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Abstract: We construct Nernst brane solutions, that is black branes with zero entropy

density in the extremal limit, of FI-gauged minimal five-dimensional supergravity coupled

to an arbitrary number of vector multiplets. While the scalars take specific constant

values and dynamically determine the value of the cosmological constant in terms of the

FI-parameters, the metric takes the form of a boosted AdS Schwarzschild black brane.

This metric can be brought to the Carter-Novotný-Horský form that has previously been

observed to occur in certain limits of boosted D3-branes. By dimensional reduction to

four dimensions we recover the four-dimensional Nernst branes of arXiv:1501.07863 and

show how the five-dimensional lift resolves all their UV singularities. The dynamics of the

compactification circle, which expands both in the UV and in the IR, plays a crucial role.

At asymptotic infinity, the curvature singularity of the four-dimensional metric and the

run-away behaviour of the four-dimensional scalar combine in such a way that the lifted

solution becomes asymptotic to AdS5. Moreover, the existence of a finite chemical potential

in four dimensions is related to fact that the compactification circle has a finite minimal

value. While it is not clear immediately how to embed our solutions into string theory, we

argue that the same type of dictionary as proposed for boosted D3-branes should apply,

although with a lower amount of supersymmetry.
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1 Introduction

The Nernst law or third law of thermodynamics comes in two versions. The weak version,

which states that zero temperature can only be reached asymptotically, is uncontroversial.

In constrast, there is an ongoing discussion about the status of the strong version, originally

formulated by Planck, which states that entropy goes to zero at zero temperature. See for

example [1–4] for contrasting views on this. With regard to gauge/gravity duality, there is

a natural tension between condensed matter systems, where the strong version is believed

to apply generally or at least generically, and BPS and other extremal black hole solutions,

where a regular, and hence normally finite, horizon is associated with a finite, and typically

large entropy. This raises the question whether and how systems obyeing the strong version

of the Nernst law can be modelled by gravitational counterparts.

Extremal black brane solutions obeying the strong version of the Nernst law have been

found in a variety of theories [3, 5–9], including four-dimensional FI-gauged supergrav-

ity [10], where they were dubbed Nernst branes. More recently, a two-parameter family

of Nernst branes parametrized by temperature T and a chemical potential µ was found

in [11]. Asymptotically, these solutions approach hyperscaling violating Lifshitz (‘hvLif’)

geometries both at infinity and at the horizon, and therefore are interesting in the context

of gauge/gravity duality with hyperscaling violation [12, 13], see also [14] and references

therein. Four-dimensional Nernst branes share the typical problems of hvLif geometries,

in that they exhibit curvature singularities [15, 16]. Moreover the scaling properties of

the geometry at infinity suggested an entropy-temperature relation of the form S ∼ T 3,

while the high-temperature asymptotics extracted from the equation of state was found

to be S ∼ T .1 Since in addition the scalars showed runaway behaviour at infinity, and

the relation S ∼ T 3 is valid for AdS5, it was conjectured in [11] that the inconsistent UV

behaviour of four-dimensional Nernst branes signals a dynamical decompactification, and

that the above problem would be cured by lifting the solutions to five dimensions. This fol-

lows the general idea that scale covariant vacua can be obtained by dimensional reduction

of scale invariant vacua [14].

In this paper we will verify this proposal and study the relation between five-

dimensional and four-dimensional Nernst branes in detail. The five-dimensional Nernst

branes will be constructed within FI-gauged minimal five-dimensional supergravity with

1Since the brane world volume is infinite, extensive quantities such as entropy are supposed to be taken

per unit volume.
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an arbitrary number of vector multiplets, by dimensional reduction to an effective three-

dimensional Euclidean theory and using the special geometry of the scalar sector. We

will show that the singular asymptotic behaviour of four-dimensional Nernst branes is a

compactification artefact, and that the ground state geometry is AdS5. A crucial role in

understanding the relation between five- and four-dimensional Nernst branes is played by

the compactification circle, whose size changes dynamically along the direction transverse

to the brane. The behaviour of this circle also solves another puzzle, namely the origin of

the four-dimensional chemical potential. Five-dimensional Nernst branes turn out to be

boosted AdS Schwarzschild branes, depending on two continuous parameters, the temper-

ature T , and the linear momentum Pz. Since momentum turns into electric charge upon

dimensional reduction, one might naively expect that four-dimensional Nernst branes de-

pend on one continuous parameter, temperature T and on one discrete parameter, electric

charge Q0. However, the solutions of [11] depend on an additional continuous parameter,

the chemical potential µ. As it turns out, its origin can be traced to the fact that the com-

pactification circle grows towards infinity and towards the horizon, and has a minimum in

between. This minimum introduces a new scale, and since the minimal value of the radius

can be varied continuously, this provides an additional continuous parameter.

The boosted AdS Schwarzschild metric we obtain by solving the five-dimensional equa-

tions of motion is an Einstein metric and can be brought to Carter-Novotný-Horský form.

Such metrics describe the near horizon regions of dimensionally reduced D-branes and M-

branes with superimposed pp-waves [17]. This does, however, not immediately provide us

with a string theory embedding of our solutions, unless we switch off the vector multiplets.

The solution we find is valid for an arbitrary number of vector multiplets, and depends on

the choice of the prepotential and on the choice of an FI-gauging through parameters cijk
and gi. While the scalars are constant, they still have to extremize the scalar potential,

and therefore these parameters determine the effective cosmological constant, and enter

into the various integration constants of our solution. We will give explicit expressions in

the paper. FI-gauged five-dimensional N = 2 supergravity2 has so far only been obtained

as a consistent truncation of a higher-dimensional supergravity in a very limited number

of cases. The case without vector multiplets, that is pure gauged five-dimensional N = 2

supergravity, can be obtained by reduction of IIB supergravity on Sasaki-Einstein man-

ifolds Y p,q [18]. The STU-model and consistent truncations thereof can be obtained as

consistent reductions of eleven-dimensional supergravity [19, 20]. Other consistent trunca-

tions involve hypermultiplets or massive vector multiplets and consequently have different

types of gauging [21, 22]. The dimensionally reduced boosted D3-branes of [17] which lead

to the same five-dimensional metric should be considered as solutions of five-dimensional

gauged N = 8 supergravity, which can be obtained by reduction of IIB supergravity on

S5. In this case the five-dimensional cosmological constant is simply determined by the

D3-charge, and we cannot account for the parameters cijk, gi of an FI-gauged supergravity

theory with vector multiplets. But while there is no obvious string theory embedding of our

solutions, the five-dimensional metric is still the same as for boosted D3-branes. Therefore

2We count supersymmetry in four-dimensional units.
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it is reasonable to assume that at least the same type of dictionary between geometry and

field theory will apply. We will come back to this in the conclusions. Throughout the paper

we keep a strictly five-dimensional perspective and work with relations between geometric

and thermodynamical quantities without using any higher-dimensional or stringy input.

Our work includes a detailed study of the thermodynamical properties of five-

dimensional Nernst branes. Using the quasilocal energy momentum tensor we construct

expressions for the mass M and momentum Pz. From the near horizon behaviour of the

solution we obtain the entropy S and through the surface gravity of the Killing horizon,

the temperature T . We verify the validity of the first law, as well as the strong version

of the third law. The solution is shown to be thermodynamically stable. We obtain an

equation of state and show that the relation between entropy and temperature interpolates

between S ∼ T 3 at high temperature and S ∼ T 1/3 at low temparture. This asymptotic be-

haviour agrees with the literature on boosted D3-branes [17, 23] and verifies the prediction

of [11]. One subtlety is that the metric admits a reparametrisation, which naively removes

the integration constant corresponding to the temperature (as long as temperature is non-

zero) from the solution.3 However, as the detailed analysis shows, when properly setting

up thermodynamics using the quasi-local stress energy tensor, temperature is defined by

a reparametrisation invariant expression. The additional input that thermodynamics re-

quires is the choice of the norm of the static Killing vector field, which should be considered

as part of the choice of the AdS5 groundstate.

Besides the trivial extremal limit, which is global AdS5, the solution admits a non-

trivial double scaling limit, where temperature goes to zero, and the boost parameter goes

to infinity while the momentum (density) is kept fixed. This limit was studied (in differ-

ent coordinates) in [17], where it was shown to result in a homogenoeus Einstein space of

Kaigorodov type, which is 1/4 BPS. This analysis applies to our solution and implies that

it supports 2 out of a maximum of 8 Killing spinors. In the extremal limit we also recover

the five-dimensional extremal Nernst branes of [24]. There are interesting parallels as well

as differences between boosted AdS Schwarzschild black branes and rotating black holes.

Like for a Kerr black hole, boosted branes have an ‘ergoregion’ that is a region before

the event horizon where observers cannot stay static any more, but have to co-translate

with the brane. Also, the Euclidean continuation of such a brane looks very similar to

that of a Kerr black hole, and allows to derive the temperature by imposing the absence

of a conical deficit. In other aspects the analogy breaks down, however. While supersym-

metric rotating black holes cannot have an ergosphere [25], the ergoregion of an infinitely

boosted black brane remains. We show that this is consistent with supersymmetry, because

the Killing vector obtained as a Killing spinor bilinear is null rather than timelike. Since

we are interested in how the lift to five dimensions affects the curvature singularities of

four-dimensional Nernst branes, we work out explicit expressions for the five- and four-

dimensional curvature in our preferred coordinate systems. Part of these results have been

obtained in the previous literature, and where results can be compared, we find agree-

3A related observation was made in [17], where it was pointed out that one can locally remove the pp

wave from the non-extremal solution by a coordinate transformation.
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ment. Our own contribution is to explicitly demonstrate how singular four-dimensional

asymptotic hvLif metrics, when combined with the four-dimensional scalars encoding the

dynamics of an additional compact direction, lift consistently to a geometry asymptotic to

AdS5. This does not only show that the hvLif singularities are artefacts resulting from,

as one might say, a ‘bad slicing’ of AdS5, but the mechanism is dynamical in the sense

that the run-away of the four-dimensional scalars encodes the decompactification of the

fifth dimension.

This removes all the sp curvature singularities and run-away behaviour of scalars

that four-dimensional Nernst branes exhibit at asymptotic infinity.4 In addition, four-

dimensional Nernst branes also have pp curvature singularities which lead to infinite tidal

forces acting on freely falling observers. These occur at the horizon, and only at zero tem-

perature. They are again accompanied by run-away behaviour of the scalar fields, which

encodes the dynamical decompactification of a fifth dimension. But in contrast to what

happens at asymptotic infinity under decompactification, the pp singularity of the asymp-

totic hvLif space [16] is not removed but lifted to the pp singularity of a five-dimensional

Kaigorodov-type space-time [27]. This shows that pp singularities and infinite tidal forces

are intricately related to the vanishing of the entropy (density), thus bringing us back full

circle to the third law. We will continue this discussion in the final section.

Outline of the paper. In section 2 we review five-dimensional N = 2 FI gauged super-

gravity with vector multiplets and its dimensional reduction to three Euclidean dimensions.

In section 3 we obtain five-dimensional Nernst branes by solving the three-dimensional ef-

fective equations of motion and lifting the solution back to five dimensions. We solve the

full second order equations of motion but observe that imposing regularity conditions re-

duces the number of parameters by one half, so that the solution will satisfy a unique set

of first order equations, despite being non-extremal. By a coordinate transformation the

solution can be brought to the form of a boosted AdS Schwarzschild black brane, and fur-

ther to a metric of Carter-Novotný-Horský type. We work out the thermodynamics in full

detail, investigate the extremal limit, compare geometrical properties to those of rotating

black holes, and analyse the behaviour of curvature. In section 4 we perform a reduction

to four dimensions and show that we recover the four-dimensional Nernst branes of [11].

The relations between the geometrical and thermodynamical properties of five-dimensional

and four-dimensional Nernst branes is worked out in detail. In section 5 we interpret the

results, obtain a consistent picture which ties together five- and four-dimensional Nernst

branes, and discuss its interpretation in the context of the gauge/gravity correspondence.

We also come back to the question of a higher-dimensional string theory embedding, and

use the fact that our solutions have the same metric as reduced boosted D3-branes to set

up a gauge/gravity dictionary. We briefly explain how the method used in this paper to

4Following the terminology of [26] sp singularities correspond to a scalar invariant formed out of the

Riemann tensor becoming infinite, while pp singularities are curvature singularities observed in a parallely

propagated frame. These can occur even if all scalar curvature invariants are finite, and correspond to

infinite tidal forces experienced by freely falling observers. This will be demonstrated in some detail later

in the paper.
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generate solutions can be applied to find more general solutions in the future. Finally we

discuss open questions regarding the fate of pp curvature singularities and of the third law.

Various technical details have been relegated to appendices. Appendix A derives cer-

tain re-writings of the scalar potential, which are used in the main text. Appendix B

contains the details of computing thermodynamic quantities using the quasi-local energy-

momentum tensor. While in section 3 the Hawking temperature is obtained from the

surface gravity of the Killing horizon, appendix C presents an alternative derivation using

the Euclidean approach. This allows to again compare boosted branes to rotating black

holes. Appendices D and E give the details for computing tidal forces in five and in four

dimensions, respectively. These details have been included to give, in combination with

the main text, a full and self-contained account of curvature in five and four dimensions.

In appendix F we spell out the details of a ‘well known’ fact about the normalization of

vector potentials, for completeness, and because we are not aware of an easily digestible

and sufficiently detailed explanation in the literature.

2 N = 2 gauged supergravity in five dimensions

2.1 Lagrangian of five-dimensional N = 2 gauged supergravity with vector

multiplets

We start with the five-dimensional Lagrangian for N = 2 gauged supergravity coupled to n

vector multiplets [28]. Our conventions for the ungauged sector follow those of [29], albeit

with the opposite sign for the Einstein-Hilbert term:

e−1
5 L5 = − 1

2κ2
R(5) −

3

4κ2
aij(h)∂µ̂h

i∂µ̂hj − 1

4
aij(h)F iµ̂ν̂F j|µ̂ν̂

+
κ

6
√

6
e−1

5 cijkε
µ̂ν̂ρ̂σ̂λ̂F iµ̂ν̂F

j
ρ̂σ̂A

k
λ̂

+ V5(h), (2.1)

with κ2 = 8πG5. Here µ̂, ν̂, . . . are five-dimensional Lorentz indices, while i, j, . . . =

1, . . . , n + 1 label the five-dimensional gauge fields. We use a formulation of the theory

where the n-dimensional scalar manifold H is parametrised by n+ 1 scalar fields hi which

are subject to real scale transformations. This formulation is natural in the context of the

superconformal calculus and will turn out to be helpful for finding solutions. The con-

struction of the theory of five-dimensional vector multiplets coupled to supergravity using

the superconformal calculus can be found in [30, 31], while the superconformal method in

general is reviewed in [32]. We will in addition use the formulation of special real geometry

developed in [33–36].

As explained in more detail in [35, 36], the scalars hi are special coordinates on an

open domain U ⊂ Rn+1, which is invariant under the action of the group R>0 by scale

transformations. The manifold U is the scalar manifold of an auxiliary theory of n + 1

superconformal vector multiplets, from which a theory of n vector multiplets coupled to

Poincaré supergravity is obtained by gauge fixing. U is a so-called conic affine special real

(CASR) manifold. This means that it carries a Hessian metric which transforms with weight

3 under the R>0-action. When choosing special coordinates, which are affine coordinates

– 5 –
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with respect to the Hessian structure and transform with weight 1 under scale transfor-

mations, the Hesse potential is a homogeneous cubic polynomial, H(h) = cijkh
ihjhk. In

this way one recovers the original definition of [28]. The physical scalar manifold of the

supergravity theory can be identified with the hypersurface H ⊂ U defined by

H(h) = cijkh
ihjhk = 1 . (2.2)

Note that the R>0-action is transverse to this hypersurface, so that we can identify H '
U/R>0. This is a real version of the superconformal quotients for four-dimensional vector

multiplets and for hypermultiplets.

