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1 Introduction

The AdS/CFT correspondence is a remarkable duality between large-N field theories and

gravity in the bulk. As such, it has passed many non-trivial tests at the leading order

in the large-N expansion. One prominent example is the computation of the holographic

Weyl anomaly [1], which for IIB string theory on AdS5 ×X5 yields

c = a =
N2

4

π3

vol(X5)
, (1.1)

at tree-level in the supergravity limit. This result has been extended to the O(1) level by

performing a one-loop computation, where the states running in the loop come from the

Kaluza-Klein spectrum on X5 [2–11]. An interesting feature of the one-loop contribution

to the holographic Weyl anomaly is that it only receives contributions from the shortened

multiplets in the Kaluza-Klein tower. As such, this provides a connection between the

holographic central charges and the superconformal index [12, 13].

While the Weyl anomaly is a feature of even-dimensional field theories, similar holo-

graphic computations have been performed for odd-dimensional theories. One approach

has been to focus on the holographic entanglement entropy which can be defined in arbi-

trary dimensions [14]. Alternatively, the 3-sphere free energy F has been conjectured to

play the role of the a-anomaly in odd-dimensional CFTs [15]. In this paper, we extend the

one-loop tests of AdS/CFT to the odd-dimensional case by examining the O(1) contribu-

tions to F . In particular, we compute the holographic one-loop ABJM sphere partition

function in the M-theory limit and compare with the matrix model result.
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The ABJM model is a three-dimensional N = 6 superconformal Chern-Simons-Matter

(CSM) theory with gauge group U(N)k × U(N)−k [16]. It is conjectured to be the holo-

graphic dual of IIA string theory on AdS4 × CP3 in the ‘t Hooft limit with λ ≡ N/k

finite and the dual of M-theory on AdS4 × S7/Zk in the limit N → ∞ with k5 � N . As

an odd-dimensional CFT, it has vanishing Weyl anomaly. However, the sphere partition

function has been computed from the matrix model, and takes the form [17]:

ZABJM = C−
1
3 eA(k)Ai

[
C−

1
3

(
N − 1

3k
− k

24

)]
+ ZNon-Perturbative, (1.2)

where C = 2/π2k. Here A(k) encodes certain quantum corrections, and can be computed

in the IIA (i.e. planar) limit as the all-genus sum of the constant map contributions to the

free-energy [18]:

A(k) = −ζ(3)

8π2
k2 +

1

6
log

4π

k
+ 2ζ ′(−1)− 1

3

∫ ∞
0

dx

ekx − 1

(
3

x3
− 1

x
− 3

x sinh2 x

)
. (1.3)

It is furthermore conjectured that this expression remains valid in the M-theory limit that

we are mostly interested in [18]. In particular, when expanded for small k, it reproduces

the perturbative series computed with the Fermi gas approach in [17].

The ABJM free energy can be expanded in the large-N limit with the result1

FABJM =
π
√

2

3
k1/2N3/2 − π√

2k

(
k2

24
+

1

3

)
N1/2 + F

(1)
ABJM +O(N−1/2), (1.4)

where

F
(1)
ABJM =

1

4
logN − 1

4
log k +

5

4
log 2−A(k). (1.5)

The holographic ABJM free energy was computed in [19], and is given at leading order in

the M-theory limit by

F
(0)
SUGRA =

π
√

2

3
k1/2N3/2. (1.6)

This precisely matches the leading term in the expansion of the matrix partition func-

tion (1.4). The O(N1/2) term does not follow from a standard loop expansion of supergrav-

ity, which would be given in powers of the 11-dimensional Newton constant, G11 ∼ N−3/2.

Instead, it arises as a quantum correction in M-theory, and in particular from a shifted

relation between ABJM and M-theory parameters resulting from the eight-derivative C3R
4

term [20–23], as anticipated in [24].

Our present focus is on the O(1) contribution, F
(1)
ABJM, which is dual to the one-

loop free-energy in M-theory. The logN term in (1.5) has been identified as a universal

contribution independent of the specific compactification, and is given by the zero modes of

the heat kernel of the N = 6 supergravity on AdS4 ×X7, [23]. It is likely that this term is

fully captured by the zero modes in the supergravity limit, as the heat-kernel expansion in

odd dimensions (corresponding to the M-theory limit) does not yield a log term apart from

the zero modes. Moreover, contributions beyond the supergravity limit are not expected

1Here we use the convention F = − logZ.
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to affect the zero mode counting, as this ought to be a robust feature of the low energy

(and hence supergravity) limit.

Although the non-zero modes do not contribute to the logN term in (1.5), they are

nevertheless expected to contribute to the one-loop holographic free energy. Therefore a

natural question arises as to whether a one-loop supergravity calculation can fully reproduce

theO(1) term given in (1.5). We will perform this computation in the M-theory limit, where

the dual of ABJM theory in low energy limit is given by 11-dimensional supergravity on

AdS4 × S7/Zk.
On the ABJM theory side, the AdS/CFT dictionary at leading order gives the relation2

N =
2

kπ2

(
L

lp

)6

, (1.7)

where L is the AdS4 radius and lp is the 11 dimensional Planck length. Under (1.7), the

O(1) term, (1.5), then becomes

F
(1)
ABJM =

3

2
log

L

lp
− 1

2
log

kπ

8
−A(k). (1.8)

On the supergravity side, we regulate the one-loop determinants by working with a 4 + 7

dimensional split. We use spectral zeta function methods for determinants in AdS4 before

summing over the Kaluza-Klein spectrum on S7/Zk. The one-loop free energy is then given

schematically by

F
(1)
SUGRA ∼ ζ

′(0) ∼ (ζ(0) + c0) log ΛL+ a(k), (1.9)

where Λ is the volume cutoff in the one-loop determinants, c0 is the zero mode contribution,

a(k) is a term only dependent on k, and both ζ ′(0) and ζ(0) refer to the regulated quantities

after summing over the Kaluza-Klein spectrum. Notice that both F
(1)
SUGRA and F

(1)
ABJM have

undetermined constants, such as lp and Λ. Thus we would not expect to precisely match the

two terms, unless through a judicial choice of these constants. Instead, we are interested

in whether (1.8) and (1.9) have the same functional dependence on k. Specifically, we can

look for whether they have the same asymptotic behavior for k while remaining in the M

theory limit by requiring k5 � N .

As can be seen from (1.3), asymptotically A(k) ∼ k2, and thus we would predict

similar behavior in F
(1)
SUGRA. Our calculation, however, shows that this is not the case.

Asymptotically we find a leading k6 behavior for F
(1)
SUGRA. A k2 term is present in the

asymptotic expansion, but the coefficient does not match with that in A(k). While this may

be viewed as a failure of AdS/CFT at the one-loop level, we instead suggest that what this

indicates is that the supergravity computation is incomplete, and that additional M-theory

contributions beyond the supergravity limit will ultimately lead to agreement between the

holographic and field theoretic expressions.

