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1 Introduction

Insulators and superconductors are central concepts in strongly correlated electron mate-

rials giving rise to high Tc superconductivity, [1]. The region in which the insulator-metal

transition happens, [2, 3], is characterized by novel features of the electronic conductiv-

ity, [4]. Moreover, the scaling of the AC conductivity, [5] has long been one of the benchmark

features of such materials.

Holography has provided a new paradigm and a new arena for theoretical models that

address physics at strong coupling. The setup is semiclassical (enforced by a large-N limit
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involved).1 It is a natural framework to describe quantum critical systems at zero and finite

density. It is very convenient to describe conductivity, a major observable in condensed

matter. A study of holographic ground states has indicated that they are very diverse in

their properties, [10–19].

Most holographic systems analyzed at finite density are translationally invariant. Ex-

ceptions also exist, using D-brane defects and magnetic vortices, [20–23], but such systems

have been much more difficult to analyze so far. The standard symmetry argument in-

dicates that the real part of the AC conductivity will have a δ(ω) contribution as in a

translationally invariant system a constant electric field generates an infinite current. The

δ function is related, because of unitarity and causality using the dispersion relations to a
1
ω pole in the imaginary part of the conductivity.2 This δ-function is distinct from the one

appearing in superfluid/superconducting phases.

The interaction with momentum dissipation agents has been discussed in rather general

terms in [25–27]. When the interaction with momentum dissipating centers is IR irrelevant,

a perturbative IR calculation can determine the scaling of the IR DC conductivity. When

the dissipation is IR relevant, it can change the nature of the saddle point, turning the

system into an insulator, [28]–[31].

The formula obtained for the holographic DC conductivity is a sum of two contribu-

tions, [29–34]:

σDC = σpc
DC + σdiss

DC (1.1)

The first term, σpc
DC, has been interpreted, [35], as a quantum-critical pair-creation con-

tribution as it persists at zero charge density. For the RN black hole it is a constant

proportional to the inverse of the bulk gauge coupling constant that counts the relative

density of charge-carrying degrees of freedom to the neutral ones in the strongly-coupled

plasma. More recently, it was verified in [36] that the first term in (1.1) is the electric

conductivity in the absence of a heat current.

The second contribution in (1.1) is due to the effects of dissipating momentum. When

translation-breaking operators are irrelevant, the system is expected to be metallic and

this term is expected to give the leading contribution to the DC conductivity. Then, a

description of momentum relaxation in terms of the memory matrix formalism is appro-

priate and shows that the conductivity takes a Drude-like form, though no quasi-particle

description is assumed [25]. Moreover, in [29] it was shown that in several cases that were

studied, the drag related part of the conductivity had the form Q2

Γ1+Γ2+··· where Q is the

charge density and Γi are diffusion rates of the various diffusion mechanisms at play. It is

strongly suspected that this result is general, [29]. However, there are other features that

are less clear and the recent work [38] has cast doubt on this simple characterization of

the two terms in the conductivity formula. In this work we will keep using the previous

characterizations (pair-production and Drude or dissipative part) in lack of better ones.

This general form of the DC conductivity was seen already in pure metric backgrounds

in [35] and was generalized to dilatonic backgrounds in [13]. In both cases, as the gauge

1Useful reviews for condensed matter physics applications can be found in [6, 7] and section 2 of [8].
2This issue was analyzed in holography in [7, 24].
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field action is the DBI action, (1.1) is replaced by

σDC =
√

(σcss
DC)

2 + (σdiss
DC )2 (1.2)

giving results compatible with (1.1) in the regimes where pair creation or drag diffusion

dominates the conductivity. In general, we expect a nonlinear formula that reflects the

bulk action of the gauge field. In the probe DBI cases the momentum dissipation is

due to the fact that charge degrees of freedom are subleading compared to uncharged

ones. This means that there is a momentum conserving δ-function but its coefficient is

hierarchically suppressed.

In [13] it was observed, based on (1.2), that for running scalars other than the dilaton

and in 2+1 boundary dimensions, the drag DC resistivity, when it dominates, is propor-

tional to the electronic entropy. This seems to be a general property of strange metals where

both the measured electronic entropy and resistivity are linear in temperature. This was

extended in [39] to more general cases using the massive graviton theory, and most impor-

tantly provided a kinetic explanation for the correlation suggesting a more general validity.

The general properties of holographic conductivity were further corroborated recently

by a careful study of the holographic current-current correlators and the associated prop-

erties of their poles in the complex plane, [37, 38]. On the other hand the search for scaling

regimes in the AC conductivity has been less studied. In [13] it was suggested that general-

ized scaling geometries can have large-ω tails that are scaling and the scaling exponent was

calculated in EMD hyperscaling violating solutions. This was further analyzed in [41, 42].

In [44, 45] it was claimed, based on the numerical solution of the conductivity equations

in the presence of a charged lattice that a scaling of the AC conductivity was found with the

phenomenologically relevant power σAC ∼ ω− 2
3 . This suggestion did not survive however

more accurate numerical study, [46, 47].

The above properties of holographic DC conductivity prompted the construction of

holographic models with strange metal behavior, [8, 13, 48, 49]. In particular, in [8] a DBI

action was assumed to be describing the dynamics of charge which otherwise moves in a

AdS-Schwarzschild black hole (in light-cone coordinates). There was a light-cone electric

field Fy+ = E whose inverse played the role of a doping-like parameter that controls the

phase diagram. In that sense, the solution is a non-trivial steady state solution that we

describe in mode details in section 2. The formalism of [35] was used to compute the

resistivity as well as the magneto-resistance in this system.

The T+T 2 behavior of the resistivity in [50] and the T+T 2 behavior of the inverse Hall

angle, observed in [51] at very low temperatures T < 30K, where a single scattering rate

is present, were successfully described. The model was in accord with the distinct origin

of the criticality at very low temperatures advertised in [52], while the higher tempera-

ture, T > 100K, scaling has different behaviors between the linear temperature resistivity

and the quadratic temperature inverse Hall angle, signaling two scattering rates [53]. In

addition to the resistivity and inverse Hall angle, very good agreement was also found

with experimental results of the Hall Coefficient, magnetoresistance and Köhler rule on

various high-Tc cuprates, [50]–[54]. The model provided also a change of paradigm from
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the notion of a quantum critical point, as it is quantum critical at T → 0 on the entire

overdoped region.

In this paper we compute the AC conductivity of the holographic strange metal in [8].

In this model the DC conductivity depends on two parameters: a scaling variable t propor-

tional to the temperature that also depends on doping and a scaling variable controlling

the total charge density J . They are defined in (2.17) in terms of the parameters of the

holographic theory. Note that both scaling variables depend on the “doping” related vari-

able, E. In [8] it was argued that x−xo ≃ E− 1
2 has the same dependence as “doping” when

the model is compared to experimental data.3 In particular the E → 0 limit corresponds

to large doping while the E → ∞ limit corresponds to optimal doping. Therefore, at fixed

temperature T and charge density J+, both scaling variables t and J increase with x.

There are two main regimes on the (t, J) plane, shown in the middle plot of figure 1.

The one in the upper left corner we call the quantum critical (QC) regime (also Pair-

Production regime or Charge Conjugation Symmetric Regime (CCSR)). It is characterized

by the fact that the DC conductivity in this regime is dominated by the pair produc-

tion/charge conjugation symmetric contribution. The regime in the lower-right corner is

the Drude regime (DR). It is characterized by the fact that the DC conductivity in this

regime is dominated by the dissipation (drag) contribution, [35].

We have defined a parameter q in (2.20) to distinguish between the two regimes. q & 1

denotes the DR while q . 1 denotes the QC/PP regime. As the drag contribution to the

conductivity is proportional to charge density, it follows that at zero charge density (J = 0)

we are always in the QC/PP regime.

We can vary the total charge density J to enter any of the two regimes. Inside each

regime there are two regions with distinct behavior of the DC conductivity

• In the Drude regime (q ≫ 1), when t ≪ 1 the resistivity is linear in t (and conse-

quently in the temperature). We call this regime the linear regime. When t ≫ 1, the

resistivity is quadratic in t. We call this regime the quadratic regime.

• In the QC/PP regime, (q ≪ 1), when t ≪ 1 the resistivity behaves as ρ ∼ t−
3
2 . We

call this regime, the regime I. When t ≫ 1 the resistivity behaves as ρ ∼ t−
1
2 . We

call this regime, the regime II.

In the t → 0 limit the theory has an effective Lifshitz exponent z = 2 while as t → ∞
it crosses over to an effective relativistic Lifshitz exponent, z = 1, [8]. What we find in our

analysis is as follows:

1. The characteristic temperature scale that controls the AC conductivity is an effective

temperature Teff (with an associated scaling effective temperature teff defined analo-

gously). This is distinct from the system temperature T and is due to the existence of

a hierarchy of interactions. Similar effects have been observed in electronic systems

and in holography, [55]–[57].

3Finite coupling corrections were calculated in [9].
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The relation between teff and t is plotted in figure 2. In the small t regime teff ∼ 1√
t

while at large enough t, teff ≃ t. As was observed in [56] it is always teff ≥ t.

2. We define a generalized relaxation time τ by the IR expansion of the AC conductivity,

σ(ω) ≈ σDC

(

1 + i τ ω +O(ω2)
)

(1.3)

In the presence of the Drude peak, this is the conventional definition of an associated

relaxation time. When there is no Drude peak present, τ is still well-defined, although

in that case the interpretation as a relaxation time is lost.

We give an analytical formula for τ in (4.14). It takes a simple form for large and

small values of the scaling temperature variable t. In the regime I (see figure 1)

we obtain

τ ∼
√
t (1.4)

while in the regime II (with t ≫ 1) it is set by the inverse of the temperature

τ ≃ 1

t
(1.5)

These behaviors are shown graphically in figure 5 for the various regimes.

3. In the Drude regime (q ≫ 1) where the dominant mechanism for the conductivity is

momentum dissipation, there is a clear Drude peak as seen for example in figures 7.

In the PP/QC regime it is also clear from the same figures that no Drude peak is to

be seen in the IR of the AC conductivity.

4. At zero charge density (PP/QC regime) there is a scaling tail for the AC conductivity

that behaves as

|σ| ∼
(

ω

teff

)− 1
3

, Arg(σ) ≃ π

6
(1.6)

For finite charge density this tail survives not only in the Charge Conjugation Sym-

metric regime but also in part of the Drude regime, as seen in the various plots of

figure 8 as well as the ones of figure 9. The qualitative reason for this is that in

the presence of the Drude peak, its tail falls off as 1
ω and this is faster than ω− 1

3 .

Therefore the scaling tail will eventually win over the Drude peak for ω ≥ ω0 and

the only condition that it is visible is that the UV structure of the theory kicks-in at

ωUV ≫ ω0.

5. This scaling tail of the AC conductivity generalizes to more general scaling holo-

graphic geometries, as previously described in [13]. The equation that determines the

conductivity is given in (6.9) and the equivalent Schrödinger problem has a potential

of the form Veff = V1+ ρ2V2 where ρ is the IR charge density (that is proportional to

the UV charge density).
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In particular, for a metric with Lifshitz exponent z, hyperscaling violation expo-

nent θ and conduction exponent ζ with d spatial boundary dimensions, we find that

in general

|σ| ∼ ωm, Arg(σ) ≃ −π m

2
(1.7)

with

m =

∣

∣

∣

∣

z + ζ − 2

z

∣

∣

∣

∣

− 1 , (1.8)

There are several constraints in the parameters of this formula that are detailed in

section 6. Moreover this formula is valid when the associated charge density does not

support the IR geometry.

6. There are some special cases of (1.8) that deserve mentioning. For an AdS2 IR

geometry, the exponent can be obtained by the z → ∞ limit in (1.8) giving m = 0.

