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1 Introduction

In a conformal field theory (CFT) defined in flat space the trace of the stress-energy tensor

vanishes. Despite this, in an even-dimensional CFT considered in curved space there is

an anomaly and the stress-energy tensor is no longer traceless due to curvature contribu-

tions [1]. This trace anomaly has been extensively studied in field theory and beyond (see [2]

for a nice review), and, soon after the discovery of the AdS/CFT correspondence [3–5], it

was also considered in the context of holography. In particular, Henningson and Skenderis

(HS) provided a holographic derivation of the trace anomaly of the boundary two- four- and

six-dimensional CFT [6] by studying the divergences of the supergravity action close to the

AdS boundary. The four-dimensional result was also obtained later by de Boer, Verlinde

and Verlinde (dBVV) using the Hamiltonian formulation of gravity and Hamilton-Jacobi

theory [7, 8], while the d = 6 result was obtained using the dBVV method in [9]. Addition-

ally, the dBVV method was used in [10] to compute the d = 8 holographic anomaly. The

Hamilton-Jacobi method was also considered by Papadimitriou and Skenderis [11, 12].

The results of HS and dBVV were obtained with Einstein gravity in the bulk, but this

was extended to higher-derivative gravity in [13, 14] and [15]. A scalar field φ has also

been considered in the bulk with its kinetic term, while more general situations involving

also an axion have been examined in [16, 17]. The flat space limit of the corresponding

contributions to the anomaly has been considered in [18] in any even dimension, while the
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full curvature-dependent contributions have been computed in four dimensions in [9]. The

φ-dependent terms for massless φ correspond to contributions in CFTs with conformal man-

ifolds, and in d = 4 they take the form of the Paneitz operator in d = 4 [19], an operator first

discussed by Fradkin and Tseytlin [20–22] and also considered by Riegert [23]. The form

of these contributions is dictated by conformal covariance [24]. For general even dimen-

sion the conformal covariance properties of the φ-dependent part of the holographic trace

anomaly were pointed out in [11, 12]. The case of massive φ has been considered in [25].

In this work we extend these results in d = 4, 6 by considering higher-derivative gravity

in the bulk, with higher-derivative quadratic interactions of a scalar field. Our bulk action is

given in (2.1) below, and we also consider the required boundary action (2.3). Following the

method of [15] we obtain our results for the trace anomaly in equations (3.9) and (3.14) in

d = 4, 6 respectively. In d = 4 the new higher-derivative interactions of the scalar contribute

to the trace anomaly in accord with the Paneitz operator [19–23], just like the standard

kinetic term in the bulk. In d = 6 the higher-derivative gravity terms and the standard

kinetic term of φ have not been considered before. For the φ-dependent contributions we

find that the kinetic term gives rise to the Branson operator [26], a conformally covariant

operator defined in d = 6, while the higher-derivative terms contribute to the Branson

operator, but also give rise to two more conformally covariant operators quadratic in φ and

involving the Weyl tensor. These operators were shown to appear in CFTs with marginal

operators in d = 6 in [27].

The trace anomaly in d = 6 CFTs in curved space contains three Weyl invariant con-

tributions, with coefficients c1, c2, c3, as well as the Euler term, with coefficient a. The

parameter c3 appears in the two-point function of the stress-energy tensor two-point func-

tion in flat space, while c1, c2 show up in the three-point function. Using positivity of

energy flux in lightlike directions it was shown in [28] that one can obtain bounds on the

parameters appearing in the three-point function of the stress-energy tensor. These bounds

were understood holographically in [29], where they were shown to arise by causality con-

siderations in the bulk. For the d = 6 case these bounds were considered in [30–32] for

Gauss-Bonnet gravity in the bulk. In this paper we extend the result of [30–32] for general

higher-derivative gravity in the bulk using our result (3.14).

Outside a conformal fixed point, Osborn has introduced a systematic treatment of the

trace anomaly incorporating efficiently renormalization effects of composite operators [33].

In Osborn’s analysis a background metric γµν is introduced and the couplings gI are pro-

moted to spacetime-dependent sources for the corresponding composite operators OI . Be-

sides curvature-dependent counterterms required for finiteness, one needs to also consider

counterterms containing derivatives on gI [34, 35]. Then, a local renormalization group

(RG) equation can be derived, valid along the RG flow. This corresponds to a local version

of the Callan-Symanzik equation, and yields an expression of the form

Tµµ = βIOI + (terms with derivatives on γµν , g
I) (1.1)

for the trace of the stress-energy tensor Tµν . The terms with derivatives on γµν and

gI in (1.1) contain coefficients which may be related to flat-space correlation functions

involving Tµν and OI .
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Osborn further considered (1.1) and the response of the field theory under Weyl scal-

ings, and derived consistency conditions in d = 2, 4 stemming from the Abelian nature

of the Weyl group. These are similar to the well-known Wess-Zumino consistency condi-

tions [36], and have been a subject of interest recently in d = 4 [24, 37], as well as in d = 6

and more generally in any even d [38]. The main driving force has been a consistency

condition of the form

µ
dã

dµ
= GIJβ

IβJ , (1.2)

where µ is the RG scale, found by Osborn in d = 2, 4 and shown in [38] to appear in any

even d. Equation (1.2) ties the monotonicity of the RG flow of a quantity ã, related to the

coefficient of the Euler term in the trace anomaly, to the sign of a symmetric tensor GIJ .

In d = 2 a positive-definite GIJ was found by Osborn [33], thus rederiving Zamolodchikov’s

c-theorem [39], while in d = 4 only a perturbative analog was obtained [34]. In d = 6 the

sign of GIJ was found to be negative in multiflavor φ3 theory [35, 40].

Despite their obvious interest from the field theoretic point of view, Osborn’s local

RG and consistency conditions have received limited attention from the holographic side.

Erdmenger developed the subject to some extent in [41], but the results derived there

do not illustrate the deep connection of Osborn’s formalism with the dBVV formulation

of the holographic RG. In this paper we show that the flow equation of dBVV contains

Osborn’s local RG equation. In d = 4 and with Einstein gravity and a massless scalar field

in the bulk we compute holographically quantities in the local RG equation (1.1) like ã

and GIJ mentioned above. These quantities are related to the local divergent part of the

supergravity action close to the boundary. Furthermore, we verify that all Weyl consistency

conditions derived by Osborn in d = 4 are satisfied by the holographic result. We also

consider bulk massive scalar fields, and comment on their contributions the anomaly.

This paper is organized as follows. In the next section we describe for completeness the

formalism of dBVV in the higher-derivative case. We derive all necessary results needed for

the computation of the holographic trace anomaly in section 3. In section 4 we illustrate

the relation of the holographic RG to the local RG, and derive an expression for the

holographic trace anomaly away from the fixed point. In this section we also comment on

the a-theorem-like consistency condition (1.2) in d = 4, 6, and discuss the effects on the

anomaly originating from massive scalar fields in the bulk. We also include appendices on

details of the ADM decomposition, the boundary terms, definitions of curvature tensors in

d = 6, and results in d = 4 for the coefficients of the anomaly terms away from the fixed

point assuming Einstein gravity and a kinetic term for the massless scalar field φ in the bulk.

2 Higher-derivative dilaton gravity

We consider classical dilatonic gravity on an asymptotically-AdS manifold Md+1 with met-

ric g̃µν . The bulk action is taken to be

SB =

∫
Md+1

dd+1x
√
g̃
(
L g̃
B + L φ

B

)
, (2.1)
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where g̃ is the determinant of g̃µν and

L g̃
B = 2Λ−R− aR2 − bRµνRµν − cRµνρσRµνρσ ,

L φ
B =

1

2
∂µφ∂µφ+ eR∂µφ∂µφ+ fRµν∂µφ∂νφ+ g∇2φ∇2φ+ h∇µ∂νφ∇µ∂νφ .

(2.2)

Here we allow terms quadratic in φ with up to two derivatives on φ. The manifold M has

a d-dimensional boundary ∂M and we also have the boundary action

S∂ =

∫
(∂M)d

ddy
√
h̃
(
L h̃
∂ + L φ

∂

)
, (2.3)

where h̃ij is the induced metric and

L h̃
∂ = 2K + x1RK + x2R

ijKij + x3K
3 + x4KK

ijKij + x5K
i
jK

j
kK

k
i ,

L φ
∂ = y1K∂

iφ∂iφ+ y2K
ij∂iφ∂jφ+ y3£nφ∇2φ ,

(2.4)

where Kij is the extrinsic curvature, K = h̃ijKij , and £n is the Lie derivative along the

vector nµ normal to the boundary. The first term in L φ
∂ is the Gibbons-Hawking-York

term for Einstein gravity [42, 43]. More comments on the boundary terms can be found

in appendix B. The case with e = f = g = h = y1 = y2 = y3 = 0 has been considered

in [15, 44].

