory.

Region 1 Region 2 Region 3 Region 4 Region 5

τeff 2m0 − 7u 2m0 +m1 − 8u 2m0 +m1 − 8u 2m0 − 7u 3m0 − m1
2 − 8u

Table 7. The effective coupling of the E2 theory (m1 ≤ 0) for Region 1–Region 5.

Rergion 6 Region 7 Region 8 Region 9 Region 10

τeff 2m0 − 7u 2m0 −m1 − 8u 3m0 − 3m1
2 − 9u 3m0 − m1

2 − 8u 3m0 − m1
2 − 8u

Table 8. The effective coupling of the E2 theory (m1 ≥ 0) for Region 6–Region 10.

4.4 Effective coupling of E2 theory

As we determined the 5-brane web diagrams in figure 12 (or more detailed figures given

in appendix B.2), it is possible to determine the effective coupling of the E2 theory for

each Region. The tension of the monopole string is related to the area aD of the compact

face where A1,2 becomes the largest, and the effective coupling is obtained by taking a

derivative of aD with respect to −u. Then the effective coupling of the E2 theory in each

region can be computed and is summarized in table 7 and table 8.

In fact, it is possible to obtain a form of the effective coupling which can be valid in all

the region in the physical Coulomb moduli, that is Region 1–10. The explicit expression

of such a form is

τeff =
1

2

(
5m0 −

1

2
m1 − 17u−

∣∣∣∣u−m0 +
1

2
m1

∣∣∣∣− |u−m1| − |u+m1|
)
. (4.6)

Then one can see that in each region the effective coupling (4.6) precisely reproduces the

effective couplings listed in table 7 and table 8.

In section 4.3, we showed that the E2 theory becomes the E1 theory after sending

m1 → −∞ with the redefinition (4.4). Indeed, the effective coupling (4.6) of the E2 theory

reduces to the effective coupling (3.17) of the E1 theory after the redefinition (4.4). Simi-

larly, the E2 theory flows to the Ẽ1 theory in the limit m1 →∞ with the redefinition (4.5).

Again it is possible to see that the effective coupling (4.6) of the E2 theory reduces to the

effective coupling (3.26) of the Ẽ1 theory after the redefinition (4.5).
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5 Conclusion and discussion

In this paper, we discussed two different 5d N = 1 pure Sp(1) theories from the perspective

of a 5-brane web with an O5-plane: one has the discrete theta angle θ = 0 (the E1 theory)

and the other has θ = π (the Ẽ1 theory). From the point of view of the pure SU(2) theory,

these two theories clearly have different web diagrams. This means that the corresponding

M-theory configurations, dictated in their Seiberg-Witten curves, are different. From the

perspective of the pure Sp(1) theory, on the other hand, their difference does not seem very

clear, as a naive brane configuration with an O5-plane for two theories does not seem to

show a sharp distinction in the weak coupling region.

As the first step to distinguish these two theories in 5-brane webs, we proposed a way to

compute the Seiberg-Witten curves for 5d Sp(1) theory based on a web of 5-branes with an

O5-plane, by introducing proper boundary conditions on OM5-planes originated from the

O5-plane. The Seiberg-Witten curve for the E1 and Ẽ1 theories, we obtained, agrees with

the known Seiberg-Witten curves. Our method is also applicable for the cases of non-zero

flavors; for example, as shown in appendix A, the Seiberg-Witten curves for Sp(1) theory

with Nf ≤ 7 flavors were computed and show apparent SO(2Nf )×U(1) global symmetry.

Moreover, their Weierstrass form exactly matches the known result computed for SU(2)

theory with same Nf flavors revealing the global symmetry enhancement to ENf+1.

Using the obtained Sp(1) Seiberg-Witten curves for the E1 and Ẽ1 theories, we then

analyzed the phase structure of the curves to differentiate the two theories. In the 5d

decompactification limit, we found various intriguing points, which can be summarized

as follows:

• The phase diagrams for the E1 and Ẽ1 theories are clearly different which also lead

to the two different effective coupling formulas as given in (3.17) and in (3.26). Their

phase structure shows that two theories, in the strong coupling region, give rise to

distinctive brane configurations.