The manifold H will be referred to as a projective special real (PSR) manifold. In

the Lagrangian (2.1) we use the special coordinates hi, but it is understood that the

constraint (2.2) has been imposed. Within the superconformal calculus this constraint is

the ‘D-gauge’ which gauge fixes the local dilatations of the auxiliary superconformal theory

in order to obtain the associated Poincaré supergravity theory in its conventional form.

In (2.1) this is reflected by the Einstein-Hilbert term having its dimension-full prefactor

∼ κ−2, rather than being multiplied by a conformal compensator to make it scale invariant.

In (2.1) we have chosen to express both the scalar and the vector couplings using the

symmetric, positive definite tensor field

aij(h) =
∂2H̃

∂hi∂hj
= −2

(
(ch)ij
chhh

− 3

2

(chh)i(chh)j
(chhh)2

)
, H̃ = −1

3
logH . (2.3)

Here we use a notation which suppresses indices which are summed over: chhh :=

cijkh
ihjhk, (chh)i := cijkh

jhk, etc. The tensor ∂2H̃ = aijdh
idhj is a positive definite

Hessian metric with Hesse potential H̃ on U . While it is different from the conical Hessian

metric gU = ∂2H, which has Lorentz signature, with the negative eigendirection along the

orbits of the R>0-action, the pullbacks of both metrics to the hypersurface H agree, so that

one can use either to obtain the positive definite metric gH which encodes the self-couplings

of the n physical scalars. The couplings of the n+ 1 physical vector fields are given by the

restriction of the positive definite metric aij to H.

The scalar potential V5(h) in (2.1) results from an FI-gauging parametrized by n + 1

gauging parameters gi. Using the expressions of [37] and [38] we find

V5(h) = 2 · 6−1/3
[
(chhh)(ch)−1|ij + 3hihj

]
gigj . (2.4)

We have fixed a convenient normalisation of the gauging parameters gi by comparing the

dimensional reduction of (2.1) to the four-dimensional scalar potential of [11], evaluated

for a “very special prepotential”

F (X) = −1

6

cijkX
iXjXk

X0
,

that is a prepotential which can arise by reduction from five to four dimensions.5

5Specifically, comparing to eq. (30) of [38] we have MI = 61/3hi, AI = 2 · 6−1/6Ai, and gPI = 1√
2
gi.
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We remark that while on the physical scalar manifold we have to impose the constraint

chhh = 1, we have kept factors of chhh explicit in (2.3) and (2.4). This is useful in keeping

track of the scaling weights of fields, and thus checking that expressions are consistent with

the scaling properties of the corresponding gauge-equivalent superconformal theory. We

have chosen our conventions such that the scaling weights of the fields used in (2.1) match

with [30, 31]. In particular, we take

w(hi) = −1

2
, w(cijk) =

3

2
, w(gµ̂ν̂) = 2, w(Aµ̂) = 0, w(κ−2) = 3, w(gi) = 3 .

As a quick check, note that the Lagrangian (2.1) has scaling weight 5, so that the resulting

action has scaling weight 0. Further, provided that we include the appropriate factors of

chhh, the functions aij and V are homogeneous in hi, even in presence of the dimension-

full factors κ and gi, which appear after imposing D-gauge.6 Note that throughout the

remainder of this paper, we shall set κ2 = 8πG5 = 1.

2.2 Reduction to three dimensions

We now want to reduce the five-dimensional theory to three (Euclidean) dimensions. We

make the metric ansatz

ds2
(5) = 6−2/3σ2

(
dx0 +A0

4dx
4
)2 − 61/3

(
φ

σ

)(
dx4
)2

+
61/3

σφ
ds2

(3), (2.5)

where all fields depend only on the coordinates of the three-dimensional space. In addition

we choose to switch off all of the five-dimensional gauge fields Ai = 0, i.e. we look only

for uncharged five-dimensional solutions.7 The presence of the Kaluza-Klein one-form

A0 = A0
4dx

4 ≡ −
√

2ζ0dx4 indicates that we are looking for non-static five-dimensional

solutions. Upon compactification of the x0 circle this will give rise to a non-trivial electric

charge for the corresponding four-dimensional solution. Note that whilst the Killing vector

∂/∂x0 is always space-like in five dimensions, ∂/∂x4 can be either time-like, space-like,

or null, depending on the magnitude of A0
4. However, after performing the dimensional

reduction over x0, the x4 direction will always be time-like in four dimensions, and so we

are able to use the same dimensional reduction technique as in [39], i.e. we reduce over

both a space-like and time-like direction.

The resulting three-dimensional action is given by

e−1
3 L3 = −1

2
R(3) −

3

4
aij(h)∂µh

i∂µhj − 1

4φ2
(∂φ)2 − 3

4σ2
(∂σ)2 +

σ3

12φ
(∂ζ0)2 + V3(h), (2.6)

where the three-dimensional scalar potential is given by

V3(h) =
61/3

σφ
V5(h) =

2

σφ

[
(chhh)(ch)−1|ij + 3hihj

]
gigj . (2.7)

6See [30, 31] and [32] for more details about the superconformal gauge fixing.
7We remark that four-dimensional solutions which will lift to charged five-dimensional solutions have

been found in [11]. The detailed analysis of these solutions is left to future work.
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In order to solve the equations of motion resulting from (2.6) it turns out to be convenient

to introduce the variables u, v and yi via

σ = u−
1
2 v−

1
2 , φ = u

1
2 v−

3
2 , yi = vhi, ĝij(y) = − 3

4v2
aij(h), (2.8)

so that the three-dimensional Lagrangian (2.6) becomes

e−1
3 L3 = −1

2
R(3) + ĝij(y)∂µy

i∂µyj − 1

4u2
(∂u)2 +

1

12u2
(∂ζ0)2 + V3(y). (2.9)

The scalar potential is given in terms of the new fields by

V3(y) = 2
[
(cyyy)(cy)−1|ij + 3yiyj

]
gigj

= 3
[
ĝij(y) + 4yiyj

]
gigj . (2.10)

The explicit steps used in getting to the second line are carried out in appendix A.

We note that the Lagrangian (2.9) has no explicit dependence on the field v appearing

in the metric ansatz. This reflects the fact that when taking the rescaled scalar fields

yi as independent variables, the field v becomes dependent, and can be recovered from

the equation

v3 = cyyy,

which follows from the hypersurface constraint chhh = 1. In terms of the new fields u and

v, the five-dimensional metric ansatz (2.5) becomes

ds2
(5) =

6−2/3

uv

(
dx0 −

√
2 ζ0dx4

)2
− 61/3u

v
(dx4)2 + 61/3v2ds2

(3). (2.11)

The independent three-dimensional variables are: the metric ds2
(3), the scalars yi which

encode the n independent five-dimensional scalars together with the Kaluza-Klein scalar

v, the second Kaluza-Klein scalar u, and the scalar ζ0 which is dual to the Kaluza-Klein

vector from the reduction over x4. The metric on the scalar submanifold parametrized by

the yi,

ĝij(y) =
3

2

(
(cy)ij
cyyy

− 3

2

(cyy)i(cyy)j
(cyyy)2

)
, (2.12)

is, up to a constant factor, isometric to the positive definite Hessian metric (2.3) on

the manifold U ' H × R>0 ' H × R. As shown in [35] this metric is isometric to

the product metric gH + dr2 on H × R. From (2.9) it is manifest that the scalar man-

ifold Q of the three-dimensional Lagrangian carries a product metric, with the first factor

parametrized by yi and the second factor parametrized by u and ζ0. By inspection,8 the

second factor is locally isometric to the metric of the pseudo-Riemannian symmetric space

SU(1, 1)/SO(1, 1) ' AdS2, which can be thought of as the ‘indefinite signature version’

of the upper half plane (equivalently, of the unit disk) SL(2,R)/SO(2) ' SU(1, 1)/U(1).

To be precise u and ζ0 parametrise an open subset which can identified with the Iwasawa

8For a systematic analysis of the scalar manifolds occuring in reduction to three space-like dimensions,

we refer the reader to [40, 41].
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subgroup of SU(1, 1), or, in physical terms, with the static patch of AdS2. The combined

scalar manifold parametrized by yi, u, ζ0,

Q = H× R× SU(1, 1)

SO(1, 1)
, (2.13)

has dimension n+ 1 + 2 = n+ 3.

If we perform the reduction of five-dimensional supergravity with n vector multiplets

to three Euclidean dimensions without any truncation, then the resulting scalar manifold

is a para-quaternionic Kähler manifold N̄PQK of dimension 2(2n+ 2) + 4 = 4n+ 8 [40, 41].

The submanifold Q is obtained by a consistent truncation and therefore it is a totally

geodesic submanifold of N̄PQK . We remark that Q is a (totally geodesic) submanifold of

the (2n+ 4)-dimensional totally geodesic para-Kähler manifold SPK described in [39, 42],

Q = H× R× SU(1, 1)

SO(1, 1)
⊂ SPK ⊂ N̄PQK .

It was shown there how to obtain explicit stationary non-extremal solutions of four- and

five-dimensional ungauged supergravity by dimensional reduction over time. As we will see

in the following, it is still possible to obtain explicit solutions in the gauged case, where

the field equations of the three-dimensional scalars are modified by a scalar potential.

While we will retrict ourselves to the submanifold Q in this paper, the higher dimensional

para-Kähler submanifold SPK will be relevant when the present work is extended to more

general, charged solutions, including the solutions found in [11].

3 Five-dimensional Nernst branes

3.1 Solving the equations of motion

We now turn to the three-dimensional equations of motion coming from (2.9). The equa-

tions of motion for yi, u and ζ0 read:

∇2yi + Γ̂ijk(y)∂µy
j∂µyk + 3Γ̂ijk(y)ĝjm(y)ĝkn(y)gmgn − 12(yjgj)ĝ

ik(y)gk = 0, (3.1)

∇2u− 1

u
(∂u)2 − 1

3u
(∂ζ0)2 = 0, (3.2)

∇2ζ0 − 2

u
∂µu ∂

µζ0 = 0, (3.3)

where we have introduced the Christoffel symbols for the metric ĝij(y):

Γ̂ijk(y) =
1

2
ĝil(y)∂lĝjk(y).

Meanwhile, the Einstein equations read

− 1

2
R(3)|µν + ĝij(y)∂µy

i∂νy
j − 1

4u2
∂µu ∂νu

+
1

12u2
∂µζ

0∂νζ
0 + 3gµν

[
ĝij(y) + 4yiyj

]
gigj = 0. (3.4)
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We now proceed to solving the equations of motion (3.1)–(3.4), and make the following

brane-type ansatz for our three-dimensional line element:

ds2
(3) = e4ψdτ2 + e2ψ(dx2 + dy2), (3.5)

where ψ = ψ(τ) is some function to be determined, and τ is a radial coordinate which

parametrizes the direction orthogonal to the world-volume of the brane. This is the same

brane-like ansatz for the three-dimensional line element as in [11]. Moreover we will impose

that all of the fields yi, ζ0 and u depend only on τ . This coordinate has been chosen such

that it is an affine curve parameter for the curve C : τ 7→ (yi(τ), u(τ), ζ0(τ)) on the scalar

manifold Q.

The Ricci tensor has components

Rττ = 2ψ̈ − 2ψ̇2, Rxx = Ryy = e−2ψψ̈,

from which we find that the Einstein equations (3.4) become

V3(y) =
1

2
e−4ψψ̈, (3.6)

for µ = ν 6= τ , and

− 1

2
ψ̈ + ψ̇2 = −ĝij(y)ẏiẏj +

u̇2

4u2
− (ζ̇0)2

12u2
, (3.7)

for µ = ν = τ , where we have used (3.6). We will now consider the equations of motion

for each of ζ0, u and yi in turn.

ζ0 equation of motion. The equation of motion (3.3) for ζ0 can be brought to the form

d

dτ

(
1

u2
ζ̇0

)
= 0,

which is solved by

ζ̇0 =
√

3Du2, (3.8)

for some integration constant D, where we have chosen the factor for later convenience.

Once we solve the equation of motion for u we will further integrate (3.8) to obtain an ex-

pression for the Kaluza-Klein vector A0 = −
√

2ζ0 appearing in the five-dimensional metric.

u equation of motion. Substituting (3.8) in to the equation of motion (3.2) for u we find

ü− 1

u
u̇2 −D2u3 = 0. (3.9)

Introducing the variable χ = u−1, this becomes

χ̈− χ̇2 −D2

χ
= 0 . (3.10)

By differentiation we obtain the necessary condition χ̇χ̈ = χ
...
χ , which can be integrated to

χ̈ = B2
0χ, where B0 is a real constant.9 Parametrizing the general solution as

χ(τ) = A cosh(B0τ) +
B

B0
sinh(B0τ), (3.11)

9Negative B2
0 would yield a solution periodic in τ , which we discard.
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with arbitrary constants A,B, and substituting back into the original equation (3.10) we

find the constraint

D2 = B2 −B2
0A

2 ,

which imposes one relation between the four constants D,A,B,B0. It will turn out to be

useful in what follows to consider A, B0 and ∆ := B−B0A to be the independent quantities,

and to write everything in terms of these. In particular, we then have D2 = ∆(∆ + 2B0A).

We are also now in a position to further integrate (3.8), which we write as

ζ̇0 = ±
√

3∆(∆ + 2B0A)

χ2
. (3.12)

For simplicity we will chose the negative sign in (3.12), and will not carry through the

corresponding positive solution. Since ζ0 is dual to a Kaluza-Klein vector, this means that

we have fixed the sign of the ‘charge’ that the solution carries.10 Substituting in (3.11) and

integrating, we find

ζ0(τ) =

√
3B0 u(τ)√

∆(∆ + 2B0A)

[
A sinh(B0τ) +

B

B0
cosh(B0τ)

]
− ζ0
∞, (3.13)

for some integration constant ζ0
∞, which can be fixed by imposing a suitable physicality

condition on the solution.

At this point we anticipate that a horizon, if it exists, will be located at τ → ∞.

Moreover, as we will show in section 4, upon dimensional reduction we obtain a four-

dimensional stationary (in fact static) solution with a Killing horizon. Such horizons admit,

for finite temperature, an analytic continuation to a bifurcate horizon [43]. In order that

the four-dimensional one-form A0(τ) is well defined, it must vanish at the horizon [2, 44],

see also appendix F.

This fixes

ζ0
∞ =

√
3B0√

∆(∆ + 2B0A)
,

and therefore the Kaluza-Klein one-form is given by

A0(τ) = −
√

6∆

∆ + 2B0A
u(τ)e−B0τdx4. (3.14)

yi equation of motion. The equation of motion (3.1) for the yi becomes

e−4ψÿi + e−4ψΓ̂ijk(y)ẏj ẏk + 3Γ̂ijk(y)ĝjm(y)ĝkn(y) gmgn − 12 ĝij(y) gj(y
kgk) = 0. (3.15)

To proceed, we first contract (3.15) with the dual scalar fields yi := −ĝij(y)yj and make

use of the identity

Γ̂ijk(y)yi =
1

2
yiĝ

il(y)∂lĝjk(y) = −1

2
yl∂lĝjk(y) = ĝjk(y),

10As we will see in the following, the solution carries electric charge from the four-dimensional point of

view and linear momentum from the five-dimensional point of view.
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which follows from the fact that ĝij(y) is homogeneous of degree −2 in the yi. We thus find

e−4ψÿiyi + e−4ψ ĝij(y)ẏiẏj + V3(y) = 0,

which upon using (3.6) becomes

ÿiyi + ĝij(y)ẏiẏj = −1

2
ψ̈. (3.16)

Given that ĝij(y)ẏj = ẏi, we can integrate (3.16) to find

ẏiyi = −1

2
ψ̇ +

1

4
a0, (3.17)

for some integration constant a0, where the factor has been chosen for later

convenience. Writing

ẏiyi =
3

4

(cyy)iẏ
i

cyyy
=

1

4

d

dτ
(log cyyy) ,

we can integrate (3.17) further to obtain

log cyyy = −2ψ + a0τ + b0, (3.18)

for an integration constant b0. Again the prefactor has been chosen for later convenience.

