Published for SISSA by 🖄 Springer

RECEIVED: September 13, 2017 ACCEPTED: October 28, 2017 PUBLISHED: November 7, 2017

On integrability of 2-dimensional σ -models of Poisson-Lie type

Pavol Ševera¹

Section of Mathematics, University of Geneva, rue du Lièvre 2-4 1211 Geneva, Switzerland

E-mail: pavol.severa@gmail.com

ABSTRACT: We describe a simple procedure for constructing a Lax pair for suitable 2dimensional σ -models appearing in Poisson-Lie T-duality

KEYWORDS: Integrable Field Theories, Sigma Models, String Duality

ARXIV EPRINT: 1709.02213

¹Supported in part by the grant MODFLAT of the European Research Council and the NCCR SwissMAP of the Swiss National Science Foundation.

Contents

1	Introduction	1
2	σ -models of Poisson-Lie type and Poisson-Lie T-duality	2
3	Constructing new flat connections	3
4	Getting a Lax pair in a simple case	4
5	Examples of the example	6

1 Introduction

There is a class of 2-dimensional σ -models, introduced in the context of Poisson-Lie Tduality [5], whose solutions are naturally described in terms of certain flat connections. The target space of such a σ -model is D/H, where D is a Lie group and $H \subset D$ a subgroup. The σ -model is defined by the following data: an invariant symmetric non-degenerate pairing \langle, \rangle on the Lie algebra \mathfrak{d} such that the Lie subalgebra $\mathfrak{h} \subset \mathfrak{d}$ is Lagrangian, i.e. $\mathfrak{h}^{\perp} = \mathfrak{h}$, and a subspace $V_+ \subset \mathfrak{d}$ such that dim $V_+ = (\dim \mathfrak{d})/2$ and such that $\langle, \rangle|_{V_+}$ is positive definite. The construction and properties of these σ -models are recalled in section 2 (including the Poisson-Lie T-duality, which says that the σ -model, seen as a Hamiltonian system, is essentially independent of H). Let us call them σ -models of Poisson-Lie type.

The solutions $\Sigma \to D/H$ of equations of motion of such a σ -model can be encoded in terms of \mathfrak{d} -valued 1-forms $A \in \Omega^1(\Sigma, \mathfrak{d})$ satisfying

$$dA + [A, A]/2 = 0 (1.1a)$$

$$A \in \Omega^{1,0}(\Sigma, V_+) \oplus \Omega^{0,1}(\Sigma, V_-), \tag{1.1b}$$

where $V_{-} := (V_{+})^{\perp} \subset \mathfrak{d}$. Namely, the flatness (1.1a) of A implies that there is a map $\ell : \tilde{\Sigma} \to D$ (where $\tilde{\Sigma}$ is the universal cover of Σ) such that $A = -d\ell \,\ell^{-1}$. If the holonomy of A is in H then ℓ gives us a well-defined map $\Sigma \to D/H$. The maps $\Sigma \to D/H$ obtained in this way are exactly the solutions of equations of motion.

As first observed by Klimčík [3], and later by Sfetsos [12], and Delduc, Magro, and Vicedo [2], some σ -models of Poisson-Lie type are integrable. Their integrability is proven by finding a Lax pair, i.e. a 1-parameter family of flat connections (with parameter λ)

$$A_{\lambda} \in \Omega^{1}(\Sigma, \mathfrak{g}) \qquad dA_{\lambda} + [A_{\lambda}, A_{\lambda}]/2 = 0$$

where \mathfrak{g} is a suitable semisimple Lie algebra. Such a family is constructed for every element of the phase space, i.e. for every $A \in \Omega^1(\Sigma, \mathfrak{d})$ satisfying (1.1). The aim of this note is to make the construction of A_{λ} transparent. We simply observe that if $A \in \Omega^1(\Sigma, \mathfrak{d})$ satisfies (1.1) and if $p : \mathfrak{d} \to \mathfrak{g}$ is a linear map such that

