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1 Introduction

In recent papers [1–3] there was initiated the systematic study of the models of deformed

N = 4 supersymmetric mechanics with SU(2|1) as a substitute of the standard “flat”

N = 4, d = 1 superalgebra. Earlier examples of SU(2|1) supersymmetric d = 1 models have

been pioneered in [4–6]. The higher-dimensional systems with curved rigid supersymmetry

based on the supergroup SU(2|1) and its central extension were studied in [7–10].

The centrally-extended superalgebra ŝu(2|1) [1–3] is spanned by the fermionic gener-

ators Qi and Q̄i = (Qi)† , i = 1, 2, satisfying

{Qi, Q̄k} = 2mIik + 2δik (H −mF ) , {Qi, Qk} = {Q̄i, Q̄k} = 0 . (1.1)

The generator H = H† commutes with all other generators and can be interpreted as an

operator central charge. The SU(2)int generators Iik = (Iki )
† and the U(1)int generator

F = F †, [
Iij , I

k
l

]
= δkj I

i
l − δilI

k
j ,

[
Iij , F

]
= 0 , (1.2)
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possess the non-vanishing commutators with supercharges

[
I ij , Q

k
]
= δkjQ

i − 1

2
δijQ

k ,
[
Iij , Q̄l

]
= −δilQ̄j +

1

2
δijQ̄l , (1.3)

[
F,Qk

]
=

1

2
Qk ,

[
F, Q̄l

]
= −1

2
Q̄l . (1.4)

Furthermore, the su(2|1) superalgebra has the automorphism group SU(2)ext with the

generators T i
j = (T k

i )
† which rotate the supercharges in the precisely same manner as the

internal SU(2)int generators I
i
j do:

[
T i
j , Q

k
]
= δkjQ

i − 1

2
δijQ

k ,
[
T i
j , Q̄l

]
= −δilQ̄j +

1

2
δijQ̄l . (1.5)

The SU(2)ext generators rotate, in the same way, the indices of the SU(2)int generators I
i
j ,

so these two SU(2) groups form a semi-direct product

[
T i
j , I

k
l

]
= δkj I

i
l − δilI

k
j . (1.6)

In [1, 2] the SU(2|1) invariant one-particle d = 1 models were constructed,

proceeding from the superfield formalism based on the superspace with the coor-

dinates
(
t, θk, θ̄

k
)

θ̄i = (θi). These coordinates are related to the SU(2|1) coset

representative exp
{
itH + ϑkQ

k + ϑ̄kQ̄k

}
via the substitutions ϑi =

(
1 + 2

3 mθkθ̄
k
)
θi.

ϑ̄i =
(
1 + 2

3 mθkθ̄
k
)
θ̄i. The fermionic SU(2|1) transformations are realized on them as

δt = i
(
ǫk θ̄

k + ǭk θk

)
, δθi = ǫi + 2m ǭk θk θi , δθ̄i = ǭi − 2mǫk θ̄

k θ̄i . (1.7)

As a further step, in [3] there was considered the “minimal” complex harmonic coset

{H,Q±, Q̄±, F, I±±, I0, T±±, T 0}
{F, I++, I0, I−− − T−−, T 0} ∼

(
tA, θ

±, θ̄±, w±
i

)
≡ ζH , (1.8)

where

I++ ≡ I12 , I−− ≡ I21 , I0 ≡ I11 − I22 = 2I11 , (1.9)

T++ ≡ T 1
2 , T−− ≡ T 2

1 , T 0 ≡ T 1
1 − T 2

2 = 2T 1
1 , (1.10)

Q+ ≡ Q1 , Q− ≡ Q2 , Q̄− ≡ Q̄1 , Q̄+ ≡ −Q̄2 . (1.11)

This SU(2|1) harmonic approach, as a deformation of the analogous formalism in N = 4 su-

persymmetric mechanics [11], have provided additional opportunities to build new SU(2|1)
models, in particular those associated with the multiplet (4,4,0) and its “mirror” coun-

terpart. As was pointed out in [1–3] (see also [12]), many issues of N = 4 supersymmetric

mechanics still await their SU(2|1) generalization. The list includes the N = 4 super-

symmetric Calogero-like systems, the gauging procedure in superspace, coupling to the

background gauge fields, etc. In the framework of N = 4 supersymmetric mechanics, all

these topics were found to be tightly interrelated. E.g., the Wess-Zumino (WZ) type actions

describe the interaction of the proper d = 1 supermultiplets with external gauge fields [11].

– 2 –
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The actions of the same type describe semi-dynamical degrees of freedom [14, 15], the use of

which proved to be of pivotal importance for constructing the many-particle supersymmet-

ric d = 1 systems [13] (see also the review [16]). Additional important technical ingredients

of the N = 4 model-building which essentially exploit the WZ type d = 1 actions are the

pure gauge “topological” multiplet and the superfield gauging procedure relating diverse

models [17, 18].

In this paper we construct new models of the N = 4 deformed supersymmetric me-

chanics that make use of a few different types of SU(2|1) supermultiplets: dynamical,

semi-dynamical and pure gauge supermultiplets. The outcome are new SU(2|1)-invariant
one-particle model with spinning degrees of freedom, as well as new SU(2|1) superextension
of the Calogero-Moser multi-particle system.

The harmonic superspace (1.8) is not directly applicable for tackling these tasks. The

main problem roots in the algebra of the covariant constraints to be imposed on the rel-

evant harmonic superfields Ψ for singling out various irreducible SU(2|1) multiplets. The

Grassmann analyticity conditions in the harmonic superspace (1.8) (specifically, D+Ψ = 0,

D̄+Ψ = 0) necessarily entail the harmonic condition (specifically, D++Ψ = 0). However,

such harmonic constraints turn out to be too strong if we wish to describe some supermul-

tiplets in the harmonic approach, e.g. the “topological” gauge multiplet which is the main

object of the d = 1 gauging [17, 18] efficiently exploited in refs. [13–16]. As we will see, the

only way around is to pass to an extended SU(2|1) harmonic superspace involving two sets

of harmonic variables: those associated with the group SU(2)int and those parametrizing

the external automorphism group SU(2)ext.

In section 2 we introduce new harmonic superspace with two sets of harmonic variables,

including the standard (unitary) harmonics on SU(2)ext. As a result, we gain an opportu-

nity to perform a gauging procedure and define interacting dynamical and semi-dynamical

multiplets. In section 3 we construct the system of dynamical (1,4,3) multiplet interacting

with a semi-dynamical (4,4,0) multiplet. This coupling is used to define the WZ term

for the (4,4,0) multiplet, which, as was noticed in [3], is impossible in the framework of

the harmonic superspace (1.8). The gauging procedure relevant to this SU(2|1) invariant

system is described in section 5. In section 6 we present a matrix generalization of the

SU(2|1) invariant model with dynamical, semi-dynamical and pure gauge supermultiplets.

When reduced on shell, it describes SU(2|1) supersymmetrization of the Calogero-Moser

multi-particle system [19–22], with the mass specified by the deformation parameter m of

the su(2|1) algebra. Section A contains the concluding remarks. In appendix we present

the “master” SU(2|1) harmonic formalism which yields the settings developed in [3] and

in section 2 of the present paper upon two different reductions with respect to the extra

harmonic variables.

