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Abstract: We point out that recent Verlinde’s proposal of emergent gravity suffers from

some internal inconsistencies. The main idea in this proposal is to preserve general relativity

at short scales where numerous tests verified its validity, but modify it on large scales where

we meet puzzles raised by observations (in particular dark matter), by using some entropic

concepts. We first point out that gravity as a conservative force is very difficult (if possible

at all) to portray as an entropic force. We then show that the derivation of the MOND

relation using the elastic strain idea is not self-consistent. When properly done, Verlinde’s

elaborate procedure recovers the standard Newtonian gravity instead of MOND.
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1 Introduction

The idea of emergent gravity, put forward in [1, 2], is an interesting attempt to attack the

longstanding problems in gravity and cosmology from a new perspective. As such, it is very

valuable since it is very unlikely that the problems we are facing will be resolved by some

straightforward extension of the existing models. Then in [3], an explicit Lagrangian cap-

turing some features of this proposal was proposed (see also [4] for important corrections).

The purpose of this note is, however, to point out that, as it stands now, the proposal

detailed in [1, 2] does not appear to be self-consistent.

2 Gravity cannot be an entropic force

We start with the first and most important premise of the entropic gravity proposal. The

main claim that relates entropy and gravitational force can be found around equation (3.7)

in the first Verlinde’s paper [1].

“The basic idea is to use the analogy with osmosis across a semi-permeable membrane.

When a particle has an entropic reason to be on one side of the membrane and the mem-

brane carries a temperature, it will experience an effective force equal to

F4x = T4S (2.1)

This is the entropic force.” [F is gravitational force, 4x is the displacement, T is the

temperature of the system, and 4S is the change in entropy.]

This implies that the particle moves because the entropy of the system increases when

it moves. However, this very first premise cannot be true. Namely, Newtonian gravitational

force is conservative. An essential feature of conservative forces is that their action is always

reversible. A system in a free fall will never increase its entropy, because this is a reversible

process. We need some kind of dissipation (e.g. collisions) to increase entropy and make

it irreversible. In general relativity this is realized by emission of gravitons which increase

entropy. However, even in general relativity, it is possible to construct a freely falling
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(collapsing) system which does not radiate gravitons or any other radiation (for example a

spherically symmetric case). Therefore gravity cannot be interpreted as an entropic force.

In fact, it is easy to see what is technically wrong with equation (3.7) in [1]. The right

hand side of that equation is work done by the gravity. The full expression should read

F4x = T4S +4Ek (2.2)

where 4Ek is the change in the kinetic energy of this system. Thus, gravitational force

can perform work which results in the change of kinetic energy, while the entropy of the

system remains constant all the time. In [1], the author omitted 4Ek and concluded that

gravity was an entropic force.

Thus, gravity cannot be an entropic force, at least as long as entropy is the usual

thermodynamical entropy as used in eqs. (2.1) and (2.2).

3 Inconsistency in derivation of the MOND relation

Recently, the original proposal was extended and refined in a new paper [2]. The main goal

now is to solve the dark matter problem using the entropic gravity idea. In section 7.1 of [2],

the author tries to prove that the surface mass density, ΣD, for the apparent dark matter

in terms of the Newtonian potential for the baryonic matter, ΦB, is (equation (7.37) in [2])(
8πG

a0
ΣD

)2

=
d− 2

d− 1
Oi

(
ΦB

a0
ni

)
(3.1)

where d is the number of dimensions in space, while ni is a normalized eigenvector satisfying

|n|2 = 1. The parameter a0 is an acceleration scale determined by the Hubble constant,

H0, and the speed of light, c, as a0 = cH0. If we take a point particle of mass M as an

example, the corresponding Newtonian potential is ΦB = −GM
r . From equation (3.1), one

finds the surface mass density for dark matter as

ΣD =

√
2Ma0
96π2G

r
. (3.2)

Since the surface mass density drops as 1/r, the total mass grows with distance as r, so

this behavior reproduces the MOdified Newtonian Dynamics (MOND), and can explain

the flat galactic rotational curves at large distances.

However, to put the discussion in terms of the spacetime metric, the author introduces

the displacement field, ui, which is an analog of the gravitational potential, and the cor-

responding elastic strain tensor, εij , which is an analog of the gravitational acceleration.