We now return to the Hamiltonian constraint (3.7). Using (3.11) and (3.8) this becomes:

− 1

2
ψ̈ + ψ̇2 =

1

4
B2

0 − ĝij(y)ẏiẏj . (3.19)

We then have the following picture. The solutions yi(τ) to (3.15) should satisfy the

constraints (3.19) and constraint (3.17). One way to proceed, which is valid for generic

five-dimensional models, is to set all of the yi proportional to one another, i.e. we put

yi = ξiy for some constants ξi, which satisfy

ĝij(ξ)ξ
iξj = −3

4
.

Note that since the (constrained) scalar fields hi can be recovered from the yi via hi =

(cyyy)−1/3yi, we see that this ansatz will result in constant five-dimensional scalar fields.

Using (3.17) we obtain:

3

4

(
ẏ

y

)2

= −1

2
ψ̈ + ψ̇2 − 1

4
B2

0 , (3.20)

3

4

(
ẏ

y

)
= −1

2
ψ̇ +

1

4
a0. (3.21)

Eliminating the quantity (ẏ/y) from (3.20)–(3.21) we obtain an equation for the func-

tion ψ(τ):

ψ̈ − 4

3
ψ̇2 − 2

3
a0ψ̇ +

1

2
B2

0 +
1

6
a2

0 = 0.
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This is precisely the same equation as was found in [11], and so can be solved in the same

way by

e−4ψ = α3ea0τ

(
sinh(ωτ + ωβ)

ω

)3

, (3.22)

for some integration constants α and β, where the quantity ω is given by

ω2 :=
2

3
B2

0 +
1

3
a2

0. (3.23)

From this, we can integrate (3.21) to find

y(τ) = Λe
1
2
a0τ

(
sinh(ωτ + ωβ)

ω

) 1
2

,

for some constant Λ, and hence the yi are given by

yi(τ) = λie
1
2
a0τ

(
sinh(ωτ + ωβ)

ω

) 1
2

, (3.24)

where we have defined λi ≡ ξi/Λ. We finally need to ensure that the solution (3.24) satisfies

the original equations of motion (3.15). This fixes λi in terms of the gauging parameters

gi and other integration constants as

λi = ±3α3/2

8gi
. (3.25)

Therefore the function v appearing in the line element (2.11) is given by

v(τ) = (cλλλ)1/3e
1
2
a0τ

(
sinh(ωτ + ωβ)

ω

) 1
2

. (3.26)

The signs in (3.25) should be chosen such that the function v(τ) is real and positive for

all τ > 0.

At this stage we have six independent integration constants α, β, a0, A,B0,∆ which

are a priori yet to be determined. However, following [11] we choose to set β = 0 in what

follows so that the asymptotic region is at τ = 0 and the near horizon region at τ → ∞.

We can then scale τ to set α = 1.

In order for our solution to make sense as a black brane in five dimensions, we need

to impose some physicality constraints. In particular, we require that the five-dimensional

solution generically has a finite entropy density.11 Combining the five-dimensional and

three-dimensional metric ansätze (2.11) and (3.5) we see that finite entropy density corre-

sponds to a finite value of v3/2u−1/2e2ψ as τ → ∞ (i.e. at the horizon). To leading order

we find

v3/2u−1/2e2ψ
∣∣∣
τ→∞

∼ exp

(
1

4
a0τ −

3

4
ωτ +

1

2
B0τ

)
.

11Since the range of the coordinates (x, y, x0) is infinite, the entropy itself will diverge. By ‘generic’ we

mean that we allow that the solution has a limit, which hopefully will coincide with the zero temperature

limit, where the entropy density becomes zero.
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In order that this be finite and non-zero we therefore require 3ω = a0 + 2B0 which,

given (3.23), is equivalent to a0 = B0, further resulting in ω = B0. Hence, the physi-

cality constraint further reduces the number of independent integration constants by one.

Before moving on to study properties of the solution, we summarise the story so far.

The functions appearing in the five-dimensional line element (2.11) are given by

v(τ) = (cλλλ)1/3e
1
2
B0τ

(
sinh(B0τ)

B0

) 1
2

, (3.27)

u(τ) = χ(τ)−1, χ(τ) = A cosh(B0τ) +
B

B0
sinh(B0τ), (3.28)

e−4ψ = eB0τ

(
sinh(B0τ)

B0

)3

, (3.29)

A0(τ) = −
√

6∆

∆ + 2B0A
u(τ)e−B0τdx4, (3.30)

whilst the scalar fields hi parametrising the CASR manifold are constant and given by

hi =
1

v
yi = (cλλλ)−1/3λi =

1

gi

(
clmng

−1
l g−1

m g−1
n

)−1/3
. (3.31)

We have therefore found a family of solutions to the equations of motion (3.1)–(3.4)

depending on three non-negative parameters B0,∆, A. Since the field equations for the

three-dimensional scalars yi(τ), v(τ), u(τ) are of second order, and our ansatz amounts to

three independent scalar fields (since the yi have been taken to be proportional), we should

a priori have expected six independent integration constants. However, as we have seen,

physical regularity conditions imposed on the lifted, higher-dimensional solution reduces

the number of integration constants by one half. This is consistent with physical solutions

being uniquely characterised by a system of first order flow equations, despite that the

equations of motion are of second order, as has been observed for other types of solutions

before [36, 39, 42, 45].

We further remark that since the physical five-dimensional scalar fields have turned

out to be constant, their only contribution is to generate an effective cosmological con-

stant, whose value is determined by the value of the scalar potential at the corresponding

stationary point. Since no five-dimensional gauge fields have been turned on, our solution,

which is valid for any five-dimensional vector multiplet theory, can therefore be obtained

from an effective action, which only contains the Einstein-Hilbert term together with a

cosmological constant, while the gauge fields and scalar fields have been integrated out.

A coordinate change. We introduce a new ‘radial’ (more accurately: transversal) co-

ordinate ρ via

e−2B0τ = 1− 2B0

ρ
≡W (ρ), (3.32)

so that the near horizon region is at ρ = 2B0, and the asymptotic region is at ρ → ∞.

Hence we can use ρ to analytically continue the solution to the region 0 ≤ ρ ≤ 2B0 beyond

the horizon. In terms of ρ we find

u(ρ) = f(ρ)−1W (ρ)1/2, f(ρ) = A+
∆

ρ
, (3.33)
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where we have defined ∆ := B −B0A. Moreover, we have

v(ρ) = (cλλλ)1/3(ρW )−1/2, e4ψ = ρ3W 2, (3.34)

and

A0(ρ) = −
√

6∆

∆ + 2B0A

W (ρ)

f(ρ)
dx4. (3.35)

Introducing the notation

λ̃ :=

(
1

6
cλλλ

)1/3

,

the five-dimensional line element (2.11) becomes

ds2
(5) =

ρ1/2

6λ̃
f(ρ)

(
dx0 −

√
6∆

∆ + 2B0A

W (ρ)

f(ρ)
dx4

)2

− ρ1/2W (ρ)

λ̃f(ρ)
(dx4)2

+
6λ̃2dρ2

ρ2W (ρ)
+ 6λ̃2ρ1/2(dx2 + dy2). (3.36)

3.2 Properties of the solution

Let us now turn to an investigation of the properties of the solutions constructed in sec-

tion 3.1, which we recall depend on three independent parameters: A, B0 and ∆. It is

instructive to look at the cases A > 0 and A = 0 separately. Moreover, we focus first on

the situation B0 > 0, and will comment on the B0 = 0 case later.

Solutions with B0 > 0 and A > 0. In this situation it is convenient to introduce the

notation:

∆̃ :=
∆

2B0A
. (3.37)

After a suitable scaling of the boundary coordinates, and introducing the new radial coor-

dinate r := ρ1/4, we can bring the five-dimensional line element (3.36) to the form

ds2
(5) =

r2

l2
f(r)

dx0 −

√
∆̃

1 + ∆̃

W (r)

f(r)
dx4

2

− r2W (r)

l2f(r)
(dx4)2

+
l2dr2

W (r)r2
+
r2

l2
(dx2 + dy2). (3.38)

Here l is defined by

l2 := 96λ̃2,

and, as we will see below, is the radius of an asymptotic AdS5 space, whilst

W (r) = 1−
r4

+

r4
, f(r) = A+

∆

r4
, r4

+ := 2B0.

In order to interpret our solution, as well as to read off the various thermodynamic

quantities associated with it, it is useful to introduce coordinates in terms of which the line
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element (3.38) becomes manifestly asymptotically AdS5. We observe that the solution is

invariant under the combined rescalings

A→ λA , ∆→ λ∆ , x0 → x0

√
λ
, x4 →

√
λx4 where λ > 0 (3.39)

of parameters, with B0 invariant. Note that ∆̃ is invariant, so that for A > 0 we ob-

tain a two-parameter family of solutions parametrized by B0 and ∆̃. The coordinate

transformation

t =
1√
A
x4, z =

√
Ax0 −

√
∆̃

A(1 + ∆̃)
x4, (3.40)

absorbs A and brings the metric (3.38) to the form of a boosted AdS Schwarzschild black

brane:

ds2
(5) =

l2dr2

r2W
+
r2

l2

[
−W (ut dt+ uz dz)2 + (uz dt+ ut dz)2 + dx2 + dy2

]
. (3.41)

The constants

ut =
√

1 + ∆̃, uz =
√

∆̃, (3.42)

satisfy u2
t − u2

z = 1 and parametrise a boost along the z-direction. By taking r → ∞ one

sees that (3.41) indeed asymptotes to AdS5 with radius l. The constant ∆̃ parametrizes

the boost of the brane, while B0, as we will show below, is a non-extremality parameter

and therefore related to temperature.

This metric can be rewritten by making the following co-ordinate transformation:

r = el
−1ρ, x = ly1, y = ly2

t =
l

r2
+

(ut − uz)X − lr2
+uzT, z =

l

r2
+

(ut − uz)X + lr2
+utT , (3.43)

to obtain

ds2
(5) = e−2l−1ρdX2 + e2`−1ρ

(
2dXdT + r4

+dT
2 + (dy1)2 + (dy2)2

)
+(1− r4

+e
−4l−1ρ)−1dρ2 . (3.44)

This metric is the 5-dimensional generalized Carter-Novotný-Horský metric constructed

in [17].

We further remark that the line element (3.41) can be further simplified by setting

R = r+r, T̃ = t/r+, X = x/r+, Y = y/r+, Z = z/r+. This rescaling corresponds to

formally setting r+ = 1 in the function W in (3.41), thus fixing the coordinate of the

horizon to r = 1. However, this reparametrization obscures the fact that r+ in (3.41)

encodes the temperature, which, as we will show later, is defined in a reparametrization

invariant way.
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Solutions with B0 > 0 and A = 0. Let us now look at the case where we take A = 0,

so that f(ρ) = ∆/ρ in (3.36). In this case, after suitably rescaling the boundary coordinates

and introducing the radial coordinate r as before, we find that the five-dimensional line

element (3.36) becomes

ds2
(5) =

∆

l2r2

(
dx0 − r4W (r)

∆
dx4

)2

− r6W (r)

∆l2
(dx4)2 +

l2dr2

r2W (r)
+
r2

l2
(dx2 + dy2). (3.45)

Making the coordinate redefinition

x4 =
1

2
(t− z), x0 +

r4
+

2∆
x4 = t+ z,

we can bring the metric (3.45) to the form (3.41) of a boosted AdS Schwarzschild black

brane. The boost parameters are given by

ut = cosh β̂, uz = sinh β̂, (3.46)

where the quantity β̂ is defined via

e2β̂ =
4∆

r4
+

.

As in the case A > 0 we obtain a two-parameter family of black brane solutions. For A = 0

the parameters can be taken to be B0 (equivalently r+) and ∆. We remark that while both

the cases A > 0 and A = 0 can be mapped to two-parameter families of black branes, both

families cannot be related smoothly by taking A→ 0.

Solutions with B0 = 0. If we take B0 → 0 in (3.36) then the region 0 ≤ r ≤ (2B0)1/4

contracts to r = 0, which suggests that this limit is the extremal limit. We will show later

that B0 = 0 does indeed correspond to vanishing surface gravity, and, hence vanishing

Hawking temperature, and, moreover, that the solution is a BPS solution.

For any value (zero or non-zero) of A we can then bring the metric to the form

ds2
(5)|Ext =

l2dr2

r2
+
r2

l2

[
−dt2 + dx2 + dy2 + dz2 +

∆

r4
(dt+ dz)2

]
. (3.47)

This solution agrees with the five-dimensional extremal Nernst branes found in [24].12 We

can equivalently obtain this form of the metric from the boosted black brane (3.41) by

taking the limits

r+ → 0, ut →∞, u2
t r

4
+ → ∆ = const. (3.48)

In the extremal limit ∆ can be interpreted as a boost parameter. The vacuum AdS5

solution is obtained by taking the zero boost limit ∆ → 0. Thus in the extremal limit ∆

determines the mass, or more precisely the mass per worldvolume or tension of the brane.

The precise expressions for the mass and thermodynamic quantities will be calculated in

section 3.4.

12However, the ‘heated up’ branes of [46] appear to be different from our non-extremal solutions.
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The metric (3.47) displays an interesting scaling behaviour in the limit r → 0. To

display it, we introduce coordinates x−, x+ by13

t = x+ , z = x− − x+ .

Then the metric becomes

ds2
(5)|Ext =

l2dr2

r2
+
r2

l2

[(
1 +

∆

r4

)
(dx−)2 − 2dx−dx+ + dx2 + dy2

]
.

Dropping terms which are subleading in the ‘near horizon limit’ r → 0 we obtain

ds2
(5)|Ext,NH =

l2dr2

r2
+
r2

l2

[
∆

r4
(dx−)2 − 2dx−dx+ + dx2 + dy2

]
. (3.49)

This metric is invariant under the scale transformations:

x 7→ λx , y 7→ λy , r 7→ λ−1r , x− 7→ λ−1x− , x+ 7→ λ3x+ .

Thus the asymptotic metric shows a scaling invariance similar to a Lifshitz metric with

scaling exponent z = 3 (and no hyperscaling violation, θ = 0).14 The only difference is that

the coordinate x− has scaling weight −1 rather than +1. This type of generalized scaling

behaviour was observed in [23, 47, 48], where the metric (3.49) was obtained by taking a

particular limit of boosted D3-branes. We will come back to this in section 5, where we

discuss the dual field theory interpretation of our solutions.

The boosted black brane. The boosted black brane has similarities with Kerr-like

black holes, with the linear momentum related to the boost playing a role analogous to

the angular momentum. It is instructive to work this out in some detail, following the

discussion of the Kerr solution in [49].

Let us first look for the existence of static observers, who remain at constant (r, x, y, z)

and as such have velocities parallel to the Killing vector field ∂t. Therefore static observers

exist in regions where ∂t is timelike, and the limit of staticity is at the value of r where

gtt = 0⇔ −W (r)u2
t + u2

z = 0

⇔ r4 = u2
t r

4
+ ≥ r4

+ .