• In the weak coupling region, however, M5-brane configurations for the E1 and Ẽ1

theories in the decompactification limit do not seem different.

• The phase diagram for 5d Sp(1) theory with one flavor (the E2 theory) also reveals

consistent structure for the flavor decoupling to the E1 and Ẽ1 theories (and even to

the E0 theory), and so does the effective coupling for the E2 theory (4.6). It naturally

suggests new types of flop transitions (“generalized flop transition”) in the presence

of an O5-plane and each theory only allows distinctive generalized flop transitions

which hence could serve as a characteristic feature that distinguishes one theory from

the other. (See section 4.2.)

We note that in the weak coupling region, the web configurations for the E1 theory

and the Ẽ1 theory in the decompactification limit look the same, as given in figure 4,

while the configurations for two theories in the strong coupling region are very different.

A natural question then arises whether two theories can be distinguished from the 5-brane

web with an O5-plane in the weak coupling. As the very same question arises for the
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brane configuration with O7−-plane in the weak coupling was already address in [8], it is

instructive to discuss the O7−-plane case to better understand the weak coupling brane

configurations for pure Sp(1) with an O5-plane.9

Recall salient feature of a brane configuration with an O7−-plane describing the 5dN =

1 pure Sp(N) gauge theories with different discrete theta angle. In a brane configuration

for an Sp(N) gauge theory in the “strong coupling region”, an O7−-plane is resolved and

is decomposed into two [p, q] 7-branes [30]. It is known that the discrete theta angle

appears as two inequivalent decompositions of the O7−-plane as discussed in [8]. In the

weak coupling region of the Sp(N) gauge theory, on the other hand, an O7−-plane is not

resolved, which means that the difference on the discrete theta angle is not manifest from

web diagram with an O7−-plane. However, this does not means that the theory itself

cannot be distinguished: there is difference that is not manifest. For example, the way

that an O7−-plane is resolved in the strong coupling region should be already encoded in

the weak coupling region. In other words, the flow to the strong coupling regions, yielding

a definite O7− resolution to two [p, q] 7-branes, is unambiguous in the weak coupling brane

configuration. One could even make a distinction between two types of O7−-plane based on

their inequivalent decompositions. When there is a flavor in the brane configuration, the

monodromy cut of the D7-brane can generate SL(2,Z) T-transformation which converts

one type of resolved [p, q] 7-branes into the other type.

For the brane configuration with an O5-plane in the weak coupling region, the situation

is partially analogous to the O7−-plane case. In the weak coupling region, difference in

their brane configurations for the E1 theory and the Ẽ1 theory is not manifest, while their

brane configurations in the strong region are very different. As in the O7−-plane case, the

flow from the strong coupling to the weak coupling encode the differences. For instance, as

two theories are obtained by two different flavor decoupling limits of the E2 theory, such

different decouplings project out distinctive BPS spectra for two theories from the BPS

spectrum of the E2 theory. This means that the resultant BPS spectrum for each theory is

different, regardless of the resulting web diagrams being similar or not in the weak coupling

region. In other words, if one carefully studies possible (p, q) strings in brane configuration

with an O5-plane, the (p, q) string configurations for each case should be different. Likewise,

the allowed boundary conditions for two O4-planes after T-duality are clearly different as

explained in section 2, and thus the states respecting such boundary conditions are of

course different. One could even introduce a hidden labeling for the web diagram with an

O5-plane to distinguish the E1 theory from the Ẽ1 theory in the weak coupling region.

We also note that adding a flavor to the E1 and Ẽ1 web diagrams no longer distinguish

the discrete theta angle because the two configurations with different theta angle can be

connected through a generalized flop transition corresponding to figure 13 (b), like the

monodromy transformation of the O7− case.

