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1 Introduction

A recent programme in the application of gauge/gravity duality to condensed matter sys-

tems is a move away from novel phenomena such as high temperature superconductivity

towards reproducing well understood physics such as metal-insulator transitions. This ap-

proach is novel because the field theories in question are strongly coupled and quite distinct

from the “usual” field theories of condensed matter. An example of standard condensed

matter phenomenology that has been garnering interest in holography [1–3] is anyon physics

in (2 + 1)-dimensions. We continue the study of [2] which considers the low energy physics

of a strongly coupled anyonic material in a magentic field by examining the same material

in the absence of a magnetic field.

Anyons are particles whose statistics interpolate between Fermi-Dirac and Bose-

Einstein. They can be formed from either bosons or fermions by attaching some fixed

unit of magnetic flux to each fundamental unit of charge. When two such particles are ex-

changed the Aharanov-Bohm effect in (2+1)-dimensions contributes to the exchange phase

angle θ an extra angle dependent on the amount of attached flux. As such the exchange

phase angle generically becomes fractional. The resultant many body wave-functions then

have fractional statistics [4, 5].

In field theory one way to formalise this “attaching of flux” is to consider SL(2,Z) trans-

formations of the generating functionals of U(1) conserved currents. The group SL(2,Z)

can be generated by two non-commuting operations: S and T . For simplicity let’s assume

that we have a generating functional of the form〈
exp

(
−i
∫
dd+1x (JµAµ)

)〉
(1.1)
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where Jµ is a gauge invariant, conserved current and Aµ an external gauge field. In terms

of operations on this generating functional a T -transformation is achieved by adding a

Chern-Simon’s term in the external gauge field i.e.〈
exp

(
−i
∫
dd+1x

(
JµAµ −

K

2π
εµνρAµ∂νAρ

))〉
, (1.2)

where K is the Chern-Simon’s level. An S-transformation on the other hand is achieved by

introducing a new external gauge field Bµ coupled to the topological current Jµ∗ = εµνρ∂νAρ
and path integrating over Aµ. The subsequent generating functional for J∗µ contains a

dynamical gauge field Aµ whose propagator, in a perturbative theory, is induced by current

loops. At the level of the classical equation of motion for A in this new theory we see that

for every unit of charge there must also by K
2π units of magnetic flux

Jµ =
K

2π
εµνρ∂νAρ . (1.3)

The standard argument for why two charged particles in such a theory, when exchanged,

have fractional statistics then follows from the discussion of the Aharanov-Bohm effect in

(2 + 1)-dimensions above. For further details see [6].

Consider one such generating functional at non-zero charge density q, magnetic field B

and temperature T . Under an STK operation [2, 7–9] the charge density d∗ and magnetic

field B∗ of the “anyonised” system are

d∗ = −2πB , B∗ = q − K

2π
B . (1.4)

We can then consider the generating functional of the U(1) current whose background num-

ber density is d∗. If the ground state of the anyonised theory is chosen to have no magnetic

field (B∗ = 0) then we say the theory describes anyons. This is because in terms of the

original charge density and magnetic field, q and B, a unit of charge density is accompa-

nied by K
2π units of magnetic flux. More generally acting with SL(2,Z) transformations

on the generating functionals for U(1) currents creates whole families of theories and may

be useful in understanding the quantum Hall effect. Given that such anyon particles have

yet to be observed, but nonetheless do seem quite natural in (2 + 1)-dimensional systems,

perhaps holography can help to identify key signatures for their existence.

In this paper we describe the low energy physics of a particular strongly coupled

anyon material. We shall consider the field theory dual to the D3-D5 probe brane system

at non-zero temperature, density and magnetic field as our “original theory” and anyonise

it to one with vanishing magnetic field but non-zero density and temperature. Such a

model is sufficiently simple to allow us to calculate the anyon diffusion constant and DC

conductivities analytically but complex enough to display features such as a Drude-like

peak in the AC conductivity.

In section 2 we detail the holographic model under consideration. We shall work

exclusively with massless anyons for simplicity. Subsequently, in section 2.1, we consider

the pole structure of the theory with specific reference to the spectral functions. There will
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be qualitative agreement between the anyon spectral function at large statistical parameter

and the spectral function of the original field theory at large charge densities and small

magnetic fields. Namely we find a sound-like mode that becomes gapped as ground state

parameters are tuned. The difference between the original theory and the anyonised theory

however is the following: a gapped zero sound in the original theory is a consequence of

non-zero magnetic fields [10, 11] while in the anyon theory it is a consequence of statistics.

Curiously we shall also find the same qualitative behaviour for small statistical parameter

although the zero sound mode will be distinct from that found in the large parameter

regime. In sections 2.2, 2.3 and 2.4 we consider in more detail zero sound, diffusion and

the conductivities respectively highlighting where observed features may be generic. We

shall find in the AC conductivity evidence for the anyonic analogue of the metal-insulator

transition.

