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1 Introduction

Generalised geometry, first defined by Hitchin and Gualtieri [1, 2], has given physicists

the tools to understand in a fully geometric formalism the symmetries of the abelian p-

form gauge fields of low energy string theory. Sections of the generalised tangent bundle,

which is isomorphic to the sum of the tangent and cotangent bundle, generate not only the

diffeomorphism symmetry of usual Riemannian geometry, but also the gauge symmetry of
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the B field, which is reinterpreted as a connection on a gerbe that describes the twisting

of the cotangent over the tangent bundle. The topological data of both the manifold and

the flux H = dB are thus also encoded. This generalised tangent bundle, which possesses

a natural O(d, d) structure, is the correct setting for understanding the NSNS sector of

type II supergravity (allowing for some small modifications to incorporate the dilaton [3]).

In order to geometrise the remaining RR fields, or alternatively M theory, exceptional

generalised geometry was developed in [4–7], which expands the generalised tangent bundle

to admit an Ed(d)×R
+ structure, corresponding to the U-duality groups. Further versions

of generalised geometry, relevant for other supergravities, have since been introduced [8–18].

An obvious field to apply these new ideas is the problem of obtaining solutions for

generic compactifications of string and M theory with fluxes, since the gauge fields are

now deeply integrated in the formalism. Of particular interest are those that preserve

supersymmetry. Supersymmetric backgrounds are often thought of in the language of G-

structures [19–21]. In the absence of fluxes, preserving supersymmetry implies the existence

of global spinors which are parallel with respect to the Levi-Civita connection, or put in

another way, the Killing spinors define a G-structure which is torsion-free. As is well known,

this is a very constraining condition, since it immediately restricts solutions to be special

holonomy manifolds. The addition of fluxes breaks this integrability condition however,

and instead one is led to attempt to classify solutions based on how the fluxes arrange

themselves into the intrinsic torsion classes of the G-structures defined by the Killing

spinors. One can go even further, and consider generalised G-structures [22, 23], that is G-

structures on the generalised tangent space, which naturally provide a unified description of

flux background [5, 22–25] and so allow more extensive and systematic analyses of solutions

(see, for example, [26–34]).

In [35] a notion of integrability for generalised G-structures was developed based on the

Dorfman bracket of generalised vector fields which is suitable for any version generalised ge-

ometry. In particular, when applied to exceptional generalised geometry, it was proven that

the condition of vanishing generalised intrinsic torsion of the G-structure defined by a global

spinor corresponds precisely to Minkowski flux backgrounds of M theory or type II pre-

serving N = 1. In other words, it became possible to describe fully generic backgrounds as

precisely the generalised analogue of special holonomy manifolds — for example, a torsion-

free generalised SU(7) structure on a 7-fold is the full flux generalisation of the fluxless G2

manifold solution for M theory compactifications to four-dimensional flat spacetime. Gen-

eralised torsion-free spaces were therefore dubbed “generalised special holonomy spaces”.1

This machinery has since been used to describe AdS backgrounds that preserve minimal

supersymmetry in [38], which turn out to precisely correspond to spaces with constant

singlet torsion, i.e. “weak generalised special holonomy” spaces, and in [39] the generalised

geometry integrability conditions for 8 supercharge vacua were shown to be rephrasable

in terms of hyper- (H) and vector- (V) multiplet structures on the generalised tangent

1Note that the term generalised special holonomy is used strictly in analogy to torsion-free G-structures

defined by spinors. We do not define any new notion of holonomy as a arising from some generalisation of

parallel transport. A different notion of “generalised holonomy” had also been defined in [36, 37], referring

instead to the holonomy of the (non-generalised) connection appearing in the gravitino variation.
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space following the earlier work [40]. This allowed the proof of some basic features of the

moduli space of such generalised structures (and thus of flux vacua), such as the Kähler and

hyper-Kähler structures necessitated by having 8 supercharges in the external space theory.

This construction was then applied to AdS backgrounds and holography [41] showing how

features of the dual field theory such as the central charge and volume minimisation could be

encoded in the generalised geometry. The integrability of the H- and V-structures was also

explicitly shown to follow from the Killing spinor equations for AdS5 in [42]. Subsequently,

a holographic description of the marginal deformations of four-dimensional N = 1 SCFTs

was given in [43], where in particular, it was shown that in general the exactly marginal

deformations correspond to a quotient of the classically marginal deformations by the

action of the isometry group of the internal space, reproducing an earlier field-theoretical

result [44]. These works provide a good demonstration of the power of using a generalised

formalism which treats fluxes and geometry on equal footing.

However, the analysis of [35] was, in a sense, incomplete, since the proof of the cor-

respondence between supersymmetric solutions and generalised special holonomy spaces

was only given for the N = 1 case. While it was shown that for each value of N there

exists a single unified GN structure on the generalised tangent bundle (an extension of the

argument first presented in [5]), that its generalised intrinsic torsion vanishes for super-

symmetric Minkowski solutions was only proven when there is a single Killing spinor. The

N = 2 case could actually be derived in the exact same manner, as was shown explicitly

in [39], but if one were to attempt to reproduce the same steps for N ≥ 3 there would

appear to exist a mismatch between a naive counting of the representations appearing in

the generalised intrinsic torsion space of the GN structure and the constraints provided by

the N Killing spinor equations.

In this paper we show how this issue is resolved and prove that, indeed, all supersym-

metric Minkowski flux backgrounds of M theory and type II are in one-to-one correspon-

dence with generalised special holonomy manifolds. For each solution with an amount N

of preserved supersymmetry there exists a single corresponding torsion-free generalised GN

structure and vice versa.

Intuitively, the key observation is that the supergravity fluxes do not fill out the entirety

of the generalised torsion GN representations. This can be traced back to the fact that the

torsion is fixed by the Dorfman bracket which, since it involves the anchor map explicitly,

acts only within what is often called the “geometric subgroup” — that is the parabolic

subgroup induced by the supergravity bosonic symmetries, corresponding to infinitesimal

diffeomorphisms and gauge transformations — and not the entire Ed(d)×R
+ generalised

frame group.

In order to exploit these properties explicitly at the level of the GN structure defined by

the Killing spinors, we introduce in section 3 an extension of the Dorfman bracket that can

act on spinors, the Kosmann-Dorfman bracket. This is the direct analogue of Kosmann’s

generalisation of the Lie derivative for spinor fields [45]. With this new tool we are able to

explore in generalised geometry the algebra generated by the internal Killing spinors. This

algebra is essentially part of the eleven-dimensional “Killing superalgebra”.
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In (pseudo-)Riemannian geometry it is natural to consider the Lie algebra of the Killing

vector fields of a metric, which forms the Lie algebra of the isometry group of the manifold.

When one considers supergravity solutions, one would like to consider isometries of the

full background, i.e. vectors which preserve all of the fields rather than just the metric.

In addition, one could also consider the Killing spinors, which generate the (infinitesimal)

supersymmetry transformations that leave the background invariant. In eleven-dimensional

supergravity, it was shown in [46] by checking their closure and Jacobi identities, that all

of these transformations naturally form a superalgebra, called the Killing superalgebra,

generated by both the Killing vectors and Killing spinors of the background. Similar

results were also found in ten-dimensional supergravities [47]. In these works, it was shown

that any background preserving more that 24 supercharges (or 16 supercharges in the

heterotic case) must be locally homogeneous. Later, this was extended to a proof of the

homogeneity theorem [48], which says that any supersymmetric background with more

than 16 preserved supercharges must be locally homogeneous. Further, there is a spanning

set of Killing vectors which arises from the bilinears of the Killing spinors. The Killing

superalgebras and corresponding homogeneity results for six-dimensional (1, 0) and (2, 0)

supergravity were also given in [49]. The homogeneity results are useful as it is possible to

classify the homogeneous solutions of the equations of motion [50, 51].

In section 4 we will find that the internal part of the Killing superalgebra has a neat

manifestation in the language of Ed(d)×R
+ generalised geometry. It is already known

that isometries which preserve the supergravity fields are precisely those generated by gen-

eralised Killing vectors [52], i.e. generalised vectors such that the Dorfman derivative of

the generalised metric along them vanishes. In fact, the parabolic nature of the Dorf-

man derivative implies that when it is evaluated along a generalised Killing vector in a

frame “untwisted” by the gauge fields, it reduces to an ordinary Lie derivative along a

genuine Killing vector field, as was also noted in [39, 42]. We find that this applies to the

Kosmann-Dorfman derivative of spinors as well and give it a concrete proof in appendix A.

This lemma turns out to great simplify otherwise cumbersome computations, and we are

able to explore the algebra generated by the Killing spinors in terms of this new bracket.

Further, we have that Killing spinor bilinears on the internal space give rise to generalised

Killing vectors. Therefore this formulation automatically encodes the p-form gauge trans-

formations generated by the brackets of supersymmetries as well as the diffeomorphisms

described by the usual Killing superalgebra, as the generalised vectors also include differ-

ential form components which are precisely the generators of the gauge transformations

of the theory. The Kosmann-Dorfman derivative then includes a natural way to define

the action of these form bilinears on the Killing spinors (the problem of finding such an

action was previously raised in [53, 54]). We find that the Killing spinors generate an al-

gebra which is simpler than one might naively expect — in fact, we prove that all brackets

other than the spinor bilinear vanish for external Minkowski solutions. As a corollary, we

give an eleven-dimensional interpretation of this result, showing that it implies that the

eleven-dimensional Killing spinors generate the supertranslational ideal of the N -extended

super-Poincaré algebra of the external Minkowski space.
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In section 5, not only do we reproduce the result of [35], we find that the components of

the generalised intrinsic torsion which initially appeared to be unconstrained by the Killing

spinor equations can be rewritten in terms of this new spinorial bracket, and in fact turn

out to be precisely just one of the trivial structure constants of the subalgebra generated

by the Killing spinors. We can then simply conclude that these last remaining components

of the torsion vanish as well. The generalised GN structures describing N supersymmetric

backgrounds are indeed exactly those which are torsion-free.