$$[p(X), p(Y)] = p([X, Y]) \quad \forall X \in V_+, Y \in V_-$$

then

$$d p(A) + [p(A), p(A)]/2 = 0.$$

A suitable family $p_{\lambda} : \mathfrak{d} \to \mathfrak{g}$ will then give us a family of flat connections

$$A_{\lambda} = p_{\lambda}(A).$$

As an example, we provide a very simple construction of such families p_{λ} in the case when $\mathfrak{d} = \mathfrak{g} \otimes W$, where W is a 2-dimensional commutative algebra. These families recover the deformations of the principal chiral model from [2, 3, 12]. Our purpose is thus modest — it is simply to clarify previously constructed integrable σ -models. There is possibly a less naive construction of families p_{λ} that might produce new integrable models, but we leave this question open.

2 σ -models of Poisson-Lie type and Poisson-Lie T-duality

In this section we review the properties of the "2-dimensional σ -models of Poisson-Lie type" introduced in [5] (together with their Hamiltonian picture from [6] and using the target spaces of the form D/H, as introduced in [7]).

Let \mathfrak{d} be a Lie algebra with an invariant non-degenerate symmetric bilinear form \langle, \rangle of symmetric signature and let $V_+ \subset \mathfrak{d}$ be a linear subspace with dim $V_+ = (\dim \mathfrak{d})/2$, such that $\langle, \rangle|_{V_+}$ is positive-definite.

Let M = D/H where D is a connected Lie group integrating \mathfrak{d} and $H \subset D$ is a closed connected subgroup such that its Lie algebra $\mathfrak{h} \subset \mathfrak{d}$ is Lagrangian in \mathfrak{d} .

This data defines a Riemannian metric g and a closed 3-form η on M. They are given by

$$g(\rho(X), \rho(Y)) = \frac{1}{2} \langle X, Y \rangle \qquad \forall X, Y \in V_+$$
$$p^* \eta = -\frac{1}{2} \eta_D + \frac{1}{2} d \langle \mathcal{A}, \theta_L \rangle$$

Here ρ is the action of \mathfrak{d} on M = D/H, $p: D \to D/H$ is the projection, $\eta_D \in \Omega^3(D)$ is the Cartan 3-form (given by $\eta_D(X^L, Y^L, Z^L) = \langle [X, Y], Z \rangle \; (\forall X, Y, Z \in \mathfrak{d}) \rangle, \; \theta_L \in \Omega^1(D, \mathfrak{d})$ is the left-invariant Maurer-Cartan form on D (i.e. $\theta_L(X^L) = X$), and $\mathcal{A} \in \Omega^1(D, \mathfrak{h})$ is the connection on the principal H-bundle $p: D \to D/H$ whose horizontal spaces are the right-translates of V_+ .¹

¹The conceptual definition of g and η is as follows: the trivial vector bundle $\mathfrak{d} \times M \to M$ is naturally an exact Courant algebroid, with the anchor given by ρ and the Courant bracket of its constant sections being the Lie bracket on \mathfrak{d} . Then $V_+ \times M \subset \mathfrak{d} \times M$ is a generalized metric, which is equivalent to the metric g and the closed 3-form η . We shall not use this language in this paper, in order to keep it short.

The metric g and the 3-form η then define a σ -model with the standard action functional

$$S(f) = \int_{\Sigma} g(\partial_{+}f, \partial_{-}f) + \int_{Y} f^{*}\eta$$

where Σ is (say) the cylinder with the usual metric $d\sigma^2 - d\tau^2$ and $f: \Sigma \to M$ is a map extended to the solid cylinder Y with boundary Σ .

