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1 Introduction

Despite its success at predicting the results of particle experiments, the Standard Model

remains widely unloved. Its unpopularity is due in part to a few inexplicably small param-

eters, including the O(10−16) ratio between the electroweak and Planck scales, the puzzling

array of Yukawa couplings, and the degree to which QCD conserves the discrete charge

(C) and parity (P ) symmetries, |θ| < 10−10. In addition, the Standard Model is clearly

incomplete, failing to describe gravitation, dark matter, and neutrino masses.

Prominent solutions to these theoretical shortcomings include supersymmetry (susy),

which stabilizes the electroweak scale and can support dark matter; extra dimensions and

composite models, which can generate hierarchies dynamically; and axions, which explain

the smallness of the QCD CP parameter θ while supplying a dark matter candidate. In this

paper we consider a hybrid of these elements, a supersymmetric composite axion model,

as a solution to the strong CP problem that is free from fine-tuning.

At issue (for more complete discussion, see refs. [1, 2]) is the θ term of the QCD

Lagrangian,

L =
g2

32π2
θ̄ εµνρσGaµνG

a
ρσ ≡

g2

32π2
θ̄ GaµνG̃

aµν , (1.1)

which violates both P and CP . θ̄ is the physical combination of the intrinsic coefficient θ

and a phase in the quark mass matrix,

θ̄ ≡ θ + arg detMQ. (1.2)
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Measurements of the neutron electric dipole moment require
∣∣θ̄
∣∣ < 10−10 [3]. Such a tiny

value appears to require an extraordinary cancellation between two apparently unrelated

quantities.

In a simple axion model, θ̄ is associated with the transformation parameter of an

approximate global U(1)PQ symmetry [4–10]. U(1)PQ is spontaneously broken at some

high scale fa by the expectation value of a U(1)PQ-charged scalar field or the formation

of a U(1)PQ-charged fermion condensate, resulting in a pseudo-Nambu-Goldstone boson

(pNGB): the axion a. Due to the nonzero SU(3)2
c-U(1)PQ anomaly, non-perturbative QCD

dynamics induce an expectation value for the axion such that CP is a symmetry of the

vacuum, and the axion acquires a small mass.

At energies below fa, the effective Lagrangian contains the term:

L =
g2

32π2

(
θ̄ +A a

fa

)
GaµνG̃

aµν , (1.3)

where A is the SU(3)2
c-U(1)PQ anomaly coefficient. Nonperturbative QCD generates a

periodic potential for the axion which can be heuristically described by

V [a] = m2
πf

2
π

(
1− cos

[
A a

fa
+ θ̄

])
, (1.4)

where mπ and fπ are the pion mass and decay constant, respectively. This potential is

minimized when 〈a〉 = −faθ̄/A, leading to CP conservation in the vacuum. We choose to

normalize the U(1)PQ charges so that A = 1, for which the axion mass is,1

m2
a =

m2
πf

2
π

f2
a

. (1.5)

Experimental observations set bounds on the value of fa. A lower bound fa & 109 GeV

is derived from constraints on stellar and supernova cooling [12], while the axion relic

abundance suggests fa . 1012 GeV in the absence of cosmological fine tuning [13].

Axion quality problem. Simple axion models are plagued by the theoretical inconsis-

tencies endemic to theories containing fundamental scalar fields. The expectation value

of the new complex scalar 〈φ〉 ∼ fa receives additive corrections from high-energy physics

which, while less severe than the electroweak hierarchy [14], remains a concerning source of

fine-tuning. Models of axions also suffer from a different concern which is potentially much

more troubling: the axion quality problem. Any U(1)PQ-violating effects in the scalar po-

tential can shift the axion VEV away from θ = 0, inducing the strong CP problem rather

than solving it. In particular, non-perturbative quantum gravity is expected to violate

global symmetries [15–20], leading to terms in the low energy effective action of the form

Lg ∼
|φ|p (φ+ φ?)

Mp−3
P

, (1.6)

1More careful treatments based on the QCD chiral Lagrangian [11] result in a potential given by:

V [a] = m2
πf

2
π

(
2−

√
1 + 2mumd

(mu+md)
2

(
cos
[
A a
fa

+ θ̄
]))

, where mu,d are the up- and down-quark masses,

and leading to an axion mass m2
a = mumd

(mu+md)
2

m2
πf

2
π

f2a
. The distinction between these two expressions for V [a]

is unimportant in terms of assessing the axion quality, and we use eq. (1.4) for our analysis.
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which is inconsistent with |θ| < 10−10 unless the p = 4 term has a coefficient smaller than

O(10−55). Considering that the axion is introduced to explain fine-tuning of O(10−10),

this calls its motivation into serious question, and any successful axion model must prevent

linear shifts of the form 〈a〉 → 〈a〉+ fa∆θ with ∆θ > 10−10.

More generally, we can analyze arbitrary U(1)PQ violation by including it in the axion

potential V [a] as

δV [a] = (Q f4
a ) cos

(
κ

[
a

fa
+ θ̄

]
+ θ0

)
, (1.7)

for a dimensionless “quality factor” Q, an integer κ and an angle θ0. Experimental measure-

ments of 〈θ〉 set a maximum bound on Q; we derive the general expression in appendix A.

For κ sin θ0 ∼ O(1), |θ| < 10−10 requires:

Q < 10−62

(
1012 GeV

fa

)4

= 10−50

(
109 GeV

fa

)4

. (1.8)

Consistent axion models. Several solutions to the axion quality problem are known,

in which the U(1)PQ is protected by associating it with new gauged symmetries. In the

simplest solutions a gauged discrete ZN symmetry [21] forbids U(1)PQ-violating operators

of dimensions smaller than N . More sophisticated models can employ discrete groups

as small as Z4 while forbidding the problematic operators [22, 23]. Solutions without

gauged discrete symmetries also exist: for example, a composite model [24] with a gauged

SU(N) × SU(m) × SU(3)c protects U(1)PQ to arbitrarily high order. More recently [25],

a qualitatively different SU(N)L × SU(N)R × SU(3)c model has been shown to suppress

Planck scale corrections appropriately.

Other constructions protect U(1)PQ by gauging a related Abelian group. In one

model [26] with a compact extra dimension, a gauged U(1) symmetry is spontaneously

broken by fields localized on two separated four-dimensional branes. One combination of

the fields is eaten by the gauge field, while the other acts as the QCD axion and is protected

from gravitational corrections. A related model [27] gauges a product group of the form

U(1)k with k ≥ 14, which can also be interpreted as a k site deconstruction of a compact

fifth dimension. In a different class of models [18, 28], the fields are assigned large and rela-

tively prime U(1) charges, so that an accidental U(1)PQ is protected from low-dimensional

operators.

Some of these models, while successful at forbidding low-dimensional U(1)PQ-breaking

operators, still suffer from a hierarchy problem. One resolution is supersymmetry (susy),

which protects fa from loop-level corrections, so that the theory is technically natural

if the susy-breaking scale is not much larger than fa. Another compelling direction is

composite models, which can suppress dangerous gravitational contributions to the axion

potential while allowing the scale of U(1)PQ breaking to be determined from the confining

dynamics. For asymptotically free gauge theories the confinement scale is expected to be

exponentially suppressed compared to MP, so the hierarchy between fa and MP can be

naturally generated dynamically.