It is straightforward to work out the ADM form [45] of the action

S = SB − S∂ . (2.5)

Using technology summarized in appendix A we can determine

S =

∫
dr

∫
ddy
√
h̃L , L = L h̃

0 + L φ
0 + L h̃

1 + L φ
1 , (2.6)

where the radial coordinate r is identified with the RG parameter of the boundary the-

ory and

1

N
L h̃

0 = 2Λ−R−K2 +KijKij ,
1

N
L φ

0 =
1

2

(
∂iφ∂iφ+ (£nφ)2

)
, (2.7)

1

N
L h̃

1 = −aR2 − bRijRij − cRijklRijkl

+
(
(2a− x1)K2 − 2(3a− x1)KijKij

)
R

+
(
(2b+ 2x1 − x2)KKij − 2(2b+ 4c− x2)Ki

kK
kj
)
Rij + 2(6c+ x2)KikKjlRijkl

− (a+ x3)K4 + (6a− b+ 6x3 − x4)K2KijKij − (9a+ b+ 2c− 2x4)(KijKij)
2

+ (4b+ 4x4 − x5)KKi
jK

j
kK

k
i − 2(2b+ c− 3x5)Ki

jK
j
kK

k
lK

l
i

+ 2(b+ x1)K∇2K + (8c+ x2)Kij∇2Kij

− (4b+ 2x1 − x2)Kij∇i∂jK + 2(b− 4c− x2)Kij∇j∇kKk
i

−
(

(4a+ b)h̃ij h̃kl + (b+ 4c)h̃ikh̃jl
)
LijLkl

+
(

(4a− x1)Rh̃ij + (2b− x2)Rij
)
Lij

−
(
(4a+ 3x3)K2 − (12a+ 2b− x4)KijKij

)
L

−
(

2(b+ x4)KKij − (4b+ 8c− 3x5)Ki
kK

kj
)
Lij , (2.8)
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and
1

N
L φ

1 = eR∂iφ∂iφ+ fRij∂iφ∂jφ+ g∇2φ∇2φ+ h∇i∂jφ∇i∂jφ

−
(
(e+ y1)K2 − (3e+ 2y1)KijKij + (2e+ y1)L

)
∂kφ∂kφ

−
(

(f − 2y1 + y2)KKij − 2(f + h+ 2y2)Ki
kK

kj + (f + y2)Lij
)
∂iφ∂jφ

+
(
eR− (e− g)K2 + (3e+ f + h)KijKij − (2e+ f)L

)
(£nφ)2

+ 2gK£nφ(£n£nφ−£aφ) + (g + h)(£n£nφ−£aφ)2

+ 2(f + g)K∇2φ£nφ− 2(f − h)Kij∇i∂jφ£nφ

+ (2g + y3)∇2φ(£n£nφ−£aφ) + (2h− y3)∂i£nφ∂i£nφ

+ (2f − 2y1 − y3)K∂iφ∂i£nφ− 2(f + 2h+ y2 − y3)Kij∂iφ∂j£nφ .

(2.9)

In (2.8) and (2.9) we neglect terms in the right-hand side that are total derivatives.

For the higher-derivative Lagrangian L of (2.6) we consider the canonical variables

gij , Kij , φ, Σ = £nφ, πij , Pij , πφ, and PΣ, with the usual definitions

πij =
∂L

∂
˙̃
h
ij
, Pij =

∂L

∂K̇ij
, πφ =

∂L

∂φ̇
, PΣ =

∂L

∂Σ̇
. (2.10)

Since Lij is linear in K̇ij it is easy to compute

P ij = −2
(

(4a+ b)h̃ij h̃kl + (b+ 4c)h̃ikh̃jl
)
Lkl

+
(
(4a− x1)R− (4a+ 3x3)K2 + (12a+ 2b− x4)KklKkl

)
h̃ij

+ (2b− x2)Rij − 2(b+ x4)KKij + (4b+ 8c− 3x5)Ki
kK

kj

−
(

(2e+ f)Σ2 + (2e+ y1)∂kφ∂kφ
)
h̃ij − (f + y2)∂iφ∂jφ .

(2.11)

Equation (2.11) is solved for Lij by

Lij = L′ij(P − P φ), P φij = −
(

(2e+ f)Σ2 + (2e+ y1)∂kφ∂kφ
)
h̃ij − (f + y2)∂iφ∂jφ,

(2.12)

where

L′ij(P ) = − 1

2(b+ 4c)

(
Pij − (2b− x2)Rij + 2(b+ x4)KKij − (4b+ 8c− 3x5)KikK

k
j

)
+

1

2(b+ 4c)(d(4a+ b) + b+ 4c)

(
(4a+ b)P

−
(
2b2 + 4a(b− 4c) + (b+ 4c)x1 − (4a+ b)x2

)
R

+
(
2b2 + 4a(b− 4c)− 3(b+ 4c)x3 + 2(4a+ b)x4

)
K2

−
(
2b2 + 4a(b− 4c) + (b+ 4c)x4 − 3(4a+ b)x5

)
KklKkl

)
h̃ij .

(2.13)

Also, since £nΣ is linear in Σ̇ we find

PΣ = 2(g + h)(£nΣ−£aφ) + 2g
(
∇2φ+KΣ

)
, (2.14)

which allows us to express

Σ̇ = N

(
1

2(g + h)

(
PΣ − 2g(∇2φ+KΣ)

)
+ £aφ

)
+ £NΣ . (2.15)
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The action (2.6) can now be written in the first order form

S =

∫
dr

∫
ddy
√
h̃
(
πij
(

˙̃
hij − 2NKij −∇iNj −∇jNi

)
+ πφ

(
φ̇−NΣ−£Nφ

)
+ L

)
=

∫
dr

∫
ddy
√
h̃
(
πij

˙̃
hij + πφφ̇+ P ijK̇ij + PΣΣ̇−H

)
,

(2.16)

with

H = πij(2NKij +∇iNj +∇jNi) + πφ(NΣ + £Nφ) + P ijK̇ij + PΣΣ̇−L , (2.17)

which can be brought to the form

H = NH
(
g̃, φ,K;π, πφ, P − P φ

)
+N iPi

(
g̃, φ,K;π, πφ, P − P φ

)
, (2.18)

for appropriate H and P that can be easily worked out. For this one needs to use (A.12)

and (2.12).

Requiring that the variation of S vanishes gives us Hamilton’s equations and a con-

straint at the boundary, which can be satisfied by either Dirichlet or Neumann boundary

conditions for the variables h̃ij , φ, Kij and Σ. In order to impose Dirichlet boundary con-

ditions for h̃ij and φ, and Neumann boundary conditions for Kij and Σ, the action S needs

to be modified appropriately. This can be done by means of a canonical transformation so

that instead of S we use

Ŝ = S −
∫
dd+1x£t

(√
h̃
(
P ijKij + PΣΣ

))
=

∫
dr

∫
ddy
√
h̃
(
πij

˙̃
hij + πφφ̇−KijṖ

ij − ΣṖΣ −NĤ −N iP̂i
)
,

(2.19)

with
Ĥ = H+K

(
KijPij + ΣPΣ

)
,

P̂i = Pi −∇i(KjkPjk + ΣPΣ) .
(2.20)

Now we can impose Dirichlet boundary conditions for h̃ij and φ, and Neumann boundary

conditions for Kij and Σ. As we observe Ŝ in (2.19) does not contain derivatives of N or

N i, and so these act as Lagrange multipliers enforcing the Hamiltonian and momentum

constraints

Ĥ = 0 and P̂i = 0 . (2.21)

To proceed we need to obtain an action defined at the boundary. Let
¯̃
hij , φ̄, P̄ij

and P̄Σ be the solutions of δŜ = 0 with the appropriate boundary conditions. Using

these solutions in Ŝ and defining
¯̃
hij(y, r = r0) ≡ h̃ij(y) etc., gives us the classical action

Sc
[
h̃(y), φ(y), P (y)− P φ(y), PΣ(y)

]
, and we have

Ĥc
(
h̃, φ,K;π, πφ, P − Pφ

)
= 0 and P̂c

(
h̃, φ,K;π, πφ, P − Pφ

)
= 0 . (2.22)

The Hamiltonian and momentum constraints (2.22) can be recast as equations for the

reduced classical action Sr defined as

Sr

[
h̃, φ

]
= Sc

[
h̃, φ, 0, 0

]
, (2.23)
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where the Neumann boundary conditions for Kij and Σ have been used in Sc. The conju-

gate momenta on the boundary (fixed r = r0) are given by

π|ij = − 1√
h̃

δSr

δh̃ij
, π|φ = − 1√

h̃

δSr
δφ

. (2.24)

The constraints (2.22) can be recast as constraints on Sr by using S of (2.6). Starting

with L h̃
0 + L φ

0 , which we write in the form πij
˙̃
hij + πφφ̇ −H h̃

0 −H φ
0 , we can use (2.10)

to determine

πij = Kij −Kh̃ij , πφ = £nφ , (2.25)

which give

Kij = πij −
1

d− 1
πh̃ij , £nφ = πφ . (2.26)

Then,

H h̃
0 = N

(
πijπij −

1

d− 1
π2 − 2Λ +R

)
−2N i∇jπij , H φ

0 =
1

2
N
(
π2
φ − ∂iφ∂iφ

)
+πφ£Nφ ,

(2.27)

and with definitions like in (2.18) we obtain

Hh̃0 = πijπij −
1

d− 1
π2 − 2Λ +R , Hφ0 =

1

2

(
π2
φ − ∂iφ∂iφ

)
,

P h̃i = −2∇jπij , Pφi = πφ∂iφ .