The displacement field is defined in equation (6.4) in [2] as

ui =
ΦB

a0
ni, (3.3)

while the linear strain tensor is defined in equation (6.1) in [2] as

εij =
1

2
(Oiuj + Ojui) . (3.4)

– 2 –



J
H
E
P
1
1
(
2
0
1
7
)
0
0
7

In the point particle case, the strain must be proportional to 1/r2, because it is just a

derivative of ui.

In equation (7.28) in [2], the author writes down the relation between the apparent

dark matter surface density and the principal strain ε(r)

ΣD =
a0

8πG
ε(r) (3.5)

where ε(r) is defined as

ε(r)ni =

(
εij −

1

d− 1
εkkδij

)
nj . (3.6)

If the principal strain ε(r) has the same general behavior as the strain tensor εij , i.e. falls

off as 1/r2, then

ΣD =
a0

8πG
ε(r) ∼ r−2. (3.7)

This is very different from the desired form in equation (3.2). Since equations (3.2) and (3.7)

cannot be both right at the same time, the author goes through an elaborate construct to

justify his choices. Basically, he is trying to force ε(r) to drop as 1/r rather than 1/r2. We

will now go through the main steps, pointing out a major problem.

The main observation that the author utilizes in [2] is that the presence of ordinary

matter in some subregion B of the de Sitter space removes the amount of entropy SM (B)

out of the total de Sitter entropy. The removed entropy is proportional to the displacement

ui as

SM (B) =
1

V ∗0

∫
∂B
uidAi (3.8)

where the integral goes over the area of the subregion B. Here V ∗0 is a constant normaliza-

tion term. The author expects that a point mass removes entropy within radius r as

SM (r) = −2πMr

~
(3.9)

This is consistent with ui ∼ 1/r, and justifies equation (3.3). Next, the author proposes that

the removed entropy is not perfectly spherically distributed. Ordinary matter is located in

many smaller “inclusion regions” labeled VM (L). The displacement field now satisfies

Oiui =

{
−V ∗0 /V0 inside B ∩ VM (L)

0 outside B ∩ VM (L)
(3.10)

Since these inclusion regions are randomly scattered in space (as in figure 1), the

displacement ui is not exactly the same as in equation (3.3). It must be corrected to

ui =
ΦB

a0
ni + ~δ(x, y, z) (3.11)

where ~δ(x, y, z) is the fluctuation caused by the non-uniform distribution of removed en-

tropy regions. If the fluctuations are random, then in large areas they cancel out on average,

or at least they are much smaller than the first term, ΦB
a0
ni, i.e.∣∣∣∣∫ ~δ(x, y, z) · d ~A

∣∣∣∣� ∣∣∣∣∫ ΦB

a0
nidAi

∣∣∣∣ . (3.12)
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Figure 1. The black solid circles are the inclusion regions, VM (L), where matter is present. Within

these regions entropy is removed, and the displacement satisfies Oiui = −V ∗
0 /V0. Outside of these

regions entropy is not removed, and the displacement satisfies Oiui = 0.

In this context, averaging means integration. The random distribution of inclusion regions

also modifies the strain as

ε(r) =
H

r2
+ f(x, y, z) (3.13)

where H is some constant which is not very important, while f(x, y, z) is the fluctuation in

the strain induced by the fluctuation in the displacement ~δ(x, y, z). We can now compute

the volume integral of ε(r)2 as∫
ε(r)2dV =

∫
H2

r4
dV + 2

∫
H

r2
f(x, y, z)dV +

∫
f(x, y, z)2dV. (3.14)

The term
∫
H2

r4
dV is the standard average behavior. The term linear in f(x, y, z), i.e.∫

H
r2
f(x, y, z)dV will be canceled out on average. However, the term quadratic in fluctua-

tions,
∫
f(x, y, z)2dV , survives and corresponds to an additional contribution to the strain

from the random distribution of inclusion regions. The author expects that on average∫
ε(r)2dV =

d− 2

d− 1

∫
∂B
uidAi =

d− 2

d− 1

∫
∂B

ΦB

a0
nidAi. (3.15)

In the last step, the fluctuation ~δ in equation (3.11) is removed after averaging. Thus, from

equations (3.14) and (3.15) one gets∫
H2

r4
dV +

∫
f(x, y, z)2dV ≈ d− 2

d− 1

∫
∂B

ΦB

a0
nidAi (3.16)