9We thank Oren Bergman for the illuminating discussion about analogy between a brane configuration

with an O7−-plane and a brane configurations with an O5-plane.
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We also remark that generalized flop transitions in section 4.2 support the transitions

between brane configurations involving an O5-plane in [29], one of which is an S-dual of

the brane configurations with an ON-plane, and the other is a natural brane configuration

with an O5-plane.

It would be interesting to generalize the analysis of the phase structure diagram for

the case of more flavors which would lead to an explicit effective coupling formula, and

5d theories of other types of the orientifolds, such as SO(N) gauge groups with flavors or

D-type quiver theories, and also further to obtain 6d Seiberg-Witten curves.
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A Seiberg-Witten curves for 5d Sp(1) theory with Nf ≤ 7 flavors

In section 2, the method of obtaining Seiberg-Witten (SW) curve based on web diagram

with an O5−-plane was discussed. It is straightforward to generalize to gauge groups of

higher rank as well as higher flavors. As an instructive example, we here consider 5d

Seiberg-Witten curve for Sp(1) theory with Nf = 7 flavors. As the curve was obtained

in [20, 21, 25, 31], we check that its j-invariant agrees with the known result and also that

a successive application of the flavor decoupling limit reproduces the curves for less flavors.

A.1 5d Sp(1) theory with Nf = 7 flavors

We now consider 5d Sp(1) theory with Nf = 7 flavors in a web diagram with O5-plane

given in figure 18. For convenience, we introduce the following notation

χ1 =
4∑

i=1

Mi, χ4 =
4∏

i=1

Mi, χ3 = χ4

4∑

i=1

M−1
i ,

χ̃1 =

8∑

i=5

Mi, χ̃4 =

8∏

i=5

Mi, χ̃3 = χ̃4

8∑

i=5

M−1
i ,

χ8 = χ4 χ̃4, χ
SO(16)
1 = χ1 + χ3 χ

−1
4 +χ̃1+χ̃3 χ̃

−1
4 . (A.1)
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Figure 18. 5d Sp(1) theory with Nf = 7 flavors in a web diagram with O5-planes.

With the Ansatz for the Seiberg-Witten curve

t2
4∏

i=1

(w −Mi)(w
−1 −Mi)

+ c1t
(
w4 + aw3 + bw2 + cw + d+ cw−1 + bw−2 + aw−3 + w−4

)

+ c2

8∏

i=5

(w −Mi)(w
−1 −Mi) = 0, (A.2)

we impose two boundary conditions (i) and (ii):

(i) As w →∞, the leading term in w is given by

(χ4t
2 + c1t+ c2χ̃4)w4 = χ4(t− 1)2w4, (A.3)

which gives

c1 = −2χ4, c2 = χ4 χ̃
−1
4 . (A.4)

As discussed in [21], for the web diagram involving such jumping, the next leading term in

w should be proportional to (t− 1), which means

(
− (χ3 + χ1χ4)t2 + c1at− c2(χ̃3 + χ̃1χ̃4)

)
w3 ∝ −(χ3 + χ1χ4)(t− 1)(t− α)w3, (A.5)

where α = χ4χ̃
−1
4 (χ̃1χ̃4 + χ̃3)(χ1χ4 + χ3)−1. From this, we find

a = −1

2

(
χ̃1 + χ̃−1

4 χ̃3 + χ1 + χ−1
4 χ3

)
= −1

2
χ

SO(16)
1 . (A.6)
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The rescaling

t→ (χ4χ̃
−1
4 )

1
2

∏4
i=1(w −Mi)(w−1 −Mi)

t, (A.7)

yields

t2 − 2χ
1
2
8 t
(
w4 + aw3 + bw2 + cw + d+ cw−1 + bw−2 + aw−3 + w−4

)

+
8∏

i=1

(w −Mi)(w
−1 −Mi) = 0. (A.8)

