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1 Introduction

The study of scattering amplitudes was revolutionized in the last two decades by the advent

of modern on-shell techniques [2–8], making accessible calculations of new amplitudes with

large numbers of loops and legs. The ability to calculate higher loop amplitudes is exciting

both from the practical point of view of a collider physicists as well as from the formal

side. Studying the structure of this theoretical “data” led to an enormous advance in our

understanding of scattering amplitudes. The primary theory of study was N = 4 super-

Yang-Mills (sYM), due to its relative simplicity at loop level compared to QCD for example.

Taking the large N limit of the gauge group, the planar theory is even simpler and

spawned most of the newly discovered structures, including dual conformal symmetry [9–

11], Yangian symmetry [12], integrability [13, 14], a dual interpretation of amplitudes in

terms of Wilson loops [15–20], the expansion of amplitudes in special kinematic limits at

finite coupling using OPE methods [21–23], the hexagon-function bootstrap [24–26] heavily

using symbols and cluster polylogarithmics [27–30], as well as a variety of other structures.

More recently, scattering amplitudes were expressed in terms of on-shell diagrams and the
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positive Grassmannian [31–37] (see related work in refs. [38–41]). The Grassmannian for-

mulation of on-shell diagram is of geometric flavor but expanding the amplitudes in terms

of those objects still required recursion relations and unitarity. In the following, Arkani-

Hamed and one of the authors achieved a completely geometric description of scattering

amplitudes as “volumes” in the amplituhedron [42] (see also refs. [43–49]). Interestingly,

the novel formulations of on-shell diagrams and scattering amplitudes make surprising con-

nections to active areas of mathematics, ranging from algebraic geometry to combinatorics

(see e.g. refs. [50–55]).

The general question arises, if any of the properties of planar N = 4 sYM find some

extension beyond the planar limit. If the geometric picture is indeed a more general feature

of quantum field theory we should see hints in theories other than the simplest toy example.

In collaboration with Bern et al. we initiated this line of thought by finding evidence for an

extension of dual conformal invariance, the formulation in terms of on-shell diagrams, as

well as the amplituhedron concept for amplitudes in the complete, nonplanar N = 4 sYM

theory [1, 56].

In this paper, we focus on the dual description of gravity on-shell diagrams in terms

of the Grassmannian. On-shell diagrams are interesting objects by themselves. On one

hand, they have direct physical relevance as cuts of loop amplitudes and serve as important

reference data in the generalized unitarity method [4–8]. Furthermore, they are building

blocks for tree amplitudes via the BCFW recursion relation [2, 3]. On the other hand,

they are completely well-defined functions and one might wonder about their analytic

properties. Taking the importance of the Grassmannian description of on-shell diagrams

for the discovery of the amplituhedron in planar N = 4 sYM theory as motivation, here

we initiate the exploration of the Grassmannian formulation for gravity.

In analogy to the story in N = 4 sYM where the d log property of integrands, manifest

in the dual formulation, led us to explore the d log structure of amplitudes [1, 56], our new

gravity formula in eq. (3.24) shows novel features that inspire us to test analogous prop-

erties on amplitudes directly. In particular, our Grassmannian formula involves nontrivial

numerator factors that make manifest the vanishing of the gravity on-shell forms when the

legs of any three-point amplitude inside a diagram become collinear. We demonstrate on

1-loop and 2-loop examples that loop amplitudes possess the same behavior on collinear

cuts. Our analysis indicates that this is a highly non-trivial property which requires cancel-

lations between all terms contributing to the amplitude. The lack of global labels and the

inherent ambiguity in the definition of a nonplanar integrand makes a completely off-shell

test of the collinear vanishing tricky. However, once we go down in the cut structure, we can

uniquely assign labels to all contributing terms. In this scenario, we directly verify the spe-

cial collinear property of gravity amplitudes. In some examples it is even possible to show

the collinear vanishing purely at the level of diagrams without specifying further labels.

Another important distinction between the Grassmannian formulae for gravity and Yang-

Mills is the appearance of higher power poles in the gravity case. A closer analysis shows,

that these poles are associated with poles at `→∞ in the context of on-shell diagrams as

cuts of loop amplitudes. The presence of poles at infinity in N = 8 SUGRA was already

noted in [1] and it is interesting to see them come out of the Grassmannian formula as well.
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This paper is organized as follows. In section 2 we give a detailed overview of the

Grassmannian formulation of on-shell diagrams in N = 4 sYM in order to introduce the

terminology used for the gravity case later. Furthermore, we motivate how features of

on-shell diagrams have direct bearing on the properties of amplitudes in N = 4 sYM. The

reader familiar with these concepts can directly skip to section 3. In section 3 we turn

to a discussion of properties of gravity on-shell diagrams, showing in various examples

the purpose of special numerator factors and the appearance of poles at infinity. Taking

these observations into account, we are led to study the modification of the Grassmannian

formula for three-point functions which can be glued together to form more complicated

on-shell diagrams. Eq. (3.24) is the main result of this paper and gives the Grassmannian

formula for gravity on-shell diagrams for any number of supersymmetries. In section 4

we show several examples, how to use eq. (3.24) to compute gravity on-shell diagrams

explicitly. Furthermore, we discuss the singularity structure of the on-shell diagrams and

comment on their physcial implications. In section 5 we discuss the vanishing of gravity

amplitudes on collinear cuts inspired by the Grassmannian formula. We give several one-

and two-loop examples to demonstrate the nontrivial cancellations required to manifest

this property. Our analysis also shows the importance of symmetrizing over the loop labels

in an appropriate way. Finally, in section 6 we give our conclusions.

2 Background material on Grassmannian formulation of on-shell dia-

grams

Within the field of scattering amplitudes, a great number of developments in the last decade

or so are based on powerful on-shell methods [2–8]. The core idea behind these methods is

that on-shell amplitudes break up into products of simpler amplitudes on all factorization

channels. In the traditional picture of Quantum Field Theory, locality and unitarity dictate

the form and locations of all these residues. In particular, they arise in kinematic regions

where either internal particles or sums of external particles become on-shell. Associated

with these residues are vanishing propagators and in this context we talk about cuts of the

amplitude.

The fundamental cut is the well-known unitarity cut [57, 58] depicted on the left hand

side of (2.1). Iterating these cuts one can calculate multi-dimensional residues by setting

an increasing number of propagators to zero. This is known in the literature as generalized

unitarity [4–6] and an example is given on the right hand side of (2.1).

(2.1)
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Generically, it is not possible to set to zero more than two propagators in a given loop

while simultaneously also requiring real kinematics. Therefore, the loop momenta are com-

plex when constrained by the set of on-shell conditions which implies that these singularities

are outside the physical integration region. The main success of generalized unitarity then

relies on the fact that the integrands are rational functions that can be analytically con-

tinued so that complex residues (given by a sufficient set of cuts) completely specify them.

A natural next step in this line of thought is to cut the maximum number of propagators

which factorizes the amplitude into the simplest building blocks [6]. The most elementary

case occurs when all factors are three-point amplitudes. As we will describe in a moment,

these are rather special due to the particular features of three-point kinematics. In this

scenario we talk about on-shell diagrams [31].

2.1 On-shell diagrams

For massless particles, the three-point amplitudes are completely fixed by Poincare symme-

try to all loop orders in perturbation theory up to an overall constant [59]. This statement

holds in any quantum field theory with massless states and just follows from the fact that

there are no kinematic invariants one can build out of three on-shell momenta. For real

external kinematics, the on-shell conditions, p2
1 = p2

2 = p2
3 = 0 and momentum conservation

p1 + p2 + p3 = 0 would force all three point amplitudes to vanish. However, for complex

kinematics in D = 4 we have two distinct solutions [60] which can be conveniently written

using spinor-helicity [61] variables pµ = σµαα̇λαλ̃α̇.

I.) λ̃1 ∼ λ̃2 ∼ λ̃3 (MHV) , II.) λ1 ∼ λ2 ∼ λ3 (MHV) .

Any three-point amplitude is then either of type I.) or II.). In particular, for the gluon-

amplitudes in Yang-Mills theory we have two elementary amplitudes with MHV (+−−) or

MHV (−++) helicity configuration (ignoring higher dimensional operators that could lead

to (±±±) amplitudes, see e.g. [62]). In the maximally supersymmetric case of N = 4 sYM

theory these gluonic amplitudes are embedded in the MHV, resp. MHV superamplitudes

(see e.g. [11]) which we denote by blobs with different colors,

=
δ4(P )δ8(Q)

〈12〉〈23〉〈31〉 , =
δ4(P )δ4(Q̃)

[12][23][31]
, (2.2)

where 〈ij〉 = εαβλ
α
i λ

β
j and [ij] = εα̇β̇λ̃

α̇
i λ̃

β̇
j . Using the anti-commuting η̃I , I = 1, . . . , 4

variables to write the on-shell multiplet as [63],

Φ(η̃) = g+ + η̃I g̃I +
1

2!
η̃I η̃J φIJ +

1

3!
εIJKLη̃

I η̃J η̃K g̃L +
1

4!
εIJKLη̃

I η̃J η̃K η̃L g−

the arguments of the respective delta-functions in (2.2) are given by (neglecting all spinor-

and SU(4) R-symmetry indices),

P ≡λ · λ̃=λ1λ̃1 +λ2λ̃2 +λ3λ̃3, Q≡λ · η̃=λ1η̃1 +λ2η̃2 +λ3η̃3, Q̃=[12]η̃3 +[23]η̃1 +[31]η̃2 .
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Here and in the following we denote λ · λ̃ ≡∑n
a=1 λaλ̃a, λ · η̃ ≡

∑n
a=1 λaη̃a as the sum

over all external particles.

Having completed the discussion of three-particle amplitudes, we are now in the posi-

tion to introduce on-shell diagrams. On the physics side, an on-shell diagram is any graph

formed from the two types of three-point amplitudes (2.2) connected by edges,

1

2 3

4

5

67

8

1

2
3

4

5

6

7
8

9

10
(2.3)

that all represent on-shell particles (both internal and external). In this section we review

properties of on-shell diagrams in planar N = 4 sYM and introduce all concepts relevant

for our gravity discussion later. Further details can be found directly in [31] and the review

article [64]. With this definition, the value of the diagram is given by the product of three-

point amplitudes satisfying the on-shell conditions for all edges. In practice, the delta

functions of the elementary three-point amplitudes can be used for solving for λI , λ̃I and

η̃I of the internal particle and writing the overall result (including delta functions), using

external data only. In this case we talk about leading singularities [8]. If the number of

on-shell conditions exceeds the number of internal degrees of freedom, we get additional

constraints on the external kinematics, while in the opposite case the on-shell diagram

depends on some unfixed parameters. These cases are easily classified by a parameter nδ
counting the number of constraints on external kinematics nδ = 0, nδ > 0 and nδ < 0.

