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1 Introduction and summary

Hydrodynamics is an effective long-distance description of most QFTs at nonzero tempera-

ture. Within the hydrodynamic approximation, the entire dynamics of a microscopic theory

is reduced to that of macroscopic currents, such as of charge current operators computed

in a locally near equilibrium thermal state. An essential element of any hydrodynamics is

a constitutive relation which relates the macroscopic currents to fluid-dynamic variables,

such as charge densities, and to external forces. The most simple example of constitutive

relation is the diffusion approximation for the electric current ~J

~J = −D0
~∇ρ (1.1)

where ρ is the corresponding charge density. Derivative expansion in the fluid-dynamic

variables accounts for deviations from thermal equilibrium. At each order, the derivative
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expansion is fixed by thermodynamics and symmetries, up to a finite number of trans-

port coefficients. The latter are not calculable from hydrodynamics itself, but have to be

determined from underlying microscopic theory or experimentally.

Chiral anomalies emerge and play an important role in relativistic QFTs with massless

fermions. The chiral anomaly is reflected in three-point functions of currents associated

with global symmetries. When the global U(1) currents are coupled to external electro-

magnetic fields, the triangle anomaly renders the axial current into non-conserved,

∂µJ
µ = 0, ∂µJ

µ
5 = 4κ

(
3 ~E · ~B + ~Ea · ~Ba

)
, (1.2)

where Jµ/Jµ5 are vector/axial currents, and κ is the anomaly coefficient. In SU(Nc) gauge

theory with a massless Dirac fermion in fundamental representation, κ = eNc/(24π2) and

e is electric charge. Here ~E, ~B ( ~Ea, ~Ba) are vector (axial) external electromagnetic fields.1

In presence of external fields, the triangle anomaly modifies the usual constitutive

relations for the vector/axial currents. One such example is the chiral magnetic effect

(CME) [2–6]:2 appearance of electric current directed along applied magnetic field and is

due to nonzero topological charge. In QCD coupled to electromagnetism, CME is realised

via chirality imbalance between left- and right-handed quarks, usually parametrised by

an axial chemical potential. In perturbative QCD, the chiral magnetic conductivity was

computed in [10–14]. Lattice simulations of CME can be found in [15–20]. In strongly

coupled regime, holographic AdS/CFT correspondence [21–23] was used to compute chiral

magnetic conductivity in [24–35].

The chiral separation effect (CSE) [36, 37] is another interesting phenomenon induced

by triangle anomalies. It is reflected in separation of chiral charges along external magnetic

field at finite density of vector charges. Chiral charges can be also separated along external

electric field, when both vector and axial charge densities are nonzero, the so-called chiral

electric separation effect (CESE) [38, 39].

Without external fields, triangle anomalies affect transport properties through hydro-

dynamic flows. Particularly, there exists an anomaly induced chiral vortical effect [40–42],

which relates the current to fluid’s vorticity. In the fluid’s local rest frame, the chiral vor-

tical effect is ~J = 1
2ξ
~∇ × ~u, where ~u is the fluid velocity. The transport coefficient ξ was

first calculated in [40, 41] using the fluid/gravity correspondence [43–45]. Later, in [42] it

was shown that the chiral vortical term is required by existence of a positive-definite en-

tropy current associated with the hydrodynamic system and furthermore that ξ is uniquely

determined by the anomaly coefficient κ.

In heavy ion collisions, experimentally observable effects induced by the anomalies

were discussed in [46–50]. We refer the reader to [51–53] for comprehensive reviews on the

subject of anomalous transports.

In [54] we derived the most general off-shell constitutive relation for a globally con-

served U(1) current driven by non-dynamical external electromagnetic fields. The deriva-

tion involved a resummation of all-order gradient terms in U(1) current. The gradient

1A possibility of experimentally creating axial electromagnetic fields in a laboratory was recently dis-

cussed in [1].
2See also [7–9] for earlier related works.
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resummation was implemented via the technique of [55–58]. The latter was devised to re-

sum, in linear approximation, all-order velocity derivatives in the energy-momentum tensor

of a holographic conformal fluid. For a holographically defined theory involving a probe

Maxwell field in the Schwarzschild-AdS5 geometry, the constitutive relation for the bound-

ary current was found to be parameterised by three momenta-dependent transport coeffi-

cient functions: diffusion and two conductivities. The key element in the derivation was

“off-shellness” of our method. That is the transport coefficients were uniquely determined

via solution of dynamical components of the Maxwell equations in the bulk. The constraint

component was shown to be equivalent to continuity equation of thus derived current.

In the present work we extend the study of [54] and account for the effects induced

by the triangle anomaly: when the triangle anomaly is present for both left/right-handed

chiralities, we derive off-shell constitutive relations for vector/axial currents. As mentioned

above, anomalies contribute to the stress-energy tensor [40, 41]. However, as in [54] we

chose to work in the probe limit in which the currents and stress-energy tensor decouple.

In the dual gravity, the probe limit ignores the backreaction of the gauge dynamics on

the bulk geometry. The holographic model in study consists of two Maxwell fields in the

Schwarzschild-AdS5 black brane geometry. The triangle anomaly is holographically mod-

eled via the gauge Chern-Simons action for both Maxwell fields (with opposite signs). This

holographic setup can be realised via a top-down brane construction of D4/D8/D8 [59].

Below we will consider the charge densities (chemical potentials) as constant with small

inhomogeneous fluctuations on top:

ρ(xα) = ρ̄+ εδρ(xα), ρ5(xα) = ρ̄5 + εδρ5(xα),

µ(xα) = µ̄+ εδµ(xα), µ5(xα) = µ̄5 + εδµ5(xα),
(1.3)

where ρ̄, ρ̄5 , µ̄, µ̄5 are constant backgrounds and δρ, δρ5 , δµ, δµ5 are the inhomogeneous fluc-

tuations. The parameter ε is formally introduced as a small parameter. It will be used

to set up a perturbative procedure. We will be particularly interested in linearisation in

inhomogeneous fluctuations and most of our results will be accurate up to first order in

ε. The charge densities ρ, ρ5 are the hydrodynamic variables. They can be related to

corresponding chemical potentials via (3.7). For constant parts, µ̄ = ρ̄/2 and µ̄5 = ρ̄5/2.

Our study is divided into two largely independent parts. In the first part, the external

fields are assumed to be weak and scale linearly with ε

Ei(xα)→ εEi(xα), Bi(xα)→ εBi(xα), Ea
i (xα)→ εEa

i (xα), Bi(xα)→ εBa
i (xα). (1.4)

To first order in ε, we are able to derive the most general all order off-shell constitutive

relations for the vector/axial currents.

In the second part of our work, the external fields are assumed to have constant

background values ~E, ~B, ~Ea, ~Ba plus small inhomogeneous fluctuations δ ~E, δ ~B, δ ~Ea, δ ~Ba,

~E(xα) = ~E + εδ ~E(xα), ~B(xα) = ~B + εδ ~B(xα),

~Ea(xα) = ~Ea + εδ ~Ea(xα), ~Ba(xα) = ~Ba + εδ ~Ea(xα).
(1.5)

We will see that the constant backgrounds induce interesting nonlinear anomaly-induced

structures in both currents.
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Our study goes in several directions beyond the results reported in the literature.

• For the linearised setup, we present a rigorous derivation of off-shell constitutive re-

lations for the vector/axial currents, coupled to non-dynamical external vector/axial

electromagnetic fields. Apart from the well-known chiral magnetic/separation effects,

we obtain two additional anomaly-related transport coefficients, magnetic conductiv-

ity and its axial analogue. Furthermore, all the transport coefficients are generalised

to momenta-dependent functions as a result of exact all order gradient resummation.

• Beyond the linear regime, we calculate some nonlinear effects induced by constant

background external fields. While the phenomena that we discover are largely not

new, most of them have not been reported for the present holographic model. In the

absence of external electric and axial fields, the chiral magnetic/separation effects are

proven to be exact for arbitrary strong constant magnetic field.

• In a follow-on publication [60], we will extend the study of non-linear CME to

spatially-varying magnetic field and will evaluate derivative corrections to it in the

constitutive relation. Furthermore, we will consider a case when the axial chemi-

cal potential is dynamically generated through ~E · ~B term for the case of constant

magnetic field and a weak time-dependent electric fields. Such setup is experimen-

tally realisable in condensed matter systems.3 Dependence of AC conductivity on

magnetic field is in the focus of this study.

In the first, “linear”, part of our study, all-order derivatives are resummed into the

following constitutive relations for the vector/axial currents4

J t = ρ, ~J = −D~∇ρ+ σe ~E + σm~∇× ~B + σχ ~B + σa~∇× ~Ba + σκ ~B
a, (1.6)

where D, σe/m, σχ/κ and σa are scalar functionals of spacetime derivative operators

D[∂t, ~∂
2], σe/m[∂t, ~∂

2], σχ/κ[∂t, ~∂
2], σa[∂t, ~∂

2].

Transforming to the Fourier space via the replacement (∂t, ~∂) → (−iω, i~q), these scalar

functionals become functions of the frequency ω and momentum squared q2. We refer to

these functions as transport coefficient functions (TCFs). Here ω and ~q are dimensionless,

while the dimensionfull momenta are πTω and πT~q with T being the temperature. The

axial current is

J t5 = ρ5 ,
~J5 = −D~∇ρ5 + σe ~E

a + σm~∇× ~Ba + σχ ~B
a + σa~∇× ~B + σκ ~B. (1.7)

TCFs contain information on infinitely many derivatives (and transport coefficients)

in conventional hydrodynamic expansion. The latter is recovered via small momenta ex-

pansion. While most of the results on transport coefficients reported in the literature are

obtained order-by-order in the expansion, our results are exact to all orders. Furthermore,

3We thank Dmitri Kharzeev for proposing us this study.
4An axial analogue of σe was found to vanish in the present holographic model.
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the TCFs account for collective effects of non-hydrodynamic modes, which never emerge

in the strict low frequency/momentum expansion. The diffusion D, electric conductivity

σe and magnetic conductivity σm were studied in [54]. The additional three TCFs are

induced by the anomaly: σχ is the momenta-dependent chiral magnetic conductivity [10];

σκ generalises the chiral separation effect [36, 37]; σa is an axial analogue of the magnetic

conductivity σm.

(1.6), (1.7) can be equivalently presented using the chemical potentials µ, µ5 instead

of the charge densities

J t = α1µ+α2∂kEk, ~J = −D′~∇µ+σ′e ~E+σ′m~∇× ~B+σχ ~B+σa~∇× ~Ba+σκ ~B
a, (1.8)

J t5 = α1µ5 +α2∂kE
a
k ,

~J5 = −D′~∇µ5 +σ′e
~Ea+σ′m

~∇× ~Ba+σχ ~B
a+σa~∇× ~B+σκ ~B. (1.9)

When the triangle anomaly is switched off (κ = 0), (1.8) for Jµ coincides with the consti-

tutive relation of [61] derived from an effective action.

In the present holographic model, we succeeded to uniquely determine all the TCFs

in (1.6), (1.7). As for (1.8), (1.9), the coefficients α1, α2, D′, σ′e/m are in fact frame-

dependent. We postpone further discussion until section 4 where these TCFs are presented

in a certain frame (see (4.20), (4.21)).

In the hydrodynamic limit ω, q � 1, the TCFs are series expandable:

D =
1

2
+

1

8
πiω +

1

48

[
−π2ω2 + q2 (6 log 2− 3π)

]
+ · · · , (1.10)

σe = 1 +
log 2

2
iω +

1

24

[
π2ω2−q2 (3π + 6 log 2)

]
+ · · · , (1.11)

σm = 72κ2
(
µ̄2+µ̄2

5

)
(2 log 2−1)+iω

[
1

16
(2π−π2+4 log 2)+O

(
µ̄2, µ̄2

5

)]
+· · · , (1.12)

σχ = 12κµ̄5

{
1+iω log 2− 1

4
ω2 log2 2− q

2

24

[
π2−1728κ2

(
µ̄2

5
+ 3µ̄2

)
(log 2− 1)2

]}
+ · · · ,

(1.13)

σa = 144κ2µ̄µ̄5 (2 log 2− 1) + · · · , (1.14)

σκ = 12κµ̄

{
1+iω log 2− 1

4
ω2 log2 2− q

2

24

[
π2−1728κ2

(
µ̄2+3µ̄2

5

)
(log 2−1)2

]}
+ · · · .

(1.15)

We were unable to obtain an analytical result for the anomalous correction to iω-term in

σm. In section 4.2.2 we will reveal that anomalous correction to iω-term in σm is linear

in (µ̄2 + µ̄2
5
). Turning the anomaly off, the magnetic conductivity σm coincides with that

of [54]. Interestingly, σm is being corrected by the anomaly.5 Appearance of anomalous

corrections in σm could be explained as the effect of two triangular anomaly-generating

Feynman diagrams inserted in the current-current correlator6 [63].

5This fact was previously noticed in [62] where the authors went beyond the probe limit and included

backreaction of the bulk gauge fields onto the geometry. However, taking the probe limit in [62] does not

seem to coincide with our results. The reasons behind this discrepancy remain unclear to us.
6We thank Ho-Ung Yee for bringing this argument to our attention.

– 5 –



J
H
E
P
1
1
(
2
0
1
6
)
0
9
3

In [54], we made a full comparison of D, σe and anomaly-free part of σm with known

results in the literature, particularly with the ones that could be extracted from the current-

current correlators. The underlined terms in D, σe/m cannot be fixed from the correlators,

while the constant pieces of σm, σ
a can be. In [64], the constant piece σ0

m was evaluated

for a pure QED plasma with one Dirac fermion at one loop level: the result was found

to be positive and was interpreted as an anti-screening of electric currents in the plasma

medium. In contrast, in [65] σ0
m was argued to be zero based on Boltzmann equations.