Note that the same caveats as in [35] apply to our analysis here. We do not address the

no-go theorems for Minkowski flux compactifications [55–58], so the spaces we study (we

only examine local structures) should be taken to either be non-compact or with boundaries.

Also, for a majority of this paper we will be working on the specific case of d = 7 in the

context of M theory compactifications. This corresponds to an external four-dimensional

Minkowski space and an internal manifold whose description is governed by E7(7) × R
+

generalised geometry. This is the largest of the known exceptional generalised geometries,

and using the constructions of [6, 7] it is possible to obtain the d < 7 formulations from

it via straightforward truncations and decompositions. Alternatively, one can follow the

procedures outlined in [6] to find the d− 1 internal geometry of a Type II compactification

in a democratic formalism. The d > 7 cases are, for the moment, beyond our scope. On

the other hand, one should note that in d = 4 the generalised holonomy groups already

coincide with usual geometrical ones, so we skip the discussion of d ≤ 3 as the generalised

geometry description is unnecessary.

2 Supergravity preliminaries

2.1 The Killing superalgebra in eleven-dimensions

We begin by briefly recounting the construction of the Killing superalgebra in eleven-

dimensions, following [46]. Here, we are working on a solution (M,G,F) of eleven-

dimensional supergravity, where M is a smooth spin manifold with metric G of mostly-plus

signature (10, 1) and F is the four-form flux. All fermions are set to zero.

Let g0 be the vector space of Killing vectors of (M,G,F), i.e. vectors v such that

LvG = LvF = 0, and g1 be the space of Killing spinors, i.e. (commuting) spinor fields ε

satisfying

δεΨM = ∇Mε+
1

288
(ΓM

P1...P4FP1...P4
− 8FMN1...N3

ΓN1...N3)ε = 0. (2.1)

Then the central point is that, for v, v1, v2 ∈ g0 and ε, ε1, ε2 ∈ g1 the bracket operations

[ε1, ε2} = v(ε1, ε2),

[v, ε} = Lvε,

[v1, v2} = Lv1v2,

(2.2)

where v(ε1, ε2)
M = ε̄1Γ

Mε2 and Lvε is the Kosmann derivative of a spinor field [45], make

g = g0 ⊕ g1 into a Lie superalgebra. This is the Killing superalgebra. Checking that (2.2)
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satisfies the Jacobi identities necessary for the definition of a Lie superalgebra is a non-

trivial task; we refer the reader to [46] for full details. One can also make the analogous

construction for type II backgrounds and find that there exists a Killing superalgebra

structure there as well [47].

2.2 Internal sector of dimensional split

Turning now to the problem of characterising D-dimensional Minkowski backgrounds of M

theory, where D = 11− d, we will very briefly recall the supergravity setup in the specific

case d = 7, for which the internal space is described by E7(7)×R
+ generalised geometry. For

the supergravity ansatze with d < 7 (as well as a more detailed treatment of d = 7) see [7].

We consider a dimensional split 11 → (3, 1)+7, and concretely a warped product metric

ds210,1 = e2∆ηµνdx
µdxν + gmndy

mdyn, (2.3)

where the first term corresponds to an external four-dimensional Minkowski space, and

the second one to an internal curved space. All fields are taken to depend only on the

internal coordinates, and we allow only the internal fluxes Fmnpq = Fmnpq and F̃m1...m7
=

(∗11F)m1...m7
.

As such, we can decompose the eleven-dimensional spinors into products of external

and internal spinors,2 following exactly appendix (C.4) of [7]. We define seven-dimensional

(commuting) Killing spinors ǫ̂ to be non-vanishing complex spinors satisfying the internal

Killing spinor equations

Dmǫ̂i :=∇mǫ̂i+
1

288
(γm

n1...n4−8δm
n1γn2n3n4)Fn1...n4

ǫ̂i−
1

12

1

6!
F̃mn1...n6

γn1...n6 ǫ̂=0,

Dǫ̂i := γm∇mǫ̂i + γm(∂m∆)ǫ̂i −
1

96
γm1...m4Fm1...m4

ǫ̂i −
1

4

1

7!
γm1...m7F̃m1...m7

ǫ̂ = 0.

(2.4)

Given an internal Killing spinor ǫ̂ solving (2.4) and a constant four-dimensional Majorana

spinor η, we have that

ε = η+ ⊗ ǫ̂+ η− ⊗ (D̃ǫ̂)∗, γ(4)η± = ∓iη±, (2.5)

is an eleven-dimensional Killing spinor solving (2.1) (see e.g. [35]), motivating the above

definition. We say that an N supersymmetric Minkowski background is one equipped with

N independent Killing spinors as defined here (so that the space of Killing spinors is an

N dimensional complex vector space). For each internal Killing spinor, the formula (2.5)

then gives an uplift of any constant external Majorana spinor, that is a Killing spinor of

Minkowski space, to a higher-dimensional Killing spinor.

Crucially for what follows, one can take the internal Killing spinors to be orthonor-

mal [63]. We provide a slightly different proof which generalises more readily to other

2Note that the possibility of more general Killing spinors where there is linear dependence on the external

coordinates is raised in [59–61], and explicit examples appear in [62]. However, we restrict attention to the

ansatz (2.5), which we view as giving an uplift of the usual external Killing spinors to higher-dimensions,

and this is what we will refer to as a generic supersymmetric background in this paper.
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dimensions and to type II. As in [63], it will be very useful to rewrite the system (2.4) in

the equivalent form

∇mǫ̂−
1

2
(∂m∆)ǫ̂−

1

2
(∂n∆)γm

nǫ̂−
1

4

1

3!
Fmnpqγ

npq ǫ̂−
1

4

1

6!
F̃mn1...n6

γn1...n6 ǫ̂ = 0,

1

12

1

4!
Fm1...m4

γm1...m4ǫ+
1

6

1

7!
F̃m1...m7

γm1...m7 ǫ̂+
1

2
(∂m∆)γmǫ̂ = 0.

(2.6)

Defining the usual rescaled supersymmetry generator (cf. [7, 63])

ǫ = e−∆/2ǫ̂, (2.7)

we observe that the first of equations (2.6) has the form

∇̃mǫ = ∇mǫ−
1

4

1

3!
Fmnpqγ

npqǫ−
1

4

1

6!
F̃mn1...n6

γn1...n6ǫ = 0, (2.8)

where ∇̃ is an SU(8) connection. This provides the extremely useful result that given

any two Killing spinors ǫi and ǫj , the rescaled complex inner product is constant over the

seven-dimensional space

∂m(ǫi
†ǫj) = ∇̃m(ǫi

†ǫj) = 0. (2.9)

Therefore, we can always find a basis for the space of Killing spinor fields which is or-

thonormal, i.e.

ǫi
†ǫj = δij . (2.10)

The exact same will hold for type II, and for d < 7 one just obtains the relevant truncated

version of (2.8), which will give a connection on a smaller, but still norm-preserving, group

(precisely the same local groups we encounter in generalised geometry), so this proof works

universally for Minkowski backgrounds.

Finally, we can use an identical argument to that presented in [46] to deduce that, for

any spinor ζ and Killing vector v, the supersymmetry operators (2.4) obey

Lv (Dmζ) = Dm (Lvζ) ,

Lv (Dζ) = D (Lvζ) .
(2.11)

In particular, given a Killing spinor ǫ and a Killing vector of the flux background v, we

have that the Lie derivative Lvǫ is another Killing spinor. This means that given the above

basis of Killing spinors we can introduce constant coefficients Xi
j associated to a given

Killing vector v such that

Lvǫi = Xi
jǫj . (2.12)

As ivd∆ = 0, we can make an identical statement for the rescaled spinors ǫ̂i. Thus, the

Killing spinors form a representation of the isometry algebra of the background.

3 Generalised geometry preliminaries

In this section we will introduce some additional tools from generalised geometry that were

not covered in [35] but which we will need to establish our results. For an introduction to

Ed(d)×R
+ generalised geometry and the notation that will follow, please see [6, 7].
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d H̃d S J

7 SU(8) 8 56

6 USp(8) 8 48

5 USp(4)×USp(4) (4,1) + (1,4) (4,5) + (5,4)

4 USp(4) 4 16

Table 1. Double covers of the maximal compact subgroups of Ed(d) ×R
+ and the representations

of the bundles S and J corresponding to spinors and vector-spinors respectively in Spin(d). Note

that USp(2n) denotes the compact symplectic group of rank n.

3.1 Generalised Killing vectors

Recall that the supergravity fields (g,A, Ã,∆) form a generalised metric G, that is a

positive-definite inner-product on the Ed(d)×R
+ generalised tangent bundle E. We thus

have a reduction of the structure group to H̃d , the maximal compact subgroup of Ed(d)

(or rather its double-cover since we will assume our base manifold M is spin), see table 1.

This means that from the generalised frame bundle F̃ for E, which is an Ed(d)×R
+ prin-

cipal bundle, we can pick out a subbundle P ⊂ F̃ , the H̃d bundle corresponding to the

generalised vielbeins for the metric G. We have also that the Ed(d)×R
+ adjoint bundle

ad F̃ ⊂ E ⊗ E∗ may be decomposed orthogonally

ad F̃ = adP ⊕ adP⊥, (3.1)

such that adP⊥ is also an H̃d bundle.