In this article, we present a qualitatively new supersymmetric composite axion model

which tames both the quality and hierarchy problems. The axion is a composite formed of

– 3 –
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large product of fundamental fields, such that the quality problem is ameliorated by a suffi-

ciently large power of (Λ/MP)n, where fa ∼ Λ is dynamically generated by the confinement

of a product of non-Abelian gauge theories. Supersymmetry allows for control over the low

energy physics of the non-perturbative confining dynamics, and additionally stabilizes any

other mass scales (including, perhaps, the electroweak scale). Our work is laid out as fol-

lows: in section 2, we explore a minimal construction in terms of its UV degrees of freedom.

In section 2.1, we analyze its low energy behavior after confinement, with section 2.2 dis-

cussing the breaking of the global symmetries, including U(1)PQ. Section 2.3 estimates the

size of the leading gravitational corrections, and determines parameters such that the axion

quality problem is ameliorated to a sufficient degree. In section 3, we show how a simple

extension of the basic model can dynamically generate superpotential terms on which the

basic module relies, resulting in a theory in which all of the essential mass scales are dynam-

ically generated. In section 4, we conclude. As we shall see, solving the quality problem

can imply that a theory whose low energy limit looks like a rather standard invisible axion

model may blossom at high energies into a rich interlocking structure of gauge dynamics.

2 Axion from a supersymmetric product group

The construction of our axion model begins with a gauge group SU(N)(1), with one mat-

ter field A transforming in the antisymmetric ( ) representation; four quarks, Q; and N

antiquarks Q1. This theory is known to s-confine [29–32]: that is, a set of gauge-invariant

operators provides a smooth description of the moduli space which is valid at the origin,

and a dynamically generated superpotential enforces the classical constraints between op-

erators [33, 34]. When supplemented by an appropriately chosen external superpotential,

U(1)PQ is spontaneously broken when SU(N)(1) confines.

High axion quality is enforced by expanding SU(N)(1) into a product gauge group,

SU(N)r = SU(N)(1)×SU(N)(2)× . . .×SU(N)(r). In addition to the SU(N)(1)-charged A+

4Q, the matter fields include a set of bifundamentals Qi which transform under SU(N)(i)×
SU(N)(i+1), and N antiquarks Qr charged only under SU(N)(r). It has recently been

demonstrated that this product group model s-confines [35], and that the gauge-invariant

operators include “mesons” of the form (QQ1Q2 . . . Qr) and (AQ
2
1 . . . Q

2
r); “baryons” (Q

N
i )

for each i = 1 . . . r; and special baryons (A
N−p

2 Qp) for 0 ≤ p ≤ 4, subject to the condition

that (N − p) is even. An axion living in a combination of these fields enjoys the feature

that increasing r and N results in increasingly suppressed gravitational corrections.

To accommodate QCD within the model, we introduce a second copy of the matter

fields A + 4q + q1 + . . . + q`−1 + Nq` charged under a new s-confining SU(N)` gauge

group, and we let Q and q transform in the fundamental ( ) and antifundamental ( )

representations under a weakly gauged SU(4) which contains SU(3)c as a subgroup. The full

matter content of our theory is thus {A,Q,Q1 . . . Qr;A, q, q1 . . . q`}, with the gauge group

SU(N)r × SU(4)× SU(N)`. The gauge structure and matter assignments is represented as

a moose diagram in figure 1, and is vaguely reminiscent of a deconstructed extra dimension

with a bulk SU(N) broken to SU(4) on a defect. As we show in section 2.3, this structure

permits smaller values of N for a given axion qualty.
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Examples for Feynman diagrams

1 Moose Diagrams

Q
SU(4)

A
•

G1

Q1
G2

Q2 Qk�1

Gk

Qk
SU(N)

(1.1)

SU4 q

A

•

eG1

q1
eG2

q2 q`�1

eG`

q`
SUN

Q

A•

G1

Q1
G2

Q2 Qr�1

Gr

Qr
SUN

(1.2)

1

Figure 1. Moose diagram indicating the matter content and gauge interactions of the SU(N)` ×
SU(4)×SU(N)r composite axion model. Each Gi and G̃i corresponds to a gauged SU(N), whereas

SU(N) flavor symmetries are represented by dashed circles. The bifundamental fields Q, Qi, q,

and qi are depicted as directed line segments connecting adjacent groups, while the field A (A)

transforms under G1 (G̃1) in the antisymmetric two-tensor representation.

For convenience, we introduce the notation SU(N)` = G̃1×G̃2×. . .×G̃` and SU(N)r =

G1×G2× . . .×Gr, where G̃i and Gi represent SU(N) groups that confine at scales Λ̃i and

Λi respectively. Up to a constant, the holomorphic scales Λ̃i and Λi are defined as

Λ̃bi ≡ µb exp{−8π2/g̃2
i + iθ̃i}, Λbi ≡ µb exp{−8π2/g2

i + iθi}, (2.1)

where g̃i and gi are the coupling constants of the gauge groups G̃i and Gi. In the dy-

namically generated superpotential for each group there is an overall constant that is not

determined by symmetry arguments; to simplify the notation, we absorb these constants

into Λ̃bi and Λbi .

In the absence of an external superpotential, there is a conserved U(1)A × U(1)B ×
U(1)C ×U(1)R× SU(N)L× SU(N)R global symmetry, and an approximate U(1)PQ that is

broken by the SU(4)2-U(1) anomaly. Charges are shown in table 1, where for convenience,

we have taken the U(1)R charges of Q and A to be equal to q and A, respectively, with

qQ = N−4
N and qA = 16−2N

N(N−2) . By defining U(1)PQ as in table 1, we assume that the operator

(AQ
2
1 . . . Q

2
r) is more suppressed than (Aq2

1 . . . q
2
` ), so that U(1)PQ is expected to be a better

symmetry than U(1)A. Appropriate U(1)PQ charges in the opposite limit can be recovered

by performing the following outer automorphism on the moose diagram:

`↔ r, Gi ↔ G̃i, Λi ↔ Λ̃i, A↔ A, Q↔ q, Qi ↔ qi. (2.2)

At a generic point on the moduli space the full global symmetry is spontaneously bro-

ken, producing a number of Nambu-Goldstone bosons. Although the explicit symmetry

breaking from gravity would supply masses for the pNGBs, a tree-level external superpo-

tential

Wtree =
(Aq2

1q
2
2 . . . q

2
` )

M2`−2
A

+
(Q

N
1 )

MN−3
B

+
(qN1 )

MN−3
C

+
(AmQ)(Am−1Q3)

MN−1
R

+
(A

m
q)(A

m−1
q3)

MN−1
r

(2.3)

– 5 –
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SU(N)L G̃` . . . G̃1 SU(4) G1 . . . Gr SU(N)R UA UB UC UR U(1)PQ

q` 0 0 ±1 0 0

q`−1 0 0 ∓1 0 0
...