In strongly coupled regime, to our best knowledge, σm, σ
a have not been reported in the

literature.

In the same holographic model as considered here, the constant terms in σχ and σκ were

originally presented in [29]. We find full agreement with those results. The constitutive

relations (1.6), (1.7) can be used to derive Kubo formula (4.28) for σχ/κ, which comes out

to be consistent with [10]. Beyond the constant terms, the analytical results in σχ/κ are

new as far as we can tell.

Away from the hydrodynamic limit, the TCFs are known numerically only: D, σe
and the anomaly-free part of σm were already reported in [54]; numerical results for

σm, σa, σχ, σκ will be presented below, in section 4.2.2. Comparison of σχ with the re-

sults of [24, 66, 67] will be discussed as well.

In the second part of our study, new nonlinear structures emerge in the constitutive

relations for both currents. The complete set of results will be displayed in section 5.

Meanwhile we will only flash the results with the axial background fields turned off. To

zeroth order in fluctuations, the vector/axial currents are

J t(0) = ρ̄, J i(0) = Ei + 12κµ5Bi − 12κεijkA(0)
j (1)Ek, (1.16)

J t5(0) = ρ̄5 , J i5(0) = 12κµBi − 12κεijkV(0)
j (1)Ek, (1.17)

where the subscript (0) denotes zeroth order in fluctuations (O(ε0)). V(0)
i (1) and A(0)

i (1)

are functions of ~E, ~B, µ, µ5 , and are perturbatively computed in section 5.1. When

E = 0, (1.16) confirms exactness of the CME [2–6] for arbitrary constant magnetic field,

in agreement with [68, 69]. Both µ, µ5 depend on E,B and these dependences account for

nonlinearity of the CME with respect to external fields. The electric field E introduces

corrections to the original form of the CME and is a source of new structures.

In the weak field limit, V(0)
j (1), A(0)

j (1) are expandable in the amplitudes of E,B. We

quote the results up to third order:

~J(0) = ~E + 12κµ5
~B− 72 log 2κ2µ~B× ~E + 18π2κ3µ5

(
~B× ~E

)
× ~E + · · · , (1.18)

~J5(0) = 12κµ~B− 72 log 2κ2µ5
~B× ~E + 18π2κ3µ

(
~B× ~E

)
× ~E + · · · , (1.19)

where µ, µ5 are also expandable in E and B,

µ = µ[E,B] =
1

2
ρ̄+ 18 (1− 2 log 2)κ2ρ̄B2 + · · · ,

µ5 = µ5[E,B] =
1

2
ρ̄5 + 18 (1− 2 log 2)κ2ρ̄5B

2 +
3

2
(π − 2 log 2)κ~B · ~E + · · · ,

(1.20)
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where · · · are terms of higher powers in E and B. The second order term ~E × ~B is the

Hall current induced by the anomaly, referred to as chiral Hall effect in [70]. In classical

electromagnetism, the Hall current is generated by the Lorentz force and the imposition

of steady state condition. However, the usual Hall current is generated non-linearly and

cannot be generated in a holographic model with the Maxwell action only, which does not

induce any nonlinearity. Beyond the probe limit, the Hall current does emerge [62, 71].

The last term in (1.18) is induced by the anomaly and was derived in [72] within the

chiral kinetic theory. Quite naturally, the transport coefficient associated with the last term

in (1.18) calculated in [72] is different from our result. Alternatively, using the identity

(~B × ~E) × ~E = ~E(~E · ~B) − E2~B, the last term in (1.18) can be split into two pieces: one

represents E2-correction to the chiral magnetic conductivity; the other contributes to the

chiral electric effect [73]. Analogous to (1.18), the last term in (1.19) is of interest too. On

the one hand, it makes E2-correction to the chiral separation effect; on the other hand, it

contributes to the chiral separation effect induced by the electric field. Our study implies

that, via higher order corrections, the chiral electric separation effect exists even when

there is no axial chemical potential.

At order O(ε0), the continuity equation for Jµ5 in (1.2) is in tension with (1.19) if
~E·~B 6= 0. That is, the axial charge density will linearly grow with time leading to instability.

It will manifest itself in a breakdown of the constitutive relations (1.18) and (1.19), which

would have to be amended by derivative terms.

Beyond the constant background field approximation, numerous new structures

emerge, which involve inhomogeneous fluctuations of the external fields and charge densi-

ties. Particularly, we notice the emergence of δρ5
~B (δρ~B) in ~J ( ~J5), see (5.38), (5.39). The

interplay between these two terms predicts the chiral magnetic wave [68]. We list the new

structures in section 5.2, but leave computation of corresponding transport coefficients to

future work.

This paper is structured as follows. In section 2 we present the holographic model.

In section 3 we outline the strategy of deriving the boundary currents through solving the

anomalous Maxwell equations in the bulk. Section 4 presents the first part of our study.

In section 4.1, we derive the constitutive relations (1.6), (1.7) by solving the dynamical

components of the bulk anomalous Maxwell equations near the conformal boundary. The

boundary external fields and charge densities appear as source terms in these equations.

The main technique is based on decomposition of the bulk gauge fields in terms of ba-

sis constructed from the external fields and charge densities. Dynamics of the Maxwell

equations is translated into ordinary differential equations (ODEs) for the decomposition

coefficients, which are nothing else but the components of the inverse Green function ma-

trix. In section 4.2 we determine the TCFs by solving these ODEs. In section 5 we turn

to the second part of this work, corresponding to the scheme (1.5). Finally in section 6 we

again outline the main results of this work and make some discussions. Some technical de-

tails are deposited into several appendices. In appendix A, we write down all the ODEs for

the decomposition coefficients and derive constraint relations among them. In appendix B

we summarise analytic perturbative solutions for these coefficients. In appendix C we prove

that the TCFs in (1.6), (1.7) are frame-independent.

– 7 –
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2 The holographic model: from U(1)L × U(1)R to U(1)V × U(1)A

The holographic model is the U(1)L×U(1)R theory in the Schwarzschild-AdS5 black brane

spacetime. The triangle anomaly of the boundary field theory is introduced via the Chern-

Simons terms (of opposite signs for left/right fields) in the bulk action

S1 =

∫
d5x
√
−gL1 + Sc.t., (2.1)

where the Lagrangian density L1 is

L1 = −1

4
(FL)MN (FL)MN − 1

4
(FR)MN (FR)MN +

κ1 ε
MNPQR

4
√
−g

× [(AL)M (FL)NP (FL)QR − (AR)M (FR)NP (FR)QR] .

(2.2)

In the ingoing Eddington-Finkelstein coordinates, the spacetime metric is

ds2 = gMNdx
MdxN = 2dtdr − r2f(r)dt2 + r2δijdx

idxj , (2.3)

where f(r) = 1− 1/r4, so that the Hawking temperature (identified as temperature of the

boundary theory) is normalised to πT = 1. On the constant r hypersurface Σ, the induced

metric γµν is

ds2|Σ = γµνdx
µdxν = −r2f(r)dt2 + r2δijdx

idxj . (2.4)

εMNPQR is the Levi-Civita symbol with the convention εrtxyz = +1, and the Levi-Civita

tensor is εMNPQR/
√
−g. The counter-term action Sc.t. is [26, 74, 75]

Sc.t. =
1

4
log r

∫
d4x
√
−γ {(FL)µν(FL)µν + (FR)µν(FR)µν} . (2.5)

The bulk theory can be reformulated as U(1)V ×U(1)A via the combination

AL =
eV + e′A√

2
, AR =

eV − e′A√
2

, (2.6)

where the gauge coupling e (e′) is associated with the vector (axial) field VM (AM ). In

terms of V and A fields, the Lagrangian density L1 becomes

L1 = −1

4
e2(F V )MN (F V )MN − 1

4
e′2(F a)MN (F a)MN +

κ1e
′ εMNPQR

4
√

2
√
−g

×
{

2e2VM (F a)NP (F V )QR + e2AM (F V )NP (F V )QR + e′2AM (F a)NP (F a)QR
}
,

(2.7)

which can equivalently be written as

L1 = −2κe2e′∇M ṼM − 1

4
e2(F V )MN (F V )MN − 1

4
e′2(F a)MN (F a)MN

+
κ εMNPQR

2
√
−g

[
3e2e′AM (F V )NP (F V )QR + e′3AM (F a)NP (F a)QR

]
,

(2.8)
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where F V,a are field strengths of V,A, respectively. κ and ṼM are defined as

κ =
κ1

2
√

2
,

ṼM =
εMNPQR

√
−g

VNAP (F V )QR.
(2.9)

While the underlined total derivative term in (2.8) does not affect the equations of motion,

it results in non-conservation of the vector current (dual to VM ). Following [24] we are to

cancel this total derivative by adding the Bardeen counter-term so that the vector current

becomes conserved, as in real electromagnetic theory. In terms of V and A fields, the

counter-term action (2.5) is

Sc.t. =
1

4
log r

∫
d4x
√
−γ
[
e2(F V )µν(F V )µν + e′2(F a)µν(F a)µν

]
. (2.10)

From now on we will work with a new action S

S =

∫
d5x
√
−gL+ Sc.t., (2.11)

where

L = −1

4
e2(F V )MN (F V )MN − 1

4
e′2(F a)MN (F a)MN

+
κ εMNPQR

2
√
−g

[
3e2e′AM (F V )NP (F V )QR + e′3AM (F a)NP (F a)QR

]
.

(2.12)

Equations of motion for V and A fields are derived via standard variational procedure.

Under the variation

V → V + δV, A→ A+ δA, (2.13)

from (2.12) we have

δL = δVM

{
e2∇N (F V )NM +

3κe2e′εMNPQR

√
−g

(F a)NP (F V )QR

}
+ δAM

×
{
e′2∇N (F a)NM+

3κe′εMNPQR

2
√
−g

[
e2(F V )NP (F V )QR+e′2(F a)NP (F a)QR

]}
− e2∇M

[
δVN (F V )MN +

6κe′εMNPQR

√
−g

ANδVP (F V )QR

]
− e′2∇M

[
δAN (F a)MN +

2κe′εMNPQR

√
−g

ANδAP (F a)QR

]
,

(2.14)

and the variation of Sc.t. (cf. (2.10))

δSc.t. = −
∫
d4x
√
−γ
{
e2δVµ∇̃ν(F V )νµ + e′2δAµ∇̃ν(F a)νµ

}
log r, (2.15)

where ∇̃µ is covariant derivative compatible with the induced metric γµν . Then, equations

of motion for V and A fields are

dynamical equations: EVµ = EAµ = 0, (2.16)

constraint equations: EVr = EAr = 0, (2.17)

– 9 –
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where

EVM ≡ e2∇N (F V )NM +
3κe2e′εMNPQR

√
−g

(F a)NP (F V )QR, (2.18)

EAM ≡ e′2∇N (F a)NM+
3κe′εMNPQR

2
√
−g

[
e2(F V )NP (F V )QR+e′2(F a)NP (F a)QR

]
. (2.19)

Imposing the dynamical equations (2.16), the action variation δS reduces to

δS =

∫
d4x
√
−γ nM

{
−e2δVN (F V )MN − 6κe2e′εMNPQR

√
−g

ANδVP (F V )QR

−e′2δAN (F a)MN − 2κe′3εMNPQR

√
−g

ANδAP (F a)QR

}
−
∫
d4x
√
−γ
{
e2δVµ∇̃ν(F V )νµ + e′2δAµ∇̃ν(F a)νµ

}
log r

+

∫
d5x
√
−g (δVr EVr + δAr EAr) ,

(2.20)

where nM is the outpointing unit normal vector of the slice Σ. The last line of (2.20)

vanishes either using the constraint equations (2.17) or through a radial gauge choice

δVr = δAr = 0. The boundary currents are defined as

Jµ ≡ lim
r→∞

δS

δVµ
, Jµ5 ≡ lim

r→∞

δS

δAµ
. (2.21)

In terms of the bulk fields, the boundary currents are

Jµ = lim
r→∞

√
−γ e2

{
(F V )µMnM +

6κe′εMµNQR

√
−g

nMAN (F V )QR − ∇̃ν(F V )νµ log r

}
,

Jµ5 = lim
r→∞

√
−γe′2

{
(F a)µMnM +

2κe′εMµNQR

√
−g

nMAN (F a)QR−∇̃ν(F a)νµ log r

}
. (2.22)

It is important to stress that the currents in (2.21) are defined independently of the

constraint equations (2.17). Throughout this work, the radial gauge Vr = Ar = 0 will

be assumed. Thus, in order to completely determine the boundary currents (2.22) it is

sufficient to solve the dynamical equations (2.16) for the bulk gauge fields Vµ, Aµ only,

leaving the constraints aside. The constraint equations (2.17) give rise to the continuity

equations (1.2). In this way, the currents’ constitutive relations to be derived below are off-

shell. In subsequent presentation, the couplings e and e′ will be absorbed into redefinition

of V and A fields, while the notations for V and A will remain unchanged for convenience.

It is useful to reexpress the currents (2.22) in terms of coefficients of near boundary

asymptotic expansion of the bulk gauge fields. Near r =∞,

Vµ = Vµ +
V

(1)
µ

r
+
V

(2)
µ

r2
−

2V L
µ

r2
log r +O

(
log r

r3

)
, (2.23)

Aµ = Aµ +
A

(1)
µ

r
+
A

(2)
µ

r2
−

2AL
µ

r2
log r +O

(
log r

r3

)
, (2.24)
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where

V (1)
µ = FVtµ, 4V L

µ = ∂νFVµν , (2.25)

A(1)
µ = Fatµ, 4AL

µ = ∂νFaµν . (2.26)

The holographic dictionary implies that Vµ,Aµ are gauge potentials of the external fields
~E, ~B, ~Ea and ~Ba,

Ei = FVit = ∂iVt − ∂tVi, Bi =
1

2
εijkFVjk = εijk∂jVk,

Eai = Fait = ∂iAt − ∂tAi, Ba
i =

1

2
εijkFajk = εijk∂jAk.