Along these lines, it is worth emphasizing that the even-dimensional AdS calculation

has distinct properties from the odd-dimensional case. Apart from the vanishing of the

2This leading order relation is sufficient, as the anomalous radius shift responsible for the O(N1/2)

term [20] has no effect on the O(1) term.
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holographic Weyl anomaly for even-dimensional AdS (odd-dimensional CFT), the isometry

groups of AdS2n and AdS2n+1 fall in different classes in the classification of semi-simple

Lie algebras. This has a direct consequence at one-loop level, as it changes the measure

of the spectral zeta function (which is a Mellin transform of the heat kernel) and thus the

functional form of the one-loop determinant [25–27]. As a result, while the one-loop par-

tition function vanishes in AdS2n+1 when summed over the states of a long representation

of supersymmetry, this no longer the case for AdS2n. Since massive string states fall into

long representations, they do not affect the one-loop corrections to the holographic Weyl

anomaly in AdS5. In contrast, however, massive states in M-theory can be expected to

contribute to the AdS4 free energy. For this reason, it is perhaps not so surprising that

our one-loop supergravity result does not fully capture the O(1) contribution to the ABJM

free energy.

The paper is organized as follows. In section 2, we work out the Kaluza-Klein spectrum

on the S7/Zk orbifold. (The more technical aspects are presented in appendix A.) In

section 3, we outline the one-loop computation using the spectral zeta function in AdS4, and

give the exact expression of F
(1)
SUGRA as well as its asymptotic expansion in k. We comment

on some of the subtleties associated with regularization of the KK sum in appendix B, while

some lengthy expressions are presented in appendix C. Finally, in section 4, we comment

on possible implications and some open questions of the functional disagreement between

F
(1)
ABJM and F

(1)
SUGRA.

2 Kaluza-Klein spectrum on the S7/Zk orbifold

The O(1) contribution to the holographic free energy of ABJM theory on S3 may be

computed by evaluating the one-loop partition function of M-theory on AdS4×S7/Zk. We

work in the supergravity limit and first reduce to AdS4, so that we are left with evaluating

one-loop determinants on global AdS4. In this section, we work out the Kaluza-Klein

spectrum, and in the following section we compute the free energy by summing over the

spectrum.

In order to describe the Zk orbifold, we note that the transverse space to a stack of

M2-branes can be identified (at least locally) with C4. The action of Zk is then given

by [16]

zi → e
2πi
k zi. (2.1)

This action does not have any fixed points and is in fact smooth for finite k. One can then

consider the Hopf fibration map p : C4 → CP3 whose fiber when restricted to S7 embedded

in C4 is S1. The quotient space is thus a lens space. The action in fact acts only on the fiber

and it shrinks the radius of the circle. In the limit k →∞, the metric becomes degenerate,

and the quotient becomes singular in that it truncates the principal U(1) bundle to its base

space. Such a truncation gives rise to IIA supergravity on AdS4 × CP3 which is dual to

the IIA limit of ABJM theory.

The Kaluza-Klein spectrum of the orbifold under the above action is given by branching

the N = 8 KK spectrum, labeled by representations of so(8), the Lie Algebra of the

isometry group of S7, into that of the N = 6 spectrum, labeled by representations of
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su(4)⊕ u(1), corresponding to the isometry groups of CP3 and S1. We then select the KK

multiplets that are stable under the action (2.1), i.e. the ones with U(1) charge divisible

by k. The zero sector of the branching problem of so(8)→ su(4)⊕u(1) is obtained in [28],

and similarly, with

8s → 60 + 1−2 + 12, (2.2)

we can obtain the full branching for the Zk orbifold. The KK spectrum branched into

su(4) ⊕ u(1) is given in table. 1, where E0 represents the lowest energy and [a, b, c; d]

represents

[a, b, c; d] =
N∑
r=0

(n− r + a, b, r + c)n−2r+d, (2.3)

where (n− r+ a, b, r+ c) is the Dynkin label of su(4) and n− 2r+ d is the corresponding

U(1) charge. In each sum, N should be determined by the highest entry of the Dynkin

label of so(8). For example, we have

(n− 2, 0, 0, 0)→ [−2, 0, 0;−2] =

n−2∑
r=0

(n− r − 2, 0, r)n−2r−2. (2.4)

One can now select the multiplets that are divisible by k, and rewrite the full branching

into the branching mod k, i.e. leaving only multiplets with U(1) charge divisible by k.

However, the result is somewhat lengthy, and is relegated to appendix A. Although it

appears that the KK spectra for even k and odd k are different, they give rise to the same

F 1-loop as we shall see in the next section. That makes the even/odd behavior of the free

energy of ABJM theory for finite N observed in [29] more intriguing, as one might expect

the even/odd behavior of the free energy to be a quantum effect of M-theory and thus

reflected in the KK spectrum. However, it does not seem to be the case.

To make the N = 6 supersymmetry explicit, one can organize the KK spectrum in

terms of the unitary irreducible representations of the supergroup Osp(4|6). Such repre-

sentations may be labeled by considering the bosonic subalgebra so(2, 3)⊕ so(6). We then

label the representation by D(E0, j, h1, h2, h3), where E0 is the lowest energy (or conformal

dimension from the CFT point of view), j ∈ 1
2N

0 is the spin, and h1, h2, h3 are highest

weights of so(6), such that h1 ≥ h2 ≥ |h3|. (Here we find it more convenient to use highest

weight labels; they are related to Dynkin labels (a, b, c) by a = h2 − h3, b = h1 − h2 and

c = h2+h3.) Unitarity is not guaranteed a priori given arbitrary values of (E0, j, h1, h2, h3),

but gives rise to the following conditions [30, 31]:

E0 > j + h1 + 1, long;

E0 = j + h1 + 1, regular short (semi-short);

E0 = h1, j = 0, isolated short (BPS). (2.5)

Examination of the KK spectrum on S7/Zk demonstrates that it consists only of

isolated short representations, and can be classified as either 1
2 -BPS or 1

3 -BPS states of

N = 6. The contents of these multiplets are described in tables 2 and 3. The full N = 8

– 5 –



J
H
E
P
1
1
(
2
0
1
6
)
0
9
9

Spin so(8) su(4)⊕ u(1) E0

2+ (n, 0, 0, 0), n ≥ 0 [0, 0, 0; 0] n
2 + 3

3
2

(1)
(n, 0, 0, 1), n ≥ 0 [0, 1, 0; 0] + [0, 0, 0;−2] + [0, 0, 0; 2] n

2 + 5
2

3
2

(2)
(n− 1, 0, 1, 0), n ≥ 1 [0, 0, 0;−2] + [−1, 1,−1; 0] + [−1, 0, 1; 0] n

2 + 7
2

1−(1) (n, 1, 0, 0), n ≥ 0 [0, 0, 0; 0] + [1, 0, 1; 0] + [0, 1, 0;−2] + [0, 1, 0; 2] n
2 + 2