(ii) We also require a double root at w = 1 and w = −1 to take into account of the mirror

image due to the O5-plane. At w = 1, (A.8) becomes

t2 − 2χ
1
2
8 (2 + 2a+ 2b+ 2c+ d)t+

8∏

i=1

(1−Mi)
2, (A.9)

and we require it should be of a complete square form, which means

χ
1
2
8 (2 + 2a+ 2b+ 2c+ d) =

8∏

i=1

(1−Mi), (A.10)

where (±) signs are possible, but here we choose (+) sign10

Likewise, at w = −1, (A.8) becomes

t2 − 2χ
1
2
8 (2− 2a+ 2b− 2c+ d)t+

8∏

i=1

(1 +Mi)
2, (A.11)

and in order for this to be a complete square form, we have

χ
1
2
8 (2− 2a+ 2b− 2c+ d) =

8∏

i=1

(1 +Mi). (A.12)

It then follows from (A.10) and (A.12) that

2χ
1
2
8 (2 + 2b+ d) =

8∏

i=1

(1−Mi) +
8∏

i=1

(1 +Mi) = 2χ
1
2
8 χ

SO(16)
s ,

4χ
1
2
8 (a+ c) =

8∏

i=1

(1−Mi)−
8∏

i=1

(1 +Mi) = −2χ
1
2
8 χ

SO(16)
c . (A.13)

10If we denote the (+,+)-choice for the sign for (A.10) and (A.12), then there are four different choices:

(+,+),(−,+) and (−,−), (+,−). The (−,+)-choice gives rise to the same Seiberg-Witten curve for the

(+,+)-choice (A.15) but with χs ↔ χc, while the other choice (−,−) (or (+,−) ) leads to the Seiberg-

Witten curve for the (+,+)-choice (or the (−,+)-choice) with a Wilson line that flips the instanton factor

q → −q, respectively, as discussed in section 2.
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We then have all the parameters

a = −1

2
χ

SO(16)
1 ,

b = U (Coulomb branch modulus),

c =
1

2
χ

SO(16)
1 − 1

2
χSO(16)

c ,

d = −2− 2U + χSO(16)
s . (A.14)

The SW curve for 5d Sp(1) theory with Nf = 7 flavors is given by

t2 − 2χ
1
2
8

[(
w4 + w−4

)
− 1

2
χ

SO(16)
1

(
w3 + w−3

)
+ U

(
w2 + w−2

)
(A.15)

+
1

2

(
χ

SO(16)
1 − χSO(16)

c

)(
w + w−1

)
− 2− 2U + χSO(16)

s

]
t+

8∏

i=1

(w −Mi)(w
−1 −Mi) = 0,

where M8 is related to the instanton factor as M8 = q−2.

Notice that this web configuration gives rise to a manifest SO(16) symmetry, although

naive global symmetry for Sp(1) theory with Nf = 7 flavors is SO(14) × U(1)I . This

naive global symmetry is enhanced to E8 at the UV fixed point. As SO(16) is a maximal

compact subgroup of E8, the brane configuration with an O5-plane already reveals partial

enhancement of global symmetry

SO(14)×U(1)I ⊂ SO(16) ⊂ E8. (A.16)

We also note that when the SW curve (A.15) is expressed as Weierstrass form, it coincides

with the known Seiberg-Witten curve for SU(2) theory with Nf = 7 flavors [21, 25, 31]

which is written in terms of the E8 characters. (We used a Mathematica package called

‘Susyno’ [32] to re-express the Seiberg-Witten curve written in terms of the SO(16) char-

acters into the curve written in terms of the E8 characters.)

A.2 Flavor decouplings

Nf = 6 SW curve. Let us consider flavor decoupling limit. From the web diagram

figure 18, one finds that the Nf = 6 configuration can be obtained by taking the limit where

the physical masses to infinity which corresponds to the exponentiated masses Mi = e−βmi

to be

M1 → 0, while
M8

M1
= q2

Nf=6 fixed, (A.17)

where qNf=6 is the instanton factor for theory of Nf = 6 flavors. Given (A.15), we perform

this decoupling limit with the following redefinition (qNf=6 = q)

U → −1

2
M−1

1 (1 + q−2
Nf=6)U, (A.18)
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which leads to the Seiberg-Witten curve for 5d Sp(1) with Nf = 6 flavors:

t2+χ1(q2)χ
1
2
6

[(
w3+w−3

)
+U

(
w2+w−2

)
(A.19)