(2.27)

As mentioned above, only the dynamical equations (2.16) were utilized in order to

get (2.23)–(2.26). The near-boundary data V
(2)
µ and A

(2)
µ have to be determined via

integrating of the dynamical equations (2.16) from the horizon to the boundary. The

currents (2.22) become

Jµ = ηµν(2V (2)
ν + 2V L

ν + ησt∂σFVtν) + 6κεµνρλAνFVρλ,

Jµ5 = ηµν(2A(2)
ν + 2AL

ν + ησt∂σFatν) + 2κεµνρλAνFaρλ.
(2.28)

Note explicit dependence of the currents Jµ and Jµ5 on the axial gauge potential Aµ.

The last term in Jµ of (2.28) is crucial in guaranteeing conservation of Jµ, that is the gauge

invariance under the vector gauge transformation Vµ → Vµ + ∂µφ. Clearly, explicit depen-

dence of physical quantities on the axial potential Aµ is because that the transformation

Aµ → Aµ + ∂µϕ is not a symmetry,

In presence of anomaly one distinguishes between consistent current and covariant

current [76]. Consistent current is defined as a functional derivative of effective action with

respect to external gauge field. Covariant current is obtained by subtracting a suitably

chosen Chern-Simons current from the consistent one, so that the current becomes invariant

under both vector and axial gauge transformations. The currents defined in (2.21), (2.28)

are consistent. The associated covariant currents are

Jµcov = Jµ − 6κεµνρλAνFVρλ, Jµ5cov = Jµ5 − 2κεµνρλAνFaρλ. (2.29)

Obviously, when the axial field Aµ = 0, both consistent and covariant currents coincide.

3 Anomalous Maxwell equations in the bulk

To derive constitutive relations for the currents Jµ and Jµ5 , we consider finite vector/axial

charge densities exposed to external vector and axial electromagnetic fields. Holographi-

cally, the charge densities and external fields are encoded in asymptotic behaviors of the

bulk gauge fields. In the bulk, we will solve the dynamical equations (2.16) assuming some

charge densities and external fields, but without specifying them explicitly. In this section

we outline the strategy for deriving of currents’ constitutive relations.
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Following [54], we start with the most general static and homogeneous profiles for the

bulk gauge fields which solve the dynamical equations (2.16),

Vµ = Vµ −
ρ

2r2
δµt, Aµ = Aµ −

ρ5

2r2
δµt, (3.1)

where Vµ,Aµ, ρ, ρ5 are all constants for the moment. Regularity requirement at r = 1 fixes

one integration constant for each Vi and Ai. Through (2.28), the boundary currents are

J t = ρ, J i = 0; J t5 = ρ5 , J i5 = 0. (3.2)

Hence, ρ and ρ5 are identified as the vector/axial charge densities.

Next, following the idea of fluid/gravity correspondence [43], we promote Vµ,Aµ, ρ, ρ5

into arbitrary functions of the boundary coordinates

Vµ → Vµ(xα), ρ→ ρ(xα); Aµ → Aµ(xα), ρ5 → ρ5(xα). (3.3)

(3.1) ceases to be a solution of the dynamical equations (2.16). To have them satisfied,

suitable corrections in Vµ and Aµ have to be introduced:

Vµ(r, xα) = Vµ(xα)− ρ(xα)

2r2
δµt + Vµ(r, xα),

Aµ(r, xα) = Aµ(xα)− ρ5(xα)

2r2
δµt + Aµ(r, xα),

(3.4)

where Vµ,Aµ will be determined from solving (2.16). Appropriate boundary conditions

have to be specified. First, Vµ and Aµ have to be regular over the whole integration

interval of r, from one to infinity. Second, at the conformal boundary r =∞, we require

Vµ → 0, Aµ → 0 as r →∞, (3.5)

which amounts to fixing external gauge potentials to be Vµ and Aµ. Additional integra-

tion constants will be fixed by a frame choice. In this work we adopt the Landau frame

convention for covariant currents,

J tcov = ρ(xα), J t5cov = ρ5(xα). (3.6)

The Landau frame choice can be identified as a residual gauge fixing for the bulk fields.

Most of our results, however, would be independent of this choice. Appendix C is entirely

devoted to this discussion.

The vector/axial chemical potentials are defined as

µ = Vt(r =∞)− Vt(r = 1) =
1

2
ρ− Vt(r = 1),

µ5 = At(r =∞)−At(r = 1) =
1

2
ρ5 − At(r = 1).

(3.7)

For the homogeneous case, the definition (3.7) results in µ = ρ/2, µ5 = ρ5/2. Beyond the

homogeneous case, µ, µ5 are nonlinear functions of densities and external fields.
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For generic configurations of external fields and charge densities, (2.16), (2.17) become

rather involved. In terms of Vµ and Aµ, the dynamical equations (2.16) are

0 = r3∂2
rVt + 3r2∂rVt + r∂r∂kVk + 12κεijk∂rAi (∂jVk + ∂jVk)

+ 12κεijk∂rVi (∂jAk + ∂jAk) ,
(3.8)

0 = (r5 − r)∂2
rVi + (3r4 + 1)∂rVi + 2r3∂r∂tVi − r3∂r∂iVt + r2 (∂tVi − ∂iVt)

+ r(∂2Vi − ∂i∂kVk)−
1

2
∂iρ+ r2 (∂tVi − ∂iVt) + r

(
∂2Vi − ∂i∂kVk

)
+ 12κr2εijk

(
1

r3
ρ5∂jVk +

1

r3
ρ5∂jVk + ∂rAt∂jVk + ∂rAt∂jVk

)
− 12κr2εijk∂rAj

[
(∂tVk − ∂kVt) + (∂tVk − ∂kVt) +

1

2r2
∂kρ

]
− 12κr2εijk∂rVj

[
(∂tAk − ∂kAt) + (∂tAk − ∂kAt) +

1

2r2
∂kρ5

]
+ 12κr2εijk

(
1

r3
ρ∂jAk +

1

r3
ρ∂jAk + ∂rVt∂jAk + ∂rVt∂jAk

)
,

(3.9)

0 = r3∂2
rAt + 3r2∂rAt + r∂r∂kAk + 12κεijk∂rVi (∂jVk + ∂jVk)

+ 12κεijk∂rAi (∂jAk + ∂jAk) ,
(3.10)

0 = (r5 − r)∂2
rAi + (3r4 + 1)∂rAi + 2r3∂r∂tAi − r3∂r∂iAt + r2 (∂tAi − ∂iAt)

+ r(∂2Ai − ∂i∂kAk)−
1

2
∂iρ5 + r2 (∂tAi − ∂iAt) + r

(
∂2Ai − ∂i∂kAk

)
+ 12κr2εijk

(
1

r3
ρ∂jVk +

1

r3
ρ∂jVk + ∂rVt∂jVk + ∂rVt∂jVk

)
− 12κr2εijk∂rVj

[
(∂tVk − ∂kVt) + (∂tVk − ∂kVt) +

1

2r2
∂kρ

]
− 12κr2εijk∂rAj

[
(∂tAk − ∂kAt) + (∂tAk − ∂kAt) +

1

2r2
∂kρ5

]
+ 12κr2εijk

(
1

r3
ρ5∂jAk +

1

r3
ρ5∂jAk + ∂rAt∂jAk + ∂rAt∂jAk

)
.

(3.11)

Triangle anomaly is a source of nonlinearity in all these equations. In the context

of fluid/gravity correspondence [43], external fields Vµ,Aµ and charge densities ρ, ρ5 are

assumed to vary slowly from point to point. Consequently, the corrections Vµ and Aµ
can be constructed through order by order expansion in derivatives of the external fields

and charge densities. Contrary to the approach adopted below, the method of [43] is

implemented using “on-shell” relations. That is, the bulk solutions are constructed with

the help of the constraint equations.

To extract the TCFs to all order in derivative expansion, we do linearisation in external

fields and charge densities. As announced in section 1, we will solve (3.8)–(3.11) under two

different linearization schemes (1.4) and (1.5).
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4 Study I: linear transport

In this section we study linear TCFs corresponding to the linearisation scheme (1.4),

ρ(xα) = ρ̄+ εδρ(xα), Vµ → εVµ; ρ5(xα) = ρ̄5 + εδρ5(xα), Aµ → εAµ, (4.1)

where ρ̄, ρ̄5 are constants. All calculations below are accurate to linear order in ε. Obviously,

Vµ and Aµ scale as ε too,

Vµ → εVµ, Aµ → εAµ. (4.2)

The presentation is split into two subsections: one is devoted to derivation of the con-

stitutive relations (1.6), (1.7) while the other one focuses on determination of transport

coefficients.

4.1 Derivation of constitutive relations from the dynamical equations

Under the scheme (4.1), the dynamical equations (3.8)–(3.11) are

0 = r2∂2
rVt + 3r∂rVt + ∂r∂kVk, (4.3)

0 = (r5 − r)∂2
rVi + (3r4 + 1)∂rVi + 2r3∂r∂tVi − r3∂r∂iVt + r2 (∂tVi − ∂iVt)

+ r(∂2Vi − ∂i∂kVk)−
1

2
∂iδρ+ r2 (∂tVi − ∂iVt) + r

(
∂2Vi − ∂i∂kVk

)
+

12κ

r
εijk [ρ̄5 (∂jVk + ∂jVk) + ρ̄ (∂jAk + ∂jAk)] ,

(4.4)

0 = r2∂2
rAt + 3r∂rAt + ∂r∂kAk, (4.5)

0 = (r5 − r)∂2
rAi + (3r4 + 1)∂rAi + 2r3∂r∂tAi − r3∂r∂iAt + r2 (∂tAi − ∂iAt)

+ r(∂2Ai − ∂i∂kAk)−
1

2
∂iδρ5 + r2 (∂tAi − ∂iAt) + r

(
∂2Ai − ∂i∂kAk

)
+

12κ

r
εijk [ρ̄ (∂jVk + ∂jVk) + ρ̄5 (∂jAk + ∂jAk)] .

(4.6)

At linear level, Vµ and Aµ are still coupled together through the anomaly-induced terms.

To order O(ε), the constraint equations (2.17) are

0 = r3∂r∂tVt + r
(
∂2Vt − ∂t∂kVk

)
− r3f(r)∂r∂kVk + ∂tδρ−

1

2r
∂2δρ

+ r
(
∂2Vt − ∂t∂kVk

)
,

(4.7)

0 = r3∂r∂tAt + r
(
∂2At − ∂t∂kAk

)
− r3f(r)∂r∂kAk + ∂tδρ5 −

1

2r
∂2δρ5

+ r
(
∂2At − ∂t∂kAk

)
,

(4.8)

which do not feel the effect of triangle anomaly at this order in ε.
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The corrections Vµ and Aµ are decomposed as

Vt = S1Vt + S2∂kVk + S3δρ+ S4At + S5∂kAk + S6δρ5 ,

Vi = V1Vi + V2∂iVt + V3∂i∂kVk + V4∂iδρ+ V5ε
ijk∂jVk

+ V6Ai + V7∂iAt + V8∂i∂kAk + V9∂iδρ5 + V10ε
ijk∂jAk,

(4.9)

At = S̄1Vt + S̄2∂kVk + S̄3δρ+ S̄4At + S̄5∂kAk + S̄6δρ5 ,

Ai = V̄1Vi + V̄2∂iVt + V̄3∂i∂kVk + V̄4∂iδρ+ V̄5ε
ijk∂jVk

+ V̄6Ai + V̄7∂iAt + V̄8∂i∂kAk + V̄9∂iδρ5 + V̄10ε
ijk∂jAk,

(4.10)

where Si, Vi, S̄i, V̄i are elements of the inverse Green function matrix. They are scalar

functionals of the boundary derivative operators and functions of radial coordinate r. In

momentum space, the derivative operators turn into scalar functions of frequency ω and

momentum squared q2:

Si

(
r, ∂t, ~∂

2
)
→ Si(r, ω, q

2), S̄i

(
r, ∂t, ~∂

2
)
→ S̄i(r, ω, q

2)

Vi

(
r, ∂t, ~∂

2
)
→ Si(r, ω, q

2), V̄i

(
r, ∂t, ~∂

2
)
→ V̄i(r, ω, q

2),

which satisfy partially decoupled ODEs (A.1)–(A.22). Dynamics of the bulk theory is

now reflected by these ODEs. Accordingly, the boundary conditions for the decomposition

coefficients in (4.9), (4.10) are

Si → 0, S̄i → 0, Vi → 0, V̄i → 0 as r → 0. (4.11)

Si, S̄i, Vi, V̄i are regular over the whole interval of r ∈ [1,∞]. (4.12)

Additional integration constants will be fixed by the frame convention (3.6).