2 SU(2|1) harmonic superspace revisited

As opposed to the “minimal” harmonic coset (1.8), we will use now the coset

ζ̂H =
(
tA, θ

±, θ̄±, u±i , z
++

)
∼ {H,Q±, Q̄±, F, I±±, I0, T±±, T 0}

{F, I++, I0, T 0} , (2.1)

– 3 –
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where the variables

u±i , u+iu−i = 1 , u+i u
−
k − u+k u

−
i = εik (2.2)

are the standard unitary harmonics on the coset SU(2)ext/U(1)ext ∼ S2 [23], while the coor-

dinate z++ is associated with the generator I−−. The elements of this coset are defined as

gH = ei(ξT
+++ξ̄T−−) exp

{
z++I−−

}
exp

{
itAH − θ+Q− + θ̄+Q̄−

}
exp

{
θ−Q+ − θ̄−Q̄+

}
,

(2.3)

where ei( ξτ
+++ξ̄τ−−) = (u±i ), τ

±± = 1
2(τ

1± iτ2), τp, p = 1, 2, 3, are the Pauli matrices, and

we use the notations (1.9), (1.10), (1.11).

The relation with the standard SU(2|1) superspace coordinates is given by

tA = t+ i
(
θ+θ̄− + θ−θ̄+

)
,

θ− = θiw−
i , θ+ = θiw+

i

(
1 +mθkw−

k θ̄
lw+

l

)
,

θ̄− = θ̄kw−
k , θ̄+ = θ̄kw+

k

(
1−mθkw+

k θ̄
lw−

l

)
,

(2.4)

where w±
i are the non-unitary harmonics which define the “minimal” complex harmonic

coset (1.8) and are related to the harmonics (2.2) as [24, 25]

w+
i = u+i + z++u−i , w−

i = u−i , w+
i w

−
k − w+

k w
−
i = εik . (2.5)

The relations (2.4) imply [3]

t = tA − i
(
θ+θ̄− + θ−θ̄+

)
,

θiw−
i = θ−, θiw+

i = θ+
(
1−mθ−θ̄+

)
, θ̄kw−

k = θ̄−, θ̄kw+
k = θ̄+

(
1 +mθ+θ̄−

)
.
(2.6)

The fermionic SU(2|1) transformations induced by the left shifts of the coset represen-

tative (2.3) are written as

δtA = 2i
(
ǫ−θ̄+ − ǭ−θ+

)
,

δθ+ = ǫ+ + ǫ−
(
z++ −mθ+θ̄+

)
, δθ̄+ = ǭ+ + ǭ−

(
z++ +mθ+θ̄+

)
,

δθ− = ǫ− + 2m ǭ−θ−θ+, δθ̄− = ǭ− + 2mǫ−θ̄−θ̄+,

δz++ = m
(
ǫ+θ̄+ + ǭ+θ+

)
+mz++

(
ǫ−θ̄+ + ǭ−θ+

)
,

δu±i = 0 , (2.7)

where

ǫ± = ǫiu±i , ǭ± = ǭku±k . (2.8)

It follows from the transformations (2.7) that the SU(2|1) harmonic superspace contains

an analytic harmonic subspace parametrized by the reduced coordinate set,

ζ̂A =
(
tA, θ̄

+, θ+, u±i , z
++

)
, (2.9)

which is closed under the action of SU(2|1). It can be identified with the supercoset

ζ̂A ∼ {H,Q±, Q̄±, F, I±±, I0, T±±, T 0}
{Q+, Q̄+, F, I++, I0, T 0} . (2.10)

– 4 –
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The transformations (2.7) rewritten through harmonics w±
i defined in (2.5) take just the

form given in [3]

δtA = 2i
(
η−θ̄+ − η̄−θ+

)
,

δθ+ = η+ −mη−θ+θ̄+ , δθ̄+ = η̄+ +mη̄−θ+θ̄+ ,

δθ− = η− + 2mη̄−θ−θ+, δθ̄− = η̄− + 2mη−θ̄−θ̄+,

δw+
i = m

(
η+θ̄+ + η̄+θ+

)
w−
i , δw−

i = 0 ,

(2.11)

where η± = ǫiw±
i , η̄

± = ǭiw±
i . The extra coordinate z++ transforms in this basis as

δz++ = m
(
η+θ̄+ + η̄+θ+

)
. (2.12)

Applying the routine coset techniques to the coset (2.1) (see, for example, [1]) we derive

the following expressions for the covariant derivatives

DtA = ∂ tA =
∂

∂tA
, (2.13)

D− = − ∂

∂θ+
− 2i θ̄−∂tA −mθ̄−θ−

∂

∂θ−
+mθ̄+

∂

∂z++
+mθ̄−

(
Ĩ0 + 2F̃

)
,

D̄− =
∂

∂θ̄+
− 2i θ−∂tA +mθ−θ̄−

∂

∂θ̄−
−mθ+

∂

∂z++
−mθ−

(
Ĩ0 − 2F̃

)
,

(2.14)

D+ =
∂

∂θ−
−mθ̄−Ĩ++ ,

D̄+ = − ∂

∂θ̄−
+mθ−Ĩ++ ,

(2.15)

D−−
z =

∂

∂z++
+ 2i θ−θ̄−∂tA +m

(
θ+θ̄− − θ−θ̄+

) ∂

∂z++
+ θ−

∂

∂θ+
+ θ̄−

∂

∂θ̄+
− 2mθ−θ̄−F̃ ,

(2.16)

D−− = ∂−−
u + 2i θ−θ̄−∂tA +m

(
θ+θ̄− − θ−θ̄+

) ∂

∂z++
+ θ−

∂

∂θ+
+ θ̄−

∂

∂θ̄+
− 2mθ−θ̄−F̃ ,

(2.17)

D++ = ∂++
u + 2i θ+θ̄+∂tA +

(
θ+ +mθ+θ̄+θ−

) ∂

∂θ−
+
(
θ̄+ −mθ+θ̄+θ̄−

) ∂

∂θ̄−

−z++∂0
u − (z++)2

∂

∂z++

+z++
(
D0 + Ĩ0

)
− 2mθ+θ̄+F̃ −m

(
θ−θ̄+ − θ+θ̄−

)
Ĩ++ ,

(2.18)

D0 = ∂0
u + 2z++ ∂

∂z++
+

(
θ+

∂

∂θ+
+ θ̄+

∂

∂θ̄+

)
−
(
θ−

∂

∂θ−
+ θ̄−

∂

∂θ̄−

)
. (2.19)

The partial harmonic derivatives in these expressions are defined as

∂±±
u = u±i

∂

∂u∓i
, ∂0

u = u+i
∂

∂u+i
− u−i

∂

∂u−i
, [∂++

u , ∂−−
u ] = ∂0

u , [∂0
u, ∂

±±
u ] = ± 2∂±±

u ,

(2.20)

and F̃ , Ĩ0, Ĩ++ are matrix parts of the generators F , I0, I++ properly acting on the matrix

indices of the superfields and the operators. In particular, note the U(1) assignments

Ĩ0D± = ∓D± , Ĩ0D̄± = ∓D̄± , F̃D± = −1

2
D± , F̃ D̄± =

1

2
D̄± , (2.21)

– 5 –
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which will be used below. Note the non-zero commutation relation

[Ĩ0, Ĩ++] = 2Ĩ++ . (2.22)

Also, the notable property is

D−−
z −D−− =

∂

∂z++
− ∂−−

u . (2.23)

The covariant derivatives act on the harmonic superfields Ψ(q)(tA, θ
±, θ̄±, u±, z++) =

Ψ(q)(ζ̂H) which are assumed to transform under SU(2|1) supersymmetry in accord with

the general rules of the (super)coset realizations

δΨ(q) = m
[
2
(
ǫ−θ̄+ − ǭ−θ+

)
F̃ −

(
ǫ−θ̄+ + ǭ−θ+

)
Ĩ0 −

(
ǫ−θ̄− + ǭ−θ−

)
Ĩ++

]
Ψ(q) . (2.24)

As usual, these superfields are eigenfunctions of the harmonic U(1) charge operator D0:

D0Ψ(q) = qΨ(q) . (2.25)

We treat the dependence of Ψ(q)(tA, θ
±, θ̄±, u±, z++) on two sorts of harmonic variables in

the same way as in [25]. Namely, we assume the polynomial dependence on z++ and the

standard harmonic expansion in u± [23].

