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1 Introduction

There is a class of 2-dimensional σ-models, introduced in the context of Poisson-Lie T-

duality [5], whose solutions are naturally described in terms of certain flat connections. The

target space of such a σ-model is D/H, where D is a Lie group and H ⊂ D a subgroup. The

σ-model is defined by the following data: an invariant symmetric non-degenerate pairing

〈, 〉 on the Lie algebra d such that the Lie subalgebra h ⊂ d is Lagrangian, i.e. h⊥ = h, and

a subspace V+ ⊂ d such that dimV+ = (dim d)/2 and such that 〈, 〉|V+ is positive definite.

The construction and properties of these σ-models are recalled in section 2 (including

the Poisson-Lie T-duality, which says that the σ-model, seen as a Hamiltonian system, is

essentially independent of H). Let us call them σ-models of Poisson-Lie type.

The solutions Σ→ D/H of equations of motion of such a σ-model can be encoded in

terms of d-valued 1-forms A ∈ Ω1(Σ, d) satisfying

dA+ [A,A]/2 = 0 (1.1a)

A ∈ Ω1,0(Σ, V+)⊕ Ω0,1(Σ, V−), (1.1b)

where V− := (V+)⊥ ⊂ d. Namely, the flatness (1.1a) of A implies that there is a map

` : Σ̃ → D (where Σ̃ is the universal cover of Σ) such that A = −d` `−1. If the holonomy

of A is in H then ` gives us a well-defined map Σ→ D/H. The maps Σ→ D/H obtained

in this way are exactly the solutions of equations of motion.

As first observed by Klimč́ık [3], and later by Sfetsos [12], and Delduc, Magro, and

Vicedo [2], some σ-models of Poisson-Lie type are integrable. Their integrability is proven

by finding a Lax pair, i.e. a 1-parameter family of flat connections (with parameter λ)

Aλ ∈ Ω1(Σ, g) dAλ + [Aλ, Aλ]/2 = 0

where g is a suitable semisimple Lie algebra. Such a family is constructed for every element

of the phase space, i.e. for every A ∈ Ω1(Σ, d) satisfying (1.1).
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The aim of this note is to make the construction of Aλ transparent. We simply observe

that if A ∈ Ω1(Σ, d) satisfies (1.1) and if p : d→ g is a linear map such that

[p(X), p(Y )] = p([X,Y ]) ∀X ∈ V+, Y ∈ V−

then

d p(A) + [p(A), p(A)]/2 = 0.

A suitable family pλ : d→ g will then give us a family of flat connections

Aλ = pλ(A).

As an example, we provide a very simple construction of such families pλ in the case

when d = g⊗W , where W is a 2-dimensional commutative algebra. These families recover

the deformations of the principal chiral model from [2, 3, 12]. Our purpose is thus modest

— it is simply to clarify previously constructed integrable σ-models. There is possibly a

less naive construction of families pλ that might produce new integrable models, but we

leave this question open.

2 σ-models of Poisson-Lie type and Poisson-Lie T-duality

In this section we review the properties of the “2-dimensional σ-models of Poisson-Lie type”

introduced in [5] (together with their Hamiltonian picture from [6] and using the target

spaces of the form D/H, as introduced in [7]).

Let d be a Lie algebra with an invariant non-degenerate symmetric bilinear form 〈, 〉
of symmetric signature and let V+ ⊂ d be a linear subspace with dim V+ = (dim d)/2, such

that 〈, 〉|V+ is positive-definite.

Let M = D/H where D is a connected Lie group integrating d and H ⊂ D is a closed

connected subgroup such that its Lie algebra h ⊂ d is Lagrangian in d.