Pre-asymptotic expansions (2.23)–(2.26) translate into pre-asymptotic behaviour of

the decomposition coefficients in (4.9), (4.10). Near r =∞,

Si →
s1
i

r
+
si
r2

+
sL
i

log r

r2
+ · · · , Vi →

v1
i

r
+
vi
r2

+
vL
i

log r

r2
+ · · · ,

S̄i →
s̄1
i

r
+
s̄i
r2

+
s̄L
i

log r

r2
+ · · · , V̄i →

v̄1
i

r
+
v̄i
r2

+
v̄L
i

log r

r2
+ · · · ,

(4.13)

where s1,L
i

, v1,L
i

, s̄1,L
i

, v̄1,L
i

are uniquely fixed in near-boundary analysis. si , vi , s̄i and v̄i will

be determined once the ODEs (A.1)–(A.22) are solved. The boundary currents (2.28) are

J t = ρ−
(

2s1 +
1

2
q2

)
Vt −

(
2s2 −

1

2
iω

)
∂kVk − 2s3δρ− 2s4At − 2s5∂kAk − 2s6δρ5 ,

J i =

[
2v1 +

1

2

(
ω2 + q2

)]
Vi +

(
2v2 −

1

2
iω

)
∂iVt +

(
2v3 +

1

2

)
∂i∂kVk + 2v4∂iδρ

+ 2v5ε
ijk∂jVk + 2v6Ai + 2v7∂iAt + 2v8∂i∂kAk + 2v9∂iδρ5 + 2v10ε

ijk∂jAk; (4.14)

J t5 = ρ5 − 2s̄1Vt − 2s̄2∂kVk − 2s̄3δρ−
(

2s̄4 +
1

2
q2

)
At −

(
2s̄5 −

1

2
iω

)
∂kAk − 2s̄6δρ5 ,

J i5 = 2v̄1Vi + 2v̄2∂iVt + 2v̄3∂i∂kVk + 2v̄4∂iδρ+ 2v̄5ε
ijk∂jVk +

[
2v̄6 +

1

2

(
ω2 + q2

)]
Ai

+

(
2v̄7 −

1

2
iω

)
∂iAt +

(
2v̄8 +

1

2

)
∂i∂kAk + 2v̄9∂iδρ5 + 2v̄10ε

ijk∂jAk.
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The frame convention (3.6) leads to the following relations

s4 = s6 = s̄1 = s̄3 = 0. (4.15)

s1 = s̄4 = −1

4
q2, s3 = s̄6 = 0. (4.16)

s2 = s̄5 =
1

4
iω, s̄2 = s5 = 0. (4.17)

Combined with the ODEs (A.1)–(A.22), (4.15)–(4.17) imply constraints among the de-

composition coefficients in (4.9), (4.10), see (A.23), (A.24), (A.27), (A.28), (A.32), (A.33).

Via (A.29), (A.32), (A.33), the boundary currents (4.14) are eventually cast into the con-

stitutive relations (1.6), (1.7) with the TCFs expressed in terms of vi , v̄i ,

D = −2v4 = −2v̄9 , σe = 2v2 −
1

2
iω = 2v̄7 −

1

2
iω, σm = 2v3 +

1

2
= 2v̄8 +

1

2
,

σχ = 2v5 = 2v̄10 , σa = 2v8 = 2v̄3 , σκ = 2v10 = 2v̄5 .
(4.18)

There are crossing rules for the anomaly-related TCFs: σm/a are invariant under the in-

terchange of µ̄ and µ̄5 ; σχ and σκ are related via σχ [µ̄↔ µ̄5 ] = σκ.

Thanks to the linearisation, both Jµ and Jµ5 are conserved. That is, Jµ and Jµ5 are

invariant under the gauge transformations Vµ → Vµ + ∂µφ and Aµ → Aµ + ∂µϕ. In

appendix C we prove that all the TCFs in (1.6), (1.7), in fact, are uniquely fixed without

imposing the frame convention (3.6).

Following the definition (3.7), the chemical potentials µ, µ5 are

µ =
1

2
ρ− S3δρ+ S2∂

−1
t ∂kEk, µ5 =

1

2
ρ5 − S3δρ5 + S2∂

−1
t ∂kE

a
k . (4.19)

These relations can be used to replace the charge densities ρ, ρ5 in (1.6), (1.7) in favour of

µ, µ5 . The results are presented in (1.8), (1.9) with the coefficients given by

α1 =
2

1− 2S3(r = 1)
, α2 = −2S2(r = 1)∂−1

t

1−2S3(r = 1)
, D′ = 2D

1−2S3(r = 1)
, (4.20)

σ′e = σe+
2DS2(r = 1)

1−2S3(r = 1)
∂−1
t ∂2, σ′m = σm −

2DS2(r = 1)

1− 2S3(r = 1)
, (4.21)

where S2, S3 are to be determined in section 4.2.

Putting the currents on-shell, the constitutive relations (1.6), (1.7) bear a standard

form of linear response theory, from which current-current correlators read

〈J tJ t〉 = 〈J t5J t5〉 = − σeq
2

iω − q2D
, (4.22)

〈J tJ t5〉 = 0, (4.23)

〈J tJ i〉 = 〈J t5J i5〉 = − σeωqi
iω − q2D

, (4.24)

〈J tJ i5〉 = 〈J t5J i〉 = 0, (4.25)

〈J iJ j〉 = 〈J i5J
j
5〉 =

(
iωσe + q2σm

)(
δij −

qiqj
q2

)
− ω2σe
iω − q2D

· qiqj
q2

+ σχεijkiqk, (4.26)

〈J iJ j5〉 = q2σa

(
δij −

qiqj
q2

)
+ σκεijkiqk. (4.27)
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While the dispersion relation iω − q2D(ω, q2) = 0 is not affected by the anomaly, residues

of the correlators (4.26), (4.27) get modified. Kubo formulas are usually used to relate

transport coefficients to thermal correlators. However, evaluated on-shell, the correlators

partially lose information about dynamics of off-shell one-point currents. As a consequence,

they are insufficient to determine all order transport coefficients. For example, beyond their

constant values, D, σe/m cannot be fully extracted from the current-current correlators [54].

Yet, there are exact relations between the correlators and σχ, σκ,

σχ(ω, ~q) = − i

2qn

∑
i,j

εnij〈J iJ j〉, σκ(ω, ~q) = − i

2qn

∑
i,j

εnij〈J iJ j5〉 (4.28)

which are valid for arbitrary ω and ~q. The relation (4.28) for σχ was first derived in [10]

by promoting constant magnetic field in the original CME into an inhomogeneous pertur-

bation. Our constitutive relation translates into rigorous derivation of (4.28). Contrary

to σm, σa can be determined from the correlators, particularly from the mixed correlator

〈J iJ j5〉. This became possible thanks to the absence of the ~Ea ( ~E) term in the constitutive

relations for Jµ (Jµ5 ). We suspect this is accidental and specific to the model in study.

4.2 Results: solving the bulk equations

To determine all the TCFs in (1.6), (1.7), we merely need to solve the following ODEs:

(A.1), (A.2), (A.11), (A.12) and (A.5), (A.6), (A.9), (A.10) (see appendix A for detailed

analysis). Part of the ODEs, (A.1), (A.2), (A.11), (A.12) were already solved in [54]. In

principle, we only need to solve (A.5), (A.6), (A.9), (A.10) and then S2, V3, V̄3 would be

extracted via the relations (A.27). In practice, however, we solve (A.3), (A.5)–(A.10). In

this way, we avoid numerically problematic special points ω, q = 0 when making use of the

relations (A.27).

We first solve the ODEs analytically in the hydrodynamic limit and then numerically

for arbitrary ω and q.

4.2.1 Hydrodynamic expansion: analytical results

In the hydrodynamic limit ω, q � 1, the ODEs (A.3), (A.5)–(A.10) can be solved pertur-

batively. Let introduce a formal expansion parameter λ

ω → λω, ~q → λ~q. (4.29)

Note that S̄2 = 0 from (A.27). The functions to be solved for are
{
S2, V1, V̄1, V3, V̄3, V5, V̄5

}
,

which are expanded in powers of λ,

S2 =
∞∑
n=0

λnS
(n)
2 , V1 =

∞∑
n=0

λnV
(n)

1 , V̄1 =
∞∑
n=0

λnV̄
(n)

1 , V3 =
∞∑
n=0

λnV
(n)

3

V̄3 =
∞∑
n=0

λnV̄
(n)

3 , V5 =
∞∑
n=0

λnV
(n)

5 , V̄5 =
∞∑
n=0

λnV̄
(n)

5 .

(4.30)
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At each order in λ, the solutions are expressed as double integrals over r, see appendix B.

Below we collect the series expansions of v3 , v̄3 , v5 , v̄5 ,

v3 = −1

4

[
1−144κ2

(
µ̄2+µ̄2

5

)
(2 log 2−1)

]
+
iω

32

[
(2π−π2+4 log 2)+O

(
µ̄2, µ̄2

5

)]
+· · ·, (4.31)

v̄3 = 72κ2µ̄µ̄5 (2 log 2− 1) + · · · , (4.32)

v5 = 6κµ̄5 + 6κµ̄5iω log 2− 1

4
κµ̄5

{
6ω2 log2 2 + q2

[
π2 − 1728κ2

(
µ̄2

5
+ 3µ̄2

)
× (log 2− 1)2

]}
+ · · · ,

(4.33)

v̄5 = v5 [µ̄↔ µ̄5 ]. (4.34)

The series expansions of v2 , v4 were worked out in [54],

v2 =
1

2
+

1

4
iω (1 + log 2) +

1

48

(
π2ω2 − 3πq2 − 6q2 log 2

)
+ · · · , (4.35)

v4 = −1

4
− π

16
iω +

1

96

[
π2ω2 − q2 (6 log 2− 3π)

]
+ · · · . (4.36)

Once substituted into (4.18), these perturbative results generate the hydrodynamic expan-

sion of all the TCFs as quoted in (1.10)–(1.15).

4.2.2 Beyond the hydro limit: numerical results

To proceed with the all-order derivative resummation, we have to go beyond the conven-

tional hydrodynamic limit and solve the ODEs (A.3), (A.5)–(A.10) for generic values of

momenta. We were able to do it numerically only. We deal with a boundary value problem

for a system of second order linear ODEs. We performed our numerical calculations within

two different numerical methods, a shooting technique and a spectral method. Within

numerical accuracy, both approaches give the same results.

Within the shooting technique our numerical procedure is much like that of [54]. One

starts with a trial initial value for the functions to be solved for at the horizon r = 1 and

integrates the ODEs up to the conformal boundary r = ∞. The solutions generated in

this step have to fulfil the boundary conditions at r = ∞. If not, the trial initial data

have to be adjusted and the procedure is repeated until the requirements at the boundary

are satisfied with a satisfactory numerical accuracy. The fine-tuning process of finding the

correct initial data is reduced to a root-finding routine, which can be implemented by the

Newton’s method.

The spectral method converts the continuous boundary value problem of linear ODEs

into that of discrete linear algebra. We distribute a number of points on the integration

domain. These points are collectively referred to as collation grid. The functions to be

solved for are then represented by their values on the grid. For given values of the functions

on the grid, their derivatives at the grid are approximated by differentiating interpolation

functions (normally based on polynomial or trigonometric interpolation). Thus, a differ-

ential operation is mapped into a matrix. Eventually, this collation procedure allows to

discretise the original continuous problem and turns it into a system of algebraic equations

involving values of the functions on the grid. The boundary conditions are mapped into

algebraic relations among the values of the functions at the outermost grid points. They
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Figure 1. Magnetic conductivity σm as a function of ω and q2 when κµ̄ = κµ̄5 = 0.
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Figure 2. Magnetic conductivity σm as a function of ω and q2 when κµ̄ = 0, κµ̄
5

= 1/4.

will be imposed by replacing suitable equations in above-mentioned algebraic equations.

For more details on spectral method, we recommend the references [77–80]. As for other

non-periodic problems, we choose a Chebyshev grid and use polynomial interpolation to

calculate differentiation matrices.

Since D and σe are not affected by the anomaly, they are the same as those presented

in [54], and we would not display them here. As σκ can be obtained from σχ via the crossing

rule as pointed out below (4.18), we will focus on numerical plots for σm, σa, σχ only.

Figure 1 is a reproduction of a 3D plot for the magnetic conductivity σm from [54]:

compared to [54], we extend the plot domain to larger momenta so that asymptotic regime

is more clearly seen. Figures 2, 3 show anomaly-modified σm for sample values of κµ̄ and

κµ̄5 . In figure 4 we show momenta-dependent σa. Note that σa is non-vanishing only

when κµ̄µ̄5 6= 0.

In figures 5, 6 we show 2D slices of figures 1, 2, 3, 4 when either ω = 0 or q = 0.

It is demonstrated that asymptotically σm approaches a nonzero value, while σa goes

to zero after damped oscillation. The asymptotic regime is achieved around ω ' 5 for

both σm and σa. So, σm encodes some UV physics while σa decouples asymptotically.
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Figure 3. Magnetic conductivity σm as function of ω and q2 when κµ̄ = κµ̄5 = 1/8.
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Figure 4. σa as function of ω and q2 when κµ̄ = κµ̄
5

= 1/8.

In contrast with the viscosity function [55, 56] and the diffusion function [54], figure 6

illustrates that the dependence of σm, σa on q is more pronounced. This feature is shared

by the chiral magnetic conductivity σχ (see figure 9). As an axial analogue of σm, σa
shows qualitatively similar dependence on ω as can be seen from figure 5. However, q

dependence of σa differs from that of σm as shown in figure 6. When κµ̄ and/or κµ̄5 get

increased, ω-dependence of σm becomes more enhanced, which signifies a stronger response

to time-dependent external fields.

We now turn to the chiral magnetic conductivity σχ. For weakly coupled theories,

momenta-dependence of σχ was studied in [10, 67]: in high temperature regimes Re(σχ)

drops from its DC limit σ0
χ at ω = 0 to σ0

χ/3 just away from ω = 0. For strongly coupled

theories with dual gravity description, frequency-dependence of σχ was initially considered

in [24] for the case q = 0. Two different holographic models were considered in [24]:

RN-AdS5 geometry and a finite-temperature Sakai-Sugimoto model [59]. Numerical plots

of [24] look rather similar, suggesting a certain universality of σχ. Within the RN-AdS5

model, ref. [67] also explored the momenta-dependence of anomalous TCFS, particularly

original results on σκ(ω, q) were presented there.
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Figure 6. q2-dependence of σm and σa when ω = 0.