(2.28)

The projection of these expressions onto the boundary is trivial, and amounts essentially

to πij , πφ → π|ij , π|φ of (2.24), thus translating (2.22) into constraints on the form of the

reduced classical action Sr.

The relations in (2.26) can also be directly obtained by the equations{∫
ddy′

√
h̃H0, h̃ij(y)

}
=

˙̃
hij(y) ,

{∫
ddy′

√
h̃H0, φ(y)

}
= φ̇(y) , (2.29)

where H0 = H h̃
0 + H φ

0 and

{F (q, p), G(q, p)} =
∂F

∂p
· ∂G
∂q
− ∂F

∂q
· ∂G
∂p

. (2.30)

The advantage of this method is that it can also be used at higher order due to the theorem

of [15]. More specifically, from{∫
ddy′

√
h̃H0,Kij(y)

}
= K̇ij(y) ,

{∫
ddy′

√
h̃H0,Σ(y)

}
= Σ̇(y) , (2.31)

we find that in (2.6) we may use

Lij = − 1

2(d− 1)2

(
2(d− 1)Λ + (d− 1)R+ (d− 1)πklπkl − 3π2

)
h̃ij +Rij

− 3

d− 1
ππij + 2πi

kπkj +
1

4(d− 1)

(
∂kφ∂kφ− π2

φ

)
h̃ij −

1

2
∂iφ∂jφ ,

(2.32)

and

£n£nφ−£aφ =
1

d− 1
ππφ −∇2φ . (2.33)

We notice that (2.33) is the ADM decomposition of the bulk equation ∇2φ = 0. As a

result, the coefficient g of (2.2) will not contribute to the Hamiltonian. With our results it

– 7 –
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is straightforward to compute

Hh̃1 = α1π
i
jπ
j
kπ

k
lπ
l
i + α2ππ

i
jπ
j
kπ

k
i + α3(πijπij)

2 + α4π
2πijπij + α5π

4

+β1Λπijπij+β2Λπ2+β3Rπ
ijπij+β4Rπ

2+β5R
ijπi

kπkj+β6R
ijππij+β7R

ijklπikπjl

+ γ1π
ij∇j∇kπki + γ2π

ij∇i∂jπ + γ3π
ij∇2πij + γ4π∇i∇jπij + γ5π∇2π

+ δ1Λ2 + δ2ΛR+ δ3R
2 + δ4R

ijRij + δ5R
ijklRijkl ,

(2.34)

and

Hφ1 = ε1π
ijπijπ

2
φ + ε2π

2π2
φ + ε3π

4
φ

+ ζ1Λπ2
φ + ζ2Rπ

2
φ

+ η1π
ijπφ∇i∂jφ+ η2ππφ∇2φ+ η3π

i
kπ

kj∂iφ∂jφ+ η4ππ
ij∂iφ∂jφ

+ η5π
ijπij∂

kφ∂kφ+ η6π
2∂iφ∂iφ+ η7π

2
φ∂

iφ∂iφ

+ θ1∂
iπφ∂iπφ + θ2π

ij∂iπφ∂jφ+ θ3π∂
iπφ∂iφ

+ κ1Λ∂iφ∂iφ+ κ2R∂
iφ∂iφ+ κ3R

ij∂iφ∂jφ+ κ4∇2φ∇2φ+ κ5∇i∂jφ∇i∂jφ
+ λ(∂iφ∂iφ)2 ,

(2.35)

with

α1 = 2c , α2 =
2

d− 1
x5 ,

α3 =
1

4(d− 1)2

(
4a+

(
d2 − 3d+ 4

)
b+ 4(d− 2)(2d− 3)c− 2(d− 1)(dx4 + 3x5)

)
,

α4 = − 1

2(d− 1)3

(
4a+ (d2 − 3d+ 4)b+ 4

(
2d2 − 5d+ 4

)
c

+ 3dx3 −
(
2d2 − 7d+ 2

)
x4 + 3(2d− 1)x5

)
,

α5 =
1

4(d− 1)4

(
4a+

(
d2 − 3d+ 4

)
b + 4

(
2d2 − 5d+ 4

)
c

+2(3d− 4)x3 − 2
(
d2 − 6d+ 6

)
x4 + 2(5d− 6)x5

)
,

β1 =
1

(d− 1)2

(
4da− d(d− 3)b− 4(d− 2)c− (d− 1)(dx4 + 3x5)

)
,

β2 = − 1

(d− 1)3

(
4da− d(d− 3)b− 4(d− 2)c+ 3dx3 −

(
d2 − 2d− 2

)
x4 − 3(d− 2)x5

)
,

β3 =
1

2(d− 1)2

(
4a+

(
d2 − 3d+ 4

)
b− 4(3d− 4)c− (d− 1)(dx1 + x2 − (d− 2)x4 + 3x5)

)
,

β4 = − 1

2(d− 1)3

(
4a+

(
d2 − 3d+ 4

)
b− 4(d− 2)c

− (d− 1)(d− 4)x1 + 3(d− 1)x2 − 3(d− 2)x3 +
(
d2 − 8d+ 10

)
x4 − 3(3d− 4)x5

)
,

β5 = 16c+ 3x5 , β6 =
2

d− 1
(x1 + 2x2 − x4 − 3x5) , β7 = −2(6c+ x2) ,

γ1 = − 2(b− 4c− x2) , γ2 = − 1

d− 1
(2b+ 8c+ 2x1 + x2) , γ3 = −8c− x2 ,

γ4 =
2

d− 1
(b− 4c− x2) , γ5 =

1

d− 1
(8c+ x2) ,
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δ1 =
d

(d− 1)2

(
4da+ (d+ 1)b+ 4c

)
,

δ2 =
1

(d− 1)2

(
4da− d(d− 3)b− 4(d− 2)c− (d− 1)(dx1 + x2)

)
,

δ3 =
1

4(d− 1)2

(
4a+

(
d2 − 3d+ 4

)
b− 4(3d− 4)c+ 2(d− 1)((d− 2)x1 − x2)

)
,

δ4 = 4c+ x2 , δ5 = c , (2.36)

and

ε1 =
1

4(d− 1)2

(
4da− d(d− 3)b− 4(d− 2)c− (d− 1)(4e− 2(d− 2)f + 4(d− 1)h)

− (d− 1)(dx4 + 3x5)
)
,

ε2 = − 1

4(d− 1)3

(
4da− d(d− 3)b− 4(d− 2)c− 2(d− 1)(2e− (d− 2)f + 2(d− 3)h)

+ 3dx3 −
(
d2 − 2d− 2

)
x4 − 3(d− 2)x5

)
,

ε3 =
d

16(d− 1)2

(
4da+ (d+ 1)b+ 4c− 4(d− 1)(2e+ f)

)
,

ζ1 =
d

2(d− 1)2

(
4da+ (d+ 1)b+ 4c− 2(d− 1)(2e+ f)

)
,

ζ2 =
1

4(d− 1)2

(
4da− d(d− 3)b−4(d− 2)c−2(d− 1)(2e− (d− 2)f)− (d− 1)(dx1 + x2)

)
,

η1 = 2(f − h) , η2 =
1

d− 1
(4h− y3) , η3 = −1

2
(8c+ 4h+ 3x5 + 4y2) ,

η4 =
1

d− 1
(4c+ 4h+ x4 + 3x5 + 2y1 + 4y2) ,

η5 =
1

4(d− 1)2

(
4(d− 2)a− (d− 2)(d− 3)b+ 4(3d− 4)c− 2(d− 1)(2e+ f)

− (d− 1)((d− 2)x4 − 3x5 + 2dy1 + 2y2)
)
,

η6 = − 1

4(d− 1)3

(
(d− 2)(4a− (d− 3)b) + 4(3d− 4)c− 2(d− 1)(2e+ f − 4h)

+ 3(d− 2)x3 −
(
d2 − 8d+ 10

)
x4 + 3(3d− 4)x5 − 2(d− 1)((d− 4)y1 − 3y2)

)
,

η7 =
1

8(d− 1)2

(
(d− 2)(4da+ (d+ 1)b+ 4c)− 2(d− 1)((d− 1)(4e+ f) + dy1 + y2)

)
,

θ1 = − 2h+ y3 , θ2 = 2(f + 2h+ y2 − y3) , θ3 = − 1

d− 1
(4h+ 2y1 + 2y2 − y3) ,

κ1 =
1

2(d− 1)2

(
(d− 2)(4da+ (d+ 1)b+ 4c)− 2(d− 1)(2de+ f + dy1 + y2)

)
,

κ2 =
1

4(d− 1)2

(
(d− 2)(4a− (d− 3)b) + 4(3d− 4)c− 2(d− 1)(2e+ f)

− (d− 1)((d− 2)x1 − x2 − 2(d− 2)y1 − 2y2)
)
,

κ3 = − 1

2
(8c+ x2 − 2y2) , κ4 = −h+ y3 , κ5 = −h ,

λ =
1

16(d− 1)2

(
4(d− 2)2a+

(
5d2 − 15d+ 12

)
b+ 4

(
4d2 − 11d+ 8

)
c

− 4(d− 1)(2(d− 2)e+ (2d− 3)f + (d− 2)y1 + (2d− 3)y2)
)
. (2.37)
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As expected, g does not appear in any of these constants. From now on we will only

consider terms quadratic in φ so that λ above will not be used.