Following [52], a generalised vector field V ∈ Γ(E) is called a generalised Killing vector

(GKV) if it preserves the generalised metric

LV G = 0, (3.2)

where LV is the Dorfman derivative, also known as the generalised Lie derivative, along

V . This definition was introduced in [52] in the context of O(d, d) generalised geometry,

but has subsequently been used for other cases in e.g. [39, 41, 64]. Physically, it means

that the generalised vector generates an infinitesimal generalised diffeomorphism (that

is, a combined diffeomorphism and gauge transformation) which leaves the background

invariant. Writing the Dorfman derivative in the form [6]

LV G = ∂V G− (∂ ×ad F̃ V ) ·G, (3.3)

where × denotes the projection of the tensor product to the indicated subspace, it imme-

diately follows for a GKV V

LV G = L
(D)
V G = DV G− (D ×ad F̃ V ) ·G = −(D ×adP⊥ V ) ·G = 0. (3.4)

– 8 –
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Here D is any torsion-free H̃d compatible generalised connection, i.e. a generalised Levi-

Civita connection. Thus we deduce that (3.2) is equivalent to3

D ×adP⊥ V = 0. (3.5)

This is the generalised geometry analogue of the familiar statement that ∇(mvn) = 0 for

an ordinary Killing vector.

As in [52], and focusing on the d = 7 case for concreteness where

E ∼= TM ⊕ Λ2T ∗M ⊕ Λ5T ∗M ⊕ (T ∗M ⊗ Λ7T ∗M),

V = v + ω + σ + τ,
(3.6)

one can easily find that the condition for V to be a GKV can be written in a coordinate

basis as

Lvg = Lv∆ = 0, LvA = dω, LvÃ = dσ +
1

2
A ∧ dω, (3.7)

the last two conditions implying that the fluxes are preserved LvF = LvF̃ = 0. Thus, the

vector component v ∈ Γ(TM) is a Killing vector of the background in the sense of [46], i.e.

it is a Killing vector which in addition preserves the fluxes.

More useful for our purposes will be the corresponding statement for the components

written in what was called in [6] a non-conformal split frame.

One way to think of such frames is in contrast with the conformal split frames. The

H̃7 = SU(8) generalised metric defines a set of special frames for E, the analogue of

orthogonal frames in Riemannian geometry. A special class of these are the conformal split

frames, which are explicitly constructed in terms of the supergravity fields, and have the

generic form

Êa = e∆
(

êa + iêaA+ iêaÃ+
1

2
A ∧ iêaA

+ jA ∧ iêaÃ+
1

6
jA ∧A ∧ iêaA

)

,

Êab = e∆
(

eab +A ∧ eab − jÃ ∧ eab +
1

2
jA ∧A ∧ eab

)

,

Êa1...a5 = e∆ (ea1...a5 + jA ∧ ea1...a5) ,

Êa,a1...a7 = e∆ea,a1...a7 ,

(3.8)

where the êa are orthonormal frames for TM with respect to the Riemannian metric g and

ea the dual frames for T ∗M . Much as Lorentzian frames are used to introduce fermions in

General Relativity, SU(8) frames allow us to use SU(8) spinors in E7(7) × R
+ generalised

geometry. The conformal split frames are the SU(8) frames which we can most easily relate

to the usual supergravity objects and so most equations we will be writing in the following

are naturally expressed in these frames.

3One might be concerned that there is an ambiguity in the l.h.s. since there exists a family of generalised

Levi-Civita connections for a given generalised metric. However, (3.4) makes it clear that it is independent

of the particular choice of D.
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However, note that the “vector” component of a generalised vector in such a frame does

not coincide the actual vectors we usually deal with in supergravity, as it comes multiplied

with the warp factor (this is also the reason why the rescaled spinor in (2.7) is the natural

object in generalised geometry). To obtain genuine vectors, one should instead work on

a non-conformal split frame, related to the previous ones by an R
+ transformation and

taking the form

Ê′
a =

(

êa + iêaA+ iêaÃ+
1

2
A ∧ iêaA

+ jA ∧ iêaÃ+
1

6
jA ∧A ∧ iêaA

)

,

Ê′ab =

(

eab +A ∧ eab − jÃ ∧ eab +
1

2
jA ∧A ∧ eab

)

,

Ê′a1...a5 = (ea1...a5 + jA ∧ ea1...a5) ,

Ê′a,a1...a7 = ea,a1...a7 .

(3.9)

These are, in a sense, frames for a “conformally-rescaled” generalised metric, since they

satisfy G(Ê′
A, Ê

′
B) = e−2∆δAB. In such a frame one finds that a generalised Killing vector

obeys the relations

Lvg = Lv∆ = 0, dω = ivF, dσ = ivF̃ − ω ∧ F, (3.10)

from which we can calculate the components of the Dorfman derivative and obtain the

elegant result (this has also recently been noted in [39, 42])

LV V
′ = LvV

′. (3.11)

The Dorfman derivative by a GKV thus reduces to the ordinary Lie derivative in the

non-conformal split frame. The conditions (3.10) on the GKV are exactly such that the

additional parts of the Dorfman derivative are cancelled by the flux terms which arise from

the twisting of the generalised tangent space.

3.2 The Kosmann-Dorfman derivative

In [45] Kosmann introduced a notion of Lie derivative of a spinor by a general vector field

L
K

v ǫ = ∇vǫ+
1

4
(∇[avb])γ

abǫ. (3.12)

There exists a straightforward extension of this definition for generalised geometry. As

usual [7], we now think of Spin(d) spinors as sections of the H̃d bundle S (see table 1).

We define the Kosmann-Dorfman (KD) derivative of a spinor ǫ ∈ Γ(S) along a generalised

vector V ∈ Γ(E) by

L
KD

V ǫ = DV ǫ− (D ×adP V ) · ǫ, (3.13)

where D is any torsion-free H̃d compatible generalised connection and P is the H̃d principal

bundle.
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For concretness, let us work out explicitly in indices the form of the KD derivative in a

few different generalised geometries. For the original formulation, based on a TM ⊕ T ∗M

generalised tangent space with a local structure group Spin(d)×Spin(d), we use the notation

of [3] and find that for a generalised vector V A = (V a, V ā) and a spinor ǫ = (ǫ+, ǫ−) the

derivative reads

L
KD

V ǫ+ = V aDaǫ
+ + V āDāǫ

+ +
1

2
(DaVb)γ

abǫ+,

L
KD

V ǫ− = V aDaǫ
− + V āDāǫ

− +
1

2
(DāVb̄)γ

āb̄ǫ−.

(3.14)

For E7(7) × R
+ generalised geometry, which is the case we will be mostly focused on

in the following sections, we have an H̃7 = SU(8) expression, and for a generalised vector

V = (V αα′

, V̄αα′) we find,

L
KD

V ǫα =
1

32
(V γγ′

D̄γγ′ + V̄γγ′Dγγ′

)ǫα

−
1

16

[

(

D̄βγV
αγ −Dαγ V̄βγ

)

−
1

8
δαβ

(

D̄γγ′V γγ′

−Dγγ′

V̄γγ′

)

]

ǫβ . (3.15)

Here, and throughout this paper, we are using the SU(8) index conventions of [7, 64].

Similar expressions can be found for the lower rank exceptional geometries. For

E6(6) × R
+, H̃6 = USp(8) and the generalised vector V = (V [αβ]) transforming in the

27 representation we have

L
KD

V ǫα =
1

2
V γγ′

Dγγ′ǫα + (DαγVβγ +Dβ
γV α

γ)ǫ
β . (3.16)

Similarly, the generalised vector of E5(5)×R
+ generalised geometry transforms in the (4,4)

representation of the compact subgroup H̃5 = Spin(5)× Spin(5) and we have

L
KD

V ǫ+α = V βγ̄Dβγ̄ǫ
+α −

1

2
(Dα

γ̄Vβ
γ̄ +Dβγ̄V

αγ̄)ǫ+β ,

L
KD

V ǫ−ᾱ = V βγ̄Dβγ̄ǫ
−ᾱ −

1

2
(Dγ

ᾱV γ
β̄ +Dγβ̄V

γᾱ)ǫ−β̄ .

(3.17)

Finally, in E4(4) ×R
+ generalised geometry [7], with H̃4 = Spin(5) and along a generalised

vector V ab = V [ab], the bracket reads

L
KD

V ǫ = V abDabǫ+
1

2
(DacVb

c)γabǫ. (3.18)

This derivative clearly has a natural action on arbitrary generalised H̃d tensors as

well. However, analogously to the usual Kosmann derivative, the closure of this bracket

only holds for generalised Killing vectors, i.e.
[

L
KD

V , L
KD

W

]

ǫ = L
KD

L
KD

V
W
ǫ ⇐⇒ LV G = LWG = 0. (3.19)

Note that, as mentioned before, a generalised Killing vector field V satisfies (3.5), and

therefore the Dorfman derivative (which acts on Ed(d)×R
+ tensors, which we now think

of as H̃d tensors) along a GKV coincides with the KD derivative

LV = DV − (D ×ad F̃ V )· = DV − (D ×adP V )· = L
KD

V . (3.20)
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We also find, similarly to (3.11), that on a non-conformal split frame a GKV satisfies the

relation

L
KD

V ǫ = L
K

v ǫ, (3.21)

where L
K

v ǫ is the ordinary spinor Kosmann-Lie derivative. We provide some details on the

derivation of this extremely useful lemma in appendix A.