For hyperscaling violating semilocal geometries we must take θ → ∞, z → ∞ with
θ
z = −η fixed and obtain

m =
∣

∣

d− 2

2
η + 1

∣

∣

∣
− 1 =

d− 2

d
η (1.9)

Finally, for the gauge field conformal case4 we obtain m = 0 when d = 2.

7. We find that for two spatial dimensions, negative values for the exponent m are

correlated with the sign of the Lifshitz exponent z and the strength of the gauge field

interaction in the bulk. Parametrizing the IR asymptotics of gauge coupling function

Z as

Z ∼ rκ, r → ∞ (1.10)

in conformal coordinates, we obtain that zκ > 0 for negative values of m to be

possible.

8. In the special case where the associated gauge field seeds the IR scaling geometry, κ

in equation (1.10) is fixed as a function of z, θ and the exponent m takes the value

m =
∣

∣

∣

3z − 2 + d− θ

z

∣

∣

∣
− 1 (1.11)

and is always positive. The special case where the IR geometry is AdS2 can be

obtained from the z → ∞ limit of (1.11) giving m = 2. For hyperscaling violating

semilocal geometries, we must take, θ → ∞, z → ∞ with θ
z = −η fixed. In this case

we obtain

m = |3 + η| − 1 = 2 + η (1.12)

4This corresponds to the bulk coupling constant function Z(φ) of the gauge field asymptoting to a

non-zero constant in the IR.
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9. An important issue is whether the scaling of the AC conductivity described above for

the general scaling geometries is controlled by the dynamics of the charge density, or it

is decided by the neutral system. What we find is as follows: the effective Schrödinger

potentials that controls the calculation of the conductivity has two parts. One that

is independent of charge density and one that is proportional to the square of the

charge density. In the generic case it is the first that controls the UV scaling of the

AC conductivity described above. Only if the charge density is supporting the IR

geometry, then the second part is of the same order as the first and it is the sum that

controls the scaling of the AC conductivity. This special case is also the only one we

found where the exponent m in (7.6) is always positive. In the other cases it can also

be negative, but unitarity implies always that m ≥ −1.

These findings suggest that this is a generic source of scaling tails in the AC conduc-

tivity in holographic systems. Moreover, in generic systems this scaling is expected to be

independent of the mechanism of momentum dissipation.

The structure of this paper is as follows.

In the next section we review the holographic model for a strange metal that we will

study in this paper.

In section 3 we derive the linearized equations leading to the calculation of the AC

conductivity and establish the presence of an effective temperature for the charge dynamics.

In section 4.1 we analyzed the equations for the AC conductivity and derive an analytic

formula for the generalized relaxation time.

In section 5 we derive analytic formula for the scaling regime and numerically compute

the AC conductivity for different values of the model parameters.

In section 6 we do a general analysis of AC conductivity scaling in generic quantum

critical saddle points.

Finally section 7 contains our conclusions and outlook.

There are several appendices that provide technical details. Appendix A contains the

effective DBI action and the equations of motion. Appendix B contains the computation of

the open string metric while appendix C contains a change of coordinates in the world-sheet

induced black hole metric. Appendix D derives in detail the equations for the fluctuations.

In appendix E we present the computational details of the asymptotics of the AC DBI

conductivity. Finally in appendix F we analyze theories with two charge densities and the

associated scaling of the AC conductivity.

2 A holographic model for a strange metal

In this section we will review the holographic model introduced in [8]. In the same refer-

ence a pedestrian introduction to the holographic idea and its potential condensed matter

applications was given. The charged matter is described by a Dirac-Born-Infeld (DBI)

action,5 in the probe limit on a fixed black-hole background. This background is a solution

5Details on the DBI action and its origin can be found in [59]. The type of charge degrees of freedom it

describes has been analyzed in [13].
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of the Einstein action

IE =
1

16πG5

∫

d5x
√−g

(

R+
12

ℓ2

)

, (2.1)

where g, R and ℓ are the determinant of the metric, Ricci scalar and the length scale of the

model which controls the cosmological constant, respectively. This solution is the standard

AdS-Schwarzschild solution, [58].

The total action is given by the sum IE + S, where S is the DBI action in (2.5) The

bulk gravitational theory lives in 4+1 dimensions, while the dual boundary theory lives

in 3+1 dimensions at the boundary of the bulk space-time. However we will consider a

non-relativistic limit (equivalently a null reduction in gravity by taking the light-cone x+ as

time). In this limit the remaining symmetry is a z = 2 Schrödinger symmetry, one spatial

dimension is lost and the boundary dual quantum field theory lives in 2+1 dimensions. For

details we refer the reader to the original reference, [8].

A crucial ingredient of the approach in [8] was to write the AdS-Schwarzschild solution

in light-cone coordinates

ds2 = g++(dx
+)2 + g−−(dx−)2 + 2g+−dx+dx− +

i=3
∑

i=2

gii(dx
i)2 + guu(du)

2, (2.2)

with the coordinates ordered as xM = (x+, x−, y, z, u). The components read

g++(u) =
1

4b2
gii(u)(1− h(u)), g−−(u) = b2gii(u)(1− h(u))

guu(u) =
1

4u3gii(u)h(u)
, gii(u) =

1

ℓ2u
, (2.3)

where the blackening factor is

h = 1− (u/u0)
2 . (2.4)

In these coordinates the boundary is located at u = 0 and the horizon at u = u0. Notice

that the radial coordinate u is dimensionless and to ensure the non relativistic scaling

z = 2 we assign [b] = −1 (in mass units). Although the Ads-Schwarschild solution has the

full conformal symmetry, in this coordinate system only the z=2 Schrödinger symmetry

is manifest.

Another peculiarity of the system is that the coordinate x+ will be considered as the

field theory time. Such background interpolates between a z = 1 CFT at high T and a

z = 2 Lifshitz-like nonrelativistic system at T ∼ 0. The black-hole temperature is given by

b2π2ℓ4T 2u0 = 1.

The background is a 5−dimensional space time in light-cone coordinates x± = x ± t.

The spatial coordinate x plays a special role. From a field theory viewpoint this coordinate

frame can be seen as an infinite boost in the x direction. Therefore the x dependence

disappears and the non-trivial dynamics happens in the two transverse spatial dimen-

sions y, z, [8].

The charged matter degrees of freedom are described by a DBI action

S = −N
∫

d5x
√

− det (g + F ), (2.5)
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where g represents the background metric and F the gauge field dual to the U(1) conserved

current. It is possible to find a solution of the DBI equations of motion of the form

A(0) = (Ey + h+(u))dx
+ + (b2Ey + h−(u))dx− + (b2Ex− + hy(u))dy . (2.6)

In the solution above, E represents an electric field in the y direction. In appendix A

of reference [8] the full form of the background fields for this solution are presented. It is a

highly non-trivial steady state solution. The conventional interpretation of that solutions

is as follows: if the constant J+ is non-zero then there is a non-trivial steady state current

along the x− directions. Moreover, since we also turn on a constant electric field in the y

direction there is also a steady-state current in the y direction. We will eventually calculate

the conductivity perpendicular to this current, namely along the z direction.

Using the work of Karch-O’Bannon, [60] the nonlinear DC conductivity can be

found, [8]

σDC =
1

ℓ2u20

√

u⋆(E, u0)
(

b2N 2 + J2
+l

6u20u⋆(E, u0))
)

(2.7)

where J+ is the charge density and u⋆(E, u0) is the critical point in the radial direction

where both the numerator and denominator under the square root change sign, [60]. It

will coincide, as we will show later-on, with the world-volume horizon. It is given as

u⋆(E, u0) =
1

21/2bEℓ2

{

[

(2bEℓ2u0)
2 + 1

]1/2 − 1
}1/2

, (2.8)

where u⋆(0, u0) = u0 is satisfied.

To describe the key steps of the procedure to obtain (2.7) and (2.8), we remind the

reader first that in the holographic set up, the boundary value of A(0) corresponds to

a background gauge field switched on in the dual field theory. We also note that after

inserting (2.6) in (2.5), the action will depend only on the radial derivative of h± and hy.

Therefore, the system will have three u-independent quantities that can be identified with

the one-point functions of the conserved quantities of the dual field theory, [60]

J± = − δS

δh′±
, Jy = − δS

δh′y
, (2.9)

J+ is interpreted as the charge density, J− related to the particle number and Jy with the

electric current in the y-direction.

The quantity inside the square root of the DBI action (2.5) is not positive definite. If

we demand reality of the action at all the points of the bulk space-time. several conditions

must be satisfied. The first condition is the emergence of a surface besides the horizon

satisfying the following equation6

u− u⋆(E, u0) = 0 , (2.10)

6This hypersurface was called in the literature “singular shell” [61] and afterwards was proven to be the

location of the induced horizon of the world volume metric [62].
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the second condition relates the particle number with the charge density as follows

J− = ρ−J+ , ρ− =
2u20 − u2⋆
2b2u2⋆

, (2.11)

and the last one is Ohm’s law

Jy = σDCE , (2.12)

with σDC defined as in equation (2.7).

The conductivity receives two independent contributions, therefore we will split it as

follows

σ2
DC = σ2

0(σ
2
DR + σ2

QC) , (2.13)

with the following redefinitions

σ0 = 23/4N b
√
bE (2.14)

σ2
DR =

J2
+ℓ

4u2⋆
23/2N 2b3E

(2.15)

σ2
QC =

u⋆

23/2bEℓ2u20
. (2.16)

The term σDR is proportional to the charge density. It has been interpreted, [60],

as the term coming from the drag force acting on heavy charge carriers, in a Drude-like

paradigm (although there are no identifiable quasi-particles here). This interpretation was

extended to more general dilaton-dependent DBI actions, [13].

The term σQC is present even in the absence of charge density and it is interpreted as a

contribution to the conductivity due to pair creation of charges, [60]. This interpretation is

not without pitfalls, but if fits the pair-production paradigm in more than one ways, [29, 40].

We will call from now on the regime in which σDR ≫ σQC the Drude regime (DR). We

will call the regime in which the pair-production conductivity dominates , σDR ≪ σQC,

the Quantum Critical regime (QC). The reason for those names will be better motivated

in section 5.

We introduce scaling variables t, J to describe the temperature and charge density

respectively

t =
πℓbT

2
√
bE

, J2 =
J2
+

(2N b)2
√
2(bE)3

. (2.17)

The physical quantities depend on these variables. The conductivities, σDR and σQC read

in term of t, J as

σ2
DR =

J2

t2A(t)
, A(t) = t2 +

√

1 + t4 (2.18)

σ2
QC =

t3
√

A(t)
. (2.19)

The conductivity formula (2.13) has a complicated dependence on the parameter t. It

can be however analyzed in different regions of the parameter space, depending on whether
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Figure 1. Left: comparison of the function A(t) with its low and high t behavior. Center: location

of the four regimes in the space of parameters (J, t) log-log scale. The black line q = 1, separates

the DR respect to the QC regime. The magenta line represents the region with q = 10−2 and the

red one q = 100. Right: contour Plot of the DC conductivity as a function of the scaling charge

density and the temperature.

we are in a drag dominated regime (DR) or a pair-creation dominated regime (QC). To

characterize the later we will define the ratio among Drude and QC conductivities,

q(t, J) =
σ2
DR

σ2
QC

. (2.20)

These two regimes are illustrated in the second log-log plot of figure 1. The DR and QC

regimes can be split into two extra regions, namely t ≫ 1 and t ≪ 1 respectively.