With these results we can write down the equation that gives us the reduced classical

action, namely

Hr
(
h̃, φ, π|, π|φ

)
≡ Hh̃0 +Hφ0 +Hh̃1 +Hφ1 = 0 . (2.38)

This can be written as a flow equation

{Sr, Sr}+ {Sr, Sr, Sr, Sr} = Ld , (2.39)

where the two-bracket is given by

h̃{Sr, Sr} = (1 + β1Λ + β3R)h̃ikh̃jl
δSr

δh̃ij

δSr

δh̃kl
−
(

1

d− 1
− β2Λ− β4R

)(
h̃ij

δSr

δh̃ij

)2

+ β5Rikh̃jl
δSr

δh̃ij

δSr

δh̃kl
+ β6Rij h̃kl

δSr

δh̃ij

δSr

δh̃kl
+ β7Rijkl

δSr

δh̃ik

δSr

δh̃jl

+ γ1h̃ij
δSr

δh̃ik
∇k∇l

δSr

δh̃lj
+ γ2

δSr

δh̃kl
∇k∂l

(
h̃ij

δSr

δh̃ij

)
+ γ3h̃ikh̃jl

δSr

δh̃ij
∇2 δSr

δh̃kl

+ γ4h̃ij
δSr

δh̃ij
∇k∇l

δSr

δh̃kl
+ γ5h̃ij h̃kl

δSr

δh̃ij
∇2 δSr

δh̃kl

+

(
1

2
+ ζ1Λ + ζ2R

)(
δSr
δφ

)2

+ η1
δSr

δh̃ij

δSr
δφ
∇i∂jφ+ η2h̃ij

δSr

δh̃ij

δSr
δφ
∇2φ+ η3h̃ik

δSr

δh̃ij

δSr

δh̃kl
∂jφ∂lφ

+ η4h̃ij
δSr

δh̃ij

δSr

δh̃kl
∂kφ∂lφ+ η5h̃ikh̃jl

δSr

δh̃ij

δSr

δh̃kl
∂mφ∂mφ

+ η6

(
h̃ij

δSr

δh̃ij

)2

∂kφ∂kφ+ η7

(
δSr
δφ

)2

∂iφ∂iφ

+ θ1∂
i δSr
δφ

∂i
δSr
δφ

+ θ2
δSr

δh̃ij
∂i
δSr
δφ

∂jφ+ θ3h̃ij
δSr

δh̃ij
∂k
δSr
δφ

∂kφ ,

(2.40)

the four-bracket is given by

h̃2{Sr, Sr, Sr, Sr} = α1h̃iqh̃jkh̃lmh̃np
δSr

δh̃ij

δSr

δh̃kl

δSr

δh̃mn

δSr

δh̃pq

+ α2h̃ij
δSr

δh̃ij
h̃kqh̃lmh̃np

δSr

δh̃kl

δSr

δh̃mn

δSr

δh̃pq
+ α3

(̃
hikh̃jl

δSr

δh̃ij

δSr

δh̃kl

)2

+ α4

(̃
hij

δSr

δh̃ij

)2

h̃kmh̃ln
δSr

δh̃kl

δSr

δh̃mn
+ α5

(
h̃ij

δSr

δh̃ij

)4

+ ε1h̃ikh̃jl
δSr

δh̃ij

δSr

δh̃kl

(
δSr
δφ

)2

+ ε2

(
h̃ij

δSr

δh̃ij

)2(
δSr
δφ

)2

+ ε3

(
δSr
δφ

)4

,

(2.41)
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and

Ld = 2Λ−R− δ1Λ2 − δ2ΛR− δ3R
3 − δ4R

ijRij − δ5R
ijklRijkl

+
1

2
∂iφ∂iφ−κ1Λ∂iφ∂iφ−κ2R∂

iφ∂iφ−κ3R
ij∂iφ∂jφ−κ4∇2φ∇2φ−κ5∇i∂jφ∇i∂jφ .

(2.42)

3 Trace anomaly from the flow equation

The flow equation (2.39) becomes useful if we make an ansatz for Sr following [7, 8]:

1

2κ̃2
d+1

Sr

[
h̃, φ

]
=

1

2κ̃2
d+1

Sloc

[
h̃, φ

]
+ Γ

[
h̃, φ

]
, (3.1)

where 2κ̃2
d+1 = 16πGd+1 with Gd+1 the (d + 1)-dimensional Newton constant, Γ is the

generating functional of the boundary field theory, and Sloc contains local counterterms.

Equation (3.1) is only valid close to the boundary. Contributions to Sloc are classified

according to their scaling behavior close to the boundary. This is described by an appro-

priately defined weight w,1 giving rise to the relation

Sloc =

∫
ddy
√
h̃Lloc , Lloc =

∑
w=0,2,...

L
(w)
loc . (3.2)

A derivative has w = 1, and so a curvature has w = 2. We now use (3.2) in (2.39) and

obtain independent equations for every weight. For w = 0, 2 we find

{Sloc, Sloc}w=0 + {Sloc, Sloc, Sloc, Sloc}w=0 = (2− δ1Λ)Λ ,

{Sloc, Sloc}w=2 + {Sloc, Sloc, Sloc, Sloc}w=2 = −(1 + δ2Λ)R+

(
1

2
− κ1Λ

)
∂iφ∂iφ ,

(3.3)

respectively, which, with

Λ = −d(d− 1)

2`2
+
d(d− 3)

2`4
(
d(d+ 1)a+ db+ 2c

)
, (3.4)

so that we have AdS space with radius ` asymptotically, allow us to determine

L
(0)
loc = W , L

(2)
loc = −ΦR+

1

2
M∂iφ∂iφ , (3.5)

with

W = − 2(d− 1)

`
− 1

`3
(
4d(d+ 1)a+ 4db+ 8c+ d

(
d2x3 + dx4 + x5

))
,

Φ =
`

d−2
− 1

`

(
2

(d−1)(d−2)

(
d(d+1)a+db+2c

)
−dx1−x2−

3

2(d−1)

(
d2x3+dx4+x5

))
,

M =
`

d− 2
+

1

`

(
2

d− 1

(
d(d+ 1)a+ db+ 2c

)
− 2

d− 2
(d(d+ 1)e+ df − 2h)

+
3

2(d− 1)

(
d2x3 + dx4 + x5

)
− 2(dy1 + y2)

)
,

(3.6)

1See section 4 below for more details on the weight.

– 11 –



J
H
E
P
1
1
(
2
0
1
5
)
2
1
6

where we choose the negative sign for the 1/` term of W so that the ` term of M is positive.

Note that we are only able to determine W,Φ and M up to specific powers of ` as seen

in (3.6), consistently with the terms included in (2.2) and (2.4). Further terms in the

`-expansion of W,Φ and M depend generally also on even higher-derivative terms than the

ones considered in (2.2) and (2.4).

3.1 Four-dimensional trace anomaly

At weight four the four-dimensional trace anomaly can be evaluated using the definition

〈T ii〉 = − 2√
h̃
h̃ij

δΓ

δh̃ij
. (3.7)

We assign weight four to δΓ/δh̃ij and δΓ/δφ, and then (2.39) gives2

2{Sloc,Γ}w=4+4{Sloc, Sloc, Sloc,Γ}w=4 =− 1

2κ2
5

(
{Sloc, Sloc}w=4+{Sloc, Sloc, Sloc, Sloc}w=4

+ δ3R
2 + δ4R

ijRij + δ5R
ijklRijkl

+ κ2R∂
iφ∂iφ+ κ3R

ij∂iφ∂jφ

+ κ4∇2φ∇2φ+ κ5∇i∂jφ∇i∂jφ
)
.

(3.8)

It turns out that with W as in (3.6) the left-hand side of (3.8) does not contain a 1/`3

contribution for any d, and so it is simply equal to (1/`)〈T ii〉 at the order we’re working

in. It is also straightforward to work out the right-hand side of (3.8), and using (3.6) we

finally find

〈T ii〉 =
`

2κ̃2
5

(
− 1

2

(
1

4
`2 − 10a− 2b− c

)
E4 +

1

2

(
1

4
`2 − 10a− 2b+ c

)
W ijklWijkl

+
1

2

(
1

4
`2 − 10e− 2f + 2h

)(
∇2φ∇2φ− 2Rij∂iφ∂jφ+

2

3
R∂iφ∂iφ

))
,

(3.9)

where the Euler term is

E4 = RijklRijkl − 4RijRij +R2 , (3.10)

and the Weyl tensor is here the d = 4 version of

Wijkl = Rijkl +
2

d− 2

(
h̃i[lRk]j + h̃j[kRl]i

)
+

2

(d− 1)(d− 2)
h̃i[kh̃l]jR . (3.11)

In (3.9) the part of the anomaly quadratic in φ is in accord with the d = 4 version of

the Paneitz operator [19] (see also [20–23]). Note that although present throughout the

calculation the constants x1, . . . , x5, y1, y2, y3 do not contribute to the final result (3.9).