This data defines a Riemannian metric g and a closed 3-form η on M . They are

given by

g(ρ(X), ρ(Y )) =
1

2
〈X,Y 〉 ∀X,Y ∈ V+

p∗η = −1

2
ηD +

1

2
d〈A, θL〉

Here ρ is the action of d on M = D/H, p : D → D/H is the projection, ηD ∈ Ω3(D) is

the Cartan 3-form (given by ηD(XL, Y L, ZL) = 〈[X,Y ], Z〉 (∀X,Y, Z ∈ d)), θL ∈ Ω1(D, d)

is the left-invariant Maurer-Cartan form on D (i.e. θL(XL) = X), and A ∈ Ω1(D, h) is

the connection on the principal H-bundle p : D → D/H whose horizontal spaces are the

right-translates of V+.1

1The conceptual definition of g and η is as follows: the trivial vector bundle d×M →M is naturally an

exact Courant algebroid, with the anchor given by ρ and the Courant bracket of its constant sections being

the Lie bracket on d. Then V+ ×M ⊂ d ×M is a generalized metric, which is equivalent to the metric g

and the closed 3-form η. We shall not use this language in this paper, in order to keep it short.
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The metric g and the 3-form η then define a σ-model with the standard action func-

tional

S(f) =

∫
Σ
g(∂+f, ∂−f) +

∫
Y
f∗η

where Σ is (say) the cylinder with the usual metric dσ2 − dτ2 and f : Σ → M is a map

extended to the solid cylinder Y with boundary Σ.

For our purposes, the main properties of these σ-models are the following:

• The solutions of the equations of motion are in (almost) 1-1 correspondence with

1-forms A ∈ Ω1(Σ, d) satisfying (1.1). More precisely, a map f : Σ→M is a solution

iff it admits a lift ` : Σ̃→ D such that A := −d` `−1 satisfies (1.1). Notice that A is

uniquely specified by f (the lift ` is not unique — it can be multiplied by an element

of H on the right).

• When we restrict A to S1 ⊂ Σ = S1 × R, we get a 1-form j(σ)dσ ∈ Ω1(S1, d). The

d-valued functions j(σ) on the phase space of the sigma model satisfy the current

algebra Poisson bracket

{ja(σ), jb(σ
′)} = f cab jc(σ) δ(σ − σ′) + tab δ

′(σ − σ′) (2.1)

(written using a basis ea of d, with f cab being the structure constants of d and tab the

inverse of the matrix of 〈ea, eb〉). The Hamiltonian of the σ-model is

H =
1

2

∫
S1

〈j(σ), Rj(σ)〉 dσ (2.2)

where R : d→ d is the reflection w.r.t. V+.

Finally, let us observe that the phase space of the σ-model depends on the choice of

H ⊂ D only mildly; when we impose the constraint that A has unit holonomy, the reduced

Hamiltonian system is independent of H. This statement is the Poisson-Lie T-duality

(in the case of no spectators). (In more detail, the phase space of the σ-model is the space

of maps ` : R → D which are quasi-periodic in the sense that for some h ∈ H we have

`(σ + 2π) = `(σ)h, modulo the action of H by right multiplication. The reduced phase

space is (LD)/D (i.e. periodic maps modulo the action of D); it is the subspace of Ω1(S1, d)

given by the unit holonomy constraint.)

3 Constructing new flat connections

As we have seen, the solutions of our σ-model give rise to flat connections A ∈ Ω1(Σ, d)

satisfying (1.1). We can obtain new flat connections out of A using the following simple

observation, which is also the main idea of this paper.

Proposition 1. Let g be a Lie algebra and let p : d→ g be a linear map such that

[p(X), p(Y )] = p([X,Y ]) ∀X ∈ V+, Y ∈ V−. (3.1)

If A ∈ Ω1(Σ, d) satisfies (1.1) then p(A) ∈ Ω1(Σ, g) is flat, i.e.

d p(A) + [p(A), p(A)]/2 = 0.

– 3 –
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Proof. Let us use the following notation: for α ∈ Ω1(Σ) let α+ ∈ Ω1,0(Σ) and α− ∈ Ω0,1(Σ)

denote the components of α, i.e. α = α+ + α−. In particular, A+ ∈ Ω1,0(Σ, V+) and

A− ∈ Ω0,1(Σ, V−). We then have

d p(A) + [p(A), p(A)]/2 = d p(A) + [p(A+), p(A−)] = p(dA+ [A+, A−])

= p(dA+ [A,A]/2) = 0.