In the first plot of the figure 1 we illustrate in a log-log plot the function A(t) ∼ 1

for t < 1 and A(t) ∼ 2t2 for t > 1. The asymptotic behaviors imply that the resistivity

ρ = 1/σ will have a temperature dependence of the form

ρ =























(σ0J)
−1t q ≫ 1, t ≪ 1 linear√

2(σ0J)
−1t2 q ≫ 1, t ≫ 1 quadratic

∣

∣

∣

∣

∣

Drude regime (DR)

σ−1
0 t−3/2 q ≪ 1, t ≪ 1 regime I√
2σ−1

0 t−1/2 q ≪ 1, t ≫ 1 regime II

∣

∣

∣

∣

∣

Quantum critical (QC)

. (2.21)

We observe in the DR (large enough J) that conductivity is linear at low temperatures

and becomes quadratic at higher temperatures. In general the DC conductivity for a

background with dynamical exponent z is σDC ∼ T
2
z , [48]. The background in question

here has a z = 2 effective Schrödinger symmetry in the IR which is restored to a z = 1

conformal symmetry in the UV.

The theory has an extra parameter, the Electric field, E. This acts as an external

parameter, that is similar to doping, pressure, electric and magnetic fields in strange metals.

Varying E, from (2.17) we observe that this changes t and J and therefore affects the

crossover of the conductivity from linear to quadratic. Indeed, in [8] it was shown that

varying ∞ > E > 0 produces a phase diagram for the drag-related conductivity that is

qualitatively similar to that measured recently in cuprates, [63]. Here E → ∞ corresponds
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to optimal doping while E → 0 corresponds to the overdoped limit. The cross-over scale

between linear and quadratic regimes asymptotes to zero as E → 0 while it diverges

when E → ∞.

In [8] the general magnetoresistivity was also computed. It was shown that it repro-

duces the T+T 2 behavior of the inverse Hall angle observed in [51] at very low temperatures

T < 30K, where a single scattering rate is present.

In addition to the resistivity and inverse Hall angle, very good agreement was also

found with experimental results of the Hall Coefficient, magnetoresistance and Köhler rule

on various high Tc cuprates [51–54, 63–75]. This model provides a change of paradigm

from the notion of a quantum critical point, as it is quantum critical as T → 0 on the

entire overdoped region. In this sense this work breaks apart from other holographic

approaches [76–78], where the measured transport is due to loop fermion effects. As such,

it is applicable to a more general class of materials e.g., d and f -electron systems, where the

low temperature resistivity varies as T+T 2 [79] and exhibit a quantum critical line [63, 80].

3 Stationary transport from Kubo formulas and the effective tempera-

ture

We will use linear response theory to study the electric properties of the system. To do so

we need to switch-on fluctuations for the gauge field on top of the background discussed

before A = A(0) + a with a infinitesimal. These fluctuations will evolve with a dynamics

determined by the effective Lagrangian [62] (see appendix A for a derivation)

Leff = −N
√
− det s

(

1

4g25
fMNfMN +

1

8
√
− det s

ǫMNPQRfMNfPQQR

)

, (3.1)

where f=da, the effective (open string) metric is defined as sMN =gMN−(F(0)g
−1F(0))MN ,

the effective coupling is g25 =
√
− det s/

√

− det (g + F(0)) and the vector present in the

Chern Simons is

QR = −

√

− det (g + F(0))

8
ǫMNPQR θMNθPQ, (3.2)

θMN =
1

2

[

[(g + F(0))
−1]MN − (M ↔ N)

]

. (3.3)

Notice that we are raising indices with the open string metric sMN . In particular the

line element is

ds2 = s++(dx
+)2 + 2s+−dx+dx− + 2s+udx

+du+ 2s+idx
+dxi + s−−(dx−)2

+ 2s−idx
−dxi + sijdx

idxj + suudu
2 + 2suidudx

i , (3.4)

where the exact form of the components of the world-volume metric are presented in

appendix B in terms of the background metric and gauge field. Finally, the equations of

motion for the fluctuation are

∂M

(
√
− det s

g25
fMN

)

− 1

2
ǫNMRPQ∂MQRfPQ = 0 . (3.5)
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3.1 The effective temperature

We will now show that the open string metric has a horizon in a modified location with

respect to the background horizon located at u0. In particular we will show that u⋆
represents the location of the horizon for the effective metric s.

As a consequence of this fact, the charged matter is at a temperature different than the

bulk system. This can happen in other holographic systems, [81–83] and is a peculiarity of

the large-N limit implicit in holographic theories, that generates a hierarchy of interactions.

To show the previous statement we will diagonalize the metric (3.4). In doing so we

will be able to extract the location of the horizon and also we will be able to compute the

temperature of the induced black-hole. We change coordinates as follows

dx+ = dτ + f+
− (u)dX− + f+

u (u)du ,

dx− = dX− + f−
τ (u)dτ + f−

u (u)du ,

dy = dY + fy
τ (u)dτ + fy

u(u)du ,

dz = dZ + fz
τ (u)dτ , (3.6)

and also rescale the radial coordinate as u → u⋆u. The full expression for the functions f ’s

can be found in appendix C. The diagonal metric becomes

ds2 = s̃uudu
2 + s̃−−(dX−)2 + s̃ττdτ + s̃yydY

2 + s̃zzdZ
2 , (3.7)

where again the component functions can be found in appendix C. From the new form of

the metric we can find the location of the open string horizon and the effective temperature

associated to this black hole. We find that s̃ττ (1) = s̃−1
uu (1) = 0, which indicates that the

new horizon is located at the position u = 1 or equivalently at u⋆. Expanding around this

point we obtain the near-horizon expressions

s̃uu ≈ ℓ2u20
(

2u20 − u2⋆
)

4(1− u)
(

2(J̃+)2u30u⋆ + 6u40 − 5u20u
2
⋆ + u4⋆

) , (3.8)

s̃ττ ≈ − 2(1− u)u0
(

2u20 − u2⋆
)

b2ℓ2u3⋆

(

(J̃+)2u⋆ + u0

) , (3.9)

s̃−− ≈ 4b2u⋆
ℓ2u20

, (3.10)

s̃ij ≈ 1

ℓ2u⋆
δij , (3.11)

where we have introduced the redefinition J̃+ =
u
3/2
0 ℓ3

bN J+. Following [57] we compute the

effective temperature Teff from these formulae

Teff = T

√

6u40 + 2(J̃+)2u30u⋆ − 5u20u
2
⋆ + u4⋆

2u3⋆(u0 + (J̃+)2u⋆)
. (3.12)
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Figure 2. Dependence of the world-volume temperature Teff with the parameters J and t, the

effective temperature is always bigger than the background temperature T .

The previous equation written in term of the scaling variables (2.17) reads

teff = t

√

√

√

√

J2A(t)2
√

A(t)− 2t2 + t5 (t2A(t) + 2t4 + 3)

2
√
2t3

(

t5
√

A(t) + J2
) . (3.13)

We illustrate in figure 2 the t dependence of teff .

Note that the function teff(J, t) has a minimum around t ∼ 1. It is possible to find its

exact location in the limits of J → 0 and J → ∞

teff(tmin) = 1 , tmin(J = ∞) = 2−3/4 ≈ 0.59 (3.14)

teff(tmin) ≈ 1.274 , tmin(J = 0) = 2−3/4

4

√√
133 cos(φ)− 1
√
2 4
√
3

≈ 0.85

where φ = 1
3

(

π − tan−1
(

6
√
13443
1367

))

.7

It is worth mentioning that teff ≥ t always, as first observed for holographic systems

in [82]. Therefore the presence of the electric field heats up the system above the temper-

ature of the heat bath given by the bulk black hole.

If we analyze teff in the four distinct regimes of the parameters J and t (defined

in (2.21)) we obtain:

teff ≈



















2−3/4t−1/2 linear regime

t quadratic regime

2−3/4
√
3t−1/2 regime I

t regime II

. (3.15)

4 The fluctuation equations

In the previous section we derived the equations of motion for fluctuations on the black

hole background with Schrödinger symmetry in equation (3.5). We will work in the new

7There is also a second minimum that satisfies t
(2)
min ≤ tmin and t

(2)
min → 0 when q → 0.
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coordinates introduced in (3.6). As the background electric field is pointing in the y-

direction we will switch-on a fluctuation in the z-direction which will be transverse. We

will solve this equation and from the source and vev of the solution we will determine

the two point function of the dual current and from it the AC conductivity using the

Kubo formula.

To compute the frequency dependence of the conductivity it is only necessary to study

the time dependence in the fields. Without loss of generality we will switch on a fluctuation

in the z direction az = az(u, x
−, τ).8 Since in the dual field theory the time coordinate is

given by x+, we need to take into account this fact. To do so, we write the near boundary

expansion of the change of coordinates in eqs. (3.6) as

x+b (τ,X
−) = x+ = τ − 1

ρ−
X− , x− = X− + ρ−τ ,

y = Y , z = Z . (4.1)

We therefore introduce the following plane wave ansatz to evolve the fields with the time x+

f(u,X−, τ) → f(u)e−iωx+
b (τ,X−) . (4.2)

The only non-trivial Maxwell equation is

(

g−2
5

√
−s̃s̃uus̃zza′z(u)

)′
− g−2

5

√
−s̃s̃zzω2

(

s̃−−

ρ2−
+ s̃ττ

)

az(u) = 0 , (4.3)

and the Chern-Simons term vanishes for this sector. In order to use the holographic

prescription to compute the retarded Green function, we need to impose as a boundary

conditions az(0) = a0 and to select the infalling mode at the horizon.

Performing a near-horizon expansion of eq. (4.3) we obtain

ω2/(4πTeff)
2

(u− 1)2
az(u) +

1

u− 1
a′z(u) + a′′z(u) = 0 . (4.4)

The near-horizon solutions are az(u) ∼ (1 − u)±iw, with the dimensionless frequency w

defined as

w =
ω

4πTeff
. (4.5)

Choosing the negative sign ensures the selection of the infalling boundary condition. Notice

that the scaling frequency is naturally defined with Teff .

4.1 The DC conductivity and the relaxation time

To solve the differential equation for arbitrary frequency it is necessary to use numerical

tools. The low-frequency conductivity however can be obtained using perturbation theory.

To do so we will expand the field az up to second order in w and the infalling boundary

condition will be set by expanding the appropriate solution of eq. (4.4) as follows

az(u) = (1− u)−iw
(

A(0)
z (u) + wA(1)

z (u) + w2A(2)
z (u)

)

. (4.6)

8In appendix D we write the full system of equation of motion.
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Using the previous ansatz and the Kubo formula we can write the conductivity as

σzz(ω) = −2bNπT

ℓu⋆

i

ω

a′z(0)
az(0)

(4.7)

= −i
bN√

u0
2ℓu⋆

(

4πT

ω

A
′(0)
z (0)

a0
+

T

Teff

(

A
′(1)
z (0)

a0
+ 1

)

+
Tω

4πT 2
eff

A
′(2)
z (0)

a0

)

.

In order for the system to have a finite DC conductivity A
′(0)
z (0) must vanish. We do

know already that the present model has a finite conductivity, from its calculation in [8],

therefore assuming A
′(0)
z (0) = 0 and setting ω = 0 we obtain the DC conductivity in terms

of the solution in (4.7)9

σDC
zz = −i

bN√
u0

2ℓu⋆

T

Teff

(

A
′(1)
z (0)

a0
+ 1

)

. (4.8)

There is another transport coefficient with units of time that can be read off eq. (4.7). We

write the AC conductivity as

σ(ω) ≈ σDC

(

1 + iτω +O(ω2)
)

, (4.9)

τ = − 1

4π

i

σDC
zz

T

T 2
eff

A
′(2)
z (0)

a0
. (4.10)

If the conductivity is given as a sum over poles in the upper half plane, then τ is determined

by the pole with the smallest imaginary part. In a regime which is of the Drude type, τ

can be interpreted as the relaxation time. We will call it the generalized relaxation time.

In other regimes it cannot be interpreted strictly speaking as a relaxation time.

To finally compute the conductivity and the generalized relaxation time it is necessary

to calculate the boundary value of the derivative of the first and second order fields.