. . .
...

...
...

...
...

q1 0 0 1 0 0

A −4 0 −N
N−2

qA 0

q N − 2 0 0 qQ 0

Q 2−N 0 0 qQ
2−N
N

A 4 −N
N−2

0 qA 4/N

Q1 0 1 0 0 0
...

. . .
...

...
...

...
...

Qr−1 0 ∓1 0 0 0

Qr 0 ±1 0 0 0

Table 1. Representations of the matter fields under the gauged SU(N)`×SU(4)×SU(N)r symme-

tries, the flavor symmetries SU(N)L × SU(N)R × U(1)4, and the approximate U(1)PQ symmetry.

increases the pNGB masses by breaking the global symmetries more severely. This is

essential in the case of the second (MB) term, which as we shall see below determines the

PQ symmetry breaking scale fa after confinement. The remaining Mi could be safely taken

to be MP without harm. In addition, to avoid deforming the G1 confinement, we choose

them to satisfy Λ1 .Mi.

In section 3 we discuss the possibility that some of the terms in eq. (2.3) are generated

dynamically through the s-confinement of a strongly coupled Sp(2n) gauge group, providing

a natural and completely dynamical origin for the scale fa.

2.1 Confinement

We choose the UV gauge couplings such that SU(N)` and SU(N)r confine at an interme-

diate scale where SU(4) remains weakly coupled and supersymmetry is unbroken. For odd

N = 2m+ 1, the groups SU(N)` and SU(N)r confine separately to produce the following

hadrons:

JL=(q`q`−1 ...q1q), KL=(q2
`q

2
`−1 ...q

2
1A), x1 =(A

m
q), y1 =(A

m−1
q3), zi=(qi)

N ,

(2.4)

JR=(QQ1Q2 ...Qr), KR=(AQ
2
1Q

2
2 ...Q

2
r), X1 =(AmQ), Y1 =(Am−1Q3), Zi=(Qi)

N .

(2.5)

Their transformation properties under the global symmetries are summarized in table 2.

These operators obey quantum-modified equations of motion, for which we define the

– 6 –
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SU(4) SU(N)L SU(N)R U(1)PQ

x1 0

y1 0

zi 1 0

JL 0

KL 1 0

X1 1

Y1 −1

Zi 1 0

JR
2−N
N

KR 1 4/N

Table 2. Operators describing infrared degrees of freedom in the confined phase of SU(N)` ×
SU(N)r, and their transformation properties under the approximate SU(N)L × SU(N)R ×U(1)PQ

flavor symmetries.

shorthand notation:

(Π̃`
1z)=





even `:
(z1z2z3 ...z`)−Λ̃b2(z3z4 ...z`)−z1Λ̃b3(z4 ...z`)+Λ̃b2Λ̃b4(z5 ...z`)+...

+(Λ̃b2Λ̃b4Λ̃b6 ...Λ̃
b
`−2)z`−1z`+(Λ̃b2Λ̃b4Λ̃b6 ...Λ̃

b
`−2Λ̃b`),

odd `:
(z1z2z3 ...z`)−Λ̃b2(z3z4 ...z`)−z1Λ̃b3(z4 ...z`)+Λ̃b2Λ̃b4(z5 ...z`)+...

+z1(Λ̃b3Λ̃b5Λ̃b7 ...Λ̃
b
`)+...+(Λ̃b2Λ̃b4Λ̃b6 ...Λ̃

b
`−1z`);

(2.6)

(Π̃r
1Z)=





even r:
(Z1Z2Z3 ...Zr)−Λb2(Z3Z4 ...Zr)−Z1Λb3(Z4 ...Zr)+Λb2Λb4(Z5 ...Zr)+...

+(Λb2Λb4Λb6 ...Λ
b
r−2)Zr−1Zr+(Λb2Λb4Λb6 ...Λ

b
r−2Λbr),

odd r:
(Z1Z2Z3 ...Zr)−Λb2(Z3Z4 ...Zr)−Z1Λb3(Z4 ...Zr)+Λb2Λb4(Z5 ...Zr)+...

+Z1(Λb3Λb5Λb7 ...Λ
b
r)+...+(Λb2Λb4Λb6 ...Λ

b
r−1Zr).

(2.7)

The constraint equations include:

Km
L JL = x(Π̃`

1z)

Km
R JR = X(Π̃r

1Z)

Km−1
L J3

L = y(Π̃`
1z)

Km−1
R J3

R = Y (Π̃r
1Z)

xy = 0

XY = 0.
(2.8)

Not shown above, X, Y , x, and y each carry an SU(4) gauge index, which is summed over

in the expressions xαyα = XαY
α = 0. Each term in the equations above is invariant under

the SU(N)L × SU(N)R family symmetry. Combinatoric coefficients have been suppressed

for clarity.

The analysis is simplified by introducing spurion superfields Xi>1, Yi>1, xi>1 and yi>1,

such that the constraints between operators follow directly from the dynamically generated

– 7 –
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superpotential Wd = WL +WR, where

WL =
x1y1z1 − x1y2 − y1x2

Λ̃b1
+

`−1∑

i=2

xiyizi − xiyi+1 − yixi+1

Λ̃b1Λ̃b2 . . . Λ̃
b
i

+
x`y`z` − x`Km−1

L J3
L − y`Km

L JL

Λ̃b1Λ̃b2 . . . Λ̃
b
`

(2.9)

WR =
X1Y1Z1 −X1Y2 − Y1X2

Λb1
+

r−1∑

i=2

XiYiZi −XiYi+1 − YiXi+1

Λb1Λb2 . . .Λ
b
i

+
XrYrZr −XrK

m−1
R J3

R − YrKm
R JR

Λb1Λb2 . . .Λ
b
r

. (2.10)

Each of the fields {Xi>1, Yi>1, xi>1, yi>1} is a redundant operator: that is, the equations of

motion determine the low-energy behavior of each superfield exactly, leaving no indepen-

dent degrees of freedom. For example, the constraint ∂Wd/∂Xi = 0 determines the value

of Yi+1:

Y2 = Y1Z1, Y3 = Y1(Z1Z2 − Λb2), Yi+1 = YiZi − ΛbiYi−1 = Y1(Π̃i
1Z). (2.11)

After confinement, the tree-level superpotential eq. (2.3) leads to

Wtree →
(KL)i1i2
M2`−2
A

+
Z1

MN−3
B

+
z1

MN−3
C

+
Xα

1 Y
α

1

MN−1
R

+
xα1 y

α
1

MN−1
r

, (2.12)

where the indices i and α refer to SU(N)L and SU(4), respectively. In the discussion

that follows, we assume that MB is several orders of magnitude below MP, and that

MB .MA,C,R,r .MP.

2.2 Symmetry breaking

Each term in Wtree is introduced to break an undesired global symmetry: however, the Z1

and z1 tadpoles induced by Wtree also have a significant effect on the vacuum structure.