4 The Killing superalgebra in generalised geometry

We will now derive the result that the Killing spinors of the internal space of generic

Minkowski backgrounds generate an algebra, using the tools of generalised geometry. As

usual, we work in d = 7 but all the computations are straightforward to reproduce in other

dimensions, see [6, 7].

4.1 An internal sector of the algebra in generalised geometry

In E7(7) × R
+ generalised geometry, the rescaled seven-dimensional complex spinor fields

ǫ defined in (2.7) are promoted to sections of a generalised spin bundle S transforming

in the 8 representation of the enlarged local symmetry group SU(8). Using a torsion-free

SU(8) compatible generalised connection D, it was shown in [7, 35] that the Killing spinor

equations (2.4) could be rewritten in generalised geometry language as the projections of

the generalised derivative of the spinor

(D ×J ǫ)[αβγ] = D[αβǫγ] = 0,

(D ×S ǫ)α = −Dαβǫ
β = 0.

(4.1)

where J in d = 7 corresponds to the 56 representation, see table 1.

We can then, for instance, re-write the relation (2.11) for a spinor ζ ∈ Γ(S). Recall

that this projected derivative D ×S⊕J ζ for a torsion-free metric-compatible connection is

such that it is uniquely determined by the supergravity fields, or to use a more generalised

geometry terminology, it depends only on the generalised metric G. As such, the action of

the KD derivative along a GKV will necessarily commute with it, i.e. given a V ∈ Γ(E)

such that L
KD

V G = 0, we have the H̃d -covariant formula

L
KD

V (D ×S⊕J ζ) = D ×S⊕J

(

L
KD

V ζ
)

. (4.2)

One can double-check this by going to a non-conformal split frame, in which, thanks to the

lemma (3.21), the KD bracket reduces to the Lie bracket and we recover precisely (2.11).

Considering the basis of orthonormal Killing spinors ǫi with i = 1, . . . ,N introduced

in (2.10), we can easily construct a set of complex generalised vectors Vij and W ij as

(Vij)
αβ = ǫ

[α
i ǫ

β]
j , (Vij)αβ = 0,

(W ij)αβ = 0, (W ij)αβ = ǭi[αǭ
j
β].

(4.3)

Note that the SU(8) indices are defined with respect to the conformal split frame, so that

when we examine the vector part vij of Vij in the coordinate basis, we find

(vij)
m ∼ ǫ̂ciγ

mǫ̂j , (4.4)
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which would be the natural spinor bilinear from the supergravity perspective.

It is easy to see that the Vij and W ij are generalised Killing vectors. From (4.1), we

can immediately observe that the components of D ×adP⊥ Vij vanish

D[αβ(ǫγi ǫ
δ]
j ) = 0, Dαβ(ǫ

[α
i ǫ

β]
j ) = 0, (4.5)

and similarly for W ij . Thus from (3.5), Vij and W ij are GKVs. Now, from (4.2) we have

that the KD derivative of a Killing spinor by a GKV is itself a Killing spinor, so we can

introduce constant coefficients Xijk
l such that

L
KD

Vij
ǫk = Xijk

lǫl, (4.6)

and similarly for W ij .

We will now use the explicit form of the KD derivative to show that supersymmetry

implies that the constant coefficients Xijk
l must vanish. As we saw earlier, the expression

for the KD derivative (3.13) of a spinor by a generalised vector reads

L
KD

V ǫα =
1

32
(V γγ′

D̄γγ′ + V̄γγ′Dγγ′

)ǫα

−
1

16

[

(

D̄βγV
αγ −Dαγ V̄βγ

)

−
1

8
δαβ

(

D̄γγ′V γγ′

−Dγγ′

V̄γγ′

)

]

ǫβ . (4.7)

Substituting in (Vij)
αβ = ǫ

[α
i ǫ

β]
j , (V̄ij)αβ = 0 we find

L
KD

Vij
ǫαk =

1

32
ǫγi ǫ

γ′

j D̄γγ′ǫαk −
1

16
ǫβk

(

D̄βγǫ
[α
i ǫ

γ]
j

)

−
1

128
ǫαk

(

D̄γγ′ǫγi ǫ
γ′

j

)

=
1

32
ǫγi ǫ

γ′

j D̄γγ′ǫαk −
1

32
ǫβkǫ

γ
j D̄βγǫ

α
i −

1

32
ǫβkǫ

γ
i D̄βγǫ

α
j ,

where in the last equality we used repeatedly the Killing spinor equation Dαβǫ
β = 0. On

the other hand, for (W ij)αβ = 0, (W̄ ij)αβ = ǭi[αǭ
j
β] we obtain

L
KD

Wij
ǫαk =

1

32
ǭiγ ǭ

j
γ′D

γγ′

ǫαk +
1

16
ǫβk

(

Dαγ ǭi[β ǭ
j
γ]

)

+
1

128
ǫαk

(

Dγγ′

ǭiγ ǭ
j
γ′

)

= −
1

32
ǭiγ ǭ

j
γ′D

αγǫγ
′

k −
1

32
ǭiγ ǭ

j
γ′D

γ′αǫγk +
1

32
ǫβk ǭ

j
γD

αγ ǭiβ −
1

32
ǫβk ǭ

i
γD

αγ ǭjβ

= −
1

32
ǭiγ

(

Dαγ ǭjγ′ǫ
γ′

k

)

−
1

32
ǭjγ′

(

Dγ′αǭiγǫ
γ
k

)

= 0,

where we first used both of the supersymmetry conditions (4.1) and then finally the or-

thonormality of the basis ǫi. We therefore conclude

(L
KD

Vij
ǫk)

α =
3

32
ǫγ[iǫ

γ′

j (D̄|γγ′|ǫ
α
k]), L

KD

W ij ǫk = 0. (4.8)

Note that the r.h.s. of the first of these equations would be automatically vanishing for

N ≤ 2 by anti-symmetry. However, again using that we have an orthonormal basis, we

can write

Xijk
l = ǭlα(L

KD

Vij
ǫk)

α = −
3

32
ǫγ[iǫ

γ′

j ǫαk](D̄γγ′ ǭlα) = −
3

32
ǫα[iǫ

β
j ǫ

γ
k](D̄[αβ ǭ

l
γ]) = 0, (4.9)

using the complex conjugate of the first supersymmetry condition in (4.1). We have now

arrived at a key result: the coefficients Xijk
l vanish and we have

L
KD

Vij
ǫk = 0, L

KD

W ij ǫk = 0. (4.10)
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4.2 The Killing superalgebra

Putting all of this together, we arrive at an algebra very much like the eleven-dimensional

Killing superalgebra, but in the internal sector of the dimensional split. If we define g0 as

the space of generalised Killing vectors and g1 the space of Killing spinors, we have that

g0 ⊕ g1 equipped with the Kosmann-Dorfman bracket forms an algebra. We have that the

Dorfman bracket on g0 × g0 → g0 gives an algebra by itself since it satisfies Jacobi and

is Leibniz, so in particular the Dorfman derivative of a GKV is itself a GKV. The map

g1 × g1 → g0 is simply (4.3) thanks to (4.5). The map g0 × g1 → g1 is the Kosmann-

Dorfman bracket since it satisfies (4.2) and the Jacobi identity for [g0, g0, g1] is ensured

by (3.19). Finally, we have just computed (4.10), which means that the remaining Jacobi

identity [g1, g1, g1] is satisfied trivially.

Looking just at the ideal [g1, g1] ⊕ g1, we can also calculate the Dorfman derivative

algebra of the generalised vectors Vij and W ij . Using the Leibniz property of the Dorfman

derivative we find
LVij

Vkl = 0, LW ijVkl = 0,

LVij
W kl = 0, LW ijW kl = 0,

(4.11)

so we have the particularly simple subalgebra generated by just the Killing spinors

[ǫi, ǫj ] = Vij , [ǭi, ǭj ] = W ij ,

[Vij , ǫk] = L
KD

Vij
ǫk = 0, [W ij , ǫk] = L

KD

W ij ǫk = 0,

[Vij , ǭ
k] = L

KD

Vij
ǭk = 0, [W ij , ǭk] = L

KD

W ij ǭ
k = 0,

[Vii′ , Vjj′ ] = LVii′
Vjj′ = 0, [W ii′ ,W jj′ ] = LW ii′W

jj′ = 0,

[Vii′ ,W
jj′ ] = LVii′

W jj′ = 0.

(4.12)

Note that all the brackets here are naturally anti-symmetric so that we have found a Lie

algebra rather than a Lie superalgebra.

4.3 Eleven-dimensional interpretation

Let us now briefly consider the implications of (4.12) for the eleven-dimensional Killing

superalgebra of such backgrounds. Equation (2.5) should strictly be viewed as giving N

different embeddings of the constant four-dimensional Majorana spinors η (i.e. the Killing

spinors of Minkowski space) into the eleven-dimensional Killing spinors. Specifically, each

internal Killing spinor ǫ̂i in the basis provides us with a linear map

εi : η 7−→ εi(η) = η+ ⊗ ǫ̂i + η− ⊗ (D̃ǫ̂i)
∗. (4.13)

Then the vector vij,η1η2 = v
(

εi(η1), εj(η2)
)

which is defined by the eleven-dimensional

spinors will satisfy, by (4.10),

Lvij,η1η2
εk,η3 = 0. (4.14)

We also have that vij,η1η2 is purely internal if i 6= j, with components

(vij,η1η2)
m = (ηT1+C̃η2+)(ǫ̂

c
iγ

mǫ̂j) + (c.c.), (4.15)
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while for i = j we have a purely external vector with4

(vii,η1η2)
µ = e−∆(ηT1+C̃γµη2−)(ǫ̂

†
i ǫ̂i)

∗ + (c.c.) = (ηT1 C̃γµη2). (4.16)

Adopting a notation pη1η2 = vii,η1η2 for i = j, while setting zij,η1η2 = vij,η1η2 for i 6= j, we

have that the Killing superalgebra generated by the Killing spinors εi,η is then given by

[εi,η1 , εj,η2} = vij,η1η2 = δijpη1η2 + zij,η1η2 ,

[vij,η1η2 , εk,η3} = 0,

[vij,η1η2 , vkl,η3η4} = 0.