Substituting the expansion (4.6) into eq. (4.3) the system can be rewritten as follows

∂u

(

α0(u)α(u)∂uA(i)
z (u)

)

= S(i−1)
z (u) , (4.11)

where the index i takes values i = 0, 1, 2. S(i)
z is a source term depending on the solutions

at lower order in the perturbative expansion, and with the first term vanishing S(−1)
z = 0.

The α functions are defined as

α0(u) =
2N
ℓ3u20

(−1 + u2), α(u) =
1

α0(u)
g−2
5

√
−s̃s̃uus̃zz . (4.12)

The function α(u) was normalized so that α(u)
∣

∣

J+→0 , E→0 = 1. The source terms and

the explicit calculation to solve the differential equation can be found in appendix E. The

general solution for eq. (4.11) can be written as

A(i)
z (u) = C

(i)
1 +

∫

du
1

α0(u)α(u)

(

C
(i)
2 +

∫

duS(i−1)
z (u)

)

, (4.13)

9In any case we will solve the system and we will confirm that A
′(0)
z (0) = 0.
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the integration constants C
(i)
2 are fixed demanding regularity for the solution at the horizon

and C
(i)
1 is directly identified as the non-normalizable mode.

Finding the solution for 4.11 and substituting into eqs. (4.8) and (4.10) we obtain the

expected value for the static conductivity eq. (2.13) and the following expression for the

generalized relaxation time

Teff τ =
log 2

2π
− σDC

ℓu
3/2
0

4πbNu⋆

Teff

T

∫ 1

0
dx

α′(x)
α(x)2

log

(

1− x

1 + x

)

+

− 1

σDC

bNu⋆

4πℓu
3/2
0

Teff

T

∫ 1

0
dx p′(x) log

(

1− x2
)

, (4.14)

where

p(u) = −2g−2
5

√
−s̃

(−1 + u2)u0
b2ℓNu

s̃zz
(

s̃−−

ρ2−
+ s̃ττ

)

.

The formula (4.14) gives an analytic expression for the generalized relaxation time. In the

limit where both the charge density and the electric field asymptote to zero, the integrals

vanish because p(u) = α(u) = 1. In this limit the generalized relaxation time takes the

constant (QC) value

τ =
log 2

2πT
. (4.15)

When the charge density J = 0 there are also two interesting limits we can study. The

first one is t ≪ 1 where

α(u) ≈ 1

2t2

√

u4 + u3 + 2u2 + u+ 1

u+ 1
(4.16)

p(u) ≈
√
2t

√

u+ 1

u4 + u3 + 2u2 + u+ 1
, (4.17)

and substituting these functions in (4.14) we can write the generalized relaxation time as

Tτ =
t3/2

21/4πT

∫ 1

0

1
√

(1 + u) (u2 + 1) (u2 + u+ 1)
≈ 0.1565 t3/2 , t ≪ 1 . (4.18)

The other regime we can study is t ≫ 1 where the functions α and p read

α(u) ≈ 1 +
u(u(u+ 2) + 2) + 2

8t4(u+ 1)
(4.19)

p(u) ≈ 1− u(u+ 1)2 + 1

8t4(u+ 1)
. (4.20)

In this case the generalized relaxation time is given by

Tτ =
log 2

2π
+

log(32)− 2

32π
t−4 +O(t−8) , t ≫ 1 . (4.21)

Finally we summarize in the table 1 the two asymptotic values obtained from the general

eq. (4.14) and obtained above.
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τ J = 0

∼ T−1 t ≫ 1

∼
(

T
E

)1/2
t ≪ 1

Table 1. High and low-temperature behavior of the generalized relaxation time.

5 The AC conductivity

To understand the full frequency dependence of the optical conductivity it is necessary to

resort to the numerical solution of the equation. In order to have analytical control we

can study the high-frequency behavior using WKB techniques after writing the equation

as a Schrödinger system. We will start this section by analytically studying the high-

frequency regime of the system and then we will study the model for arbitrary frequency

using numerical methods.

5.1 High frequency behavior

In order to have an idea of the behavior of the conductivities at high frequency we can

rewrite the equation of motion as the Schrödinger equation, from which we can read the

effective potential that can provide insight on the solutions. To do so we rewrite eq. (4.3) as

− H0

H1

(

H1a
′
z

)′ − w2az = 0 , (5.1)

with

H0(u) =
1

(4πTeff)2
4(1− u2)2

b2ℓ4u0u

α(u)

p(u)
, H1(u) = α0(u)α(u) . (5.2)

If we redefine the radial coordinate and the field as

dr = H0(u)
−1/2du , az(u) = φ(u)ψ(u) (5.3)

with

φ(u) = 4

√

H0(u)

H1(u)2
(5.4)

the equation can be rewritten as

−ψ′′(r) +
(

V (r)− w2
)

ψ(r) = 0 (5.5)

and the Schrödinger potential reads

V (u) = −H0(u)

φ(u)

(

H ′
1(u)φ

′(u)
H1(u)

− φ′′(u)
)

(5.6)

where the derivatives are taken with respect to the coordinate u.
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Figure 3. Schrödinger potential for the different regimes of interest.

It is not possible to do an analytic integration of eq. (5.3), however we can obtain the

near horizon and near boundary behavior as

r ∼ − log(1− u) , u . 1 , (5.7)

r ∼ 4bℓ2πTeff

3u0
(u⋆u)

3/2 , u ≪ 1 . (5.8)

In the new coordinates the boundary and horizon are at 0 and ∞ respectively. We can

write the asymptotic potential

V ∼ −c(t, J)e−r , r ≫ 1 , (5.9)

V ∼ − 5

36r2
, r ≪ 1 , (5.10)

where the constant c(t, J) has a complicated dependence with t and J . Nevertheless the

formula simplifies in the QC and DR

c(t, J) ≃ 1

4
(1 + q(t, J)) , q(t, J) ≪ 1 (5.11)

c(t, J) ≃ 1

2

(

1− 1

2q(t, J)

)

, q(t, J) ≫ 1 . (5.12)

In figure 3 we show the Schrödinger potential for all the regimes of interest.
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Figure 4. In this plot the asymptotic forms of the potential are indicated. The near boundary

region is to the left while the near horizon region is to the right. The system has analytic solutions

in both asymptotic regions.

In the QC regime, q ≪ 1, the qualitative behavior is similar in the two sectors I to

II that correspond to t ≪ 1 and t ≫ 1 respectively (see figure 1). Indeed, close to the

boundary the potential diverges as r−2 and then approaches the horizon monotonically.

The behavior changes in the DR regime q ≫ 1 because an intermediate well is formed

for high enough values of q. It is worth mentioning that for q → ∞ the r−2 region in

the potential is squeezed towards the boundary. Minimizing eq. (5.6) we can compute the

location and depth of the well in the limit q → ∞

V (u) ≈ 1

4
u
(

u2 − 1
)

, q → ∞ (5.13)

umin =
1√
3
, (5.14)

Vmin = − 1

2× 33/2
≈ −(0.310)2 , (5.15)

with r ≈ 2
(

tan−1 (
√
u) + tanh−1 (

√
u)
)

. From figure 3 we observe that the location of the

minimum satisfies

rmin(q) < rmin(∞) (5.16)

and that the depth of the well does not depend on the value of q.

Having the asymptotic expansion of the potentials we proceed to solve the Schrödinger

eq. (5.5) analytically in these two regions (see figure 4) and we will then match them

assuming that the frequency is much bigger than
√

|Vmin|.
The asymptotic solutions read

ψ(r) = c(t, J)−iwJ−2iw

(

2c(t, J)1/2e−r/2
)

Γ(1− 2iw) , r > r1 (5.17)

ψ(r) = a1r
1/2J1/3(rw) + a2r

1/2Y1/3(rw) , r < r0 (5.18)

where we have fixed the integration constants in the near horizon solution selecting the

infalling boundary condition and normalizing the solution as ψ(r → ∞) = e−irw. The

constants a1 and a2 will be fixed by the matching conditions of the wave function. Before
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doing so, we will use eq. (5.18) and the Kubo formula to write a formula for the optical

conductivity in terms of the integration constants a1 and a2

(

b2ℓNT
)−1

σ(ω) = i

(

2π

3

)7/3
(√

3a1 + a2
)

Γ (1/3) Γ (7/3) a2

(ω

T

)−1/3
(5.19)

The previous asymptotic solutions are valid for arbitrary frequencies. For frequencies

that are much bigger than the lower value of the potential inside the region r ∈ (r0, r1) (see

figure 4) we can go further. In this case, the intermediate solution will be a combination

of plane waves

ψ(r) = ã1e
wr + ã2e

−wr . (5.20)

Matching this solution with the wave function (5.17) we fix the constants

ã1 = 1− i
e−r1c(t, J)

2w
− e−2r1c(t, J)2

4w(2w + i)
(5.21)

ã2 = −e2ir1wc(t, J)

2w(2w + i)

(

e−r1 − ie−2ir1c(t, J)

2(w + i)

)

. (5.22)

Following the same matching process we can fix the constants a1 and a2 and we finally

obtain the analytic expression for the wave function in the near-boundary region.

a1 =
πe−ix

12
√
r0

(

Y 1
3
(x)

(

ã1e
2ix(1− 6ix) + 6iã2x+ ã2

)

+ 6xY− 2
3
(x)

(

ã2 + ã1e
2ix

)

)

(5.23)

a2 = − πe−ix

12
√
r0

(

J 1
3
(x)

(

ã1e
2ix(1− 6ix) + 6iã2x+ ã2

)

+ 6xJ− 2
3
(x)

(

ã2 + ã1e
2ix

)

)

, (5.24)

with x = r0 w. Our analysis is valid for w2 ≫ |Vmin|, although x can be either x ≫ 1 or

x ≪ 1 because r0 can become small if q is high enough.

We expand eqs. (5.23) and (5.24) for x ≪ 1 first

a1 =
−5 3√2x2/3Γ(− 1

3)+4(6ix−1)Γ( 1
3)

24 22/3
√
r0 3√x

eix

a2 = − 5π 3√xeix

12 3√2
√
r0Γ( 4

3)







, r0w ≪ 1 , w2 ≫ |Vmin| , (5.25)

and obtain the AC conductivity of the form

σ(ω) ≈ 8NΓ (1/3)

15ℓ5/3Γ (7/3)

(

3−2/3 3

√

2

π

r0
Teff

+
2 3
√
2i

3

(π

3

)2/3
ω−1

)

(

bTeff

r0u0

)2/3

. (5.26)

This behavior describes an intermediate regime for very small r0. In the opposite case,

x ≫ 1 the constants asymptote to

a1 = (−1)5/12√
r0

√

πx
2

a2 = (−1)11/12√
r0

√

πx
2







, r0w ≫ 1 , w2 ≫ |Vmin| , (5.27)

which produce the following expression for the UV optical conductivity

(

b2ℓNT
)−1

σ(ω) ≈
(

2π

3

)7/3
(√

3 + i
)

Γ (1/3) Γ (7/3)

(ω

T

)−1/3
. (5.28)

This last formula is the correct estimate for the conductivity for large enough ω.
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5.2 The numerical computation of the AC conductivity

To compute the full frequency dependence of the conductivity it is necessary to find nu-

merical solutions. In order to implement properly the infalling boundary condition at the

horizon we must find first an approximate solution near the horizon az(u) ≈ asz(u).

We redefine the gauge field as asz(u) = (1 − u)−iwAz(u), and using the eq. (4.3) we

find an analytic and regular solution for Az(u) in the region of u ∼ 1 as an expansion in

(u− 1) up to fourth order.

We then integrate numerically eq. (4.3) from the point u = 1 − ǫ to the boundary

located at the cut-off ǫ(J, t), using as a boundary conditions az(1 − ǫ) = asz(1 − ǫ) and

a′z(1 − ǫ) = as
′

z (1 − ǫ). After doing the integration of the differential equation and using

the holographic dictionary we extract the conductivity in the regimes of interest. In order

to plot dimensionless quantities we normalized the conductivity as described below.