1+ (n− 1, 0, 1, 1), n ≥ 1 [0, 0, 0; 0] + [−1, 0, 1;−2] + [0, 1, 0;−2]

+ [−1, 1, 1; 0] + [−1, 1,−1;−2] + [−2, 1, 0; 0]

+ [−1, 2,−1; 0] + [0, 0, 0;−4] + [−1, 0, 1; 2]

n
2 + 3

1−(2) (n− 2, 1, 0, 0), n ≥ 2 [−2, 0, 0;−2] + [−1, 0, 1;−2] + [−2, 1, 0;−4]

+ [−2, 1, 0; 0]

n
2 + 4

1
2

(1)
(n+ 1, 0, 1, 0), n ≥ 0 [2, 0, 0; 0] + [1, 1,−1; 2] + [1, 0, 1; 2] n

2 + 3
2

1
2

(2)
(n− 1, 1, 1, 0), n ≥ 1 [0, 0, 0;−2] + [−1, 1,−1; 0] + [−1, 0, 1; 0]

+ [1, 0, 1;−2] + [0, 0, 2; 0] + [0, 1, 0; 0]

+ [−1, 1, 1;−2] + [0, 1, 0;−4] + [−1, 1, 1; 2]

+ [−2, 2, 0;−4] + [−1, 2,−1; 2]

n
2 + 5

2

1
2

(2)
(n− 2, 1, 0, 1), n ≥ 2 [−1, 0, 1; 0] + [−1, 0, 1;−4] + [−2, 0, 0;−4]

+ [−2, 0, 0; 0] + [−1, 1, 1;−2] + [−2, 1, 0;−2]

+ [−2, 1, 0;−2] + [−2, 1, 0; 2] + [−2, 1, 0;−6]

+ [−2, 2, 0; 0] + [−2, 2, 0;−4]

n
2 + 7

2

1
2

(4)
(n− 2, 0, 0, 1), n ≥ 2 [−2, 1, 0;−2] + [−2, 0, 0;−4] + [−2, 0, 0; 0] n

2 + 9
2

0+(1) (n+ 2, 0, 0, 0), n ≥ 0 [2, 0, 0; 2] n
2 + 1

0−(1) (n, 0, 2, 0), n ≥ 0 [1, 0, 1; 0] + [2, 0, 0;−2] + [0, 0, 2; 2]

+ [−1, 2,−1; 0] + [1, 1,−1; 0] + [−1, 1, 1; 0]

n
2 + 2

0+(2) (n− 2, 2, 0, 0), n ≥ 2 [−1, 1, 1; 0] + [−1, 1, 1;−4] + [−2, 2, 0;−6]

+ [−2,−2, 0; 2] + [−1, 0, 1;−2] + [−2, 2, 0;−2]

+ [−2, 1, 0;−4] + [−2, 1, 0; 0] + [−2, 0, 0;−2]

+ [0, 0, 2;−2]

n
2 + 3

0−(2) (n− 2, 0, 0, 2), n ≥ 2 [−2, 0, 0;−2] + [−2, 0, 0;−6] + [−2, 0, 0; 2]

+ [−2, 2, 0;−2] + [−2, 1, 0;−4] + [−2, 1, 0; 0]

n
2 + 4

0+(3) (n− 2, 0, 0, 0), n ≥ 2 [−2, 0, 0;−2] n
2 + 5

Table 1. The Kaluza-Klein spectrum of 11-dimensional supergravity on AdS4 × S7/Zk. The

notation [a, b, c; d] is explained in the text.

spectrum, branched into N = 6 supermultiplets, is then given by

DN=8

(n
2

+ 1, 0, n+ 2, 0, 0, 0
)

=D 1
2

-BPS

(n
2

+ 1, 0,
n

2
+ 1,

n

2
+ 1,

n

2
+ 1
)
−n−2

(2.6)

⊕D 1
2

-BPS

(n
2

+ 1, 0,
n

2
+ 1,

n

2
+ 1,−n

2
− 1
)
n+2

⊕
n∑
i=0

D 1
3

-BPS

(n
2

+ 1, 0,
n

2
+ 1,

n

2
+ 1,

n

2
− i
)
−n+2i

.
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E0 \ j 0 1
2 1 3

2

h [h, h, h]

h+ 1
2 [h, h, h−1]

h+ 1 [h, h, h−2] [h, h−1, h−1]

h+ 3
2 [h, h−1, h−2] [h−1, h−1, h−1]

h+ 2 [h, h−2, h−2] [h−1, h−1, h−2]

h+ 5
2 [h−1, h−2, h−2]

h+ 3 [h−2, h−2, h−2]

Table 2. 1
2 -BPS multiplets D 1

2 -BPS(h, 0, h, h, h) of osp(4|6). Here [h1, h2, h3] are so(6) highest

weight labels. The conjugate multiplet D 1
2 -BPS(h, 0, h, h,−h) may be obtained by taking h3 → −h3.

The orbifold spectrum is then obtained by only considering supermultiplets with U(1)

charges q ≡ 0 mod k, where q is given by the subscripted quantities in (2.6).

3 One-loop free energy of supergravity on AdS4 × S7/Zk

With the Kaluza-Klein spectrum at hand, we may now turn to the computation of the

one-loop free energy on global AdS4. Since supersymmetry is maintained level by level in

the Kaluza-Klein spectrum, we organize the free energy as

F1-loop =

∞∑
n=0

F1-loop,n, (3.1)

where n is the Kaluza-Klein level. The contribution at level n can be written schematically

in terms of a ratio of functional determinants:

Z1-loop,n =
∏
i∈Kn

detF (−∇2 + ci(Ei, si))
dim(si, Ei, n)

detB(−∇2 + ci(Ei, si))dim(si, Ei, n)
, (3.2)

where ci(E, s) are functions of the spin and energy of the multiplets that are determined

by the specific matter content, dim(si, Ei, n) is the dimension of the corresponding su(4)

representation of the multiplet and Kn is the index set of supermultiplets at the n-th

Kaluza-Klein level.