The simplest example of a reduced on-shell diagram (nδ = 0) coincides with the color-

ordered four-point tree-level amplitude which is built out of four vertices. The simpler

looking on-shell diagram with only two vertices is the residue of the amplitude on the

t-channel factorization pole and imposes a constraint (nδ = 1) on the external momenta.

1 2

34

=
δ4(λ · λ̃)δ8(λ · η̃)

〈12〉〈23〉〈34〉〈41〉

1 2

34

=
δ4(λ · λ̃)δ8(λ · η̃) δ(〈14〉)

〈12〉〈23〉〈34〉

(2.4)

As an example for the third possibility (nδ < 0), we can draw a diagram which depends
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on one unfixed parameter z.

1 2

34

=
δ4(λ · λ̃)δ8(λ · η̃)

z〈12〉〈23〉(〈34〉+ z〈31〉)〈41〉 (2.5)

In the diagram (2.5), z parametrizes the momentum flow along the edge between

external legs 1 and 4, `(z) = zλ1λ̃4 but also other internal legs will depend on z. In the

terminology of generalized unitarity, this diagram represents a maximal cut. There are no

further propagators available around to localize the remaining degree of freedom. However,

the amplitude does have further residues at z = 0 and z = 〈34〉
〈13〉 . In terms of pictures, each

residue corresponds to erasing an edge from (2.5) giving the one-loop on-shell diagram on

the left of (2.4). This is a leading singularity of the amplitude — all 4L loop degrees of

freedom are fixed by on-shell conditions.

It turns out that on-shell diagrams form equivalence classes, where different repre-

sentatives are related by certain identity moves. The first is the merge and expand move

represented in (2.6). The black vertices enforce all λ̃’s to be proportional which is inde-

pendent of the way the individual three-point amplitudes are connected,

1 2

34

⇔

1 2

34

⇔

1 2

34

(2.6)

Another nontrivial move is the square move [65] which can be motivated by the cyclic

invariance of the four-particle tree level amplitude,

1 2

34

⇔

1 2

34

(2.7)

Together with bubble deletion, which does not play a role in our discussion here, these

are all the equivalence moves for planar N = 4 sYM. Modulo the aforementioned moves,

it is possible to give a complete classification of on-shell diagrams [31] in this theory.

Besides representing cuts of loop amplitudes, on-shell diagrams serve directly as build-

ing blocks in the BCFW recursion relation for tree-level amplitudes and loop integrands in
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planar N = 4 sYM theory [31, 37]. In this formulation, planarity is crucial as it permits a

unique definition of the integrand as a rational function with well defined properties. The

key point is the existence of global variables (dual variables and momentum twistors [66])

common to all terms in the expansion. Currently, it is the lack of global labels that hampers

the extension of the recursion relations beyond the planar limit.

While the recursion relations are only formulated in planar N = 4 sYM so far, the on-

shell diagrams are well defined gauge invariant objects in any quantum field theory, planar

or non-planar, with or without supersymmetry. They are defined as products of on-shell

three-point amplitudes (for theories with fundamental three point amplitudes) and at the

least represent cuts of loop amplitudes. From that point of view they encode an important

amount of information about amplitudes in any theory and their properties are well worth

studying in its own right.

2.2 Grassmannian formulation

Besides viewing on-shell diagrams as an amalgamation of three-point amplitudes integrated

over the on-shell phase space (including the sum over all physical states that can cross the

cut) there is a completely different way how to calculate on-shell diagrams. This dual

formulation expresses on-shell diagrams as differential forms on the (positive) Grassman-

nian [31]. There are a number of ways how to motivate this picture starting from classifying

configurations of points with linear dependencies to representing the permutation group

in terms of planar bi-colored graphs [51]. Physically, the most direct way to discover the

Grassmannian picture for on-shell diagrams is to think about momentum conservation

more seriously. Starting from the innocuous equation,

δ4(P ) ≡ δ4(λ · λ̃) = δ4(λ1λ̃1 + λ2λ̃2 + · · ·+ λnλ̃n) , (2.8)

one notes that this is a quadratic condition on the spinor-helicity variables. Naturally, one

can ask if there is a way to trivialize the quadratic constraints and rewrite them as sets of

linear relations between λs and λ̃s separately. The solution to this problem is to introduce

an auxiliary k-plane in n-dimensions represented by a (k × n)-matrix, C, modulo a GL(k)

redundancy arising from row operations that leave the k- plane invariant. This space is

known as the Grassmannian G(k, n). Using these auxiliary variables, momentum conser-

vation is enforced geometrically [32–34] via the following set of delta functions (similar

relations hold in twistor and momentum twistor spaces),

δ(k×2)(Cαaλ̃a) δ
((n−k)×2)(C⊥βaλa) , (2.9)

where C⊥ denotes the
(
(n − k) × n

)
-matrix orthogonal to C, C · C⊥ = 0. There are 2n

delta functions in total, four of them give the overall momentum conservation while the

remaining 2n− 4 constrain the parameters of the C-matrix.

The study of Grassmannians is a vast and active topic in the mathematics community

ranging, amongst others, from combinatorics to algebraic geometry [50–55]. There is a close

connection to on-shell diagrams which was simultaneously discovered both by physicists

in the context of scattering amplitudes and by mathematicians (in the math literature

– 7 –
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these diagrams are called plabic graphs) in searching for positive parameterizations of

Grassmannians. In particular, each on-shell diagram gives a parametrization for the C-

matrix using a set of variables αj . When these variables are real with definite signs, the

matrix C has all main minors positive and then we talk about positive Grassmannian

G+(k, n). These variables are associated with either faces or edges of the diagram. The

face variables are more invariant but they can be used only in planar diagrams. Since in

this paper we will include non-planar examples we use edge variables instead to parametrize

the Grassmannian matrix.

Parallel with the physical picture where on-shell diagrams are products of three-point

amplitudes we also start our discussion with elementary three point vertices. We first

choose a perfect orientation in which we attach arrows to all legs. For all black vertices

two of the arrows are incoming and one is outgoing while for white vertices one is incoming

and two are outgoing. Then we associate a (2 × 3)-matrix with the black (MHV, k = 2)

vertex and a (1× 3)-matrix with the white (MHV, k = 1) vertex in the following way,

1

2

3

Α2

Α1

Α3
. .

1

2

3

Α2

Α1

Α3

m . m

C =

(
1 0 α1α3

0 1 α2α3

)
. C =

(
α1α3 α2α3 1

)
.

(2.10)

Choosing a perfect orientation corresponds to partially fixing the GL(k)-redundancy

of the C-matrix. With the remaining GL(1)v-freedom we are allowed to fix any one of

the variables αi to some arbitrary value. The canonical choice would be α3 = 1, but any

other finite, nonzero value is allowed as well. For the moment though, it turns out to be

convenient to keep this freedom unfixed.

Having treated the elementary three-point vertices, we glue them together into ar-

bitrary planar on-shell diagrams to each of which we associate bigger (k × n)-matrix C.

In the amalgamation process, we identify the two half-edges of the vertices involved in

the gluing process to form an internal edge of the bigger on-shell diagram. Each internal

edge of this big diagram is then parametrized by two variables α(1) and α(2) coming from

the two different vertices. The C-matrix will only depend on their product α = α(1)α(2).

– 8 –



J
H
E
P
1
1
(
2
0
1
6
)
1
3
6

Pictorially, this process is simple to state (the grey blob denotes the rest of the diagram),

Α

H1L
Α

H2L
→ Α

H1L
Α

H2L

Α

(2.11)

and illustrates that it is natural to directly use edge-variables α rather than individual

vertex variables α(1) and α(2) introduced by the little Grassmannians in (2.11). The iden-

tification is as follows; in the gluing process we encounter another GL(1)e redundancy

stemming from the fact that the internal momentum of that edge is invariant under little

group rescaling λI → tIλI , λ̃I → t−1
I λ̃I which allows us to combine two of the vertex-

variables into a single edge-variable. Doing this for all internal edges, we are left with the

GL(1)v redundancies for each vertex in the big on-shell diagram which we can use to set

certain edge weights to one.

1 2

34

Α3

Α2Α4

Α1

. . 1

2

3

4

5

Α3
Α2

Α4

Α5

Α6

Α1

(a) . . . (b)

(2.12)

In terms of edge-variables, the rule how to obtain the C-matrix from the graph is

quite simple. First, we have to choose a perfect orientation for the diagram by consistently

decorating all edges with arrows. The external legs with incoming arrows are called sources,

while the external legs with outgoing arrows are called sinks. For the diagram with k sources

and n−k sinks we construct a (k×n) matrix C. Note that these numbers are independent

of the way we choose a perfect orientation and are an invariant property of the on-shell

diagram itself. Each row of the matrix is associated with one source while the columns are

linked to both sources and sinks. Now each entry Cαa is calculated as

Cαa =
∑

Γα→a

∏
j

αj , (2.13)

where we sum over all directed paths Γα→a from the source α to the sink a by following

the arrows. Along the way we take the product of all edge variables. If the label a = α is

the same source we fix the matrix entry to 1 if a = α′ is a different source the matrix entry

– 9 –
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is 0. For the examples in (2.12), the C-matrices are,

C(a) =

(
1 α1 0 α4

0 α2 1 α3

)
, C(b) =

(
1 α1 + α2α6 α6 α3α6 0

0 α5α6α2 α5α6 α4 + α3α5α6 1

)
. (2.14)

Different choices for the sources and sinks corresponds to different gauge fixings of the

C-matrix that are related by GL(k)-transformations. For some gauge choices, the perfect

orientation can involve closed loops. In these cases there are infinitely many paths from α

to a and we have to sum over all of them,

1 2

34

Β2

Β1

Β3

Β4 ⇔ C =

(
1 β1δ 0 β1β2β3δ

0 β3β4β1δ 1 β3δ

)
, (2.15)

where δ is given by a geometric series,

δ =
∞∑
σ=0

(β1β2β3β4)σ =
1

1− β1β2β3β4
. (2.16)

The important connection between the Grassmannian formulation and physics is that

the same on-shell diagram that labels the C-matrix also represents a cut of a scattering

amplitude in planar N = 4 sYM. The nontrivial relation is that the value of the on-

shell diagram as calculated by multiplying three-point amplitudes is equal to the following

differential form

dΩ =
dα1

α1

dα2

α2
. . .

dαm
αm

δ(C · Z) . (2.17)

All the dependence on external kinematics is pushed into the delta functions,

δ(C · Z) ≡ δ(k×2)(Cabλ̃b)δ
((n−k)×2)(C⊥cbλb) δ

(k×N )(Cabη̃b) (2.18)

which linearize both momentum and super-momentum conservation δ4(P ) δ8(Q) using the

auxiliary Grassmannian C-matrix associated with the diagram. Depending on the details

of the given diagram, the delta functions (2.18) allow us to fix a certain number of edge

variables αj . In the case of on-shell diagrams relevant for tree-level amplitudes (leading

singularities), all variables are fixed, while the on-shell diagrams appearing in the loop

recursion relations have 4L unfixed parameters αj which are related to the 4L degrees of

freedom of L off-shell loop momenta `i.