This “ergosurface” is always located outside the event horizon, with the trivial exception

of globally static (unboosted) spacetimes for which ut = 1 and the two surfaces overlap

completely. This is different to the rotating case where ergosurface and event horizon

always coincide at the north and south pole.

Beyond the limit of staticity there still exist stationary observers which are co-moving

(more precisely, but less elegantly ‘co-translating’) with the brane. Observers which have

13For A = 1 these coordinates agree with x0 and x4 in the extremal limit. Moreover, the near-horizon

limit preserves the symmetry that allows to set A = 1.
14Lifshitz metrics will be reviewed in section 4.1.
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fixed (r, x, y) and a constant velocity in the z-direction have world lines tangent to Killing

vector fields

ξ(v) = ∂t + v ∂z ,

where the quantity v = const. will be referred to as the velocity. Such co-moving observers

exist in regions where ξ(v) is time-like. Killing vector fields of the form ξ(v) become null for

values of r where

gtt + 2vgtz + v2gzz = 0⇒ v± = − gtz
gzz
±

√(
gtz
gzz

)2

− gtt
gzz

.

Thus there is a finite range of velocities v, given by v− ≤ v ≤ v+, which co-moving observers

can attain. Note that at the limit of staticity, where gtt = 0, we find that v+ = 0. Therefore

v must be negative once the limit of staticity has been passed. The limit for co-moving

observers is reached when v− = v+ =: w, which happens at the point where

gttgzz − g2
tz = 0 .

It is straightforward to verify that this happens at the same value r+ of r where W (r+) = 0.

The limiting velocity w is given by

w = − gtz
gzz

∣∣∣∣
r=r+

= −uz
ut

, (3.50)

and can be interpreted as the boost-velocity of the surface r = r+. Since W (r+) = 0

implies that grr(r+) = 0, it follows that on this surface outgoing null congruences have zero

expansion, see [49] for the analogous case of a rotating black hole. Consequently r = r+

is an apparent horizon, and since the solution is stationary, an event horizon. Moreover

this event horizon is a Killing horizon for the vector field ξ = ∂t + w∂z = ∂t − uz
ut
∂z and

we can interpret w as the boost-velocity of this horizon. Observe that the limit of staticity

and the limit of stationarity are in general different, and only agree in the unboosted limit

uz = 0 where we recover the AdS Schwarzschild black brane.

We note that there is frame dragging in our solutions, since the metric is non-static for

uz 6= 0. Indeed, since the metric coefficients are independent of t and z, the covariant mo-

mentum components pt and pz are conserved. But even when setting pz = 0, particles have

a non-vanishing contravariant momentum component pz = gztpt 6= 0 in the z-direction.

The boost velocity of the metric varies between the horizon and infinity. It can be read off

by writing the metric in the form

ds2
(5) = −N2(r)dt2 +M2(r)(dz − v(r)dt)2 + · · ·

where the omitted terms involve dx2, dy2 and dr2. An observer at fixed r, x, y is co-moving

with the space-time if their velocity is dz/dt = v. Bringing the metric (3.41) to the above

form one finds

v = −(1−W )utuz
u2
t −Wu2

z
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with limits

v −−−→
r→r+

−uz
ut

= w ≥ −1 ,

and

v −−−→
r→∞

0 .

It is straightforward to check that for ut > 1 the boost speed |v(r)| is strictly monontonically

increasing from |v∞| = 0 at infinity to |vhorizon| = |w| = uz/ut ≤ 1 at the horizon. Thus the

boost speed is bounded by the speed of light and can only reach it at the horizon and in the

extremal limit. Note that the asymptotic AdS space at infinity is not co-moving. This is

different from Kerr-AdS, where the asymptotic AdS space is co-rotating, with implications

for the black brane thermodynamics [50–52]. In particular, we will not need to subtract

a background term, corresponding to the asymptotic AdS space, from our expressions for

the boost-velocity in order to have quantities satisfying the first law of thermodynamics.

We will come back to this later when verifying the first law.

3.3 BPS solutions

In this section, we consider the properties of the extremal solution in further detail. We

begin by considering the solution (3.47). On making the co-ordinate transformation

r = ∆
1
4 el
−1R, x = l∆−

1
4 y1, y = l∆−

1
4 y2

t =
1

2
l∆−

1
4 (X − 2T ), z =

1

2
l∆−

1
4 (X + 2T ) , (3.51)

the metric (3.47) becomes

ds2 = e−2l−1RdX2 + e2l−1R

(
2dXdT + (dy1)2 + (dy2)2

)
+ dR2 . (3.52)

The metric (3.52) is a five-dimensional generalized Kaigorodov metric, constructed in [17],

which describes gravitational waves propagating in AdS5. The supersymmetry of this so-

lution was investigated in [17], where it was shown that this solution preserves 1/4 of the

supersymmetry. Furthermore, after making some appropriate co-ordinate transformations,

this solution can be shown to correspond to a class of supersymmetric solutions which ap-

pears in the classification of supersymmetric solutions of minimal five-dimensional gauged

supergravity constructed in [53]. It is straightforward to show that the null Killing vector

which is obtained as a spinor bilinear is given by ∂t − ∂z, in the co-ordinates of (3.47).

The fact that this Killing vector is null rather than timelike is related to an interesting

feature which distinguishes these BPS solutions from five-dimensional rotating BPS black

holes, namely the existence of an ergoregion, i.e. a region outside the horizon where it is

not possible for observers to remain static. Note that in the BPS limit (3.48) the limit

of staticity is at r = ∆1/4 ≥ 0 which is outside the horizon at r = 0 (unless we switch

off momentum, ∆ = 0, and go to global AdS). Therefore the ergoregion persists in the

BPS limit.

For stationary BPS black holes the Killing vector obtained as a spinor bilinear is the

standard static Killing vector field ∂t, which is timelike at infinity. For rotating black holes
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∂t is different from the ‘horizontal’ Killing vector field ∂t +ω∂φ, which becomes null on the

horizon. An ergoregion exists when ∂t becomes space-like outside the horizon. However if

∂t is a bilinear formed out of Killing spinors, supersymmetry implies that it must be either

time-like or null. Hence, rotating BPS black holes cannot have an ergoregion. Moreover it

can be shown that the event horizon of a rotating BPS black hole must be non-rotating [25].

As we have shown above, this is different for the extremal limit of an AdS-Schwarzschild

black brane, which is a BPS wave solution in AdS5: the ergoregion persists in the BPS

limit, and the (degenerate limit of the) horizon15 moves with the speed of light, since

w = −uz/ut → −1. This is consistent with the solution being BPS, because the Killing

vector obtained as a Killing spinor bilinear is not ∂t, which is timelike at asymptotic infinity

and becomes spacelike before the horizon, but ∂t−∂z, which is null everywhere for the BPS

solution. Moreover, the horizon turning into a purely left-moving wave is consistent with

the familiar string theory description of a BPS state as a state with massless excitations

moving in one direction only.

3.4 Thermodynamics

We turn to an investigation of the thermodynamics of the black brane solutions of sec-

tion 3.2. The Hawking temperature is related to the surface gravity by T = κ
2π , where the

surface gravity κ of a Killing horizon is given by

κ2 = −1

2
∇µξν∇µξν

∣∣∣∣
r=r+

. (3.53)

Evaluating this for ξ = ∂t + w∂z, we find the Hawking temperature T :

πT =
r+

l2 ut
. (3.54)

We remark that the same result can be obtained by imposing that the Euclidean continu-

ation of the solution does not have a conical singularity at the horizon, see appendix C.

In the zero boost limit ut = 1, uz = 0, we obtain the Hawking temperature of an AdS

Schwarzschild black brane. In the extremal limit (3.48), where the boost parameters go

to infinity ut, uz → ∞, while r+ → 0, the Hawking temperature becomes zero, T → 0,

irrespective of whether we keep ∆ finite or not.

Since our solutions are not asymptotically flat, but rather asymptotic to AdS5, we

cannot apply the standard ADM prescription to compute the mass and linear momentum

of our branes. Instead, we use the method based on the quasilocal stress tensor [54], see

also [55] for a review in the context of the fluid-gravity correspondence. Here we simply

present the result, and relegate explicit calculational details to appendix B. To leading

order in 1/r we find that the quasilocal stress tensor takes the form

Tµν =
r4

+

2l3r2
(ηµν + 4uµuν) + . . . , (3.55)

15We will show later that in this limit the metric develops a singularity at the horizon, corresponding to

freely falling observers experiencing infinite tidal forces.
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where ηµν is the Minkowski metric on ∂Mr which denotes the hypersurface r = const. of

our space-time, with coordinates (t, x, y, z). As indicated we have omitted terms subleading

in 1/r, since we are ultimately interested in expressions which are finite on the boundary

∂M = limr→∞ ∂Mr of space-time. Note that Tµν takes the form of the stress energy tensor

of a perfect ultra-relativistic fluid (equation of state ρ = 3p, where ρ is the energy density

and p is the pressure), with pressure proportional to r4
+ ∼ T 4. The proportionality between

r+ and T is the same behaviour as for large AdS-Schwarzschild black holes. In the absence

of a boost, it is known that AdS-Schwarzschild black branes behave thermodynamically

like large (rather than small) AdS-Schwarzschild black holes [56].

Having obtained the quasilocal stress tensor, mass and linear momentum can be com-

puted as conserved charges associated to the Killing vectors of our solution. Again, the

details are relegated to the appendix B. The mass, which is the conserved charge associated

with time translation invariance, is

M =
(4u2

t − 1)r4
+

2l5
V3, (3.56)

where V3 =
∫

Σ d
3x is the spatial volume of the brane, computed with the standard Eu-

clidean metric dx2 + dy2 + dz2. Due to the infinite extention of the brane, the mass is

infinite, and to obtain a finite quantity we must either compactify the world volume direc-

tions or define densities. We will do the latter by consistently splitting off a factor V3 from

all extensive quantities.

Next we calculate the momentum in the z-direction, which is the conserved charge

associated to z-translation invariance. The result is

Pz = −
4r4

+utuz
2l5

V3, (3.57)

and vanishes as expected in the zero boost limit uz = 0, ut = 1. Notice that these charges

satisfy Pz = M
(
− 4utuz

4u2
t−1

)
, which resembles the motion of a non-relativistic body of mass

M , moving at velocity vz = − 4utuz
4u2
t−1

.

Finally, we calculate the Bekenstein-Hawking entropy of the solution by integrating

the pull back of the metric over the horizon. Recalling that we are working in units where

8πG5 = 1, we find

S =
1

4G5

∫
Σr=r+

d3x
√
σ = 2π

∫
Σr=r+

d3x
√
σ =

2πr3
+

l3
utV3 , (3.58)

where σ denotes the pullback of the metric to the surface Σr.

Using these, we can check that the thermodynamic variables satisfy the first law:

δM = TδS + w δPz . (3.59)

We remark that obtaining (3.59) is a non-trivial consistency check for the correctness of

the definition of the thermodynamical quantities, which are initially ambiguous because

they require background subtractions corresponding to renormalization of the boundary

CFT [54], see also [52] for a discussion in the context of rotating black holes in higher than
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four dimensions. As noted before we do not need to apply a background subtraction for the

translation velocity w, since the asymptotic AdS5 background is not co-translating. This is

different for AdS-Kerr-type black holes, where the subtraction of the background rotation

velocity is crucial for obtaining the correct thermodynamic relations [50–52]. We also note

that T,M,Pz, S which are all defined in a reparametrization invariant way, depend on the

parameter r+, which is therefore a physical parameter, despite the fact that it could be

absorbed into the coordinates in the line element (3.41). Moreover, without the ability of

varying this parameter, one could not obtain the temperature/entropy term in the first

law. We refer to appendix B.2 for further details on this technical point.

The extremal limit of these quantities can be reached by taking r+ → 0 and ut → ∞
with u2

t r
4
+ → ∆ fixed. In this case we find that the entropy density s := S/V3 vanishes in

the extremal limit, s → 0 as T → 0. Therefore our solutions satisfy the strong version of

the Nernst law, and will be referred to as Nernst branes.16 Moreover, since in this case

w = −1, we find M = |Pz|, which is of course the saturation of the BPS bound, as it must

be given the results of section 3.3. As already remarked earlier, in the extremal limit the

boost parameter ∆ controls the mass, and ∆→ 0 is the limit where the solution becomes

globally AdS5.

We can eliminate the quantities r+ and ut in favour of the thermodynamical variables

T and w via

ut =
1√

1− w2
, uz = − w√

1− w2
, r+ =

l2(πT )√
1− w2

.

In terms of T and w the mass of the solution is given by

M(T,w) =
l3

2
V3

(
3 + w2

(1− w2)3

)
(πT )4. (3.60)

Hence, we see that the heat capacity

CT ≡
∂M

∂T

∣∣∣∣
w

> 0, (3.61)

is positive, and the solution is thermodynamically stable. This is as expected, at least in

the absence of a boost, since it is well known that AdS-Schwarzschild black branes behave

thermodynamically like large AdS-Schwarzschild black holes [56]. As we see from (3.60),

the introduction of a boost does not introduce thermodynamic instablility.

Expressing the entropy in terms of (T,w) we find

S(T,w) = 2πl3V3
(πT )3

(1− w2)2
. (3.62)

Note that turning off the boost uz = 0, which corresponds to w = 0, we have S ∼ T 3,

which is the scaling behaviour expected for an AdS5 Schwarzschild black brane.

16Incidentially, this version of the Nernst law is due to Planck, but clearly ‘Planck brane’ would be a bad

choice of terminology.

– 23 –



J
H
E
P
1
1
(
2
0
1
6
)
1
1
4

Indeed we can use (3.62) to investigate the behaviour of S as a function of T in both the

high temperature and low temperature limits. The limit of high temperature (equivalently

small boost velocity) is

uz → 0, r+ →∞, u2
zr

4
+ → ∆ = const.

This corresponds to |w| � 1, and so we see from (3.62) that S ∼ T 3. The limit of low tem-

perature (equivalently boost velocity approaching the speed of light) is the extremal limit

ut →∞, r+ → 0, u2
t r

4
+ → ∆ = const.

In this case, one can see that 1−w2 ∼ T 4/3, and so the entropy scales like S ∼ T 1/3. This

is the behaviour predicted for five-dimensional lifts of four-dimensional Nernst branes [11].

We will comment further on the thermodynamic properties of our solutions in section 5.

3.5 Curvature properties of five-dimensional Nernst branes

One motivation of the present work is the singular behaviour of the four-dimensional Nernst

branes found in [11]. We will show in section 4 that the five-dimensional Nernst branes

found above are dimensional lifts of these four-dimensional Nernst branes. To investigate

the effect of dimensional lifting on such singularities, we now examine the behaviour of

curvature invariants and tidal forces of the five-dimensional solutions. From both the grav-

itational point of view, and with respect to applications to gauge-gravity dualities, one

would like the solutions to have neither naked singularities, nor null singularities (singular-

ities coinciding with a horizon), while the presence of singularities hidden behind horizons

is acceptable. In practice, the presence of large curvature invariants or large tidal forces

will also be problematic, given that the supergravity action we start with needs to be in-

terpreted as an effective action. Therefore large curvature invariants or tidal forces are

indications that this effective description breaks down due to quantum or, assuming an

embedding into string theory, stringy corrections. This might also limit the applicabil-

ity of gauge-gravity dualities to only part of the solution, where the corrections remain

sufficiently small.