3.2 Six-dimensional trace anomaly

To compute the d = 6 anomaly we have to consider the weight-six part of the flow equa-

tion (2.39). At weight four we set

L
(4)
loc = XR2 + Y RijRij + ZRijklRijkl + V R∂iφ∂iφ+ URij∂iφ∂jφ+ T∇2φ∇2φ , (3.12)

2In (3.8) by 2{Sloc,Γ} we mean {Sloc,Γ}+ {Γ, Sloc} and similarly for 4{Sloc, Sloc, Sloc,Γ}.
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and the weight-four part of (2.39) allows us to determine

X =
d`3

4(d−1)(d−2)2(d−4)
− `

2(d−1)2(d−2)2(d−4)

(
3d2(d+1)a−3d2b+2

(
2d2−3d+4

)
c
)

− `

2(d− 1)

(
x1 −

1

d− 2
x2 +

1

4(d− 1)(d− 2)2

(
3d
(
d2 − 8d+ 8

)
x3

−
(
5d2 + 8d− 16

)
x4 − 3(7d− 8)x5

))
,

Y = − `3

(d− 2)2(d− 4)
+

2`

(d− 1)(d− 2)2(d− 4)

(
3d(d+ 1)a+ 3db+ 2

(
d2 − 3d+ 5

)
c
)

− `

d− 2

(
x2 +

1

2(d− 1)(d− 2)

(
3d2x3 + d(2d+ 1)x4 + 3(2d+ 1)x5

))
,

Z = − `

d− 4
c ,

V = − d`3

4(d− 1)(d− 2)2(d− 4)
− d`

2(d− 1)2(d− 2)2

(
d(d+ 1)a+ db+ 2c

)
+

`

2(d− 1)(d− 2)2(d− 4)

(
d2(d+ 1)e+ d2f − 2(3d− 4)h

)
+

`

4(d− 1)

(
x1 −

1

d− 2
x2 +

1

2(d− 1)(d− 2)2

(
3d
(
d2 − 8d+ 8

)
x3

−
(
5d2 + 8d− 16

)
x4 − 3(7d− 8)x5

))
− `

2(d− 1)

(
y1 −

1

d− 2
y2

)
,

U =
`3

(d− 2)2(d− 4)
+

2`

(d− 1)(d− 2)2

(
d(d+ 1)a+ db+ 2c

)
− `

(d− 2)2(d− 4)

(
2d(d+ 1)e+ 2df +

(
d2 − 8d+ 8

)
h
)

+
`

2(d− 2)

(
x2 +

1

(d− 1)(d− 2)

(
3d2x3 + d(2d+ 1)x4 + 3(2d− 1)x5

))
− `

d− 2
y2 ,

T = − `3

2(d− 2)2(d− 4)
− `

(d− 1)(d− 2)2

(
d(d+ 1)a+ db+ 2c

)
+

`

(d− 2)2(d− 4)

(
d(d+ 1)e+ df + d2g +

(
d2 − 9d+ 16

)
h
)

− 3`

4(d− 1)(d− 2)2

(
d2x3 + dx4 + x5

)
− `

d− 2
y3 . (3.13)

With these results as well as (3.6) and the weight-six part of (2.39) we can finally get the

holographic trace anomaly in d = 6:

〈T ii〉 =
`3

2κ̃2
7

(
1

48

(
1

4
`2 − 21a− 3b− c

)
E6 −

1

4

(
1

4
`2 − 21a− 3b+

1

3
c

)
I1

− 1

16

(
1

4
`2 − 21a− 3b− 7

3
c

)
I2 +

1

48

(
1

4
`2 − 21a− 3b+ 3c

)
I3

+
1

48

(
1

4
`2 − 21a− 3b+ 3c

)
J1 +

1

6

(
1

4
`2 − 21a− 3b+ 3c

)
J2

− 1

8

(
1

4
`2 − 21a− 3b+ 3c

)
J3 +

1

48

(
1

4
`2 − 21a− 3b+ 3c

)
J4
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− 1

32

(
1

4
`2 − 21e− 3f + 3h

)(
∂i∇2φ∂i∇2φ− 4Rij∇i∂jφ∇2φ+R∇2φ∇2φ

+ 2

(
2RikjlRkl +RikRjk −RRij +∇2Rij

)
∂iφ∂jφ

−
(
RijRij −

9

25
R2 +

3

5
∇2R

)
∂kφ∂kφ

)
− 1

4
cW iklmW j

klm∂iφ∂jφ+
1

20
cW ijklWijkl∂

mφ∂mφ

)
. (3.14)

Here E6 is the Euler term in six dimensions and I1,2,3 the three terms with Weyl-invariant

densities. Explicit expressions for these, as well as for the trivial anomalies J1,...,4, are

given in appendix C. The first three lines in the part quadratic in φ are in accord with the

Branson operator [26], while the next two terms involving the Weyl tensor were shown to

appear generally in CFTs in six dimensions in [27]. Note that total derivatives have been

dropped in (3.14). Just like in (3.9) the constants x1, . . . , x5, y1, y2, y3 do not contribute to

the final result (3.14).

We note here that the results (3.9) and (3.14) have an obvious generalization to the

case where φ→ φa, where a is a flavor index.

3.3 Bounds

From the field theory point of view there are bounds derived by requiring positivity of the

energy flux in lightlike directions [28]. These are bounds on the three-point function of the

stress-energy tensor, which in d = 6 take the form [30]

C1 ≡ 1− 1

5
t2 −

2

35
t4 ≥ 0 , C2 ≡ 1− 1

5
t2 −

2

35
t4 +

1

2
t2 ≥ 0 ,

C3 ≡ 1− 1

5
t2 −

2

35
t4 +

4

5
(t2 + t4) ,

(3.15)

where t2 and t4 correspond to the angular dependencies of the energy flux at null infinity.

They are related to the coefficients c1, c2 and c3 of the two- and three-point function of

the stress-energy tensor by

t2 =
15(23c1 − 44c2 + 144c3)

16c3
, t4 = −105(c1 − 2c2 + 6c3)

2c3
, (3.16)

where we use results for free fields first obtained in [46] (see also [27, 30]). The coefficient

c3 appears in the two-point function of the stress-energy tensor and thus c3 > 0.

Our computation (3.14) allows us to determine

c1 = − 1

4800
√

10

L5

2κ̃2
7

(
5 +
√

25− 60z
)3/2 (

3
(
5− 20z +

√
25− 60z

)
+ 160c̃

)
,

c2 = − 1

19200
√

10

L5

2κ̃2
7

(
5 +
√

25− 60z
)3/2(

3
(
5− 20z +

√
25− 60z

)
− 160c̃

)
,

c3 =
1

19200
√

10

L5

2κ̃2
7

(
5 +
√

25− 60z
)3/2(

5− 20z +
√

25− 60z + 160c̃
)
,

(3.17)
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where

L2 = −15/Λ , z = 42ã+ 6b̃+ 2c̃ , ã = a/L2 , b̃ = b/L2 , c̃ = c/L2 . (3.18)

We note that (3.17) are invariant under field redefinitions.3 With these results we can now

use (3.15) with (3.16) to obtain

− 1

880

(
5− 20z +

√
25− 60z

)
≤ c̃ ≤ 1

80

(
5− 20z +

√
25− 60z

)
, z ≤ 7

20
. (3.19)

As we see c̃ can take both negative and positive values. For Gauss-Bonnet gravity in the

bulk we reproduce the result of [30–32] (c̃→ λ/12 in their notation),

− 5

192
≤ c̃ ≤ 1

64
. (3.20)

4 Trace anomaly away from fixed points

In this section we establish a connection with Osborn’s local RG. We will work in Einstein

gravity with scalar fields φa. Since we are now interested in the flow of the boundary theory

we will keep the φ-dependence of the various quantities that enter our expressions. Our

flow equation is now

{Sr, Sr} = Ld , (4.1)

with

h̃{Sr, Sr} = h̃ikh̃jl
δSr

δh̃ij

δSr

δh̃kl
− 1

d− 1

(
h̃ij

δSr

δh̃ij

)2

+
1

2
Hab(φ)

δSr
δφa

δSr
δφb

,

Ld = V (φ)−R+
1

2
Hab(φ)∂iφa∂iφ

b .

(4.2)

Following the prescription of [7], we use the splitting (3.1) and write down the local

terms up to second order in derivatives:

Lloc = W (φ)− Φ(φ)R+
1

2
Mab(φ)∂iφa∂iφ

b . (4.3)

Using (4.3) we collect terms of the same functional form in (4.1) and find

V =
1

2
Hab∂aW∂bW −

d

4(d− 1)
W 2 , (4.4a)

−1 =
d− 2

2(d− 1)
WΦ−Hab∂aW∂bΦ , (4.4b)

1

2
Hab = − d− 2

4(d− 1)
WMab −W∂a∂bΦ− ΓMabc∂dWHcd , (4.4c)

0 = W∂aΦ +Mab∂cWHbc , (4.4d)

3With Einstein or Lovelock gravity in the bulk c1, c2 and c3 in (3.17) are such that t4 = 0. This implies

that the corresponding boundary theory is superconformal [30].
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where ΓMabc = 1
2(∂aMbc + ∂bMac − ∂cMab) and ∂a = ∂/∂φa. The holographic beta function

is given by

βa = −2(d− 1)Hab∂b logW , (4.5)

where, although W is negative4 and dimensionful, we use ∂a logW for ∂aW/W .