There are numerous methods for computing the functional determinants. We use the

spectral zeta function, which is defined as the Mellin transform of the trace of the heat

kernel for the operator −∇2 + ci. With F1-loop,n = − logZ1-loop,n, one has [25]

F1-loop,n = −1

2

∑
i∈Kn

dim(si, Ei, n)ζ ′(Ei,si)(0)− logL2Λ2

2

∑
i∈Kn

dim(si, Ei, n)(ζEi,si(0) + µi),

(3.3)

where L is the AdS4 radius, Λ is the mass cut off, ζEi,si(z) is the spectral zeta function

of the corresponding operator for the multiplet with energy Ei and spin si, and µi is

– 7 –
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E0 j [h1, h2, h3]

h 0 [h, h, r]

h+ 1
2

1
2 [h, h, r + 1]⊕ [h, h, r − 1]⊕ [h, h− 1, r]

h+ 1 0 [h, h, r]⊕ [h, h, r + 2]⊕ [h, h, r − 2]⊕ [h, h− 1, r + 1]⊕ [h, h− 1, r − 1]

⊕ [h, h− 2, r]

1 [h− 1, h− 1, r]⊕ [h, h, r]⊕ [h, h− 1, r + 1]⊕ [h, h− 1, r − 1]

h+ 3
2

1
2 [h− 1, h− 1, r + 1]⊕ [h− 1, h− 1, r − 1]⊕ [h, h, r + 1]⊕ [h, h, r − 1]

⊕ [h, h− 1, r]⊕ [h, h− 1, r]⊕ [h− 1, h− 2, r]⊕ [h, h− 1, r + 2]

⊕ [h, h− 1, r − 2]⊕ [h, h− 2, r + 1]⊕ [h, h− 2, r − 1]
3
2 [h− 1, h− 1, r + 1]⊕ [h− 1, h− 1, r − 1]⊕ [h, h− 1, r]

h+ 2 0 [h−1, h−1, r]⊕ [h, h, r]⊕ [h−2, h−2, r]⊕ [h, h−1, r+1]⊕ [h, h−1, r−1]

⊕ [h− 1, h− 2, r + 1]⊕ [h− 1, h− 2, r − 1]⊕ [h, h− 2, r]

⊕ [h, h− 2, r + 2]⊕ [h, h− 2, r − 2]

1 [h−1, h−1, r]⊕ [h−1, h−1, r]⊕ [h−1, h−1, r+ 2]⊕ [h−1, h−1, r−2]

⊕ [h, h− 1, r + 1]⊕ [h, h− 1, r − 1]⊕ [h− 1, h− 2, r + 1]

⊕ [h− 1, h− 2, r − 1]⊕ [h, h− 2, r]

2 [h− 1, h− 1, r]

h+ 5
2

1
2 [h− 1, h− 1, r + 1]⊕ [h− 1, h− 1, r − 1]⊕ [h− 2, h− 2, r + 1]

⊕ [h− 2, h− 2, r − 1]⊕ [h, h− 1, r]⊕ [h− 1, h− 2, r]⊕ [h− 1, h− 2, r]

⊕ [h−1, h−2, r+2]⊕ [h−1, h−2, r−2]⊕ [h, h−2, r+1]⊕ [h, h−2, r−1]
3
2 [h− 1, h− 1, r + 1]⊕ [h− 1, h− 1, r − 1]⊕ [h− 1, h− 2, r]

h+ 3 0 [h− 2, h− 2, r]⊕ [h− 2, h− 2, r + 2]⊕ [h− 2, h− 2, r − 2]

⊕ [h− 1, h− 2, r + 1]⊕ [h− 1, h− 2, r − 1]⊕ [h, h− 2, r]

1 [h−1, h−1, r]⊕ [h−2, h−2, r]⊕ [h−1, h−2, r+ 1]⊕ [h−1, h−2, r−1]

h+ 7
2

1
2 [h− 2, h− 2, r + 1]⊕ [h− 2, h− 2, r − 1]⊕ [h− 1, h− 2, r]

h+ 4 0 [h− 2, h− 2, r]

Table 3. 1
3 -BPS multiplets D 1

3 -BPS(h, 0, h, h, r) of osp(4|6), with |r| < h. Note there are special

cases when h − |r| < 4. For these cases, we must neglect the states that violate the condition

h1 ≥ h2 ≥ |h3|.

the zero mode contribution coming from possibly discrete eigenmodes for −∇2 + ci with

zero eigenvalue. However, for global AdS4, the only case such an operator could possibly

admit discrete eigenmodes is for harmonic two-forms [32], which only occur as generalized

Grassmanian ghosts from the quantization of the three-form in the eleven dimensional

supergravity action [23]. Nevertheless, such ghosts are not included in the Kaluza-Klein

spectrum (2.6), and thus require a separate calculation. As the discrete spectrum has been

accounted for in [23], in the following we shall focus on the continuous spectrum instead.
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The spectral zeta function for global AdS4 with arbitrary spin and energy is known

to be [26]

ζE0,s(z) = Vol(AdS4)
L2z−4(2s+ 1)

8π2

∫ ∞
0

dλ
λ(λ2 + (s+ 1

2)2) tanh(π(λ+ is))(
λ2 +

(
E0 − 3

2

)2)z , (3.4)

where the regularized volume of AdS4 is 4π2

3 L4. The function ζE0,s(z) can be analytically

continued if one substitutes

tanh(π(λ+ is)) = 1− 2

1 + e2π(λ+is)
, (3.5)

in which case it becomes a meromorphic function on C with simple poles at z = 1 and

z = 2. In AdS4, the spectral zeta function for arbitrary spin and energy at z = 0 is given by

ζBE,s(0) =
2s+ 1

24

[(
E − 3

2

)4 − (s+ 1
2

)2 (
2
(
E − 3

2

)2
+ 1

6

)
− 7

240

]
,

ζFE,s(0) = −2s+ 1

24

[(
E − 3

2

)4 − (s+ 1
2

)2 (
2
(
E − 3

2

)2 − 1
3

)
+ 1

30

]
, (3.6)

for bosonic and fermionic fields, respectively. Note that the even-dimensional AdS case

is distinct from the odd-dimensional one in that the bosonic and fermionic measures are

different, thus giving rise to separate expressions for ζBE,s and ζFE,s.

The derivative of the zeta function at z = 0 is given by

ζ ′E0,s(0) = (−1)2∆

[
2s+ 1

24

((
2E0s+ E0 − 3s− 3

2

)2 − 1
6(2E0 − 3)4

)
+

2s+ 1

3
ζ ′(−3, E0 + ∆)− (1 + 2s)

(
E0 − 3

2

)
ζ ′(−2, E0 + ∆)

− 2s+ 1

6
(2s2 + 2s− 6E2

0 + 18E0 − 13)ζ ′(−1, E0 + ∆)

− 2s+ 1

6
(2E0 − 3)(E0 − s− 2)(E0 + s− 1)ζ ′(0, E0 + ∆)

]
,

(3.7)

where ζ ′(s, a) = ∂ζ(s, a)/∂s is the derivative of the Hurwitz zeta function, and ∆ = −1 for

bosons and ∆ = −3
2 for fermions. One might worry that a logarithmic divergence shows

up in ζ ′(0, E0 + ∆) at E0 = 1 for bosons or E0 = 3
2 for fermions. However, as we have seen

in section 2, the only boson with E0 = 1 has spin zero, and therefore the factor E0 + s− 1

vanishes, which suppresses the logarithmic divergence. In the fermionic case, the factor

2E0 − 3 plays a similar role.