So far, the
(
(n− k)×n

)
-matrix C⊥ orthogonal to C, C ·C⊥ = 0, has not played a sig-

nificant role in our discussion but is crucial for momentum conservation in (2.9) and (2.18).

Given a gauge fixed C-matrix, there is a simple rule how to obtain C⊥. One takes the

(n−k) columns of the C-matrix that correspond to the (n−k) sinks of the on-shell diagram.

– 10 –
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For each such column of C, one forms a row of C⊥ by writing the negative entries of the

column into the slots that correspond to the sources. The remaining
(
(n − k) × (n − k)

)
matrix entries of C⊥ are then filled by a

(
(n− k)× (n− k)

)
identity- matrix. As concrete

examples, consider the C-matrices in (2.14) corresponding to the on-shell diagrams (2.12).

Following our rules, we get the respective C⊥-matrices,

C⊥(a) =

(
−α1 1 −α2 0

−α4 0 −α3 1

)
, C⊥(b) =

−(α1 + α2α6) 1 0 0 −α5α6α2

−α6 0 1 0 −α5α6

−α6α3 0 0 1 −(α4 + α5α6α3)

 . (2.19)

Combining all ingredients, we work out the box diagram (2.12)(a), in which case the

delta functions (2.18) are equal to

δ(C · Z) =
1

〈13〉4 δ
[
α1 −

〈23〉
〈13〉

]
δ

[
α2 −

〈12〉
〈13〉

]
δ

[
α3 −

〈14〉
〈13〉

]
δ

[
α4 −

〈43〉
〈13〉

]
δ4(P )δ8(Q)

(2.20)

and the differential form becomes a function of external kinematics only,

dΩ =
dα1

α1

dα2

α2

dα3

α3

dα4

α4
δ(C · Z) =

δ4(P )δ8(Q)

〈12〉〈23〉〈34〉〈41〉 . (2.21)

This is equal to formula (2.4) found by multiplying three-point amplitudes.

The same calculation applies to planar on-shell diagrams in N < 4 sYM. Unlike in

the maximally supersymmetric case where the perfect orientations only played an auxiliary

role for constructing the C-matrix, in less supersymmetric theories the on-shell graphs are

necessarily oriented. This corresponds to the fact that in lower supersymmetric theories we

need two on-shell multiplets to capture the positive and negative helicity gluons (and their

respective superpartners) and the arrows specify which multiplet we are talking about. For

the external states, we can choose the orientation of the arrows of a given on-shell diagram

depending on the helicity structure we want to consider, but for internal legs we have to

sum over all possible orientations. In addition, for perfect orientations with closed internal

loops we have to add an extra factor, J , in the measure,

dΩ =
dα1

α1

dα2

α2
. . .

dαm
αm
JN−4 · δ(C · Z) . (2.22)

This modification arises when passing from vertex-variables to edge-variables and J
is defined as the determinant of the adjacency matrix Aij of the graph

J = det(1−A) . (2.23)

The entries of A are given by,

Aij = weight of the directed edge i→ j (if any) . (2.24)

This factor cancels inN = 4 sYM but in the case of lower supersymmetries it is present.

For further details, we refer the reader directly to [31], section 14. Here we included a brief

discussion of J as it will play a role in our gravity formulas later.
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3 Non-planar on-shell diagrams

On-shell diagrams are well defined for any quantum field theory with fundamental three-

point amplitudes and do not rely on the planarity of graphs. We can consider an arbitrary

bi-colored graph with three-point vertices,

(3.1)

and define the on-shell function as the corresponding product of three-point amplitudes

evaluated at specific on-shell kinematics dictated by the graph.

To each diagram we associate a point in the Grassmannian, represented by the matrix

C. This identification uses the rules explained in the previous section: choose a perfect

orientation, associate variables αk to edges and calculate the entries of the C-matrix using

eq. (2.13). If the diagram is planar and the edge variables are chosen real and with definite

sign, we obtain a cell in the positive Grassmannian G+(k, n), in other cases we end up in

some cell in a generic Grassmannian G(k, n).

In general, to each on-shell diagram, we associate a form dΩ. The form has to be

chosen such that it reproduces the physical picture of an on-shell function as the product

of three point amplitudes,

dΩ = df(αk) δ(C · Z) . (3.2)

The measure df(αk) depends on the theory under consideration while the delta function

δ(C · Z) only depends on the diagram and external kinematics. Therefore the problem

naturally splits into two parts: a) finding the measure df(αk), and b) finding the C-matrix.

While the C-matrix associated to a particular on-shell diagram is given by eq. (2.13), the

general classification of all possible non-planar diagrams and their associated subspaces in

G(k, n) represent an important open problem. For the case of MHV leading singularities

the answer was given in [67] but understanding more general cases is part of an active

research area [68, 69].

For a generic quantum field theory the measure df(αk) associated with a given diagram

is not known. However, for the case of Yang-Mills theory the answer has been worked out

in [31] and turns out to be surprisingly simple,

dΩ =
dα1

α1

dα2

α2
. . .

dαm
αm
JN−4 · δ(C · Z) . (3.3)

The J -factor is given by the determinant of the adjacency matrix (2.24) and the

singularities coming from this part of the measure are closely related to the UV-sector of

the theory. In N = 4 sYM this term is absent and we get a pure d log-form. From the
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discussion so far it is clear that writing the form (3.3) did not depend on the planarity of

the diagram so that the formula is identical to (2.17) described in the planar sector. The

goal of this section is to extend the knowledge of the Grassmannian formulation beyond

the Yang-Mills case and find the analogue of (3.3) for gravity on-shell diagrams.

3.1 First look: MHV leading singularities

Leading singularities correspond to on-shell diagrams where the associated on-shell function

contains no free parameters and no constraints among the external data is imposed. We can

think of leading singularities as zero-forms Ω which represent codimension 4L cuts of loop

amplitudes. The simplest leading singularities are of MHV-type. In planar N = 4 sYM

they are all equal to the Parke-Taylor factor,

PT(123 . . . n) =
1

〈12〉〈23〉〈34〉 . . . 〈n1〉 . (3.4)

Beyond the planar limit all MHV leading singularities must be holomorphic functions

F (λ) [60]. Furthermore, it was shown in [67] that all MHV leading singularities can be

decomposed into linear combinations of Parke-Taylor factors with different orderings σ,

Ω =
∑
σ

cσ PT(σ1σ2 . . . σn) where cσ = ±1, 0 . (3.5)

This representation makes manifest that all singularities are logarithmic as each Parke-

Taylor factor behaves like 1
x near any singularity. This indicates that one can infer the exis-

tence of the underlying logarithmic form (3.3) directly from the expression (3.5). Following

the same logic, it is very natural to look at the MHV leading singularities in N = 8 SUGRA

and study their analytic structure in more detail.

Gluing together three-point amplitudes we find some suggestive expressions for a few

simple on-shell diagrams (dropping the overall (super-) momentum conserving δ-functions

in N = 8 SUGRA, δ4(λ · λ̃)δ16(λ · η̃)),

1 2

34 1

2

3

4

5
1

2

3

4 5

↓ ↓ ↓
[13][24]

〈12〉〈13〉〈14〉〈23〉〈24〉〈34〉
[12][23][45]2

〈12〉〈13〉〈15〉〈23〉〈34〉〈45〉
[12][23][45]2

〈12〉〈14〉〈15〉〈23〉〈34〉〈35〉

(3.6)

From these examples one could conjecture that all poles 〈ij〉 are linear and the numer-

ator involves only anti-holomorphic brackets [ij]. However, looking at more complicated

diagrams we learn that this is not the case and both more complicated numerators as well
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as higher degree poles in the denominator appear.

1
2

3

4
5

6

1

2

3

4

5 6

7

↓ ↓
〈5|Q16|2]〈2|Q34|5][16]2[34]2

〈12〉〈23〉〈34〉〈45〉〈56〉〈61〉〈25〉2
[23]2〈1|Q23|4]〈4|Q23|1]〈1|Q67|5]〈1|Q57|6]〈4|Q56|7]2

〈14〉3〈12〉〈15〉〈17〉〈23〉〈34〉〈45〉〈46〉〈56〉〈67〉

(3.7)

Analyzing the data more closely, especially looking at the on-shell solutions for the

momenta of the internal edges, one can make the following statement:

On-shell diagram vanishes if three momenta in a white vertex are collinear.

Concretely, the white vertex (by definition) forces the λ’s to be proportional. If ad-

ditionally the λ̃’s become collinear as well (which implies the collinearity of momenta)

the on-shell diagram vanishes. Interestingly, each factor in the numerator of the on-shell

function exactly corresponds to such a condition which is why the number of factors in the

numerators equals the number of white vertices in a given MHV on-shell diagram.

Taking a closer look at the denominator of the expressions (3.7) one realizes that

all factors which correspond to erasing edges from the on-shell diagram (by sending the

momentum of that edge to zero) are single poles. In contrast, all higher poles (and some

single poles) correspond to sending the momenta of an internal loop to infinity. Such poles

are completely absent in the N = 4 sYM case — this is related to the statement of no

poles at infinity [1, 56, 70] — but in gravity they are present. To clarify some of these

statements, we discuss a concrete example and analyze the following on-shell diagram,

1

2

3

4

5

`1 = λ1 Q12·λ3
〈13〉 , `2 = λ5 Q12·λ3

〈35〉 ,

`1 − 1 = 〈23〉
〈13〉λ1λ̃2 , `2 − 5 = 〈34〉

〈35〉λ5λ̃4 ,

`1 −Q12 = 〈12〉
〈13〉λ3λ̃2 , `2 −Q45 = 〈45〉

〈35〉λ3λ̃4 ,

`1 −Q123 = λ3 Q23·λ1
〈13〉 , `1 + `2 = 〈15〉

〈13〉〈35〉λ3 Q12 · λ3 .