2 Holographic model

We will use as our bulk theory a deformation of the D3-D5 brane system where the D5-

branes are probes of the background given by Nc D3-branes at finite temperature. The

contribution of a D5-brane to the bulk action1 is

S(0)
D5 = −TD5

∫
d6ξ
√
− det (g + F ) (2.1)

where ξ are the embedding coordinates, TD5 the tension of the D5 brane and F the U(1)

world-volume field strength. We have absorbed a factor of 2πα′ into the field strength

compared to the usual definition and thus it is dimensionless. As the D5 brane is treated

as a probe we neglect its back-reaction upon the bulk metric which we must specify. We

take the metric g to be

ds2 = gtt(r)dt
2 + g11(r)

(
dx2 + dy2 + dz2

)
+ grr(r)dr

2 + `2ds2
S5 ,

= −r
2

`2
f(r)dt2 +

r2

`2
(
dx2 + dy2 + dz2

)
+
`2

r2

dr2

f(r)
+ `2ds2

S5 , (2.2)

f(r) = 1−
r4
H

r4
.

where r = rH = πT`2 with ` the AdS radius. This metric describes a thermal state which

acts as a heat bath in the field theory to the fermions and bosons described by the probe

brane. We now choose ` ≡ 1. The embedding of the probe brane we will consider is the

usual massless black hole embedding, maintaining chiral symmetry, with some background

U(1) baryon number charge carried by bosonic and fermionic excitations [15]. This model

was considered in the anyon context in [2]. As we have chosen to work with massless

bosons and fermions while maintaining chiral symmetry the embedding is determined by

the gauge field configuration since all the scalar profiles are trivial.

1We shall only consider one or a small number of probe D5-branes in the present paper to avoid them

“blowing-up” to a D7-brane [12–14].
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t x y z X1 X2 X3 X4 X5 X6

Nc D3 × × × ×
Nf D5 × × × × × ×

Table 1. The embeddings of the D3 and D5 branes in ten dimensional Minkowski space.

The action of the anyonised D3-D5 probe brane model is given by

S(0)
anyon = S

(0)
D5 −N5

∫
d2+1x

[
A(0)
µ (x)Aµ(1)(x) +

n

2
εµνρA(0)

µ (x)∂νA
(0)
ρ (x)

]
(2.3)

where we work in Ar(r, x
µ) ≡ 0 gauge, N5 = TD5VS2 and

AM (r, x)dxM
r�1
=

[
A(0)
µ (x) +

1

r
A(1)
µ (x) +O(1/r2)

]
dxµ . (2.4)

Here the K of (1.4) is given by 2πN5n. See [2] for further discussion of this action and

more general SL(2,Z) transformations. The interpretation of our bulk gauge field at the

AdS boundary will be a little unusual in the holographic context so we shall now review

it briefly. In the holographic dictionary we expand the bulk gauge field near the boundary

and the leading and subleading terms provide data about some perturbing source and the

subsequent expectation value of the operator to which it couples in the strongly coupled

field theory. We parameterise these falloffs as

AM (r, xµ)dxM =

[
v∗µ(x) +

1

r
ε νρ
µ ∂ν

(
nv∗ρ(x) +

1

2πN5
A∗ρ(x)

)
+O(1/r2)

]
dxµ . (2.5)

Subsequently, in the field theory, we interpret

Jµ∗ (x) =
1

2π
εµνρ∂νv

∗
ρ(x) (2.6)

as the expectation value of the operator sourced by the external gauge field A∗µdxµ. We

shall choose the Euclideanised time component of the gauge field A∗τ to satisfy

µ∗ = iT

∫ 1
T

0
dτ A∗τ , (2.7)

where µ∗ is interpreted as the non-zero anyon number chemical potential. The ground states

described by the action (2.3) are then those of massless thermal anyons with statistical

parameter n at non-zero anyon density.

Varying either the action of (2.1) or (2.3) with respect to the bulk gauge field yields

the same equation of motion as the additional term in (2.3) is a boundary term [16].

We will demand that our ground state is stationary and preserves various symmetries:

time translation, spatial translations and SO(2) spatial rotation invariance. Given our

restrictions it is straightforward to check that a solution to the bulk equations of motion is

At(r) = c1

(
1

r
2F1

[
1

4
,

1

2
,

5

4
;−c

2
1 + c2

2

r4

]
− 1

πT
2F1

[
1

4
,

1

2
,

5

4
;−c

2
1 + c2

2

(πT )4

])
, (2.8)

A2(x1) = c2x
1 , (2.9)
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where i, j denote x1, x2, c1 and c2 are arbitrary constants and we have used regularity at

the future horizon. Expanding near the boundary we identify

v∗t = − c1

πT
2F1

[
1

4
,
1

2
,
5

4
;−c

2
1 + c2

2

(πT )4

]
, v∗1 = 0 , v∗2 = c2x

1 , (2.10)

from the leading terms and from the subleading terms

εij∂j

(
nv∗t +

1

2πN5
A∗t

)
= 0 , c1 = n (∂1v

∗
2 − ∂2v

∗
1) +

1

2πN5
(∂1A

∗
2 − ∂2A

∗
1) , (2.11)

where we have used stationarity to simplify the first constraint. Imposing (2.7) for constant