While the spectral zeta function regularizes the one-loop determinant in AdS4, the

sum over the KK tower, (3.1), is divergent since ζE,s(0) grows as E4 and ζ ′E,s(0) grows

as E4 logE for large E. Thus the KK sum must be regulated as well. One possibility

would be to attach some smooth factor e−n, treating supergravity as effective only up to

some energy scale, and therefore suppressing the contribution from high KK levels. A

related approach is the introduction of a hard cutoff [11, 33]. Alternatively, we follow the

prescription of [5] and attach zn to each level, assuming |z| < 1. The regulated sum is

then given by the finite term in the expansion as z → 1. Note that the hard cutoff and
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zn regulators produce identical results for the case of polynomials in n. In particular,

polynomials in n are regulated to zero in both cases. The soft cutoff (e−n regulator), on

the other hand, produces a different non-zero result. In contrast with the odd-dimensional

cases, however, log terms show up in AdS4, and they make the hard cutoff prescription

less convenient to implement. The regulator zn was used in [8, 9] to calculate the one-

loop free energy of supergravity on AdS5 × S5/Zk and produced the correct holographic

results. In the following we shall compute using the zn regulator, but will comment on

using alternative regulators in appendix B.

Using the KK spectrum in section 2, we find that the one-loop free energy of AdS4 ×
S7/Zk with our choice of zn regulator can be expressed as the following sum:

F
(1)
SUGRA =

k−1∑
l=1

[c1(l, 0) log(l)z2l−2 + c2(l, 0) log(l + 1)z2l−2 − 2ζ ′(0, l)z2l−2]

+

k−1∑
l=0

∞∑
m=1

[
c1(l,m) log(km/2+l)zkm+2l−2 + c2(l,m) log(km/2+l+1)zkm+2l−2

− 2(1 +m)ζ ′(0, km/2 + l)zkm+2l−2
]
. (3.8)

(Note that the n = 0 Kaluza-Klein level includes ghost contributions for the massless fields.

However, the resulting expression for F1-loop, n=0 fits the general pattern for n > 0.) The

functions c1(l,m) and c2(l,m) are polynomials in l and m, and their explicit forms are given

in appendix C. As a consequence of N = 6 supersymmetry, the polynomial term is canceled

completely, and the rest gives partial cancellations. Note the log L term disappears after

summing ζE,s(0) over the KK tower. This is consistent with the analysis in [23], in which

the logL term in the free energy only arises from the zero modes, which are contributions

from the discrete spectrum.

The calculation of the regularized sum is somewhat lengthy, and in order to illustrate

the general procedure, we consider the following sum:

S1 =

k−1∑
l=0

∞∑
m=1

c1(l,m) log(km+ l)z2km+2l−2. (3.9)

The m sum can be rewritten in terms of the derivative ∂/∂s of the Hurwitz-Lerch function

Φ(z, s, a) =
∑∞

m=0 z
m(a+m)−s. To do so, we expand c1(l,m) as a polynomial in km+ l,

so that it may be combined with the argument of the log. The treatment for the sum

S2 = −2

k−1∑
l=0

∞∑
m=1

(1 +m)ζ ′(0, km/2 + l)zkm+2l−2, (3.10)

is somewhat different. Using ζ ′(0, x) = log Γ(x) − 1
2 log 2π and log Γ(n + 1) =

∑n
i=1 log i,

this can be rewritten as a sum over logs, which can then be re-expressed in terms of the

Hurwitz-Lerch function.

As a result, the regulated F
(1)
SUGRA can be written in terms of the derivative of Φ(z, s, a)

along with elementary functions. The Hurwitz-Lerch function can then be expanded in its

– 10 –
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first argument by

Φ(z, s, a) = z−a

(
Γ(1− s)(− log z)s−1 +

∞∑
i=0

ζ(s− i, a)
logi(z)

i!

)
, (3.11)

valid for | log z| < 2π, s /∈ N+ and −a /∈ N0. To obtain the regulated sum, we consider the

expansion around z → 1−, and take the finite term. Recall that k = 1, 2 are special cases

preserving N = 8 supersymmetry. For k ≥ 3, we obtain the regulated expression

F
(1)
SUGRA =

40049

72576k
+

1

24

(
11 + 6k − 2k2

)
log

k

2
+

(
− 35

12k
+
k

6

)(
log Γ(k/2)− 1

2
log 2π

)
+

k

288π2

(
204 + 10k2 + k4

)
ζ(3) +

17k3

48π4
ζ(5)− 5k2ζ(7)

64π6

+
k−1∑
l=1

[
k5

72
ζ ′
(
−6,

2l

k

)
+

17k3

36
ζ ′
(
−4,

2l

k

)
− k2

36
(k−2l)(5l(k−l)− 12)ζ ′

(
−3,

2l

k

)
+

5k

12
l(k − l)(l(k − l) + 2)ζ ′

(
−2,

2l

k

)
− 1

36
(k − 2l)

(
84 + l(k − l)

(
3l2 − 3kl − k2 − 10

))
ζ ′
(
−1,

2l

k

)
− 2l(k − l)

k
ζ ′
(

0,
2l

k

)]
, (3.12)

for the one-loop free energy of 11-dimensional supergravity on AdS4×S7/Zk. The discrete

sum over k naturally comes from the Zk orbifolding of S7.

In order to work out the sum over k, one needs Hurwitz zeta identities of the form

k−1∑
l=0

lmζ ′
(
−n, l

k

)
, (3.13)

generalizing the multiplication formula of the Hurwitz zeta function, which would be the

case for m = 0. However, whether such an identity has a closed form is, to our knowledge,

unknown to the literature, and we have failed to find one. Nevertheless, the sum in (3.12)

does have curious symmetries. In particular, we observe that it can be rewritten into the

following form:
k−1∑
l=1

pi(l)
(
ζ ′(−n, 2l/k) + (−1)nζ ′(−n, 2(1− l/k))

)
, (3.14)

where pi(l) are polynomial coefficients, although it is not apparent why one has such a

symmetry. This form of the summand allows it to be written as a Clausen function using

the relation

ζ ′(−n, x) + (−1)nζ ′(−n, 1− x) =
(−1)b

n
2
cn!

(2π)n
Cln+1(2πx), n ∈ N0, (3.15)

so that it may be turned into a sum of the form
∑k−1

r=1
dm

dmz

∣∣
z=πr/k

cotn(z)ζ(a, πr/k) with

various m, a, n ∈ Z. However, the closed form of such sums is not known, and it is not

clear whether such a procedure would yield any additional physical insights.