Curvature invariants. For our five-dimensional metric (3.41) we compute the

Kretschmann scalar and Ricci scalar to be

K =
2
(
9r8

+ − 24r4
+r

4 + 20r8
)

r8l4
, R =

4
(
−5r4 + 3r4

+

)
r4l2

. (3.63)

Note that these only depend on the temperature T ∼ r+ and the curvature radius l of

the AdS5 ground state. For the extremal solution (r+ = 0) both curvature invariants take

constant values which agree with those for global AdS5:

KAdS5 =
2d(d− 1)

l4
=

40

l4
, RAdS5 = −d(d− 1)

l2
= −20

l2
.

For the non-extremal solution the curvature invariants tend to the AdS5 values asymptot-

ically, but will blow up as r → 0. Since this is behind the horizon, there are no naked or

null singularities related to the curvature invariants of five-dimensional Nernst branes.
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Tidal forces. Even if all scalar curvature invariants are finite, there might still be cur-

vature singularities related to infinite tidal forces. Such curvature singularities can be

found by computing the components of the Riemann tensor in a ‘parallely-propogated-

orthonormal-frame’ (PPON) associated with the geodesic motion of a freely-falling ob-

server. Following [26] they are called pp singularities, in contrast to sp singularities, where

a scalar curvature invariant becomes singular. While such singularities are often considered

milder than those associated to curvature invariants, they are nevertheless genuine singu-

larities and have drastic physical effects (‘spaghettification’) on freely falling observers.

The details of this construction for the five-dimensional extremal solution are relegated

to appendix D. We only need to consider the extremal solution, since non-extremal solutions

are manifestly analytic at the horizon r+ > 0. From table 3 in appendix D we observe

that the non-zero components of the Riemann tensor in the PPON all have near horizon

behaviour of the form

R̃abcd ∼ rα with α ≤ 0 , (3.64)

with α < 0 for all but one independent non-vanishing component. Hence, as the observer

approaches the horizon of the extremal brane (r → 0) these components will diverge,

resulting in infalling observers being subject to infinite tidal forces. This is the same

behaviour as observed in four dimensions [11], and seems to be the price for having zero

entropy. It is an interesting question whether stringy or other corrections could lift this

singularity, and if so, whether it is possible to maintain zero entropy.

4 Four-dimensional Nernst branes from dimensional reduction

4.1 Review of four-dimensional Nernst branes

We now want to dimensionally reduce our five-dimensional Nernst branes and compare the

resulting four-dimensional spacetimes to those found in previous work [11]. Let us there-

fore review the relevant features, emphasising the problems that we want to solve. Four-

dimensional Nernst branes depend on three parameters: the temperature T , the chemical

potential µ and one electric charge Q0. Due to Dirac quantisation17 charge is discrete, and

the solution depends on two continuous parameters. The asymptotic geometries, both at

infinity and at the horizon, are of hyperscaling violating Lifshitz (hvLif) type:

ds2
(d+2) = r−2(d−θ)/d

(
−r−2(z−1)dt2 + dr2 +

2∑
i=1

dx2
i

)
. (4.1)

Here t is time, r parametrizes the direction transverse to the brane, and xi, i = 1, . . . , d

are the directions parallel to the brane (with d = D − 2 in D spacetime dimensions). For

θ = 0 the line element (4.1) is invariant under rescalings

(t, r, xi) 7→ (λzt, λr, λxi) .

17The four-dimensional theory admits both electric and magnetic charges, though for the solution in

question only one electric charge has been turned on.
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The parameter z, which measures deviations from ‘relativistic symmetry’ (due to time

scaling different from space) is called the Lifshitz exponent. For θ 6= 0 the metric is not scale

invariant but still scales uniformly, and θ is known as the hyperscaling violating exponent.

For four-dimensional Nernst branes the geometry at infinity is independent of the

temperature. For finite chemical potential it takes the form of conformally rescaled AdS4,

which is of the above type, with z = 1, θ = −1. Moreover, the curvature scalar goes

to zero R(4) → 0, while the scalar fields zA, A = 1 . . . n
(4)
V run off to infinity zA → ∞.

In contrast, for infinite chemical potential the geometry at infinity is asymptotic to hvLif

with z = 3 and θ = 1. The behaviour of curvature and scalars is precisely the opposite

as previously: the curvature scalar diverges R(4) → ∞, while the scalar fields go to zero

zA → 0. The geometry at the horizon is independent of the chemical potential, but depends

on the temperature. For zero temperature the asymptotic geometry is again hvLif with

z = 3, θ = 1, but approaching the ‘opposite end’ of this geometry, so that the curvature

scalar goes to zero R(4) → 0. While there is no sp curvature singularity there remains a

pp curvature singularity at the horizon, that is, freely falling observers experience infinite

tidal forces. Simultanously the scalar fields go to infinity zA →∞. This type of behaviour

can be considered as a generalized form of attractor behaviour [6]. For finite temperature

the geometry takes the expected form for a non-extremal black brane, the product of two-

dimensional Rindler space with R2. The scalars and the curvature take finite values, so

that the solutions are regular at the horizon for non-zero temperature.

The only element of hvLif holography that we will use is the entropy-temperature

relation

S ∼ T (d−θ)/z ,

valid for field theories with hyperscaling violation [12].

Since the low-temperature asymptotics of the exact entropy-temperature relation of

four-dimensional Nernst branes is S ∼ T 1/3, which matches the scaling properties of the

asymptotic zero temperature near horzion hvLif geometry with θ = 1, z = 3, gauge/gravity

duality implies the existence of a corresponding three-dimensional non-relativistic field

theory with this scaling behaviour. As the solution is charged, the global solution should

describe the RG flow starting from a UV theory corresponding to asymptotic infinity, and

ending with this IR theory. Identifying this UV theory turned out to be problematic: the

solution at infinity jumps discontinously between finite and infinite chemical potential, and

is singular in either case. The more likely candidate (having no curvature singularity) is

the conformally rescaled AdS4, which still does not look like a ground state, due to the run-

away behaviour of the scalars. Moreover, while the geometric scaling properties indicate

an entropy-temperature relation of the form S ∼ T 3, the high temperature asymptotic of

the four-dimensional Nernst brane solution is S ∼ T . As discussed before, this lead to the

conjecture that the solution decompactifies at infinity, and needs to be understood from a

five-dimensional perspective.

4.2 S1 bulk evolution

To relate five-dimensional Nernst branes to four dimensions, we make the spacelike di-

rection x0 compact, i.e. we identify x0 ∼ x0 + 2πr0. Clearly then, to understand the
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Figure 1. Plot showing the evolution of the compactification circle throughout the five-

dimensional bulk.

four-dimensional properties, it is crucial to first understand the behaviour of the x0 circle.

Writing (3.38) as18

ds2
(5) = e2σ(dx0 +A0

4dx
4)2 + e−σds2

(4),

with

e2σ =
r2f(r)

l2
, (4.2)

we find the four-dimensional line element

ds2
(4) =

r

l

{
− r2W (r)

l2f(r)1/2
dt2 + f(r)1/2 l2 dr2

r2W (r)
+
r2

l2
f(r)1/2(dx2 + dy2)

}
, (4.3)

after identifying x4 ≡ t. From (4.2) we can read off the behaviour of the physical (geodesic)

length R0
phys of the compactification circle:

(R0
phys)

2 = (2πr0)2e2σ(r) = (2πr0)2

(
Ar2

l2
+

∆

r2l2

)
. (4.4)

Thus the geodesic length of the compactification circle S1 varies dynamically along the

transverse direction, parametrized by r, of the four-dimensional spacetime, as shown in

figure 1. Notice from (4.4) that for A > 0 there are two competing terms, resulting in

decompactification both for r → ∞ and for r → 0. The latter decompactification is only

reached in the extremal limit, since otherwise we encounter the horizon at r+ > 0. This

implies that in the non-extremal case the near horizon solution will still depend on the

parameter A, while in the extremal case the near horizon solution becomes independent of

A. The insensitivity of the extremal near horizon solution to changes of parameters which

determine the asymptotic behaviour at infinity, in our case A, can be viewed as a version

of the black hole attractor mechanism. Making the solution non-extremal results in the

18As it stands, (3.38) is specialized to the case A > 0 since it involves the variable ∆̃ = ∆
2B0A

. However,

using (3.35), it is possible to write (3.38) in terms of a general Kaluza-Klein vector, valid for both A > 0

and A = 0. This then allows the reduction of both cases in parallel, leading to (4.3).
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loss of attractor behaviour by making the near horizon solution sensitive to the asymptotic

properties of the solution at infinity. Of course, the four-dimensional scalars run off to

infinity instead of approaching finite fix-point values, but they do so in a particular, fine-

tuned way, which leads to a consistent lifting of the near horizon geometry five dimensions.

A remarkable feature of solutions with A > 0 is the existence of a critical point, Pcrit, where

the compactification circle reaches a minimal size at r4
crit = ∆/A. In contrast, for A = 0,

this critical point does not exist and so, whilst the circle continues to decompactify as r → 0

in the extremal case, it now shrinks monotonically with increasing r, ultimately becoming

a null circle19 of zero size for r → ∞. This fundamentally different behaviour of the S1

means we must treat the dimensional reduction of the A > 0 and A = 0 cases separately

in what follows. Additionally, we clearly see that A is the parameter responsible for the

asymptotic behaviour at infinity from a five-dimensional point of view. This resembles the

role played by the parameter h0 in the four-dimensional solutions of [11]: this connection

will be made manifest in the following subsections.

In the case A > 0, the compactification introduces a new continuous parameter, the

parametric radius r0 of the circle. We now observe that the identification x0 ' x0 +

2πr0 breaks the scaling symmetry (3.39), which made the parameter A irrelevant for five-

dimensional (uncompactified) solutions. For A > 0 there is a circle of minimal size at

r4
crit = ∆/A, with geodesic size R0

crit given by

(R0
crit)

2 = 8π
r2

0

l2

√
∆A .

The size of this minimal circle depends only on the combination r2
0

√
A and is therefore

invariant under any increase in A that is compensated for by a reduction in r0 and vice-

versa. This ability to trade r0 for A means that A can be used as the physical parameter

controlling the minimal circle size, whilst r0 becomes redundant. It is natural to set r0 =√
A, as this is precisely what is needed such that the expression for the four-dimensional

charge, Q0, calculated later in (4.17), is independent of the compactification radius, which

is natural for a quantity which was defined in [11] in a purely four-dimensional context.

In the case A = 0, there is no such invariant length and we can see this in a number

of ways. Firstly, the A → 0 limit pushes r4
crit = ∆

A → ∞ and so no minimal circle exists.

Secondly, with A = 0, the geodesic size of the compactification circle is found from (4.4) to

be (R0
phys)

2 = (2πr0)2∆
r2l2

and depends only on ∆; since this is already a parameter of the five-

dimensional solution, there is nothing else to be accounted for and no need for additional

parameters. One can try to obtain an invariant length from the size of the circle on the

horizon, R0
phys(r+), which, assuming non-extremality, will at least be finite. However, it

is clear from (4.4) that this will be a function of both ∆ and r+, which again are already

existing parameters of the five-dimensional A = 0 solution.

4.3 Dimensional reduction for A > 0

4.3.1 Four dimensional metrics and gauge fields

In [11] a family of four-dimensional Nernst branes was found, which depend on one electric

charge Q0 and two continuous parameters B
(4d)
0 and h0, which can be expressed alterna-

19The norm-squared of the tangent vector ∂x0 goes to zero in this limit.
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tively in terms of temperature T (4d) and chemical potential µ. It was also observed that

the four-dimensional solutions with finite chemical potential exhibited a specific singular

behaviour in the asymptotic regime, which suggested to be interpreted as a decompactifi-

cation limit. Given the behaviour of the compactification circle, the natural candidate for

a lift of four-dimensional Nernst branes with finite chemical potential is the A > 0 family

of five-dimensional Nernst branes.

We begin by comparing the four-dimensional Nernst brane solutions with finite chem-

ical potential (h0 6= 0) as found in [11] to the four-dimensional metric in (4.3) obtained by

dimensionally reducing our five-dimensional solution with A > 0. Setting ρ = r4 in (3.30)

of [11] gives:

ds2
4 = −H−1/2W (4d)r3dt2 +

16H1/2

W (4d)

dr2

r
+H1/2r3(dx2 + dy2) , (4.5)

where W (4d) = W (4d)(r) = 1− 2B
(4d)
0
r4 and

H(r) = C

[
Q0

B
(4d)
0

sinh
B

(4d)
0 h0

Q0
+
Q0e

−B(4d)
0 h0/Q0

r4

]
=: cH0(r) . (4.6)

HereQ0 parametrizes the four-dimensional electric charge, the continuous parameter h0 6= 0

corresponds to a chemical potential µ, with |µ| < ∞,20 and the continuous parameter

B
(4d)
0 ≥ 0 corresponds the temperature T (4d) ≥ 0. The constant C is determined by the

choice of a prepotential and a gauging of the four-dimensional theory. More precisely, it

is determined by the cubic coefficients cijk and gauging parameters gi, but since we are

assuming that this solution can be lifted to five-dimensions, these are the same parameters

that enter into our five-dimensional theory in (2.1). The precise form of C can be read

off from the unnumbered equation between (3.30) and (3.31) in [11]. At this point we

anticipate that the functions W (4d) and W in the four- and five-dimensional solutions can

be identified, which allows us to drop the superscrips ‘4d’ on B0 and T . Since we can no

longer rescale the coordinate r, matching the coefficients of dr2 between the metrics (4.3)

and (4.5) fixes the relation between the functions f(r) and H(r) to be

l2f = 162H = 162CH0 .

Then the remaining metric coefficients match if we rescale t, x, y by constant factors in-

volving l.21 Writing out the functions f and H and comparing, we obtain:

162C
Q0

B0
sinh

B0h0

Q0
= l2A , (4.7)

162CQ0e
−B0h0/Q0 = l2∆ .

20Due to the specific choices made for certain signs, the chemical potential will turn out to be negative.

This is correlated with a choice of sign for the electric charge. There is another branch of the solution,

which we don’t give explicitly, where these signs are reversed.
21Alternatively, we could absorb l into r, but then by comparing the functions W we will conclude that

the respective parameters B0 differ by a factor l4. Given the relation of B0 to the position of the event

horizon and to temperature, we prefer not to do this.
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While the five-dimensional line element is non-static, the four-dimensional one is static,

but as an additional degree of freedom we have a Kaluza-Klein gauge field, given by

A0
t (r) = ζ0 = − 1√

2
A0

4 =

√
6√
2

(
uz
ut

)
W (r)

f(r)
= −
√

3wW (r)

f(r)
. (4.8)

Here we use the definitions and conventions of section 2.2, and with regard to four-

dimensional quantities, we use the conventions of [29], which were also used in [11].

By matching the expression for ζ̇0 given by (3.12) with the τ -derivative of (3.38) of [11],

we can identify the Kaluza-Klein vector with the four-dimensional gauge field provided that√
3∆(∆ + 2B0A)

A2
= − B2

0

2Q0 sinh2 B0h0
Q0

, (4.9)

1 +
∆

B0A
= coth

B0h0

Q0
.

From this we can find

Q0 = −1

6

√
3∆(∆ + 2B0A) , (4.10)

h0 =
Q0

B0
arcoth

(
1 +

∆

B0A

)
, (4.11)

which expresses the four-dimensional parameters Q0, h0 in terms of the five-dimensional

parameters A,∆, B0. Comparing (4.7) to (4.9) we find that these relations are mutually

consistent provided that

162C = −2
√

3l2 . (4.12)

This equations relates the overall normalizations of metrics (4.3) and (4.5) and of the

underlying vector multiplet actions.