For our purposes, the main properties of these σ -models are the following:

- The solutions of the equations of motion are in (almost) 1-1 correspondence with 1-forms $A \in \Omega^1(\Sigma, \mathfrak{d})$ satisfying (1.1). More precisely, a map $f: \Sigma \to M$ is a solution iff it admits a lift $\ell: \tilde{\Sigma} \to D$ such that $A := -d\ell \ell^{-1}$ satisfies (1.1). Notice that A is uniquely specified by f (the lift ℓ is not unique — it can be multiplied by an element of H on the right).
- When we restrict A to $S^1 \subset \Sigma = S^1 \times \mathbb{R}$, we get a 1-form $j(\sigma)d\sigma \in \Omega^1(S^1, \mathfrak{d})$. The \mathfrak{d} -valued functions $j(\sigma)$ on the phase space of the sigma model satisfy the current algebra Poisson bracket

$$\{j_a(\sigma), j_b(\sigma')\} = f_{ab}^c \, j_c(\sigma) \, \delta(\sigma - \sigma') + t_{ab} \, \delta'(\sigma - \sigma') \tag{2.1}$$

(written using a basis e^a of \mathfrak{d} , with f_{ab}^c being the structure constants of \mathfrak{d} and t_{ab} the inverse of the matrix of $\langle e^a, e^b \rangle$). The Hamiltonian of the σ -model is

$$\mathcal{H} = \frac{1}{2} \int_{S^1} \langle j(\sigma), Rj(\sigma) \rangle \, d\sigma \tag{2.2}$$

where $R: \mathfrak{d} \to \mathfrak{d}$ is the reflection w.r.t. V_+ .

Finally, let us observe that the phase space of the σ -model depends on the choice of $H \subset D$ only mildly; when we impose the constraint that A has unit holonomy, the reduced Hamiltonian system is independent of H. This statement is the Poisson-Lie T-duality (in the case of no spectators). (In more detail, the phase space of the σ -model is the space of maps $\ell : \mathbb{R} \to D$ which are quasi-periodic in the sense that for some $h \in H$ we have $\ell(\sigma + 2\pi) = \ell(\sigma)h$, modulo the action of H by right multiplication. The reduced phase space is (LD)/D (i.e. periodic maps modulo the action of D); it is the subspace of $\Omega^1(S^1, \mathfrak{d})$ given by the unit holonomy constraint.)

3 Constructing new flat connections

As we have seen, the solutions of our σ -model give rise to flat connections $A \in \Omega^1(\Sigma, \mathfrak{d})$ satisfying (1.1). We can obtain new flat connections out of A using the following simple observation, which is also the main idea of this paper.

Proposition 1. Let \mathfrak{g} be a Lie algebra and let $p:\mathfrak{d} \to \mathfrak{g}$ be a linear map such that

$$[p(X), p(Y)] = p([X, Y]) \quad \forall X \in V_+, \ Y \in V_-.$$
(3.1)

If $A \in \Omega^1(\Sigma, \mathfrak{d})$ satisfies (1.1) then $p(A) \in \Omega^1(\Sigma, \mathfrak{g})$ is flat, i.e.

$$d p(A) + [p(A), p(A)]/2 = 0.$$

Proof. Let us use the following notation: for $\alpha \in \Omega^1(\Sigma)$ let $\alpha^+ \in \Omega^{1,0}(\Sigma)$ and $\alpha^- \in \Omega^{0,1}(\Sigma)$ denote the components of α , i.e. $\alpha = \alpha^+ + \alpha^-$. In particular, $A^+ \in \Omega^{1,0}(\Sigma, V_+)$ and $A^- \in \Omega^{0,1}(\Sigma, V_-)$. We then have

$$dp(A) + [p(A), p(A)]/2 = dp(A) + [p(A^{+}), p(A^{-})] = p(dA + [A^{+}, A^{-}])$$
$$= p(dA + [A, A]/2) = 0.$$

Given a 1-parameter family of maps $p_{\lambda} : \mathfrak{d} \to \mathfrak{g}$ satisfying (3.1) we would thus get a 1-parameter family of flat connections $A_{\lambda} = p_{\lambda}(A)$ on Σ , which may then be used to show integrability of the model. Let us observe that the Poisson brackets of the "Lax operators" $L(\sigma, \lambda) := p_{\lambda}(j(\sigma))$ are automatically of the form considered in [10, 11] (i.e. containing a $\delta(\sigma - \sigma')$ and a $\delta'(\sigma - \sigma')$ term), and so one can in principle extract an infinite family of Poisson-commuting integrals of motion out of the holonomy of A_{λ} .