(4.17)

This is the supertranslational part of the N -extended super-Poincaré algebra with central

charges given by the internal vectors zij,η1η2 , which generate isometries of the internal

background.

One can view these formulae as giving an uplift of the N -extended super-Poincaré

algebra on the external Minkowski space into the eleven-dimensional theory. Working in

the Weyl basis for the four-dimensional external space gamma matrices, we can introduce

a canonical basis of Weyl spinors η1 = (1, 0), η2 = (0, 1) (along with the conjugates

η̄1̇ = (1, 0), η̄2̇ = (0, 1)) to define

Qi,α = ηα ⊗ ǫ̂i, Q̄i
α̇ = η̄α̇ ⊗ ǫ̂ci , (4.18)

and write, for example,

zij,η1η2 = zijǫαβη
α
1+η

β
2+ + z̄ijǫα̇β̇η

α̇
1−η

β̇
2−, (4.19)

where zmij = ǫ̂ciγ
mǫ̂j and we are using the usual SL(2,C) Weyl-spinor index notation. We

then have also εi,η = Qi,αη
α
++ Q̄i

α̇η−α̇ and find that the first line of (4.17) takes the familiar

form

[Qi,α, Q̄j,β̇} = δij(σ
µ)αβ̇

∂

∂xµ
,

[Qi,α, Qj,β} = ǫαβzij ,

[Q̄i,α̇, Q̄j,β̇} = ǫα̇β̇ z̄ij ,

(4.20)

and we also have
[zij , zkl} = [zij , Qk,α} = [zijQ̄k,α̇} = 0,

[z̄ij , z̄kl} = [z̄ij , Qk,α} = [z̄ij , Q̄k,α̇} = 0.
(4.21)

5 Generalised holonomy for supersymmetric backgrounds

In [35] two crucial results were established. First, that the existence of N independent

spinor fields on the internal space M defines a reduction of the structure group on the

generalised tangent bundle to the groups GN listed on table 2. Secondly, and more re-

markably, it was proven that for N = 1 the generalised intrinsic torsion of these structures

vanishes if and only if the spinor satisfies the Killing spinor equations. Such backgrounds

were dubbed generalised special holonomy spaces, in analogy to the usual special holonomy

manifolds which arise in fluxless supersymmetric compactifications.

4Note that Γµ with an eleven-dimensional coordinate index includes a factor of e−∆.
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d H̃d GN

7 SU(8) SU(8−N )

6 USp(8) USp(8− 2N )

5 USp(4)×USp(4) USp(4− 2N+)×USp(4− 2N−)

4 USp(4) USp(4− 2N )

Table 2. Generalised structure subgroups GN ⊂ H̃d preserving N supersymmetry in (11 − d)-

dimensional Minkowski backgrounds. Note that for d = 5 we have six-dimensional supergravity

with (N+,N−) supersymmetry.

In the following, we will show that precisely the same statement can be made for

backgrounds with more supersymmetry, that is we can conclude that

The internal spaces of supersymmetric Minkowski backgrounds are precisely the

spaces of generalised GN special holonomy.

We remark that (for Euclidean signature) these spaces are automatically generalised Ricci-

flat, or in supergravity language, they solve the equations of motion, by the argument

of [35].

The methods we will use can be reproduced in any dimension d < 8, though for

concreteness we will work only on the case of a four-dimensional external Minkowski space,

that is with d = 7 and for which the Killing spinors ǫi define a global SU(8−N ) structure

on the generalised tangent space. The task is to show that this SU(8 − N ) structure has

vanishing intrinsic torsion, or equivalently that there exists a torsion-free generalised spin

connection D̂ with respect to which the ǫi are parallel

D̂ǫi = 0. (5.1)

In the following, for the sake of readability we will use a slight abuse of notation in

which we identify bundles with their corresponding representations.

5.1 Generalised intrinsic torsion for GN structures

Let D and D̂ be any two generalised spin connections. In d = 7 these are SU(8) compatible

connections. The difference between the two defines a tensor Σ̂ = D̂ −D taking values in

the bundle KSU(8) := E∗ ⊗ adPSU(8). In spinor indices, these are given by

Σ̂ = (Σ̂αβ
γ
δ,
¯̂
Σαβγ

δ) ∈ (28+ 2̄8)× 63 = KSU(8), (5.2)

where the elements are antisymmetric on α and β and traceless on contracting γ with δ.

Denoting the generalised torsion of D by T (D), we can define a map τ between the

space of connections KSU(8) and the space of torsions W

τ : KSU(8) → W,

Σ̂ 7→ T (D̂)− T (D).
(5.3)
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Up to overall normalisations, this map is given by [7, 35]

τ(Σ̂)αβ = Σ̂αγ
γ
β , ∈ 28+ 36,

τ(Σ̂)αβγ
δ = Σ̂0

[αβ
δ
γ] = Σ̂[αβ

δ
γ] +

1

3
Σ̂[α|ǫ|

ǫ
βδ

δ
γ], ∈ 420,

(5.4)

where the “0” superscript on Σ̂0
[αβ

δ
γ] means it is completely traceless and there are similar

expressions for the conjugate representations in terms of
¯̂
Σ.

We now assume we have N independent spinors defining a GN = SU(8 − N ) struc-

ture PGN
on the generalised tangent bundle. We can then decompose the SU(8) torsion

representations under GN , and these are listed in appendix B.1.

A tensor Σ defined by connections which we require to be compatible with PGN
will be

an element of a restricted subspace KGN
:= E∗ ⊗ adPGN

⊂ KSU(8). If we split the spinor

indices α into a = 1, . . . , 8−N and i = 1, . . . ,N we find that its non-zero components are

Σab
c
d,

Σai
c
d = −Σia

c
d,

Σij
c
d,

(5.5)

and similarly for the conjugate Σ̄. The corresponding GN representations are listed in

appendix B.2.

Now, a quick examination of the representations listed in the appendices reveals that

there are those that appear in the decomposition of the torsion space W but not in that of

KGN
. This means that the image of the restricted map τ |KGN

:= τGN
does not fill out the

entire torsion space. Denoting this image Im τGN
:= WGN

, we can therefore define another

bundle, the space of generalised intrinsic torsions

Wint =
W

WGN

. (5.6)

The representations which make up Wint are listed in appendix B.3. The torsion of any

GN compatible D naturally projects onto Wint — this is the generalised intrinsic torsion

Tint := T (D)|Wint
which, by construction, is independent of Σ and thus is common to all GN

connections. A non-zero Tint measures the obstruction to finding a torsion-free generalised

connection which preserves the GN structure.

We can find this projection explicitly in indices (see appendix C.1 for a more detailed

derivation). Applying the τ map to Σ, we obtain that the following (reducible) components

are unconstrained

τ(Σ)ab = Σac
c
b, τ(Σ)ia = Σic

c
a,

τ(Σ)abc
d = Σ[ab

d
c] +

1

3
Σ[a|e|

e
bδ

d
c], τ(Σ)abi

c =
2

3
Σi[a

c
b] +

2

9
Σie

e
[aδ

c
b],

τ(Σ)ija
b =

1

3
Σij

b
a,

(5.7)
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which therefore give the image of τGN
, while the remaining combinations of components

are fixed whatever the choice of compatible Σ

τ(Σ)ij = 0, τ(Σ)ai = 0,

τ(Σ)abc
i = 0, τ(Σ)abi

j =
1

9
Σ[a|e|

e
b]δ

i
j =

1

9
τ(Σ)[ab]δ

i
j ,

τ(Σ)ijk
l = 0, τ(Σ)aij

k = −
1

9
Σ[i|e

e
a|δ

k
j] = −

1

9
τ(Σ)[i|a|δ

k
j],

τ(Σ)ijk
a = 0,

(5.8)

and thus give, together with their conjugates, the projections to the intrinsic torsion rep-

resentations — no matter our choice of Σ, the torsion of any connection lying in those

components cannot be shifted. Note however that many of these terms include anti-

symmetrisations and so vanish identically for certain values of N . A little more work

is required if one wishes to rephrase these constraints in terms of genuine SU(8−N ) irreps,

this is done explicitly in appendix C.2.

5.2 Generalised special holonomy and N supersymmetry

We will now show that the supersymmetry conditions imply precisely that the intrinsic

torsion of the GN structure we have just described must vanish. In SU(8) indices, we have

that the set of N Killing spinor equations for N spinors ǫi read

D ×J ǫi = D[αβǫ
γ]
i = 0, D ×S ǫi = D̄αβǫ

β
i = 0, (5.9)

together with their complex conjugates, and where D is any torsion-free SU(8) connection.

The difference between D and a compatible GN connection D̂

D̂ = D + Σ̂, (5.10)

defines a Σ̂ ∈ Γ(KSU(8)). Since D is torsion-free we have the torsion of the GN connection

T (D̂) = τ(Σ̂), (5.11)

in terms of the τ map defined in (5.3).