– 11 –



J
H
E
P
1
1
(
2
0
1
6
)
0
9
9

k F
(1)
SUGRA Numerical Value

1 40049
72576 + 215ζ(3)

288π2 + 12ζ(5)
48π4 − 5ζ(7)

64π6 − 5 log 2
4 −0.220002

2 40049
145152 + 215ζ(3)

72π2 + 17ζ(5)
3π4 − 5ζ(7)

π6 0.694679

3 40049
217728 + 85ζ(3)

32π2 + 17ζ(5)
144π4 − 5ζ(7)

192π6 + log 2
4 −

log 3
3 0.427319

− π
9
√

3
+ 17ψ1(1/3)

108
√

3π
+ ψ3(1/3)

432
√

3π3

4 40049
290304 + 265ζ(3)

72π2 + 17ζ(5)
6π4 − 5ζ(7)

2π6 − log 2
2 0.267190

Table 4. The holographic one-loop ABJM free energy for k ≤ 4.

In any case, for small values of k, the expressions in (3.12) can be simplified, and we

list the result in table 4. Note that the k = 1, 2 cases are computed separately, as they

are special cases with N = 8 supersymmetry. We see that the k = 3 case has an extra

transcendental part given in terms of the polygamma function, while the others have simple

transcendental part. In fact, examination of additional small k cases strongly suggests that

k = 1, 2, 4 are the only ones where F
(1)
SUGRA has a simple transcendental part. It is curious

that these values of k are exactly those such that the Zk action is in SU(4), which is the

N = 6 R-symmetry.

3.1 Asymptotic expansion of F
(1)
SUGRA for large k

The orbifold summation in the holographic result, (3.12), makes it a somewhat unwieldy

expression. However, this sum may be performed in the large-k limit, allowing us to

compare with the ABJM partition function in the corresponding limit. Here it is important

to note that, while taking k →∞ is generally considered the IIA limit, we can nevertheless

remain in the M-theory limit by working with large but not infinite k, so long as we stay

in the regime k5 � N [16].

In the large-k limit, we use the Euler-Maclaurin formula to rewrite the sum over k

in (3.12) according to:

k∑
l=0

laζ

(
s,

2l

k

)
=

ka+1

(
−

a∑
i=1

Γ(s− i)Γ(a+ 1)

2iΓ(s)Γ(a+ 2− i)
ζ(s− i, 2) +

Γ(s− a− 1)Γ(a+ 1)

2a+1Γ(s)

)
+
ka

2
ζ(s, 2)

+

p∑
r=1

ka−2r+1B2r

2r

2r−1∑
i=1

Γ(a+ 1)Γ(s+ 2r − i− 1)(−2)2r−1−i

Γ(i+ 1)Γ(a− i+ 1)Γ(2r − i)Γ(s)
ζ(s+ 2r − i− 1, 2)

+O(ka−2p−1), (3.16)

where we take a ≥ 1, a− 2p+ 1 ≥ 1 and s < 0. The resulting expression for the one-loop
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Figure 1. A log-log plot of the exact F
(1)
SUGRA given in (3.12) along with its asymptotic expan-

sion (3.17).

free energy then becomes

F
(1)
SUGRA =

25ζ(7)

1024π6
k6 − 3ζ(5)

128π4
k4 − ζ(3)

18π2
k2 − 389

945
log

k

2
+ C +O

(
1

k

)
, (3.17)

where

C =
20 logA

3
+

5ζ ′(−5)

6
+

13ζ ′(−3)

3
− 343

3240
− 556 log 2π

945
, (3.18)

and A is the Glashier constant. We see that F
(1)
SUGRA grows as k6, with only even k

powers in the large k expansion up to O(1/k). It is intriguing why this is the case, and

also whether the coefficients of the asymptotic expansion have any physical meaning. For

practical purposes, however, one can see the asymptotic expansion fits very well, even for

moderate values of k, as can be seen in figure 1.

The holographic computation of F
(1)
SUGRA can now be compared with the ABJM result

F
(1)
ABJM given in (1.8). Dropping the logL term, which is accounted for by the supergravity

zero modes [23], we find

F
(1)
ABJM,k = −1

2
log

kπ

8
−A(k) =

ζ(3)

8π2
k2 − 1

3
log

π2k

32
− 2ζ ′(−1) +O

(
1

k2

)
. (3.19)

This asymptotic behavior is rather different from the holographic result, (3.17), as it grows

as k2 instead of k6. Moreover, although F
(1)
SUGRA has a sub-sub leading k2 term, its coeffi-

cient does not match with the leading coefficient of F
(1)
ABJM,k either.

4 Discussion

Our main conclusion is that, while the holographic computation of the ABJM free energy

agrees with the matrix model result at leading N3/2 order, there is disagreement at the

one-loop (i.e. N0) order. In particular, we found that F
(1)
SUGRA ∼ k6, while F

(1)
ABJM ∼ k2

in the M-theory limit. It remains a puzzle as to how this discrepancy may be resolved.
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However, it should be noted that there are several subtleties to the holographic calculation.

Before addressing some of these issues, we recall how it was performed. While the full M-

theory dual lives in 11 dimensions, we focused on its supergravity limit and immediately

went down to four dimensions by Kaluza-Klein reducing on S7/Zk. We then regulated the

one-loop determinants using the spectral zeta function on global AdS4. In contrast with

a manifestly 11-dimensional calculation, we then had to introduce a second regularization

when summing over the KK tower in order to address the short-distance divergences on

the S7 orbifold.

The regularization of the KK sum was performed by attaching a factor zn to the n-th

KK level and then taking the finite part in the limit z → 1−. While this regularization

scheme has been used successfully in the past [5, 8, 9], it has an undesirable feature in that

a slight modification of the regulator from zn to zan with some constant a will produce

a finite shift, thus leading to a potential ambiguity in the regulated partition function.

Moreover, in some cases, such as the IIA limit, there is a log divergence, and not just power

law divergences. Removing the log divergence then leads to a further ambiguity from the

constant pertaining to the log. It is possible that an improved regulator will remove this

apparent scheme dependence and lead to agreement with the matrix computation of F
(1)
ABJM.

We have more to say about the ambiguity in the zn regularization method in appendix B.

Assuming the discrepancy between F
(1)
SUGRA and F

(1)
ABJM persists even when accounting

for possible regularization scheme dependence, it then suggests that F
(1)
M-theory 6= F

(1)
SUGRA,

assuming the AdS4/CFT3 correspondence holds at the quantum level. What this would

indicate is that M-theory has quantum behavior that is distinct from that of quantum

supergravity. (This is already evident at O(N1/2), which arises from an eight-derivative

correction to the supergravity action.) In particular, the additional M-theory contributions

to the one-loop partition function would have to include terms ∼ k6 and k4 with precisely

the same coefficients so as to cancel the corresponding supergravity terms in (3.17) in

order to have functional agreement with F
(1)
ABJM. Understanding how such terms might

arise could shed light as to what effective one-loop terms one might consider in order to

study quantum M-theory.

