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1 Introduction

There is a class of 2-dimensional o-models, introduced in the context of Poisson-Lie T-
duality [5], whose solutions are naturally described in terms of certain flat connections. The
target space of such a o-model is D/H, where D is a Lie group and H C D a subgroup. The
o-model is defined by the following data: an invariant symmetric non-degenerate pairing
(,) on the Lie algebra d such that the Lie subalgebra h C 0 is Lagrangian, i.e. b~ = b, and
a subspace V. C 0 such that dim V} = (dim?)/2 and such that (,)|y, is positive definite.
The construction and properties of these o-models are recalled in section 2 (including
the Poisson-Lie T-duality, which says that the o-model, seen as a Hamiltonian system, is
essentially independent of H). Let us call them o-models of Poisson-Lie type.

The solutions ¥ — D/H of equations of motion of such a o-model can be encoded in
terms of d-valued 1-forms A € Q(3,0) satisfying

dA +[A, A]/2 =0 (1.1a)

Aec QM@ vy e, V), (1.1b)

where V_ := (V{)t C 9. Namely, the flatness (1.1a) of A implies that there is a map
(:% — D (where X is the universal cover of ¥) such that A = —d¢¢~1. If the holonomy
of Ais in H then ¢ gives us a well-defined map ¥ — D/H. The maps ¥ — D/H obtained
in this way are exactly the solutions of equations of motion.

As first observed by Kliméik [3], and later by Sfetsos [12], and Delduc, Magro, and
Vicedo [2], some o-models of Poisson-Lie type are integrable. Their integrability is proven
by finding a Lax pair, i.e. a 1-parameter family of flat connections (with parameter \)

AyeQY(S,g)  dAy+[AN, A)]/2=0

where g is a suitable semisimple Lie algebra. Such a family is constructed for every element
of the phase space, i.e. for every A € Q'(X,9) satisfying (1.1).



The aim of this note is to make the construction of Ay transparent. We simply observe
that if A € Q'(X,0) satisfies (1.1) and if p : 0 — g is a linear map such that

p(X),p(Y)] =p([X,Y]) VXeV,, YeV.

then
dp(A) + [p(A4),p(A)]/2 = 0.

A suitable family py : 0 — g will then give us a family of flat connections
Ay = pa(A).

As an example, we provide a very simple construction of such families py in the case
when 0 = g® W, where W is a 2-dimensional commutative algebra. These families recover
the deformations of the principal chiral model from [2, 3, 12]. Our purpose is thus modest
— it is simply to clarify previously constructed integrable o-models. There is possibly a
less naive construction of families p) that might produce new integrable models, but we
leave this question open.

2 o-models of Poisson-Lie type and Poisson-Lie T-duality

In this section we review the properties of the “2-dimensional o-models of Poisson-Lie type”
introduced in [5] (together with their Hamiltonian picture from [6] and using the target
spaces of the form D/H, as introduced in [7]).

Let ? be a Lie algebra with an invariant non-degenerate symmetric bilinear form (,)
of symmetric signature and let V; C d be a linear subspace with dim V; = (dimd)/2, such
that (, )|y, is positive-definite.

Let M = D/H where D is a connected Lie group integrating 0 and H C D is a closed
connected subgroup such that its Lie algebra h C 0 is Lagrangian in 0.

This data defines a Riemannian metric g and a closed 3-form 7 on M. They are

given by
1
1 1
n=—= —d(A, 0
P = —5np + 5d(A,0r)

Here p is the action of 9 on M = D/H, p: D — D/H is the projection, np € Q3(D) is
the Cartan 3-form (given by np(X%, YL, Z5) = ([X,Y], Z) (VX,Y,Z €0)), 0, € QY(D,?)
is the left-invariant Maurer-Cartan form on D (i.e. 0.(X*) = X), and A € QY(D,b) is
the connection on the principal H-bundle p : D — D/H whose horizontal spaces are the
right-translates of V.

'The conceptual definition of g and 7 is as follows: the trivial vector bundle d x M — M is naturally an
exact Courant algebroid, with the anchor given by p and the Courant bracket of its constant sections being
the Lie bracket on 0. Then Vi x M C 0 x M is a generalized metric, which is equivalent to the metric g
and the closed 3-form 7. We shall not use this language in this paper, in order to keep it short.