Before proceeding further we must address an important subtlety — if we were given

a generic set of independent spinors ζi stabilised by GN , we would not necessarily have

that D̂ζi = 0. For example, while any generic non-vanishing spinor ζ defines an SU(7)

structure, if its norm is non-constant we find that D̂ζ =
(

∂ log ||ζ||
)

ζ. Fortunately, we

showed in (2.10) that the Killing spinors ǫi can be taken to be orthonormal without loss of

generality, so indeed we have that D̂ǫi = 0.

In particular the projections D̂ ×J ǫi and D̂ ×S ǫi both vanish. Thus we have

Σ̂×J ǫi = 0, Σ̂×S ǫi = 0. (5.12)

Decomposing, we have that in indices these read

Σ̂[ab
i
c] = 0, Σ̂[ja

i
b] = 0,

Σ̂[jk
i
a] = 0, Σ̂[ij

l
k] = 0,

Σ̂ab
b
i = 0, Σ̂ia

a
j = 0,

(5.13)
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together with their complex conjugates, with the rest of Σ̂ left a priori unconstrained. Now

we compare with the torsion map (5.4) and we recognise that these projections coincide

with some of its components

Σ̂ab
b
i = τ(Σ̂)ai = 0, Σ̂ia

a
j = τ(Σ̂)ij = 0, (5.14)

from the projection to S, and

Σ̂[ij
l
k] = τ(Σ̂)ijk

l −
1

3
τ(Σ̂)[ijδ

l
k] = 0, Σ̂[ia

j
b] = τ(Σ̂)abi

j −
1

9
τ(Σ̂)[ab]δ

i
j = 0,

Σ̂[ab
i
c] = τ(Σ̂)abc

i = 0, Σ̂[ij
k
a] =

(

τ(Σ̂)aij
k +

1

9
τ(Σ̂)[i|a|δ

k
j]

)

−
1

9
τ(Σ̂)a[iδ

k
j] = 0,

(5.15)

for the J projection. Altogether, these are nearly precisely the same constraints that we

computed as giving the intrinsic torsion in (5.8), with the single exception being τ(Σ̂)ijk
a

(and its conjugate) which may also contribute to the intrinsic torsion but which we are miss-

ing in the Killing spinor equations. This corresponds to
(N
3

)

copies of the [8−N ] represen-

tation of SU(8−N ). Thus the Killing spinor equations are setting nearly all of the compo-

nents of the intrinsic torsion directly to zero. Note that, because of the anti-symmetrisation

in the i, j, k indices, this missing term vanishes identically for N < 3 and our proof is done

— all the intrinsic torsion vanishes and we have generalised special holonomy.5

To see that in a supersymmetric background τ(Σ̂)ijk
a still vanishes even for N ≥ 3, we

recover the results from section 4.1. We found that the internal part of the Killing super-

algebra can be expressed in terms of the Kosmann-Dorfman derivative, and in particular

we have that

L
KD

Vij
ǫk = 0, (5.16)

is satisfied for the GKV (Vij)
αβ = ǫ

[α
i ǫ

β]
j , (V̄ij)αβ = 0 and where all spinors are Killing.

Evaluating this for the torsion-free SU(8) connection

D = D̂ − Σ̂, (5.17)

and keeping in mind that D̂ǫi = 0, we obtain from (4.8) that this expression is proportional

precisely to our missing intrinsic torsion term

(L
KD

Vij
ǫk)

a =
3

32
Σ̂[ij

a
k] = 0 ⇒ τ(Σ̂)ijk

a = 0. (5.18)

In particular, we observe that the vanishing of this component of the intrinsic torsion is

simply equivalent to the algebra closure condition that the KD derivative of a Killing spinor

is again a Killing spinor.

5Note also that the same holds for N = 8, in this case because any term with an a index vanishes

identically. This proves that maximally supersymmetric backgrounds correspond to identity structures, i.e.

generalised parallelisations [13], which are torsion-free. These are necessarily flat with vanishing fluxes.
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We conclude that for any supersymmetric background the entire generalised intrinsic

torsion must vanish. We can therefore find a GN compatible D̂ which is torsion-free if the

supersymmetry equations (5.9) hold.

Since, conversely, if the generalised intrinsic torsion is zero, the Killing spinor equations

are satisfied trivially, we have a precise equivalence between supersymmetric backgrounds

and generalised GN special holonomy spaces. Indeed, we have found an isomorphism

Wint ≃ N × (S ⊕ J)⊕
(N
3

)

× V ⊕ c.c., (5.19)

where V is the bundle associated to the [8−N ] representation and which is constrained

by (L
KD

Vij
ǫk)

a.

We stress again that while we have focused on the d = 7 case, the exact same proof

holds in lower dimensions as well, with the structure groups listed in table 2.

6 Discussion and outlook

We have finally been able to answer the question of whether generic supersymmetric back-

grounds may be described purely in terms of geometric integrability conditions. Indeed,

they are exactly torsion-free structures on the generalised tangent bundle. We have shown

that at each level N of preserved supersymmetry, there exists a single generalised GN

structure with vanishing intrinsic torsion and, conversely, every space admitting a torsion-

free GN structure is a solution of N independent Killing spinor equations. (However, even

though generalised special holonomy guarantees that equations of motion are solved since

these spaces are necessarily generalised Ricci-flat, it is important to keep in mind that in

order to actually build genuine global Minkowski compactifications, it will still be necessary

to address the no-go theorems [55–58].)

We have also introduced a new tool to generalised geometry, the Kosmann-Dorfman

derivative, which might prove useful in further applications of the formalism. In particular,

it allowed us to give a description of the Killing superalgebra that arises in the internal

space of supersymmetric backgrounds. Clearly, all the crucial closure and Jacobi properties

of this algebra become trivial once it is shown that these spaces have generalised special

holonomy — just as the usual special holonomy manifolds trivially satisfy the requirements

for a fluxless Killing superalgebra. It nonetheless revealed the perhaps underappreciated

fact that even in the presence of fluxes the internal spaces of supersymmetric Minkowski

compactifications admit a large number of commuting isometries which preserve the Killing

spinors. Of course, we have not shown that these are generally independent or even non-

vanishing. In order to determine the precise number of geometric isometries arising in this

way, one would have to examine the vector components of the Killing spinor bilinears, which

can be done only by analysing the possible orbits of multiple spinors at Spin(d) ⊂ H̃d level.

However, this could provide very strong constraints on N ≥ 3 solutions, and may explain

why so few examples are known.6 Note that, in fact, for N ≥ 5 this analysis has effectively

already been done in [48], which proves that all such solutions are homogeneous, so that

the warp-factor equation of motion implies that all fluxes vanish and the geometry is flat.

6A rare example of an N = 3 Minkowski compactification was given in [65].
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Another observation made apparent by these commutation relations is that the eleven-

dimensional Killing superalgebra of such backgrounds is always the supertranslational part

of the usual N -extended super-Poincaré algebra. This result could have been arrived at by

algebraic means if one is willing to make some physical assumptions [66, 67], however, we

have shown that it follows purely by geometrical means starting from eleven-dimensional

supergravity. Also, in this construction the central charges gain a neat realisation as

the commuting generalised Killing vectors on the internal space. One would expect that

the algebra of these would give some parts of the embedding tensor [68, 69] of consistent

truncations of eleven-dimensional supergravity which include such Minkowski backgrounds.

Our results would therefore seem to give constraints on possible embedding tensors.

On the way to our main conclusions we made use of the lemma that, in the non-

conformal split frame, the (Kosmann-)Dorfman derivative along a generalised Killing vec-

tor reduces to the Lie derivative along its vector part. This was previously noted and

used to show that the generalised Reeb vector gives rise to the R-charges of various ob-

jects in the constructions of [41–43]. This equality is extremely useful in proving relations

such as (3.19) and (4.2), as when written out in terms of ordinary geometry objects these

relations become transparent. However, it is much more difficult to establish these rela-

tions without using this decomposition (i.e. the anchor map). Working only in generalised

geometry objects with H̃d symmetry, one needs to do substantial manipulations to show

cancellations involving those combinations of second partial derivatives which vanish iden-

tically (see [6]). Even then, one needs to do further manipulations to show that certain

contributions of the fluxes to the torsion of the generalised connection also cancel appropri-

ately. This seems to require a quadratic constraint on the torsion much like the quadratic

constraint satisfied by the embedding tensor of gauged supergravity [68, 69]. These objects

transform in the same representation of the exceptional group and moreover at a point the

generalised torsion takes the same form as the embedding tensor of an ordinary Scherk-

Schwarz reduction with fluxes (see [13], appendix C). Therefore, one expects that they will

satisfy the same quadratic relation and that it is this which gives the cancellations required

for (3.19) and (4.2). Again, via the definition of the generalised torsion [6], these constraints

are linked back to the parabolic nature of the Dorfman bracket and its Leibniz property.

An important remark at this point is that, since the generalised Killing vector result-

ing from the bracket of two Killing spinors includes all the spinor bilinears, the Kosmann-

Dorfman derivative along such a generalised vector defines an action of these p-forms on

Killing spinors. Furthermore, we see that the action of such p-form bilinears should be

considered simultaneously in precisely the combination fixed by the H̃d -covariant form of

the bracket in order to obtain the correct KD algebraic structure. On the other hand, the

lemma (3.21) implies that in an appropriate frame this reduces to the action of just the

vector bilinear, as the Killing spinor equations force the terms involving p-form bilinears to

be related to the fluxes. It would therefore be interesting to relate this construction to the

difficulties raised in [53] regarding the extension of the brackets of the Killing superalgebra

to accommodate “supergravity Killing forms”. There such a bracket is given on a very re-

stricted set of spacetimes (more recent work on this has appeared in [54], though again work-

ing only on a special class of spacetimes). While the Kosmann-Dorfman bracket requires
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no such assumptions, it is defined only on the d < 8 dimensional internal space. It thus

remains an open question whether this construction can be extended to eleven-dimensions.