The four-dimensional chemical potential is given by the asymptotic value of the gauge

field At, which is chosen such that At(r+) = 0, as explained in appendix F. Having matched

the five-dimensional Kaluza-Klein vector with the four-dimensional gauge field of [11], the

corresponding expressions for the chemical potential must also match.22 For reference, we

provide the following expression in terms of both four- and five-dimensional parameters,

µ =
1

2

B0

Q0

[
coth

B0h0

Q0
− 2

]
=

∆

2Q0A
= −
√

3

A

√
∆

∆ + 2B0A
, (4.13)

where we used (4.9). Notice from (4.10) that Q0 < 0 which then forces h0 < 0 by (4.11),

which is consistent with the remark in [11] that sign(h0) = sign(Q0). Moreover we observe

that Q0 < 0 implies µ < 0. This reflects the correlation in the signs of the charge Q0 and

of the chemical potential µ. We have, for concreteness and simplicity, restricted ourselves

to solutions where ζ̇0 > 0, which have turned out to correspond to negative charge and

negative chemical potential. Conversely, solutions with ζ̇0 < 0 will carry positive charge

22This can be seen explicitly by applying (4.9) to (3.39) in [11] and comparing to the asymptotic value

of (4.8).
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and positive chemical potential. This is consistent with the fact that in relativistic ther-

modynamics the chemical potentials of particles and antiparticles differ by a minus sign.

For completeness we note a few further signs which are implied by our decisision to

focus on solutions with ζ̇0 < 0 (and, hence, ζ0 > 0). From (4.7) we deduce that the

four-dimensional constant C must be negative, C < 0, which explains the minus sign

in (4.12). Furthermore, it is clear from (4.6) that H0(r) < 0 such that the harmonic

function H(r) > 0, which we need in order that the roots of H, which appear in our

expression for the solution, are real.

4.3.2 Momentum discretization, charge quantization and parameter counting

Since the reduction is carried out over the x0 direction, it is instructive to calculate the

Killing charge associated to the Killing vector ∂0 = ∂/∂x0. For A > 0, (3.40) tells us this

is related to the Killing vector ∂z of the five-dimensional spacetime via

∂0 =
√
A∂z.

Since the charge associated with ∂z is the brane momentum (3.57), the Killing charge

corresponds to momentum in the x0 direction, and can be determined as follows

P 0 =
√
APz ' −

2√
A

√
∆(∆ + 2B0A) , (4.14)

where we have omitted V3 and l for simplicity. The periodicity of the x0 direction implies

that momentum takes discrete values,

P 0 ' N

r0
=

N√
A
, N ∈ Z− ∪ {0} , (4.15)

where we have taken into account that P 0 ≤ 0. Rearranging this as

N '
√
AP 0 ' N ' −2

√
∆(∆ + 2B0A) (4.16)

and comparing to (4.10), we see explicitly how the quantization of the internal momentum

implies the quantization

Q0 '
√
AP 0 ' N, N ∈ Z− ∪ {0} (4.17)

of the four-dimensional charge. Note that while the spectrum of P 0 changes with the

radius r0 =
√
A of the compactification circle, the four-dimensional electric charge Q0 is

independent of it. As already mentioned before, P 0 and Q0 being negative results from

choosing ζ0 positive, and solutions with positive P 0 and Q0 can be obtained by flipping

signs in (3.13). Our choice of signs is consistent with the choices made in [11], in particular

the same anti-correlation between the signs of A0
t = ζ0 and Q0 can be observed in the

equation above (3.38) of [11].

Let us end this discussion by comparing the number of parameters describing the

Nernst branes in different dimensions. Five-dimensional Nernst branes are parametrized by

three continuous paramters (A,B0,∆), but for A > 0 we have the scaling symmetry (3.39),
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which tells us that A is redundant, and that we can parametrize solutions by the two in-

dependent and continuous parameters (B0, ∆̃), which then correspond to temperature and

boost momentum. Upon compactification a new length scale is introduced that breaks the

scaling symmetry present in five dimensions. Consequently, the four-dimensional solution

picks up an extra parameter; we need to specify the three independent and continuous

parameters (B0,∆, A) in order to completely define the metric (4.3). In terms of physical

parameters, the four-dimensional solution depends on temperature, charge and chemical

potential (T,Q0, µ). These are all independent but, as we have seen, since the momen-

tum has a component in the direction we compactify over, it becomes discrete, which

corresponds directly to the discretization of four-dimensional electric charge. As such, the

five-dimensional solution involves two independent and continuous thermodynamic param-

eters whilst the four-dimensional solution has three independent parameters, two of which

are continuous and one of which is discrete.

4.4 Dimensional reduction for A = 0

The two parameter family of four-dimensional Nernst branes found in [11] exhibits dis-

continuities in the asymptotic behaviour of both the geometry and the scalar fields when

taking the limit h0 → 0, or equivalently, |µ| → ∞. This discontinuity can be accounted for

by the discontinuous asymptotic behaviour of the compactification circle in the limit A→ 0

as seen in figure 1. We should therefore expect that the infinite chemical potential four-

dimensional solutions of [11] with h0 = 0 can be recovered from the A = 0 five-dimensional

solution with one dimension made compact.

To demonstrate this relationship we take the four-dimensional Nernst brane met-

ric (4.5) obtained in [11] and set h0 = 0 in (4.6) which reduces the function H(r) to

H(r) =
CQ0

r4
.

Substituting this back into (4.5) gives the following metric

ds2
4 = −C1/2Q

−1/2
0 W (4d)r5dt2 +

16C1/2Q
1/2
0 dr2

W (4d)r3
+ C1/2Q

1/2
0 r(dx2 + dy2). (4.18)

On the other hand, the dimensional reduction of the A = 0 class of five-dimensional Nernst

branes gives

ds2
4 = − r5W

∆1/2l3
dt2 +

l∆1/2

r3W
dr2 +

r∆1/2

l3
(dx2 + dy2), (4.19)

where we have used (4.3) with A = 0. Again we identify the functions W (4d) and W

appearing in the above metrics, which means the parameters B0 and T will be the same in

both cases. As before, this prevents rescaling of the coordinate r and then, by comparing

dr2 terms in (4.18) and (4.19), we establish the following relationship between four- and

five-dimensional quantities

162CQ0 = l2∆. (4.20)

Again, the remaining metric coefficients can be made to match by rescaling t, x, y by

constant factors involving l. Following the same procedure as in section 4.3.1, we match
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the gauge field and Kaluza-Klein vector by comparing expressions for ζ̇0. Specifically, we

match (3.12) with the τ -derivative of (3.38) in [11]. The two are equivalent provided that

Q0 = − ∆

2
√

3
, (4.21)

which expresses the four-dimensional electric charge in terms of the five-dimensional boost

parameter ∆. This is a much simpler expression than in the A > 0 case and we observe that

it matches the A→ 0 limit of (4.11). Considering the discontinuities we have encountered

previously when taking A→ 0 limits, this seems at first surprising but just reflects that Q0

is a well defined paramater for the four-dimensional solutions of [11], for any choice of µ

and T . Having established Q0 < 0, we see from (4.11) that A→ 0 corresponds to h0 → 0−,

and thus from (4.13) that µ → −∞. Lastly, we can substitute (4.21) into (4.20) to find

the relationship between the overall normalizations of the metrics (4.18) and (4.19),

162C = −2
√

3l2. (4.22)

Clearly this requires C < 0 as before and, in fact, is exactly the same relationship as for

the A > 0 case in (4.12), which is expected since C and l are only sensitive to the four-

and five-dimensional multiplet actions respectively, and these are indpendent of A. Again,

since we have matched the gauge fields by comparing ζ̇0, the chemical potentials must

match and this is indeed the case; using the asymptotic value of (4.8) with A = 0, we find

µ = −∞ which agrees with the negatively charged, h0 = 0 solutions in [11].

The parameter counting becomes simpler in the A = 0 case. Five-dimensional Nernst

branes are parameterized by two independent and continuous parameters (B0,∆), or equiv-

alently temperature and momentum. However, as we have seen in section 4.2, no new

length scale is introduced by the reduction and consequently, the four-dimensional solution

obtained via dimensional reduction also depends on exactly two independent parameters,

(B0,∆), which are sufficient to completely determine (4.18) since A = 0 is fixed. Us-

ing (4.21), these are equivalent to (T,Q0) with µ = −∞. The difference between the

five-dimensional and four-dimensional parameters is that the S1 causes charge quantiza-

tion. This means that whilst both B0 and ∆ are continuous in five dimensions, reducing

to four dimensions forces one parameter, namely Q0 ∼ −∆, to become discrete.

One difference between the A = 0 solution and the A > 0 solution is that for the A = 0

solution the compactification circle has no critical value. Therefore we cannot relate the

momentum P 0 to the electric charge Q0 using r0 as a reference scale. This is not a problem

since we could relate Q0 to five-dimensional quantities through (4.21), and, moreover, we

have seen that the relation between Q0 and five-dimensional quanities has a well defined

limit for A→ 0. A related feature of the A = 0 solution is that compactification circle has

no minimal size, and contracts to zero for r →∞. That means that there is a region in this

solution, where the circle has sub-Planckian, or sub-stringy size. While this is problematic

for an interpretation as a four-dimensional solution, the lifted five-dimensional solution is

simply AdS5, and can be decribed consistently within five-dimensional supergravity.
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4.5 Curvature properties of four-dimensional Nernst branes

The four-dimensional solutions with A > 0 and A = 0, obtained in sections 4.3 and 4.4,

exactly match the h0 < 0 and h0 = 0 solutions of [11] respectively. In [11] these four-

dimensional solutions were observed to be hyperscaling-violating Lifshitz metrics. It is

known from [16] that such solutions suffer from various curvature singularities, and we shall

now investigate this by computing the singular behaviour of the metrics (4.3) and (4.19).

Curvature invariants. As with the five-dimensional spacetimes in section 3.5 we can

determine the presence of curvature singularities of our four-dimensional solutions by look-

ing at the Kretschmann scalar and Ricci scalar associated to the metrics (4.3) and (4.19).

Indeed, since any singular behaviour in the curvature will already be present for the ex-

tremal solutions, we will concentrate only on the case r+ = 0. The curvature invariants

are calculated (using Maple) to be

KA>0
4 =

r2
(
351A4r16 + 1476A3r12∆ + 2586A2r8∆2 + 1284Ar4∆3 + 959∆4

)
4L2 (Ar4 + ∆)5 ,

RA>0
4 = −

3
(
15A2r8 + 34Ar4∆ + 15∆2

)
2
√

Ar4+∆
r4 (Ar4 + ∆)2 rL

,

KA=0
4 =

959r2

4∆L2
, RA=0

4 = − 45r

2
√

∆L
. (4.23)

For A > 0, or equivalently |µ| <∞, we find that the Ricci scalar behaves as R ∼ r−1

for large r, and R ∼ r for r → 0, whilst the Kretschmann scalar scales as K ∼ r−2 and

K ∼ r2 in these respective regions. Hence, the curvature invariants will remain finite

along the solution. However, for the A = 0 solution we will still have the same behaviour

at r → 0, but asymptotically we find R ∼ r and K ∼ r2. We therefore have a naked

curvature singularity as we approach the boundary of the spacetime.

Tidal forces. In order to investigate whether the four-dimensional solutions of [11] admit

infinite tidal forces in the near-horizon regime we will follow the analysis of [16], albeit

considering a slightly simpler set-up in which the infalling observer is moving only in the

radial direction i.e. has zero transverse momentum. The technical details of this procedure

can be found in appendix E.

Our results in tables 4 and 5 show that, for both A > 0 and A = 0, there exist

components of the Riemann tensor, as measured in the PPON, that diverge as r → 0.

This indicates that the radially infalling observer will experience infinite tidal forces at

the extremal horizon, r+ = 0. As before, tidal forces will remain finite on non-extremal

horizons, r+ > 0.

4.6 Curing singularities with decompactification

A summary of the singular behaviour of our four- and five-dimensional solutions can be

found in tables 1 and 2. Notice that since B0 and A control the near horizon and asymptotic

geometries respectively, we can use these to catalogue any singularities. We will now
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B0, h0
Near Horizon Asymptotic

Curvature

Singularity

∞
Tidal Forces

Curvature

Singularity

∞
Tidal Forces

B0 = 0, A = 0 × X X ×
B0 = 0, A > 0 × X × ×
B0 > 0, A = 0 × × X ×
B0 > 0, A > 0 × × × ×

Table 1. Summary of singular behaviour of four-dimensional Nernst brane.

B0, A
Near Horizon Asymptotic

Curvature

Singularity

∞
Tidal Forces

Curvature

Singularity

∞
Tidal Forces

B0 = 0, A = 0 × X × ×
B0 = 0, A > 0 × X × ×
B0 > 0, A = 0 × × × ×
B0 > 0, A > 0 × × × ×

Table 2. Summary of singular behaviour of five-dimensional Nernst brane.

explain how the singularities present in the four-dimensional hyperscaling-violating Lifshitz

solutions of section 4.5, except those related to infinite tidal forces at extremal horizons,

can be removed by dimensional lifting to the asymptotically AdS solutions of section 3.5.

4.6.1 Curvature invariants

Dimensional reduction relates the five-dimensional Ricci scalar to its four-dimensional coun-

terpart by23

R5 ∼ eσR4.

As can be seen from table 1 and table 2, the only situation where we encounter a curvature

singularity is the asymptotic regime of the four-dimensional solution with h0 = 0, or

equivalently A = 0. In this instance we have R4 ∼ r from (4.23) whilst eσ ∼ 1/r from (4.2)

resulting in R5 being asymptotically constant and exactly equal to the value of global

AdS5 as seen in section 3.5. Recalling that the dilaton eσ measures the geodesic length of

the x0 circle, we can now account for the presence of an asymptotic curvature singularity

in this class of four-dimensional Nernst branes. Specifically, the four-dimensional, µ =

−∞, asymptotic curvature singularity emerges from a ‘bad slicing,’ of the parent AdS5

hyperboloid by a circle that gets pinched at infinity. It was shown previously, that the

independent four-dimensional scalars are all proportional to each other, see formula (3.29)

in [11]. It was also observed that for infinite chemical potential, these scalars approach

zero asymptotically. From the five-dimensional point of view, the single profile of the four-

dimensional scalars determines the profile of the Kaluza-Klein scalar. Therefore the four-

dimensional scalars approaching zero corresponds to the shrinking of the compactification

23Similarly, the Kretschmann scalars are related by K5 ∼ e2σK4. The appearence of the second power of

the dilaton reflects the fact that the Kretschmann scalar is quadratic in the curvature.
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circle. When combining this with the singular behaviour of the four-dimensional metric,

we obtain AdS5.

In the A > 0, or equivalently |µ| < ∞, case the four-dimensional solution of [11]

is asymptotically conformal to AdS4, or CAdS4 for short. We see from (4.23) that the

curvature invariants of CAdS4 behave as R4 ∼ 1/r and vanish asymptotically. At the

same time, this is compensated by eσ ∼ r from (4.2), meaning the circle now blows up

at large r such that R5 remains asymptotically constant and equal to RAdS5 . Thus, in

this case the asymptotic behaviour of the four-dimensional metric and scalars is reversed

compared to the A = 0 case, but still leads to the same five-dimensional asymptotic

geometry after lifting.

4.6.2 Tidal forces

As can be seen from tables 1 and 2, tidal forces are asymptotically irrelevant24 and so we

are only concerned with the situation near the horizon. It is clear that infinite tidal forces

are present at the horizon of the extremal Nernst brane in four-dimensions, and are not

removed by dimensional lifting. This seems to be the price for obtaining the strong version

of Nernst’s law.