Remark 1. The procedure of finding integrable deformations of integrable σ -models, due to Delduc, Magro, and Vicedo [1], can be rephrased in our formalism as follows. Suppose that for some particular pair $V_+ \subset \mathfrak{d}$ we find a family $p_{\lambda} : \mathfrak{d} \to \mathfrak{g}$ showing integrability of the model. Let us deform the Lie bracket on \mathfrak{d} , and possibly the pairing \langle,\rangle , in such a way that the restriction of the Lie bracket to $V_+ \times V_- \to \mathfrak{d}$ is undeformed. Then the same family p_{λ} will satisfy (3.1) also for the deformed structure on \mathfrak{d} and show integrability of the deformed model. These deformations of \mathfrak{d} do not change the system (1.1) (and if \langle,\rangle is not deformed then they don't change the Hamiltonian (2.2) either), but they do change the Poisson structure (2.1) on the phase space.

Remark 2. There is a version of σ -models of Poisson-Lie type, introduced in [8], with the target space $F \setminus D/H$, where $\mathfrak{f} \subset \mathfrak{d}$ is an isotropic Lie algebra (and one needs to suppose that F acts freely on D/H). In this case $V_+ \subset \mathfrak{d}$ is required to be such that $\langle, \rangle|_{V_+}$ is semi-definite positive with kernel \mathfrak{f} (in particular, $\mathfrak{f} \subset V_+$), and such that $[\mathfrak{f}, V_+] \subset V_+$ (we still have dim $V_+ = (\dim \mathfrak{d})/2$). The phase space is the Marsden-Weinstein reduction of $\Omega^1(S^1, \mathfrak{d})$ by LF, i.e. $\Omega^1(S^1, \mathfrak{f}^\perp)/LF$. The solutions of equations of motion are still given by the solutions of (1.1), though this time A is defined only up to F-gauge transformations. In this case we can still use Proposition 1 without any changes. This setup should cover, in particular, the discussion of symmetric spaces in [1].

4 Getting a Lax pair in a simple case

In this section we give a simple example of pairs $V_+ \subset \mathfrak{d}$ with natural 1-parameter families p_{λ} satisfying (3.1).

Let \mathfrak{g} be a Lie algebra with an invariant inner product $\langle, \rangle_{\mathfrak{g}}$ and let W be a 2dimensional commutative associative algebra with unit. (W is isomorphic to one of \mathbb{C} , $\mathbb{R} \oplus \mathbb{R}, \mathbb{R}[\epsilon]/(\epsilon^2)$.) Let

$$\mathfrak{d} := \mathfrak{g} \otimes W$$

with the Lie bracket $[X_1 \otimes w_1, X_2 \otimes w_2]_{\mathfrak{d}} = [X_1, X_2]_{\mathfrak{g}} \otimes w_1 w_2$.

We choose the following additional data in W to produce a pairing \langle , \rangle on \mathfrak{d} and a subspace $V_+ \subset \mathfrak{d}$:

To get the pairing, let $\theta : W \to \mathbb{R}$ be a linear form such that the pairing on W given by $\langle w_1, w_2 \rangle_W := \theta(w_1 w_2)$ is non-degenerate (i.e. such that it makes W to a Frobenius algebra) and indefinite. The pairing on \mathfrak{d} is then defined via

$$\langle X_1 \otimes w_1, X_2 \otimes w_2 \rangle := \langle X_1, X_2 \rangle_{\mathfrak{g}} \theta(w_1 w_2).$$

To get $V_+ \subset \mathfrak{d}$, let $V_+^0 \subset W$ be a 1-dimensional subspace such that \langle , \rangle_W is positivedefinite on V_+^0 . Let

 $V_+ = \mathfrak{g} \otimes V_+^0.$

Then $V_{-} = \mathfrak{g} \otimes V_{-}^{0}$ where $V_{-}^{0} = (V_{+}^{0})^{\perp}$.