The metric ¢ and the 3-form 7 then define a o-model with the standard action func-
tional

S(f) = /2 60 1,0_1) + /Y fn

where ¥ is (say) the cylinder with the usual metric do? — dr? and f : ¥ — M is a map
extended to the solid cylinder Y with boundary .
For our purposes, the main properties of these o-models are the following:

e The solutions of the equations of motion are in (almost) 1-1 correspondence with
1-forms A € Q'(X,0) satisfying (1.1). More precisely, a map f : ¥ — M is a solution
iff it admits a lift £ : > — D such that A := —d/¢ ¢! satisfies (1.1). Notice that A is
uniquely specified by f (the lift ¢ is not unique — it can be multiplied by an element
of H on the right).

e When we restrict A to S C ¥ = S! x R, we get a 1-form j(o)do € Q1(S,0). The
0-valued functions j(o) on the phase space of the sigma model satisfy the current
algebra Poisson bracket

{Ja(0),jo(0")} = fap je(0) 6(0 — 0") + tap '(0 — &) (2.1)

(written using a basis e* of 9, with f¢, being the structure constants of 0 and ¢, the
inverse of the matrix of (%, e®)). The Hamiltonian of the o-model is

1

H=3 [ (). Rile)) do (2:2)

where R : 0 — 0 is the reflection w.r.t. V.

Finally, let us observe that the phase space of the o-model depends on the choice of
H C D only mildly; when we impose the constraint that A has unit holonomy, the reduced
Hamiltonian system is independent of H. This statement is the Poisson-Lie T-duality
(in the case of no spectators). (In more detail, the phase space of the o-model is the space
of maps ¢ : R — D which are quasi-periodic in the sense that for some h € H we have
l(0 + 2m) = {(0)h, modulo the action of H by right multiplication. The reduced phase
space is (LD)/D (i.e. periodic maps modulo the action of D); it is the subspace of Q*(S*,0)
given by the unit holonomy constraint.)

3 Constructing new flat connections

As we have seen, the solutions of our o-model give rise to flat connections 4 € Q!(%,0)
satisfying (1.1). We can obtain new flat connections out of A using the following simple
observation, which is also the main idea of this paper.

Proposition 1. Let g be a Lie algebra and let p : 0 — g be a linear map such that
p(X),p(Y)] = p(IX,Y]) VX €EVi, VeV, (3.1)
If A € QY(%,0) satisfies (1.1) then p(A) € QY(X, g) is flat, i.e.
dp(A) + [p(A), p(4)]/2 = 0.



Proof. Let us use the following notation: for o € Q1(X) let o™ € QLY(X) and o~ € QO1()
denote the components of «, i.e. « = a* + a~. In particular, A* € QY9(X,V,) and
A= € Q%L(%,V_). We then have

dp(A) + [p(A), p(A)]/2 = dp(A) + [p(AT), p(A7)] = p(dA +[AT, A7)
= p(dA +[A, A]/2) = 0.

O]

Given a l-parameter family of maps py : 0 — g satisfying (3.1) we would thus get a
1-parameter family of flat connections Ay = p)(A4) on X, which may then be used to show
integrability of the model. Let us observe that the Poisson brackets of the “Lax operators”
L(o,\) := pa(j(0)) are automatically of the form considered in [10, 11] (i.e. containing a
d(c —0’) and a ¢'(0 — ¢’) term), and so one can in principle extract an infinite family of
Poisson-commuting integrals of motion out of the holonomy of A).

Remark 1. The procedure of finding integrable deformations of integrable o-models, due
to Delduc, Magro, and Vicedo [1], can be rephrased in our formalism as follows. Suppose
that for some particular pair V. C 0 we find a family py : 0 — g showing integrability
of the model. Let us deform the Lie bracket on 0, and possibly the pairing (,), in such a
way that the restriction of the Lie bracket to Vi x V_ — 0 is undeformed. Then the same
family py will satisfy (3.1) also for the deformed structure on d and show integrability of
the deformed model. These deformations of ? do not change the system (1.1) (and if (,)
is not deformed then they don’t change the Hamiltonian (2.2) either), but they do change
the Poisson structure (2.1) on the phase space.

Remark 2. There is a version of o-models of Poisson-Lie type, introduced in [8], with the
target space F\D/H, where f C 9 is an isotropic Lie algebra (and one needs to suppose
that I acts freely on D/H). In this case Vi C 0 is required to be such that (,)|v, is
semi-definite positive with kernel f (in particular, § C V), and such that [f, Vi] C V4
(we still have dim V; = (dim)/2). The phase space is the Marsden-Weinstein reduction
of Q1(S1,0) by LF, i.e. Q1(S',§+)/LF. The solutions of equations of motion are still given
by the solutions of (1.1), though this time A is defined only up to F-gauge transformations.
In this case we can still use Proposition 1 without any changes. This setup should cover,
in particular, the discussion of symmetric spaces in [1].