Added to the full superpotential,

W = Wtree +WL +WR, (2.13)

the Z1 and z1 tadpole terms in Wtree shift the moduli space away from the origin: specifi-

cally, their equations of motion cause 〈X1Y1〉 and 〈x1y1〉 to be nonzero. In this section we

consider the case 〈X1Y1〉 � 〈x1y1〉 and show that SU(4)×U(1)PQ is spontaneously broken

to SU(3)c.

It is convenient to normalize the infrared operators by appropriate factors of Λi so as

to give them canonical mass dimension +1:

J̃L ≡
JL

Λ`L
, K̃L ≡

KL

(Λ`L)2
, x̃ ≡ x1

Λ̃m1
, ỹ ≡ y1

Λ̃m+1
1

, z̃i ≡
zi

Λ̃N−1
i

(2.14)

J̃R ≡
JR
ΛrR

, K̃R ≡
KR

(ΛrR)2
, X̃ ≡ X1

Λm1
, Ỹ ≡ Y1

Λm+1
1

, Z̃i ≡
Zi

ΛN−1
i

(2.15)

– 8 –
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where

Λ`L ≡ (Λ̃1Λ̃2 . . . Λ̃`), ΛrR ≡ (Λ1Λ2 . . .Λr). (2.16)

In terms of these operators, the tree-level superpotential eq. (2.3) becomes

Wtree → Λ2
L

(
ΛL
MA

)2`−2

(K̃L)i1i2 + Λ2
1

(
Λ1

MB

)N−3

Z̃1 + Λ̃2
1

(
Λ̃1

MC

)N−3

z̃1

+ Λ1

(
Λ1

MR

)N−1

X̃Ỹ + Λ̃1

(
Λ̃1

Mr

)N−1

x̃ỹ, (2.17)

and the dynamically generated superpotential includes the leading terms

WL +WR = x̃ỹz̃1 + X̃Ỹ Z̃1 −
x1y2 + y1x2

Λ̃b1
− X1Y2 + Y1X2

Λb1
+ . . . (2.18)

The equation of motion ∂W/∂Z̃1 = 0 enforces:

X̃αỸ
α = − ΛN−1

1

MN−3
B

≡ σ2. (2.19)

By performing an SU(4) gauge transformation, the nonzero expectation values can be

rotated into the α = 4 component such that

〈X̃〉(4) = βσ, 〈Ỹ 〉(4) =
1

β
σ, 〈X̃〉α=1,2,3 = 〈Ỹ 〉α=1,2,3 = 0, (2.20)

where β parametrizes a flat direction of the degenerate vacua, which is likely to be lifted in

a particular model of susy breaking; we treat it as a free parameter. An SU(3)c subgroup

of SU(4) remains as an infrared symmetry, and the other 15 − 8 = 7 generators of SU(4)

are broken. Through the super-Higgs mechanism, 7 of the 8 would-be NGBs are eaten by

the SU(4) superfields to make them massive, and a single NGB remains massless. The

matter fields decompose into irreducible representations of SU(3)c as follows:

−→ ⊕ 1,

X̃α′ −→ X̃α ⊕ X̃(4),

−→ ⊕ 1,

Ỹα′ −→ Ỹα ⊕ Ỹ(4),

Adj −→ Adj⊕ ⊕ ⊕ 1,

λa −→ λ′a ⊕ λ+ ⊕ λ− ⊕ λ0.
(2.21)

A combination of the superfields X̃α=1,2,3 and Ỹα=1,2,3 are eaten by the massive λ± vector

supermultiplets. Another linear combination of X̃ and Ỹ is eaten by the diagonal T 15

generator of SU(4), leaving exactly one massless superfield to play the role of the axion.

We introduce the real scalar fields φ1, φ2, a and η to describe the bosonic degrees of

freedom:

X̃(4) =

(
φ1√

2
+ 〈X̃(4)〉

)
exp

[
i

fa
(a+ αη)

]

Ỹ(4) =

(
φ2√

2
+ 〈Ỹ(4)〉

)
exp

[
i

fa

(
−a+

1

α
η

)]
,

(2.22)
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where fa is the axion decay constant, and α is a constant determined by requiring canonical

normalization of the scalar kinetic terms. It is convenient to define v1,2 such that

v1 =
√

2
∣∣∣〈X̃(4)〉

∣∣∣ =
√

2 |βσ| v2 =
√

2
∣∣∣〈Ỹ(4)〉

∣∣∣ =
√

2

∣∣∣∣
σ

β

∣∣∣∣ , (2.23)

so that normalization of the scalar fields requires

f2
a = v2

1 + v2
2, α =

v2

v1
. (2.24)

In the discussion above we assume that X̃ and Ỹ are the only U(1)PQ-charged fields with

nonzero expectation values. This is not necessarily true: for example, 〈KR〉 may acquire an

expectation value without breaking SU(3)c. In the limit where 〈KR〉 � σ its contribution

to the axion potential is vanishingly small, and the physics remains approximately as

discussed here. For completeness, in appendix B we derive the composition of the physical

axion in the more general 〈KR〉 6= 0 case.

To preserve SU(3)c in the vacuum, the QCD-charged components of the scalars x̃,

ỹ, J̃L and J̃R must not acquire expectation values, which places mild constraints on the

unspecified nature of susy-breaking. Nonzero VEVs for the i = 4 components of the scalar

fields are permitted.

2.3 Gravitational corrections

Non-perturbative gravity produces U(1)PQ-violation, which at low energies are described

by local gauge invariant operators in an effective superpotential. The leading (in 1/MP)

terms are:

Wg = ρ1
(q`q`−1 . . . q1qQQ1Q2 . . . Qr)

M `+r−1
P

+ ρ2
(q`q`−1 . . . q1q)(A

mQ)

M `+m−1
P

+ ρ3
(A

m
q)(AmQ)

M2m−1
P

+ρ4
(AQ

2
1Q

2
2 . . . Q

2
r)

M2r−2
P

, (2.25)

with coefficients ρi which encode the details of the unknown quantum gravitational physics.

Naive power counting would argue for ρi ∼ O(1), whereas computations based on wormhole

configurations or stringy realizations of quantum gravity favor ρi ∼ O (exp [−Swh]) with

Swh ∼ MP/fa. To capture the range of possibilities, we will consider a range of ρi (all

taken to have roughly equal magnitudes) in our analysis below.

After confinement, Wg maps on to:

Wg → ρ1
Λ`LΛrR
M `+r−1

P

(J̃LJ̃R)+ρ2
Λ`LΛm1
M `+m−1

P

(J̃LX̃)+ρ3
Λ̃m1 Λm1
M2m−1

P

(x̃X̃)+ρ4
(ΛrR)2

M2r−2
P

(K̃R)j1j2 , (2.26)

where the index j refers to the SU(N)R family symmetry.

There are two types of tree-level corrections to the axion potential. In the super-

symmetric limit, the equations of motion from Wtree +Wd +Wg produce operators in the

Lagrangian of the form

Lg ∼


∏

i,j

φiφ
?
j


 (Φ + Φ?) , (2.27)
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where Φ has non-zero U(1)PQ charge (and thus some of its phase is part of the axion), and

φi and φ?j are scalar fields as determined by the equations of motion. Replacing the fields

with their expectation values, Lg corrects the axion potential by:

δV [a] ∼


∏

i,j

〈φi〉〈φ?j 〉


 〈Φ〉 cos

(
qΦa

fa
+ θ0

)
. (2.28)

Clearly this type of correction is only operative if all of the relevant fields φi,j have non-zero

expectation values.