µ∗ then satisfies the first constraint while choosing zero magnetic field in the ground state,

B∗ = 0, means that

c1 = n (∂1v
∗
2 − ∂2v

∗
1) . (2.12)

Identifying − c1
2πn = d∗, with d∗ the anyon number density, then additionally implies that

c2 = −2πd∗ completely fixing our ground state solution to be

At(r) = −2πnd∗
r

2F1

[
1

4
,
1

2
,
5

4
;−(2πd∗)

2

(
n2 + 1

r4

)]
+

2nd∗
T

2F1

[
1

4
,

1

2
,

5

4
;−(2πd∗)

2

(
n2 + 1

(πT )4

)]
, (2.13)

A1(x2) = 0 , A2(x1) = −2πd∗x
1 . (2.14)

This ground state also solves the equations of motion coming from (2.3). Again this is

because the additional term in (2.3) is a boundary term. In terms of the theory described

by (2.1) the constants c1 and c2 are the boundary charge density d = q/N5 and the

boundary magnetic field B. The relation between c1 and c2 can then be written as d = nB

and we see that in terms of the original theory this anyonised theory describes particles

with K
2π = nN5 units of magnetic flux attached to each unit charge (compare with (1.4)).

Now we derive the equations of motion for density fluctuations about our thermal,

non-zero anyon density ground state. Again because the difference between (2.1) and (2.3)

is a boundary term the equations of motion for the fluctuations are the same. We shall

allow the perturbations of the boundary field theory to be space and time dependent.

However we can make use of spatial SO(2) rotation invariance in the boundary and restrict

to spatial dependence in the x1 direction. Upon replacing A(r, xµ) 7→ A(r, xµ) + a(r, xµ)

and Fourier decomposing

aµ(r, x) =

∫
dωdk1

(2π)2
aµ(r, k1) exp

(
−iωt+ ik1x

1
)
, (2.15)

one can obtain the fluctuation equations of motion. These equations overspecify the prob-

lem due to gauge redundancy in the bulk and are thus unilluminating. As such we only

record the ar equation which translates to a gauge constraint

ω a′t + u(r)2k1 a
′
1 = 0, (2.16)
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where

u(r)2 ≡ |gtt|grr −A′2t
grr
g11

(
g2

11 + (2πd∗)
2
) =

|gtt|g11

g2
11 + (1 + n2) (2πd∗)

2 , (2.17)

and prime denotes differentiation with respect to r. By aligning the momentum along the

x1-direction we find that the gauge-invariant fluctuations are a2 and

E1(r, ω, k1) ≡ k1 at(r, ω, k1) + ω a1(r, ω, k1). (2.18)

The equations of motion for the gauge fluctuations in terms of E1 and a2 are then

E′′1 +

∂r log

 g
3/2
11 |gtt|g

−1/2
rr(

ω2 − u(r)2k2
1

)
u(r)

(
g2

11 + (2πd∗)
2
)
E′1 +

grr
|gtt|

(
ω2 − u(r)2k2

1

)
E1

= −i (2πd∗)

u(r)
(
g2

11 + (2πd∗)
2
)
g

1/2
rr

|gtt|g3/2
11

∂r
 g

1/2
11 g

−1/2
rr A′t

u(r)
(
g2

11 + (2πd∗)
2
)
×

(
ω2 − u(r)2k2

1

)
a2 , (2.19a)

a′′2 +

∂r log

 g
3/2
11 |gtt|g

−1/2
rr

u(r)
(
g2

11 + (2πd∗)
2
)
 a′2 +

grr
|gtt|

(
ω2 − u(r)2k2

1

)
a2

= +i (2πd∗)

u(r)
(
g2

11 + (2πd∗)
2
)
g

1/2
rr

|gtt|g3/2
11

∂r
 g

1/2
11 g

−1/2
rr A′t

u(r)
(
g2

11 + (2πd∗)
2
)
E1 . (2.19b)

We now layout the numerical procedure [17] used to determine solutions to the bulk

equations, (2.19a) and (2.19b), while satisfying the mixed quantisation condition. We shall

employ the notation of [11]. Eqs. (2.19a) and (2.19b) are second-order, hence for each field,

E1 and a2, we need two boundary conditions to specify a solution completely. On the black

hole horizon, a solution for E1 or a2 looks like a linear combination of in-going and out-going

waves, with some normalizations. The prescription for obtaining the retarded Green’s func-

tion requires that we choose our normalisations to remove any outgoing modes [18–21]. Let

~V (r, ω, k1) ≡

(
E1(r, ω, k1)

a2(r, ω, k1)

)
(2.20)

and at large r identify

~V (r, ω, k1) = ~V (0)(ω, k1) +
1

r
~V (1)(ω, k1) +O(1/r2) . (2.21)

For mixed quantisation a boundary condition is given by fixing,

N5

[(
1/p2 0

0 1

)
~V (1)(ω, k1) + in

(
0 1

1 0

)
~V (0)(ω, k1)