It is worth pointing out that D++Ψ(q), D+Ψ(q) and D̄+Ψ(q) transform according to the

general superfield rule (2.24), while the SU(2|1) variations of D−−Ψ(q) and D−Ψ(q), D̄−Ψ(q)

exhibit some deviations from (2.24), involving the superfield Ψ(q) itself. However, this

subtlety is harmless for our subsequent consideration.

In what follows we will mainly limit our study to the harmonic superfields subjected

to some additional covariant conditions
(
D0 + Ĩ0

)
Ψ(q) = 0 ⇒ Ĩ0Ψ(q) = −qΨ(q) , (2.26)

F̃ Ψ(q) = 0 , (2.27)

Ĩ++Ψ(q) = 0 , (2.28)

as well as the constraint (
D−−

z −D−−
)
Ψ(q) = 0 . (2.29)

The constraint (2.29) effectively eliminates the dependence of the harmonic superfields

on the variable z++

Ψ(q)(tA, θ
±, θ̄±, u±, z++) = e z++∂−−

u Φ(q)(tA, θ
±, θ̄±, u±) , (2.30)

where Φ(q) satisfies the condition

D0Φ(q) = qΦ(q) , D0 = ∂0
u + θ+

∂

∂θ+
+ θ̄+

∂

∂θ̄+
− θ−

∂

∂θ−
− θ̄−

∂

∂θ̄−
, (2.31)

as a consequence of (2.25) and has the standard expansion in u±. The superfield solu-

tion (2.30) can be rewritten as

Ψ(q)(tA, θ
±, θ̄±, u±, z++) = Φ(q)(tA, θ

±, θ̄±, w±) = Φ(q)(ζH) , (2.32)

where w±
i and ζH were defined in (2.5) and (1.8).

– 6 –
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The constraint (2.28) is the self-consistency condition for the covariant definition of

the analytic SU(2|1) superfields which live on the analytic subspace (2.9). This definition

amounts to the Grassmann-analyticity constraints

D+Ψ(q) = D̄+Ψ(q) = 0 , (2.33)

which, due to the relation

{D+, D̄+} = 2mĨ++ (2.34)

following from (2.15), necessarily imply (2.28). Similar to (2.32), the analytic harmonic

superfields are expressed as

Ψ(q)(tA, θ
+, θ̄+, u±, z++) = e z++∂−−

u Φ(q)(tA, θ
+, θ̄+, u±) = Φ(q)(tA, θ

+, θ̄+, w±) = Φ(q)(ζA) .

(2.35)

As opposed to the approach of ref. [3], the constraints (2.33) and (2.34) by no means re-

quire the condition D++Ψ(q) = 0. Of course the latter can be imposed as an independent

additional constraint, but it is not necessitated now by the Grassmann analyticity con-

ditions (2.33). The relationship between two alternative SU(2|1) harmonic approaches is

explained in appendix.

The constraint (2.27) leads to some simplification of the expressions for other covariant

derivatives. For example, on harmonic superfields obeying the constraints (2.25)–(2.29) the

covariant derivative D++ (2.18) takes the form

D++Ψ(q) = e z++∂−−
u D++Φ(q) , (2.36)

where

D++ = ∂++
u + 2i θ+θ̄+∂tA +

(
θ+ +mθ+θ̄+θ−

) ∂

∂θ−
+

(
θ̄+ −mθ+θ̄+θ̄−

) ∂

∂θ̄−
. (2.37)

The general transformation law (2.24) for the superfields subjected to the con-

straints (2.25)–(2.29) is simplified to the form

δΨ(q) = qm
(
ǫ−θ̄+ + ǭ−θ+

)
Ψ(q) . (2.38)

One more comment concerns the possibility to use, along with the harmonic basis

(u±i , z
++), the basis (w±

i , z
++) with the non-unitary harmonics. Due to the relation (2.5),

these two bases are equivalent to each other, while many formulas and constraints are

simplified in the second basis. The dictionary between these bases is as follows

∂++
u ⇒ ∂++

w + z++∂0
w − (z++)2∂−−

w , ∂−−
u ⇒ ∂−−

w ,

∂0
u ⇒ ∂0

w − 2z++∂−−
w ,

∂

∂z++
⇒ ∂

∂z++
+ ∂−−

w . (2.39)

For instance, in the (w±
i , z

++) basis the constraint (2.29) becomes just the condition of

z++ independence

∂

∂z++
Ψ(q) = 0 ⇒ Ψ(q) = Φ(q)(tA, θ

±, θ̄±, w±) . (2.40)

– 7 –
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Its SU(2|1) covariance immediately follows from the property δ ∂
∂z++ = 0 . Also, it is instruc-

tive to present the (w±
i , z

++) form of the pure harmonic part of the covariant derivative

D++ (2.18):

∂++
u − z++∂0

u − (z++)2
∂

∂z++
⇒ ∂++

w − (z++)2
∂

∂z++
. (2.41)

In construction of the superfield particle actions we will need the expressions for the

invariant integration measures over the full harmonic and the harmonic analytic super-

spaces [3]:

dζH = dw dtA dθ̄−dθ−dθ̄+dθ+
(
1 +mθ+θ̄− −mθ−θ̄+

)
(2.42)

and

dζ−−
A = dw dtA dθ̄+dθ+ , δdζ−−

A = 0 . (2.43)

3 Coupling of dynamical multiplet (1, 4, 3) with semi-dynamical

multiplet (4, 4, 0)

3.1 The multiplet (1, 4, 3)

The multiplet (1,4,3) is described by the Grassmann-even real superfield X subjected to

the conditions (2.25)–(2.29),

D0
X = 0 ,

(
D−−

z −D−−
)
X = 0 , Ĩ0X = F̃ X = Ĩ++

X = 0 , (3.1)

and additional constraints

D++
X = 0 , (3.2)

D−D+
X = 0 , D̄−D̄+

X = 0 ,
(
D−D̄+ + D̄−D+

)
X = 2mX . (3.3)

The set of the constraints (3.1)–(3.3) is invariant with respect to SU(2|1) transformations.

Indeed, δ (D−D+
X) = −2m

(
ǫ−θ̄+ + ǭ−θ+

)
D−D+

X, etc. The constraints (3.1)–(3.3) are

solved by1

X = x+ θ−ψ+ + θ̄−ψ̄+ − θ+ψ− − θ̄+ψ̄−

+ θ−θ̄−N++ + θ+θ̄+N−− + θ−θ̄+N − θ+θ̄−N̄

+ θ−θ+θ̄−Ω+ + θ̄−θ̄+θ−Ω̄+ + θ−θ+θ̄+Ω− + θ̄−θ̄+θ+Ω̄− + θ−θ̄−θ+θ̄+D .