We can now describe the construction of a family $p_{\lambda} : \mathfrak{d} \to \mathfrak{g}$ satisfying (3.1). Let us choose non-zero elements $e_+ \in V^0_+$ and $e_- \in V^0_-$ (this choice is inessential).

Proposition 2. If a linear form $q: W \to \mathbb{R}$ satisfies

$$q(e_{+})q(e_{-}) = q(e_{+}e_{-})$$
(4.1)

then the map $p = id_{\mathfrak{g}} \otimes q : \mathfrak{d} \to \mathfrak{g}$ satisfies (3.1).

Proof. If $X = x \otimes e_+ \in V_+$ and $Y = y \otimes e_- \in V_-$ then $p([X,Y]_{\mathfrak{d}}) = p([x,y]_{\mathfrak{g}} \otimes e_+e_-) = q(e_+e_-)[x,y]_{\mathfrak{g}} = [q(e_+)x,q(e_-)y]_{\mathfrak{g}} = [p(X),p(Y)]_{\mathfrak{g}}.$

The solutions $q \in W^*$ of (4.1) form a curve in W^* , which is either a hyperbola or a

union of two lines. If

$$e_+e_- = ae_+ + be_- \quad a, b \in \mathbb{R},$$

we rewrite (4.1) as

 $(q(e_+) - b)(q(e_-) - a) = ab.$

We thus have a hyperbola if $ab \neq 0$ and a union of two straight lines if ab = 0.

One can easily check that ab = 0 iff one of V^0_{\pm} is of the form $\mathbb{R}e$ where $e \in W$ satisfies $e^2 = e$. This means that one of $V_{\pm} = \mathfrak{g} \otimes V^0_{\pm} \subset \mathfrak{d}$ is a Lie subalgebra isomorphic to \mathfrak{g} and thus, according to [9], for any Lagrangian $\mathfrak{h} \subset \mathfrak{d}$, the corresponding σ -model is simply the WZW model given by G.

Let us now choose a rational parametrization $\lambda \mapsto q_{\lambda}$ of the hyperbola (4.1). The standard parametrization in this context seems to be the one sending $\lambda = \pm 1$ to the two points at the infinity of the hyperbola, and $\lambda = \infty$ to 0 (though any other parametrization would do). This gives

$$q_{\lambda} = \frac{q_+}{1+\lambda} + \frac{q_-}{1-\lambda}$$

where $q_+, q_- \in W^*$ are given by

$$q_{+}(e_{-}) = q_{-}(e_{+}) = 0, \quad q_{+}(e_{+}) = 2b, \quad q_{-}(e_{-}) = 2a.$$

(If the curve a union of two lines then this pametrizes only one of the lines, or possibly just a single point.) **Corollary.** If $A \in \Omega^1(\Sigma, \mathfrak{d})$ satisfies (1.1), i.e. if $A = A_+ \otimes e_+ + A_- \otimes e_-$ with $A_+ \in \Omega^{1,0}(\Sigma, \mathfrak{g})$ and $A_- \in \Omega^{0,1}(\Sigma, \mathfrak{g})$ and if A is flat, then the \mathfrak{g} -connections

$$A_{\lambda} = (1 \otimes q_{\lambda})(A) = \frac{2b}{1+\lambda}A_{+} + \frac{2a}{1-\lambda}A_{-}$$

 $are \ flat.$

The \mathfrak{g} -valued Lax operator obtained in this way is thus

$$L(\sigma,\lambda) = \frac{2b}{1+\lambda}j_{+}(\sigma) + \frac{2a}{1-\lambda}j_{-}(\sigma)$$
(4.2)

where we decomposed $j(\sigma)$ as $j(\sigma) = j_+(\sigma) \otimes e_+ + j_-(\sigma) \otimes e_-$. For completeness, the Hamiltonian (2.2) is

$$\mathcal{H} = \frac{1}{2} \int_{S^1} \left(\theta(e_+^2) \langle j_+(\sigma), j_+(\sigma) \rangle_{\mathfrak{g}} - \theta(e_-^2) \langle j_-(\sigma), j_-(\sigma) \rangle_{\mathfrak{g}} \right) d\sigma.$$

5 Examples of the example

In this section \mathfrak{g} is a compact Lie algebra and G the corresponding compact 1-connected Lie group.