Ω =
[12][23][45]2

〈12〉〈13〉〈15〉〈23〉〈34〉〈45〉 . (3.8)

As explained above, most of the poles 〈ij〉 correspond to erasing edges in the on-shell

diagram which is equivalent to setting the internal momentum of that edge to zero. In our

example 〈13〉 corresponds to a pole at infinity and on this pole, all momenta involving `1
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blow up. Finally, let’s look at the structure of the numerator. Focusing on the white vertex

adjacent to external leg 1, the respective on-shell solutions for `1 and `1−p1 as well as the

external leg become collinear when [12] = 0 ⇒ λ̃2 ∼ λ̃1, `1
[12]→0−→ ∼ λ1λ̃1, `1−p1

[12]→0−→ ∼
λ1λ̃1. As noted earlier, the gravity on-shell form vanishes in this limit due to the factor [12]

in the numerator. For the remaining white vertices, a similar analysis recovers all other

square brackets [ij] in the numerator of the gravity form (3.8).

We can take these observations as a starting point in the search for the Grassmannian

formulation of gravity on-shell diagrams. We learned that on-shell diagrams can have

multiple poles associated with poles at infinity, and importantly the numerator factor

must capture the curious collinear behavior observed above.

3.2 Three point amplitudes with spin s

The most natural initial objects of investigation for a Grassmannian representation of

gravity on-shell diagrams are the three-point amplitudes. We start with a maximally

supersymmetric theory of particles with spin s. In that case, the amount of supersymmetry

is given by N = 4s. As noted before, in massless theories, the elementary three-point

amplitudes are completely fixed by their little group weight to all orders in perturbation

theory (up to an overall constant). In particular, the three-point MHV-amplitude for spin

s particles is given by,

A
(2)
3 =

δ4(P )δ2N (Q)

〈12〉s〈23〉s〈31〉s . (3.9)

The on-shell diagram for this amplitude is just a single black vertex to which we

associate a perfect orientation in exactly the same manner as for N = 4 sYM discussed in

section 2.2. We use the identical rules from before (2.13) to write the C-matrix,

1

2

3

Α2

Α1

Α3 ⇔ C =

(
1 0 α1α3

0 1 α2α3

)
. (3.10)

Here we do not choose any GL(1)v gauge fixing in the vertex on purpose because

gauge-independence will be one of our criteria for finding the correct formula. The first

step towards the Grassmannian representation of (3.9) is to write the linearized delta

functions which have a very similar form to (2.18),

δ(2×2)(C · λ̃) δ(1×2)(C⊥ · λ) δ(2×N )(C · η̃) =
1

α2
3〈12〉N−1

δ(4)(P )δ(2N )(Q) . (3.11)

Using the two bosonic delta-functions from δ(1×2)(C⊥ · λ), we can solve for two of the

auxiliary αk variables,

α1 =
〈23〉
α3〈12〉 , α2 =

〈13〉
α3〈12〉 . (3.12)
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The general form of the Grassmannian representation of (3.9), for which the measure

depends only on the αk-variables and is permutation invariant in all three legs, is

dΩσ =
dα1

ασ1

dα2

ασ2

dα3

ασ3
δ(2×2)(C · λ̃) δ(1×2)(C⊥ · λ) δ(2×N )(C · η̃) , (3.13)

for some integer σ. We can plug (3.11) and (3.12) into (3.13) to get

dΩσ =
dα3

α2−σ
3

· δ(4)(P )δ(2N )(Q)

〈12〉N−1−2σ〈23〉σ〈31〉σ . (3.14)

This expression must be permutation invariant in 〈12〉, 〈23〉, 〈31〉 and independent of

the gauge-choice for α3. In order to ensure GL(1)-invariance, dα3
α3

has to factor out as the

volume of GL(1)-transformations. These two requirements leave us with a unique choice:

σ = s = 1 which corresponds to the logarithmic measure in N = 4 sYM. Of course, one

can also make a special choice, α3 = 1
〈12〉 so that α1 = 〈23〉, α2 = 〈13〉, which allows us to

write any three point amplitude (3.9) using edge variables only. But our goal here is to find

a form which is independent of any such peculiar choices. Consequently, the form (3.13) is

not able to reproduce the gravity or any higher spin three-point amplitude.

The natural modification of the form (3.13) involves some dimensionful, permutation

invariant object ∆. The δ(C⊥ · λ) allows us to relate α1λ1 + α2λ2 + 1
α3
λ3 = 0 which we

use in the definition of ∆ as follows,

∆ ≡ 〈AB〉 = 〈BE〉 = 〈EA〉 where A = α1λ1, B = α2λ2, E =
1

α3
λ3 . (3.15)

Note that this object has exactly the property suggested by our study of MHV leading

singularities: it vanishes when all three momenta are collinear. Now we consider a form

dΩ =
∆ρ · dα1 dα2 dα3

ασ11 ασ22 ασ33

δ(2×2)(C · λ̃) δ(1×2)(C⊥ · λ) δ(2×N )(C · η̃) . (3.16)

Repeating the same exercise that led to (3.14) by solving for edge variables, converting

the delta functions, imposing permutation invariance and the independence on α3 uniquely

fixes ρ = s− 1 and σ1 = σ2 = σ3 = 2s− 1. The modified form becomes,

dΩs =
∆s−1 · dα1 dα2 dα3

α2s−1
1 α2s−1

2 α2s−1
3

δ(2×2)(C · λ̃) δ(1×2)(C⊥ · λ) δ(2×N )(C · η̃) (3.17)

which is a Grassmannian representation of (3.9). We would find the same unique solution

even if we consider ∆ = 〈12〉 or any other function of α1, α2, α3 and 〈12〉 (〈23〉 and 〈13〉
are proportional to 〈12〉 and α’s). Note that this formula is well defined for all integer

spins s and maximal supersymmetry N = 4s. In particular, for s = 1 it reproduces the

logarithmic form of N = 4 sYM.
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There is an analogous Grassmannian representation for the MHV (k = 1) three-point

amplitudes,

1

2

3

Α2

Α1

Α3
, C =

(
α1α3 α2α3 1

)
. (3.18)

which can be encoded by the form,

dΩ̃s =
∆̃s−1 · dα1 dα2 dα3

α2s−1
1 α2s−1

2 α2s−1
3

δ(1×2)(C · λ̃) δ(2×2)(C⊥ · λ) δ(1×N )(C · η̃) (3.19)

where ∆̃ = [AB] = [BE] = [EA] with A = α1λ̃1, B = α2λ̃2 and E = 1
α3
λ̃3.

3.3 Grassmannian formula

Equipped with the Grassmannian representation of the three-point amplitudes (3.17)

and (3.19), we can write the Grassmannian representation for any spin s on-shell diagram.

Much like in N = 4 sYM, using the amalgamation procedure [31] to glue the three-point

vertices into larger diagrams, we write the form in terms of edge variables,

dΩs = Γ · dα1 dα2 . . . dαd

α2s−1
1 α2s−1

2 . . . α2s−1
d

·
∏
b∈Bv

∆s−1
b ·

∏
w∈Wv

∆̃s−1
w (3.20)

× JN−4 · δ(k×2)(C · λ̃) δ((n−k)×2)(C⊥ · λ) δ(k×N )(C · η̃)

where Γ denotes any color factor/coupling constant associated with the diagram. The

products of ∆b and ∆̃w are associated with the set of black (Bv) and white (Wv) vertices

respectively. They can be easily calculated using edge variables and external spinors and

we are going to work out some explicit examples in section 4.

Note that the Jacobian factor J is the same as forN < 4 sYM on-shell diagrams (2.23).

The reason is that it originates from rewriting the (super-)momentum conserving delta

functions in the linearized form using the C-matrix. In particular, it does not depend on

the measure df(αk) in (3.2) and therefore is the same for theories of arbitrary spin and

number of supersymmetries. However, depending on the number of fermionic delta func-

tions related to the amount of supersymmetry N , the respective power JN−4 changes and

for N = 4 always cancels. While the formula has been originally derived for N = 4s it is

actually valid for any s and any N , so it also captures theories with lower supersymmetries.

Before proceeding further, note that the on-shell diagrams for spin s > 2 make perfect sense.

They are simply objects obtained from amalgamating elementary three point amplitudes

–which in turn are well defined. However, in Minkowski space, we know that there are no

consistent long range forces mediated by spin s > 2 particles [71, 72]. Superficially, these

two observations are at odds with one another. However, it is interesting to note that from

an on-shell diagram point of view, the spin s = 1, 2 cases are distinguished if we look at the
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identity moves on on-shell diagrams first introduced in subsection 2.1. There are two moves

satisfied by planar on-shell diagrams: the square move (2.7) and merge-expand (2.6). These

moves leave invariant the cell in the positive Grassmannian G+(k, n) as well as the loga-

rithmic form dΩ which calculates the value of the on-shell diagram in N = 4 sYM theory.

The content of the first move is the parity symmetry of a four point amplitude, and

it does not really depend on planarity. Indeed, calculating the four point on-shell dia-

gram (2.12)(a) we find that for general s it is equal to

Ωs =

(
[12][24]

〈13〉〈34〉

)s−1

· δ
(4)(P )δ(2N )(Q)

〈12〉〈23〉〈34〉〈41〉 (3.21)

which is indeed invariant under a parity flip due to the totally crossing symmetric prefactor.

The merge-expand move gets modified beyond the planar limit. In fact, it is not a

two-term relation (2.6) but now involves a third u-channel contribution,

0 =

1 2

34

+

1 2

34

−

1 2

34

(3.22)

Calculating all three diagrams either by gluing three point amplitudes or using the

Grassmannian formula (3.20) we find that the invariance under this move requires

Γs(〈12〉〈34〉)s−1 + Γt(〈14〉〈23〉)s−1 = Γu(〈13〉〈24〉)s−1 (3.23)

where Γk are the group factors for s-, t- and u-channels. There are only two solutions to

this equation: either s = 1 and Γs + Γt = Γu which is nothing but the Jacobi identity for

the color factors Γs = f12af34a, Γt = f14af23a, Γu = f13af24a. Here we easily recognize

N = 4 sYM. The other option for which the merge-expand move holds is s = 2 and

const = Γs = Γt = Γu due to the Shouten identity. This case corresponds to the universal

gravitational coupling and N = 8 SUGRA. All higher spin cases (as well as s = 0) are not

consistent with the merge-expand move.