Having solved the problem of assigning a geometric integrability condition to fully

generic Minkowski backgrounds, it is natural to consider expanding these methods to other

supersymmetric backgrounds. In particular, it should be possible to extend the results

of [38] for N = 1 AdS to arbitrary amounts of preserved supersymmetry. There are some

minor technical complexities associated with AdS backgrounds which should require some

statements to be modified slightly, and we hope to investigate this further in the near future.

Another potential question concerns the possible definition of generalised holonomy

for the exceptional geometry relevant to massive type IIA supergravity [18]. There, the

generalised tangent space is isomorphic to that for massless type IIA and the generalised

GN structures would be the same for each level of supersymmetry. However, due to the

different bracket structure, the notion of integrability of these structures would be subtly

different. In fact there would be a one-parameter family of integrability conditions, vaguely

similar in nature to the weak holonomy conditions of [38]. It would therefore be interesting

to see how exactly this would work out. One could similarly investigate the situation in

the heterotic theory using the geometries of [14, 15].

Finally, one of the most compelling reasons to wish to rewrite the supersymmetry

conditions as torsion-free structures is the study of their moduli spaces. Already these

integrability results have enabled significant progress in this direction for the H- and V-

structures associated to eight supercharge vacua [39, 41, 43] (see also [70] for a generalised

geometric construction of moduli for the Strominger system in the heterotic case, building

on the earlier studies [71, 72]). One would expect that the integrability conditions we have

established here could be used to describe the moduli for general backgrounds with N ≥ 3

supersymmetry, for which the moduli space itself is fixed by supersymmetry (see e.g. [73]),

corroborating and extending the results of the earlier study [74].
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A Evaluation of the Kosmann-Dorfman derivative by a GKV

In this appendix we provide some details of the calculation which leads to the useful

lemma (3.21), which states that the Kosmann-Dorfman derivative of a spinor field by a
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GKV is equal to the ordinary Lie derivative of the spinor field along the vector part of the

GKV.

We study the seven-dimensional case, working under an SO(8) decomposition of SU(8)

(as in section 5 of [7]). However, this is sufficient to prove the result in general dimension,

as one could have done the same calculation in the dimension-independent formalism for

fermions (as in section 4 of [7]) and one must get the same answer.

Recall that, using SO(8) gamma matrices γ̂, one can express a torsion-free SU(8)

compatible connection in the form [7]

Dii′χ = D∇
ii′χ +

1

4
Σii′jj′ γ̂

jj′χ−
1

48
iΣii′k1...k4 γ̂

k1...k4χ,

D̃ii′χ = D̃∇
ii′χ+

1

4
Σ̃ii′jj′ γ̂

jj′χ−
1

48
iΣ̃ii′k1...k4 γ̂

k1...k4χ,

(A.1)

where, if one expresses the components of the generalised vector with respect to the con-

formal split frame,

Σii′jj′ = −
1

3
e∆δijK̃i′j′ +

1

42
e∆F̃ δijδi′j′ − δij∂i′j′∆+Qii′jj′ ,

Σ̃ii′jj′ =
1

3
e∆Kii′jj′ −

1

6
e∆Kjj′ii′ + Q̃ii′jj′ ,

Σi1...i6 = Qi1...i6 ,

Σ̃i1...i6 = Q̃i1...i6 .

(A.2)

Here, primed and unprimed indices are antisymmetrised implicitly and (Q, Q̃) are the parts

of the connection which are not determined by the condition that the connection be torsion-

free and compatible. The supergravity fluxes enter this expression as F̃ = 1
7!ǫ

a1...a7F̃a1...a7

and

Kii′jj′ =

{

(∗F )abc for (i, i,′ j, j′) = (a, b, c, 8)

0 otherwise
,

K̃ij =

{

F̃ for (i, j) = (8, 8)

0 otherwise
,

(A.3)

and the partial derivative and Levi-Civita connection are written with SO(8) indices as

∂a8 =
1

2
e∆∂a, ∂ab = 0, ∂̃ii′ = 0,

D∇
a8 =

1

2
e∆∇a, D∇

ab = 0, D̃∇ii′ = 0.

(A.4)

The relations we need between SO(8) and SU(8) indices are then

V αβ = i(γ̂ij)
αβ

(

V ij + iṼ ij
)

, Dαβ = i(γ̂ij)αβ
(

Dij + iD̃ij

)

,

V̄αβ = −i(γ̂ij)αβ
(

Vij − iṼij

)

, D̄αβ = −i(γ̂ij)αβ
(

Dij − iD̃ij
)

.
(A.5)

Now keeping in mind the very useful completeness relations

γ̂ijαβ γ̂ij
γδ = 16δγδαβ , γ̂ijαβ γ̂kl

αβ = 16δijkl,
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we are ready to substitute these expressions into the formula (4.7) for the Kosmann-

Dorfman derivative in SU(8) indices. An initial intermediate step reached is the SO(8)

form of the KD derivative

L
KD

V ǫ = (V ijDij + Ṽ ijD̃ij)ǫ+
1

2
(DikVj

k + D̃ikṼj
k)γ̂ijǫ+

i

8
(Dij Ṽkl − D̃ijVkl)γ

ijklǫ. (A.6)

We can then substitute in (A.1) and (A.2). Note that we can immediately disregard the

terms (Q, Q̃) from equation (A.2) as these will necessarily cancel out of the final answer

since the KD derivative depends only on torsion components. We obtain an expression in

terms of fluxes embedded in SO(8) representations. Decomposing under SO(7) with (A.3)

and (A.4), one arrives at

L
KD

V ǫ = e∆
(

va∇aǫ+
1

4
∇avbγ

abǫ+
1

4
(∂a∆) vbγ

abǫ

+
1

4

1

3!
[dω + d∆ ∧ ω − ivF ]abcγ

abcǫ

+
1

4

1

6!
[dσ + d∆ ∧ σ − ivF̃ + ω ∧ F ]a1...a6γ

a1...a6ǫ

)

.

(A.7)

The terms involving the fluxes F and F̃ cancel due to the GKV condition (3.10) (evaluated

in a conformal split frame) and one has simply

L
KD

V ǫ = e∆
(

va∇aǫ+
1

4
∇avbγ

abǫ+
1

4
(∂a∆) vbγ

abǫ

)

= Le∆v ǫ.

(A.8)

Here we recognise e∆v as the vector component of V in the non-conformal split frame, so we

have arrived at (3.21). Note that, since the KD bracket is Leibniz, and since when acting

on arbitrary generalised vectors along GKVs it matches the Dorfman derivative (3.20), we

have also just proven (3.11).

B Decompositions and tensor products

We list the representations associated to the generalised tensor bundles from section 5.1

and their decompositions under the reduced structure groups imposed by supersymmetry.

B.1 The torsion space W

In [6] it was shown that the generalised torsion T (D) of a generalised, metric-compatible

connection in E7(7) × R
+ generalised geometry takes values in a bundle W with fibres

transforming in the 28+ 36+ 420+ c.c. of SU(8).

These representations can then be decomposed under the reduced structure group

SU(8−N ) ⊂ SU(8) as follows

• N = 1, SU(7)

28+36+420+c.c. → (7+21)+ (1+7+28)+ (21+35+140+224)+c.c. (B.1)
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• N = 2, SU(6)

28+ 36+ 420+ c.c. → (1+ 2× 6+ 15) + (3× 1+ 2× 6+ 21) (B.2)

+ (2× 6+ 4× 15+ 2× 20+ 35+ 2× 84+ 105) + c.c.

• N = 3, SU(5)

28+ 36+ 420+ c.c. → (3× 1+ 3× 5+ 10) + (6× 1+ 3× 5+ 15) (B.3)

+ (3× 1+ 10× 5+ 12× 10+ 3× 24+ 40+ 3× 45) + c.c.

• N = 4, SU(4)

28+ 36+ 420+ c.c. → (6× 1+ 4× 4+ 6) + (10× 1+ 4× 4+ 10) (B.4)

+ (16× 1+ 32× 4+ 16× 6+ 10+ 6× 15+ 4× 20) + c.c.

• N = 5, SU(3)

28+ 36+ 420+ c.c. → (10× 1+ 6× 3) + (15× 1+ 5× 3+ 6)

+ (55× 1+ 85× 3+ 5× 6+ 10× 8) + c.c.
(B.5)

• N = 6, SU(2)

28+ 36+ 420+ c.c. → (16× 1+ 6× 2) + (21× 1+ 6× 2+ 3)

+ (155× 1+ 110× 2+ 15× 3) + c.c.
(B.6)

B.2 The space of compatible connections KSU(8−N )

The difference between any two SU(8−N ) compatible connections is given by an element of

KSU(8−N ) = E∗ ⊗ adPSU(8−N ). (B.7)

We list the corresponding SU(8 − N ) representations for these tensor products for each

value of N .

• N = 1, SU(7)

KSU(7) = (7+ 21)× 48+ c.c.

= 7+ 21+ 28+ 140+ 189+ 224+ 735+ c.c.
(B.8)

• N = 2, SU(6)

KSU(6) = (1+ 2× 6+ 15)× 35+ c.c.

= 2× 6+ 15+ 21+ 35+ 2× 84+ 105+ 2× 120+ 384+ c.c.
(B.9)

• N = 3, SU(5)

KSU(5) = (3× 1+ 3× 5+ 10)× 24+ c.c.