]
= ~Vb = fixed (2.22)
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to some value, denoted ~Vb, at the boundary. For numerical purposes however it is preferable

to fix all our boundary conditions at the future black hole horizon. The second boundary

condition is then the normalisation of the ingoing wave at the horizon. The two ways to

fix boundary conditions are related to each other by a change of basis transformation. The

vector of near-horizon normalization factors, ~Vnh, is, when the temperature is non-zero,

~Vnh ≡ lim
r→rH

exp

(
iω

∫
dr
√
grr/|gtt|

)
~V (r, ω, k1). (2.23)

Notice that ~Vnh is constant, independent of r, ω, and k1. On the right-hand-side of

eq. (2.23), the exponential factor is designed to cancel the exponential factor that

represents an in-going wave at the future horizon.

We now pick two convenient values of ~Vnh and solve the equations for each of these

choices. This provides us with a basis of solutions in terms of which we can write any

solution. The typical choices we have used in our numerics are: ~V
(1)

nh = (1, 1)T and ~V
(2)

nh =

(1,−1)T . Let us call the corresponding solutions ~V (1) and ~V (2) and use them to define a

matrix P (r, ω, k1) by

P (r, ω, k1) ≡
(
~V (1)(r, ω, k1), ~V (2)(r, ω, k1)

)
. (2.24)

Using this matrix we can write any solution to the equations of motion with initial condition
~Vnh at the horizon as

~V (r, p) = P (r, p) ~Vnh. (2.25)

In terms of the bulk to boundary propagator P and the near horizon vector ~Vnh we have

~Vb = N5 lim
r→∞

[(
1/p2 0

0 1

)(
−r2P ′(r, ω, k1)

)
+ in

(
0 1

1 0

)
P (r, ω, k1)

]
~Vnh .

We call any solution to the bulk equations with ~Vb = 0 and complex frequency or complex

momentum a quasi-normal mode. For a non-trivial solution with ~Vb ≡ 0 and ~Vnh 6= 0 it

must be the case that [17]

lim
r→∞

det

[(
0 1

1/p2 0

)(
−r2P ′(r, ω, k1)

)
+ inP (r, ω, k1)

]
= 0 (2.26)

which places a constraint on ω and k1 yielding the dispersion relation of the mode.2 To

satisfy this constraint it is generally necessary to complexify one of ω or k1 after which we

obtain dispersion relations of the form ω(k1) and k1(ω) respectively. We shall have cause

to use both and the choice of complexification is demonstrated by which variable is chosen

to be a function of the other. The retarded Green’s function can also be obtained from

2Note that the constraint for finding quasi-normal modes, as we have written it, is blind to poles at zero

momentum and frequency.
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P (r, ω, k1) and is given by

G∗R(p) =
1

(2π)2N5
lim
r→∞

{(
0 −ω
1 0

)
P (r, p)×

[(
1/p2 0

0 1

)(
−r2P ′(r, p)

)
+ in

(
0 1

1 0

)
P (r, p)

]−1(
0 1

ω 0

)
=

(
〈J∗x(p)J∗x(−p)〉 〈J∗x(p)J∗y (−p)〉
〈J∗y (p)J∗x(−p)〉 〈J∗y (p)J∗y (−p)〉

)
. (2.27)

If the reader would prefer components with t as opposed to x they need only replace the

explicit factors of ω by −k1.

Finally we note that because of scale covariance we can remove the temperature as

a variable by scaling other variables, such as the anyon number density, by appropriate

powers of πT . As such any object that comes with a tilde is invariant under a Weyl

rescaling of the boundary metric.

2.1 The spectral function and poles

We now turn to a quasi-normal mode analysis to determine how the system relaxes per-

turbations. There are two regimes we shall be interested in, namely, late times and low

frequencies and momenta with respect to the temperature. The late time behaviour can

easily be understood by searching for poles with small imaginary parts in the complex fre-

quency plane. These near origin poles also contribute in the low frequency and momentum

regime. However the response of the system in this latter case can be strongly affected

by the size of the residues of the Green’s function at the poles. To complement the pole

structure analysis therefore we also compute the spectral function

χµν(ω, k1) ≡ i
[
(G∗R)µν (ω, k1)− (G∗R)µν (ω, k1)†

]
, (2.28)

where (G∗R)µν (ω, k1) is the retarded Green’s function. The spectral function is a real-valued

function of real ω and k1, and hence is observable. Physically, χµν(ω, k1) determines the

rate of work done on the system by a small external source [22]. A pole in Green’s function

at complex frequency or momentum with sufficiently large residue will produce a large peak

in χµν(ω, k1). Given knowledge of the spectral function, which is the imaginary part of

the Green’s function we can reconstruct ReGµνR (ω, k1) using the Kramers-Kronig relation,

provided the large-ω and large-k1 asymptotics have been suitably regulated [22].