The merge-expand move is not an essential property of on-shell diagrams, indeed the

N < 4 SYM diagrams do not satisfy it. But for maximally supersymmetric theories it

seems like a good guide when the theory is healthy. From now on, we will focus on the

s = 2 case of N = 8 SUGRA. For this theory, the Grassmannian representation becomes,

dΩ =
dα1 dα2 . . . dαd
α3

1α
3
2 . . . α

3
d

∏
b∈Bv

∆b

∏
w∈Wv

∆̃w (3.24)

× J 4 · δ(k×2)(C · λ̃) δ((n−k)×2)(C⊥ · λ) δ(k×8)(C · η̃) .

Note that a similar formula is valid for N < 8 SUGRA subject to the simple replace-

ment J 4 → JN−4. In these cases we also have to sum over all possible orientations of

internal edges, in complete analogy to the Yang-Mills case.
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4 Properties of gravity on-shell diagrams

In this section we are going to elaborate on the Grassmannian formula for gravity (3.24)

obtained in the previous section. We are going to show on explicit examples how to use

eq. (3.24) to calculate particular on-shell diagrams and comment on their properties.

4.1 Calculating on-shell diagrams

After deriving the Grassmannian formulation for on-shell diagrams in N = 8 SUGRA in

an abstract setting, let’s consider a few concrete examples to show that we can reproduce

the correct values of the on-shell functions derived before. As a first non-trivial example,

we consider a reduced on-shell diagram for five external particles. For the construction of

the C-matrix, we chose a convenient perfect orientation. Of course, the final result will

be independent of the particular choice. Since we were able to choose a perfect orienta-

tion without any closed loops, the Jacobian factor J in eq. (2.23) originating from the

transformation between vertex- and edge-variables is trivial, J = 1.

In complete analogy to the Yang-Mills case, we have used the GL(1)v-freedom from

all vertices to gauge fix several of the edge-weights to 1. Starting from the gauge-fixed

on-shell diagram, we can follow the same rules described in section 2.2 to construct the

boundary-measurement matrix C (2.13) by summing over paths from sources to sinks and

multiplying the edge weights along the path.

1

2

3

4

5

Α3Α2

Α4

Α5

Α6

Α1

B1

B2
B3

W1
W2

W3
W4

C =

(
1 α1 + α2α6 α6 α3α6 0

0 α5α6α2 α5α6 α4 + α3α5α6 1

)
(4.1)

The orthogonal matrix C⊥ is then given by,

C⊥ =

−(α1 + α2α6) 1 0 0 −α5α6α2

−α6 0 1 0 −α5α6

−α3α6 0 0 1 −(α4 + α3α5α6)

 . (4.2)

We can use the δ(3×2)(C⊥ · λ) delta-functions to solve for all edge variables αi,

α1 =
〈23〉
〈13〉 , α2 =

〈12〉
〈13〉 , α3 =

〈45〉
〈35〉 , α4 =

〈34〉
〈35〉 , α5 =

〈13〉
〈35〉 , α6 =

〈35〉
〈15〉 . (4.3)

Solving for all the αi induces a Jacobian JC⊥·λ =
(
〈35〉2〈13〉

)−1
. Plugging these solutions

αi = α∗i back into the remaining δ-functions, we find,

δ(2×2)(C · λ̃) = 〈15〉2δ4(λ · λ̃) , δ(2×N )(C · η̃) =
1

〈15〉N δ
2N (λ · η̃) . (4.4)
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As a quick sanity check, we can recover the N = 4 sYM result,

dΩN=4 =
6∏
i=1

dαi
αi

δ(2×2)(C · λ̃)δ(3×2)(C⊥ · λ)δ(2×4)(C · η̃)

= PT(12345) δ(4)(λ · λ̃)δ(2×4)(λ · η̃) (4.5)

The only missing ingredient for the gravity result are the various ∆b and ∆̃w factors required

in the definition of the measure (3.24). In order to calculate ∆b and ∆̃w the knowledge

of the adjacent λ and λ̃ are required. Naively one could think that one has to solve for

all internal momenta explicitly in order to construct the ∆’s and ∆̃’s. However, the on-

shell diagram knows about all relations between the internal λ’s and λ̃’s and the external

kinematic data automatically. That is the point of constructing the C matrix using the

paths and there are simple rules how to read off ∆b and ∆̃w directly from the diagram.

Let us first formulate the rule for the white vertices ∆̃w which is defined as a contraction

of two incoming λ̃ spinors in the vertex,

∆̃w = [λ̃A λ̃B] (4.6)

This naively depends on the split of the internal momenta pI = λI λ̃I into spinors as

well as the choice which two of the λ̃’s to pick. However the on-shell diagram gives us

the correct split automatically similar to how it is provided in the delta functions (3.24).

Furthermore, since the λ̃- spinor is conserved in each vertex –which is exactly the purpose

of the linearized delta functions– it does not matter which two we pick. Following the rules

used in the construction of the C-matrix, we choose two of the outgoing λ̃. Then we track

each of them back to the external momenta following the rules:

If we hit a black vertex we follow the path, if we hit a white vertex we sum over both

paths. At each step we multiply by the edge variables on the way.

Note that this is exactly how the C-matrix is constructed, just that there we start with

the incoming external legs rather than the legs attached to an internal vertex. In case of

closed internal loops, it might be necessary to sum a geometric series as in the construction

of the C-matrix.

The rule for ∆b is similar, it is a contraction of two λ spinors,

∆b = 〈λA λB〉. (4.7)

Now we choose the two incoming arrows in the black vertex and trace them back

to external legs going against the arrows rather than following the arrows. This can be

trivially understood from the linearized delta functions, the λ̃ spinors are coupled to the

C-matrix but the λ spinors are coupled to the C⊥ which can be thought of as the C-matrix

for on-shell diagrams where all black and white vertices as well as all arrows are flipped.

In our example (4.1), let us start with the white vertices. Following the arrows from

the vertex W1 we leave the diagram via the sinks, and the spinors are,

λ̃A = α4λ̃4, λ̃B = α5α6(α3λ̃4 + λ̃3 + α2λ̃2) (4.8)
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corresponding to ∆̃1,

∆̃1 = [λ̃A λ̃B] = −α4α5α6([34] + α2[24]) (4.9)

Similarly, for the other vertices we get,

∆̃2 = α1(α3[24] + [23]), ∆̃3 = α2[23], ∆̃4 = α3([34] + α2[24]). (4.10)

For the black vertices we just go against the arrows and leave the diagram via the

sources.

∆1 = α3α4α6〈15〉, ∆2 = α5〈15〉, ∆3 = α1α2α5α6〈15〉 (4.11)

Collecting all terms in (3.24) our formula for the on-shell diagram is (omitting dαk)

dΩ=
([23]+α3[24])2([34]+α2[34])[23]〈15〉3

α1α2α3α4
δ(2×2)(C · λ̃)δ(3×2)(C⊥ · λ)δ(2×8)(C · η̃) . (4.12)

Substituting the solutions for the edge variables (4.3), converting the δ-functions and

including the Jacobians reproduces the same gravity result (3.8) we obtained from gluing

three-point amplitudes directly,

dΩ =
[12][23][45]2

〈12〉〈23〉〈34〉〈45〉〈51〉〈13〉δ
4(λ · λ̃)δ16(λ · η̃) . (4.13)

Note that the formula (4.12) has only single poles in αk in contrast to the cubic poles

in the general form (3.24). We will expand on this point later in this section.

4.2 More examples

So far we have mostly considered simple MHV examples. Here we would like to stress that

our Grassmannian formulation for gravity on-shell diagrams is not restricted to the MHV

sector but works for arbitrary k as well. To illustrate this point, let us consider a simple

NMHV on-shell diagram,

Α8Α7

Α6
Α5

Α4Α3

Α1
1

2 3

4

56

Α2

⇔

C =

1 α1 0 0 0 α2

0 α6 1 α5 0 α6α7

0 α6α8 0 α4 1 α3 + α6α7α8


C⊥ =

−α1 1 −α6 0 −α6α8 0

0 0 −α5 1 −α4 0

−α2 0 −α6α7 0 −(α3 + α6α7α8) 1

 .

(4.14)

Here we are going to have additional fermionic δ-functions which exactly give us eight

extra powers of η̃ required for NMHV on-shell functions. Solving the bosonic δ-functions

for the edge variables we find,

α1 = − [16]

[26]
, α2 =

[12]

[26]
, α3 =

s345

〈5|Q345|6]
, α4 =

〈34〉
〈35〉 , α5 =

〈45〉
〈35〉 ,

α6 =
〈5|Q345|6]

〈35〉[26]
, α7 = −〈5|Q345|2]

〈5|Q345|6]
, α8 = −〈3|Q345|6]

〈5|Q345|6]
.
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Converting the δ-functions,

δ(C · Z) =
[26]〈35〉 ∏8

i=1 δ(αi−α∗i )
〈5|Q345|6]〈35〉8[26]8

δ4(P )δ16(Q)δ8([26]η̃1 + [61]η̃2 + [12]η̃6) , (4.15)

and writing all numerator factors ∆bi , ∆̃wj exactly as before, the on-shell function is,

dΩ =
〈12〉〈16〉[34][45] δ8([26]η̃1 + [61]η̃2 + [12]η̃6)

[12][26][61]s345〈34〉〈45〉〈53〉〈5|Q345|2]〈3|Q345|6]
δ4(P )δ16(Q) . (4.16)

As a further example, we can check that our Grassmannian formula for gravity on-shell

diagrams also reproduces the correct result in cases where the graphs are non-reduced, i.e.

contain additional degrees of freedom not localized by the bosonic δ-functions. The simplest

case to consider is the following,

1 2

34

Α1

Α2

Α3 Α4

Α5

⇔
C =

(
1 0 α3α4α5 α1 + α2α3

0 1 α4 + α3α5 α3

)

C⊥ =

(
−α2α3α5 −(α4 + α3α5) 1 0

−(α1 + α2α3) −α3 0 1

)
.

(4.17)

Choosing α1 to be the free parameter, we solve for the remaining edge-variables,

α2 =
〈42〉 − α1〈12〉

〈14〉 , α3 =
〈14〉
〈12〉 , α4 =

〈43〉 − α1〈13〉
〈42〉 − α1〈12〉 , α5 =

〈32〉
〈42〉 − α1〈12〉 .

As a cross check, we can again look at the Yang-Mills result dΩYM =
1

α1〈12〉〈14〉〈23〉(〈43〉−α1〈13〉) , which agrees with the form found earlier in (2.5) once we identify

α1 ↔ −z.