−
(
1−χ−1

1 (q2)χSO(12)
c

)(
w+w−1

)
−2
(
U+χ−1

1 (q2)χSO(12)
s

)]
t+

6∏

i=1

(w−Mi)(w
−1−Mi) = 0,

where we have relabeled the mass parameters for the remaining six flavors to be Mi

(i = 1, · · · , 6) and

χ6 =
6∏

i=1

Mi, χ1(q2) = q + q−1 = χ1(q)2 − 2, (A.20)

and χ
SO(12)
s and χ

SO(12)
c are the characters for SO(12) spinor and conjugate spinor repre-

sentations, respectively

χSO(12)
s =

1

2
χ
− 1

2
6

[
6∏

i=1

(1 +Mi) +
6∏

i=1

(1−Mi)

]
,

χSO(12)
c =

1

2
χ
− 1

2
6

[
6∏

i=1

(1 +Mi)−
6∏

i=1

(1−Mi)

]
. (A.21)

Notice that the curve (A.19) is expressed in terms of not only SO(12) but also SU(2)I ⊃
U(1)I characters, hence it shows a manifest SO(12)× SU(2) symmetry which is a maximal

compact subgroup of E7,

SO(12)×U(1)I ⊂ SO(12)× SU(2)I ⊂ E7. (A.22)

As for lower flavors, one can take the same flavor decoupling limit,

MNf+1 → 0 & qNf+1 → 0, while
q2
Nf+1

MNf+1
= q2

Nf
fixed. (A.23)

The SW curve for Nf ≤ 5 flavors is then expressed in terms of with the characters

χNf =

Nf∏

i=1

Mi,

χ
SO(2Nf )
s =

1

2
χ
− 1

2
Nf



Nf∏

i=1

(1 +Mi) +

Nf∏

i=1

(1−Mi)


 ,

χ
SO(2Nf )
c =

1

2
χ
− 1

2
Nf



Nf∏

i=1

(1 +Mi)−
Nf∏

i=1

(1−Mi)


 . (A.24)

We list below the resulting Seiberg-Witten curves for the Sp(1) theory with Nf ≤ 5

flavors which are written in terms of SO(2Nf )×U(1)I characters. It is worth noting that all

the Seiberg-Witten curves below agree with those given as the Weierstrass form expressed

in terms of manifest ENf+1 characters given in [21, 25, 31]. Therefore the Seiberg-Witten

curves below shows that manifest SO(2Nf )×U(1) symmetry is in fact enhanced to ENf+1

symmetry.
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Nf = 5 SW curve.

t2 + q−1 χ
1
2
5

[(
w3 + w−3

)
+ U

(
w2 + w−2

)
(A.25)

−
(
1− q χSO(10)

c

)(
w + w−1

)
− 2
(
U + q χSO(10)

s

)]
t+

5∏

i=1

(w −Mi)(w
−1 −Mi) = 0,

where q = qNf=5 is the instanton factor for the Sp(1) theory with Nf = 5 flavors.

Nf = 4 SW curve.

t2 + q−1 χ
1
2
4

[(
w3 + w−3

)
+ U

(
w2 + w−2

)
(A.26)

−
(
1− qχSO(8)

c

)(
w + w−1

)
− 2
(
U + qχSO(8)

s

)]
t+

4∏

i=1

(w −Mi)(w
−1 −Mi) = 0,

where q = qNf=4 is the instanton factor for the Sp(1) theory with Nf = 4 flavors.

Nf = 3 SW curve.

t2 + q−1 χ
1
2
3

[(
w3 + w−3

)
+ U

(
w2 + w−2

)
(A.27)

−
(
1− qχSO(6)

c

)(
w + w−1

)
− 2
(
U + qχSO(6)

s

)]
t+

3∏

i=1

(w −Mi)(w
−1 −Mi) = 0,

where q = qNf=3 is the instanton factor for the Sp(1) theory with Nf = 3 flavors.