Given a 1-parameter family of maps pλ : d → g satisfying (3.1) we would thus get a

1-parameter family of flat connections Aλ = pλ(A) on Σ, which may then be used to show

integrability of the model. Let us observe that the Poisson brackets of the “Lax operators”

L(σ, λ) := pλ(j(σ)) are automatically of the form considered in [10, 11] (i.e. containing a

δ(σ − σ′) and a δ′(σ − σ′) term), and so one can in principle extract an infinite family of

Poisson-commuting integrals of motion out of the holonomy of Aλ.

Remark 1. The procedure of finding integrable deformations of integrable σ-models, due

to Delduc, Magro, and Vicedo [1], can be rephrased in our formalism as follows. Suppose

that for some particular pair V+ ⊂ d we find a family pλ : d → g showing integrability

of the model. Let us deform the Lie bracket on d, and possibly the pairing 〈, 〉, in such a

way that the restriction of the Lie bracket to V+ × V− → d is undeformed. Then the same

family pλ will satisfy (3.1) also for the deformed structure on d and show integrability of

the deformed model. These deformations of d do not change the system (1.1) (and if 〈, 〉
is not deformed then they don’t change the Hamiltonian (2.2) either), but they do change

the Poisson structure (2.1) on the phase space.

Remark 2. There is a version of σ-models of Poisson-Lie type, introduced in [8], with the

target space F\D/H, where f ⊂ d is an isotropic Lie algebra (and one needs to suppose

that F acts freely on D/H). In this case V+ ⊂ d is required to be such that 〈, 〉|V+ is

semi-definite positive with kernel f (in particular, f ⊂ V+), and such that [f, V+] ⊂ V+

(we still have dim V+ = (dim d)/2). The phase space is the Marsden-Weinstein reduction

of Ω1(S1, d) by LF , i.e. Ω1(S1, f⊥)/LF . The solutions of equations of motion are still given

by the solutions of (1.1), though this time A is defined only up to F -gauge transformations.

In this case we can still use Proposition 1 without any changes. This setup should cover,

in particular, the discussion of symmetric spaces in [1].

4 Getting a Lax pair in a simple case

In this section we give a simple example of pairs V+ ⊂ d with natural 1-parameter families

pλ satisfying (3.1).

Let g be a Lie algebra with an invariant inner product 〈, 〉g and let W be a 2-

dimensional commutative associative algebra with unit. (W is isomorphic to one of C,

R⊕ R, R[ε]/(ε2).) Let

d := g⊗W

with the Lie bracket [X1 ⊗ w1, X2 ⊗ w2]d = [X1, X2]g ⊗ w1w2.

– 4 –
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We choose the following additional data in W to produce a pairing 〈, 〉 on d and a

subspace V+ ⊂ d:

To get the pairing, let θ : W → R be a linear form such that the pairing on W given by

〈w1, w2〉W := θ(w1w2) is non-degenerate (i.e. such that it makes W to a Frobenius algebra)

and indefinite. The pairing on d is then defined via

〈X1 ⊗ w1, X2 ⊗ w2〉 := 〈X1, X2〉g θ(w1w2).

To get V+ ⊂ d, let V 0
+ ⊂ W be a 1-dimensional subspace such that 〈, 〉W is positive-

definite on V 0
+. Let

V+ = g⊗ V 0
+.

Then V− = g⊗ V 0
− where V 0

− = (V 0
+)⊥.

We can now describe the construction of a family pλ : d → g satisfying (3.1). Let us

choose non-zero elements e+ ∈ V 0
+ and e− ∈ V 0

− (this choice is inessential).

Proposition 2. If a linear form q : W → R satisfies

q(e+)q(e−) = q(e+e−) (4.1)

then the map p = idg ⊗ q : d→ g satisfies (3.1).

Proof. If X = x⊗ e+ ∈ V+ and Y = y ⊗ e− ∈ V− then

p([X,Y ]d) = p
(
[x, y]g ⊗ e+e−

)
= q(e+e−)[x, y]g = [q(e+)x, q(e−)y]g = [p(X), p(Y )]g.

The solutions q ∈ W ∗ of (4.1) form a curve in W ∗, which is either a hyperbola or a

union of two lines. If

e+e− = ae+ + be− a, b ∈ R,

we rewrite (4.1) as (
q(e+)− b

)(
q(e−)− a

)
= ab.