4 Getting a Lax pair in a simple case

In this section we give a simple example of pairs V. C 0 with natural 1-parameter families
pa satisfying (3.1).

Let g be a Lie algebra with an invariant inner product (,)s and let W be a 2-
dimensional commutative associative algebra with unit. (W is isomorphic to one of C,
R ® R, Rle]/(€?).) Let

=g W

with the Lie bracket [X; ® wi, X2 ® waly = [X1, X2]g ® wiws.



We choose the following additional data in W to produce a pairing (,) on d and a
subspace V}. C 0:

To get the pairing, let 8 : W — R be a linear form such that the pairing on W given by
(w1, w2)w = O(wiwz) is non-degenerate (i.e. such that it makes W to a Frobenius algebra)
and indefinite. The pairing on 0 is then defined via

(X1 ®wy, Xo ®wa) = (X1, Xo)g 0(wrw2).

To get V. C 0, let V_E C W be a 1-dimensional subspace such that (, )y is positive-
definite on Vf. Let
Vi =go V).
Then V_ = g ® V? where V0 = (V)+.
We can now describe the construction of a family py : 9 — g satisfying (3.1). Let us
choose non-zero elements e € VB and e_ € VO (this choice is inessential).

Proposition 2. If a linear form q: W — R satisfies

ales)ale-) = alese ) (4.1)
then the map p =idg ® ¢ : 0 — g satisfies (3.1).
Proof. f X =2x®er € Vyand Y =y®e_ € V_ then

P(X, Y o) = p([o,ylg ® eve-) = qlee) [, ylg = [a(es), q(e-)ylg = [p(X), p(Y)]g-
0

The solutions ¢ € W* of (4.1) form a curve in W*, which is either a hyperbola or a
union of two lines. If
ere_ =aeqx +be_ a,beR,

we rewrite (4.1) as
(q(eq) —b)(gle—) — a) = ab.
We thus have a hyperbola if ab # 0 and a union of two straight lines if ab = 0.

One can easily check that ab = 0 iff one of V is of the form Re where e € W satisfies
e? = e. This means that one of Vi = g® V{ C 9 is a Lie subalgebra isomorphic to g and
thus, according to [9], for any Lagrangian h C 9, the corresponding o-model is simply the
WZW model given by G.

Let us now choose a rational parametrization A — ¢, of the hyperbola (4.1). The
standard parametrization in this context seems to be the one sending A = +1 to the two
points at the infinity of the hyperbola, and A = oo to 0 (though any other parametrization
would do). This gives
a+ 4=

Y

a\ =
where q1,q— € W* are given by
giles) =q-(ex) =0, qr(es) =26, q_(e_) =2a.

(If the curve a union of two lines then this pametrizes only one of the lines, or possibly just
a single point.)



Corollary. If A € QY(%,0) satisfies (1.1), ice. if A = Ay @ ey + A Qe with Ay €
QL2 g) and A_ € QUL(Z,g) and if A is flat, then the g-connections
2b 2a

Ay= (19 0)(A) = 75 A + T3 A

are flat.

The g-valued Lax operator obtained in this way is thus

2b 2a

m]#(‘ﬂ + 7)\,7‘—(0) (4.2)

L(o,\) = T

where we decomposed j(o) as j(o) = ji(0) ® ex + j—(0) ® e—. For completeness, the
Hamiltonian (2.2) is

M= /S (0(e2)(7+(0), 5+ (0))g = 0(e2)(i~(0),5—(0))g ) dor

5 Examples of the example

In this section g is a compact Lie algebra and G the corresponding compact 1-connected
Lie group.

Let start with the case of W = R ® R, i.e. 9 = g ® g. The only admissible § € W*, up
to rescaling (which can be absorbed to (,)g) and exchange of the two components of W, is
O(x,y) = x — y. (Here the main limiting factor is existence of a lagrangian Lie subalgebra
h C o if O(z,y) = cx + dy with ed # 0 (the non-degeneracy condition), it forces ¢ = —d.)
The pairing <,> on 0 is <(X1,X2), (Yl, Y2)> = <X1,Y1>g — <X2, Y2>g.