The form of a Drude peak in the low frequency AC (ω ≪ ωUV) conductivity is given by

σ(ω) =
σDC

1− iτω
, (5.29)

where σDC is the DC value of the conductivity and τ is the relaxation time. If the validity

of (5.29) extends to a region in which τω0 ≫ 1 with ω0 ≪ ωUV, the conductivity will obey

the following power law in this regime

σ(ω) ≈ σDC

ω2
+

iτ−1σDC

ω
≈ τ−1σDC ω−1eiπ/2 . (5.30)

In what follows we will state that the conductivity has a Drude peak if it can be fitted

with the formula (5.29) up to some frequency satisfying τω0 & 1 (ω0 ≪ ωUV).

On the other hand, from the UV behavior of the system under consideration, the

conductivity (5.28) satisfies a power law with exponent −1/3 and phase 30◦. We reproduce

the asymptotic formula here,

σ̃ ≈ 2

(

2π

3

)7/3

Γ (1/3)−1 Γ (7/3)−1
(ω

T

)−1/3
eiπ/6 ≈ 2× 0.67261

(ω

T

)−1/3
eiπ/6 , (5.31)

with σ̃(ω) =
(

b2ℓNT
)−1

σ(ω).

To infer the existence of a Drude peak in the IR, we estimate the value of ω0 & 1/τ and

we will compare it with the UV cut-off r0
10 (as shown in figure 4). This analysis is done

for three different values of t in the DR and in the QC regime. To do so, it is necessary to

compute the generalized relaxation time. In figure 5 we plot τ(t) for the values J = 104

(DR) and J = 0 (QC). We use the analytic formula (4.14) and the numerical data. From

the plots we observe a perfect agreement among the analytical data and the numerical one.

We take this result as a non trivial check of our code.

We now define ωUV ∼ 1/r0 and we plot it in table 2 together with ω0 for t =

1/30, 1/10, 2 in the QC and in the DR regimes.11 In the QC regime we observe that

10From figure 3 we estimate the location r0 where the potential deviates from its UV behavior V ∼

−5/(36r2).
11Note that q(1/30, 104) ∼ 1015, q(1/10, 104) ∼ 1013 and q(2, 104) ∼ 103.
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Figure 5. The generalized relaxation time τ as a function of the scaling temperature variable t.The

left plot shows the behavior of the dimensionless quantity Tτ (T is the temperature) deep in the

Drude regime (DR). The right plot shows the behavior in the Quantum Critical regime (QCR) at

zero density. Dots show numerical data and the continuous line is the analytic formula obtained in

the text using perturbation theory.

J = 0 (QC) J = 104 (DR)

t = 1/30 w0 & 1000, wUV ∼ 2 w0 & 0.6, w−1
UV ∼ 0

t = 1/10 w0 & 200, wUV ∼ 2 w0 & 0.3, w−1
UV ∼ 0

t = 2 w0 & 9, wUV ∼ 2 w0 & 0.2, w−1
UV ∼ 0

Table 2. w0 for different values of t in the QC and DR regimes.

ω0 ≫ ωUV, in consequence we should not expect to see a Drude peak in such regime. On

the contrary in the DR we observe that ω0 ≪ ωUV, and a Drude peak forms in the present

system as we shall see.

With the previous analysis we proceed to study the conductivities. In figure 6, we

plot the real (left) and imaginary (right) part of the conductivity for q = 103 (DR) and

for q = 0 (QC) as a function of ω/T . In the following figure 7 we plot the same quantities

but now as a function of ω/Teff . In regions where T is very different from Teff these plots

look different.

We also fitted the Drude function (5.29) on top of the numerical data. As expected

from the previous analysis, in the QC regime we do not see the formation of a Drude peak.

The point in which the conductivity deviates from the the Drude fitting is much less than

the ω0 values estimated in the table 2. We observe such deviations because the UV physics

start dominating at those scales. On the other hand for q = 103 (DR) the numerical data

almost agrees with the Drude fitting in all the plotted region. That confirms the fact that

the UV scale happens to satisfy ωUV ≫ ω0, and the Drude paradigm seems to be valid in

this dragging regime even though there are no quasi-particles.

In the following we will analyze the UV properties of the conductivities using our

numerical results. In figure 8 we show in log-log plots the real (left) and imaginary (right)

parts of the conductivity. The parameters in these plots are properly adjusted to display

the behavior in each of four regimes of (2.21).
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Figure 6. Conductivity for three different temperatures in the DR (up) and in the QC (down)

regimes. The left figures show the real part of the conductivity while the right figures the imaginary

part of the conductivity. Dots represent the numerical data, continues lines correspond to a fit to

the Drude peak formula.

• We set first t = 1/30 (upper plots of figure 8) which corresponds to either the regime

(I) or the linear regime. The values of q used for (I) are q = 0 and q = 10−2 and for

the linear regime are q = 100 and q = 1.2×103. The conductivity was also computed

for the transition value q = 1.

• In the lower plots of figure 8 we show the conductivities for t = 2 and q = 0, q = 10−2

(II regime), q = 1 (transition) and q = 100, q = 1.2× 103 (quadratic regime).

From figure 8 we observe a similar qualitative behavior in the regimes (I) and (II), the

same happens among the linear and quadratic regime. The location of the UV physics in

all the regimes is at ωUV ∼ 10Teff . We observe in the QC the absence of the Drude peak

and we also verify that the conductivity obeys the power law obtained in subsection 5.1,

eq. (5.28).

In the Drude regime we confirm the appearance of the Drude peak in the IR. However,

unlike the QC, we observe a transition from the peak to a power law of the form ω−1/2,

indicating the existence of an intermediate regime which we were not able to extract an-

alytically from the analysis of the Schrödinger potential. We note that we observe the
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Figure 7. Conductivity for three different temperatures in the DR (up) and in the QC (down)

regimes as a function of ω/Teff . The left figures show the real part of the conductivity while the

right figures the imaginary part of the conductivity. Dots represent the numerical data, continues

lines correspond to a fit to the Drude peak formula. As for t ≪ 1 Teff very different from T , in this

part, the diagrams look very different from the previous figure.

appearance of the intermediate regime when a well in the Schrödinger potential is formed

(see figure 3), so it seems to be related to it. The exponent −1
3 in the DR should show up

at much higher frequency, but we were not able to numerically verify this because at high

frequencies our numerical code was no longer reliable.

In figure 9 we plot the absolute value and the phase of the conductivity. The plots

helps verify independently the presence of the power law for the intermediate frequency

regime of a similar nature as was seen in the cuprates in [5].

In the QC regime, q ≪ 1, we observe a power-law decay with an exponent of −1/3

and a constant of proportionality independent of t and J consistent with eq. (5.31). The

phase approaches asymptotically the value of 30◦. This is again reminiscent of the power

law seen in the cuprates, [5].

In the DR we observe that the bigger the value of q, the closer to 90◦ the phase gets.

We interpret this behavior as the consequence of the competition among the drag and the

critical pair-production physics. As the drag contribution is dominating with the increasing

q, the Drude description of the AC conductivity is becoming better.

– 25 –



J
H
E
P
1
1
(
2
0
1
5
)
1
7
7

Figure 8. Real (left) and imaginary (right) part of the conductivity. In the top figures the

conductivity is plotted for different values of the parameter q ranging from the QC regime (q ≪ 1)

to the DR regime (q ≫ 1) for a fixed value of the scaling temperature variable t with t ≪ 1. In

the bottom plots q is again varied in the full range at a fixed value of t, with t > 1. The colored

continuous lines show the Drude fitting using the analytic computation of the generalized relaxation

time. Straight black and dashed gray lines show the UV and the intermediate power law behavior

of the AC conductivity.

For q ∼ 103 (large), the conductivity behaves as ω− 1
2 for ω > 100Teff (linear regime

and quadratic regime). Note that the UV behavior of the conductivity for such a large

value for q in the linear regime is

σ ∼ 22(1 + i)

(

ω

Teff

)−1/2

(5.32)

and in the quadratic regime it is

σ ∼ 8(1 + i)

(

ω

Teff

)−1/2

(5.33)

(see figure 8). In view of this fact the conductivity is expected to approach a constant

phase of 45◦ and this is what we actually observe in figure 9. This scaling happens in

an intermediate regime and we expect that for much larger values of the frequency it will

asymptote to the ω− 1
3 behavior that we found by the matching conditions method. This

was verified numerically for q = 100 and we observed the tendency of the data to approach

the value 30◦ after almost a constant phase of 45◦ for some range of frequencies.
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Figure 9. Absolute value (left) and argument (right) part of the conductivity. In the top figures

the conductivity is plotted for different values of the parameter q ranging from the QC regime

(q ≪ 1) to the DR regime (q ≫ 1) for a fixed value of the scaling temperature variable t with t ≪ 1.

In the bottom plots q is again varied in the full range at a fixed value of t, with t > 1. The blue

continuous line shows the Drude fit using the analytic computation of the generalized relaxation

time. Straight black and dashed gray lines show the UV and the intermediate power law behavior

of the AC conductivity.

In figure 10 we show a check the result of the asymptotic scaling of the AC conductivity

indicated in the analytic formula in eq. (5.31) for different values of t and q. We have

obtained a consistent result between analytic and numerics, a fact that provides a credibility

check for our numerical calculations.

Our analytic computation of the high-frequency behavior of the conductivities shows

an intermediate regime in which the real part of the conductivity behaves as a constant

when r0w ≪ 1 but w ≫ 1 (eq. (5.26)). To reproduce such a regime it is necessary to

go deep in the DR (see figure 3), so we fixed J = 104 and computed for different values

of t both in the linear and quadratic regime. We show in figure 11 the conductivity for

t = 0.03, 0.1, 2, 6. The upper plots are the real and imaginary part of the conductivity and

the plots below are its absolute value and its argument.

We observe that in the linear regime (t < 1) a plateau in the real part of the conduc-

tivity is formed at ω > 100Teff and the imaginary part has a ω−1 behavior as we showed

in section 5.1.12 For ω < 100Teff the conductivity is very well-fitted by the Drude formula.

Note for example that the phase reaches 90◦ as we would expect for a Drude behavior,

12The continuous line in figure 11 represents the Drude fit. We do know however from eq. (5.30) that at

high frequencies the imaginary part of the Drude form asymptotes to ω−1.
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Figure 10. Absolute value of the conductivity in the QC (q = 10−2) and in the DR (q = 10)

regimes for the scaling temperatures t = 0.03, t = 0.1, t = 2 and t = 10. We observe the same

power-law, independent of the temperature and regime, in the variable ω/Teff for high enough values

of the later ratio.

Figure 11. Conductivity for J = 104. Continues lines show the Drude fitting. Gray dashed line is

a fitting with exponent −1/2.

and then presumably decreases to 45◦ and stays there for some range of the frequencies

because of the ω−1/2 behavior.

The quadratic regime (t > 1) just shows the intermediate regime with conductivity

scaling as ω−1/2 and phase 45◦.

In summary, we associate the presence of the Drude peak to a regime in which the drag
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related dissipation associated with strongly coupled physics dominates over the quantum

critical pair-production mechanism for conductivity. In the QC regime the scaling (UV)

physics (σ ∼ ω−1/3) appears at relatively low frequencies compare with the associated

UV scales of the DR (ω > 104Teff). Consequently the scaling tail of the conductivity is

controlled by the quantum critical physics.

6 AC conductivity scaling and quantum critical saddle-points

We will now consider the AC conductivity in holographic systems with a critical IR

geometry characterized by a hyperscaling violating exponent θ and Lifshitz exponent

z, [13, 14, 84], in the absence of momentum dissipation.