(3.4)

Here,

N±± = N ikw±
i w

±
k , N = −i∂tAx−N ikw+

i w
−
k +mx , N̄ = i∂tAx+N ikw+

i w
−
k +mx ,

(3.5)

D = 2
(
∂tA∂tAx+m2x− i∂tAN

ikw+
i w

−
k

)
, (3.6)

ψ± = ψiw±
i , ψ̄± = ψ̄iw±

i , Ω− = mψ− , Ω̄− = mψ̄− , (3.7)

Ω+ = −2i∂tAψ
+ − 2mψ+ , Ω̄+ = 2i∂tAψ̄

+ − 2mψ̄+ (3.8)

and x(tA), N
ik = N (ik)(tA), ψ

i(tA), ψ̄i(t) = (ψi) are d=1 fields.

1Note that D−D+
X =

(

− ∂

∂θ+
− 2i θ̄−∂tA

−mθ̄−θ− ∂

∂θ−
+m θ̄+ ∂

∂z++

)

D+
X−2m θ̄− D+

X, etc., because

of (2.14) and (2.21).
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After passing to the central basis coordinates by (2.4), we observe that the θ expansion

of the superfield (3.4) in the central basis takes the form [1]

X(t, θi, θ̄
i) = x + θkψ

k − θ̄kψ̄k +mθkθ̄
k x+ θkθ̄jNkj

+
1

2
(θ)2θ̄k

(
iψ̇k + 2mψk

)
− 1

2
(θ̄)2θk

(
i ˙̄ψk − 2mψ̄k

)

+(θ)2(θ̄)2
(
1

4
ẍ+m2x

)
,

(3.9)

where the component fields x(t), N ik = N (ik)(t), ψi(t), ψ̄i(t) = (ψi) are the functions of

real time t and (θ)2 ≡ θiθ
i, (θ̄)2 ≡ θ̄iθ̄i, ẋ = ∂tAx, etc.

The fermionic SU(2|1) transformations of component fields are the following

δx = − ǫkψ
k + ǭkψ̄k ,

δψk = i ǭkẋ− ǭjN
kj −m ǭkx , δψ̄k = −i ǫkẋ− ǫjNkj −mǫkx ,

δNkj = −2i
(
ǫ(kψ̇j) + ǭ(k ˙̄ψj)

)
− 2m

(
ǫ(kψj) − ǭ(kψ̄j)

)
.

(3.10)

The free X-action reads

SX = −1

4

∫
dζH X

2 . (3.11)

Integrating in it over the θ-variables and harmonics,2 we obtain the component action [1]

SX =
1

2

∫
dt

[
ẋẋ+ i

(
ψ̄kψ̇

k − ˙̄ψkψ
k
)
−m2x2 + 2mψ̄kψ

k − 1

2
N ikNik

]
. (3.12)

Another description of the multiplet (1,4,3) is through an analytic real prepotential

V(ζA) (D+ V = D̄+ V = 0). Its pregauge freedom

δV = D++λ−− , λ−− = λ−−(ζA) , (3.13)

can be exploited to show that V(ζA) describes just the multiplet (1,4,3) (by choosing the

appropriate WZ gauge). The superfield V(ζA) is related to the superfield X in the central

basis by the harmonic integral transform

X(t, θi, θ̄
i) =

∫
dw

(
1 +mθ+θ̄− −mθ−θ̄+

)−1
V
(
tA, θ

+, θ̄+, w±
) ∣∣∣ , (3.14)

where the vertical bar
∣∣∣ means that the expressions tA = t+ i

(
θ+θ̄− + θ−θ̄+

)
, θ− = θiw−

i ,

θ̄− = θ̄kw−
k , θ

+ = θiw+
i

(
1 +mθkw−

k θ̄
lw+

l

)
, θ̄+ = θ̄kw+

k

(
1−mθkw+

k θ̄
lw−

l

)
defined in (2.4)

should be substituted into the integrand. Then, from (3.14) we can identify the fields

appearing in the WZ gauge for V with the fields in (3.4)

V(ζA) = x(tA)− 2 θ+ψi(tA)w
−
i − 2 θ̄+ψ̄i(tA)w

−
i + 3 θ+θ̄+N ik(tA)w

−
i w

−
k . (3.15)

The representation (3.14) generalizes the analogous transform in the “flat” non-deformed

N=4 supersymmetric mechanics [14, 15, 17, 18].

2We use

∫

dww+iw−

k
= 1

2
δik,

∫

dww+(i1w+i2)w−

(k1
w−

k2)
= −2

∫

dww+(i1w−i2)w+
(k1

w−

k2)
= 1

3
δ
(i1
(k1

δ
i2)

k2)
.
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The passive SU(2|1) transformation of the prepotential field V has the form

δV = −2m
(
ǫ−θ̄+ + ǭ−θ+

)
V , (3.16)

and the compensating gauge transformations for preserving the WZ gauge (3.15) are

δcompV = D++Λ−−
comp , Λ−−

comp = −
(
ǫiψj + ǭiψ̄j

)
w−
i w

−
j +

(
θ+ǭi − θ̄+ǫi

)
N jkw−

i w
−
j w

−
k .

(3.17)

Applying (3.16) and (3.17) to the WZ gauge expression (3.15), we reproduce the component

field transformations (3.10).

Note that (3.16) agrees with the general transformation law (2.24) with Ĩ++V= F̃V=0,

Ĩ0V = 2.3 Using the transformation of the harmonic measure δ dw = ∂−−
w (η+θ̄++η̄+θ+) dw

in the central basis, it is straightforward to be convinced that (3.16) just reproduces the

transformation δX = 0 for X defined in (3.14).

3.2 The multiplet (4, 4, 0) and SU(2|1) invariant WZ term

The multiplet (4,4,0) is described by the superfield Z
+(tA, θ

±, θ̄±, z++, u±) possessing the

unity U(1) charge,

D0
Z
+ = Z

+ , (3.18)

and satisfying the SU(2|1) covariant constraints
(
D−−

z −D−−
)
Z
+ = 0 , Ĩ0 Z+ = −Z

+ , F̃ Z
+ = Ĩ++

Z
+ = 0 , (3.19)

as well as

D++
Z
+ = 0 , (3.20)

D+
Z
+ = D̄+

Z
+ = 0 . (3.21)

The constraints (3.21) together with Ĩ++
Z
+ = 0 imply the superfield Z

+ to be analytic,

that is

Z
+(tA, θ

+, θ̄+, u±, z++) = Z+(tA, θ
+, θ̄+, w±) = Z+(ζA) . (3.22)

The general solution of the full set of the constraints (3.18)–(3.21) is represented by the

component expansion of the harmonic superfield (3.22) in the following form [3]

Z+(tA, θ
+, θ̄+, w±) = ziw+

i + θ+ϕ+ θ̄+φ− 2iθ+θ̄+Żiw−
i . (3.23)

The fermionic SU(2|1) transformation of Z+ is a particular case of the general trans-

formation law (2.38),

δZ+ = m
(
ǫ−θ̄+ + ǭ−θ+

)
Z
+ . (3.24)

3The superfield V supplies an example of analytic SU(2|1) superfield not satisfying the constraint (2.26).

This property is harmless because V is not subject to any extra harmonic constraints. One can formally

define D++V, and it is a covariant SU(2|1) analytic superfield living on the superspace ζ̂A (2.9) and having

a linear dependence on z++ (in the (w±

i
, z++) basis).
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It implies the following transformations for the component fields

δzi = − ǫiϕ− ǭiφ , δϕ = 2iǭkżk +m ǭkzk , δφ = 2iǫkż
k −mǫkz

k ,

δz̄i = ǫiφ̄− ǭiϕ̄ , δϕ̄ = 2iǫk ˙̄z
k −mǫkz̄

k , δφ̄ = − 2iǭk ˙̄zk −m ǭkz̄k .
(3.25)

It has been shown in [3] that the Wess-Zumino type actions enjoying SU(2|1) super-

symmetry cannot be constructed for the single multiplet (4,4,0). However, if we couple

the multiplet (4,4,0) (3.22) to the multiplet (1,4,3) (3.4), (3.15) the SU(2|1)-invariant
WZ action can be set up.