= 3× 5+ 10+ 15+ 3× 24+ 2× 45+ 4× 70+ 175+ c.c.
(B.10)
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• N = 4, SU(4)

KSU(4) = (6× 1+ 4× 4+ 6)× 15+ c.c.

= 4× 4+ 6+ 2× 10+ 6× 15+ 4× 20+ 4× 36+ 64+ c.c.
(B.11)

• N = 5, SU(3)

KSU(3) = (10× 1+ 5× 3+ 3̄)× 8+ c.c.

= 6× 3+ 6× 6+ 10× 8+ 6× 15+ c.c.
(B.12)

• N = 6, SU(2)

KSU(2) = (32× 1+ 12× 2)× 3 = 12× 2+ 32× 3+ 12× 4 (B.13)

B.3 The intrinsic torsion space Wint

Below, we list the SU(8 − N ) representations appearing in the intrinsic torsion of the

reduced structure PSU(8−N ) for N = 1, . . . , 6.

• N = 1, SU(7)

Wint(PSU(7)) = 1+ 7+ 21+ 35+ c.c. (B.14)

• N = 2, SU(6)

Wint(PSU(6)) = 4× 1+ 4× 6+ 4× 15+ 2× 20+ c.c.

= 2× [2× 1+ 2× 6+ 2× 15+ 20] + c.c.
(B.15)

• N = 3, SU(5)

Wint(PSU(5)) = 12× 1+ 13× 5+ 12× 10+ c.c.

= 3× [4× 1+ 4× 5+ 4× 10] +
(

3
3

)

× 5+ c.c.
(B.16)

• N = 4, SU(4)

Wint(PSU(4)) = 32× 1+ 36× 4+ 16× 6+ c.c.

= 4× [8× 1+ 8× 4+ 4× 6] +
(

4
3

)

× 4+ c.c.
(B.17)

• N = 5, SU(3)

Wint(PSU(3)) = 80× 1+ 90× 3+ c.c.

= 5× [16× 1+ 16× 3] +
(

5
3

)

× 3+ c.c.
(B.18)

• N = 6, SU(2)

Wint(PSU(2)) = 192× 1+ 116× 2+ c.c.

= 6× [32× 1+ 16× 2] +
(

6
3

)

× 2+ c.c.
(B.19)
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C Explicit calculation of the intrinsic torsion

In this appendix we explore in more detail the computation of the explicit projections

which give the generalised intrinsic torsion of an SU(8 − N ) generalised connection. We

present two different ways of obtaining the result.

C.1 Alternative computation in terms of reducible representations

Here we will give a modified version of the intrinsic torsion computation of section 5 which,

while still in terms of GN reducible objects, is perhaps the cleanest way to reproduce

the results in other dimensions for the interested reader. Note that all expressions in

this appendix should be understood to also be accompanied by their complex conjugates,

though for the sake of clarity we will not write them explicitly.

First, we define a map

τ̂ : KSU(8) → Ŵ = (28+ 36) + (28+ 420),

Σ̂ 7→ (τ̂αβ , τ̂αβ
γ
δ) = (Σ̂αγ

γ
β , Σ̂[αβ

γ
δ]),

(C.1)

and also the projection
p0 : Ŵ → 28,

(τ̂αβ , τ̂αβ
γ
δ) 7→

(

τ̂αβ
γ
γ +

2

3
τ̂[αβ]

)

,
(C.2)

which has Im τ̂ = ker p0 so that the following sequence is exact

KSU(8)
τ̂

−→ Ŵ
p0
−→ 28. (C.3)

Next we define
p1 : Ŵ → W,

(τ̂αβ , τ̂αβ
γ
δ) 7→

(

τ̂αβ , τ̂αβ
γ
δ −

1

2
τ̂ǫ[α

ǫ
βδ

γ
δ]

)

,
(C.4)

which projects the reducible tensor τ̂αβ
γ
δ onto its traceless part in the 420 representation.

Its kernel is thus

ker p1 = {(0, κ[αβδ
γ
δ]) ∈ Ŵ}, (C.5)

and we have that our map τ from (5.3) is

τ = p1 ◦ τ̂ : KSU(8) → W. (C.6)

Finally, we note that as ker p0 ∩ ker p1 = 0, we have that p1 restricted to ker p0 = Im τ̂ is

an isomorphism.

Next we restrict to the space of compatible connections KGN
, defining τ̂GN

= τ̂ |KGN
.

The intrinsic torsion was defined in section 5.1 as the projection of the torsion onto Wint =

W/WGN
= Im τ/Im τGN

. The key point in considering the reducible objects in Ŵ is that,

as p1|Im τ̂ is an isomorphism, we have that p1 also induces an isomorphism

Im τ̂

Im τ̂GN

p1|
−→

Im τ

Im τGN

=
W

WGN

. (C.7)
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The intrinsic torsion is composed of those irreducible parts of W which are zero for

any compatible connection, i.e. the cokernel of τGN
. By (C.6) and (C.7), we can equally

well focus on which parts of the image of τ̂ are identically zero. If Σ is an SU(8 − N )

compatible connection, i.e. Σαβγ
i = Σαβi

γ = Σαβc
c = 0, then we find

τ̂(Σ)ab = Σac
c
b, τ̂(Σ)ai = 0,

τ̂(Σ)ia = Σic
c
a, τ̂(Σ)ij = 0,

τ̂(Σ)ab
c
d = Σ[ab

c
d], τ̂(Σ)ab

c
i = 0,

τ̂(Σ)ia
b
c =

2

3
Σi[a

b
c], τ̂(Σ)ab

i
j = 0,

τ̂(Σ)ij
a
b =

1

3
Σij

a
b, τ̂(Σ)ai

j
k = 0,

τ̂(Σ)ij
k
l = 0,

τ̂(Σ)ij
a
k = 0.

(C.8)

We thus see by inspection that the parts of Im τ̂ in the left-hand column can generically

be non-zero and are also independent up to satisfying p0(τ̂(Σ)) = 0, which is automatic

as they are in Im τ̂ . Thus, they effectively give a basis for the image of τ̂GN
. The parts

in the right-hand column vanish and are similarly independent, thus these can also be

viewed as giving a basis for Im τ̂ /Im τ̂GN
. The column on the right then gives the the

intrinsic torsion — no matter our choice of Σ, the torsion of any connection lying in those

components cannot be shifted since there the τ̂ map acting on Σ vanishes. Conversely, if

all of the components in the right column do vanish, then we can set the torsion to zero by

shifting by a compatible Σ, due to the independence of the components in the left column.

We conclude that the intrinsic torsion is parameterised by the quantities

τ̂int = (τ̂ai, τ̂ij , τ̂ab
i
c, τ̂ab

i
j , τ̂ai

j
k, τ̂ij

k
l, τ̂ij

a
k), (C.9)

which are again automatically constrained so that τ̂int lies in the kernel of p0.

C.2 Alternative computation in terms of irreducible representations

Finally, we will now give another alternative method of obtaining the intrinsic torsion

conditions, now working exclusively with irreps. Given the torsion map (5.4), let us define

τ(Σ̂)αβ = Σ̂αγ
γ
β = −

2

3
α[αβ] + β(αβ) ∈ 28+ 36,

τ(Σ̂)αβδ
γ = Σ̂[αβ

γ
δ] −

1

2
α[αβδ

γ
δ] ∈ 420,

(C.10)
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together with their conjugates. We again write the indices as α = (a, i) and decompose

into irreducible SU(8−N )× SU(N ) parts. We thus define

τabd
c = (X1)ab

c
d +

3

6−N
(Y1)[abδ

c
d],

τij l
k = (X2)ij

k
l +

3

N − 2
(Y2)[ijδ

k
l],

τiac
b = (X3)ia

b
c +

2

7−N
(Y3)i[aδ

b
c],

τaik
j = (X4)ai

j
k +

2

N − 1
(Y3)a[iδ

j
k],

τijb
a = (X5)ij

a
b −

1

8−N
(Y2)ijδ

a
b,

τabj
i = (X6)ab

i
j −

1

N
(Y1)abδ

i
j ,

(C.11)

where the tensors Xn are traceless.7 The remaining components τabi
c and τija

k are already

irreducible. We then find that for a compatible connection, τ has the vanishing irreducible

parts

αij = βij = −
2

3
αai + βai = 0,

τabi
c = τija

k = 0,

(X2)ij
k
l = (X4)ai

j
k = (X6)ab

i
j = 0,

1

6
αab −

1

N
(Y1)ab = (Y2)ij = (Y3)ia +

N − 1

6
αai = 0,

(C.12)

and the respective conjugates, while all other components are allowed to be non-zero. The

quantities in (C.12) thus parameterise the intrinsic torsion. These are then the explicit

maps to the representations listed in B.3.

If we now allow Σ to be a generic SU(8) connection, then looking back at the defini-

tions (C.10) and (C.11) we see that requiring the parts (C.12) of its torsion to vanish is

equivalent to fixing

τij = τai = 0,

Σ[ab
i
c] = Σ[ab

j
i] = Σ[ai

k
j] = Σ[ij

l
k] = 0,

Σ[ij
a
k] = 0,

(C.13)

as, for example,

Σ[ab
j
i] = τabi

j +
1

2
α[abδ

j
i] = (X6)ab

j
i −

1

N
(Y1)abδ

j
i +

1

6
αabδ

j
i. (C.14)

Thus we have recovered the conclusion of (C.9).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

7These formulae appear to include division by zero for some values of N , however in all seemingly

problematic cases these terms are absent by symmetry.
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