The extremal hyperscaling-violating background is given by

ds2 = −D dt2 +B dr2 + C (d~x)2 = r
2θ
d

[

−dt2

r2z
+B0

dr2

r2
+

(d~x)2

r2

]

, At ∼ Qrζ−z (6.1)

Here d is for the number of space dimensions of the dual boundary field theory, z is

the Lifshitz exponent, θ is the hyperscaling-violation exponent, ζ is the conduction expo-

nent, [15, 41, 43] that controls the gauge field and Q is proportional to the UV charge

density. B0 is a positive constant that can be absorbed into a redefinition of the general-

ization of the AdS scale (set to 1 here) and the boundary space-time coordinates.

It is a solution to the EMD action, [13],

SA =

∫

dd+2x
√
g

[

R− 1

2
(∂φ)2 + V (φ)− Z(φ)

4
F 2

]

, (6.2)

where the background electric field generated by the boundary charge density is

A′
t =

Q
√
DB

ZC
d
2

, (6.3)

In generic scaling solutions, the bulk gauge coupling constant and scalar potential

Z(φ) ∼ rκ , V (φ) ∼ r−ρ (6.4)

are r dependent as they depend on the running scalar. In the case where in the IR Z ∼ eγφ

and V ∼ e−δφ, the dilaton φ behaves in the IR as φ ∼ α log r therefore κ = αγ, ρ = αδ.

Then, the previous equation determines the conduction exponent, [15, 41, 85] to be

ζ = d− θ − κ+
2θ

d
. (6.5)

Note that this relation is only valid if the U(1) symmetry is unbroken.

The exponents θ and ζ track the presence of the violation of naive scaling in the

classical solution. When θ 6= 0 the metric violates hyperscaling. When ζ 6= d, the gauge

field profile violates naive scaling.

When θ = ζ = 0 there is a genuine Lifshitz scaling symmetry in the theory and

the various observables have canonical scaling. For example the energy scales with mass-

dimension z, spatial momenta with mass-dimension one, and the charge density ρ with mass
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dimension d while the current density has dimension z + d − 1. Moreover, all observables

of the dual quantum field theory have naive scaling and the generalization of the AdS scale

ℓ13 never appears in QFT formulae.

This is to be contrasted with the case where at least one of the exponents θ, ζ is

non-zero. In that case the following are true:

1. There is always a scalar field that runs in the solution, φ = f
(

r
ℓ

)

and it is typically

responsible for the nontrivial values of the exponents θ, ζ.

2. Physical observables are still scaling but they violate hyperscaling and/or naive scal-

ing14 the scale ℓ appears in physical observables, to correct for the unusual dimensions.

For example the entropy is

S ∼ ℓ−θ T
dθ
z , dθ = d− θ , (6.6)

with dθ appearing as the effective spatial dimensionality. In this way S has physical

dimension d.

In some string theory examples, the hyperscaling violation scale ℓ can be interpreted

as a Kaluza-Klein scale, [14], namely the radius of an internal dimension that has been

compactified. In this case the higher-dimensional theory is a theory that preserves hyper-

scaling.

In the generic case, the hypescaling-violation scale ℓ may be distinct from other UV

scales that drive the flow of the theory. In the simplest possible gravitational example

with a conventional relativistic (ie AdS) fixed point and a hyperscaling violating solution

in the IR, we must have a potential in (6.2) with two exponentials and a gauge coupling

function Z with one exponential. In that case the dynamical UV scale ΛUV can be mapped

uniquely to the IR hyperscaling violating scale ℓ. In all hyperscaling-violating solutions we

will therefore denote ℓ by ΛIR.

In the near-extremal case there is also a blackness factor f(r) in the metric

ds2 = r
2θ
d

[

−f(r)dt2

r2z
+B0

dr2

f(r) r2
+

(d~x)2

r2

]

, f(r) = 1− (r/rh)
d−θ+z (6.7)

as well as an appropriate modification of the gauge field.

From the Einstein equation we conclude that the only way for the gauge field to

support15 the gravitational IR background is to have dθ + ζ = 0. If dθ + ζ < 0 the charge

will not backreact to leading order and the IR solution will not depend on the presence

of this charge. Finally, the case dθ + ζ > 0 is not allowed as it is incompatible with the

13We define ℓ in general by substituting r → r/ℓ in the metric (6.1).
14Note the here we take a more general definition for hyperscaling violation compared to the condensed

matter literature: any physical observable that scales with an anomalous exponent, violates hyperscaling

according to our definition.
15This means that the contribution of the gauge field is of the same order as the gravitational contribution

to the bulk equations of motion.
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equations of motion (the gauge field contribution is larger than gravity). We therefore have

the general inequality

dθ + ζ ≡ d+ ζ − θ ≤ 0 . (6.8)

Note that this inequality implies for EMD solutions that in the presence of a non-trivial

charge density only the AdS2 solution is truly scale invariant. All other solutions have

hyperscaling violation.

The fluctuation equation for a time-dependent gauge field δAi ≡ ai(r)e
iωt is (after

solving for the associated metric perturbation, δgti, [13])

Z−1C
2−d
2

√

B

D
∂r

(

ZC
d−2
2

√

D

B
a′i

)

+

[

B

D
ω2 − Q2B

ZCd

]

ai = 0 (6.9)

The last term is proportional to the charge density, as the charge Q enters in the invariant

combination, Q

C(r)
d
2
, which is the charge density at any given r. It is responsible for the

presence of a non-trivial Drude weight in the absence of momentum dissipation, [86, 87].

In the near extremal scaling background (6.1) the fluctuations obey the equation16

a′′i +
(

3− z − ζ

r
+

f ′

f

)

a′i +
B0

r2

(

ω2

f2
r2z − Q2

f
rdθ+ζ

)

ai = 0 , (6.10)

We will absorb the positive constant B0 into a redefinition of ω and Q, therefore from now

on we set B0 = 1. We will also set the temperature to zero (that sets f = 1 in (6.10)).

This equation is of the form
(

eA(r)a′
)′

+ eA(r)+2B(r)(ω2 −G(r)) a = 0 (6.11)

where a prime stands for a derivative with respect to r. We define a new variable u and a

new function ψ so that
du

dr
= eB, a = e−

1
2
(A+B) ψ (6.12)

The equation (6.11) now becomes a Schrödinger-like equation

− ψ̈ + V ψ = ω2ψ (6.13)

with

V =
1

2
(Ä+ B̈) +

1

4
(Ȧ+ Ḃ)2 +G , (6.14)

where a dot is a derivative with respect to u. For all gapless solutions described here the

IR is either at r → ∞ or r → 0 and the Schrödinger coordinate u ∼ rz it will behave

always as u → ∞.

We now turn to our concrete problem in (6.10), where the Schrödinger potential can

be calculated asymptotically to be

V =
ν2 − 1

4

u2
+

Q2

z2u2
(zu)

dθ+ζ

z (6.15)

ν2 =

(

2θ + d2 − d(κ+ θ + 2)
)

(2θ + d(dθ + 2z − 2− κ))

4d2z2
+

1

4
. (6.16)

16It was shown in [14] that near extremality, the equation can be rewritten in-terms of the scaling variables

r/rh and ω/T showing that the conductivity, up to an overall scale is a function of ω/T .
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The leading form of the potential in the IR depends on the value of the charge density Q

and the exponents. More precisely:

I dθ + ζ < 0 or Q = 0. In both of these cases the leading form of the potential will be

V =
ν2 − 1

4

u2
, (6.17)

and is scale invariant. The small ω behavior of the AC conductivity is, [13, 14, 90]

σ(ω) ∼ ωm, m = 2|ν| − 1 (6.18)

II dθ+ ζ = 0. When this condition is satisfied the second term in the potential in (6.15)

has the same u−2 behavior as the first term and in this case

σ(ω) ∼ ωm, m = 2|ν̄| − 1, ν̄2 = ν2 +
Q2

z2
(6.19)

Note that in this case, the gauge field is contributing non-trivially to the IR equa-

tions of motion. Also the term Q2 appearing in the exponent is not the UV charge

density (that is a free parameter) but the IR charge density which in this case is fixed

completely and is a function of z, θ, [13].

III The remaining case dθ + ζ > 0 is incompatible with (6.8) imposed by the equations

of motion as we argued previously.

In view of this classification we may now specialize (6.18) to two different cases:

• The charged IR solution of [13, 14]. In this case the IR background is conformal to

Lifshitz with hyperscaling violation. The gauge field has an action eγφF 2, but γ is

determined in this case by the exponents z and θ, [13]. The dilaton is given by

eφ ∼ r
2θ
dδ , α =

2θ

dδ
(6.20)

there is an asymptotic dilaton potential e−δφ with

δ2 =
2θ2

ddθ(d(z − 1)− θ)
, (6.21)

and the charge of the solution is given by

Q2 =
2(z − 1)

dθ − 1 + z
. (6.22)

In this case the Gubser criterion reads

z − dθ
d(z − 1)− θ

> 0,
dθ − 1 + z

d(z − 1)− θ
> 0,

(z − 1)

d(z − 1)− θ
> 0, (6.23)

and the thermodynamic stability condition

z

(d− 1)(z − 1)− θ
> 0 , (6.24)
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Figure 12. Contour plots to illustrate the region in the parameter space where the exponent m

takes negative values for the single charged model. Left: conductivity in the charged case for d = 2.

Right: conductivity in the charged regime for d = 3. The allowed values for the parameters are

bounded by the gray mesh. The negative values for m are outside the permitted region.

when satisfied it is correlated to the existence of a gapless spectrum at zero and finite

temperature, [13, 14].

For these solutions of EMD

κ = αγ = 2d− 2θ(d− 1)

d
, m =

∣

∣

∣
3− 2

z
+

dθ
z

∣

∣

∣
− 1 . (6.25)

In this case, both terms in the potential (6.15) scale as 1
u2 , the IR charge density Q

is fixed from the equations of motion and is a function of the exponents z, θ and we

are in case II above.

A few special cases of (6.25) deserve to be mentioned. The AdS2 case is obtained

when z → ∞. In that case m = 2. The hyperscaling violating, semilocal geometries

are obtained from the limit z → ∞, θ → −∞, with θ
z = −η held fixed. For these

geometries,

m = |3 + η| − 1 = 2 + η > 0 (6.26)

In figure 12 we plot the exponent m as a function of z, θ. We observe that the region

where m takes negative values in the θ−z plane, is always outside the region bounded

by the Gubser criterion and the thermodynamic stability, for both d = 2, 3. This was

already observed in [13] which also gave a plot of the allowed values of m. It is

therefore not possible to have a negative exponent m in this case.

• The only other possibility that remains to be studied is when the second term in (6.15)

is subleading to the first term. This happens when the relevant gauge field is sub-

leading in the IR equations of motions and does not backreact to the IR geometry

to leading order. To do this we will need at least two gauge fields in the holographic
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theory, one to seed a general scaling geometry and the other to be subleading (and

therefore treated as a probe in the IR geometry).17 We introduce therefore the gauge

fields Aµ, Vµ. Aµ will be nontrivial and will support the hyperscaling violating solu-

tion as in the previous cases. Vµ will have a smaller coupling in the IR and will be

therefore subleading in the equations of motion.

The gauge field action is now

δSV = −1

4

∫

dd+2x
√
g
[

ZA(φ)F
2
A + ZV (φ)F

2
V

]

(6.27)

and the scaling of the conductivities has been extensively analyzed in appendix F.

We report the results here and we distinguish two cases.

1. One of the gauge fields (say A) supports the IR geometry while the other (say

V) is subleading in the IR. This was analyzed in F.1.

In this case the conductivity σA is as the previous example, (6.25) The conduc-

tivity for V , σV scales differently. We define

ZV ∼ rκ̄, (6.28)

in particular we parametrize κ in the following way

κ̄ = κ+ δκ.