5 Summary, discussion, and outlook

5.1 The five- and four-dimensional perspective, and looking for a field theory

dual

Let us summarize and discuss our results. Starting from FI-gauged five-dimensional super-

gravity with an arbitrary number of vector multiplets, we have obtained a two-parameter

family of Nernst branes, labelled by temperature and momentum. These solutions in-

terpolate between AdS5 and an event horizon, and have an entropy-temperature relation

interpolating between S ∼ T 3 at high temperature/low boost and S ∼ T 1/3 at low temper-

ature/high boost. The relation S ∼ T 3 is consistent with the scaling properties of AdS5.

Given that we are working within five-dimensional gauged N = 2 supergravity, the dual

UV field theory should be a conformally invariant four-dimensional N = 1 field theory.

Since the metric is the same as in the duality between gauged N = 8 supergravity and

N = 4 Super Yang Mills, one might expect it to be a conformally invariant N = 1 Super

Yang Mills theory or a deformation thereoff, but without having a higher dimensional em-

bedding which allows one to understand the role of the parameters cijk and gi of the gauge

theory, we can’t say much more.

We have seen how the five-dimensional lift of four-dimensional Nernst branes removes

all the singularities at asymptotic infinity as well as the mismatch between geometrical

and thermodynamic scaling relations. To understand the variation of the compactifica-

tion circle along the transverse direction, which from the four-dimensional point of view

is encoded in the scalar fields, is crucial. The apparently singular behaviour of the four-

dimensional geometry is exactly compensated for by the singular behaviour of the scalars,

24See appendices D and E for reasons why.
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or, put differently, by the behaviour of the circle one has to add to obtain asymptotically

AdS5. Moreover, the compactification circle also accounts for the four-dimensional chem-

ical potential, which has no counterpart in the un-compactified five-dimensional solution.

However, once we decide to make the boost direction compact the dynamics forces the

circle to expand at both ends, and the resulting minimum introduces a new parameter

which we can relate to the chemical potential. As proposed in [11], we can interpret the

apparently singular UV behaviour of four-dimensional Nernst branes as a dynamical de-

compactification limit, which tells us that the description as a four-dimensional system

breaks down and has to be replaced by a five-dimensional one.

The five-dimensional solution admits a non-trivial extremal limit, where the boost

parameter is sent to infinity, while the momentum (density) is kept fixed. The result-

ing extremal near horizon geometry should define a field theory with entropy-temperature

relation S ∼ T 1/3. In the context of boosted D-branes and M-branes, the proposed inter-

pretation is a conformal field theory in the infinite momentum frame, which carries a finite

momentum density [17]. Moreover, it was proposed in [23, 47, 48, 57] that the compactifi-

cation of the direction along the boost corresponds to discrete light cone quantisation. In

this respect it is interesting to look at the asymptotic scaling symmetries of the five- and

four-dimensional extremal solutions near the horizon. In five dimensions the metric looks

like a Lifshitz metric with z = 3 and θ = 0, except that the direction along the boost has

weight −1 instead of +1. Upon reduction to four dimensions, the asymptotic geometry, and

if we go to infinite chemical potential even the global geometry, is a hyperscaling violating

Lifshitz geometry with z = 3 and θ = 1 [11]. That is, by reduction over the boost direction

one trades the non-trivial scaling of this direction for an overall scaling of the metric. Fol-

lowing [23, 47, 48, 57] we propose to associate a four- and a three-dimensional field theory

to the near-horizon five- and four-dimensional geometries, respectively, with the three-

dimensional theory encoding the zero mode sector of the discrete light cone quantisation

of the four-dimensional theory. Both theories are non-relativistic with Lifshitz exponent

z = 3, and supersymmtric with two supercharges.25 The four-dimensional theory is scale

invariant and arises by deforming a four-dimensional relativistic N = 1 supersymmetric

theory by a finite momentum density, while the three-dimensional theory is scale covariant.

5.2 The fate of the third law

From a strictly gravitational point of view, one should still worry about the pp curvature

singularities which persist in the extremal limit irrespective of whether we consider four-

dimensional or five-dimensional Nernst branes. While sometimes considered to be ‘mild,’

they are genuine curvature singularities which make the solution geodesically incomplete.

Moreover, they are not cured by stringy α′-corrections [16], and strings probing pp sin-

gularities get infinitely excited [15]. While at finite temperature there is technically no

singularity, near extremality objects falling towards the event horizon will still experience

very large tidal forces [59]. This behaviour is, if not an inconsistency, at least a sign that

the singularity has physical relevance. Moreover, the pp singularity is clearly caused by the

25According to the analysis of [58], extremal four-dimensional Nernst branes are BPS.
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way the metric complies with the strong version of Nernst’s law, namely through a warp

factor which scales any finite piece of the world volume26 to zero volume. It is not obvious

at all how pp singularities could be removed while keeping the strong version of Nernst’s

law. For small BPS black holes, R2-corrections remove null curvature singularities, by

making the area finite [60]. But as these singularities are of the sp type, it is not clear

what this implies for pp singularities. One example where a pp singularity is removed is

the D6 brane of type IIA supergravity, using an M-theory embedding [61]. The effect of

higher curvature corrections on pp type singularities has been investigated in [62, 63]. One

can also approach the problem from the field theory side. For example, in [64] they study

the infinite momentum frame CFT dual to a boosted brane and find evidence that the CFT

resolves the geometric singularity. In our case it would be interesting to understand the

dual four-, or possibly, the three-dimensional IR field theory, and to investigate whether it

is non-singular, and whether its ground state is unique or degenerate. And if the ground

state is unique, one would need to understand whether this means that (i) pp-singularities

are acceptable, (ii) they are not, but the dual field theory can be used to construct a ‘quan-

tum geometry’ of some sort, (iii) or if there is some kind of breakdown of gauge/gravity

duality in the extremal limit. Points (i) and (iii) are not necessarily mutually exclusive,

since one might invoke the process version of the third law to assure that the extremal

limit cannot be reached by any physical process.

5.3 Constructing solutions

This paper is part of a series of papers where explicit, non-extremal solutions of five- and

four-dimensional ungauged and gauged supergravity have been constructed using time-like

dimensional reduction in combination with special geometry [39, 42, 45]. As explained

in section 2, solutions correspond to curves on a particular submanifold of the para-

quaternionic Kähler manifold obtained by reduction to three dimensions, which satisfy

the geodesic equation deformed by a potential. As part of the solution we have obtained

an explicit expression for a stationary point of the five-dimensional scalar potential, cor-

responding to an AdS5 vacuum, for an arbitrary number of vector multiplets and general

FI-gauging. While we initially obtain solutions to the full second order field equations,

with the corresponding number of integration constants, we have seen that once we impose

regularity of the lifted five-dimensional solution at the horizon27 the number of intergration

constants is reduced by one half, so that the solution satisfies a unique set of first order

equations. Such behaviour has been observed before, and been interpreted as a remnant

of the attractor mechanism [45].28 For our five-dimensional solutions the scalars are con-

stant, so that the only sense in which we have attractor behaviour is that the scalars sit at

a stationary point of the scalar potential. However, from the four- and three-dimensional

perspective we have scalar fields which need to exhibit a particular, fine-tuned, asymptotic

behaviour at the horizon in order to make the five-dimensional solution regular. This is

26Here ‘finite’ refers to the Euclidean metric defined by the coordinates x, y, z, which we use to refer

extensive quantities to ‘unit world volume.’
27This is done in the generic situation, that is in particular for finite temperature.
28A related idea seems to be that of ‘hot attractors’ [65].
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very similar to attractor behaviour, and the effect of reducing the number of integration

constants by one half is the same. Such universal features of scalar dynamics deserve

further study.

In the present paper we have made a very particular choice of the ansatz, which was

tailored to obtaining the five-dimensional lift of the four-dimensional Nernst branes of [11].

In the future we will study systematically other choices, which will lead to other and more

general solutions. Already in [11] a four-dimensional magnetic solution was found, and we

expect that it is possible to obtain dyonic solutions as well. It would also be interesting to

revisit the issue of embeddings into ten- and eleven-dimensional supergravity.
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A Rewriting the scalar potential

Our goal in this appendix is to obtain a workable expression for the scalar potential V3

appearing in (2.9). Let us concentrate on the term (cyyy)(cy)−1|ij . This is to be interpreted

as the matrix inverse to (cyyy)−1(cy)ij in the sense that

(cyyy)(cy)−1|ij (cy)jk
cyyy

= δik. (A.1)

Now, using the expression (2.12) for ĝij(y):

ĝij(y) =
3

2

(
(cy)ij
cyyy

− 3

2

(cyy)i(cyy)j
(cyyy)2

)
,

we have

δik = (cyyy)(cy)−1|ij
[

2

3
ĝjk(y) +

3

2

(cyy)j(cyy)k
(cyyy)2

]
. (A.2)

We now introduce the dual scalars yi via

∂µyi := ĝij(y)∂µy
j , yi =

3

4

(cyy)i
cyyy

= −ĝij(y)yj .

Hence, (A.2) becomes

δik = (cyyy)(cy)−1|ij
[

2

3
ĝjk(y) +

8

3
yjyk

]
. (A.3)
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In other words, the quantity (cyyy)(cy)−1|ij is just the inverse of the term in square brackets

in (A.3). Thankfully, the latter is easily invertible. Indeed, we find

3

2

[
ĝij(y) + 2yiyj

]
· 2

3
[ĝjk(y) + 4yjyk] = δik .

Hence we can rewrite

(cyyy)(cy)−1|ij =
3

2
ĝij(y) + 3yiyj , (A.4)

so that the scalar potential term in (2.9) becomes

V3 = 3
[
ĝij(y) + 4yiyj

]
gigj . (A.5)

B Quasi-local computation of conserved charges

We use the form of our five-dimensional line element given in (3.41), which can be rewrit-

ten as

ds2 =
l2dr2

r2W
+
r2

l2

(
ηµν +

r4
+

r4
uµuν

)
dxµdxν , (B.1)

where uµ = (ut, 0, 0, uz). Note that uµu
µ = −1 so we can interpret this as a velocity

vector. Following the procedure of [54] we want to calculate the quasilocal stress tensor

Tµν associated with the metric (B.1).

B.1 The quasilocal stress tensor

Given a timelike surface ∂Mr at constant radial distance r we define the metric γµν on

∂Mr via the ADM-like decomposition

ds2 = N2dr2 + γµν(dxµ +Nµdr)(dxν +Nνdr). (B.2)

We define the extrinsic curvature Θµν via

Θµν := −1

2
(∇µn̂ν +∇ν n̂µ) , (B.3)

where n̂µ is the outward-pointing normal vector to the surface ∂Mr. For solutions asymp-

toting to AdS5 the procedure of [54] tells us that the quasilocal stress tensor is then

given by29

Tµν = Θµν(γ)−Θ(γ)γµν −
3

l
γµν −

l

2
Gµν(γ), (B.4)

where Θ = γµνΘµν is the trace of the extrinsic curvature, and Gµν is the Einstein tensor

for γµν .

For the case at hand we see that the metric (B.1) decomposes according to (B.2) with

N2 =
l2

r2W
, Nµ = 0, γµν(r) =

r2

l2

(
ηµν +

r4
+

r4
uµuν

)
. (B.5)

29We remind the reader that in this paper we work in units where 8πG = 1.

– 40 –



J
H
E
P
1
1
(
2
0
1
6
)
1
1
4

The unit normal vector n̂µ to a surface of constant r is given by

n̂µ =
r

l
W 1/2(r)δµ,r,

from which we find the extrinsic curvature

Θµν = − r
2l

(
1−

r4
+

r4

)1/2

∂rγµν = −r
2

l3

(
1−

r4
+

r4

)1/2(
ηµν −

r4
+

r4
uµuν

)
. (B.6)

In order to calculate the trace of this we need an expression for the inverse metric γµν ,

which is given by

γµν =
l2

r2

[
ηµν −

r4
+

r4

(
1−

r4
+

r4

)−1

uµuν

]
, (B.7)

where uµ = ηµνuν , etc. This can be used to compute the trace of the extrinsic curvature

Θ = Θµνγ
µν = −2

l

(
1−

r4
+

r4

)1/2
[

2 +
r4

+

r4

(
1−

r4
+

r4

)−1
]
. (B.8)

Putting all this together, and noting that Gµν(γ) = 0, we can use (B.4) to find the resulting

gravitational stress-energy tensor induced on the boundary ∂Mr,

Tµν =
r4

+

2l3r2
(ηµν + 4uµuν) + . . . , (B.9)

where the dots represent terms which are subleading in the limit r →∞.

B.2 Mass, momentum and conserved charges

The quasilocal stress tensor (B.9) can be used to compute well-defined mass and other

conserved charges for the spacetime (B.1). Let Σ be a spacelike hypersurface in ∂M =

limr→∞ ∂Mr and make the ADM decomposition

γµνdx
µdxν = −N2

Σdt
2 + σab(dx

a +Na
Σdt)(dx

b +N b
Σdt), (B.10)

where {xa} are coordinates spanning Σ, which has metric σab. Let Uµ be the timelike unit

normal to Σ. Then for any isometry of γµν , which we take to be generated by a Killing

vector ξ, we can define a conserved charge Qξ by

Qξ =

∫
Σ
dd−1x

√
σ (UµTµνξ

ν) . (B.11)

In particular, the mass of the solution is given by taking ξ = ∂t, whilst the momentum in

the direction xa is given by taking ξ = ∂a.

For the boosted black brane we can make the ADM decomposition (B.10) of the

metric (B.5) with

σxx = σyy =
r2

l2
, σzz =

r2

l2

(
1 +

r4
+

r4
u2
z

)
,

N z
Σ =

r4
+

r4
uzut

(
1 +

r4
+

r4
u2
z

)−1

,

N2
Σ =

r8
+

l2r6
u2
zu

2
t

(
1 +

r4
+

r4
u2
z

)−1

+
r2

l2

(
1−

r4
+

r4
u2
t

)
.

– 41 –



J
H
E
P
1
1
(
2
0
1
6
)
1
1
4

The timelike unit normal to Σ has components

U t = − l
r

(
1 +

r4
+

r4
u2
z

)1/2(
1−

r4
+

r4

)−1/2

,

U z =
lr4

+

r5
utuz

(
1 +

r4
+

r4
u2
z

)−1/2(
1−

r4
+

r4

)−1/2

.

Using these expressions, as well as the components of the quasilocal stress ten-

sor (B.9), we can calculate the mass and linear momentum associated with the boosted

black brane (B.1). Taking ξ = ∂t and ξ = ∂z we obtain the expressions (3.56) and (3.57)

for the mass and linear momentum respectively.

Finally, let us add some further comments on the fact that r+, and hence temperature,

is a physical parameter despite that it can be absorbed by rescaling coordinates in (3.41).

From (B.11), (3.53), (3.58) it is manifest that all quantities entering into the first law are

geometric quantities (norms of vectors fields, and integrals of functions over submanifolds

using the induced metric) which are independent of the choice of coordinates. Applying

the coordinate transformation R = r+r, T̃ = t/r+, X = x/r+, Y = y/r+, Z = z/r+ to these

expressions, it is straightforward to see that the parameter r+ is not eleminated, but scaled

out as an overall prefactor. In particular

∂t = r+∂T , ∂z = r+∂Z ,

while

V3 =

∫
Σ
dxdydz = r3

+

∫
Σ
dXdY dZ

so that irrespective of our choice of coordinates T ∼ r+, S ∼ r3
+, M ∼ r4

+ and Pz ∼ r4
+.

It is precisely this r+-dependence of the thermodynamic quantities that gives rise to the

correct temperature/entropy term in the first law. Put differently, when working in the

rescaled coordinates (T̃ , R,X, Y, Z) the parameter r+ is hidden in the choice of the vector

field ξ and the volume V3.