The gravity result can be obtained using our rules from the previous sections,

dΩ =
[24][23][41]

α1〈12〉〈13〉〈23〉〈41〉(〈43〉 − α1〈13〉)δ
4(P )δ16(Q) (4.18)

So far all examples were in the context of maximal supersymmetry. Here we will explic-

itly consider a non-supersymmetric case to demonstrate that our Grassmannian formula

also holds there. Since the only difference to the maximally supersymmetric theory is the

Jacobian J , we choose a perfect orientation (for the simplest diagrams) containing closed

internal cycles (cf. (3.24)),

1 2

34

Α3

Α2Α4

Α1

⇔
C(a) =(

α2α3α4δa 1 α2δa 0

α4δa 0 α4α1α2δa 1

) 1 2

34

Β1

Β2

Β3

Β4 ⇔
C(b) =(

β1δb 1 β1β4β3δb 0

β3β2β1δb 0 β3δb 1

)
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As mentioned before, in order to obtain the correct result, we have to sum over all

possible orientations of the internal loop which is why we include both diagrams. Intro-

ducing the usual short-hand notation for the geometric series δa = (1− α1 · · ·α4)−1, δb =

(1− β1 · · ·β4)−1 and solving for the edge variables we find,

δ(C(a)·Z) =
〈24〉4 δ4(P )

〈12〉2〈34〉2 δ
[
α1+

〈23〉
〈13〉

]
δ

[
α2−

〈13〉
〈12〉

]
δ

[
α3+

〈14〉
〈13〉

]
δ

[
α4+

〈13〉
〈34〉

]
, (4.19)

δ(C(b)·Z) =
〈24〉4 δ4(P )

〈14〉2〈23〉2 δ
[
β1−
〈13〉
〈23〉

]
δ

[
β2−
〈21〉
〈13〉

]
δ

[
β3−
〈13〉
〈14〉

]
δ

[
β4−
〈34〉
〈13〉

]
. (4.20)

We can easily find the respective numerators and Jacobians J (2.23) required for our

gravity formula (3.24),

N (a) = α2
1α

2
3s

2
12 , J (a) = 1− α1α2α3α4 , N (b) = β2

2β
2
4s

2
14 , J (b) = 1− β1β2β3β4 ,

to put everything together (N = 0⇔ J −4),

dΩN=0 =
〈24〉4
〈13〉4

(
s2

12

〈12〉〈34〉
〈14〉〈23〉

[〈13〉〈24〉
〈12〉〈34〉

]−4

+ s2
14

〈14〉〈23〉
〈12〉〈34〉

[〈13〉〈24〉
〈14〉〈23〉

]−4
)
δ4(P ) (4.21)

which agrees with the formula obtained by simply gluing three-point amplitudes together.

This serves as a further verification of our Grassmannian formula for gravity on-shell dia-

grams (3.24).

4.3 Structure of singularities

There are two different types of singularities of on-shell diagrams. In terms of edge-

variables, these are αk → 0 or αk → ∞ which correspond to either erasing edges or

are associated with poles at infinity when all internal momenta of a given loop blow up.

Let us discuss the different cases based on the on-shell diagram introduced in previous

subsections, and also calculated in subsection 4.1.

1

2

3

4

5

Α3
Α2

Α4
Α5

Α6

Α1

`1 = λ1 Q12·λ3
〈13〉 , `2 = λ5 Q12·λ3

〈35〉 ,

`1 − 1 = 〈23〉
〈13〉λ1λ̃2 , `2 − 5 = 〈34〉

〈35〉λ5λ̃4 ,

`1 −Q12 = 〈12〉
〈13〉λ3λ̃2 , `2 −Q45 = 〈45〉

〈35〉λ3λ̃4 ,

`1 −Q123 = λ3 Q23·λ1
〈13〉 , `1 + `2 = 〈15〉

〈13〉〈35〉λ3 Q12 · λ3 .

(4.22)

α1 =
〈23〉
〈13〉 , α2 =

〈12〉
〈13〉 , α3 =

〈45〉
〈35〉 , α4 =

〈34〉
〈35〉 , α5 =

〈13〉
〈35〉 , α6 =

〈35〉
〈15〉 .

Here we can see that four of the edge variables, α1, α2, α3 and α4, directly parametrize

the momentum flow in a given edge. In detail, the momenta `1 − 1, `1 − Q12, `2 − Q45

and `2 − 5 in (4.22) are proportional to α1, α2, α3 and α4 respectively. If we send one of
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the α’s to zero, the zero momentum flow effectively erases that edge. Similarly, sending

α6 →∞ erases the corresponding (`1+`2)-edge. Whether the location of the pole is at 0 or

∞ is determined by the orientation of the arrow on the edge, flipping the orientation of the

arrow inverts the edge variable αk → 1
αk

and the location of the pole changes. Independent

of the details of the orientation, the important statement is that all of the discussed edges

are erasable by sending αk → 0 or ∞. Note that the edge corresponding to α5 is not

erasable. The reason is as follows; if we tried to erase this edge, the remaining diagram

would enforce both [45] = 〈13〉 = 0 which imposes too many constraints. In fact, sending

α5 → 0 or ∞ blows up one of the loops with `1 →∞ or `2 →∞. The same happens if we

set α1, α2, α3, α4 to infinity or α6 to zero. In the example above, we have already chosen a

particular GL(1)v gauge-fixing, corresponding to the fact that some edge-variables are set

to 1. For a different gauge-fixing we could analyze these edges as well, leading to the same

set of erasable edges described above.

In the case of N = 4 sYM theory the form is logarithmic in all edge variables inde-

pendent whether an edge is erasable or not. Furthermore, the final expression does not

contain any poles that send loop-momenta to infinity so that all singularities correspond

to erasing edges only. This is an important distinction to N = 8 SUGRA where poles at

infinity do appear.

Let us investigate the properties of our Grassmannian form for gravity on-shell di-

agrams a little more closely. First, it is relatively easy to see that the form (3.24) has

only linear poles for αk → 0, when the corresponding edge is erasable. The denominator

contains the third power of this edge variable, α3
k but the numerator always generates two

powers leaving only a single pole. We remove the erasable edge in the on-shell diagram for

αk → 0 if the arrow points from a white to a black vertex, while it is erased by αk →∞ if

the arrow points from a black to a white vertex. The edges between same colored vertices

are never removable.

Λ
�

A

ΑΛ
�

B
W1 B1

ΛA ΛB
(4.23)

The numerator for such a subgraph is given by the products of ∆b and ∆̃w. Based

on our rules, we have ∆b1 = 〈λAλB〉 ∼ α and ∆̃w1 = [λ̃Aλ̃B] ∼ α, while all other ∆b and

∆̃w do not depend on α. Therefore, the numerator generates ∼ α2. We can also consider

a modification of the subgraph by adding another white vertex (or in general a chain of

white vertices), or consider some more distant vertex and look if they can possibly generate
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additional α factors in the numerator,

Α

W1 B1

W2

Α

W1 B1

W3

(4.24)

In both cases the numerator will have further α-dependence but in either situation, it

will look like ∆̃w2, ∆̃w3 ∼ α(. . . ) + (. . . ) and the linearity of the pole in α is not changed.

The argument for erasable edges would be similar when the arrow points from black to white

vertex. The only difference is that we have to keep track of the pole α→∞ but we would

again find a linear pole only. Alternatively, we can take the same diagram and consider a

different perfect orientation in which the arrow again points from white to black so that the

pole is localized at zero. As a result, all poles corresponding to erasable edges are linear.

This immediately implies that all higher poles (including some simple poles) correspond to

poles at infinity, when internal on-shell momenta in one or more loops are sent to infinity.

Let us comment on one important property of gravity on-shell diagrams which is a

trivial consequence of the formula (3.24): any internal bubble vanishes.

1 1
ΛI

ΛJ

Λ
�

I

Λ
�

J

(4.25)

Independent of the rest of the diagram, the perfect orientation chosen, and the direc-

tions of arrows, the numerator factors ∆b and ∆̃w vanish for both vertices separately. All

λ̃’s in the black vertex are proportional, so are all λ’s in the white vertex, which implies

that λ1 ∼ λI ∼ λJ and λ̃1 ∼ λ̃I ∼ λ̃J and ∆b = ∆̃w = 0. This fact will have dramatic

consequences on properties of loop amplitudes. We will discuss them in greater detail in

the following section.

5 From on-shell diagrams to scattering amplitudes

In the last sections we initiated a detailed study of gravity on-shell diagrams and gave their

Grassmannian representation. This formula (3.24) exhibits some interesting properties:

(a) higher poles associated with sending internal momenta to infinity and (b) vanishing

whenever three momenta in any vertex become collinear. As we stressed several times, the

on-shell diagrams represent cuts of loop integrands and they contain a considerable amount

of information about the structure of loop amplitudes themselves.
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In planarN = 4 sYM, on-shell diagrams are even more useful. Rather than just provid-

ing reference data for the generalized unitarity method, they are building blocks in the loop

recursion relations. In this formulation, it becomes obvious that amplitudes inherit all the

properties of on-shell diagrams. Beyond planar N = 4 sYM we do not yet know how to ex-

press integrands directly in terms of on-shell diagrams due to several obstructions. However,

if some form of recursion in terms of on-shell diagrams existed in other theories, it is natural

that their amplitudes share the properties of the respective on-shell diagrams. This philos-

ophy underlies most of the current section and there is an immediate question one can ask:

Does the loop amplitude have the same properties as individual on-shell diagrams?

This analysis was done in particular examples for amplitudes in full non-planar N =

4 sYM theory and the answer is positive [1, 56, 70]. Additionally, many of the structures

present in the planar limit seem to survive in non-planar amplitudes despite the absence

of good kinematic variables. We review this progress in the following subsection and then

motivated by this success we will test the properties found for gravity on-shell diagrams

on explicit expressions for gravity amplitudes.

5.1 Non-planar N = 4 sYM amplitudes

In N = 4 sYM theory we are able to take the step to non-planar amplitudes. On one hand,

we have a detailed understanding of the planar sector of the theory and the properties of

the amplitudes: logarithmic singularities, dual conformal symmetry [9–11] and Yangian

covariance [12] as well as the Amplituhedron [42] construction. On the other hand, we

have the non-planar on-shell diagrams which have logarithmic singularities and for MHV

leading singularities we even know that they are expressed in terms of planar ones.

All these ingredients led to the following conjectures [1, 56, 70]:

• The loop amplitudes have only logarithmic singularities, as in the planar limit. For

k > 4 (perhaps even for lower k) we expect the presence of elliptic cuts but at least

for k = 2 the logarithmic singularities must be present directly in momentum space.