The charge exponent for V is

ζ̄ = dθ − κ̄+
2θ

d
, (6.29)

The exponent m in the conductivity σV now reads

m =

∣

∣

∣

∣

θ(d− 2)

dz
− 1

z
(d+ z − 2− κ̄)

∣

∣

∣

∣

− 1 =
∣

∣

∣

z + ζ̄ − 2

z

∣

∣

∣
− 1 , (6.30)

θ and z must obey the Gubser and thermodynamic stability bounds (6.23), (6.24)

as well as dθ + ζ̄ < 0.

Note that the exponent m, written in terms of the two hyperscaling violation ex-

ponents θ, ζ, does not depend on θ. Therefore it is sensitive only to hyperscaling

violation originated in the charge sector.

A few special cases of (6.30) deserve to be mentioned. The AdS2 case is obtained

when z → ∞ and m = 0 in this case. The hyperscaling violating, semilocal

geometries are obtained from the limit z → ∞, θ → −∞, with θ
z = −η held

fixed. For these geometries,

m =
d− 2

d
η, η > 0, d ≥ 2 (6.31)

and m is always positive.

In figure 13 we show the values of the exponent m for d = 2 in a charged

background (QA, QV 6= 0) where the backreaction of QV can be neglected. In

general m depends on z, θ, κ̄.

17Clearly this generalizes to several gauge fields, with similar quantitative conclusions. However there

could be other possibilities for seeding the leading solution that we do not address in this paper.
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Figure 13. Contour plots to illustrate the region in the parameter space where the exponents m

takes negative values for the V gauge field. The plot was made for d = 2. The negative values for

m are inside the permitted region. We have set |δκ| = 3.

The plot represents m for |κ̄ − κ| = 3. It is always possible to obtain a region

with negative values of m, either with κ̄ − κ > 0 and z > 0 or κ̄ − κ < 0 and

z < 0 (see appendix F). Note that from eq. (6.30) m = 0 for κ̄ = 0 which is the

case when the bulk gauge coupling constant flows to a constant value in the IR.

We conclude that in order to have m < 0 in d = 2 two conditions must be

satisfied:

(a) The charge density in question must not backreact on the metric.

(b) κ̄ > 0, namely the bulk gauge coupling must be IR free for z > 0 and

UV-free for z < 0.

The inverse correlation to the sign of z is also correlated to the relative flow

between energy and momentum, controlled by gtt
gxx

∼ r2(1−z). Taking into

account the constraints this ratio for z > 1 vanishes in the IR while for z < 1 it

diverges in the IR.

2. A different case involves the two gauge fields being equally important in the IR,

but that their coupling constants, ZA and ZV , become different as one flows to

the UV. In that cases ZA − ZV is much smaller than ZA + ZV in the IR. This

cases was analyzed in F.2. What was found is that σA and σV contain at low

frequency, a scaling term of the type shown in (6.25) and another as in (6.30).

There is also a cross-conductivity σAV that is partly negative and contains the

difference of the two terms above.
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7 Outlook

We have analyzed the AC conductivity in a holographic model of a strange metal pro-

posed in [8]. We found some interesting scaling limits of the conductivity that seem to

generalize to general critical holographic systems. We have also found that this scaling

regime is controlled by the uncharged system and seems to be generically independent on

the mechanisms of momentum dissipation.

The detailed results are as follows:

1. We define a parameter q that distinguishes the Drude regime (q ≫ 1) where the

DC conductivity is dominated by dissipation and the Charge Conjugation symmetric

regime (q ≪ 1) where dissipation is negligible.

2. The characteristic temperature scale that controls the AC conductivity is an effective

temperature Teff (with an associated scaling effective temperature teff defined analo-

gously). This is a characteristic effect for the system in question and more generally

for systems where charge is described by a D-brane system. It is not expected in

more general cases.

The effective temperature found is distinct from the system temperature T and is

due to the existence of a hierarchy of interactions. Similar effects have been observed

in electronic systems and in holography, [55]–[57].

3. We have defined a generalized relaxation time τ by the IR expansion of the AC

conductivity,

σ(ω) ≈ σDC

(

1 + i τ ω +O(ω2)
)

(7.1)

In the presence of the Drude peak, this is the conventional definition of an associated

relaxation time. When there is no Drude peak present, τ is still well-defined, although

in that case the interpretation as a relaxation time is not clear.

We gave an analytical formula for τ in (4.14). It takes a simple form for large and

small values of the scaling temperature variable t. In the regime I (see figure 1)

we obtain

τ ∼
√
T (7.2)

while in the regime II (with t typically large) it is set by the inverse of the temperature

τ ∼ 1

T
(7.3)

4. In the Drude regime (q ≫ 1) where the dominant mechanism for the conductivity is

dissipative, there is a clear Drude peak as seen for example in figures 7.

In the Charge Conjugation Symmetric regime it is also clear from the same figures

that no Drude peak is to be seen in the IR of the AC conductivity.
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5. At zero charge density (Charge Conjugation Symmetric regime) there is a scaling tail

for the AC conductivity that behaves as

|σ| ∼
(

ω

teff

)− 1
3

, Arg(σ) ≃ π

6
(7.4)

For finite charge density this tail survives not only in the Charge Conjugation Sym-

metric regime but also in part of the Drude regime, as seen in the various plots of

figure 8 as well as the ones of figure 9. The qualitative reason for this is that in

the presence of the Drude peak, its tails falls off as 1
ω and this is faster than ω− 1

3 .

Therefore, the scaling tail will eventually win over the Drude peak for ω ≥ ω0 and

the only condition that it is visible is that the UV structure of the theory kicks-in at

ωUV ≫ ω0.

6. This scaling tail of the AC conductivity generalizes to more general scaling holo-

graphic geometries, as previously described in [13]. The equation that determines

the conductivity is given in (6.9) and the equivalent Schrödinger problem has a po-

tential of the form Veff = V1+ρ2V2 where ρ is the IR charge density and is proportional

to the UV charge density.

In particular for a metric with Lifshitz exponent z, hyperscaling violation expo-

nent θ and conduction exponent ζ with d spatial boundary dimensions, we find that

in general

|σ| ∼ ωm, Arg(σ) ≃ −π m

2
(7.5)

with

m =

∣

∣

∣

∣

z + ζ − 2

z

∣

∣

∣

∣

− 1 , (7.6)

There are several constraints in the parameters of this formula that are detailed in

section 6.

7. There are some special cases of (7.6) that deserve mentioning. For an AdS2 IR

geometry the exponent can be obtained by an z → ∞ limit in (7.6) giving m = 0.

For hyperscaling violating semilocal geometries we must take θ → ∞, z → ∞ with
θ
z = −η fixed and obtain

m =
∣

∣

d− 2

2
η + 1

∣

∣

∣
− 1 =

d− 2

d
η (7.7)

Finally, for the gauge field conformal case we obtain m = 0 when d = 2.

8. We find that for two spatial dimensions, negative values for the exponent m are

correlated with the sign of the Lifshitz exponent z and the strength of the gauge field

interaction in the bulk. Parametrizing the IR asymptotics of gauge coupling function

Z as

Z ∼ rκ, r → ∞ (7.8)

in conformal coordinates, we obtain that zκ > 0 for negative values of m to be

possible.
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9. In the special case where the associated gauge field seeds the IR scaling geometry, κ

is fixed as a function of z, θ and the exponent m takes the value

m =
∣

∣

∣

3z − 2 + d− θ

z

∣

∣

∣
− 1 (7.9)

and is always positive. In the case where the IR geometry is AdS2 can be obtained for

z → ∞ limit of (7.9) giving m = 2. For hyperscaling violating semilocal geometries,

we must take, θ → ∞, z → ∞ with θ
z = −η fixed. In this case we obtain

m = |3 + η| − 1 = 2 + η (7.10)

10. An important issue is whether the scaling of the AC conductivity described above for

the general scaling geometries is controlled by the dynamics of the charge density, or

it is decided by the neutral system.

In the example we have analyzed the effective Schrödinger potentials that control the

calculation of the conductivity have two parts. One that is independent of charge

density and one that is proportional to the square of the charge density. In the generic

case it is the first that controls the UV scaling of the AC conductivity described above.

Only if the charge density is supporting the IR geometry, then the second part is of

the same order as the first and it is the sum that controls the scaling of the AC

conductivity. This special case is also the only one we found where the exponent m

in (7.6) is always positive. In other cases it can also be negative, but unitarity implies

always that m ≥ −1.

These findings suggest that there is a generic source of scaling tails in the AC conduc-

tivity in holographic systems. Moreover, in generic systems this scaling is expected to be

independent of the mechanism of momentum dissipation. On the other hand, whether it

is visible it depends on the details of the momentum dissipation mechanism.

An important part of this story is the dependence of the T=0 result on scales. For this

we must consider a hierarchy of cases as a function of the properties of the system. It also

matters whether the charge density is interacting strongly with the gravitational system

or is a probe whose backreaction on the system can be neglected. We will discuss all these

cases in turn

• In the truly scale invariant fixed points (ζ = θ = 0) with a general Lifshitz scaling

exponent, z, the AC conductivity will scale with ω with the canonical dimension,

σ ∼ ωd−2 (7.11)

for any z and no intrinsic scale enters in this relation. Note that in the EMD case,

apart from the AdSd+2 solution (z=1), there are no other such scale-invariant solu-

tions. To obtain general scale invariant Lifshitz solutions, one should use the more

general EMD action, [15] where the U(1) symmetry is generically broken.
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• In the presence of hyperscaling violation θ 6= 0, and/or ζ 6= 0, the IR theory contains

a nontrivial scale ΛIR that appears in many relations and is responsible for the change

of scaling exponents and the violation of hyperscaling, [14]. In some cases which can

become regular by embedding the dual bulk theory to a higher-dimensional relativis-

tic scale invariant theory such a scale is the radius of the extra dimensions. This

scale appears in scaling relations in order to “correct” the naive scaling dimension.

For example

σ(ω) ∼ Λd−2−m
IR ωm (7.12)

• In the cases where the charge density acts as a probe in the IR geometry (and

its effects are therefore subleading), it introduces a new IR scale that is set by the

associated charge density. However we have seen that this new scale does not enter to

leading order in the scaling relation for the associated conductivity. We are therefore

again in the situation described in the previous cases.

• It is expected that hyperscaling violating geometries should have a resolution of the

their naked singularities via an AdS2 or a stringy geometry in the IR, and they will

be only intermediate scaling regimes, [88]. In such a case ΛIR is the associated scale

to this mid-IR regime.

To try and extend qualitatively our general scaling analysis of section 6 we must

reason as follows: there are two further modifications to the setup above so that this result

is embedded in a complete RG flow. The first step is to match these IR asymptotics to an

AdS UV geometry. The second it to turn on finite temperature. We will now discuss such

modifications in turn.

The non-trivial RG flow at T = 0 introduces in the simplest of cases a transition scale

ΛUV. In the hyperscaling violating geometries this is related to the characteristic scale of

the IR geometry. In scaling geometries it is related to the UV operator that drives the

flow. Quite generically this can be the charge density. Our general AC scaling found above

is valid in the region ω ≪ ΛUV.

In the presence of a finite temperature, T , it was shown in [14] that the AC conductivity

is a function of ω/T . There are two ratios that control the behavior of the AC conductivity:

T/ΛUV and ω/T . In the hyperscaling violating case, ΛIR also enters. However, in the limit

ΛUV → ∞, ΛIR enters trivially as in (7.12). We have the following regimes

• T
ΛUV

≫ 1. The theory is in the UV scaling region and the AC conductivity is charac-

terized by the UV fixed point alone.

• T
ΛUV

≪ 1. In this case, there are three regimes for the AC conductivity as a function

of frequency.

– ω ≪ T This is the IR regime controlled by the properties of the black-hole

horizon. In this regime the mechanisms of momentum dissipation and hydrody-

namics are controlling the behavior, [89]. If the drag dissipation is present, it

determines the Drude peak (that maybe pronounced or less prominent depend-

ing on the strength) and this is the main characteristic of this region.
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– T ≪ ω ≪ ΛUV. In this regime the scaling behavior found earlier, at T = 0 is

prominent. As the power evolution of the AC conductivity is always ∼ ωm with

m > −1, it will always dominate over the Drude 1/ω decay for large enough

frequency. The only possibility where this will not be visible is if the cross over

scale is of the order of or larger than ΛUV.