We thus have a hyperbola if ab 6= 0 and a union of two straight lines if ab = 0.

One can easily check that ab = 0 iff one of V 0
± is of the form Re where e ∈W satisfies

e2 = e. This means that one of V± = g ⊗ V 0
± ⊂ d is a Lie subalgebra isomorphic to g and

thus, according to [9], for any Lagrangian h ⊂ d, the corresponding σ-model is simply the

WZW model given by G.

Let us now choose a rational parametrization λ 7→ qλ of the hyperbola (4.1). The

standard parametrization in this context seems to be the one sending λ = ±1 to the two

points at the infinity of the hyperbola, and λ =∞ to 0 (though any other parametrization

would do). This gives

qλ =
q+

1 + λ
+

q−
1− λ

where q+, q− ∈W ∗ are given by

q+(e−) = q−(e+) = 0, q+(e+) = 2b, q−(e−) = 2a.

(If the curve a union of two lines then this pametrizes only one of the lines, or possibly just

a single point.)

– 5 –
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Corollary. If A ∈ Ω1(Σ, d) satisfies (1.1), i.e. if A = A+ ⊗ e+ + A− ⊗ e− with A+ ∈
Ω1,0(Σ, g) and A− ∈ Ω0,1(Σ, g) and if A is flat, then the g-connections

Aλ = (1⊗ qλ)(A) =
2b

1 + λ
A+ +

2a

1− λ
A−

are flat.

The g-valued Lax operator obtained in this way is thus

L(σ, λ) =
2b

1 + λ
j+(σ) +

2a

1− λ
j−(σ) (4.2)

where we decomposed j(σ) as j(σ) = j+(σ) ⊗ e+ + j−(σ) ⊗ e−. For completeness, the

Hamiltonian (2.2) is

H =
1

2

∫
S1

(
θ(e2

+)〈j+(σ), j+(σ)〉g − θ(e2
−)〈j−(σ), j−(σ)〉g

)
dσ.

5 Examples of the example

In this section g is a compact Lie algebra and G the corresponding compact 1-connected

Lie group.

Let start with the case of W = R⊕R, i.e. d = g⊕ g. The only admissible θ ∈W ∗, up

to rescaling (which can be absorbed to 〈, 〉g) and exchange of the two components of W , is

θ(x, y) = x− y. (Here the main limiting factor is existence of a lagrangian Lie subalgebra

h ⊂ d: if θ(x, y) = cx + dy with cd 6= 0 (the non-degeneracy condition), it forces c = −d.)

The pairing 〈, 〉 on d is 〈(X1, X2), (Y1, Y2)〉 = 〈X1, Y1〉g − 〈X2, Y2〉g.
We have

e+ = (1, t) e− = (t, 1)

for some −1 < t < 1. The Lax operator (4.2), written in terms of j = (j1, j2), is

L(σ, λ) =
2t

(1 + t)(1− t)2

( 1

1 + λ

(
j1(σ)− tj2(σ)

)
+

1

1− λ
(
j2(σ)− tj1(σ)

))
The Poisson brackets (2.1) of j1,2 are

{j1a(σ), j1b(σ
′)} = f cab j1c(σ) δ(σ − σ′) + δab δ

′(σ − σ′)
{j2a(σ), j2b(σ

′)} = f cab j2c(σ) δ(σ − σ′)− δab δ′(σ − σ′)
{j1a(σ), j2b(σ

′)} = 0

and the Hamiltonian (2.2) is

H =
1

2(1− t2)

∫
S1

(
(1 + t2)

(
〈j1(σ), j1(σ)〉g + 〈j2(σ), j2(σ)〉g

)
− 4t〈j1(σ), j2(σ)〉g

)
dσ.

The degenerate case t = 0 (when a = b = 0) corresponds to the WZW-model on g.

The natural choice for a Lagrangian Lie subalgebra h ⊂ d is the diagonal g ⊂ d.

The target space of the σ-model is D/G ∼= G. It is the so-called “λ-deformed σ-model”

introduced by Sfetsos in [12] (Sfetsos’s λ is our t).