In order to establish a connection with Osborn’s local RG, we have to study the scal-

ing behavior of the scalar fields φ, which are viewed as sources in the dual field theory.

This is done by introducing a mass term in the bulk potential. For convenience we use

φ for the massless bulk scalar fields, and χ for the massive ones with mass mχ. By solv-

ing (4.4a) perturbatively to second order in χ, one can obtain ∆χ = 1
2d+

√
1
4d

2 +m2
χ`

2 [7].

This reproduces the standard relation between the mass mχ of the scalar field χ and the

scaling dimension ∆χ of the dual operator. To obtain the trace anomaly from the flow

equation (4.1), we have to assign “weight” zero to the scalar fields φ, and weight d −∆χ

to χ. This can be shown to be equivalent to the prescription of [8], which uses a scaling

argument.

4.1 Marginal operators

Here we only include massless scalar fieds φ, which correspond to marginal operators in the

dual field theory. In this case, Sloc nicely breaks down to separate contributions of weight

zero and two, with

L
(0)
loc = W (φ) , L

(2)
loc = −Φ(φ)R+

1

2
Mab(φ)∂iφa∂iφ

b . (4.6)

The weight-d part of the flow equation (4.1) can be brought to the form

− 2√
h̃
h̃ij

δΓ

δh̃ij
− βa 1√

h̃

δΓ

δφa
= − 1

2κ̃2
d+1

2(d− 1)

W
{Sloc, Sloc}w=d . (4.7)

The left-hand side of (4.7) is clearly 〈T ii〉−βa〈Oa〉, where Oa are marginal operators. The

right-hand side of (4.7) can be easily computed using (4.2). It is clear that (4.7) is the

holographic counterpart of the local RG equation of Osborn [33]. We should note here

that (4.7) involves bare quantities, but as was shown already in [7] we can essentially write

down the same equation with the renormalized quantities.

Osborn’s expression is the starting point for the derivation of Weyl consistency con-

ditions that include an equation that resembles an a-theorem. Here we will compute the

various quantities that enter Osborn’s expression holographically, focusing in the four-

4We choose W < 0 so that Hab and Mab can be taken positive-definite consistently with (4.4c) in the

limit where the φ dependence is neglected. In that case Φ is positive as can be seen from (4.4b).
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dimensional case. Using (4.2) we compute

{Sloc, Sloc}w=4 = − 1

2
Φ2E4 +

1

2
Φ2W ijklWijkl +

1

2
Hab∂aΦ∂bΦR

2

− 2Φ∂aΦG
ij∇i∂jφa +Mab∂cΦH

bcR∇2φa

− Φ(Mab + 2∂a∂bΦ)Gij∂iφ
a∂jφ

b − 1

6

(
ΦMab − 6ΓMabc∂dΦH

cd
)
R∂iφa∂iφ

b

+
1

2

(
MacMbdH

cd − 2∂aΦ∂bΦ
)
∇2φa∇2φb + ∂aΦ∂bΦ∇i∂jφa∇i∂jφb

− 1

2

(
Mab∂cΦ + 4∂a∂bΦ∂cΦ− 2ΓMabdMceH

de
)
∂iφa∂iφ

b∇2φc

+ (Mab∂cΦ + 2∂a∂bΦ∂cΦ) ∂iφa∂jφb∇i∂jφc

−
(

1

12
MabMcd −

1

4
MacMbd +

1

2
ΓMabeΓ

M
cdfH

ef

+
1

2
Mab∂c∂dΦ−Mac∂b∂dΦ+∂a∂bΦ∂c∂dΦ−∂a∂cΦ∂b∂dΦ

)
∂iφa∂iφ

b∂jφc∂jφ
d ,

(4.8)

where Gij is the Einstein tensor.

To match with Osborn’s expression we write(
∆W
σ −∆β

σ

)
Γ = −

∫
d4y
√
h̃ σ

1

2κ̃2
5

6

W
{Sloc, Sloc}w=4 , (4.9)

where, with the definitions

∆W
σ = −2

∫
d4y σh̃ij

δ

δh̃ij
, ∆β

σ =

∫
d4y σβa

δ

δφa
, (4.10)

we have

∆W
σ Γ =

∫
d4y
√
h̃ σ〈T ii〉 , ∆β

σΓ =

∫
d4y
√
h̃ σβa〈Oa〉 . (4.11)

The general form of the anomaly is(
∆W
σ −∆β

σ

)
Γ = −

∫
d4y
√
h̃ σ

(
AE4 +BR2 − CW ijklWijkl

+
1

3
Eφa∂

iφa∂iR+
1

6
F φab∂

iφa∂iφ
bR+

1

2
Gφab∂iφ

a∂jφ
bGij

+
1

2
Aφab∇2φa∇2φb +

1

2
Bφ
abc∂

iφa∂iφ
b∇2φc +

1

4
Cφabcd∂

iφa∂iφ
b∂jφc∂jφ

d

)
−
∫
d4y
√
h̃ ∂iσ

(
W φ
a ∂jφ

aGij +
1

3
∂i(DR) +

1

3
Y φ
a ∂

iφR

+ ∂i
(
Uφa∇2φa +

1

2
V φ
ab∂

jφa∂jφ
b

)
+ Sφab∂

iφa∇2φb +
1

2
T φabc∂

jφa∂jφ
b∂iφc

)
,

(4.12)

and it is now straightforward to match coefficients between (4.9) and (4.12)5 For example,

we find

A = C = − 1

2κ̃2
5

3

W
Φ2 . (4.13)

5The results can be found in appendix D.
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The fact that A = C is a consequence of using only Einstein gravity in the bulk. Since

W < 0 we have A,C > 0. We also have

W φ
a =

1

2κ̃2
5

12

W
Φ∂aΦ , Gφab = − 1

2κ̃2
5

12

W

(
(Mab+∂a logW∂bΦ+∂b logW∂aΦ)Φ−∂aΦ∂bΦ

)
,

(4.14)

and we find that the consistency condition

∂aÃ =
1

8

(
Gφab + ∂aW

φ
b − ∂bW φ

a

)
βb , Ã = A+

1

8
W φ
a β

a , (4.15)

is satisfied with the use of (4.4b) and (4.4d).6 We also find that when the φ-dependence

of the various quantities is neglected, then Gφab is positive-definite due to (4.4b) and (4.4c)

if we take W < 0 and Hab to be positive-definite. This gives results discussed in [41, 47],

although the connection to these papers if the φ-dependence is maintained is not clear.

Positivity of Gφab in perturbative field theory has been established in [34].

We also have

Aφab =
1

2κ̃2
5

6

W
MacMbdH

cd , (4.16)

which is negative-definite as expected from the field-theoretic analysis [34]. If the φ-

dependence in (4.14) is neglected then we see using (3.6) that Gφab = −2Aφab, a relation

valid in conformal perturbation theory in field theory [34].

In d = 6 one should be able to repeat the analysis above and check holographically the

consistency conditions of [38]. Here we make a comment related to the metric analogous to

Gφab in d = 6, Gφ6ab. In [40] it was shown in multiflavor φ3 theory in d = 6 that this metric

is perturbatively negative-definite around the trivial fixed point. Furthermore, in [27]

it was pointed out that this metric is proportional to the coefficient of the contribution

W iklmW j
klm∂iφ

a∂jφ
b in the notation of (3.14). Using our result (3.14) we find

Gφ6ab = − 1

160
√

10

L5

2κ̃2
7

(
5 +
√

25− 60z
)3/2

c̃δab , (4.17)

at the fixed point, where δab is the Kronecker delta and we use the definitions (3.18). If

c̃ < 0 this would give us a positive-definite Gφ6ab. However, our bound (3.19) shows that c̃

has an undetermined sign, and so we cannot determine the sign of Gφ6ab from (4.17) at the

fixed point.

Besides the energy-positivity bounds discussed in section 3.3 there are more stringent

constraints arising from causality considerations in the bulk [48]. More specifically, causal-

ity violations occur in the bulk for c 6= 0, unless there is an infinite tower of massive

higher-spin fields. The significance of this result for the a-theorem in a six-dimensional

field theory with nonvanishing Gφ6ab as in (4.17) is unclear.

4.2 Relevant operators

In order to include relevant scalar deformations we add scalar fields χα with nonzero mass

mχ. Then, the bulk Lagrangian becomes

L g̃,φ,χ
B = V (φ, χ)−R+

1

2
Hab∂µφ

a∂µφb +Hαa∂
µχα∂µφ

a +
1

2
Hαβ∂µχ

α∂µχβ . (4.18)

6The remaining consistency conditions of [33] are also satisfied — see appendix D.
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For concreteness consider d = 4 and ∆χ = 2. This corresponds to operators of dimen-

sion two in the dual field theory. Now terms in Sloc do not have definite weight, but we

can still expand

W (φ, χ) = W (φ) +Xα(φ)χα +
1

2
Uαβχ

αχβ + · · · ,

−Φ(φ, χ)R = −Φ(φ)R+ Yα(φ)χαR+ · · · ,
1

2
Mab(φ, χ)∂iφa∂iφ

b =
1

2
Mab(φ)∂iφa∂iφ

b +
1

2
Nαab(φ)χα∂iφa∂iφ

b + · · · .