Let start with the case of $W = \mathbb{R} \oplus \mathbb{R}$, i.e. $\mathfrak{d} = \mathfrak{g} \oplus \mathfrak{g}$. The only admissible $\theta \in W^*$, up to rescaling (which can be absorbed to $\langle, \rangle_{\mathfrak{g}}$) and exchange of the two components of W, is $\theta(x, y) = x - y$. (Here the main limiting factor is existence of a lagrangian Lie subalgebra $\mathfrak{h} \subset \mathfrak{d}$: if $\theta(x, y) = cx + dy$ with $cd \neq 0$ (the non-degeneracy condition), it forces c = -d.) The pairing \langle, \rangle on \mathfrak{d} is $\langle(X_1, X_2), (Y_1, Y_2)\rangle = \langle X_1, Y_1 \rangle_{\mathfrak{g}} - \langle X_2, Y_2 \rangle_{\mathfrak{g}}$.

We have

$$e_{+} = (1, t)$$
 $e_{-} = (t, 1)$

for some -1 < t < 1. The Lax operator (4.2), written in terms of $j = (j_1, j_2)$, is

$$L(\sigma,\lambda) = \frac{2t}{(1+t)(1-t)^2} \left(\frac{1}{1+\lambda} \left(j_1(\sigma) - t j_2(\sigma) \right) + \frac{1}{1-\lambda} \left(j_2(\sigma) - t j_1(\sigma) \right) \right)$$

The Poisson brackets (2.1) of $j_{1,2}$ are

$$\{j_{1a}(\sigma), j_{1b}(\sigma')\} = f_{ab}^c j_{1c}(\sigma) \,\delta(\sigma - \sigma') + \delta_{ab} \,\delta'(\sigma - \sigma')$$
$$\{j_{2a}(\sigma), j_{2b}(\sigma')\} = f_{ab}^c j_{2c}(\sigma) \,\delta(\sigma - \sigma') - \delta_{ab} \,\delta'(\sigma - \sigma')$$
$$\{j_{1a}(\sigma), j_{2b}(\sigma')\} = 0$$

and the Hamiltonian (2.2) is

$$\mathcal{H} = \frac{1}{2(1-t^2)} \int_{S^1} \left((1+t^2) \left(\langle j_1(\sigma), j_1(\sigma) \rangle_{\mathfrak{g}} + \langle j_2(\sigma), j_2(\sigma) \rangle_{\mathfrak{g}} \right) - 4t \langle j_1(\sigma), j_2(\sigma) \rangle_{\mathfrak{g}} \right) d\sigma.$$

The degenerate case t = 0 (when a = b = 0) corresponds to the WZW-model on \mathfrak{g} .

The natural choice for a Lagrangian Lie subalgebra $\mathfrak{h} \subset \mathfrak{d}$ is the diagonal $\mathfrak{g} \subset \mathfrak{d}$. The target space of the σ -model is $D/G \cong G$. It is the so-called " λ -deformed σ -model" introduced by Sfetsos in [12] (Sfetsos's λ is our t). Let us now consider the case $W = \mathbb{C}$, which is the richest one. In this case any non-zero $\theta \in W^*$ is suitable. Let $\theta(z) = \operatorname{Im}(e^{2i\alpha}z)$ for some $\alpha \in \mathbb{R}$. We thus have $\mathfrak{d} = \mathfrak{g} \otimes \mathbb{C} = \mathfrak{g}_{\mathbb{C}}$ (seen as a real Lie algebra) with the pairing $\langle X, Y \rangle = \operatorname{Im}(e^{2i\alpha}\langle X, Y \rangle_{\mathfrak{g}_{\mathbb{C}}})$ where $\langle, \rangle_{\mathfrak{g}_{\mathbb{C}}}$ is the \mathbb{C} -bilinear extension of $\langle, \rangle_{\mathfrak{g}}$.