– 6 –
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Let us now consider the case W = C, which is the richest one. In this case any non-zero

θ ∈ W ∗ is suitable. Let θ(z) = Im(e2iαz) for some α ∈ R. We thus have d = g ⊗ C = gC
(seen as a real Lie algebra) with the pairing 〈X,Y 〉 = Im(e2iα〈X,Y 〉gC) where 〈, 〉gC is the

C-bilinear extension of 〈, 〉g.
In this case

e+ = e−iα+iφ e− = e−iα−iφ

for some φ ∈ (0, π/2). If e2iα = e±2iφ then the resulting σ-model (regardless of the choice

of h ⊂ d) is the WZW-model on G.

The Lax operator (4.2) is

L (σ, λ) =
1

2 sin2 2φ

(
e2iα − e−2iφ

1 + λ
+
e2iα − e2iφ

1− λ

)
J(σ) + c.c.

(where c.c. stands for “complex conjugate”). Here J = jre + ijim and J̄ = jre − ijim where

jre and jim are given by j = jre ⊗ 1 + jim ⊗ i, their Poisson brackets (2.1) (written in an

orthonormal basis of g) are

{Ja(σ), Jb(σ
′)} = f cab Jc(σ) δ(σ − σ′) + 2ie−2iα δab δ

′(σ − σ′)
{J̄a(σ), J̄b(σ

′)} = f cab J̄c(σ) δ(σ − σ′)− 2ie2iα δab δ
′(σ − σ′)

{Ja(σ), J̄b(σ
′)} = 0.

The Hamiltonian (2.2) is

H =
1

2

∫
S1

(
sin 2φ

2
〈J(σ), J̄(σ)〉g −

sin 4φ

4

(
e2iα〈J(σ), J(σ)〉g + e−2iα〈J̄(σ), J̄(σ)〉g

))
dσ

A suitable Lagrangian Lie subalgebra h ⊂ d can be found as follows. Let n ⊂ gC = d

be the complex nilpotent Lie subalgebra spanned by the positive root spaces and let t ⊂ g

be the Cartan Lie subalgebra. Let 0 6= z ∈ C be such that θ(z2) = 0; up to a real multiple

we have z = e−iα or z = ie−iα. Then

h = zt + n ⊂ gC = d

is a real Lie subalgebra of d which is clearly Lagrangian. If z /∈ R then h is transverse to

g ⊂ d and we have an identification D/H ∼= G for the target space of the σ-model.

The case of α = 0 corresponds to Klimč́ık’s Yang-Baxter σ-model [3]. The general

case is the Yang-Baxter σ-model with WZW term introduced in [2] and reinterpreted as a

σ-model of Poisson-Lie type in [4].

The final case is W = R[ε]/(ε2). After rescaling ε and 〈, 〉g we can suppose that

θ(x+ yε) = 2tx+ y for some t ∈ R and that

e+ = 1 + (1− t)ε e− = 1− (1 + t)ε.

Using the notation j = j1 ⊗ 1 + jε ⊗ ε, we get

L(σ, λ) =
1 + t

2(1 + λ)

(
(1 + t)j1 + jε)

)
+

1− t
2(1− λ)

(
(1− t)j1 − jε)

)
.

– 7 –
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The Poisson brackets are

{j1a(σ), j1b(σ
′)} = f cab j1c(σ) δ(σ − σ′)

{j1a(σ), j2b(σ
′)} = f cab j2c(σ) δ(σ − σ′) + δab δ

′(σ − σ′)
{j2a(σ), j2b(σ

′)} = −2t δab δ
′(σ − σ′)

and the Hamiltonian

H =
1

2

∫
S1

(1 + t2)〈j0, j0〉g + t〈j0, jε〉g + 〈jε, jε〉g

In this case the natural h ⊂ d = g[ε]/(ε2) is h = εg, which gives D/H = G. When t = 0

the σ-model is the principal chiral model on G, when t = ±1 we get the WZW model, and

for other values of t we get models given by the invariant metric on G and by a multiple

of the Cartan 3-form.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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