Such WZ action is given by the following integral over the analytic subspace

SWZ(V ,Z+) =
1

2

∫
dζ−−

A V Z+Z̃+ , (3.26)

where Z̃+ is generalized harmonic conjugate of Z+ (see [3, 24] for definition of such conjuga-

tion). As a consequence of (2.43), (3.16) and (3.24), the action (3.26) is SU(2|1) invariant.
The corresponding component action SWZ =

∫
dtLWZ with the component Lagrangian

LWZ = − i

2
x
(
z̄kż

k − ˙̄zkz
k
)
− 1

2
Nkjzkz̄j

+
1

2
ψk

(
zkϕ̄+ z̄kφ

)
+

1

2
ψ̄k

(
zkφ̄− z̄kϕ

)
+

1

2
x
(
ϕϕ̄+ φφ̄

) (3.27)

is invariant under the SU(2|1) transformations (3.10), (3.25).

3.3 Total action

Now we consider a system with the action given by the sum SX + SWZ. Making use of

the component form of these actions defined in (3.12) and (3.27), eliminating the auxiliary

fields φ, φ̄, ϕ, ϕ̄, N ik from this sum by their algebraic equations of motion

N ik = −z(iz̄k) , ϕ = −ψkzk/x , ϕ̄ = −ψ̄kz̄k/x , φ = −ψ̄kzk/x , φ̄ = ψkz̄k/x

(3.28)

and, finally, redefining zk → zk/
√
x, we obtain

SX + SWZ =

∫
dt

{
1

2
ẋẋ+

i

2

(
ψ̄kψ̇

k − ˙̄ψkψ
k
)
− i

2

(
z̄kż

k − ˙̄zkz
k
)

−1

2
m2x2 +mψ̄kψ

k − 1

x2

[
1

8
(zkz̄k)

2 + ψiψ̄kz(iz̄k)

]}
.

(3.29)

In contrast to the analogical model of the N = 4 supersymmetric mechanics [14, 15], the

action (3.29) contains mass term (oscillator term) for the component field x. But the

spinning variables zi prove to be not restricted by any constraint besides the second class

constraints produced by the first order kinetic term for these variables. As a result, the

quantum spectrum of this composite model involves an infinite number of the states, like

in its “flat” prototype.

For getting the finite number of physical states it is necessary to impose an additional

constraint which amounts to the gauging procedure described in the next section.
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4 Gauging of coupled dynamical multiplet (1, 4, 3) and semi-dynamical

multiplet (4, 4, 0)

The WZ action (3.26) and the total action SX + SWZ are invariant with respect to the

global U(1) transformations

Z
+′ = eiλZ+, Z̃

+′ = e−iλ
Z̃
+ . (4.1)

Now we require local invariance of this action, with the parameter in (4.1) being promoted

to an analytic superfield λ = λ(ζA) satisfying the conditions

D+λ = D̄+λ = 0 ,
(
D−−

z −D−−
)
λ = 0 , D0λ = Ĩ0λ = F̃ λ = Ĩ++λ = 0 . (4.2)

To secure this local symmetry in the considered system we introduce the Grassmann-

even analytic gauge superfield V ++, which satisfies the conditions

D+V ++ = D̄+V ++ = 0 , Ĩ++V ++ = 0 , (4.3)
(
D−−

z −D−−
)
V ++ = 0 , D0V ++ = −Ĩ0V ++ = 2V ++ , F̃ V ++ = 0 (4.4)

and is defined up to the gauge transformations

V ++′ = V ++ −D++λ . (4.5)

The gauge superfield V ++ covariantizes the derivative D
++. As a result, the com-

plex analytic superfield Z+, Z̃+, instead of the constraints (3.21), gets subjected to the

covariantized harmonic constraints

∇++Z+ ≡ (D++ + i V ++)Z+ = 0 , ∇++ Z̃+ ≡ (D++ − i V ++) Z̃+ = 0 . (4.6)

We can also add to the total action the gauge-invariant Fayet-Iliopoulos (FI) term

SFI =
i

2
c

∫
µ
(−2)
A V ++ . (4.7)

So, we will consider the action

S = SX + SWZ + SFI . (4.8)

Using the U(1) gauge freedom (4.5), (4.1) we can choose the WZ gauge

V ++ = 2i θ+θ̄+A(tA) . (4.9)

Then

SFI = −c

∫
dtA . (4.10)

The solution of the constraint (4.6) in the WZ gauge (4.9) is

Z
+(tA, θ

+, θ̄+, u±, z++) = ziw+
i + θ+ϕ+ θ̄+φ− 2i θ+θ̄+∇tAz

iw−
i ,

Z̃
+(tA, θ

+, θ̄+, u±, z++) = z̄iw
+i + θ+φ̄− θ̄+ϕ̄− 2i θ+θ̄+∇tA z̄iw

−i ,
(4.11)
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where

∇zk = żk + iA zk , ∇z̄k = ˙̄zk − iA z̄k . (4.12)

Plugging the expressions (4.11) and (3.15) into the action (3.26) and integrating there

over θs and harmonics, we obtain the component form of the WZ action

SWZ = − i

2

∫
dt

(
z̄k∇zk −∇z̄k z

k
)
x− 1

2

∫
dtN ikz̄izk

+
1

2

∫
dt

[
ψk

(
ϕ̄ zk + z̄kφ

)
+ ψ̄k

(
φ̄ zk − z̄kϕ

)
− x

(
φ̄ φ+ ϕ̄ ϕ

)]
.

(4.13)

The fermionic fields φ, ϕ are auxiliary. The action is invariant under the residual local U(1)

transformations

A′ = A− λ̇0 , zi′ = eiλ0zi , z̄i
′ = e−iλ0 z̄i (4.14)

(and similar phase transformations of the fermionic fields).

The total action (4.8) in the WZ gauge takes the following on-shell form (like in (3.29),

we make the redefinition zk → zk/
√
x)

S = Sb + Sf , (4.15)

Sb =
1

2

∫
dt

[
ẋẋ−m2x2 + i

(
˙̄zkz

k − z̄kż
k
)
− (z̄kz

k)2

4x2
+ 2A

(
z̄kz

k − c
)]

, (4.16)

Sf =

∫
dt
[ i
2

(
ψ̄kψ̇

k − ˙̄ψkψ
k
)
+mψ̄kψ

k
]
−
∫

dt
ψiψ̄kz(iz̄k)

x2
. (4.17)

The last term in the bosonic action (4.16) produces first class constraint z̄kz
k − c ≈ 0

restricting the quantum spectrum to a single supermultiplet.

5 Matrix model

Now we are going to generalize the model of the previous section to the U(n), d=1 gauge

theory following the papers [13, 16].

The matrix model to be constructed involves the following U(n) entities:

• n2 commuting superfields X
a
b = (X̃b

a), a, b = 1, . . . , n, forming the hermitian n×n-

matrix superfield X = (Xb
a) in adjoint representation of U(n);

• n commuting complex superfields Z+
a forming the U(n) spinor Z+=(Z+

a ), Z̃
+=(Z̃+a);

• n2 non-propagating “gauge superfields” V ++ = (V ++b
a), (Ṽ

++b
a) = V ++a

b .