The second type of tree-level correction arises once susy is broken, and the low energy

Lagrangian contains A-terms of the form

Lg ∼ msWg + h.c. (2.29)

(where Wg should be understood to have its super-fields replaced by their scalar compo-

nents, and there is a separate susy-breaking coefficient of O(ms) for each term in Wg). In

the cases where the necessary scalar fields have zero expectation values, these terms can

still correct the axion potential at loop level.

As can be seen from eq. (2.8), the moduli space includes vacua with 〈KR〉 = 〈JR〉 = 0.

These flat directions are lifted by susy-breaking, and thus model-dependent. Rather than

getting bogged down in the details of a specific model, we make the pessimistic assumption

that the resulting expectation values are large:

〈J̃ j(4)〉, 〈K̃
j1j2〉 ∼ O(ms). (2.30)

This assumption additionally simplifies the analysis in that for such large expectation

values, the tree-level corrections to the axion potential are expected to dominate over any

of the loop level corrections.

Generically, the leading contributions to the axion potential are expected to arise from

susy-breaking rather than from the equations of motion. This is because the equations of

motion from Wd involve high-dimensional operators, which are only important at tree level

if all of the participating fields have relatively large expectation values. For example,

∣∣∣∣
∂W

∂J̃R

∣∣∣∣
2

=

∣∣∣∣∣
Λ`LΛrR
M `+r−1

P

(J̃L)− (X̃kJ̃
2
R)K̃m−1

R

Λmr
− (Ỹk)K̃

m
R

Λm−1
r

∣∣∣∣∣

2

(2.31)

reduces to

Lg ∼
(

Λ`LΛrR
M `+r−1

P

〈K̃m
R 〉

Λm−1
r

)
〈J̃?L〉Ỹk + h.c. (2.32)

In the product 〈K̃m
R 〉, the SU(N)R indices are contracted antisymmetrically. If some of the

expectation values are close to zero, the entire product vanishes. Only in the case where

〈K̃〉 and 〈J̃〉 are comparable to Λr does eq. (2.32) contribute significantly.
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Quality factors. The susy-breaking A-term corresponding to the ρ1 term in Wg is

Lg ∼ msρ1

(
Λ`LΛrR
M `+r−1

P

)
(J̃L)αi (J̃R)αj + h.c., (2.33)

where the indices i and j correspond to the SU(N)L× SU(N)R global symmetry. As J̃R is

charged under U(1)PQ 〈J̃LJ̃R〉 6= 0 shifts the axion potential by

δV [a] ∼ ρ1ms

(
Λ`LΛrR
M `+r−1

P

)∣∣∣〈J̃L〉〈J̃R〉
∣∣∣ cos

(
qJ

a

fa
+ θ0

)
, (2.34)

with qJ = 2−N
N = O(1). From eq. (1.7), consistency with

∣∣θ̄
∣∣ < 10−10 requires

ρ1

msMP

∣∣∣〈J̃L〉〈J̃R〉
∣∣∣

(1012 GeV)4

(
Λ`LΛrR
M `+r

P

)
< 10−62. (2.35)

A limit on r is set by the ρ4 term:

δV [a] ∼ ρ4ms
Λ2r
R

M2r−2
P

∣∣∣〈(K̃R)j1j2〉
∣∣∣ cos

(
qK

a

fa
+ θ0

)
, (2.36)

where qK = 4/N . Ignoring the O(1) number qK ,

ρ4

msM
2
P

∣∣∣〈K̃R〉
∣∣∣

(1012 GeV)4

(
ΛR
MP

)2r

< 10−62. (2.37)

From the ρ3 term

δV [a] ∼ msρ3
Λ̃m1 Λm1
M2m−1

P

∣∣∣〈x̃(4)〉〈X̃(4)〉
∣∣∣ cos

(
a

fa
+ θ0

)
, (2.38)

we find a constraint on N = 2m+ 1:

ρ3

msMP〈x̃(4)〉〈X̃(4)〉
(1012 GeV)4

(
Λ̃1

MP

)m(
Λ1

MP

)m
< 10−62. (2.39)

Finally, the ρ2 term sets an additional constraint on ` and N :

δV [a] ∼ msρ2
Λ`LΛm1
M `+m−1

P

∣∣∣〈J (4)
L 〉〈X̃(4)〉

∣∣∣ cos

(
a

fa
+ θ0

)
, (2.40)

ρ2

msMP〈JL〉〈X̃(4)〉
(1012 GeV)4

(
ΛL
MP

)`( Λ1

MP

)m
< 10−62. (2.41)

As long as β is neither very large nor very small, eqs. (2.35), (2.37), (2.39) and (2.41)

provide the most restrictive constraints on m, ` and r. A wide range of values is allowed

for each of the parameters, as we discuss in more detail below.
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B1 (GeV)

fa 1017

Λ1 1017

Λi>1 1015

Λ̃i 1015

ms 106

B2 (GeV)

fa 1012

Λ1 1012

Λi>1 109

Λ̃i 109

ms 104

B3 (GeV)

fa 109

Λ1 109

Λi>1 104

Λ̃i 104

ms 104

Table 3. Three benchmark points in the parameter space of Λi and Λ̃i. With the exception of 〈X̃〉
and 〈Ỹ 〉, the expectation values of the SU(3)c singlet fields are taken to be O(ms).

2.4 Benchmark models

In this section we consider the quality of the axion potential in three particular models, with

fa = 1017 GeV, fa = 1012 GeV and fa = 109 GeV. For simplicity, we take Λ1 ∼ MB ∼ fa
and Λi 6=1 ∼ Λ̃i for each model, and we allow all QCD singlet scalar fields to acquire O(ms)

expectation values. Choices for each of these scales are shown in table 3.

Model B1 is particularly susceptible to gravitational disruptions, as the scales Λi and

Λ̃i are taken to be relatively close to the Planck scale MP ∼ 1019 GeV. In this model even

exponential suppression of the constants ρi ∼ exp(−MP/fa) ∼ 10−44 cannot account for

the high quality of the axion potential, and large values of N , ` and r are required. Models

B2 and B3 have values of fa . 1012 GeV consistent with the axion dark matter hypothesis;

with its smaller values of Λi and Λ̃i, model B3 is more adept at suppressing gravitational

corrections.

In figure 2 we show minimum values for m ≡ N−1
2 , `, and r consistent with

∣∣θ̄
∣∣ < 10−10

for the SU(N)` × SU(4)× SU(N)r composite axion, as a function of the parameters ρi. A

wide range is shown for ρ, to accommodate both exponentially suppressed and O(1) values.

In the ρi = O(1) limit, the minimal gauge groups for the three benchmark models are:

B1: SU(23)11 × SU(4)× SU(23)9

B2: SU(9)3 × SU(4)× SU(9)4

B3: SU(7)2 × SU(4)× SU(7)3.