As already mentioned, the term 2
∫
H
r2
f(x, y, z)dV is removed because it is linear in fluctu-

ations.
∫
H2

r4
dV is the regular term, which decays like r−1. To obtain the correct right hand

side which is proportional to r, the extra contribution term
∫
f(x, y, z)2dV must grow like

r. This implies that the fluctuation f(x, y, z) falls off as 1/r. The singularity at r = 0 is

neglected, because point particle description will fail at some small finite radius. Using the

relation in equation (3.5), the author also rewrites equation (3.15) in terms of the surface
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density (it is equation (7.36) in [2]) as∫
B

(
8πG

a0
ΣD

)2

dV =
d− 2

d− 1

∫
∂B

ΦB

a0
nidAi. (3.17)

One then applies Stokes theorem to obtain the crucial equation (3.1). This is how Verlinde

derives the MOND relation in section 7.1 of [2].

What is wrong with this procedure? The main technical point is that averaging was

applied to remove contribution from the fluctuation ~δ, or equivalently 2
∫
H
r2
f(x, y, z)dV in

equation (3.14). So again, after integration of equation (3.13) one gets∫
ε(r)2dV ≈

∫
H2

r4
dV +

∫
f(x, y, z)2dV. (3.18)

This is all that one can conclude at this point. By equating the terms under the integral,

one can naively find that

ε(r) ≈
√
H2

r4
+ f(x, y, z)2. (3.19)

Since f(x, y, z) falls off as 1/r, at large distances the strain and thus the surface density

ΣD (because of equation (3.5)) falls off as 1/r, exactly as needed for MOND. However, this

is incorrect. The cross term in equation (3.14) is gone only after the integration because

of the averaging, so one cannot go back and extract ε(r) this way. For the same reason

equation (3.15) cannot be applied to recover ε(r), because ~δ is removed by averaging.

To avoid this mistake, one has to go back to equation (3.13). On average, the surface

density is

ΣD =
1

A

∫
a0

8πG
ε(r)dA = (3.20)

1

A

a0

8πG

∫ [
H

r2
+ f(x, y, z)

]
dA ≈ 1

A

a0

8πG

∫
H

r2
dA,

where A is the area over which one integrates. The linear term
∫
f(x, y, z)dA is again

suppressed. The final result is that the surface density falls off as 1/r2, not as desired

1/r. This is the same behavior as in Newtonian gravity, not MOND. Therefore, the crucial

MOND relation written in equation (3.1) cannot be self-consistently derived in this way.

4 Conclusions

In this paper we pointed out two major problems that plague Verlinde’s proposal of emer-

gent gravity. While the proposal contains some attractive features, a self-consistent for-

mulation (if possible at all) requires addressing the problems we outlined here. The first

problem is that the equation (2.1) on which the entropic reasoning is based in incomplete,

and instead equation (2.2) should be used. Then it will become clear that gravity as a

conservative force cannot have an entropic origin. The second problem appears when an

attempt was made to derive the MOND relation in equation (3.1). The averaging proce-

dure was not applied appropriately, and instead of the regular mean the root mean square

was used. We showed that when the averaging is properly done, the contribution from the

strain behaves like ordinary Newton’s gravity instead of MOND.
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Entropic reasoning from the section 2 was also criticized in [5], where eq. (2.1) was

generalized to multiple heat baths with multiple temperatures and multiple entropies. How-

ever, a more complete eq. (2.2) was not discussed in [5].

It is also instructive to note that our discussion from the section 2 does not apply

(at least not in a straightforward way) to different approaches that can be found in the

literature. For example, it was argued in [6, 7] that a thermodynamic interpretation of the

relativistic Einstein equations might be possible (as opposed to the Newtonian force like

in Verlinde’s proposal). However, neither of these proposals is explicitly using the form

of eq. (2.1). In particular, in [6], to argue that the Einstein equations are an analog of

a thermodynamical equation of state, the relation δQ = TdS was used, which is techni-

cally correct, while eq. (2.1) is incomplete. In [7], the author gives an interpretation that

the Einstein’s gravitational action represents the free energy of the spacetime geometry.

Since this interpretation does not involve any incomplete thermodynamical relations, our

criticism does not apply to it.

Our discussion from the section 3 does not apply to earlier approaches in [6, 7] since

it crucially depends on the elaborate procedure in [2].
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