In this case

$$e_{+} = e^{-i\alpha + i\phi}$$
 $e_{-} = e^{-i\alpha - i\phi}$

for some $\phi \in (0, \pi/2)$. If $e^{2i\alpha} = e^{\pm 2i\phi}$ then the resulting σ -model (regardless of the choice of $\mathfrak{h} \subset \mathfrak{d}$) is the WZW-model on G.

The Lax operator (4.2) is

$$L(\sigma,\lambda) = \frac{1}{2\sin^2 2\phi} \left(\frac{e^{2i\alpha} - e^{-2i\phi}}{1+\lambda} + \frac{e^{2i\alpha} - e^{2i\phi}}{1-\lambda} \right) J(\sigma) + \text{c.c.}$$

(where c.c. stands for "complex conjugate"). Here $J = j_{re} + ij_{im}$ and $\bar{J} = j_{re} - ij_{im}$ where j_{re} and j_{im} are given by $j = j_{re} \otimes 1 + j_{im} \otimes i$, their Poisson brackets (2.1) (written in an orthonormal basis of \mathfrak{g}) are

$$\{J_a(\sigma), J_b(\sigma')\} = f_{ab}^c J_c(\sigma) \,\delta(\sigma - \sigma') + 2ie^{-2i\alpha} \,\delta_{ab} \,\delta'(\sigma - \sigma') \{\bar{J}_a(\sigma), \bar{J}_b(\sigma')\} = f_{ab}^c \,\bar{J}_c(\sigma) \,\delta(\sigma - \sigma') - 2ie^{2i\alpha} \,\delta_{ab} \,\delta'(\sigma - \sigma') \{J_a(\sigma), \bar{J}_b(\sigma')\} = 0.$$

The Hamiltonian (2.2) is

$$\mathcal{H} = \frac{1}{2} \int_{S^1} \left(\frac{\sin 2\phi}{2} \langle J(\sigma), \bar{J}(\sigma) \rangle_{\mathfrak{g}} - \frac{\sin 4\phi}{4} \left(e^{2i\alpha} \langle J(\sigma), J(\sigma) \rangle_{\mathfrak{g}} + e^{-2i\alpha} \langle \bar{J}(\sigma), \bar{J}(\sigma) \rangle_{\mathfrak{g}} \right) \right) d\sigma$$

A suitable Lagrangian Lie subalgebra $\mathfrak{h} \subset \mathfrak{d}$ can be found as follows. Let $\mathfrak{n} \subset \mathfrak{g}_{\mathbb{C}} = \mathfrak{d}$ be the complex nilpotent Lie subalgebra spanned by the positive root spaces and let $\mathfrak{t} \subset \mathfrak{g}$ be the Cartan Lie subalgebra. Let $0 \neq z \in \mathbb{C}$ be such that $\theta(z^2) = 0$; up to a real multiple we have $z = e^{-i\alpha}$ or $z = ie^{-i\alpha}$. Then

$$\mathfrak{h} = z\mathfrak{t} + \mathfrak{n} \subset \mathfrak{g}_{\mathbb{C}} = \mathfrak{d}$$

is a real Lie subalgebra of \mathfrak{d} which is clearly Lagrangian. If $z \notin \mathbb{R}$ then \mathfrak{h} is transverse to $\mathfrak{g} \subset \mathfrak{d}$ and we have an identification $D/H \cong G$ for the target space of the σ -model.

The case of $\alpha = 0$ corresponds to Klimčík's Yang-Baxter σ -model [3]. The general case is the Yang-Baxter σ -model with WZW term introduced in [2] and reinterpreted as a σ -model of Poisson-Lie type in [4].