We begin by considering a weakly anyonic (n� 1) system. The field theory consists of

bosons and fermions with a small extra statistical angle and thus a naive expectation would

be that the anyonised system closely resembles the original system. Hence we should briefly

review the physics of the D3-D5 probe brane at non-zero temperature, density and magnetic

field. It is already well known that the strongly coupled theory described by the probe

branes has zero sound and diffusion modes [10, 11, 23–25]. Extending the Green’s function

to complex frequency and real momentum the diffusion mode is represented by a purely

imaginary pole that starts at the origin as momentum goes to zero. As the momentum is

– 8 –
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increased it sinks to larger imaginary frequency until it connects with another imaginary

pole from lower in the complex frequency plane. The result is two complex poles with

opposite sign real parts i.e two imaginary poles join to produce two poles with real parts

(see [11] for relevant diagrams). If the density is sufficiently large (see [11] for the meaning

of sufficiently large) then the complex pole will have the dispersion relation associated with

zero sound. When it is too small the resultant complex pole has a dispersion relation whose

real part has a gradient closer to one.

It was observed that for small magnetic field in D3-D5 and D3-D7 probe brane sys-

tems [11] the qualitative motion of the poles at zero magnetic field continues to hold even

though the zero sound mode becomes gapped [10, 11, 23]. This is because the thermal

energy of the background is sufficiently high so as to overcome the gap. However as the

magnetic field is increased further the zero sound and diffusion poles become distinct and

a region of reduced weight appears in the spectral function (see figure 1). In this latter

case the diffusion pole simply sinks deeper into the complex plane rather than connecting

with another pole. Additionally at zero frequency the sound mode is already present as a

complex pole. This complex pole has a smaller imaginary part than the diffusion pole for

sufficiently large momentum and thus dominates the low energy excitations of the system.

It should be noted that if we choose to make momentum complex in our Green’s function

then the pole motion is very different and diffusion and zero sound always come from the

same single complex pole - no matter the strength of the magnetic field. It is the absolute

value of this complex momentum pole that is shown by the black dots in figure 1.

Returning now to the anyon system we see precisely the same qualitative behaviour at

large n. The lower spectral functions in figure 1 are very similar to those above although the

peaks are displaced and in some cases broadened. It is important to emphasise however a

difference between the original and anyonised systems. The former only develops a massive

zero sound in the presence of a non-zero magnetic field. The latter has no magnetic field and

develops a gap as a function of statistics alone. Additionally whether the zero sound gap

is overcome by the thermal energy or not is purely dependent on the statistical parameter

n. We shall compute the mass of the zero sound mode in section 2.2.

At the opposite extreme we have the strongly anyonised (n� 1) system. Surprisingly

we find that the spectral function is qualitatively similar to the strongly anyonised case. As

the anyon density is decreased from large to small values (top line left to right in figure 2)

the two large peaks representing massive zero sound and diffusion join to make a single

peak. This is because the pole structure follows the pattern discussed above for the weakly

anyonised system. Namely, at low anyon densities two imaginary poles combine to form

a complex pole at larger momentum (lower right hand plot in figure 2). As the anyon

density is increased these poles cease to connect with each other and a distinct pole for the

massive zero sound mode is formed (lower left hand plot in figure 2). When the momentum

is increased in this case we have an imaginary pole that sinks lower into the complex plane

and a separate complex pole.

There are two important facts that make the strong anyonisation regime distinct from

the weak one. Firstly, the zero sound pole in the the strongly anyonised system has distinct

scalings in the statistical parameter compared to the weakly anyonised zero sound mode.
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Figure 1. Properties of the logarithm of the time component of the spectral function, log χtt, for

the D3-D5 system and its weakly anyonic counterpart against suitably normalised logarithms of

frequency and momentum. The unusual axis normalisations are chosen to make comparison with

the figures of [11] simple. Top: the time component of the spectral function of the D3-D5 system

at non-zero temperature T , charge Q/(πV T ) = 106N5 and magnetic field B/(πT )2 = 103 (left)

where V is the regulating spatial volume at the boundary. The right hand uppermost figure has

Q/(πV T ) = 102N5 and B/(πT )2 = 10−1 (right). The black dots represent the absolute value of

quasi-normal mode closest to the real momentum axis, |k1(ω)|, and show a change from massive zero

sound to diffusion. The solid blue and red lines represent the analytic expressions for the diffusive

and zero sound modes given in [11]. Bottom: the time component of the spectral function of the

anyon system at non-zero temperature T , anyon density d̃∗ = −103/(2π) and statistical parameter

n = 103 (left) and d̃∗ = −10−1/(2π) and n = 103 (right). The solid blue line is given by the analytic

expression for the diffusion constant in (2.31). We call the system weakly anyonised because of the

qualitative similarity of the top and bottom figures (n is relatively large). We see approximately

the same behaviour for the weakly anyonised system as the D3-D5 probe brane system - namely a

diffusive pole transitioning into a massive sound-like pole as the density increases.
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Figure 2. The spectral function (top line) and quasi-normal mode (bottom line) plots of a strongly

anyonic system (n = 10−3). Uppermost figures are the logarithms of the time component of the

spectral function, log χtt. Lower figures are plots of the small imaginary frequency poles of the

Green’s function for the same anyon density as the spectral function they are below. The solid blue

lines in the lower figures are given by the analytic expression for the diffusion constant (2.31) while

the red dots are numerical data. Taking the absolute value of the red dots, |ω(k1)|, in the lower

plots gives the black dots in the spectral function plots. The black crosses in the spectral function

plots are additional points obtained by a quasi-normal mode analysis not displayed in the lower

plots. Left and middle: these figures are for 2πd∗ = −107. The lower left plot is the real part of a

selection of the small imaginary frequency poles while the lower middle plot is the imaginary part.