Nf = 2 SW curve.

t2 + q−1 χ
1
2
2

[(
w3 + w−3

)
+ U

(
w2 + w−2

)
(A.28)

−
(
1− qχSO(4)

c

)(
w + w−1

)
− 2
(
U + qχSO(4)

s

)]
t+

2∏

i=1

(w −Mi)(w
−1 −Mi) = 0,

where q = qNf=2 is the instanton factor for the Sp(1) theory with Nf = 2 flavors.

Nf = 1 SW curve.

t2 + q−1M
1
2

1

[(
w3 + w−3

)
+ U

(
w2 + w−2

)
(A.29)

−
(
1− qχSO(2)

c

)(
w + w−1

)
− 2
(
U + qχSO(2)

s

)]
t+ (w −M1)(w−1 −M1) = 0,

where q = qNf=1 is the instanton factor for the Sp(1) theory with Nf = 1 flavors and

χSO(2)
c = M

1
2

1 , χSO(2)
s = M

− 1
2

1 . (A.30)
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Nf = 0, E1 SW curve. From (A.29), we take the limit

M1 →∞ & qNf=1 → 0, while
q−2
Nf=1

M1
= q−2

E1
fixed. (A.31)

With the rescaling t→ m1t, one finds

t2 + q−1
E1

[
(w3 + w−3) + U(w2 + w−2)− (1− qE1)(w + w−1)− 2U

]
t+ 1 = 0, (A.32)

which agrees with the E1 curve (2.14), as expected.

Nf = 0, Ẽ1 SW curve. From (A.29), we take the limit

M1 → 0 & qNf=1 → 0, while
q2
Nf=1

M1
= q2

Ẽ1
fixed. (A.33)

This then yields

t2 + q−1

Ẽ1

[
(w3 + w−3) + U(w2 + w−2)− (w + w−1)− 2(U + q

Ẽ1
)
]
t+ 1 = 0, (A.34)

which is the Ẽ1 curve (2.5).

E0 SW curve. For E0 theory, one needs to take a special limit on the Ẽ1 curve (A.34).

As discussed in section 4.3, it is the limit that takes the Ẽ1 brane web given in figure 9

away from the O5-plane, while keeping the area associated with the Coulomb modulus. It

corresponds to taking q and U on (A.34) very large while U3q−1 fixed

q
Ẽ1
→ L3, U

Ẽ1
→ LUE0 , where L→∞. (A.35)

with the rescaling w + w−1 → L
(
w + w−1

)
. This yields

t2 +
[
(w3 + w−3) + U(w2 + w−2) + 3(w + w−1)− 2(1− U)

]
t+ 1 = 0, (A.36)

or in terms of x = w + w−1, the E0 Seiberg-Witten curve is written as

t2 +
(
x3 + U x2 − 2

)
t+ 1 = 0. (A.37)

B 5-brane web diagrams and phase structure of E2

In this appendix, we first see the consitency of the phase diagram of the E2 theory obtained

in section 4 with the phase diagram in [4] which has been obtained by using 5-brane web

diagrams of the E2 theory without an O5-plane. Appendix B.2 summarizes the detailed

structure of the 5-brane web diagrams of the E2 theory with an O5-plane obtained by using

the Seiberg-Witten curves in section 4.1.

B.1 Phase diagram for the 5-brane web without an O5-plane of the E2 theory

In section 4, we have discussed the phase diagram of the E2 theory through the 5-brane

web diagram with an O5-plane. The E2 theory can be also described by a 5-brane web

without an O5-plane, which we can regard as a 5-brane web for an SU(2) gauge theory with

one flavor rather than the Sp(1) gauge theory with one flavor. Therefore it is instructive

to see the relation of the phase diagram obtained from the 5-brane web with an O5-plane

and the phase diagram obtained from the 5-brane web diagram without an O5-plane.
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Region A

Region C
m0

Region D

Region B

m1

�u

u

u2u 1

2
u

3

2
u

5
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u

0

Region E

(a) Phase diagram

(b) Region A (c) Region B (d) Region C (e) Region D (f) Region E

Figure 19. The phase diagram and the corresponding 5-brane web diagrams of the E2 theory

when we use a 5-brane web without an O5-plane.