• There are no poles at infinity. This was one of the consequence of the dual conformal

symmetry of planar amplitudes, but also motivated by the observation about MHV

leading singularities.

These conjectures were tested in [1, 56, 70] on the four-point amplitudes at two- and

three-loops, and on the five-point amplitude at two-loops. These tests rely on a two-step

process. First one constructs the basis of integrals Ik with the above two properties (also

with unit leading singularities) and second one expands the loop amplitudes in this basis.

The correctness of the result is guaranteed by satisfying all unitarity cuts.

A =
∑
k

ckIk (5.1)

As was argued in [1, 56] this is a strong evidence for a new hidden symmetry (analogue

of dual conformal symmetry) in the full N = 4 sYM theory.
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Finally, the step towards the geometric Amplituhedron-like construction was also made

in [56]. The presence of logarithmic singularities only was one of the ingredients of the

Amplituhedron where the d log forms can be thought of as volumes in the Grassmannian.

Moreover, motivated by the work [46] it was checked that all coefficients ck in (5.1) can be

fixed only from vanishing cuts. This means that the full amplitude is fixed entirely by ho-

mogeneous conditions providing nontrivial evidence for an Amplituhedron-type geometric

formulation.

Motivated by this success we now turn to gravity to see what structures carry over from

on-shell diagrams directly to the amplitude. In particular, we want to test two statements:

• All singularities are logarithmic unless it is a pole at infinity.

• The amplitude vanishes on all collinear cuts.

The first statement is motivated by the singularity structure of gravity on-shell di-

agrams described in section 4.3. There, we saw that certain single poles correspond to

erasable edges, and all higher poles are associated with sending internal momenta to in-

finity. The second statement is the crucial ingredient in the Grassmannian formula (3.24)

and checking it for gravity amplitudes will be a main result of this section.

5.2 Gravity from Yang-Mills

The relation between scattering amplitudes in Yang-Mills theory and gravity has been a

long standing area of research starting by the work of Kawai, Lewellen and Tye (KLT) [73],

to the recent discovery of Bern, Carrasco and Johansson (BCJ) [74, 75]. The BCJ-relations

state that there exists a representation of the Yang-Mills amplitude (with or without su-

persymmetry) in terms of cubic graphs,

AYM =
∑

i∈cubic

nici
si

(5.2)

where ni are kinematic numerators, ci are color factors and si is the denominator of the

cubic graph given by Feynman propagators BCJ [74, 75] states that whenever the color

factors ci satisfy the Jacobi identity ci + cj = ck then the numerators satisfy the same

relation ni + nj = nk. Once we have (5.2) the gravity amplitude can be then obtained by

the simple formula,1

MGR =
∑

i∈cubic

niñi
si

(5.3)

where the set of numerators ñi do not necessarily have to satisfy the Jacobi relation, i.e.

they can belong to a non-BCJ representation of the Yang-Mills amplitude. If we start

with two copies of N = 4 sYM then we obtain an N = 8 SUGRA amplitude. There is a

dictionary for the squaring relations between amplitudes in lower supersymmetric theories

with different matter content (see e.g. [76]) and even for some effective field theories [77].

1There is a natural identification of coupling constants which does not play a role in our discussion and

we suppress them altogether.
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The BCJ-relations are a conjecture which was proven for tree-level amplitudes and tested

up to high loop order for loop amplitudes, there it is a statement about integrands.

In order to prove that the amplitudes in N = 8 SUGRA have only logarithmic singu-

larities (except poles at infinity) we first assume the loop BCJ-relations (5.3) and also the

statement that the N = 4 sYM amplitudes can always be expressed in (5.1) where all basis

integrals Ik have only logarithmic singularities. This is certainly true up to high loop or-

der [1, 56, 70] and it is reasonable to assume it holds to all loops. Then we can use one copy

of the Yang-Mills amplitude written in this manifest d log form, and the other copy written

in the BCJ-form (5.2). The gravity amplitude is then given by (5.3). While the numerator

in the d log form ñi already guarantees that term-by-term all singularities are logarithmic

in the Yang-Mills amplitude, then the expression (5.3) will also have only logarithmic sin-

gularities term-by-term. This is not true for poles at infinity as adding the extra numerator

ni introduces further loop momentum dependence in the numerator, but for finite ` all sin-

gularities stay logarithmic. This argument was already used in [1] but we repeat it here

because it is in perfect agreement with the results we get from the gravity on-shell diagrams.

Let us comment on the poles at infinity explicitly. The on-shell diagrams have higher

poles at infinite momentum and this is what we also expect from the BCJ-form (5.3) as

adding two copies of ni increases the power counting in the numerator. Indeed, looking at

the explicit results we can see that the loop amplitudes in N = 8 SUGRA do have poles

at infinity. The simplest example is the 3-loop four-point amplitude. The cut represented

by the following (non-reduced) on-shell diagram,

1 2

34

a→0−→

1 2

34

∼
∫
dz

z
× F (�Az) , (5.4)

has a pole at z → ∞, corresponding to ` → ∞. The detailed expression for the z-

independent function F (�Az) is not particularly illuminating but can be obtained by either

gluing together tree-amplitudes or by evaluating the known representation of the gravity

amplitude [78] on the cut. Starting with the cut on the left hand side of (5.4), the relevant

loop momentum ` is parameterized by two degrees of freedom, a and z,

`(a, z) = (1− a)λ1λ̃1 + aλ2λ̃2 +
a(1− a)

z
λ2λ̃1 + zλ1λ̃2 .

By localizing a → 0, we go to the maximal cut and select a unique contribution

where no further cancellations are possible. Since we are on the maximal cut, the gravity

numerator in the diagrammatic expansion of the amplitude can be obtained by squaring

the respective N = 4 sYM numerator of any representation and we take [1],

NGR
∣∣∣
cut
∼ stuMtree

4 ·
[
s(`+ p4)2

]2∣∣∣
cut
,
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where stuMtree
4 =

(
[34][41]
〈12〉〈23〉

)2
is the totally crossing symmetric prefactor depending on

external kinematics only. The important observation is that the integrand in (5.4) behaves

like dz
z leading to the pole at infinity in `(z) → ∞. At higher loops we even get multiple

poles at infinity [1]. In general, poles at infinity can indicate potential UV-divergencies

after integration as is the case for the bubble integral. However, a direct association of

poles at infinity with a UV-divergence is not possible. The triangle integral for example

also has a pole at infinity but it is UV-finite. Finding a precise rule between the interplay

of poles at infinity and the UV-behavior of gravity amplitudes is an active area of research

and would have a direct bearing on the UV-finiteness question of N = 8 SUGRA [79].

5.3 Collinear behavior

Based on the numerator factors in the Grassmannian formula for gravity on-shell dia-

grams (3.24) it is natural to conjecture that the residue of loop amplitudes on cuts that

involve a three-point vertex (where the gray blob is any tree or loop amplitude),

factorize in a particular way,

M = 〈`1 `2〉 · R for MHV vertex, i.e. λ̃`1 ∼ λ̃`2 ∼ λ̃`3 , (5.5)

M = [`1 `2] · R for MHV vertex, i.e. λ`1 ∼ λ`2 ∼ λ`3 , (5.6)

where R and R are functions regular in 〈`1`2〉 and [`1`2] respectively. If both `1 and `2
are external particles this reduces to the well known behavior of gravity amplitudes in the

collinear limit [80, 81],

M∼ [12]

〈12〉 · M̃ for 〈12〉 → 0, M∼ 〈12〉
[12]
· M̃ for [12]→ 0 . (5.7)

Let us stress that our claim is more general as one or both of the `k can be loop

momenta and there is no such statement available in the literature. It is fair to say that

this statement does not follow from formula (3.24) for on-shell diagrams but it is rather

motivated by it. The reason is that the lower cuts can not be directly written as the sums

of on-shell diagrams. There are some extra 1/sij factors one has to add when going from

on-shell diagram to generalized cuts, and therefore our statement does not immediately

apply to the other cuts. If we calculate the residue of the amplitude on the cut when the

three point amplitude (say MHV) factorizes then this piece factorizes 〈`1`2〉 but it is not

guaranteed that the rest of the diagram does not give additional 1
〈`1`2〉 and cancel this factor.

This does not happen in the case of on-shell diagrams but it could for generalized cuts.

Our conjecture is that indeed it does not happen and any cut of the amplitude of this type

would be proportional to 〈`1`2〉. We will test this conjecture explicitly on several examples.
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Four point one-loop. The four-point one-loop N = 8 SUGRA amplitude was first given

by Green, Schwarz and Brink [82] as a sum of three box integrals,2

M1
4(1234) = istuMtree

4 (1234)
[
I1

4 (s, t) + I1
4 (t, u) + I1

4 (u, s)
]
, (5.8)

where the corresponding tree amplitudeMtree
4 (1234) carries the helicity information. Mul-

tiplying by stu one finds the totally permutation invariant four-point gravity prefactor, see

e.g. [83],

stuMtree
4 (1234) =

(
[34][41]

〈12〉〈23〉

)2

︸ ︷︷ ︸
≡K8

. (5.9)

The one-loop box integrals I1
4 ( , ) are defined without the usual st-type normalization

which was put into the permutation invariant prefactor K8. All integrals have numerator

N = 1 and therefore do not have unit leading singularity ±1, 0 on all residues,

.

.

`1

2 3

4

I1
4 (s ; t) =

`1

2 3

4

I1
4 (t ;u) =

1

2 3

4

I1
4 (u ; s) =

`

(5.10)

.

As there is no unique origin in loop momentum space, there is a general problem how to

label the loop momentum ` in individual diagrams; we will come back to this point shortly.

In the definition (5.10), we chose an arbitrary origin for the loop momentum routing in

each of the three boxes.