(4.19)

The action Sloc now contains

L
(2)
loc = −Φ(φ)R+Xα(φ)χα +

1

2
Mab(φ)∂iφa∂iφ

b (4.20)

and

L
(4)
loc =

1

2
Uαβ(φ)χαχβ +Mαa(φ)∂iχα∂iφ

a + Yα(φ)χαR+
1

2
Nαab(φ)χα∂iφa∂iφ

b . (4.21)

We can also break down (4.4) by weight. As an example, writing V (φ, χ) = V (φ) +

Vα(φ)χα + · · · , the weight zero part of (4.4a) gives

V =
1

2
Hab∂aW∂bW −

d

4(d− 1)
W 2 +HαaXα∂aW +

1

2
HαβXαXβ , (4.22)

where V = V (φ) and W = W (φ).

Note that L
(4)
loc includes more weight-four terms, e.g. R2, but these correspond to

ambiguities in the trace anomaly as has been explained in [9]. Contrary to this, the terms

we include in (4.21) do not correspond to ambiguities, although they are of weight four.

This is because the functional derivative with respect to χ that appears now in the flow

equation (4.1) reduces the weight by two. This, then, modifies equations (4.4) and allows

us to determine relations involving the coefficients in (4.20) and (4.21) at weight zero and

two respectively. Equation (4.22) is the result at weight zero.

With (4.20) and (4.21) it is straightforward to work out the local Callan-Symanzik

equation, and find holographic counterparts for the quantities considered in the case of

scalar relevant operators of dimension two by Osborn [33]. For example, the left-hand side

of (4.7) receives new contributions of the form

2(d− 1)

W

(
Hαβ 1√

h̃

δS
(4)
loc

δχα
1√
h̃

δΓ

δχβ
+Hαa 1√

h̃

δS
(2)
loc

δχα
1√
h̃

δΓ

δφa

)
. (4.23)

These give rise to ∆m
σ and the shifts in ∆̂W

σ and ∆̂β
σ in [33, eq. (3.25)].

If all χ’s have ∆χ 6= 2, then Sloc would include

L
(4−∆χ)
loc = Xα(φ)χα , L

(8−2∆χ)
loc =

1

2
Uαβ(φ)χαχβ . (4.24)
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These will result in extra contributions to the left-hand side of (4.7) of the form

2(d− 1)

W

(
Hαa 1√

h̃

δS
(4−∆χ)
loc

δφa
+Hαβ 1√

h̃

δS
(8−2∆χ)
loc

δχβ

)
1√
h̃

δΓ

δχα
=

2(d− 1)

W

(
Hαa∂aXβ +HαγUγβ

)
χβ

1√
h̃

δΓ

δχα
.

(4.25)

The quantity 2(d−1)
W

(
Hαa∂aXβ + HαγUγβ

)
gives a holographic derivation of the operator

Dα
β of [37, eq. (2.12)].

Finally, we note here that dimension three vector operators in the boundary theory

can also be added by considering gauge fields in the bulk. A discussion of this can be

found in [49].
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A ADM formalism

We consider a (d + 1)-dimensional manifold with coordinates xµ and metric g̃µν . We will

work in Euclidean signature so that locally g̃µν = δµν , where δµν is the Kronecker delta.

The line element can be written in the ADM form [45]

ds2 = g̃µνdx
µdxν = N2(y, r)dr2 + h̃ij

(
dyi +N i(y, r)dr

)(
dyj +N j(y, r)dr

)
, (A.1)

where we assume a hypersurface-foliation of the (d + 1)-dimensional spacetime along the

radial coordinate r, and we define

h̃ij = g̃µνe
µ
i e
ν
j , eµi =

∂xµ

∂yi
, (A.2)

as the induced metric and y as the coordinates on the hypersurfaces, while N is the lapse

function and N i the shift vector. We also define the vector

tµ =
∂xµ

∂r
= Nnµ +N ieµi , (A.3)
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where nµ is a vector normal to the hypersurfaces with nµnµ = 1. The inverse of g̃µν is

given by

g̃µν = h̃ijeµi e
ν
j + nµnν , (A.4)

where h̃ij is the inverse of h̃ij .

The starting point for the decomposition of curvature tensors is the Gauss-Weingarten

equation,

∇νeµi e
ν
j = Γkije

µ
k −Kijn

µ , (A.5)

as well as the equations

∇µnνeνi = Ki
jeµj + ain

µ , (A.6a)

∇νnµeνi = Ki
jeµj , (A.6b)

where

Kij = ∇(µnν)e
µ
i e
ν
j =

1

2
£n g̃µνe

µ
i e
ν
j , (A.7)

with £n the Lie derivative along nµ, is the extrinsic curvature, Γijk is the Christoffel symbol

defined from h̃ij , and ai = aµe
µ
i with aµ = ∇νnµnν . With the help of (A.5) and (A.6), and

with the definition [∇µ,∇ν ]Aρ = RρσµνA
σ for the Riemann tensor, we can derive

Rµνρσe
µ
i e
ν
j e
ρ
ke
σ
l = Rijkl −KikKjl +KilKjk , (A.8a)

Rµνρσn
µeνi e

ρ
je
σ
k = ∇kKij −∇jKik , (A.8b)

Rµνρσn
µeνi n

ρeσj = −£nKij +KikK
k
j +∇iaj − aiaj , (A.8c)

where £nKij ≡ £nKµν e
µ
i e
ν
j , Kµν = ∇µnν−nµaν , and∇iaj ≡ ∇µaνeµi eνj . Equations (A.8a)

and (A.8b) are known as the Gauss-Codazzi equations, while equation (A.8c) is known as

the Ricci equation. The decomposition of the Ricci tensor Rµν = Rρµρν is given by

Rµνe
µ
i e
ν
j = Rij −£nKij −KKij + 2Ki

kKkj +∇iaj − aiaj , (A.9a)

Rµνn
µeνi = −∂iK +∇jKj

i , (A.9b)

Rµνn
µnν = −h̃ij£nKij +KijKij +∇iai − aiai . (A.9c)

Finally, the Ricci scalar R = g̃µνRµν has the decomposition

R = dR− 2h̃ij£nKij −K2 + 3KijKij + 2
(
∇iai − aiai

)
. (A.10)

In terms of the lapse it is not hard to see that ai = −∂i logN , and so

∇iaj − aiaj = − 1

N
∇i∂jN . (A.11)

It is now possible to express some of the above quantities using the Lie derivative of the

vector tµ of (A.3) as opposed to nµ, as well as the lapse and shift, since £t = N£n + £N .

From (A.3) we see that £t = ∂/∂r on a scalar. We define the tensor

Lij = £nKij +
1

N
∇i∂jN =

1

N

(
K̇ij −£NKij +∇i∂jN

)
, K̇ij ≡ £tKij , (A.12)
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with the aid of which we can express (A.8c) as

Rµνρσn
µeνi n

ρeσj = Ki
kKkj − Lij , (A.13)

and also (A.9a), (A.9c) and (A.10) as

Rµνe
µ
i e
ν
j = Rij −KKij + 2Ki

kKkj − Lij , (A.14)

Rµνn
µnν = KijKij − L , L = h̃ijLij , (A.15)

and

R = dR−K2 + 3KijKij − 2L . (A.16)

Now, from (A.7) we find

˙̃
hij ≡ £th̃ij = 2NKij +∇iNj +∇jNi , (A.17)

and we can also compute

£t

√
h̃ =

√
h̃
(
NK +∇iNi

)
. (A.18)

Finally,

L =
1

N

(
1√
h̃

£t

(√
h̃K
)

+∇i(∂iN −KNi)

)
−K2 + 2KijKij , (A.19)

and so we can write

R = dR+K2 −KijKij −
2

N

(
1√
h̃

£t

(√
h̃K
)

+∇i(∂iN −KNi)

)
. (A.20)

With (A.20) we can easily read off the Gibbons-Hawking-York term for Einstein grav-

ity [42, 43].

B Boundary terms

In this appendix we work out the allowed φ-dependent boundary terms L φ
∂ in (2.4). The

form of L h̃
∂ has been determined in [15].

The transformation properties of a general symmetric two-index tensor Sµν with the

ADM decomposition

Sµνdx
µdxν = F (y, r)dr2 + 2Gi(y, r)drdy

i +Hij(y, r)dy
idyj (B.1)

under the infinitesimal transformation considered in [44], namely

r → r′ = r + ε(y, r) ,

yi → y′i = yi + εi(y, r) ,
(B.2)

can be seen as follows.7 Under a change of coordinates and demanding that Sµν be invariant

we get the condition

Fdr2 + 2Gidrdy
i +Hijdy

idyj = F ′dr′2 + 2G′idr
′dy′i +H ′ijdy

′idy′j , (B.3)

7Note that under a finite diffeomorphism of the form xµ → fµ(x) we require fr(y, r0) = r0 so that the

location of the boundary is fixed.
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where the primed quantities on the right-hand side are functions of r′, y′. Also,

dr′ = dr + ∂rεdr + ∂iεdy
i ,

dy′i = dyi + ∂rε
idr + ∂jε

idyj ,
(B.4)

and from the first equation we see that when dr = 0 then dr′ = 0 only if ∂iε = 0. This is

a condition we require only on the boundary, and thus ∂iε(y, r0) = 0. Keeping only terms

involving the derivatives of ε, εi, we get

F ′ = F − 2F∂rε− 2Gi∂rε
i ,

G′i = Gi − F∂iε−Gi∂rε−Gj∂iεj −Hij∂rε
j ,

H ′ij = Hij −Gi∂jε−Gj∂iε−Hik∂jε
k −Hjk∂iε

k .