(2.42)

Naturally, if after susy breaking the scalar fields J̃L,R, x̃, ỹ, and K̃R do not acquire expecta-

tion values, then the U(1)PQ violation induced by Wg affects the axion potential only at loop

level, and smaller values for N , ` and r are permitted. In the limit where ρ is exponentially

suppressed,
∣∣θ̄
∣∣ < 10−10 no longer constrains m, ` or r. Although eqs. (2.35), (2.37), (2.39)

and (2.41) are valid only for m ≥ 2, r ≥ 1 and ` ≥ 0, smaller values for m and r are shown

in figure 2 to indicate where ρ is small enough that compositeness is no longer necessary.

3 Dynamically generated Wtree

As described in section 2, the SU(N)` × SU(4) × SU(N)r composite accidental axion has

a high-quality scalar potential and most of the important scales are derived from the

confining dynamics, with the exception of MB in the tree-level superpotential. This is a

– 13 –
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m
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Minimum Values, SUH2m+1Ll¥SUH4L¥SUH2m+1Lr

fa=1017 GeV

fa=1012 GeV

fa=109 GeV

r=e-MP ë fa

Figure 2. Minimum values for m, ` and r consistent with
∣∣θ̄
∣∣ < 10−10 are shown as a func-

tion of ρ1...4. For the first benchmark model with fa = 1017 GeV, we show only values of

ρ & exp(−MP/fa) ≈ 10−43.4. The fa = 1012 GeV and fa = 109 GeV models are depicted us-

ing dotted and solid lines, respectively.

relatively minor shortcoming: fa is determined by the relationship between MB, Λ1, and

β2 = 〈X̃〉/〈Ỹ 〉,

f2
a = 2

∣∣∣∣∣
ΛN−1

1

MN−3
B

(
β2 +

1

β2

)∣∣∣∣∣ , (3.1)

and the scale MB �MP is added “by hand” in the tree-level superpotential. In this section

we show how the MB term in Wtree can be dynamically generated by the s-confinement of

an Sp(2N − 4) gauge group, so that all of the important mass scales are determined by

strong dynamics.

A gauge theory with 2N quarks ψ charged under Sp(2N − 4) in the fundamental

representation s-confines [32] to form mesons Mij = εabψ
a
i ψ

b
j , with the superpotential

Wd =
PfM

Λ2N−1
0

. (3.2)

We break the SU(2N) flavor symmetry by gauging its SU(N)1 × SU(N)2 = G1 × G2

subgroup:

−→ ( ,1)⊕ (1, ) ψai −→ (ψ1)aα ⊕ (ψ2)aβ , (3.3)
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Examples for Feynman diagrams

1 Moose Diagrams

Q
SU(4)

A( )•

G1

Q1
G2

Q2 Qk�1

Gk

Qk
SU(N)

(1.1)

SU4 q

A

•

eG1

q1
eG2

q2 q`�1

eG`

q`
SUN

Q

A•

G1

Q1
G2

Q2 Qr�1

Gr

Qr
SUN

(1.2)

G1 Q A( )•

SU4

q
eG1

q1 q`�1

eG`

q`
SUN

�( )

•

 1A0( )SU2
Sp2n

 2

G2

Q2 Qr�1

Gr

Qr
SUN

(1.3)

1

Figure 3. The matter content of the SU(N)` × SU(4)× Sp(2n)× SU(N)r composite axion model

is depicted in the moose diagram above, with Sp2n ≡ Sp(2N − 4). The SU(2) family symmetry of

the A′ fields is broken explicitly by the tree-level superpotential eq. (3.7).

where α and β correspond respectively to the SU(N)1 and SU(N)2 gauge indices. The

meson M ∼ decomposes into irreducible representations of G1 ×G2:

M̃α1α2
1 =

(ψ1)α1
a (ψ1)α2

b εab
Λ0

, Q
αβ
1 =

(ψ1)αa (ψ2)βb εab
Λ0

, M̃β1β2
2 =

(ψ2)β1a (ψ2)β2b εab
Λ0

, (3.4)

where Λ0 is the confinement scale of Sp(2N−4). In terms of these operators the dynamically

generated superpotential is

Wd =
Pf (ψ2)

Λ2N−3
0

=
(Λ0)N

Λ2N−3
0

[
M̃m

1 Q1M̃
m
2 + M̃m−1

1 Q
3
1M̃

m−1
2 + . . .+ M̃1Q

2m−1
1 M̃2 +Q

2m+1
1

]
,

(3.5)

in the case where N = 2m+ 1 is odd. Combinatoric factors for each term in the expansion

of PfM such as Q
N
1 ≡ detQ1 have been suppressed.

To match this theory with the A+4Q+NQ model, the M1 and M2 degrees of freedom

must be removed. This is achieved by adding the following matter fields charged under

SU(N)1 × SU(N)2:

2A′ + 4Q+ χ+NQ2 = 2( ,1)⊕ 4( ,1)⊕ (1, )⊕N(1, ). (3.6)

In the SU(N)`×SU(4)×SU(N)r composite model, the SU(4) and SU(N) family symmetries

of the Q and Q2 are gauged. The full matter content of the theory is shown in figure 3.

Gauge-invariant operators of the form (A′ψ2
1) and (χψ2

2) can be added as marginal

operators in a tree-level superpotential:

Wtree = λi(A
′
i)
α1α2(ψ1)a1α1

(ψ1)a2α2
εa1a2 + λ0χ

β1β2(ψ2)a1β1(ψ2)a2β2εa1a2 , (3.7)

where the indices i, a, α and β correspond to SU(2), Sp(2N − 4), SU(N)1 and SU(N)2,

respectively, and λi and λ0 are dimensionless coupling constants. After Sp(2N−4) confines,

Wtree becomes

Wtree = λiΛ0(A′i)
α1α2M̃α1α2

1 + λ0Λ0χ
β1β2M̃β1β2

2 . (3.8)

This is extremely convenient: in the limit where Λ0 � Λ1, the fields M1, M2, χ, and

the linear combination “(A′1 + A′2)” all acquire large masses and decouple. One linear
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Sp(2N − 4) SU(N)1 SU(N)2 SU(N)3 SU(4) SU(2) U(1)PQ

ψ1 −2/N

ψ2 +2/N

A′ 2 4/N

χ 1 −4/N

Q 2−N
N

Q2 0

Table 4. A subset of the matter fields in the Sp(2N − 4) model are shown with their Peccei-Quinn

charges. All of the non-Abelian groups except for SU(2) are gauged.

combination of A′1 and A′2 remains massless, which we define as A:

A ≡ λ2A1 − λ1A2

N , (3.9)

with some normalization factor N .