Right: these figures are for 2πd̃∗ = −10. The black dots in the spectral function now only represent

the pole in lower right quasi-normal mode plot with the smallest imaginary part. The lower right

plot shows both real (positive value) and imaginary (negative value) parts of ω(k1).

We shall see this in greater detail in section 2.2. Secondly, for large enough anyon density,

unlike in the weakly anyonised case, it is not necessary for the complex pole to have a

smaller imaginary part to dominate the low frequency and momentum spectral function.

This can be seen in figure 2 by examining the plots at n = 10−3. The quasi-normal

mode plots clearly show that the zero sound pole is at larger imaginary frequency than the

diffusion pole and thus the diffusion pole is the relevant pole at late times. Nonetheless

there is a distinct peak in the spectral function whose motion is described precisely by the

zero sound quasi-normal mode.
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2.2 Zero sound

In both the strong and weak anyonisation regimes, at sufficiently large anyon density, we

find sound-like poles with non-zero masses. It is important to note that, upon complexifying

the frequency of the Green’s function, the poles responsible for zero sound in both regimes

have distinct dependencies on the statistical parameter. Additionally for intermediate

values of anyonisation it is possible for other poles in the complex plane to be closer to the

real axis and thus have more of a role in the late time behaviour of the system. Taking

our cue from [10, 11] we fit the real part of the dispersion relations of these sound modes

to an expression of the form

Re[ω̃(k̃1)] = ±
√

1

2
k̃2

1 + c(n)2|d̃∗|+O(k̃2
1) (2.29)

where c(n)s are functions of the statistical parameter which we determine using numerics.

We find this to be a good description of the real part of the dispersion relations to large

values of the momentum. In figure 3 we display the zero momentum limit of the real part

of the dispersion relations against anyon density and statistical parameter. From these

plots we see that

c(n) ∝

{
n−1/2, weak anyonisation

n, strong anyonisation
. (2.30)

The weak anyonisation dependence on n is commensurate with the fact that as the statis-

tical parameter is increased the quasi-normal mode condition (2.26) becomes that of the

D3-D5 probe brane system prior to anyonisation. At an extremely large value of n our ex-

pression for the real part of the dispersion relation gives the conformal value for the speed

of sound to a good approximation. It is important to note that despite these observations

the Green’s function of the anyonised system will still be distinct from that of the D3-D5

probe brane system [2].

2.3 Diffusion and DC conductivity

In figure 4 we display the diffusion constant for various anyon densities and statistical pa-

rameters. The value of the temperature normalised diffusion constant interpolates between

one at small |d̃∗|, which is a fixed multiple of the conformal value, and zero at large |d̃∗| for

all n. Picking a value of n and increasing |d̃∗| one finds that initially the diffusion constant

increases before peaking and beginning to decrease for most values of n. There is a range

of n however, including n = 1, where this is not true and there is a monotonic interpolation

between the values of one and zero i.e. no peak.

The behaviour of the diffusion constant can be understood by considering the Einstein

relation which relates charge susceptibility, longitudinal DC conductivity and the diffusion

constant

D̃∗ =
σ̃∗(L)

Ξ̃∗
. (2.31)
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Figure 3. Figures displaying the dependence of the mass of the zero sound mode on anyon density

d̃∗ and statistical parameter n. Solid blue lines represent best fits while the red dots are numerical

data extracted from a quasi-normal mode analysis at zero momentum. Top: both figures show the

dependence of the zero sound mode on the statistical parameter assuming that ω̃ = c(n)|d̃∗|1/2.

The gradient of the best fit lines are ≈ −1/2 (left) and ≈ +1 (right). Bottom: the dependence of

the mass on d̃∗ at two fixed values of the statistical parameter n = 103 (i.e. weak anyonisation) and

n = 10−3 (i.e. strong anyonisation) which are respectively the left and right lines. The gradient of

both lines is approximately 1/2.

To obtain the charge susceptibility we note that for sufficiently small values of the momen-

tum the retarded Green’s function should reproduce the thermodynamic susceptibilities.