The local U(n) transformations are given by

X
′ = eiλXe−iλ, Z+′ = eiλZ+, V ++ ′ = eiλ V ++ e−iλ − i eiλ(D++e−iλ), (5.1)

where λb
a(ζA) ∈ u(n) is the “hermitian” analytic matrix parameter, λ̃ = λ.

The SU(2|1) supersymmetric matrix model with U(n) gauge symmetry is described by

the action

Smatrix = SX + SWZ + SFI . (5.2)
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The first term in (5.2),

SX = −1

4

∫
µHTr

(
X

2
)
, (5.3)

is the gauged action of the (1,4,3) multiplets. Now the superfields X = (Xb
a) are subjected

to the constraints (3.1) and

∇++
X = D++

X+ i [V ++,X] = 0 , (5.4)

∇−∇+
X = 0 , ∇̄−∇̄+

X = 0 ,
(
∇−∇̄+ + ∇̄−∇+

)
X = 2mX , (5.5)

which are gauge-covariantization of the constraints (3.2), (3.3). The constraint (5.4) in-

volves the covariant harmonic derivative ∇++ = D++ + i V ++, where the gauge matrix

connection V ++(ζ, w) is an analytic superfield.4 The gauge connections entering the spinor

covariant derivatives in (5.5) are properly expressed through V ++(ζ, u). The parameters

of the U(n) gauge group are analytic, so ∇+ = D+ , ∇̄+ = D̄+.

The last term in (5.2) is the FI term

SFI =
i

2
c

∫
µ
(−2)
A TrV ++ , (5.6)

whereas the second term,

SWZ =
1

2

∫
µ
(−2)
A V0 Z̃+aZ+

a , (5.7)

is a WZ action describing coupling of n commuting analytic superfields Z+
a and the singlet

U(1) part X0 ≡ Tr (X). The real analytic superfield V0(ζ, w) is defined by the integral

transform (3.14) for the trace part:

X0(t, θi, θ̄
i) =

∫
dw

(
1+mθ−θ̄+−mθ+θ̄−−2m2θ+θ−θ̄+θ̄−

)
V0

(
tA, θ

+, θ̄+, w±
) ∣∣∣ . (5.8)

The n multiplets (4,4,0) are described by the superfields Z+
a defined by the con-

straints (3.19)–(3.21) in which the constraint D++
Z
+ = 0 is gauge-covariantized:

∇++
Z
+ =

(
D++ + iV ++

)
Z
+ = 0 . (5.9)

Using the gauge freedom (5.1) we can choose the WZ gauge

V ++ = 2i θ+θ̄+A(tA) , (5.10)

where now A(tA) is an n×n matrix field. In this gauge we have

∇±± = D±± − 2 θ±θ̄±A, ∇− = D− + 2 θ̄−A, ∇̄− = D̄− + 2 θ−A . (5.11)

The solution to the constraints (3.1) and the constraints (5.4), (5.5) for matrix field X is

similar to (5.5) and it is as follows:

X = X + θ−Ψ+ + θ̄−Ψ̄+ − θ+Ψ− − θ̄+Ψ̄−

+ θ−θ̄−N++ + θ+θ̄+N−− + θ−θ̄+N − θ+θ̄−N̄

+ θ−θ+θ̄−Ω+ + θ̄−θ̄+θ−Ω̄+ + θ−θ+θ̄+Ω− + θ̄−θ̄+θ+Ω̄− + θ−θ̄−θ+θ̄+D .

(5.12)

4Besides the covariant derivative ∇++ which commutes with D+, D̄+ and so preserves the analyticity,

one can define the derivative ∇−− = D−−+ i V −−, so that [∇++,∇−−] = D0. The non-analytic connection

V −− is expressed through V ++ from this commutation relation [24].
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Here,

N±± = N ikw±
i w

±
k , N = −i∇tAX −N ikw+

i w
−
k +mX , N̄ = i∇tAX +N ikw+

i w
−
k +mX ,

(5.13)

D = 2
(
∇tA∇tAX +m2x− i∇tAN

ikw+
i w

−
k

)
, (5.14)

Ψ± = Ψiw±
i , Ψ̄± = Ψ̄iw±

i , Ω− = mΨ− , Ω̄− = mΨ̄− , (5.15)

Ω+ = −2i∇tAΨ
+ − 2mψ+, Ω̄+ = 2i∇tAΨ̄

+ − 2mΨ̄+ . (5.16)

The quantities X(tA), N
ik = N (ik)(tA), Ψ

i(tA), Ψ̄i(tA) = (Ψi)† in (5.13)–(5.16) are matrix

d=1 fields and the covariant derivatives are defined by

∇tAX = ∂tAX + i[A,X] , ∇tAN
ik = ∂tAN

ik + i[A,N ik] ,

∇tAΨ
i = ∂tAΨ

i + i[A,Ψi] , ∇tAΨ̄i = ∂tAΨ̄i + i[A, Ψ̄i] .
(5.17)

The solution of the constraints (3.19)–(3.21) with the covariantization (5.9) for U(n) spinor

superfield Z
+ is similar to (4.11):

Z
+(tA, θ

+, θ̄+, u±, z++) = Ziw+
i + θ+ϕ+ θ̄+φ− 2i θ+θ̄+∇tAZ

iw−
i ,

Z̃
+(tA, θ

+, θ̄+, u±, z++) = Z̄iw
+i + θ+φ̄− θ̄+ϕ̄− 2i θ+θ̄+∇tAZ̄iw

−i ,
(5.18)

where

∇Zk = Żk + iAZk , ∇Z̄k = ˙̄Zk − iA Z̄k (5.19)

are covariant derivatives of U(n) spinor d=1 fields Zi
a, Z̄

a
i = (Zi

a).

Inserting the expressions (5.12), (5.18) in the action (5.2) and eliminating the fields

N ik, φ, φ̄, ϕ, ϕ̄ by their equations of motion we obtain, in the WZ gauge,

Smatrix = Sb + Sf , (5.20)

Sb =
1

2
Tr

∫
dt

(
∇X∇X −m2X2

)
− c

∫
dtTrA

+
1

2
Tr

∫
dt

[
iX0

(
∇Z̄k Z

k − Z̄k∇Zk
)
− n

4
(Z̄(iZk))(Z̄iZk)

]
, (5.21)

Sf =
1

2
Tr

∫
dt
[
i
(
Ψ̄k∇Ψk −∇Ψ̄kΨ

k
)
+ 2mΨ̄kΨ

k
]
−

∫
dt

Ψ
(i
0 Ψ̄

k)
0 (Z̄iZk)

X0
, (5.22)

where

X0 ≡ Tr(X), Ψi
0 ≡ Tr(Ψi), Ψ̄i

0 ≡ Tr(Ψ̄i)

and (Z̄iZk) ≡ Z̄a
i Zka, (∇Z̄k Z

k) ≡ ∇Z̄a
k Z

k
a .