It is of course expected that the full M-theory spectrum would include additional tow-

ers of long multiplets of Osp(4|6) (including higher-spin multiplets). For theories dual to

an odd-dimensional AdS bulk, the contribution of a long multiplet to the sphere partition

function vanishes because of a complete cancellation between fermions and bosons. How-

ever, this is no longer the case when working with an even-dimensional AdS bulk, as the

boson and fermion measures are now different. For example, the one-loop free energy for

an N = 6 long representation D(E0, s, 0, 0, 0) is given by

F
(1)
N=6 Long = (4.1)

8

3
(16s3 + 24s2 + 50s+ 21) log(Λ2L2)− 7

2
(2s+ 1)(5s(s+ 1) + 14) log((E0 + 1)(E0 + 2))

− 1

4
(2s+ 1)(15s(s+ 1) + 28) log(E0(E0 + 3))− 1

12
s(s+1)(2s+1) log((E0−1)(E0+4)),

for integer spin s.
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It is reasonable to assume that the multiplicity, i.e. the su(4) dimension formula,

still gives O(E5
0) dependence. The number of charges divisible by k at a given KK level

should be proportional to the KK level, and since one might also expect E0 ∼ n, one may

conclude that the multiplicity of such long representations is on the order of O(E6
0). Using

the zn regulator, one can directly see that
∑
E6

0 log(E0 + l) ∼ ζ(7)k6, if one assumes that

E0 ∼ n ∼ km. with m being summed over. This indicates that, with proper organization

of the long multiplets, it may be possible to cancel the leading k6 behavior seen in the sum

over BPS states. However, the exact Kaluza-Klein spectrum of quantum M-theory beyond

supergravity is still unknown, and even the task of enumerating the massive IIA spectrum

in a curved background is difficult. It would be interesting to see whether the asymptotic

behavior of the supergravity partition function, (3.17), gives reasonable constraints on the

possible Ansats̈e for the spectrum of long multiplets in the full M-theory.

Another subtle issue is the quantum inequivalence in the on-shell treatment between

classically equivalent matter contents. For example, massless two-forms contribute on-shell

in the same manner as scalar fields, but they give a different result after quantization due

to a topological contribution coming from ghosts [34]. Nevertheless, such discrepancies are

limited to the discrete part of the spectrum, and thus only enter into the log L coefficient.

It therefore should not change the k6 behavior found above.

Finally, it is interesting to consider the IIA-limit. Although our regularization method

readily applies to the IIA limit, whose KK spectrum is simply the zero-charge sector of

the full N = 8 theory, the IIA result computed in this way appears to be unphysical, as

it carries a regulator-dependent ambiguity related to the removal of a divergent log(1 − z)

term in the limit z → 1−. (See appendix B for details.) It remains a rather puzzling

question why such a log(1− z) term arises in the IIA-limit but not in the M-theory limit.
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A The q ≡ 0 mod k states in the Kaluza-Klein spectrum

Here we present the spectrum of 11-dimensional supergravity on S7/Zk. This is essentially

the subset of the states on S7 branched into so(8) → su(4) ⊕ u(1) as shown in table 1

that have u(1) charges q ≡ 0 mod k. Although the spectrum superficially appears differ-

ent depending on even or odd k, the resulting expressions can be written in general as,

e.g., in (3.8).

– 15 –



J
H
E
P
1
1
(
2
0
1
6
)
0
9
9

The Kaluza-Klein spectrum is shown in table 5. For even orbifolds, [a, b, c|e] stands for

[a, b, c|e] =

m∑
p=0

(2km+ l − kp+ a, b, l + kp+ c), (A.1)

with E0 = km+ l + e, for 0 ≤ l ≤ k − 2. For l = k − 1, the summation range of p will be

modified for some of the matter contents, and we mark it as [a, b, c|e]∗ and [a, b, c|e]† for
2m∑
p=−1

and
2m+1∑
p=0

respectively.

For odd orbifolds, we have instead

[a, b, c|e] =


m∑
p=0

((2k+1)(m−p) + l + a, b, l + (2k+1)p+ c), n = (2k+1)m+ 2l;

m−1∑
p=0

((2k+1)(m−p) + l + a, b, l + (2k+1)p+ c+ 1), n = (2k+1)m+2l+1.

(A.2)

In both cases, the lowest energy is E0 = n/2 + e. The structure of the odd orbifold special

cases is more complicated. We use [a, b, c|e]∗ to denote extending the upper bound of the

sum to m and [a, b, c|e]∗∗ to denote extending the lower bound to −1 when l = k − 1 and

n = (2k+1)m+2l+1. We also use [a, b, c|e]† to denote limiting the upper bound of the sum

to m−1 and [a, b, c|e]†† for limiting the lower bound to 1 when l = 0 and n = (2k+1)m+2l.

Finally, we use [a, b, c|e]− and [a, b, c|e]−− to denote the same change as the previous one

but with l = 1 and n = (2k + 1)m+ 2l.

B Regulator dependence of the one-loop free energy

In our calculation of F
(1)
SUGRA, we choose to attach zn with z ∈ (0, 1), and take the finite

part of limz→1−
∑∞

n=0 F
(1)
SUGRA,nz

n. However, it is not a priori clear why one should attach

zn instead of, e.g. z2n or some other power. In general, different choices of the regula-

tor produce a finite shift in the partition function, and thus make the regulated result

ambiguous. Consider, for example, the regulated sum

S1 =
∑
a,b

k−1∑
l=0

∞∑
m=0

c1abm
b

(
1 +

l

k

)a
log(km+ k + l)z2km+2lz2k−2 (B.1)

= − ∂

∂s

∑
ab

c1abz
2k−2k−s

b∑
j=0

(
b

j

)
(−1)b−j

k−1∑
l=0

z2l

(
1+

l

k

)a+b−j
Φ

(
z2k, s− j, 1 +

l

k

)
s=0

,

which is similar to the case we face for the two logarithmic sums in (3.8). Expanding the

Hurwitz-Lerch function using (3.11) gives

S1 =
∑
a,b

c1abz
−2

b∑
j=0

(−1)b−j
(
b

j

) k−1∑
l=0

(
1 +

l

k

)a+b−j [j!(Hj − γ − log(−2 log z))

(−2k log z)j+1

+

∞∑
i=0

(
log k ζ

(
−i− j, 1 +

l

k

)
− ζ ′

(
−i− j, 1 +

l

k

))
(2k log z)i

i!