C Euclideanisation of the boosted black brane

As is well known from the study of Kerr black holes, obtaining the Hawking temperature

by Euclidean methods is much more subtle for non-static spacetimes. For this reason, we

find it useful to give an explicit demonstration of how this works in the case of boosted

(non-static) black branes. The treatment of the linear case given below will be parallel to

the analysis of the Kerr black hole in [49].

A Euclidean continuation of the boosted black brane solution (3.41) can be obtained

by setting t = iτ and uz = iβ, and taking τ and β to be real. Observe that following the

standard treatment of the Kerr solution, we do not only continue time but also the ‘boost

parameter’ w = −uz/ut, which is analogous to the angular momentum parameter of the

Kerr solution in Boyer-Lindquist coordinates.
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The Euclidean section of the boosted black brane in (3.41) is then

ds2
(5)E =

l2

r2

dr2

W
+
r2

l2
W (ut dτ + βdz)2 +

r2

l2
(
(−β dτ + ut dz)2 + dx2 + dy2

)
.

We now explore the near horizon geometry by adapting a similar calculation used to exam-

ine the Kerr-Newman solution in [66]. Introducing the new radial variable R by R2 = r−r+,

the function W has the expansion

W =
4

r+
R2 + · · · ,

around the horizon. Expanding up to order R2, the metric takes the form

ds2
(5)E,NH =

l2

r+

(
1− R2

r+

)
dR2 +

4r+

l2
R2dχ2 +

r2
+ + 2r+R

2

l2
(dz̃2 + dx2 + dy2) ,

where we have replaced the coordinates τ and z by the new coordinates

χ = utτ + βz , z̃ = utz − βτ .

We remark that, in contradistinction to the Kerr-Newman solution discussed in [66], (i) the

coordinate z̃ is linear rather than angular, i.e. we do not need to impose an identification on

it; and (ii) the coordinate χ is well defined, since ut and β are constant, so that utdτ +βdz

is exact. The horizon is at R = 0. The coordinates x, y, z̃ parametrize a three-dimensional

plane with a metric which is flat up to corrections of order R2. This part of the metric is

clearly regular for R→ 0. The variables R and χ parametrize a surface with metric

ds2
Cone =

l2

r+

([
1− R2

r+

]
dR2 + 4R2 r

2
+

l4
dχ2

)
,

which is, up to a subleading term of order R2, the metric of a cone with apex at R = 0.

Thus χ is an angular variable and the surface parametrized by R and χ is topologically a

disk. Imposing the absence of a conical singularity at R = 0 fixes the periodicity of χ to be

χ ' χ+ 2π
l2

2r+
.

Since the coordinate z̃ is linear (has no identifications) we can determine the periodicities

of τ and z from

(χ, z̃) '
(
χ+ 2π

l2

2r+
, z̃

)
⇔ (τ, z) ' (τ +A, z +B) ,

with

A = 2π ut
l2

2r+
, B = 2π β

l2

2r+
.

The Hawking temperature T is read off from the periodicity of τ by τ ' τ + T−1, so that

πT =
r+

l2ut
,

which agrees with the result found by computing the surface gravity (3.54).
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To interpret the periodicity of z, remember that the boost velocity at the horizon is

w = −uz
ut

= −i β
ut
.

Thus

B = iw
1

T
,

so that the identifications take the form

(τ, z) '
(
τ + T−1, z + iwT−1

)
,

which is analogous to the identification for the Euclidean Kerr solution, see for example [66].

D Five-dimensional tidal forces

In this appendix we shall construct the frame fields describing the PPON associated to an

observer freely falling towards the five-dimensional extremal black brane in (3.47). The

frame-dragging effects associated to the brane’s boost in the z direction mean that an

observer who starts falling radially inward from infinity will acquire a velocity in the z

direction. We want to pick our first frame field to be the vector field generating the

geodesic motion of the observer. To do this, we follow the procedure of [15, 16, 67] and

introduce the frame field

(ê0)µ =

(
d

dτ

)µ
= ṫ (∂t)

µ + ż (∂z)
µ + ṙ (∂r)

µ , (D.1)

where τ is the proper time of our observer or, equivalently, the affine parameter for the

geodesic motion, and a dot denotes differentiation with respect to τ . Note that for sim-

plicity we consider an observer who is not moving in the x and y directions.

It is clear that to obtain ê0, we must first obtain ṫ, ż and ṙ. To do this, we recall that

associated to each of the Killing vector fields ∂t, ∂z, ∂x, ∂y of (3.47) there is an integral of

motion. These conserved quantities are the energy and momenta,

E = −gtµẋµ =

(
r2

l2
− ∆

r2l2

)
ṫ− ∆

r2l2
ż , (D.2)

pz = gzµẋ
µ =

(
r2

l2
+

∆

r2l2

)
ż +

∆

r2l2
ṫ , (D.3)

px = gxµẋ
µ =

r2

l2
ẋ = 0 , (D.4)

py = gyµẋ
µ =

r2

l2
ẏ = 0 . (D.5)

Defining the quantities

α :=
r2

l2
+

∆

r2l2
, β :=

r2

l2
− ∆

r2l2
, γ :=

∆

r2l2
,
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we can simultaneously solve (D.2) and (D.3) to find

ṫ =
l4

r4
(αE + γpz) , (D.6)

ż =
l4

r4
(βpz − γE) . (D.7)

Notice that both of these velocities diverge as we approach the horizon at r+ = 0. This

divergence tells us that this particular coordinate system is not valid beyond the horizon.

However, for our current purposes, this is not a problem as we are only interested in tidal

forces close to, but outside, the horizon. In order to write down ê0, we still need to obtain

ṙ. For this we use that gµν ẋ
µẋν = −1 for a timelike observer, which is equivalent to

ṙ = −
√
−r

2

l2
+
l2A

r2
(E − V+) (E − V−) , (D.8)

where we’ve taken the negative root to represent a radially infalling observer and V± =
1
α

(
− γpz ± r2pz

l2

)
are the roots of αE2 + 2γEpz − βp2

z = 0. Notice that had we instead

picked the positive root in (D.8), describing an outgoing timelike geodesic, ṙ will become

complex for sufficiently large r; this indicates that geodesic cannot reach the boundary but

in fact hits a turning point and returns to the bulk [68–70]. For this reason, we will only

be interested in near horizon tidal forces.

We can now substitute the above expressions for ṫ, ż, ṙ into (D.1) to obtain the following

expression for the first frame field

(ê0)µ =
l4

r4
(αE + γpz) (∂t)

µ +
l4

r4
(βpz − γE) (∂z)

µ

−
√
−r

2

l2
+ α

l2

r2
(E − V+) (E − V−) (∂r)

µ . (D.9)

Whilst the frame field ê0 correctly describes the parallel propagation, it is not correctly

normalised. To form an orthonormal basis of frame fields we can apply Gram-Schmidt

procedure to the set of linearly independent frame fields êa = {ê0, ê1 = ∂r, ê2 = ∂z, êi = ∂i}
where i = x, y. This was done using Maple and returns a basis of frame fields that we shall

denote {ea} without the hat. These still correctly characterise the parallel propagation but

at the same time are fully orthonormal in the sense that they satisfy gµν (ea)
µ (eb)

ν = ηab.

The full expressions for the individual frame fields {ea} are quite complicated and not

especially illuminating so we omit them here. However, we can then use the frame fields

as transformation matrices to obtain the components of the Riemann tensor as measured

in the PPON via

R̃abcd = Rµνρσ (ea)
µ (eb)

ν (ec)
ρ (ed)

σ . (D.10)

The non-zero components of the PPON Riemann tensor are again rather complicated and

so rather than provide full expressions, we instead list their scaling behaviour in the near

horizon regime in table 3.
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Component Near horizon behaviour

R̃0101 const

R̃0102 r−13

R̃0112 r−13

R̃0202 r−13

R̃0212 r−13

R̃0i0j δijr
−6

R̃0i1j δijr
−6

R̃0i2j δijr
−6

R̃1212 r−13

R̃1i1j δijr
−6

R̃1i2j δijr
−6

R̃2i2j δijr
−6

R̃ijkl r−3 (δilδjk − δikδjl)

Table 3. Near horizon scaling behaviour of the non-zero components of the five-dimensional Rie-

mann tensor, R̃abcd, as measured in the PPON.

E Four-dimensional tidal forces

To investigate the tidal forces present for the four-dimensional extremal Nernst brane

solutions of [11] we must treat the cases with finite and infinite four-dimensional chemical

potential separately as we have done throughout the paper. These have metrics given

in (4.3) and (4.19) respectively. We shall proceed in a similar fashion to appendix D except

for the assumption that the infalling observer is now moving only in the radial direction

and has no transverse momentum in either the x or y directions. This is slightly different

to the analysis of [16] and means the tangent vector for the timelike geodesic on which our

radially infalling observer is travelling is given by

Tµ =
(
ṫ, ṙ,~0

)
,

where dot denotes differentiation with respect to the observer’s proper time, τ .

E.1 A > 0 tidal forces

The extremal version of (4.3) is given by

ds2
A>0, Ext =

r

l

(
− r2

l2
(
1 + ∆

Ar4

)1/2dt2 +
l2
(
1 + ∆

Ar4

)1/2
r2

dr2

+
r2

l2

(
1 +

∆

Ar4

)1/2 (
dx2 + dy2

))
. (E.1)

The energy is again an integral of motion:

E = −gttṫ =
r3

l3
(
1 + ∆

Ar4

)1/2 ṫ ⇒ ṫ =
l3E

(
1 + ∆

Ar4

)1/2
r3

.
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For a timelike geodesic we have

gµνT
µT ν = −1 ⇒ ṙ = − 1

l1/2r

√√√√l3E2 − r3(
1 + ∆

Ar4

)1/2 ,
where we pick the negative square root to represent an observer falling radially inwards.

We could equally well pick the positive root and consider an outgoing geodesic but ṙ

will become complex for large r, meaning the geodesic encounters a turning point and is

reflected back into the bulk. This is reminiscent of the situation in appendix D and in

fact, this inability of timelike geodesics to reach the boundary is an example of a property

that hyperscaling-violating Lifshitz spacetimes can inherit from their parent Anti de-Sitter

spacetimes. All of this means that we need only focus on the ingoing observer and near

horizon tidal forces. Another similarity with appendix D is the divergence of ṫ and ṙ as

r → 0; again this indicates the coordinates are only valid up the horizon which is absolutely

fine for the analysis of tidal forces.

Next we align the frame field30 e0 with the vector field d
dτ responsible for generating

the integral curve along which the observer is moving:

(e0)µ =

(
d

dτ

)µ
= ṫ∂µt + ṙ∂µr

=
l3E

(
1 + ∆

Ar4

)1/2
r3

∂µt −
1

l1/2r

√√√√l3E2 − r3(
1 + ∆

Ar4

)1/2∂µr .
The observer is moving in the (t, r) directions and so there are two frame fields associated

to this: e0 and e1. Since the observer isn’t moving in any of the xi (i ≥ 2) directions, the

frames ei for i ≥ 2 are just given by the square roots of the inverse metric components i.e.

(ei)
µ =

l

r
(
1 + ∆

Ar4

)1/4∂µi .
It remains to find the frame e1 such that the {ea} form a PPON. We have picked e0 to

describe the parallel propagation and so we just need a second frame field, e1, that is

orthonormal to both e0 and ei, i ≥ 2. It follows from simple linear algebra that

(e1)µ = −
l3/2

(
1 + ∆

Ar4

)1/2
r3

√√√√l3E2 − r3(
1 + ∆

Ar4

)1/2∂µt +
lE

r
∂µr .

It is interesting to note that in the case of the static four-dimensional metric, the frame

fields are already orthonormal whereas in appendix D, where the five-dimensional metric

is non-static, this is not the case and we had to perform an additional Gram-Schmidt

procedure at this point.

30We use unhatted frame fields in four-dimensions to distinguish from their hatted cousins in five-

dimensions.
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Component Near horizon behaviour

R̃0101 r

R̃0i0j δijr
−4

R̃0i1j δijr
−4

R̃1i1j δijr
−4

R̃ijkl r (δilδjk − δikδjl)

Table 4. Near horizon scaling behaviour of the non-zero components of the four-dimensional A > 0

Riemann tensor, R̃abcd, as measured in the PPON.

Component Near horizon behaviour

R̃0101 r

R̃0i0j δijr
−4

R̃0i1j δijr
−4

R̃1i1j δijr
−4

R̃ijkl r3 (δilδjk − δikδjl)

Table 5. Near horizon scaling behaviour of the non-zero components of the four-dimensional A = 0

Riemann tensor, R̃abcd, as measured in the PPON.

We next use Maple to find the components of the Riemann tensor in a coordinate

basis with lowered indices, Rµνρσ, and then multiply by frame fields to obtain the local

tidal forces felt by the observer as in (D.10). We again omit the full expressions and instead

list in table 4 the scaling behaviour of the non-zero components in the near horizon regime.

E.2 A = 0 tidal forces

Here we repeat the same procedure as above for the A = 0 extremal metric. The extremal

version of (4.19) is given by

ds2
A=0, Ext = − r5

∆1/2l3
dt2 +

∆1/2l

r3
dr2 +

∆1/2r

l3
(
dx2 + dy2

)
. (E.2)

The resulting nonzero components of the Riemann tensor as measured in the PPON are

given in table 5.

E.3 Consistency with existing classification

The near horizon scaling behaviours of the PPON Riemann tensor components in tables 4

and 5 agree. This is consistent with the fact that the parameter A only affects the asymp-

totic geometry, which is why the metrics (E.1) and (E.2) both take the same form in

the small r limit: specifically, a hyperscaling-violating Lifshitz metric with parameters

(z, θ) = (3, 1) as observed in [11].

It is worthwhile to check the consistency of the results of this appendix with the

complete classification of hyperscaling-violating Lifshitz singularities obtained in [16]. It

can be shown that our (z, θ) = (3, 1) geometry is equivalent to a (n0, n1) = (10, 4) geometry
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in their notation. This would place our near horizon metric into Class IV of the analysis

in [16], making it both consistent with the Null Energy Condition and indicative of a null

curvature singularity (infinite tidal forces) at r = 0.

F Normalization of the vector potential

For the four-dimensional chemical potential µ ∼ At(r = ∞), to be uniquely defined, it is

crucial that the vector potential is normalized such that At(r+) = 0. While this is widely

used and the reason well known, see for example [2, 44], we would like to review the full

argument here for completeness.

Assume that we are given a static space-time which has a Killing horizon with Killing

vector field ξ. If the norm of ξ has a simple zero at the horizon, in other words, if the

solution is non-extremal, then the space-time can be continued analytically to a space-

time which contains a bifurcate horizon [43]. This means that the horizon has a spatial

section Σ0 where the Killing vector field ξ vanishes. If A is a well-defined one-form on this

space-time, then A(ξ) = 0 on Σ0. Since the horizon is generated by the flow of the Killing

vector field ξ, and if assuming that the one-form A is invariant under ξ, LξA = 0 (where

Lξ denotes the Lie derivative), it follows that A(ξ) = 0 on the whole horizon. Outside the

horizon we can define a time coordinate t, such that ξ = ∂t. Then the horizon limit of the

component At of the one-form is At → A(ξ) = 0.

In our application, we have non-extremal solutions with Killing horizons, generated by

ξ, given by ξ = ∂t outside the horizon. Moreover not only the metric but also the vector

field is assumed static (invariant under t), and therefore At has to vanish on the horizon.

By continuity this continues to hold in the extremal limit.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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