Let us consider the bosonic limit of Smatrix, i.e. the action (5.21). Using the residual

gauge invariance of the action (5.21), X ′ = eiλX e−iλ, Z ′k = eiλZk, A ′ = eiλAe−iλ −
i eiλ(∂te

−iλ), where λb
a(t) ∈ u(n) are ordinary d=1 gauge parameters, we can impose

the gauge

Xb
a = 0 , a 6= b ,
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i.e. Xb
a = Xaδ

b
a and X0 =

n∑

a=1

Xa. As a result of this, and after eliminating Ab
a, a 6= b,

by the equations of motion, the action (5.21) takes the following form (instead of Zi
a we

introduce the new fields Z ′i
a = (X0)

1/2 Zi
a and omit the primes on these fields),

Sb =
1

2

∫
dt

{
∑

a

(
ẊaẊa −m2XaXa

)
− i

2

∑

a

(
Z̄a
k Ż

k
a − ˙̄Za

kZ
k
a

)
+ 2

∑

a

Aa
a

(
Za
kZ

k
a − c

)
+

+
∑

a 6=b

Tr(SaSb)

4(Xa −Xb)2
− nTr(ŜŜ)

2(X0)2

}
, (5.23)

where we used the following notation:

(Sa)k
j ≡ Z̄a

kZ
j
a, (5.24)

(Ŝ)k
j ≡

∑

a

[
(Sa)k

j − 1

2
δjk(Sa)l

l

]
(5.25)

and no sum over the repeated index a in (5.24) is assumed.

The terms
∑

a

Aa
a

(
Za
kZ

k
a − c

)
in (5.23) produce n constraints (for each index a)

Z̄a
kZ

k
a − c ≈ 0 (5.26)

for the fields Zk
a . The constraints (5.26) generate abelian gauge [U(1)]n symmetry,

Zk
a → eiϕaZk

a , with local parameters ϕa(t).

Due to the constraints (5.26), the fields Zk
a describe n sets of the target harmonics.

After quantization, these variables become purely internal (U(2)-spin) degrees of freedom.

So, in the Hamiltonian approach, the kinetic WZ term for Z in (5.23) gives rise to the

following Dirac brackets:

[Zk
a , Z̄

b
j ]D = −iδbaδ

k
j . (5.27)

With respect to these brackets the quantities (5.24) for each index a form u(2) algebras

[(Sa)i
j , (Sb)k

l]
D
= iδab

{
δli(Sa)k

j − δjk(Sa)i
l
}
. (5.28)

As a result, after quantization the variables Zk
a describe n sets of fuzzy spheres.

The action (5.23) contains a potential in the center-of-mass sector with the coordinate

X0 (last term in (5.23)). Modulo this extra potential, the bosonic limit of the system

constructed is none other than the U(2)-spin Calogero-Moser model which is a massive

generalization of the U(2)-spin Calogero model [26, 27] in the formulation of [28–30].

6 Concluding remarks and outlook

In this paper, we proposed new models of SU(2|1) supersymmetric quantum mechanics

as a deformation of the corresponding “flat” N = 4, d = 1 supersymmetric models. The

characteristic features of these models is the use of different types of supermultiplets: dy-

namical, semi-dynamical and pure gauge ones. In considered models, dynamical multiplets
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are the (1,4,3) ones. The prepotential superfield description of them has provided an op-

portunity to build the WZ action for the (4,4,0) multiplets and thereby to use the latter

for describing semi-dynamical degrees of freedom. The SU(2|1) version of the superfield

gauging procedure of refs. [17, 18] involving the appropriate gauge multiplets allowed us

to gauge away some of the dynamical and semi-dynamical fields on shell.

We have studied these new SU(2|1) supersymmetric mechanics models both in the

one-particle case and in the multi-particle one. In the latter case the system is described

off shell by the matrix theory with U(n) gauging. After elimination of auxiliary and pure

gauge fields this matrix theory yields new N = 4 superextensions of the An−1 Calogero-

Moser model. The mass (frequency) of the physical states is defined by the deformation

parameter of the SU(2|1) supersymmetry.

The N = 4 superextensions of the Calogero-Moser model play a crucial role in applying

the multiparticle integrable Calogero-type systems to the black hole physics. As was argued

in [31], N = 4 supersymmetric extension of the conformal Calogero model can provide a

microscopic description of the extreme Reissner-Nordström black hole in the near-horizon

limit. At the same time, the corresponding physical states are identified with the eigenstates

of the Calogero-Moser Hamiltonian. The deformed N = 4 supersymmetric generalization

of the Calogero-Moser system found here can shed more light on these issues. One can

expect, e.g., that this new multiparticle SU(2|1) model exhibits a trigonometric realization

of the d = 1 superconformal group D(2, 1;α) along the lines of refs. [32–34].

Finally, it is worth pointing out that we have obtained N = 4 supersymmetric exten-

sion of the An−1 Calogero-Moser system by dealing with the matrix model with the U(n)

gauging. Superextensions of the Calogero-Moser models corresponding to other root sys-

tems could presumably be obtained by choosing other gauge groups and/or representations

for the matrix and WZ superfields.
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A Master SU(2|1) harmonic formalism

A.1 Extended harmonic setting

The formalism below is very similar to the bi-harmonic approach developed in [25] for the

harmonic space description of quaternion-Kähler manifolds. The difference is that in [25]

all three extra co-ordinates z0, z±± were introduced, while in our case it will be enough to

deal with two such coordinates z±±.

Let us consider an extended SU(2|1) harmonic superspace in the w-parametrization of

harmonic variables

(tA, θ
±, θ̄±, w±

i , z
++, z−−) = (ζ̂H , z−−) , (A.1)

where z−− is an additional coordinate with the following SU(2|1) transformation properties

δz−− = λ−− − 2λ+−z−−, λ−− = m(η−θ̄− + η̄−θ−) , λ+− = m(η−θ̄+ + η̄−θ+) . (A.2)
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All other coordinates are transformed as in section 2. We assume that only generators I0

and F form the stability subgroup and hence correspond to the homogeneous transforma-

tions of coordinates. Respectively, the general superfield given on (A.1), Φ(t, θ, w, z, ) , is

assumed to transform as (we consider passive transformations)

δΦ = −λ+−Ĩ0Φ+ 2ω+−F̃Φ , ω+− = m(η−θ̄+ − η̄−θ+) , (A.3)

where Ĩ0 and F̃ are just the “matrix parts” of the U(1) generators I0 and F counting two

independent external U(1) charges of Φ. For sake of brevity we do not indicate these two

charges explicitly. In general, Φ possesses also the standard harmonic U(1) charge q,

D0Φ = qΦ ,

D0 = D0
w + 2z++ ∂

∂z++
− 2z−− ∂

∂z−−
,

D0
w = ∂0

w + θ+
∂

∂θ+
+ θ̄+

∂

∂θ̄+
− θ−

∂

∂θ−
− θ̄−

∂

∂θ̄−
. (A.4)

The covariant derivatives are defined by the following formulas

D++
z = D++

w − (z++)2
∂

∂z++
+ z++(D0 + Ĩ0) + [1 +m(θ+θ̄− − θ−θ̄+)]

∂

∂z−−
,

D++
w = ∂++

w + 2iθ+θ̄+∂t + θ+
∂

∂θ−
+ θ̄+

∂

∂θ̄−

+ mθ+θ̄+
(
θ−

∂

∂θ−
− θ̄−

∂

∂θ̄−

)
− 2mθ+θ̄+F̃ , (A.5)

D−−
z = D−−

w + [1 +m(θ+θ̄− − θ−θ̄+)]
∂

∂z++
− (z−−)2

∂

∂z−−
+ z−−Ĩ0 ,

D−−
w = [1+m(θ+θ̄−−θ−θ̄+)]∂−−

w + 2iθ−θ̄−∂t + θ−
∂

∂θ+
+ θ̄−

∂

∂θ̄+
− 2mθ−θ̄−F̃ , (A.6)

D+ =
∂

∂θ−
−mθ̄−

∂

∂z−−
, D̄+ = − ∂

∂θ̄−
+mθ−

∂

∂z−−
. (A.7)

One should add to this set two more independent covariant derivatives

∂

∂z−−
,

∂

∂z++
, δ

∂

∂z−−
= 2λ+− ∂

∂z−−
, δ

∂

∂z++
= 0 . (A.8)

It is also easy to define the covariant spinor derivatives D− and D̄−,

D−
z := [D−−,D+] , D̄−

z := [D−−, D̄+] . (A.9)

For brevity, we will not present here their explicit form.