]
, (B.2)
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Spin su(4)⊕ u(1)

2 [0, 0, 0|3]

3
2

[
0, 1, 0|52

]
+
[
1, 0,−1|52

]∗
† +

[
− 1, 0, 1|52

]∗∗
∗ +

[
1, 0,−1|72

]
+
[
− 1, 1,−1|72

]
+
[
− 1, 0, 1|72

]
1 [0, 0, 0|2] + [1, 0, 1|2] + [1, 1,−1|2]∗† + [−1, 1, 1|2]∗∗∗ + [0, 0, 0|3]† + [0, 0, 0|3]††

+ [1, 1,−1|3] + [−1, 1, 1|3] + [0, 1,−2|3]†† + [−2, 1, 0|3]† + [−1, 2,−1|3]

+ [2, 0,−2|3]∗† + [−2, 0, 2|3]∗† + [−1, 0,−1|4] + [0, 0, 0|4]††† + [0, 1,−2|4]††

+ [−2, 1, 0|4]†

1
2

[
2, 0, 0|32

]∗
† +

[
0, 1, 0|32

]
∗ +

[
0, 0, 2|32

]∗∗
∗ +

[
1, 0,−1|52

]
+
[
− 1, 1,−1|52

]
+
[
− 1, 0, 1|52

]
+
[
2, 0, 0|52

]††
+
[
0, 0, 2|52

]†
+
[
0, 1, 0|52

]†
+
[
0, 1, 0|52

]††
+
[
2, 1,−2|52

]††∗∗
∗ +

[
− 2, 1, 2|52

]†∗
† +

[
0, 2,−2|52

]††
+
[
− 2, 2, 0|52

]†
+
[
− 1, 0, 1|72

]−
+
[
1, 0,−1|72

]−−
+
[
0, 0,−2|72

]
+
[
− 2, 0, 0|72

]
+
[
0, 1, 0|72

]†††
+
[
− 1, 1,−1|72

]
+
[
− 1, 1,−1|72

]
+
[
− 3, 1, 1|72

]†−∗
+
[
1, 1,−3|72

]††−−∗∗
+
[
− 2, 2, 0|72

]†
+
[
0, 2,−2|72

]††
+
[
− 1, 1,−1|92

]†
+
[
0, 0,−2|92

]††
+
[
− 2, 0, 0|92

]
0 [1, 0, 1|1]∗∗∗∗† + [1, 0, 1|2] + [3, 0,−1|2]∗† + [−1, 0, 3|2]∗∗ + [−1, 2,−1|2]

+ [1, 1,−1|2] + [−1, 1, 1|2] + [−1, 1, 1|3]− + [1, 1,−1|3]−− + [1, 2,−3|3]††−−∗†

+ [−3, 2,−1|3]†−∗∗∗ + [0, 0, 0|3]††† + [−1, 2,−1|3] + [0, 1,−2|3]††

+ [−2, 1, 0|3]† + [−1, 0,−1|3]††† + [1, 0, 1|3]††† + [−1, 0,−1|4]†††

+ [1, 0,−3|4]††−−∗† + [−3, 0, 1|4]†−∗∗∗ + [−1, 2,−1|4]††† + [0, 1,−2|4]††

+ [−2, 1, 0|4]† + [−1, 0,−1|5]†††

Table 5. The Kaluza-Klein spectrum of 11-dimensional supergravity on AdS4 × S7/Zk. The

[a, b, c|e] notation is explained in the text.

Here one observes that replacing the zn regulator by zan (for some constant a) only changes

the superficially divergent part, i.e. the first term in the inner sum of (B.2), through the

log log z factor. In the limit z → 1−, the superficially divergent term gives rise to log(1−z)

terms in the O(1) part of the expansion, which makes the limit z → 1− ill-defined in

general. However, after summing over all terms in (3.8), we find that the log(1− z) terms

in fact cancel with each other, and this makes our regularization procedure well defined.

In general, one might ask which regulator in the family of regulators zan with arbitrary

a can produce a well-defined regularization procedure. The answer, to our surprise, is highly

restrictive, namely 1/a has to be a divisor of 6. To see this, one can expand (3.8) using

instead a zan regulator. We find that the resulting log(1 − z) term has a coefficient

(a− 1)(2a− 1)(3a− 1)(6a− 1)
(
41a2 + 12a+ 1

)
1008a6k

, (B.3)

which is zero for 1/a = 1, 2, 3, 6. It would be interesting to further elucidate the relation be-

tween compatible regulators and the supersymmetry of the theory. Moreover, one consider
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regulating F
(1)
SUGRA using a completely different procedure. Each different choice would give

the regulated F
(1)
SUGRA a finite shift. However, the finite shifts have asymptotic behaviors of

at most the order O(k log k). Therefore, while the regulated answer for finite k is scheme

dependent, the finite shift is not arbitrary. Moreover, the asymptotic expansion (3.17), is

regulator independent up to the k2 term. It is thus perhaps more intriguing to ask whether

the coefficients of k6, k4 and k2 in (3.17) have physical meaning as they appear to be fully

scheme independent.

Finally we comment on the IIA limit. To reduce to the IIA spectrum on AdS4 ×CP3,

we simply take the zero u(1) charge sector. The sum of the zero charge sector using the

zn regulator is given by

F
(1)
IIA =

121

864
+

389

945
(γ + log(1− z)) +

20 logA
3

− log 2π +
5

6
ζ ′(−5) +

13

3
ζ ′(−3), (B.4)

after taking the O(1) term in the z → 1− expansion. Curiously, we see a non-vanishing

log(1 − z) term, which makes the z → 1− procedure ambiguous. Here one may consider

using instead a zan regulator, with a to be determined. However, the regulator dependent

versus independent terms are harder to disentangle, as we no longer have a parameter k to

play with.

Note that the IIA spectrum is exactly
∑

E0
D 1

3
BPS(E0, 0, E0, E0, 0) in terms of the

N = 6 BPS multiplets, and the failure of the cancellation of the log(1 − z) term for

the IIA spectrum suggests that regulator compatibility also depends on how the different

representations D 1
3

BPS(E0, 0, E0, E0, r) fit into the KK spectrum.

C The polynomials c1(l,m) and c2(l,m)

The polynomials in l and m occurring in (3.8) are given by the following:

c1(l,m) =− 1

720
(m+ 1)

[
5k5m2

(
m3 −m2 +m− 1

)
+ 9k4m

(
6m3 − 6m2 +m− 1

)
+ 10k3m2(17m− 5)− 75k2(m− 1)m− 840km+ 720

+ 10l
(
k4m

(
6m3 − 6m2 +m− 1

)
+ 27k3m2(2m− 1)

+ 2k2m(56m− 5)− 45km− 168
)

+ 30l2
(

5k3m2(2m− 1) + 9k2m(7m− 1) + 78km− 15
)

+ 20l3
(

5k2m(7m− 1) + 135km+ 78
)

+ 150l4
(

5km+ 9
)

+ 300l5
]
, (C.1)

c2(l,m) =− 1

720
(m+ 1)

[
k2(m− 1)m(5k3(m3 +m) + k2(6m2 + 1)− 70km+ 5)

+ 10lkm
(
k3(6m3 − 6m2 +m− 1) + 3k2m(2m− 1)

+ k(14− 56m) + 3
)

+ 30l2
(

5k3m2(2m− 1) + k2m(7m− 1)− 42km+ 1
)

+ 20l3
(

5k2m(7m− 1) + 15km− 42
)

+ 150l4(5km+ 1) + 300l5
]
. (C.2)
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Note that we do not observe the same l → k − l symmetry as in (3.12) directly in (C.1)

and (C.2).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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