We have

er = (1,1) e- =(t,1)

for some —1 < ¢t < 1. The Lax operator (4.2), written in terms of j = (j1,j2), is

L(o,\) =

2t 1
(14+t)(1—1)? (1+)\
The Poisson brackets (2.1) of ji 2 are

{51a(0), j16(0")} = iy J1c(0) (0 — &) + da 0'(0 — o)
{J2a(0), j2u(0")} = fG Jae(0) 6(0 = 0") = 0ay 0'(0 = 0')
{j1a(0), jan(0")} = 0

and the Hamiltonian (2.2) is

(j1(0) ~ t72(0)) + 1= (72(0) — 11 (0))

1

T /S (14 ) (G1(0), j1(0))g + (i2(0), J2(0))g) = 4E(j1(0), (o)) ) do

The degenerate case t = 0 (when a = b = 0) corresponds to the WZW-model on g.

The natural choice for a Lagrangian Lie subalgebra h C 9 is the diagonal g C 0.
The target space of the o-model is D/G = G. It is the so-called “\-deformed o-model”
introduced by Sfetsos in [12] (Sfetsos’s A is our t).



Let us now consider the case W = C, which is the richest one. In this case any non-zero
6 € W* is suitable. Let 6(z) = Im(e*“2) for some o € R. We thus have 9 = g ® C = g¢
(seen as a real Lie algebra) with the pairing (X,Y) = Im(e**(X,Y),.) where (, )4 is the
C-bilinear extension of (,)q.

In this case
— e—ia—i—id) —ia—1i¢p

et e_=e

for some ¢ € (0,7/2). If €?® = ¢*2 then the resulting o-model (regardless of the choice
of h C 0) is the WZW-model on G.
The Lax operator (4.2) is

1 2l _—2i¢ 2 2
L(0.)) <e e e e

T osn?2o \ 1+A T 1-a )J(UHC'C'

(where c.c. stands for “complex conjugate”). Here J = jye + iji and J = jre — ijim where
Jre and ji, are given by j = jre @ 1 + i ® i, their Poisson brackets (2.1) (written in an
orthonormal basis of g) are

{Ja(0), Jo(0)} = [S Je(0) 8(0 — &) + 2ie ™2 6,446 (0 — &)
{Ja(0), Jy(0")} = £S5, Je(0) 6(0 — o) — 2ie** 544, ' (00 — o)
{Ja(a)a b(U,)} =

The Hamiltonian (2.2) is

1= [ (T2 T0)e — 2 (2 3(0), @y + 2T (0). T(0))) )do

A suitable Lagrangian Lie subalgebra h C 0 can be found as follows. Let n C gc =0
be the complex nilpotent Lie subalgebra spanned by the positive root spaces and let t C g
be the Cartan Lie subalgebra. Let 0 # 2 € C be such that 6(z?) = 0; up to a real multiple
—i

we have z = ¢ or z = ie"*. Then

h=zt+nCgc=0

is a real Lie subalgebra of ® which is clearly Lagrangian. If z ¢ R then b is transverse to
g C 0 and we have an identification D/H = G for the target space of the o-model.

The case of @ = 0 corresponds to Kliméik’s Yang-Baxter o-model [3]. The general
case is the Yang-Baxter o-model with WZW term introduced in [2] and reinterpreted as a
o-model of Poisson-Lie type in [4].

The final case is W = R[e]/(¢?). After rescaling € and (,); we can suppose that
0(x 4 ye) = 2tz + y for some t € R and that

ey =14+ (1—t)e e-=1—(1+1t)

Using the notation j = j1 ® 1 + j. ® €, we get

1-1¢
2(1-2)

L 0) = gy (4 0 +0) + (1= 031 = 30).



The Poisson brackets are

{J1a(0), j15(0")} = [ Jie(o) 6(0 — o)
{J1a(0), 25(0")} = f3 Jae(0) 6(0 = 0") + 00 0'(0 — o)
{j2a(a)7j2b(al)} = -2t 5ab 5/(0 - OJ)

and the Hamiltonian

1 . . . . . .
H = 5 /5'1(1 + t2)<]07]0>g + t(]O,]e)g + <]e7]e>g

In this case the natural h C 0 = g[e]/(€?) is b = eg, which gives D/H = G. When t = 0

the g-model is the principal chiral model on G, when t = +1 we get the WZW model, and

for other values of t we get models given by the invariant metric on G and by a multiple
of the Cartan 3-form.
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