In particular, for the time component, we have

[G̃∗R(0, k̃)]tt
k̃�1
=

(
∂d̃∗
∂µ̃∗

)
B̃∗

. (2.32)

This can be computed by performing the appropriate SL(2,Z) transformation of the

current-current correlator of the D3-D5 probe brane system (see appendix A). Alterna-

tively it can be extracted from the numerical Green’s function of the anyon system. We

compare both of these approaches in figure 5. We see clearly that the charge susceptibil-

ity is a monotonic function of the anyon density. The DC conductivities can readily be

computed analytically and have the form

σ∗(L) =
1

(2π)2

√
1 + (2π)2d̃2

∗ (1 + n2)

1 +
(

1 + 4(2π)2d̃2
∗

)
n2

, σ∗(H) =
n

(2π)2

1 + 2
(

2πd̃∗

)2

1 +
(

1 + 4(2π)2d̃2
∗

)
n2

. (2.33)
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Figure 4. The temperature normalised diffusion constant of the anyon system against the logarithm

of the anyon number density for various values of the statistical parameter. The blue lines are

analytic expressions for the diffusion constant while the red dots are data points extracted from a

quasi-normal mode analysis. Left: the diffusion constant against log d̃∗ for log n = −7,−6, . . . , 6, 7.

The largest peaks correspond to the largest absolute values of log(n) with n � 1 constituting the

right hand peaks whose position increases with n and n � 1 being the left hand peaks whose

position is approximately constant. Right: a comparison of the Einstein relation given by (2.31)

and the quasi-normal mode data against log d̃∗ for log n = −3 (leftmost peak), log n = 0 (no peak)

and log n = 3 (rightmost peak).
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Figure 5. emphLeft: the inverse charge susceptibility against log |d̃∗| for various values of the

statistical parameter — log n = 0, 3, 6. The blue line is the analytic result from (A.4) while red

dots are numerical points extracted from the quasi-normal mode analysis. Right: the longitudinal

conductivity at n = 10 (solid blue line) against the temperature normalised by density. We see

a critical temperature indicated by the blue dashed line that depends on the square root of the

anyon density. The overall numerical factor determining the position of the critical temperature is

a function of n and is given by (2.34). The metallic and insulating regions are indicated by the

labels. We see at T = 0 there is no longitudinal conductivity and the material is an insulator in

the longitudinal directions.

The rightmost plot in figure 4 shows that the Einstein relation is indeed giving precisely

the value of the diffusion constant. To find the extrema of the diffusion constant requires

minimizing (2.31) which we could not do analytically. Instead we solved it numerically

and compared to the maxima extracted from the quasi-normal mode analysis as displayed

in figure 6.
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As was noted previously, the charge susceptibility is monotonic in d̃∗. As such the exis-

tence or not of peaks in the diffusion constant are due to a feature in the DC conductivities

— namely the metal-insulator transition. In figure 5 we plot the longitudinal conductivity

as a function of temperature. We see that as the temperature goes to zero the longitudinal

conductivity vanishes as T 2. Hence we identify the material as an insulator. It may be

tempting to identify it as a perfect insulator given that σ∗(L)(0) ≡ 0 however we note that

σ∗(H)(0) = 1/(2n) and thus our anyon material still has a non-zero component in it’s con-

ductivity tensor at zero temperature. At large temperatures the conductivities asymptote

to 1/(1 + n2) and n/(1 + n2) respectively. Also in figure 5, because we have chosen an

appropriate n, there is a peak in the longitudinal DC conductivity. More generally the

critical temperature at which the longitudinal conductivity has turning points is given by

Tcritical =
2
√
n(1 + n2)1/4

√
π(n4 − 6n2 + 1)1/4

|d∗|1/2 . (2.34)

Given that the temperature is real and positive the critical temperature only exists for

0 ≤ n <
√

2 − 1 and n > 1 +
√

2. Between these bounds the peak vanishes and there is

a smooth interpolation between insulating and conducting behaviour. We note that there

is no such peak in the DC Hall conductivity and it smoothly interpolates between its zero

and large temperature bounds.

Now that we have discussed the analytic expression for the diffusion constant we can

explain the features of figure 4 in more detail. We note first that for small anyon density

the diffusion constant tends to one in our units, which is the conformal value. For most

choices of the statistical parameter increasing the anyon number density then causes the

diffusion constant to increase. This reflects the fact that initially as the number of carriers

increases it is easier for number density fluctuations to diffuse. On the other hand the

diffusion constant always tends to zero at large anyon density. This behaviour is due to the

effect of non-standard statistics. Thus a lump of additional anyon density when introduced

into a sufficiently dense system holds together for a long time. The anyons have more

attraction to each other than the bosons and fermions from which they are made. This

is the interpretation of the peaks in the diffusion constant, and the fact that the diffusion

constant falls to zero, for fixed n and increasing density. Finally we note that for a window

about n ∼ 1, as displayed in figure 6, there are no peaks in the diffusion constant. In this

case there is a unique balancing between the attraction of the anyons to each other and

the benefit of having more charge carriers to diffuse perturbations.