3D plots of σχ for representative choices of κµ̄, κµ̄5 are displayed in figures 7, 8. This

is in contrast with [67] which presented Re(σκ) for some unspecified values of µ̄, µ̄5 . Re(σχ)

of [67] exhibits similar behaviour to figures 7, 8. Analogously to σa, σχ approaches zero

asymptotically at ω ' 5, after some damped oscillations. This be seen more clearly in

2D slices of σχ (Figures 9). Overall, ω-dependence of σχ is quite in agreement with early

results from holographic models [24, 66, 67]. The minimum (maximum) of Re(σχ) (Im(σχ))

is reached at ω ' 2.6, q = 0 (ω ' 1.7, q = 0). We do not observe a drop in σχ when ω is

away from 0, which was attributed to the probe limit approximation [67].

In figure 10 we track the effect of vector/axial chemical potentials on the TCFs. We

focus on q = 0 slices and plot ω-dependence of normalised quantities δσm/δσ
0
m, σχ/σ

0
χ

where δσ0
m and σ0

χ are the corresponding DC limits. Here δσm = σm − σm(κµ̄ = κµ̄5 = 0).

As seen from figure 10, both δσm/δσ
0
m and σχ/σ

0
χ have no dependence on κµ̄, κµ̄5 (all curves

collapse into one). This implies a universal dependence on vector/axial chemical potentials

(at q = 0). Particularly, for σχ it is linear in κµ̄5. As for σm, its anomalous correction

is linear in (µ̄2 + µ̄2
5
). Both features can actually be realised from the corresponding

ODEs (A.5), (A.6), (A.7), (A.9), (A.10). When q = 0, V̄1 = 0 and V1 are not sensitive to

the anomaly. So, V5 (and thus σχ) does linearly depend on κµ̄5 and is not affected by κµ̄.

From (A.9), (A.10), µ̄V5 = µ̄5 V̄5, which via (A.7) implies that anomalous correction to V3

(and thus σm) is linear in (µ̄2 + µ̄2
5
).
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Figure 7. Chiral magnetic conductivity σχ as function of ω and q2 when κµ̄ = 0, κµ̄5 = 1/4.
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Figure 8. Chiral magnetic conductivity σχ as function of ω and q2 when κµ̄ = κµ̄5 = 1/8.
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5
; q = 0. For

both left/right plots, the three curves overlap.

5 Study II: nonlinear transport induced by constant external fields

In this section we turn on constant backgrounds for external fields, corresponding to the

linearisation scheme (1.5),

ρ(x) = ρ̄+ ε δρ(x), ρ5(x) = ρ̄5 + ε δρ5(x),

Vµ(x) = V̄µ(x) + ε δVµ(x), Aµ(x) = Āµ(x) + ε δAµ(x),
(5.1)

where ρ̄ and ρ̄5 are treated as constants. V̄µ and Āµ depend linearly on xα so that their

field strengths F̄Vµν and F̄aµν are constant backgrounds ~E, ~B, ~Ea, ~Ba. The corrections Vµ,Aµ
of (3.4) are expanded to linear order in ε.

Vµ = V(0)
µ + εV(1)

µ , Aµ = A(0)
µ + εA(1)

µ . (5.2)

5.1 Solutions for V(0)
µ and A(0)

µ

We first ignore any derivative corrections. To order O
(
ε0
)
, the external fields are constant.

Under the frame convention (3.6), the corrections V(0)
µ and A(0)

µ are time-independent and

homogeneous, depending on the radial coordinate r only. So, at order O
(
ε0
)

the dynamical

equations (3.8)–(3.11) are

0 = r3∂2
rV

(0)
t + 3r2∂rV

(0)
t + 12κ

(
∂rA

(0)
k Bk + ∂rV

(0)
k Ba

k

)
, (5.3)

0 = (r5 − r)∂2
rV

(0)
i + (3r4 + 1)∂rV

(0)
i − r

2Ei + 12κr2Bi

(
∂rA

(0)
t +

1

r3
ρ̄5

)
+ 12κr2εijk∂rA

(0)
j Ek − 12κr2εijk∂rV

(0)
k Ea

j + 12κr2Ba
i

(
∂rV

(0)
t +

1

r3
ρ̄

)
,

(5.4)

0 = r3∂2
rA

(0)
t + 3r2∂rA

(0)
t + 12κ

(
∂rV

(0)
k Bk + ∂rA

(0)
k Ba

k

)
, (5.5)

0 = (r5 − r)∂2
rA

(0)
i + (3r4 + 1)∂rA

(0)
i − r

2Ea
i + 12κr2Bi

(
∂rV

(0)
t +

1

r3
ρ̄

)
+ 12κr2εijk∂rV

(0)
j Ek + 12κr2εijk∂rA

(0)
j Ea

k + 12κr2Ba
i

(
∂rA

(0)
t +

1

r3
ρ̄5

)
.

(5.6)
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Under the frame choice (3.6), the analysis in (2.23)–(2.26) indicates

V(0)
i ,A(0)

i ∼ O
(

1

r

)
, V(0)

t ,A(0)
t ∼ O

(
log r

r3

)
, as r →∞. (5.7)

So, (5.3)–(5.6) can be rewritten in integral forms,

V(0)
t (r) = 12κ

∫ ∞
r

dx

x3

[
A(0)
k (x)Bk + V(0)

k (x)Ba
k

]
r →∞−−−−→ O

(
1

r3

)
, (5.8)

A(0)
t (r) = 12κ

∫ ∞
r

dx

x3

[
V(0)
k (x)Bk + A(0)

k (x)Ba
k

]
r →∞−−−−→ O

(
1

r3

)
, (5.9)

V(0)
i (r) = −1

4

(
π − 2 arctan(r) + log

(1 + r)2

1 + r2

)
Ei

+

∫ ∞
r

12κx

x4 − 1

{[
A(0)
t (x)− ρ̄5

2x2
+ µ5

]
Bi +

[
V(0)
t (x)− ρ̄

2x2
+ µ

]
Ba
i

}
dx

+ 12κεijk
∫ ∞
r

xdx

x4−1

{[
A(0)
j (x)−A(0)

j (1)
]

Ek−
[
V(0)
k (x)− V(0)

k (1)
]

Ea
j

}
r →∞−−−−→−

(
1

r
− 1

2r2

)
Ei +

6κµ5Bi

r2
+

6κµBa
i

r2
− 6κ

r2
εijkA(0)

j (1)Ek +
6κ

r2
εijk

× V(0)
k (1)Ea

j +O
(

1

r3

)
,

(5.10)

A(0)
i (r) = −1

4

(
π − 2 arctan(r) + log

(1 + r)2

1 + r2

)
Ea
i

+

∫ ∞
r

12κx

x4 − 1

{[
V(0)
t (x)− ρ̄

2x2
+ µ

]
Bi +

[
A(0)
t (x)− ρ̄5

2x2
+ µ5

]
Ba
i

}
dx

+ 12κεijk
∫ ∞
r

xdx

x4−1

{[
V(0)
j (x)−V(0)

j (1)
]

Ek+
[
A(0)
j (x)−A(0)

j (1)
]

Ea
k

}
r →∞−−−−→−

(
1

r
− 1

2r2

)
Ea
i +

6κµBi

r2
+

6κµ5B
a
i

r2
− 6κ

r2
εijkV(0)

j (1)Ek −
6κ

r2
εijk

× A(0)
j (1)Ea

k +O
(

1

r3

)
,

(5.11)

where using the definition (3.7), the chemical potentials µ, µ5 are

µ =
1

2
ρ̄− V(0)

t (1), µ5 =
1

2
ρ̄5 − A(0)

t (1). (5.12)

From (2.28), the boundary currents are

J t(0) = ρ̄+ 6κεtklmĀkF̄Vlm, J i(0) = Ei + 12κµ5Bi + 12κµBa
i − 12κεijkA(0)

j (1)Ek

− 12κεijkV(0)
j (1)Ea

k + 6κεiνρλĀνF̄Vρλ, (5.13)

J t5(0) = ρ̄5 + 2κεtklmĀkF̄alm, J i5(0) = Ea
i + 12κµ5B

a
i + 12κµBi − 12κεijkV(0)

j (1)Ek

− 12κεijkA(0)
j (1)Ea

k + 2κεiνρλĀνF̄aρλ, (5.14)

which reduce to (1.16), (1.17) when Āµ = 0.
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Despite the fact that the equations for V(0)
i , A(0)

i are linear, the solutions involve

complex inverse propagators, which are non-linear functions of the background fields. To

proceed, we resort to a weak field approximation by introducing yet another formal expan-

sion parameter α,

F̄Vµν → αF̄Vµν , F̄aµν → αF̄aµν . (5.15)

Accordingly, V(0)
µ and A(0)

µ are formally expanded in powers of α,

V(0)
µ =

∞∑
n=1

αnV(0)(n)
µ , A(0)

µ =
∞∑
n=1

αnA(0)(n)
µ . (5.16)

We analytically solved (5.3)–(5.6) up to order O(ε0α2). The results are summarised below.

V(0)(1)
t = A(0)(1)

t = 0. (5.17)

V(0)(1)
i = −1

4

[
log

(1 + r)2

1 + r2
− 2 arctan(r) + π

]
Ei + 3κ log

1 + r2

r2
(ρ̄5Bi + ρ̄Ba

i ) . (5.18)

A(0)(1)
i = −1

4

[
log

(1 + r)2

1 + r2
− 2 arctan(r) + π

]
Ea
i + 3κ log

1 + r2

r2
(ρ̄Bi + ρ̄5B

a
i ) . (5.19)

V(0)(2)
t = −

∫ ∞
r

dx

x3

∫ ∞
x

ydy

(y2 + 1)(y + 1)

(
12κ~B · ~Ea + 12κ~Ba · ~E

)
+

∫ ∞
r

dx

x3

∫ ∞
x

dy

y(y2 + 1)

[
72κ2ρ̄B2 + 144κ2ρ̄5

~B · ~Ba + 72κ2ρ̄(Ba)2
]
.

(5.20)

V(0)(2)
i = −

∫ ∞
r

xdx

x4 − 1

∫ x

1

72κ2εijkdy

y(y2 + 1)

(
ρ̄BjEk + ρ̄5B

a
jEk + ρ̄5BjE

a
k + ρ̄Ba

jE
a
k

)
. (5.21)

A(0)(2)
t = −

∫ ∞
r

dx

x3

∫ ∞
x

ydy

(y2 + 1)(y + 1)

(
12κ~B · ~E + 12κ~Ba · ~Ea

)
+

∫ ∞
r

dx

x3

∫ ∞
x

dy

y(y2 + 1)

[
72κ2ρ̄5B

2 + 144κ2ρ̄~B · ~Ba + 72κ2ρ̄5(Ba)2
]
.

(5.22)

A(0)(2)
i = −

∫ ∞
r

xdx

x4 − 1

∫ x

1

72κ2εijkdy

y(y2 + 1)

(
ρ̄5BjEk + ρ̄Ba

jEk + ρ̄BjE
a
k + ρ̄5B

a
jE

a
k

)
. (5.23)

These solutions generate the perturbative expansion of (5.13), (5.14)

J i(0) = Ei + 12κµ5Bi + 12κµBa
i + 6κεiνρλĀνF̄Vρλ

− 72 log 2 κ2
(
µ~B× ~E + µ5

~Ba × ~E + µ5
~B× ~Ea + µ~Ba × ~Ea

)
i

+ 18π2κ3
{[
µ5
~B× ~E + µ~Ba × ~E + µ~B× ~Ea + µ5

~Ba × ~Ea
]
× ~E

+
[
µ~B× ~E + µ5

~Ba × ~E + µ5
~B× ~Ea + µ~Ba × ~Ea

]
× ~Ea

}
i
+ · · · ,

(5.24)

J i5(0) = Ea
i + 12κµ5B

a
i + 12κµBi + 2κεiνρλĀνF̄aρλ

− 72 log 2 κ2
(
µ5
~B× ~E + µ~Ba × ~E + µ~B× ~Ea ×+µ5

~Ba × ~Ea
)
i

+ 18π2κ3
{[
µ~B× ~E + µ5

~Ba × ~E + µ5
~B× ~Ea + µ~Ba × ~Ea

]
× ~E

+
[
µ5
~B× ~E + µ~Ba × ~E + µ~B× ~Ea + µ5

~Ba × ~Ea
]
× ~Ea

}
i
+ · · · ,

(5.25)
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where

µ =
1

2
ρ̄+

3

2
(π − 2 log 2)κ

(
~B · ~Ea + ~Ba · ~E

)
+ 18 (1− 2 log 2)κ2

×
(
ρ̄B2 + 2ρ̄5

~B ·Ba + ρ̄ (Ba)2
)

+ · · · ,
(5.26)

µ5 =
1

2
ρ̄5 +

3

2
(π − 2 log 2)κ

(
~B · ~E + ~Ba · ~Ea

)
+ 18 (1− 2 log 2)κ2

×
(
ρ̄5B

2 + 2ρ̄~B ·Ba + ρ̄5 (Ba)2
)

+ · · · .
(5.27)

When Āµ = 0, the above constitutive relations reduce to (1.18), (1.19), (1.20).