The dynamically generated superpotential simplifies greatly when we consider the fact

that M̃1 and M̃2 have O(Λ0) masses from Wtree:

∂W

∂A′i
= λiΛ0M̃1,

∂W

∂χ
= λ0Λ0M̃2. (3.10)

After integrating out the heavy fields, the superpotential becomes

W =
Q
N
1

ΛN−3
0

. (3.11)

Not only is this the desired tree-level superpotential for the composite axion model, but

all of the extra matter fields A′, χ, M̃1 and M̃2 have decoupled, leaving only A and Q1 as

infrared degrees of freedom. In eq. (3.1) MB is replaced by Λ0, so that

f2
a = 2

∣∣∣∣∣
ΛN−1

1

ΛN−3
0

(
β2 +

1

β2

)∣∣∣∣∣ . (3.12)

Every important scale other than MP is now determined solely by confining dynamics.

The nonzero Sp(2N − 4)2-U(1)B anomaly breaks U(1)B explicitly, as can be seen from

the Wd of eq. (3.5). Although in principle the new fields χ and A′ provide two additional

anomaly-free U(1) symmetries, these are broken by the tree-level superpotential eq. (3.7),

and only the SU(N)L × SU(N)R × U(1)A × U(1)C × U(1)R global symmetry remains.

Introducing

δWtree =
(Aq2

1q
2
2 . . . q

2
` )

M2`−2
A

+
(qN1 )

MN−3
C

+
(AmQ)(Am−1Q3)

MN−1
R

+
(A

m
q)(A

m−1
q3)

MN−1
r

(3.13)

with MA ∼ MC ∼ MR ∼ Mr ∼ MP is sufficient to give masses to the additional pNGBs.

In table 4, the Peccei-Quinn charges of each field is shown.
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Axion quality. Of the new superpotential terms which break U(1)PQ, the leading terms

are

Wg ∼
χmQ2Q3 . . . Qr

Mm+r−4
P

+
∑

p

(Am−p1 Ap2Q)(qq1q2 . . . q`)

Mm+`−1
P

(3.14)

As χ has a mass of O(Λ0) and no expectation value, the χm interaction has no tree-level

effect on the axion potential. The only effects are loop-induced and receive additional

suppression.

One linear combination in the (Am−p1 Ap2Q) sum corresponds to the infrared operator

(AmQ), which has the expectation value 〈X1〉. This term is already included in the Wg

of eq. (2.25). Every other term in the sum includes a power of the massive combination

(λ1A1 +λ2A2), which has no expectation value, and is therefore less disruptive to the axion

potential than the effects already considered in eq. (2.25).

Aside from the replacement of MB by Λ0, the quality factors calculated in section 2.3

are largely unchanged. Operators involving Q1 are the exception: now that Q1 = ψ1ψ2/Λ0,

a suppression of Λ0/MP is added to the operators involving JR and KR, marginally im-

proving eqs. (2.35) and (2.37):

ρ1

msMP

∣∣∣〈J̃L〉〈J̃R〉
∣∣∣

(1012 GeV)4

(
Λ0

MP

)(
Λ`LΛrR
M `+r

P

)
< 10−62 (3.15)

ρ4

msM
2
P

∣∣∣〈K̃R〉
∣∣∣

(1012 GeV)4

(
Λ0

MP

)2( ΛR
MP

)2r

< 10−62. (3.16)

For many values of ρi this decreases the minimum value for r by one, as can be seen from

the three benchmark models at ρi = O(1):

B1: SU(23)11 × SU(4)× Sp(42)× SU(23)9

B2: SU(9)3 × SU(4)× Sp(14)× SU(9)3

B3: SU(7)2 × SU(4)× Sp(10)× SU(7)2.

(3.17)

Alternate confinement order. Thus far, we have required that Λ0 > Λ1, simply

because the dual of SU(N) : 2A + 4Q + (2N − 4)Q with the tree-level superpotential

Wtree ∼ AQ
2

does not appear in the literature. In principle the infrared behavior of the

2A + 4Q + (2N − 4)Q theory with Wtree 6= 0 can be determined using “deconfinement”

techniques [29] and a sequence of dualities: a similar calculation [36] has been completed

for A+ FQ+ (N + F − 4)Q with a superpotential of the form W ∼ AQ2
.

Without calculating the degrees of freedom and the superpotential in the infrared dual

of SU(N) : 2A + 4Q + (2N − 4)Q, it is not known how the scale fa is set in the dual

theory. If in the Λ0 � Λ1 limit U(1)PQ is still broken at the scale f2
a ∼ ΛN−1

1 /ΛN−3
0 ,

then fa ∼ 1012 GeV can be achieved with much smaller values of Λ0 and Λ1, significantly

improving the axion quality. We leave detailed exploration of this limit to future work.
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4 Conclusions

In the composite axion model based on the gauge group SU(N)` × SU(4) × SU(N)r, a

U(1)PQ is spontaneously broken by the vacuum expectation values of the SU(4)-charged

hadrons X1 = (AmQ) and Y1 = (Am−1Q3), simultaneously producing the QCD axion

and breaking SU(4) to SU(3)c. All important scales in the axion model are generated

dynamically from confinement, and are naturally small compared to the Planck scale.

By calculating the disruption to the axion potential V [a] induced by Planck-scale

effects, we have demonstrated that the composite model is successful at preserving the

quality of the axion potential even when large expectation values are permitted for all

of the U(1)PQ-charged QCD-singlet scalar fields. In realistic models incorporating susy

breaking with positive quadratic terms for these scalars such that no large expectation

values result, the quality of the axion potential will improve significantly for any given N ,

` and r, as the terms in Wg disrupt the axion potential to a lesser degree. It would be

worthwhile to further investigate such constructions.

It is likely that the success of the SU(N)` × SU(4)× SU(N)r composite axion can be

replicated by embedding SU(3)c within the SU(N)R flavor symmetry of the A+ 4Q+NQ

model. In this case U(1)PQ will be more closely associated with the U(1)B flavor symmetry

of table 1 rather than U(1)A, and the axion will be generated from a linear combination of

(Q
N
i ) baryons.

Compositeness can cure the axion quality problem, and as our models demonstrate,

may provide clues to the existence of interesting dynamics in the ultraviolet.
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A Axion quality

To leading order in a, the QCD-induced axion potential V [a] has the form

V [a] = V0 −
1

2
m2
a

(
a+ faθ̄

)
, (A.1)

which is minimized when 〈θ〉 ≡ (a/fa + θ̄) is equal to zero. It is convenient to define the

shifted field α ≡ a+ faθ̄, so that 〈θ〉 = 〈α〉/fa. Explicit U(1)PQ violation elsewhere in the

theory adds corrections to V [a],

δV [a] = Qf4
a cos

(
κ

[
a

fa
+ θ̄

]
+ θ0

)
, (A.2)

which for small values of 〈θ〉 is approximately

δV [a] = Qf4
a

[
1− 1

2

(
κα

fa

)2
]

cos θ0 −Qf4
a

(
κα

fa

)
sin θ0. (A.3)
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As θ0 is determined by the precise manner in which U(1)PQ is broken, we do not assume

that it is smaller than O(1). Combining eqs. (A.1) and (A.2), V [a] becomes

V [α] =
(
V0 +Qf4

a cos θ0

)
−
(
Qf3

aκ sin θ0

)
α− 1

2

(
m2
a +Qf2

aκ
2 cos θ0

)
α2, (A.4)

so that the expectation value 〈α〉 shifts away from zero:

〈α〉 = − Qf3
aκ sin θ0

m2
a +Qf2

aκ
2 cos θ0

. (A.5)

Experimental measurements of 〈θ〉 set an upper bound 〈α〉 < fa |θmax|. Assuming

|θmax|κ� sin θ0, the corresponding bound on Q is

Q <
m2
a

f2
a

|θmax|
κ |sin θ0|

. (A.6)

Using m2
a = m2

πf
2
π/f

2
a and assuming κ sin θ0 = O(1), eq. (A.6) implies

Q . 10−62

(
1012 GeV

fa

)4

. (A.7)

B Axion assignment in a general vacuum

Suppose there exist many fields Φi, each with a Peccei-Quinn charge qi. Let us define the

charge-normalized expectation value

vi ≡ qi
√

2〈Φi〉 (B.1)

for each field Φi. If there are n fields with nonzero expectation values, then let us define

n− 1 fields ηi and the axion a, with the following assignment:

Φ1 =

(
φ1√

2
+ 〈Φ1〉

)
exp

[
iq1

fa
(a+ α1η1)

]
(B.2)

Φ2 =

(
φ2√

2
+ 〈Φ2〉

)
exp

[
iq2

fa
(a+ β1η1 + β2η2)

]
(B.3)

Φ3 =

(
φ3√

2
+ 〈Φ3〉

)
exp

[
iq3

fa
(a+ γ1η1 + γ2η2 + γ3η3)

]
(B.4)

...

Φn−1 =

(
φn−1√

2
+ 〈Φn−1〉

)
exp

[
iqn−1

fa
(a+ α

(n−1)
1 η1 + . . .+ α

(n−1)
n−1 ηn−1)

]
(B.5)

Φn =

(
φn√

2
+ 〈Φn〉

)
exp

[
iqn
fa

(a+ α
(n)
1 η1 + . . .+ α

(n)
n−1ηn−1)

]
(B.6)

In the sequence above, the first appearance of each field ηi is in the phase of Φi. The field

Φn does not introduce any new ηi fields.
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Let us define the following (n− 1) constants:

x1 = β1 = γ1 = δ1 = . . . = α
(n−1)
1 = α

(n)
1 (B.7)

x2 = γ2 = δ2 = . . . = α
(n−1)
2 = α

(n)
2 (B.8)

x3 = δ3 = . . . = α
(n−1)
3 = α

(n)
3 (B.9)

...

xn−2 = α
(n−1)
n−2 = α

(n)
n−2 (B.10)

xn−1 = α
(n)
n−1. (B.11)

These equalities follow from the vanishing of the kinetic cross terms, which also give the

following relationships between the xi and {α1, β2, γ3, . . . , α
(n−1)
n−1 }:

0 = 1 + x1α1 (B.12)

0 = 1 + x2
1 + x2β2 (B.13)

0 = 1 + x2
1 + x2

2 + x3γ3 (B.14)

...

0 = 1 + x2
1 + . . .+ x2

n−2 + xn−1α
(n−1)
n−1 . (B.15)

Finally, we require that the kinetic terms (∂µηi)
2 and (∂µa)2 are canonically normalized.

This leads to the remaining n constraints:

f2
a

v2
1

= 1 + α2
1 (B.16)

f2
a

v2
2

= 1 + x2
1 + β2

2 (B.17)

f2
a

v2
3

= 1 + x2
1 + x2

2 + γ2
3 (B.18)

...
f2
a

v2
n−1

= 1 + x2
1 + x2

2 + . . .+ x2
n−2 + (α

(n−1)
n−1 )2 (B.19)

f2
a

v2
n

= 1 + x2
1 + x2

2 + . . .+ x2
n−2 + x2

n−1. (B.20)

These systems of equations have the solutions:

α2
1 =

f2
a − v2

1

v2
1

x2
1 =

v2
1

f2
a − v2

1

(B.21)

β2
2 =

f2
a (f2

a − v2
1 − v2

2)

v2
2(f2

a − v2
1)

x2
2 =

v2
2f

2
a

(f2
a − v2

1 − v2
2)(f2

a − v2
1)

(B.22)

γ2
3 =

f2
a (f2

a − v2
1 − v2

2 − v2
3)

v2
3(f2

a − v2
1 − v2

2)
x2

3 =
v2

3f
2
a

(f2
a − v2

1 − v2
2 − v2

3)(f2
a − v2

1 − v2
2)
, (B.23)
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and so on. The general solution is

(α
(i)
i )2 =

f2
a (f2

a − v2
1 − v2

2 − . . .− v2
i )

v2
i (f

2
a − v2

1 − v2
2 − . . .− v2

i−1)
(B.24)

x2
i =

v2
i f

2
a

(f2
a − v2

1 − v2
2 − . . .− v2

i )(f
2
a − v2

1 − v2
2 − . . .− v2

i−1)
, (B.25)

for i = 1 . . . (n− 1). Each α
(i)
i and xi must also obey

α
(i)
i xi < 0, (B.26)

but the signs of α(i) and xi are otherwise arbitrary.

Finally, the axion decay constant is:

f2
a = v2

1 + v2
2 + . . .+ v2

n−1 + v2
n. (B.27)
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[34] C. Csáki, M. Schmaltz and W. Skiba, Confinement in N = 1 SUSY gauge theories and model

building tools, Phys. Rev. D 55 (1997) 7840 [hep-th/9612207] [INSPIRE].

[35] B. Lillard, Product group confinement in SUSY gauge theories, JHEP 10 (2017) 060

[arXiv:1704.06282] [INSPIRE].

[36] N. Craig, R. Essig, A. Hook and G. Torroba, Phases of N = 1 supersymmetric chiral gauge

theories, JHEP 12 (2011) 074 [arXiv:1110.5905] [INSPIRE].

– 23 –

https://doi.org/10.1016/0370-2693(95)00618-U
https://arxiv.org/abs/hep-th/9505006
https://inspirehep.net/search?p=find+EPRINT+hep-th/9505006
https://doi.org/10.1103/PhysRevLett.78.799
https://arxiv.org/abs/hep-th/9610139
https://inspirehep.net/search?p=find+EPRINT+hep-th/9610139
https://doi.org/10.1103/PhysRevD.55.7840
https://arxiv.org/abs/hep-th/9612207
https://inspirehep.net/search?p=find+EPRINT+hep-th/9612207
https://doi.org/10.1007/JHEP10(2017)060
https://arxiv.org/abs/1704.06282
https://inspirehep.net/search?p=find+EPRINT+arXiv:1704.06282
https://doi.org/10.1007/JHEP12(2011)074
https://arxiv.org/abs/1110.5905
https://inspirehep.net/search?p=find+EPRINT+arXiv:1110.5905

	Introduction
	Axion from a supersymmetric product group
	Confinement
	Symmetry breaking
	Gravitational corrections
	Benchmark models

	Dynamically generated W(tree)
	Conclusions
	Axion quality
	Axion assignment in a general vacuum