Now it is direct to be convinced that the quantities

D±±
z Φ ,

∂

∂z±±
Φ , D+Φ , D̄+Φ (A.10)

(as well as D−
z Φ , D̄−

z Φ) transform according to the generic superfield transformation

law (A.3), with taking into account that the covariant derivatives (A.5)–(A.8) themselves
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possess non-trivial Ĩ0 and F̃ charges5

Ĩ0
(
D++

z , D−−
z , D+, D̄+,

∂

∂z++
,

∂

∂z−−

)
=

(
0, 2D−−

z , −D+, −D̄+, 0, −2
∂

∂z−−

)
,

F̃

(
D++

z , D−−
z , D+, D̄+,

∂

∂z++
,

∂

∂z−−

)
=

(
0, 0, −1

2
D+,

1

2
D̄+, 0, 0

)
. (A.11)

Note the useful (anti)commutation relations

{D+, D̄+} = 2m
∂

∂z−−
, [D++

z ,D+] = [D++
z , D̄+] = 0 , [D++

z ,D−−
z ] = 0 , (A.12)

[
∂

∂z++
, D++

z

]
= D0 + Ĩ0 ,

[
∂

∂z++
, D−−

z

]
= 0 ,

[
∂

∂z−−
, D++

z

]
= 0 ,

[
∂

∂z−−
, D−−

z

]
= Ĩ0 . (A.13)

Defining

D±± = D±±
z − ∂

∂z∓∓
, (A.14)

we also find

[D++,D−−] = D0 . (A.15)

While checking (A.12), (A.13), one should take into account the matrix U(1) charges as-

signment (A.11). Also note that the SU(2|1) transformations of objects D±±Φ, as distinct

from D±±
z Φ, reveal some deviations from the generic superfield law (A.3). For instance,

D++Φ, with Ĩ0Φ = pΦ, F̃Φ = lΦ, transforms as

δD++Φ = −λ+−pD++Φ+ 2ω+−lD++Φ− 2λ+− ∂

∂z−−
Φ . (A.16)

A.2 Eliminating z dependence

We wish to deal with the superfields containing no dependence on the extra coordinates

z±±. As the first step, we impose the manifestly covariant conditions

a) (D0 + Ĩ0)Φ = 0 , b)
∂

∂z++
Φ = 0 , (A.17)

which eliminate the dependence on z++ from both the superfield Φ and covariant deriva-

tives.6 Now

Φ → Φ(t, θ, w, z−−) =: Φ(z) , D++
z → D++

w + [1 +m(θ+θ̄− − θ−θ̄+)]
∂

∂z−−
,

D−−
z → D−−

w − (z−−)2
∂

∂z−−
+ z−−Ĩ0 , D0 → D0

w − 2z−− ∂

∂z−−
. (A.18)

5And of course the standard harmonic U(1) charges in accord with the numbers of + and − indices.
6In some cases there is no need to impose (A.17a), still dealing with the z++-independent superfields

(see footnote 3).
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Eliminating z−− dependence is more subtle and admits three different possibilities.

Before explaining this, let us pass to another form of the transformation law (A.3) for Φ(z),

such that it is chosen to be active with respect to δz−− = λ−− − 2λ+−z−−

δ̂Φ(z) = λ+−D0
wΦ(z) + 2ω+−F̃Φ(z) − λ−− ∂

∂z−−
Φ(z) , (A.19)

where we made use of (A.18) and the constraint (A.17a).

Now we are prepared to discuss three options for eliminating z−− dependence.

I. The simplest possibility is to put

∂

∂z−−
Φ(z) = 0 , Φ(z) ⇒ φ(t, θ, w) , δ̂φ = λ+−D0

wφ+ 2ω+−F̃ φ ,

D++
z ⇒ D++

w , D−−
z ⇒ D−−

w − z−−D0
w , D0 → D0

w . (A.20)

In this caseD+ = ∂
∂θ−

, D̄+ = − ∂
∂θ̄−

and one can impose the SU(2|1) covariant Grassmann

analyticity conditions ∂
∂θ−

φ = ∂
∂θ̄−

φ = 0 without any need for the constraint D++
w φ = 0,

as opposed to the harmonic formalism of [3], in which Grassmann analyticity conditions

imply the vanishing of the ++ harmonic derivative of the analytic superfield. We also

note that the action of the second covariant harmonic derivative D−−
z on φ produces a

superfield with a linear dependence on z−−, D−−
z φ = D−−

w φ − z−−D0
wφ, unless D

0
wφ = 0.

Correspondingly, D−−
w φ transforms through the superfield φ itself. One can show that the

same subtleties take place for the spinor derivatives D−φ and D̄−φ.

II. The harmonic formalism of [3] is recovered, when the z−− dependence of Φ(z) is fixed

in a more sophisticated way, by imposing the constraint

D++
z Φ(z) = 0 → ∂

∂z−−
Φ(z) = −[1 +m(θ+θ̄− − θ−θ̄+)]−1D++

w Φ(z) . (A.21)

This condition expresses all the coefficients in the z−− power series expansion of Φ(z) =

φ(t, θ, w)+z−−φ++(t, θ, w)+. . . in terms of powers of D̃++
w := [1+m(θ+θ̄−−θ−θ̄+)]−1D++

w

acting on the lowest coefficient, i.e. on φ. The transformation law (A.19) is reduced to

δ̂φ = λ+−D0
wφ+ 2ω+−F̃ φ+ λ−−D̃++

w φ , (A.22)

that is precisely the generic superfield SU(2|1) transformation law postulated in [3]. The

harmonic derivatives D̃++
w and D−−

w coincide with those defined in [3], [D̃++
w , D−−

w ] = D0
w.

The objects D̃++
w φ, D−−

w φ and D+φ = ( ∂
∂θ−

+ mθ̄−D̃++
w )φ, D̄+φ = (− ∂

∂θ̄−
− mθ−D̃++

w )φ

are transformed according to (A.22).7 The harmonic Grassmann analyticity for φ implies

the constraint D̃++
w φ = 0.

7The same is true for the z-independent parts of the covariant spinor derivatives D−, D̄− in which the

substitution (A.21) has been made.
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III. Yet one more way to fix the z−− dependence of Φ(z) is to impose the condition like

the well-known Scherk-Schwarz reduction condition

Φ(z) = ez
−−Ĩ++

φ′(t, θ, w) ,
∂

∂z−−
Φ(z) = ez

−−Ĩ++
(Ĩ++φ′) , [Ĩ0, Ĩ++] = 2Ĩ++ , (A.23)

δ̂φ′ = λ+−D0
wφ

′ + 2ω+−F̃ φ′ − λ−−Ĩ++φ′ . (A.24)

The corresponding version of the SU(2|1) harmonic formalism is just the one constructed

and discussed in section 2. In particular, D++
z = D++

w + Ĩ++, where D++
w is now just (2.18)

written in the (w±
i , z

++) basis and restricted to the superfields satisfying the condi-

tions (A.17).8 The covariant derivative D−−
z defined in (2.16) coincides, on the same

subclass of SU(2|1) superfields, with D−−
w . Actually, the option III is very similar to the

option I. Like in the latter case, the Grassmann analyticity requires Ĩ++φ = 0, but not

D̃++
w φ = 0 as in [3].
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