5.2 Solutions for V(1)
µ and A(1)

µ

The corrections V(1)
µ and A(1)

µ in (5.2) are also expandable in powers of α,

V(1)
µ =

∞∑
n=0

αnV(1)(n)
µ , A(1)

µ =
∞∑
n=0

αnA(1)(n)
µ . (5.28)

At the lowest order O
(
ε1α0

)
, the dynamical equations (3.8)–(3.11) are exactly (4.3)–

(4.6) with Vµ,Aµ in (4.3)–(4.6) replaced by δVµ, δAµ. Therefore, solutions for V(1)(0)
µ

and A(1)(0)
µ are

V(1)(0)
t = S2∂

−1
t ∂k (∂tδVk − ∂kδVt) + S3δρ, (5.29)

V(1)(0)
i = V2 (∂iδVt − ∂tδVi) + V3∂k (∂iδVk − ∂kδVi) + V4∂iδρ

+ V5ε
ijk∂jδVk + V̄3∂k (∂iδAk − ∂kδAi) + V̄5ε

ijk∂jδAk,
(5.30)

A(1)(0)
t = S2∂

−1
t ∂k (∂tδAk − ∂kδAt) + S3δρ5 , (5.31)

A(1)(0)
i = V2 (∂iδAt − ∂tδAi) + V3∂k (∂iδAk − ∂kδAi) + V4∂iδρ5

+ V5ε
ijk∂jδAk + V̄3∂k (∂iδVk − ∂kδVi) + V̄5ε

ijk∂jδVk,
(5.32)

where S3, V2, V4 were studied in [54] while S2, V3, V5, V̄3, V̄5 were adressed in section 4.2. As

a result, at order O
(
ε1α0

)
, the boundary currents Jµ, Jµ5 are

J t = δρ, ~J = −D~∇δρ+ σeδ ~E + σm~∇× δ ~B + σχδ ~B + σa~∇× δ ~Ba + σκδ ~B
a,

J t5 = δρ5 ,
~J5 = −D~∇δρ5 + σeδ ~E

a + σm~∇× δ ~Ba + σχδ ~B
a + σa~∇× δ ~B + σκδ ~B.

(5.33)

As α→ 0, the above results coincide with those of section 4.
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To the order O
(
ε1α1

)
, the dynamical equations (3.8)–(3.11) are

0 = r3∂2
rV

(1)(1)
t + 3r2∂rV

(1)(1)
t + r∂r∂kV

(1)(1)
k + 12κεijk

(
∂rA

(0)(1)
i ∂jδVk

+∂rA
(1)(0)
i ∂jV̄k + ∂rA

(0)(1)
i ∂jV

(1)(0)
k + ∂rV

(0)(1)
i ∂jδAk + ∂rV

(1)(0)
i ∂jĀk

+∂rV
(0)(1)
i ∂jA

(1)(0)
k

)
,

(5.34)

0 = (r5 − r)∂2
rV

(1)(1)
i + (3r4 + 1)∂rV

(1)(1)
i + 2r3∂r∂tV

(1)(1)
i − r3∂r∂iV

(1)(1)
t

+ r2∂r

(
∂tV

(1)(1)
i − ∂iV(1)(1)

t

)
+ r

(
∂2V(1)(1)

i − ∂i∂kV
(1)(1)
k

)
+ 12κr2εijk

{
1

r3
δρ5∂jV̄k +

1

r3
ρ̄5∂jV

(1)(1)
k + ∂rA

(1)(0)
t ∂jV̄k

−∂rA(0)(1)
j

[
(∂tδVk − ∂kδVt) +

(
∂tV

(1)(0)
k − ∂kV

(1)(0)
t

)
+

1

2r2
∂kδρ

]
−∂rA(1)(0)

j

(
∂tV̄k − ∂kV̄t

)
+ ∂rV

(0)(1)
k

[
(∂tδAj − ∂jδAt) +

1

2r2
∂jδρ5

+
(
∂tA

(1)(0)
j − ∂jA(1)(0)

t

)]
+ ∂rV

(1)(0)
k

(
∂tĀj − ∂jĀt

)
+

1

r3
δρ∂jĀk

+
1

r3
ρ̄∂jA

(1)(1)
k + ∂rV

(1)(0)
t ∂jĀk

}
,

(5.35)

0 = r3∂2
rA

(1)(1)
t + 3r2∂rA

(1)(1)
t + r∂r∂kA

(1)(1)
k + 12κεijk

(
∂rV

(0)(1)
i ∂jδVk

+∂rV
(1)(0)
i ∂jV̄k + ∂rV

(0)(1)
i ∂jV

(1)(0)
k + ∂rA

(0)(1)
i ∂jδAk + ∂rA

(1)(0)
i ∂jĀk

+∂rA
(0)(1)
i ∂jA

(1)(0)
k

)
,

(5.36)

0 = (r5 − r)∂2
rA

(1)(1)
i + (3r4 + 1)∂rA

(1)(1)
i + 2r3∂r∂tA

(1)
i − r

3∂r∂iA
(1)(1)
t

+ r2∂r

(
∂tA

(1)(1)
i − ∂iA(1)(1)

t

)
+ r

(
∂2A(1)(1)

i − ∂i∂kA
(1)(1)
k

)
+ 12κr2εijk

{
1

r3
δρ∂jV̄k +

1

r3
ρ̄∂jV

(1)(1)
k + ∂rV

(1)(0)
t ∂jV̄k

−∂rV(0)(1)
j

[
(∂tδVk − ∂kδVt) +

(
∂tV

(1)(0)
k − ∂kV

(1)(0)
t

)
+

1

2r2
∂kδρ

]
−∂rV(1)(0)

j

(
∂tV̄k − ∂kV̄t

)
− ∂rA(0)(1)

j

[
(∂tδAk − ∂kδAt) +

1

2r2
∂kδρ5

+
(
∂tA

(1)(0)
k − ∂kA

(1)(0)
t

)]
− ∂rA(1)(0)

j

(
∂tĀk − ∂kĀt

)
+

1

r3
δρ5∂jĀk

+
1

r3
ρ̄5∂jA

(1)(1)
k + ∂rA

(1)(0)
t ∂jĀk

}
.

(5.37)

The source terms in (5.34)–(5.37) introduce all the basic structures in solutions for V(1)(1)
µ

and A(1)(1)
µ , which then get propagated into the constitutive relations for the currents Jµ

and Jµ5 . The full solutions can be constructed in parallel with section 4. We have decided

not to solve (5.34)–(5.37) in this publication and to leave a comprehensive study of V(1)(1)
µ

and A(1)(1)
µ and corresponding transport coefficients for future work. Here, we merely list

all the basic structures that would emerge in the constitutive relations, as dictated by

– 27 –



J
H
E
P
1
1
(
2
0
1
6
)
0
9
3

the source terms in (5.34)–(5.37). In ~J we anticipate to have the following terms each

multiplied by its own TCF,

δρ5
~B, δρ ~Ba,

(
~∇ · δ ~Ea

)
~B,

(
~∇ · δ ~E

)
~Ba, ~Ea × δ ~E, ~Ea × ~∇δρ,

~Ea ×
(
~∇× δ ~B

)
, ~Ea × δ ~B, ~Ea ×

(
~∇× δ ~Ba

)
, ~Ea × δ ~Ba,

~Ea × ~∇
(
~∇ · δ ~E

)
,
(
ρ̄~B + ρ̄5

~Ba
)
× δ ~E,

(
ρ̄~B + ρ̄5

~Ba
)
× ~∇δρ,(

ρ̄~B + ρ̄5
~Ba
)
×
(
~∇× δ ~B

)
,
(
ρ̄~B + ρ̄5

~Ba
)
× δ ~B,

(
ρ̄~B + ρ̄5

~Ba
)
×
(
~∇× δ ~Ba

)
,(

ρ̄~B + ρ̄5
~Ba
)
× δ ~Ba,

(
ρ̄~B + ρ̄5

~Ba
)
× ~∇

(
~∇ · δ ~E

)
, ~E× δ ~Ea, ~E× ~∇δρ5 ,

~E×
(
~∇× δ ~Ba

)
, ~E× δ ~Ba, ~E×

(
~∇× δ ~B

)
, ~E× δ ~B, ~E× ~∇

(
~∇ · δ ~Ea

)
,(

ρ̄5
~B + ρ̄~Ba

)
× δ ~Ea,

(
ρ̄5
~B + ρ̄~Ba

)
× ~∇δρ5 ,

(
ρ̄5
~B + ρ̄~Ba

)
×
(
~∇× δ ~Ba

)
,(

ρ̄5
~B + ρ̄~Ba

)
× δ ~Ba,

(
ρ̄5
~B + ρ̄~Ba

)
×
(
~∇× δ ~B

)
,
(
ρ̄5
~B + ρ̄~Ba

)
× δ ~B,(

ρ̄5
~B + ρ̄~Ba

)
× ~∇

(
~∇ · δ ~Ea

)
.

(5.38)

In the axial current ~J5,

δρ ~B, δρ5
~Ba,

(
~∇ · δ ~E

)
~B,

(
~∇ · δ ~Ea

)
~Ba, ~E× δ ~E, ~E× ~∇δρ,

~E×
(
~∇× δ ~B

)
, ~E× δ ~B, ~E×

(
~∇× δ ~Ba

)
, ~E× δ ~Ba, ~E× ~∇

(
~∇ · δ ~E

)
,(

ρ̄5
~B + ρ̄~Ba

)
× δ ~E,

(
ρ̄5
~B + ρ̄~Ba

)
× ~∇δρ,

(
ρ̄5
~B + ρ̄~Ba

)
×
(
~∇× δ ~B

)
,(

ρ̄5
~B + ρ̄~Ba

)
× δ ~B,

(
ρ̄5
~B + ρ̄~Ba

)
×
(
~∇× δ ~Ba

)
,
(
ρ̄5
~B + ρ̄~Ba

)
× δ ~Ba,(

ρ̄5
~B + ρ̄~Ba

)
× ~∇

(
~∇ · δ ~E

)
, ~Ea × δ ~Ea, ~Ea × ~∇δρ5 ,

~Ea ×
(
~∇× δ ~Ba

)
,

~Ea × δ ~Ba, ~Ea ×
(
~∇× δ ~B

)
, ~Ea × δ ~B, ~Ea × ~∇

(
~∇ · δ ~Ea

)
,(

ρ̄~B + ρ̄5
~Ba
)
× δ ~Ea,

(
ρ̄~B + ρ̄5

~Ba
)
× ~∇δρ5 ,

(
ρ̄~B + ρ̄5

~Ba
)
×
(
~∇× δ ~Ba

)
,(

ρ̄~B + ρ̄5
~Ba
)
× δ ~Ba,

(
ρ̄~B + ρ̄5

~Ba
)
×
(
~∇× δ ~B

)
,
(
ρ̄~B + ρ̄5

~Ba
)
× δ ~B,(

ρ̄~B + ρ̄5
~Ba
)
× ~∇

(
~∇ · δ ~Ea

)
.

(5.39)

The terms δρ5
~B, δρ~B in (5.38), (5.39) would lead to the chiral magnetic wave [68],

which reflects density fluctuations δρ, δρ5 at constant external magnetic field. According

to [68], the speed of the chiral magnetic wave can depend on B nonlinearly, the property

which is inherited from a nonlinear B-dependence of µ, µ5 . In [68], this nonlinearity of µ, µ5

was realised in a top-down holographic QCD model based on a DBI action for the bulk

gauge fields. In contrast, working with the canonical Maxwell action, our study demon-

strates that similar non-linear phenomena can emerge solely from the Chen-Simons term.

The terms ~∇δρ5 × ~E and ~∇δρ × ~E in (5.38), (5.39) were studied in [81] within the

chiral kinetic theory. It would be interesting to compare the results once the corresponding

transport coefficients are computed in the holographic model.
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6 Conclusions

In this paper, we have revised anomaly induced transport in a holographic model containing

two U(1) fields interacting via Chern-Simons terms. For a finite temperature system, we

have computed off-shell constitutive relations for the vector and axial currents responding

to external vector and axial electromagnetic fields.

All-order gradients can be resummed in a weak field (linear response) approxima-

tion. Thus obtained constitutive relations (1.6), (1.7) for the vector/axial currents are

parameterised by six independent momenta-dependent TCFs: the diffusion D(ω, q2),

the electric/magnetic conductivities σe/m(ω, q2), chiral magnetic/separation conductivities

σχ/κ(ω, q2), and an axial analogue of the magnetic conductivity σa(ω, q
2).

Within the linear approximation, the TCFs D(ω, q2) and σe(ω, q
2) are left unaffected

by the anomaly and were computed previously in [54]. While σm(ω, q2) gets an anomaly

induced correction, the remaining TCFs, σχ/κ/a, are induced by the anomaly. In the hydro-

dynamic regime, we have analytically reproduced all the known results in the literature and

succeeded to extended the gradient expansion to third order, see (1.10)–(1.15). Beyond the

hydrodynamic regime, these transport coefficient functions were numerically calculated up

to large values of momenta so that the asymptotic regime is reached. The results are dis-

played by the plots in section 4.2. The electric/magnetic conductivities σe/m are the only

TCFs that survive at asymptotically large ω (the asymptotics is reached around ω ' 5).

Nonlinear transport has been studied in a specific setting of the external fields having

constant backgrounds. When the only non-vanishing external field is a constant magnetic

field, the CME has been shown to be exact, relating the induced vector current and the

magnetic field, see (1.16). This exact relation is nonlinear in the magnetic field and the en-

tire nonlinearity is absorbed into the axial chemical potential µ5 , see (1.20). Electric fields

lead to new nonlinear effects, see (1.18). Small time-dependent/non-homogenous pertur-

bations introduce many more interesting anomaly-induced structures in the constitutive

relations. We have merely listed these structures, leaving determination of associated new

transport coefficients for a future study.

Additional non-linear anomaly-induced effects are explored in our forthcoming publi-

cation [60]. Particularly, CME in presence of a space-varying magnetic field ~B(~x) is found

to be modified by derivative corrections. An interplay between constant magnetic and

time-dependent electric fields is another focus of [60].