(B.5)

As a check, we note that taking Hij = h̃ij , F = N2 + h̃ijN
iN j and Gi = Ni reproduces

equation (C.2) of [44] for the transformation of the lapse, shift and induced metric.

We now apply this procedure to the tensor ∂µφ∂νφ, which has the ADM form

∂µφ∂νφ = (N£nφ+ £Nφ)2N2dr2 + 2(N£nφ+ £Nφ)∂iφdrdy
i + ∂iφ∂jφdy

idyj , (B.6)

and get

δ(∂iφ∂jφ) = −∂iφ∂kφ∂jεk − ∂jφ∂kφ∂iεk . (B.7)

Also, if we use ∂iε(y, r0) = 0 then

δKij = −∂iεkKkj − ∂jεkKki , (B.8)

and so

δKij = −
(
h̃ikKjl + gjkKil

)
δh̃kl + gikgjlδKjl = Kik∂kε

j +Kjk∂kε
i . (B.9)

Thus, with the use of (B.7) and (B.9) we finally find

δ
(
Kij∂iφ∂jφ

)
= 0 , (B.10)

which shows that Kij∂iφ∂jφ is an allowed boundary term. Furthermore, since δK = 0 and

δ(∂iφ∂iφ) = 0, we conclude that K∂iφ∂iφ is also allowed.

There is a further term that is quadratic in φ, has three derivatives at the boundary

and one of them is a radial derivative, namely ∂i£nφ∂iφ, or, equivalently, £nφ∇2φ. The

transformation property of the Lie derivative can be worked out by considering

dφ = (N£nφ+ £Nφ)dr + ∂iφdy
i = (N£nφ+ £Nφ)′dr′ + (∂iφ)′dy′i , (B.11)

which gives

δ(N£nφ) = −N£nφ∂rε⇒ δ(£nφ) = 0 . (B.12)

Furthermore, we have δ(∇i∂jφ) = −∇i∂kφ∂jεk −∇j∂kφ∂iεk and so

δ
(
∇2φ

)
= 0 . (B.13)

Thus, from (B.12) and (B.13) we see that the term £nφ∇2φ is an allowed boundary term.

Note that the difference between the terms ∇2φ∇2φ and ∇µ∂νφ∇µ∂νφ in (2.2) contains

just the boundary terms in L φ
∂ of (2.4). Nevertheless, the coefficient of ∇µ∂νφ∇µ∂νφ

in (2.2) contributes to the anomaly (3.14) while that of ∇2φ∇2φ does not.
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C Expressions for six-dimensional curvature tensors

A complete basis of scalar dimension-six curvature terms consists of [50]

K1 = R3, K2 = RRijRij , K3 = RRijklRijkl, K4 = RijRjkR
k
i,

K5 = RijRklRiklj , K6 = RijRiklmR
klm
j , K7 = RijklRklmnR

mn
ij ,

K8 = RijklRmjknRi
mn

l, K9 = R∇2R, K10 = Rij∇2Rij , K11 = Rijkl∇2Rijkl,

K12 = Rij∇i∂jR, K13 = ∇iRjk∇iRjk, K14 = ∇iRjk∇jRik,

K15 = ∇iRjklm∇iRjklm, K16 = ∇2R2, K17 =
(
∇2
)2
R.

In equation (3.14) in the main text we use the combinations

I1 =
19

800
K1 −

57

160
K2 +

3

40
K3 +

7

16
K4 −

9

8
K5 −

3

4
K6 +K8 ,

I2 =
9

200
K1 −

27

40
K2 +

3

10
K3 +

5

4
K4 −

3

2
K5 − 3K6 +K7 ,

I3 = −11

50
K1 +

27

10
K2 −

6

5
K3 −K4 + 6K5 + 2K7 − 8K8

+
3

5
K9 − 6K10 + 6K11 + 3K13 − 6K14 + 3K15 ,

E6 = K1 − 12K2 + 3K3 + 16K4 − 24K5 − 24K6 + 4K7 + 8K8 ,

J1 = 6K6 − 3K7 + 12K8 +K10 − 7K11 − 11K13 + 12K14 − 4K15 ,

J2 = −1

5
K9 +K10 +

2

5
K12 +K13 ,

J3 = K4 +K5 −
3

20
K9 +

4

5
K12 +K14 ,

J4 = −1

5
K9 +K11 +

2

5
K12 +K15 .

D Anomaly coefficients and consistency conditions in d = 4

Osborn’s consistency conditions in d = 4 can all be verified using the holographic re-

sult (4.9). First, we list here the holographic results for the coefficients in (4.12). We have

A = C = − 1

2κ̃2
5

3

W
Φ2, B =

1

2κ̃2
5

27

W
∂aΦ∂bΦH

ab , D = 0 , (D.1)

Eφa = − 1

2κ̃2
5

18

W
Mab∂cΦH

cd, W φ
a =

1

2κ̃2
5

12

W
Φ∂aΦ, Y φ

a = − 1

2κ̃2
5

18

W
Mab∂cΦH

bc, Uφa = 0,

(D.2)

F φab = − 1

2κ̃2
5

6

W

(
MabΦ + 3∂aΦ∂bΦ + 3∂cMab∂dΦH

cd − 6Mc(a∂b) logW∂dΦH
cd

+ 6Mc(a∂b)∂dΦH
cd + 6Mc(a∂b)H

cd∂dΦ
)
,

Gφab = − 1

2κ̃2
5

12

W

(
(Mab + ∂a logW∂bΦ + ∂b logW∂aΦ)Φ− ∂aΦ∂bΦ

)
, (D.3)

Aφab =
1

2κ̃2
5

6

W
MacMbdH

cd , V φ
ab = − 1

2κ̃2
5

6

W
∂aΦ∂bΦ , Sφab =

1

2κ̃2
5

6

W
∂aΦ∂bΦ ,
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Bφ
abc = − 1

2κ̃2
5

6

W

(
∂aΦ∂bΦ∂c logW + 2∂cΦ∂(aΦ∂b) logW + 2Mc(a∂b)Φ− 2ΓMabdMceH

de
)
,

T φabc =
1

2κ̃2
5

6

W

(
Mab∂cΦ− 2∂aΦ∂bΦ∂c logW + 2∂a∂bΦ∂cΦ− 2Mc(a∂b)Φ

)
,

(D.4)

and

Cφabcd = − 1

2κ̃2
5

2

W

(
MabMcd − 3Ma(cMd)b

+ 3Mab∂(cΦ∂d) logW + 3Mcd∂(aΦ∂b) logW

− 3Mac∂(bΦ∂d) logW − 3Mbc∂(aΦ∂d) logW

− 3Mad∂(bΦ∂c) logW − 3Mbd∂(aΦ∂c) logW

− 3∂aΦ∂bΦ∂c logW∂d logW − 3∂cΦ∂dΦ∂a logW∂b logW

+ 6∂a∂bΦ∂(cΦ∂d) logW + 6∂c∂dΦ∂(aΦ∂b) logW

+ 3∂aΦ∂bΦ∂c∂d logW + 3∂cΦ∂dΦ∂a∂b logW

+ 6∂dMc(a∂b)Φ + 6ΓMab(c∂d)Φ− 6∂(aΦΓMb)cd −6ΓMabeΓ
M
cdfH

ef
)
.

(D.5)

With these results and with the use of (4.4b), (4.4c), (4.4d), and (4.5) we find that the

consistency conditions of [33], namely

8∂aA−Gφabβb = −£βW
φ
a ,

2Eφi +Aφabβ
b = −£βU

φ
a ,

8B −Aφabβaβb = £β
(
2D + Uφa β

a
)
,

4∂aB +
(
Aφab + F φab

)
βb = £β

(
∂aD + Y φ

a − Uφa
)
,

Gφab + 2Aφab + Λφab = £βS
φ
ab, Λφab = 2∂aβ

cAφcb + βcBφ
cab ,

2
(
Aφab + F φab

)
+ Λφab + βc

(
2Āφc(ab) − Ā

φ
abc

)
= £β

(
Sφab −Aφab − 2∂(aU

φ
b) + V φ

ab

)
,

Āφabc = ∂cA
φ
ab −Bφ

c(ab) ,

∂(aG
φ
b)c −

1

2
∂cG

φ
ab +Bφ

abc + ∂cβ
dBφ

abd + Cφabcdβ
d =

1

2
£βT

φ
abc + ∂a∂bβ

dSφcd ,

(D.6)

are satisfied.
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