We have seen in section 4.4 that some regions for the E2 theory are characterized by

the same effective coupling. When we write down the corresponding 5-brane web diagram

without an O5-plane, those regions with the same effective coupling should give rise to

the same 5-brane web diagram. Whenever the effective coupling changes, the transition

is accompanied by a flop transition in terms of the 5-brane web without an O5-plane.

Therefore, we rename the regions so that the regions with the same effective coupling

becomes the same region. Therefore. we denote the Region 2, 3 by Region A, the Region

1, 4, 6 by Region B, Region 5, 9, 10 by Region C, the Region 7 by Region D and the Region

8 by Region E. Then the phase diagram for the 5-brane web for the SU(2) gauge theory

with one flavor is given in figure 19 (a). Note that some resgions are combined together

compared to the phase diagram in figure 11.

Furthermore, we know that the Region 2 and the Region 3 flows to the E1 theory when

|m1| → ∞ and the Region 7 and 8 become the two phases of the Ẽ1 theory when |m1| → ∞.

Therefore, in terms of the 5-brane web without an O5-plane, the 5-brane diagram in those

regions should be consistent with the decoupling behavior. These features turns out to

uniquely determine the 5-brane web diagram without an O5-plane in each region of the

Region A, B, C, D, E. The results are summarized in figure 19 (b)–(f) [1, 7].
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Figure 20. A parameterization of a 5-brane web diagram of the E2 theory.

In fact the phase diagram in figure 19 (a) is completely consistent with the phase

diagram obtained in [4] where the same phase diagram is obtained both from the field

theory and from geometry of the corrsponding Calabi-Yau threefold which is given by a

local Calabi-Yau threefold with a compact surface of blowing up two points in P2.

Due to the relation between a toric variety and a 5-brane web diagram in [33], we can

understand the phase structure of the SU(2) gauge theory with one flavor from the 5-brane

web diagram without an O5-plane realizing the SU(2) gauge theory with one flavor. For

example, we can start from the 5-brane web diagram in figure 19 (c). The we parameterize

the web as in figure 20. While a1, a2, a3 are lengths of the corresponding 5-branes (or the

volumes of the two-cycles in the dual Calabi-Yau threefold), from the 5-brane web diagram,

we can read off the gauge theory parameters. The parameter u and m1 in figure 20 are the

Coulomb branch modulus and the mass parameter for the one flavor respectively. While

the inverse of the gauge coupling squared represented by m0 is given by m0 = 1
2(∆1 + ∆2).

Then the lengths of the 5-branes can be written by the gauge theory parameters as

a1 = −u−m1, a2 =
1

2
(2m0 − 2u−m1), a3 = −u+m1. (B.1)

Since the lengths of the 5-branes should be positive, the phase describing the diagram

in figure 20 should satisfy

a1 > 0, a2 > 0, a3 > 0. (B.2)

The flop transition with repsect to a two-cycle with the size a3 yields the diagram in

figure 19 (b). Then the parameter region after the flop transition becomes

a1 + a2 > 0, a2 + a3 > 0, −a3 > 0. (B.3)

On the other hand, it is also possible to consider other two flops from the 5-brane web in

figure 20. We can perform a flop transition with respect to a two-cycle with the size a2,

yeilding the 5-brane web in figure 19 (d) or a flop transition with respect to a two-cycle

with the size a1, yielding the 5-brane web in figure 19 (e) . Then the parameters region in
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Region A Region B Region C Region D Region E

τeff 2m0 +m1 − 8u 2m0 − 7u 3m0 − m1
2 − 8u 2m0 −m1 − 8u 3m0 − 3m1

2 − 9u

Table 9. The effective coupling for the E2 theory realized by the 5-brane web diagrams in figure 19

(b)–(f).