At the lowest order in derivative expansion, the anomalous transport coefficients σ0
χ/κ

are known to be dissipationless [42, 71]. Particularly, they do not contribute to entropy

production in a hydrodynamic system. It would be interesting to classify all the higher

derivatives/nonlinear terms in the constitutive relations in accord with their dissipative

nature [82]. We do expect that the higher order gradient terms would introduce dissipation

and this would potentially affect various phenomena such as the chiral drag force [83, 84].

Our study has been carried out in the probe limit, in which the currents get decoupled

from the dynamics of the energy-momentum tensor. Beyond this limit, new phenomena

emerge such as the normal Hall and chiral vortical effects [62, 71]. Interplay between the
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vorticity and strong magnetic field [85] is an interesting direction worth further study in a

holographic setup beyond the probe limit.

A ODEs and the constraints for the decomposition coefficients

in (4.9), (4.10)

In this appendix, we collect the ODEs satisfied by the decomposition coefficients

in (4.9), (4.10), and derive the constraint relations relating these coefficients. Substitut-

ing (4.9), (4.10) into (4.3)–(4.6) and making Fourier transform ∂µ → (−iω, i~q), we arrive

at the ODEs, which are grouped into several partially decoupled sub-sectors.

{S1, V2}

0 = r2∂2
rS1 + 3r∂rS1 − q2∂rV2, (A.1)

0 =
(
r5 − r

)
∂2
rV2 +

(
3r4 + 1

)
∂rV2 − 2iωr3∂rV2 − iωr2V2 − r3∂rS1 − r2S1 − r2. (A.2)

{
S2, S̄2, V1, V̄1, V3, V̄3, V5, V̄5

}
0 = r2∂2

rS2 + 3r∂rS2 + ∂rV1 − q2∂rV3, (A.3)

0 = r2∂2
r S̄2 + 3r∂rS̄2 + ∂rV̄1 − q2∂rV̄3, (A.4)

0 =
(
r5 − r

)
∂2
rV1 +

(
3r4 + 1

)
∂rV1 − 2iωr3∂rV1 − iωr2V1 − q2rV1 − iωr2 − q2r

+
12κq2

r

(
ρ̄5V5 + ρ̄V̄5

)
,

(A.5)

0 =
(
r5−r

)
∂2
r V̄1+

(
3r4+1−2iωr3

)
∂rV̄1 − (iωr2 + q2r)V̄1+

12κq2

r

(
ρ̄V5+ρ̄5 V̄5

)
, (A.6)

0 =
(
r5 − r

)
∂2
rV3 +

(
3r4 + 1

)
∂rV3 − 2iωr3∂rV3 − iωr2V3 − r3∂rS2 − r2S2 − rV1

− r +
12κ

r

(
ρ̄5V5 + ρ̄V̄5

)
,

(A.7)

0 =
(
r5 − r

)
∂2
r V̄3 +

(
3r4 + 1

)
∂rV̄3 − 2iωr3∂rV̄3 − iωr2V̄3 − r3∂rS̄2 − r2S̄2 − rV̄1

+
12κ

r

(
ρ̄V5 + ρ̄5 V̄5

)
,

(A.8)

0 =
(
r5 − r

)
∂2
rV5 +

(
3r4 + 1

)
∂rV5 − 2iωr3∂rV5 − iωr2V5 − q2rV5 +

12κ

r
(ρ̄5

+ρ̄5V1 + ρ̄V̄1

)
,

(A.9)

0 =
(
r5 − r

)
∂2
r V̄5 +

(
3r4 + 1

)
∂rV̄5 − 2iωr3∂rV̄5 − iωr2V̄5 − q2rV̄5 +

12κ

r
(ρ̄

+ρ̄V1 + ρ̄5V̄1

)
.

(A.10)

{S3, V4}

0 = r2∂2
rS3 + 3r∂rS3 − q2∂rV4, (A.11)

0 =
(
r5 − r

)
∂2
rV4 +

(
3r4 + 1

)
∂rV4 − 2iωr3∂rV4 − iωr2V4 − r3∂rS3 − r2S3 −

1

2
. (A.12)
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{
S5, S̄5, V6, V̄6, V8, V̄8, V10, V̄10

}
0 = r2∂2

rS5 + 3r∂rS5 + ∂rV6 − q2∂rV8, (A.13)

0 = r2∂2
r S̄5 + 3r∂rS̄5 + ∂rV̄6 − q2∂rV̄8, (A.14)

0 =
(
r5−r

)
∂2
rV6+

(
3r4+1−2iωr3

)
∂rV6−(iωr2+q2r)V6+

12κq2

r

(
ρ̄5V10+ρ̄V̄10

)
, (A.15)

0 =
(
r5 − r

)
∂2
r V̄6 +

(
3r4 + 1

)
∂rV̄6 − 2iωr3∂rV̄6 − iωr2V̄6 − q2rV̄6 − iωr2 − q2r

+
12κq2

r

(
ρ̄V10 + ρ̄5V̄10

)
,

(A.16)

0 =
(
r5 − r

)
∂2
rV8 +

(
3r4 + 1

)
∂rV8 − 2iωr3∂rV8 − iωr2V8 − r3∂rS5 − r2S5 − rV6

+
12κ

r

(
ρ̄5V10 + ρ̄V̄10

)
,

(A.17)

0 =
(
r5 − r

)
∂2
r V̄8 +

(
3r4 + 1

)
∂rV̄8 − 2iωr3∂rV̄8 − iωr2V̄8 − r3∂rS̄5 − r2S̄5 − rV̄6

− r +
12κ

r

(
ρ̄V10 + ρ̄5V̄10

)
,

(A.18)

0 =
(
r5 − r

)
∂2
rV10 +

(
3r4 + 1− 2iωr3

)
∂rV10 − (iωr2 + q2r)V10 +

12κ

r

(
ρ̄5V6 + ρ̄+ ρ̄V̄6

)
,

(A.19)

0 =
(
r5−r

)
∂2
r V̄10+

(
3r4+1−2iωr3

)
∂rV̄10−(iωr2+q2r)V̄10 +

12κ

r

(
ρ̄V6 + ρ̄5 + ρ̄5V̄6

)
.

(A.20)

{S4, V7}

0 = r2∂2
rS4 + 3r∂rS4 − q2∂rV7, (A.21)

0 =
(
r5 − r

)
∂2
rV7 +

(
3r4 + 1

)
∂rV7 − 2iωr3∂rV7 − iωr2V7 − r3∂rS4 − r2S4. (A.22)

For the remaining coefficients: {S6, V9},
{
S̄1, V̄2

}
, and

{
S̄3, V̄4

}
obey the same ODEs as

{S4, V7};
{
S̄4, V̄7

}
satisfy the same equations as {S1, V2};

{
S̄6, V̄9

}
and {S3, V4} obey the

same ODEs as well.

Certain constraint relations among the coefficients in (4.9), (4.10) can be established.

First, (4.15) combined with the boundary conditions (4.11), (4.12) and homogeneity of the

ODEs (A.21), (A.22) for {S4, V7}, {S6, V9},
{
S̄1, V̄2

}
and

{
S̄3, V̄4

}
result in the following

identities

S4 = S6 = S̄1 = S̄3 = 0, V7 = V9 = V̄2 = V̄4 = 0. (A.23)

Furthermore,

S1 = S̄4, V2 = V̄7; S3 = S̄6, V4 = V̄9. (A.24)

This comes from the fact that these functions satisfy identical ODEs (A.1), (A.2) with

identical boundary conditions. Additionally, as in [54] consider the combinations

X1 = iωS1 + q2S2, X̄1 = S̄2, Y1 = iωV2 + q2V3 − V1, Ȳ1 = q2V̄3 − V̄1, (A.25)

X2 = S5, X̄2 = iωS̄4 + q2S̄5, Y2 = q2V8 − V6, Ȳ2 = iωV̄7+q2V̄8−V̄6, (A.26)

– 31 –



J
H
E
P
1
1
(
2
0
1
6
)
0
9
3

which satisfy homogeneous equations. Therefore, under (4.16), (4.17) and boundary con-

ditions (4.11), (4.12) we have

iωS1 + q2S2 = 0, S̄2 = 0, iωV2 + q2V3 − V1 = 0, q2V̄3 − V̄1 = 0, (A.27)

S5 = 0, iωS̄4 + q2S̄5 = 0, q2V8 − V6 = 0, iωV̄7 + q2V̄8 − V̄6 = 0. (A.28)

The relations (A.23), (A.24), (A.27), (A.28) could be further translated into constraints

among vi , v̄i ,

v7 = v9 = v̄2 = v̄4 = 0, v2 = v̄7 , v4 = v̄9 , iωv2 + q2v3 − v1 = 0,

q2v̄3 − v̄1 = 0, q2v8 − v6 = 0, iωv̄7 + q2v̄8 − v̄6 = 0.
(A.29)

The relations (A.23), (A.24), (A.27), (A.28) reduce the number of equations that needs

to be solved. The remaining independent sub-sectors are

{S1, V2} , {S3, V4} ,
{
V1, V̄1, V5, V̄5

}
,
{
V6, V̄6, V10, V̄10

}
. (A.30)

Note that under the interchange

V1 ↔ V̄6, V̄1 ↔ V6, V5 ↔ V̄10, V̄5 ↔ V10, (A.31)

The ODEs satisfied by the sub-sectors
{
V1, V̄1, V5, V̄5

}
and

{
V6, V̄6, V10, V̄10

}
get exchanged

in the following way,

(A.5)↔ (A.16), (A.6)↔ (A.15), (A.9)↔ (A.20), (A.10)↔ (A.19).

Given that
{
V1, V̄1, V5, V̄5

}
and

{
V6, V̄6, V10, V̄10

}
obey the same boundary condi-

tions (4.11), (4.12), the following “symmetric” relations hold

V1 = V̄6, V̄1 = V6, V5 = V̄10, V̄5 = V10,

⇒ v
1

= v̄6 , v̄1 = v6 , v
5

= v̄10 , v̄5 = v10 .
(A.32)

Based on (A.27), (A.28), (A.32) implies

V3 = V̄8 =⇒ v3 = v̄8 . (A.33)

Eventually, we only need to solve {S1, V2}, {S3, V4},
{
V1, V̄1, V5, V̄5

}
and obtain all the

other functions through the relations revealed above.

B Perturbative solutions

Perturbative solutions for
{
S2, V1, V̄1, V3, V̄3, V5, V̄5

}
when ω, q � 1 are summarised in this

appendix. First, let introduce a formal expansion parameter λ

ω → λω, ~q → λ~q. (B.1)
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Expanding these functions in powers of λ,

S2 =
∞∑
n=0

λnS
(n)
2 , V1 =

∞∑
n=0

λnV
(n)

1 , V̄1 =
∞∑
n=0

λnV̄
(n)

1 , V3 =
∞∑
n=0

λnV
(n)

3

V̄3 =
∞∑
n=0

λnV̄
(n)

3 , V5 =
∞∑
n=0

λnV
(n)

5 , V̄5 =
∞∑
n=0

λnV̄
(n)

5 ,

(B.2)

we solve (A.3), (A.5)–(A.10) perturbatively, order by order in λ. Final results are quoted

below.

V
(0)

1 = V̄
(0)

1 = V̄
(1)

1 = S
(0)
2 = 0, (B.3)

V
(0)

5 = 3κρ̄5 log
1 + r2

r2
r →∞−−−−→

3κρ̄5

r2
+O

(
1

r3

)
, (B.4)

V̄
(0)

5 = 3κρ̄ log
1 + r2

r2
r →∞−−−−→

3κρ̄

r2
+O

(
1

r3

)
, (B.5)

V
(1)

1 = −1

4
iω

[
π − 2 arctan(r) + log

(1 + r)2

1 + r2

]
r →∞−−−−→ −

iω

r
+

iω

2r2
+O

(
1

r3

)
, (B.6)

V
(1)

5 = −
∫ ∞
r

xdx

x4 − 1

∫ x

1

[
2iωy∂yV

(0)
5 + iωV

(0)
5 − 12κρ̄5

y3
V

(1)
1

]
dy

r →∞−−−−→
3iωκρ̄5 log 2

r2
+O

(
1

r3

)
,

(B.7)

V̄
(1)

5 = −
∫ ∞
r

xdx

x4 − 1

∫ x

1

[
2iωy∂yV̄

(0)
5 + iωV̄

(0)
5 − 12κρ̄

y3
V

(1)
1

]
dy

r →∞−−−−→
3iωκρ̄ log 2

r2
+O

(
1

r3

)
,

(B.8)

V
(2)

1 = −
∫ ∞
r

xdx

x4 − 1

∫ x

1
dy

[
2iωy∂yV

(1)
1 + iωV

(1)
1 +

q2

y
+
q2

y
V

(0)
1 − 12κq2

y3

×
(
ρ̄5V

(0)
5 + ρ̄V̄

(0)
5

)]
r →∞−−−−→ −

1

4r2

{
ω2 (1 + log 2) + q2

[
1− 36κ2

(
ρ̄2 + ρ̄2

5

)
(2 log 2− 1)

]}
+

1

2

(
ω2 − q2

) log r

r2
+O

(
log r

r3

)
,

(B.9)

V̄
(2)

1 =

∫ ∞
r

xdx

x4−1

∫ x

1

12κq2

y3

(
ρ̄V

(0)
5 +ρ̄5V

(0)
5

)
r →∞−−−−→

18q2κ2ρ̄ρ̄5

r2
(2 log 2−1)+O

(
1

r3

)
,

(B.10)

V
(2)

5 = −
∫ ∞
r

xdx

x4 − 1

∫ x

1
dy

[
2iωy∂yV

(1)
5 + iωV

(1)
5 +

q2

y
V

(0)
5 − 12κ

y3

(
ρ̄5V

(2)
1 + ρ̄V̄

(2)
1

)]
r →∞−−−−→−

κρ̄5

8r2

{
6ω2 log2 2+q2

[
π2−432κ2(log 2−1)2(ρ̄2

5
+3ρ̄2

)]}
+O

(
1

r3

)
, (B.11)