Let us consider a double cut of the amplitude where `2 = (`− p1)2 = 0 which chooses

natural labels on the cut. For complex momenta, there are two solutions to the on-shell

conditions. Here we choose the one with ` = λ1λ̃` for some λ̃`, which corresponds to the

cut diagram. The grey blob corresponds to five point (L − 1) loop amplitude, but in our

case L = 1 and it is just tree,

1

2

3

4

(5.11)

Note that for `2 = 0 the loop momentum ` becomes null and can be written as, ` = λ`λ̃`
so that the other propagator factorizes, (` − p1)2 = 〈`1〉[`1]. The solution we chose sets

〈`1〉 = 0 and the Jacobian of this double cut is,

J =
1

[`1]
. (5.12)

2The gravitational coupling constant (κ/2)n−2 for n-pt tree level amplitudes and (κ/2)n for n-pt one-loop

amplitudes will be suppressed (κ =
√

32πGN ).
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Using the box-expansion of the one-loop amplitude (5.8) we can calculate the residue

on this cut for all three boxes (5.10) individually and get,

[
I1

4 (s, t) + I1
4 (t, u) + I1

4 (u, s)
]∣∣∣∣∣
`=λ1λ̃`

=

=
1

[`1]

[
1

(`−p1−p2)2(`+p4)2
+

1

(`−p1−p3)2(`+p4)2
+

1

(`−p1−p2)2(`+p3)2

] ∣∣∣∣∣
`=λ1λ̃`

=
1

[`1]

[
1

〈12〉([12]− [`2])〈14〉[`4]
+

1

〈13〉([13]− [`3])〈14〉[`4]
+

1

〈12〉([12]− [`2])〈13〉[`3]

]
=

[`1] · [34]〈14〉
[`1] · [`3][`4]([12]− [`2])([13]− [`3])〈12〉〈13〉〈14〉 (5.13)

From the Jacobian (5.12), each term contains a factor 1
[`1] but combining all three boxes

we generate an expression with [`1] in the numerator which cancels J . However, this is not

enough. Our conjecture was that on this cut the amplitude behaves like ∼ [`1]. The com-

putation above seems to immediately contradict the conjecture but due to labeling issues

mentioned earlier, the calculation is incomplete. In labeling the box diagrams in (5.10),

we made a particular choice. We could have labeled the three boxes in a different way,

. `

1

2 3

4

Ĩ1
4 (s ; t) =

1

2 3

4

Ĩ1
4 (t ;u) =

`
`

1

2 3

4

Ĩ1
4 (u ; s) = (5.14)

which gives a different residue on the cut (5.11),

[
Ĩ1

4 (s, t) + Ĩ1
4 (t, u) + Ĩ1

4 (u, s)
]∣∣∣∣∣
`=λ1λ̃`

=

=
1

[`1]

[
1

(`−p1−p4)2(`+p2)2
+

1

(`−p1−p4)2(`+p3)2
+

1

(`−p1−p3)2(`+p2)2

] ∣∣∣∣∣
`=λ1λ̃`

=
[`1] · [23]〈12〉

[`1] · [`2][`3]([13]− [`3])([14]− [`4])〈12〉〈13〉〈14〉 (5.15)

Summing over both expression (5.13) and (5.15) (we should include a factor 1
2 but that

is irrelevant here) and using [23]〈12〉 = [34]〈14〉 we get

M1
4(1234)

∣∣∣∣∣
`=λ1λ̃`

∼ [23]〈12〉[24] · [`1]2

[`1] · [`2][`3][`4]([12]− [`2])([13]− [`3])([14]− [`4])〈12〉〈13〉〈14〉 , (5.16)

so that our conjecture indeed passes this check as the amplitude vanishes for [`1] = 0, i.e.

` ∼ p1. This example clearly demonstrates that the symmetrization over labels is important
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Figure 1. Contributing integrals on the collinear cut.

in getting the correct result. Note that the sum over six terms naturally arises when one

starts directly from the cut-picture (5.11). To get all contributions, one is instructed

to expand the five-point tree in all possible ways and find the contributions of all basis

integrals. This procedure automatically takes into account all labellings of loop-momenta.

Four point two-loop. We will now test the same property for the four-point two-loop

amplitude which is given as a sum of planar- and non-planar double-box integrals including

a numerator factor [84],

.

1

2 3

4

I
(P )
(1234) = s2×

4

3

2 1I
(NP )
(1234) = s2× (5.17)

.

M2
4 =
K8

4

∑
σ∈S4

[
I(P )
σ + I(NP )

σ

]
, (5.18)

where the sum over σ runs over all 24 permutations of S4.

The full calculation can be performed numerically, but here we present a simplified

version in which we calculate the residue on `2 = 〈`1〉 = [`1] = 0 which sets ` = αp1 directly.

When combining all pieces, the numerator again generates [`1]2 so that the residue on the
1

[`1] pole vanishes quadratically. Going directly to the kinematic region where ` = αp1 we

are only able to see a pure vanishing M2
4(1234)

∣∣∣
`=αp1

= 0, but even this weaker statement

requires an intricate cancellation between a large number of different terms.

Starting with the collinear cut `2 = 〈`1〉 = [`1] = 0, there are 24 terms contributing. If

we look at the nonplanar integrals, for collinear kinematics ` = αp1, we can use one factor

of s of the numerator (5.17) to decompose the pentagon as a sum of boxes. This is only
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possible for this special kinematics.

.

4 3

(1−α)1

2

α1
s = 1

α
×

2

α1+4

(1−α)1

3

− 1
α
×

α1+2

4

(1−α)1

3
.

.

− 1
1−α×

α1

4

(1−α)1+2

3

+ 1
1−α×

α1

4

2

(1−α)1+3

(5.19)

If one uses the pentagon decomposition (5.19) on all nonplanar integrals in the first

line of figure 1 and rewrites the 1
α and 1

1−α coefficients of the boxes in terms of propagators

by multiplying and dividing by appropriate Mandelstam variables, one can see that all the

planar double-boxes cancel. Each nonplanar integral in the first line cancels exactly two

planar double boxes, so that the counting works perfectly. The remaining two terms of

the decomposition that come with a plus sign are almost as straight-forward. One has to

collect all these terms and re-express them as non-planar integrals. Combined with the

non-planar integrals of the second line in figure 1, one can show that they always come in

the combination (s+t+u) = 0 so that they also cancel. This concludes our calculation and

indeed we find our conjecture to hold. All signs work out such that the two-loop four-point

amplitude in fact vanishes on the collinear cut ` = αp1.

Internal collinear region. Finally we can show one more example when the collinear

region is between internal loops only corresponding to the cases described in the beginning

of section 5.3. The simplest example where we can study this kinematic region is for

the two-loop four-point amplitude discussed above. Instead of going to the triple cut

`21 = `22 = (`1 + `2)2 = 0 we can cut one more propagator to simplify the analysis by

limiting the number of contributing terms,

12

3

4
(5.20)

Parameterizing the cut solution on `21 = `22 = 0 as

`1 =
[
λ1 + α1λ2

][
α2λ̃2 + α3λ̃1

]
, `2 =

[
λ1 + β1λ2

][
β2λ̃2 + β3λ̃1

]
,

the third propagator `23 ≡ (`1 + `2)2 factorizes and we cut 〈`1`2〉 = 0 by setting β1 = α1.

The remaining part of the facotrized propagator becomes, [`1`2] = [21](α2β3 − α3β2). As
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mentioned before, we simplify our life by further cutting (`1 + p3 + p4)2 = 0 which sets

α3 = 1− α1α2.

Blowing up the blobs in (5.20) into planar and non-planar double-boxes (5.17) of

different labels and combining all (8 + 4) terms, we checked numerically that the two-loop

amplitude behaves as,

M2
4

∣∣∣
〈`1`2〉=0

∼ [`1`2]2

[`1`2]1
· R , (5.21)

where the numerator generates the [`1`2]2-factor consistent with our conjecture.

6 Conclusion

In this paper we studied on-shell diagrams in gravity theories. We wrote a Grassmannian

representation using edge variables and our formulation includes a non-trivial numerator

factor in the measure as well as higher degree poles in the denominator. We showed that

all higher poles correspond to cases where internal momenta in the loop are sent to infinity

while all erasable edges are represented by single poles only. The numerator factor can be

interpreted as a set of collinearity conditions on the on-shell momenta and also implies that

all on-shell diagrams with internal bubbles vanish. There is one interesting aspect related

to vanishing bubbles: in planar N = 4 sYM, the loop integrand is expressed in terms of

on-shell diagrams containing bubbles. In fact, via equivalence moves, one can show that

four bubbles assemble the four degrees of freedom of each off-shell loop momentum [31].

We do not have any recursion relations in the gravity case (or in N = 4 sYM beyond the

planar limit) but if such a formulation exists, it must take this fact into account. In the

planar case we could always use the identity moves to expose the bubbles and remove them

from the diagram at the cost of an additional d log factor. The non-planar identity moves

for N = 8 SUGRA (and also non-planar N = 4 SYM) are different which might lead to a

different role of bubbles in the loop integrand.

In section 4 we provide several examples demonstrating the applicability of the Grass-

mannian formula for gravity on-shell diagrams for both leading singularities as well as

diagrams with unfixed parameters. Because on-shell diagrams have the interpretation as

cuts of gravity loop amplitudes it is natural to conjecture that loop amplitudes share the

same properties. We tested this conjecture on the cases of 1-loop and 2-loop amplitudes in

N = 8 SUGRA and found a perfect agreement. Unlike in the Yang-Mills case these prop-

erties of on-shell diagrams can not be implemented term-by-term and require non-trivial

cancellations between diagrams (even at four-point one-loop).

There was one aspect of gravity on-shell diagrams we did not discuss in more detail:

poles at infinity. While absent in gauge theory they are present in gravity on-shell diagrams

as poles of arbitrary degree. Poles at finite locations in momentum space correspond to

erasing edges in on-shell diagrams but there is no such interpretation for poles at infinity. It

is not clear how to embed them in the Grassmannian and what is the on-shell diagrammatic

interpretation for them. This also prevents us from writing homological identities between

different on-shell diagrams which was an important ingredient in the Yang-Mills case. Fi-
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nally, the poles at infinity are closely related to the UV-behavior of gravity loop amplitudes

and further study of their role in on-shell diagrams could lead to new insights there.

In terms of using on-shell diagrams as building blocks for scattering amplitudes, there

are two obvious paths beyond the well-understood case of planar N = 4 sYM theory: (i)

going to lower supersymmetry or (ii) going non-planar. The recursion relations for planar

non-supersymmetric Yang-Mills theory suffers from divergencies in the forward limit term.

Resolving that problem is an active area of research [85] and it appears to be a question of

properly defining the forward limit term in these theories rather than some fundamental

obstruction. The extension to non-planar theories, even with maximal supersymmetry,

seems more difficult because it is not even clear which object should be recursed in the

first place. Beyond the planar limit we do not have global variables and loop momenta

are normally associated with individual diagrams in the Feynman expansion, or its refined

version using a set of integrals in the unitarity method. Therefore it is not clear how to

associate the “loop-momentum” degrees of freedom with those in on-shell diagrams or how

to cancel spurious poles. Making progress on this problem would certainly open doors to

many new directions of research.

Note. While this work was completed, [86] appeared which has some overlap with our

results.
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