The final case is $W = \mathbb{R}[\epsilon]/(\epsilon^2)$. After rescaling ϵ and $\langle, \rangle_{\mathfrak{g}}$ we can suppose that $\theta(x+y\epsilon) = 2tx + y$ for some $t \in \mathbb{R}$ and that

$$e_{+} = 1 + (1-t)\epsilon$$
 $e_{-} = 1 - (1+t)\epsilon.$

Using the notation $j = j_1 \otimes 1 + j_{\epsilon} \otimes \epsilon$, we get

$$L(\sigma,\lambda) = \frac{1+t}{2(1+\lambda)} \big((1+t)j_1 + j_{\epsilon}) \big) + \frac{1-t}{2(1-\lambda)} \big((1-t)j_1 - j_{\epsilon}) \big).$$

The Poisson brackets are

$$\{j_{1a}(\sigma), j_{1b}(\sigma')\} = f_{ab}^c j_{1c}(\sigma) \,\delta(\sigma - \sigma')$$

$$\{j_{1a}(\sigma), j_{2b}(\sigma')\} = f_{ab}^c j_{2c}(\sigma) \,\delta(\sigma - \sigma') + \delta_{ab} \,\delta'(\sigma - \sigma')$$

$$\{j_{2a}(\sigma), j_{2b}(\sigma')\} = -2t \,\delta_{ab} \,\delta'(\sigma - \sigma')$$

and the Hamiltonian

$$\mathcal{H} = \frac{1}{2} \int_{S^1} (1+t^2) \langle j_0, j_0 \rangle_{\mathfrak{g}} + t \langle j_0, j_\epsilon \rangle_{\mathfrak{g}} + \langle j_\epsilon, j_\epsilon \rangle_{\mathfrak{g}}$$

In this case the natural $\mathfrak{h} \subset \mathfrak{d} = \mathfrak{g}[\epsilon]/(\epsilon^2)$ is $\mathfrak{h} = \epsilon \mathfrak{g}$, which gives D/H = G. When t = 0 the σ -model is the principal chiral model on G, when $t = \pm 1$ we get the WZW model, and for other values of t we get models given by the invariant metric on G and by a multiple of the Cartan 3-form.

Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

- [1] F. Delduc, M. Magro and B. Vicedo, On classical q-deformations of integrable σ -models, JHEP 11 (2013) 192 [arXiv:1308.3581] [INSPIRE].
- [2] F. Delduc, M. Magro and B. Vicedo, Integrable double deformation of the principal chiral model, Nucl. Phys. B 891 (2015) 312 [arXiv:1410.8066] [INSPIRE].
- [3] C. Klimčík, On integrability of the Yang-Baxter σ -model, J. Math. Phys. **50** (2009) 043508 [arXiv:0802.3518] [INSPIRE].
- [4] C. Klimčík, Yang-Baxter σ-model with WZNW term as *E*-model, Phys. Lett. B 772 (2017) 725 [arXiv:1706.08912] [INSPIRE].
- [5] C. Klimčík and P. Ševera, Dual nonAbelian duality and the Drinfeld double, Phys. Lett. B 351 (1995) 455 [hep-th/9502122] [INSPIRE].
- [6] C. Klimčík and P. Ševera, Poisson-Lie T duality and loop groups of Drinfeld doubles, Phys. Lett. B 372 (1996) 65 [hep-th/9512040] [INSPIRE].
- [7] C. Klimčík and P. Ševera, NonAbelian momentum winding exchange, Phys. Lett. B 383 (1996) 281 [hep-th/9605212] [INSPIRE].
- [8] C. Klimčík and P. Ševera, Dressing cosets, Phys. Lett. B 381 (1996) 56 [hep-th/9602162]
 [INSPIRE].
- C. Klimčík and P. Ševera, Open strings and D-branes in WZNW model, Nucl. Phys. B 488 (1997) 653 [hep-th/9609112] [INSPIRE].
- [10] J.M. Maillet, Kac-Moody Algebra and Extended Yang-Baxter Relations in the O(N)Nonlinear σ Model, Phys. Lett. **B** 162 (1985) 137 [INSPIRE].
- [11] J.M. Maillet, New Integrable Canonical Structures in Two-dimensional Models, Nucl. Phys. B 269 (1986) 54 [INSPIRE].
- K. Sfetsos, Integrable interpolations: From exact CFTs to non-Abelian T-duals, Nucl. Phys. B 880 (2014) 225 [arXiv:1312.4560] [INSPIRE].