each case becomes

a1 > 0, −a2 > 0, a2 + a3 > 0 (B.4)

for the 5-brane web in figure 19 (d) and

− a1 > 0, a2 > 0, a1 + a3 > 0 (B.5)

for the 5-brane web in figure 19 (e). From the 5-brane web in figure 19 (d), we can further

perform a flop transition with respect to a two-cycle with the size a1 and it gives the

5-brane web in figure 19 (f). The parameter region in this case is

− a1 > 0, −a2 > 0, a1 + a2 + a3 > 0. (B.6)

When we rewrite the regions in all the phases (B.2)–(B.6) by using the gauge theory

parameters in (B.1), the five regions are described by

Region A : m1 < 0, m1 < u < 0, m0 > −
1

2
m1 + 2u,

Region B : u < 0, u < m1 < −u, m0 >
1

2
m1 + u,

Region C : u < 0, u < m1 < −u, −
1

2
m1 + 2u < m0 <

1

2
m1 + u,

Region D : m1 > 0, −m1 < u < 0, m0 >
1

2
m1 + u,

Region E : m1 > 0, −m1 < u < 0,
1

2
m1 + 3u < m0 <

1

2
m1 + u. (B.7)

Then the phase diagram by using (B.7) exactly reproduces the phase diagram in figure 19.

Therefore, our analysis of the E2 theory from the 5-brane with an O5-plane is completely

consistent with the analysis of the phase structure of the E2 theory in [4].

By using the parameterization (B.1) as well as the relation of the flop transitions,

it is also possible to obtain the effective coupling for the 5-brane web diagram in fig-

ure 19 (b)–(f). The result is summarized in table 9. Again, the result completely repro-

duces the effective coupling calculated from the 5-brane web diagrams with an O5-plane

in table 7 and 8.

B.2 Detailed structure of the 5-brane web with an O5-plane of the E2 theory

In section 4.1, we described the qualitative structure of the 5-brane diagram with an O5-

plane. We here summarize more detailed structure of the 5-brane web diagrams by indicat-

ing the largest A
(m)
k,l ’s in the (x4, x6)-space for Region 1–16 in (4.3) as well as the locations

of their boundaries. The results are depicted in figure 21–figure 36.
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Figure 21. The regions for the largest A
(m)
k,l in

Region 1 of the E2 theory.
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Figure 22. The regions for the largest A
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Region 2 of the E2 theory.
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Figure 23. The regions for the largest A
(m)
k,l in

Region 3 of the E2 theory.
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Figure 24. The regions for the largest A
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k,l in

Region 4 of the E2 theory.
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Figure 25. The regions for the largest A
(m)
k,l in

Region 5 of the E2 theory.
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Figure 26. The regions for the largest A
(m)
k,l in

Region 6 of the E2 theory.
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Figure 27. The regions for the largest A
(m)
k,l in

Region 7 of the E2 theory.
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Figure 28. The regions for the largest A
(m)
k,l in

Region 8 of the E2 theory.
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Figure 29. The regions for the largest A
(m)
k,l in

Region 9 of the E2 theory.
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Figure 30. The regions for the largest A
(m)
k,l in

Region 10 of the E2 theory.
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Figure 31. The regions for the largest A
(m)
k,l in

Region 11 of the E2 theory.

1

2
m1

�1

2
m0 �

1

4
m1

0

A1,3

A
(2)
1,1

�1

2
m0 +

1

4
m1

A1,�3

1

2
m0 +

3

4
m1

A0,1

A0,�1

m0 � 2m1

m1

�m1

1

2
m0 +

1

4
m1

A
(2)
1,�1

A
(1)
0,0

A2,0

x6

x4

Figure 32. The regions for the largest A
(m)
k,l in

Region 12 of the E2 theory.
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Figure 33. The regions for the largest A
(m)
k,l in

Region 13 of the E2 theory.
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Figure 34. The regions for the largest A
(m)
k,l in

Region 14 of the E2 theory.
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Figure 35. The regions for the largest A
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k,l in

Region 15 of the E2 theory.
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Figure 36. The regions for the largest A
(m)
k,l in

Region 16 of the E2 theory.
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