V̄
(2)

5 = −
∫ ∞
r

xdx

x4−1

∫ x

1
dy

[
2iωy∂yV̄

(1)
5 +iωV̄

(1)
5 +

q2

y
V̄

(0)
5 − 12κ

y3

(
ρ̄V

(2)
1 +ρ̄5 V̄

(2)
1

)]
r →∞−−−−→ −

κρ̄

8r2

{
6ω2 log2 2+q2

[
π2−432κ2(log 2−1)2(ρ̄2+3ρ̄2

5

)]}
+O

(
1

r3

)
, (B.12)
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V
(0)

3 = −
∫ ∞
r

xdx

x4 − 1

∫ x

1

[
1

y
− 12κ

y3

(
ρ̄5V

(0)
5 + ρ̄V̄ (0)

5

)]
r →∞−−−−→ −

1

4r2

[
1− 36κ2

(
ρ̄2 + ρ̄2

5

)
(2 log 2− 1)

]
− log r

2r2
+O

(
log r

r3

)
,

(B.13)

S
(1)
2 =

∫ ∞
r

dx

x3

∫ x

1
y∂yV

(1)
1 dy+

iω

16r2
(π+6 log 2) r →∞−−−−→

iω

4r2
(1+2 log r)+O

(
1

r3

)
, (B.14)

V
(1)

3 = −
∫ ∞
r

xdx

x4 − 1

∫ x

1
dy

[
2iωy∂yV

(0)
3 + iωV

(0)
3 + y∂yS

(1)
2 + S

(1)
2 +

1

y
V

(1)
1

−12κ

y3

(
ρ̄5V

(1)
5 + ρ̄V̄

(1)
5

)]
,

r →∞−−−−→
iω

32r2

[
(2π − π2 + 4 log 2) +O

(
ρ̄2, ρ̄2

5

)]
+O

(
1

r3

)
,

(B.15)

V̄
(0)

3 =

∫ ∞
r

xdx

x4−1

∫ x

1

12κ

y3

(
ρ̄V

(0)
5 +ρ̄5 V̄

(0)
5

)
r →∞−−−−→

18κ2ρ̄ρ̄5

r2
(2 log 2−1)+O

(
1

r3

)
, (B.16)

V̄
(1)

3 = −
∫ ∞
r

xdx

x4−1

∫ x

1
dy

[
2iωy∂yV̄

(0)
3 + iωV̄

(0)
3 − 12κ

y3

(
ρ̄V

(1)
5 + ρ̄5 V̄

(1)
5

)]
. (B.17)

These perturbative solutions generate the hydrodynamic expansion of v3 , v̄3 , v5, v̄5 as sum-

marized in section 4.2.1.

C Frame-independence of the TCFs in (1.6), (1.7)

When the anomaly coefficient κ = 0, frame-independence of D, σe, σm was proved in [54].

In this appendix, we show that in the presence of triangle anomaly all the TCFs enter-

ing (1.6), (1.7) are uniquely fixed, even when the frame convention (3.6) is relaxed. The

proof below goes in parallel to that of [54], but the algebra is more involved.

Under the scheme (4.1), Jµ, Jµ5 are conserved as seen from (1.2). Relaxing the frame

choice (3.6), we instead require that Jµ, Jµ5 of (4.14) are invariant under the gauge trans-

formations

Vµ → Vµ + ∂µφ, Aµ → Aµ + ∂µϕ. (C.1)

The gauge invariance of Jµ, Jµ5 gives rise to the following relations,

iωs1 + q2s2 = 0, iωs4 + q2s5 = 0, (C.2)

iωs̄1 + q2s̄2 = 0, iωs̄4 + q2s̄5 = 0, (C.3)

v1 − iωv2 − q2v3 = 0, v6 − iωv7 − q2v8 = 0, (C.4)

v̄1 − iωv̄2 − q2v̄3 = 0, v̄6 − iωv̄7 − q2v̄8 = 0. (C.5)

Substituting δρ, δρ5 by J t and J t5, (4.14) becomes

J i = −D1∂iJ
t −D2∂iJ

t
5 + σ1

(
Ei −

∂i∂k
∂2

Ek

)
+ σ2

∂i∂k
∂2

Ek + σ3

(
Eai −

∂i∂k
∂2

Eak

)
+ σ4

∂i∂k
∂2

Eak + σ5Bi + σ6B
a
i ,

(C.6)

J i5 = −D̄1∂iJ
t
5 − D̄2∂iJ

t + σ̄1

(
Eai −

∂i∂k
∂2

Eak

)
+ σ̄2

∂i∂k
∂2

Eak + σ̄3

(
Ei −

∂i∂k
∂2

Ek

)
+ σ̄4

∂i∂k
∂2

Ek + σ̄5B
a
i + σ̄6Bi,

(C.7)
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where

D1 = − 2v4(1− 2s̄6) + 2v92s̄3
(1− 2s3)(1− 2s̄6)− 2s̄32s6

, D2 = − 2v9(1− 2s3) + 2v42s6
(1− 2s3)(1− 2s̄6)− 2s̄32s6

, (C.8)

σ1 =
2v1 +(ω2+q2)/2

iω
, σ2 = 2v2−

1

2
iω−D1

(
2s1 +

1

2
q2

)
−D22s̄1 , σ3 =

2v6
iω

, (C.9)

σ4 = 2v7 −D12s4 −D2

(
2s̄4 +

1

2
q2

)
, σ5 = 2v5 , σ6 = 2v10 , (C.10)

D̄1 = − 2v̄9(1− 2s3) + 2v̄42s6
(1− 2s3)(1− 2s̄6)− 2s̄32s6

, D̄2 = − 2v̄4(1− 2s̄6) + 2v̄92s̄3
(1− 2s3)(1− 2s̄6)− 2s̄32s6

, (C.11)

σ̄1 =
2v̄6 +(ω2 + q2)/2

iω
, σ̄2 = 2v̄7−

1

2
iω−D̄1

(
2s̄4 +

1

2
q2

)
−D̄22s4 , σ̄3 =

2v̄1
iω

, (C.12)

σ̄4 = 2v̄2 − D̄12s̄1 − D̄2

(
2s1 +

1

2
q2

)
, σ̄5 = 2v̄10 , σ̄6 = 2v̄5 . (C.13)

Note that the ODEs (A.5), (A.6), (A.9), (A.10) for
{
V1, V̄1, V5, V̄5

}
and the

ODEs (A.15), (A.16), (A.19), (A.20) for
{
V6, V̄6, V10, V̄10

}
are decoupled from all the Si, S̄i.

The boundary conditions (4.11), (4.12) are sufficient to completely determine these two

sub-sectors. So, the following TCFs get uniquely fixed without imposing the frame con-

vention (3.6):

σ1, σ3, σ5, σ6, σ̄1, σ̄3, σ̄5, σ̄6. (C.14)

The symmetric relations (A.32) still hold. From (A.32), one identifies

σ5 = σ̄5 ≡ σχ, σ6 = σ̄6 ≡ σκ, σ1 = σ̄1 ≡ σT, σ3 = σ̄3 ≡ σT
a . (C.15)

To proceed, redefine S3 and S̄6,

S∗3 = S3 −
1

2r2
, S̄∗6 = S̄6 −

1

2r2
. (C.16)

Then the sub-sectors {S∗3 , V4}, {S6, V9},
{
S̄3, V̄4

}
,
{
S̄∗6 , V̄9

}
obey the same homogeneous

ODEs. Furthermore, these sub-sectors satisfy the same boundary conditions at r =∞,

S∗3 → 0, V4 → 0; S6 → 0, V9 → 0, as r →∞,
S̄3 → 0, V̄4 → 0; S̄∗6 → 0, V̄9 → 0, as r →∞.

(C.17)

Regularity at the horizon r = 1 fixes one more integration constant for V4, V9, V̄4, V̄9, re-

spectively. As a result, relaxing the frame convention (3.6), solutions for {S∗3 , V4}, {S6, V9},{
S̄3, V̄4

}
,
{
S̄∗6 , V̄9

}
are parameterized by a choice of s3 , s6 , s̄3 , s̄6 , respectively. Homogene-

ity of the ODEs obeyed by {S∗3 , V4}, {S6, V9},
{
S̄3, V̄4

}
,
{
S̄∗6 , V̄9

}
, along with the boundary

conditions (C.17), admits a family of solutions which have r-independent scaling symme-

try for these sub-sectors. In other words, the ratios V4/S
∗
3 , V9/S6, V̄4/S̄3 and V̄9/S̄

∗
6 are

uniquely fixed to the same value. At the boundary r = ∞, these ratios translate into the

statement that
2v4

−1 + 2s3
=
v9
s6

=
v̄4

s̄3
=

2v̄9
−1 + 2s̄6

(C.18)
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are uniquely fixed and independent of the choice of s3 , s6 , s̄3 , s̄6 . The relations (C.18)

imply that

D2 = D̄2 = 0, D1 =
2v4

−1 + 2s3
=

2v̄9
−1 + 2s̄6

= D̄1. (C.19)

Thus, D1, D̄1 are identified as the diffusion D of (1.6), (1.7). This proves that the diffusion

TCF D is uniquely fixed and frame-independent quantity.

The remaining transport coefficients are

σ2 = 2v2 −
1

2
iω −D

(
2s1 +

1

2
q2

)
, σ4 = 2v7 −D2s4 ,

σ̄2 = 2v̄7 −
1

2
iω −D

(
2s̄4 +

1

2
q2

)
, σ̄4 = 2v̄2 −D2s̄1 .

(C.20)

Notice that {S4, V7} and
{
S̄1, V̄2

}
satisfy the same ODEs as {S∗3 , V4}. Near r =∞, {S4, V7}

and
{
S̄1, V̄2

}
satisfy the boundary condition

S4 → 0, V7 → 0; S̄1 → 0, V̄2 → 0. (C.21)

With the same analysis leading to (C.18), we have

v7
s4

=
v̄2
s̄1

=
2v4

−1 + 2s3
=⇒ σ4 = σ̄4 = 0. (C.22)

The situation for σ2, σ̄2 is more complicated. Since the sub-sectors {S1, V2} and{
S̄4, V̄7

}
satisfy the same ODEs, we focus on {S1, V2}. The case is exactly the same

as considered in [54]. Therefore,

σ2 = σ̄2 ≡ σL (C.23)

are uniquely fixed and frame-independent.

The currents Jµ and Jµ5 are

J i = −D∂iJ t+σT

(
Ei−

∂i∂k
∂2

Ek

)
+σL∂i∂k

∂2
Ek+σT

a

(
Eai −

∂i∂k
∂2

Eak

)
+σχBi+σκB

a
i , (C.24)

J i5 = −D∂iJ t5+σT

(
Eai −

∂i∂k
∂2

Eak

)
+σL∂i∂k

∂2
Eak+σT

a

(
Ei−

∂i∂k
∂2

Ek

)
+σχB

a
i +σκBi, (C.25)

which can be put into the forms of (1.6), (1.7) under the identification

σe = σL, σm =
iω

q2

(
σT − σL

)
, σa =

iω

q2
σT. (C.26)

This completes the proof.

Acknowledgments

We would like to thank Dmitri E. Kharzeev, Alex Kovner, Derek Teaney, and Ho-Ung

Yee for useful discussions related to this work. YB would like to thank KITPC (Beijing)

for financial support and hospitality, Physics Department of the University of Connecti-

cut for hospitality where part of this work was done. This work was supported by the

– 36 –



J
H
E
P
1
1
(
2
0
1
6
)
0
9
3

ISRAELI SCIENCE FOUNDATION grant #87277111, BSF grant #012124, the People

Program (Marie Curie Actions) of the European Union’s Seventh Framework under REA

grant agreement #318921; and the Council for Higher Education of Israel under the PBC

Program of Fellowships for Outstanding Post-doctoral Researchers from China and India

(2015-2016).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] A. Cortijo, D. Kharzeev, K. Landsteiner and M.A.H. Vozmediano, Strain induced Chiral

Magnetic Effect in Weyl semimetals, arXiv:1607.03491 [INSPIRE].

[2] D. Kharzeev, Parity violation in hot QCD: Why it can happen and how to look for it, Phys.

Lett. B 633 (2006) 260 [hep-ph/0406125] [INSPIRE].

[3] D. Kharzeev and A. Zhitnitsky, Charge separation induced by P-odd bubbles in QCD matter,

Nucl. Phys. A 797 (2007) 67 [arXiv:0706.1026] [INSPIRE].

[4] D.E. Kharzeev, L.D. McLerran and H.J. Warringa, The effects of topological charge change

in heavy ion collisions: ‘Event by event P and CP-violation’, Nucl. Phys. A 803 (2008) 227

[arXiv:0711.0950] [INSPIRE].

[5] K. Fukushima, D.E. Kharzeev and H.J. Warringa, The Chiral Magnetic Effect, Phys. Rev. D

78 (2008) 074033 [arXiv:0808.3382] [INSPIRE].

[6] D.E. Kharzeev, Topologically induced local P and CP-violation in QCD ×QED, Annals

Phys. 325 (2010) 205 [arXiv:0911.3715] [INSPIRE].

[7] A. Vilenkin, Equilibrium parity violating current in a magnetic field, Phys. Rev. D 22 (1980)

3080 [INSPIRE].

[8] M. Giovannini and M.E. Shaposhnikov, Primordial hypermagnetic fields and triangle

anomaly, Phys. Rev. D 57 (1998) 2186 [hep-ph/9710234] [INSPIRE].
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