2.4 AC conductivity

The longitudinal conductivity at small anyon densities is peaked at ω̃ = 0 and, for all values

of the anyon density, decays to the conformal value of one at large ω̃. At larger values of |d̃∗|
the peak becomes displaced to some non-zero value of ω̃. Increasing the density still further

causes the DC longitudinal conductivity to drop to very small values. The anyon system

moves as the density is increased from being a Drude-like conductor (by which we mean

there is a major peak at ω̃ = 0), through incoherent metal behaviour (where the major peak

is displaced to non-zero ω̃) to an insulator (the DC conductivity drops to very small values).
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Figure 6. The value of log |d̃∗| corresponding to the diffusion constant peak against log(n). The red

dots are numerical data extracted from a quasinormal mode analysis while the solid blue line is the

numerical solution to minimizing (2.31) with respect to d̃∗. The vertical blue dashed lines represent

bounds on when the longitudinal DC conductivity has a peak. As the value of |d∗| increases we can

see that the maximum value of the diffusion constant occurs for a fixed value of d̃∗ ≈ −0.05.

The AC Hall conductivity interpolates between the DC Hall conductivity (2.33) and

its zero density limit n/(1 + n2). At ω̃ ∼ 0 it takes the DC value but as the frequency

increases there is a peak and the value rapidly drops to the zero density limit. If log n > 0

the zero density limit is smaller than the finite density value while it is the other way

around if log n < 0. Three examples of the AC Hall conductivity are displayed in figure 7

where this behaviour can clearly be recognised. When log n = 0 the AC Hall conductivity

is constant and has the value one. This is consistent with the above observations as when

n = 1 the expression of (2.33) reduces to 1/2. The length of the initial plateau where

σ∗Hall(ω) is approximately constant can be increased by increasing the anyon density. This

feature is generic in the regime investigated.

3 Future directions

In this paper we have shown that many of the qualitative phenomena associated with

non-zero magnetic fields in the finite density D3-D5 probe system, such as the existence

of massive zero sound and plateaus in the Hall conductivity, are mirrored in the anyon

system. The most important difference however is that these features occur in the anyon

system in the absence of a magnetic field. We have also demonstrated evidence for an

analogue of the metal-insulator transition for strongly coupled anyons.

Another phase which can potentially coexist with the one discussed here is given by

turning on one of the embedding scalars. In the original D3-D5 system this corresponds to

breaking the chiral symmetry of the fermions in the strongly coupled field theory [26–30].

While it would be interesting to understand the effect that chiral symmetry breaking has

on anyon physics in its own right it would also be interesting to understand when the

ground state considered here is dominant. We would generically expect some difference to

the D3-D5 probe brane case as the additional boundary terms do make a contribution to

the on-shell action. We leave this for future research.
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Figure 7. The real parts of the AC longitudinal and Hall conductivities against frequency for

various choices of density and statistical parameter. Left: the AC longitudinal conductivity for

log n = −3 and log(−2πd̃∗) = 0, 6, 9 where the solid red line is an interpolation of data extracted

from the Green’s function. We can see the change from a Drude-like behaviour (log(−2πd̃∗) = 0,

smallest peak) to incoherent metal (log(−2πd̃∗) = 6, first displaced peak) to insulator (log(−2πd̃∗) =

9, approximately zero at ω̃ = 0). Right: the AC Hall conductivity various anyon densities and

statistical parameters. The red dots are data, the solid blue line is the zero density value of the DC

Hall conductivity and the dashed blue line is the DC value of the Hall conductivity at the given

values of n and d̃∗. The red points with the largest range belong to log n = −1, log(−2πd̃∗) = 6

while the flat red line is the value of the AC Hall conductivity at log n = 0, log(−2πd̃∗) = 5. The

remaining line is for n = 1, log(−2πd̃∗) = 4.
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A Charge susceptibility by SL(2,Z)

The current-current correlator for the D3-D5 probe brane system with total charge Q =

d̃(πT )2N5V and magnetic field B=B̃(πT )2 at temperature T in the low momentum limit is

G̃R(0, k̃)
k̃�1
=


(
∂d̃
∂µ̃

)
B̃

k̃
(
∂d̃
∂B̃

)
µ̃

k̃
(
∂m̃
∂µ̃

)
B̃∗

k̃2
(
∂m̃
∂B̃

)
µ̃

 , (A.1)

where

µ̃(d̃, B̃) =

d̃

(
Γ( 1

4)Γ( 5
4)

4
√
d̃2+B̃

√
π

− 2F1

(
1
4 ,

1
2 ; 5

4 ;− 1
d̃2+B̃2

))
√
d̃2 + B̃2

, (A.2)

m̃(d̃, B̃) = B̃ 2F1

(
1

4
,
1

2
;
5

4
;−B̃2 − d̃2

)
. (A.3)
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The charge susceptibility of the anyon system is then

(
∂d̃∗
∂µ̃∗

)
B∗

=

(
∂d̃
∂µ̃

)
B̃(

∂d̃
∂µ̃

)
B̃

(
∂m̃
∂B̃

)
µ̃

+

((
∂d̃
∂B̃

)
µ̃
− n

)2 (A.4)

where we must take d̃ = −2πnd̃∗ and B̃ = −2πd̃∗.
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