– ω ≫ ΛUV. In this regime the AC conductivity is determined by the UV fixed

point.

The type of AC conductivity scaling described here is very reminiscent of the one seen

in the cuprates in [5], in the intermediate region T ≪ ω ≪ ΛUV. Indeed the scaling

exponent found there is m = −2
3 which suggests in view of our discussion the presence of

hyperscaling violation.

There are several problems that remain open in view of our results

1. We should back up our scaling analysis and the description of different regimes above

with a complete calculation of the AC conductivity from numerical complete RG

flows that connect AdS UV fixed to either IR or intermediate geometries with general

scaling exponents (z, θ, ζ).

2. The analysis of scaling described here was based on geometries that preserve the U(1)

symmetry. This analysis needs to be extended to the general class of U(1)-breaking

extremal scaling geometries found in [15]. Part of this analysis was already done

in [41] but it should be extended to more general cases. We expect that our results

will extend smoothly to these more general solutions. The aim is a universal formula

for the AC exponent m that controls the scaling of the AC conductivity.

3. Although the scaling tails described above are expected to be independent of the

mechanism of momentum dissipation, it is interesting to study their interaction with

momentum dissipation and different types of low-frequency behavior. In particular it

would be interesting to study this in geometries with helical symmetry as the general

class presented in [29].

4. The scaling exponent of the AC conductivity is expected to depend on the charge

interactions captured by the bulk (self)-interactions of the U(1) gauge bosons. Un-

derstanding how is an interesting question.

5. The eventual comparison with cases realized experimentally as in [5] is of direct

interest.

We are planning to address some of these questions in the near future.
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A Effective Lagrangian and equation of motion for gauge fluctuations

In this appendix we present the technical details of the derivation of the equation that

determines holographically the two-point correlator for the current and the associated AC

conductivity.

We substitute for the gauge field the background value as well as a linearized pertur-

bation A = A(0) + ǫa. ǫ ≪ 1 is a small parameter that we use to derive the linearized

perturbation equations.

L = −N
√

− det (γ + ǫf)

≃ −N
√

− det γ

(

1 +
ǫ

2
Tr

[

γ−1f
]

+ ǫ2
(

1

8
Tr

[

γ−1f
]2 − 1

4
Tr

[

(γ−1f)2
]

))

(A.1)

where we have defined

γ = g + F(0), f = da . (A.2)

We can split the matrix γ−1 into its symmetric and antisymmetric parts γ−1 = s−1 + θ

respectively. The symmetric part of γ−1 is as usual interpreted as the inverse open-string

metric. This induced world-volume metric has a horizon at the surface u = u⋆ instead of

u = u0, and it is given by

s = g − F(0)g
−1F(0). (A.3)

The quadratic part Leff in ǫ of (A.1) will determine the dynamics of the fluctuation

a. It can be rewritten in the form of a Maxwell theory with a Chern-Simons contribution

as follows

Leff = −N
√
− det s

(

1

4g25
fMNfMN +

1

8
√
− det s

ǫMNPQRfMNfPQQR

)

, (A.4)

where the effective coupling is

g25 =
√
− det s/

√

− det γ, ǫtxyzu = −ǫtxyzu = 1 (A.5)

QR = −
√− det γ

8
ǫMNPQRθ

MNθPQ. (A.6)

Notice that now we are raising indices with the open string metric s. In particular the

induced line element is

ds2 = s++(dx
+)2 + 2s+−dx+dx− + 2s+udx

+du+ 2s+idx
+dxi + s−−(dx−)2

+ 2s−idx
−dxi + sijdx

idxj + suudu
2 + 2suidudx

i . (A.7)

The components of the world-volume metric above are given in appendix B in terms of the

background metric. Finally, the equation of motion for the perturbation is

∂M

(
√
− det s

g25
fMN

)

− 1

2
ǫNMRPQ∂MQRfPQ = 0 . (A.8)
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B The open string metric

In this appendix we give the explicit expression of the open string metric in terms of the

background metric and the other background fields. The charge density and the background

electromagnetic field modify the induced geometry on the probe D-branes. Using eq. (3.4)

we can write the non-vanishing components of the world-volume metric as

s++ = g++ +
| ~E|2
gii

+
h′2+
guu

, s+− = g+− +
h′−h

′
+

guu
, s+i =

h′+h
′
i

guu
,

s+u = −
Eyh

′
y + Ezh

′
z

gii
, s−− = g−− +

h′2−
guu

, s−i =
h′−h

′
i

guu

sij = gij +
h′ih

′
j

guu
+

EiEjg−−
G+−

, siu = − Ei

G+−

(

g+−h′− − g−−h′+
)

suu = guu +
(h′y)

2 + (h′z)
2

gii
+

g−−(h′+)
2 + g++(h

′
−)

2 − 2g+−h′−h
′
+

G+−
, (B.1)

with i = y, z and where we use through all the appendices the notation ~E = (Ey, Ez),
~h = (hy, hz), ~E ·~h = Eyhy +Ezhz and ~E×~h = Eyhz −Ezhy. Please do not confuse ~h with

the blackening factor h(u) (see eq. (2.4)).

The components of the antisymmetric matrix are

θ+− = −giih
′
−

det γ
~E · ~h′ , θ+u =

g2ii
det γ

(g−−h′+ − g+−h′−) ,

θ+y = Ey

(

gii
(

g−−guu + h′2−
)

det γ
+

g−−h′2z
det γ

)

− hy
E′

zh
′
zg−−

det γ
,

θ+z = Ez

(

gii
(

g−−guu + h′2−
)

det γ
+

g−−h′2y
det γ

)

− hz
E′

yh
′
yg−−

det γ
,

θ−y = Ey

(

−gii
(

g+−guu + h′−h
′
+

)

det γ
− g+−h′2z

det γ

)

+
Ezg+−h′yh

′
z

det γ
,

θ−z = Ez

(

−gii
(

g+−guu + h′−h
′
+

)

det γ
−

g+−h′2y
det γ

)

+
Eyg+−h′zh

′
y

det γ
,

θ−u =
| ~E|2giih′−
det γ

+ g2ii

(

g++h
′
−

det γ
− g+−h′+

det γ

)

,

θyu = −EyEzg−−h′z
det γ

+
E2

zg−−h′y
det γ

+
G+−giih′y
det γ

,

θzu = −EyEzg−−h′z
det γ

+
E2

yg−−h′y
det γ

+
G+−giih′z
det γ

,

θyz = −
~E × ~h′

(

g+−h′− − g−−h′+
)

det γ
. (B.2)

Finally having the components for s and θ we can compute the vector Q (A.6), which reads

Q = − ~E × ~h′(g+−dx+ + g−−dx−) + giih
′
− ~E × d~x. (B.3)
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C Change of coordinates

In this appendix we show the f ′s functions appearing in the change of coordinates used to

diagonalize the open string metric (3.4). For completeness we write again the transforma-

tion

dx+ = dτ + f+
− (u)dX− + f+

u (u)du ,

dx− = dX− + f−
τ (u)dτ + f−

u (u)du ,

dy = dY + fy
τ (u)dτ + fy

u(u)du ,

dz = dZ + fz
τ (u)dτ + fz

u(u)du , (C.1)

with the radial coordinate rescaled as u → u⋆u. The functions f ′s read

f+
u = b2(h− 1)

u⋆ ~E · ~h′

h
(

b2 ~E2 + g2ii

)

− b2 ~E2
(C.2)

f−
u = −1

2
(h+ 1)

u⋆ ~E · ~h′

h
(

b2 ~E2 + g2ii

)

− b2 ~E2
(C.3)

f+
− = −h′−

h′+
(C.4)

f−
τ = −

h′−
(

4b2 ~E2 − g2ii(h− 1)
)

+ 2b2g′2ii (h+ 1)h′+

2b2g′2ii
(

2b2(h− 1)h′+ − (h+ 1)h′−
) (C.5)

f i
u = Ei

u⋆
(

(h+ 1)h′− − 2b2(h− 1)h′+
)

2
(

b2(h− 1) ~E2 + g2iih
) (C.6)

f i
τ =

2u3h
(

4b4g2ii(h−1)(h′

+)2−(h′

−
)2

(

4b2| ~E|2−g2ii(h−1)
)

−4b2g2ii(h+1)h′

−
h′

+

)(

b2|ǫijEj |(1−h) ~E×~h′+g2iihh
′

i

)

b2g2ii

(

(h+1)h′

−
−2b2(h−1)h′

+

)

(

h

(

b2
(

| ~E|2+4
(

~E×~h′

)2
u3(h−1)

)

+g2ii

(

4(~h′)2u3h+1
)

)

−b2| ~E|2
) .

(C.7)

After using this transformations the new components of the metric can be written in

term of the old one as follows

s̃uu = 2f−
u (s+−f+

u +s−yf
y
u+smzf

z
u)+s−−(f−

u )2+2f+
u (s+yf

y
u+s+zf

z
u+su+u⋆)

+ s++(f
+
u )2+2fz

u(syzf
y
u+suzu⋆)+2suyu⋆f

y
u+syy(f

y
u)

2+szz(f
z
u)

2+suuu
2
⋆, (C.8)

s̃ττ = 2f−
τ (s−yf

y
τ +s−zf

z
τ +s+−)+s−−(f−

τ )2+2fy
τ (syzf

z
τ +s+y)

+ syy(f
y
τ )

2+2s+zf
z
τ +szz(f

z
τ )

2+s++ , (C.9)

s̃−− = 2f+
− (s+yf

y
−+s+zf

z
−+s+−)+s++(f

+
− )2+2fy

−(syzf
z
m+s−y)+syy(f

y
m)2

+ 2s−zf
z
−+szz(f

z
−)

2+s−− , (C.10)
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and

s̃yy = syy , (C.11)

s̃zz = szz , (C.12)

s̃yz = syz . (C.13)

D Fluctuations

This appendix provides the details on the computation of the equation of motion for the

fluctuations. The solutions of these equations are necessary to obtain the retarded corre-

lator among two charged currents.

In order to do so, we will set Ez = 0 and we will introduce the fluctuations

aM (u, x−, τ, Y ) into the eqs. (3.5). With this dependence in coordinates the system can be

decompose in terms of longitudinal and transverse modes respect to the y direction. We

can also fix the gauge au = 0. Thereafter, we Fourier transform them as follow

f(u,X−, τ, Y ) → f(u)e−i(ω(τ−βb2X−)−kY ) , (D.1)

where β = 2u2
⋆

2u2
0−u2

⋆
.18 After some tedious computation we get a set of three differential equa-

tions plus one constraint in the longitudinal sector (τ,−, Y ) and one differential equation

in the transverse one (z−direction). The constraint read as

−ks̃yya′y(u) + ω
(

s̃ττa′τ (u)− βb2s̃−−a′−(u)
)

= 0 , (D.2)

the longitudinal equations are

a′′−(u) + a′−(u)

(

g−2
5

√−ss̃uus̃−−)′

g−2
5

√−ss̃uus̃−− − a−(u)s̃uu(ω2s̃ττ + k2s̃yy)+ (D.3)

−βb2ω2s̃uus̃
ττaτ (u) + βb2kωs̃uus̃

yyay(u)−
iNQ′

z

g−2
5

√−s
s̃−−s̃uu (ωay(u) + kaτ (u)) = 0 ,

a′′τ (u) + a′τ (u)

(

g−2
5

√−ss̃uus̃ττ
)′

g−2
5

√−ss̃uus̃ττ
− aτ (u)s̃uu(b

4γ2ω2s̃−− + k2s̃yy)+ (D.4)

−βb2ω2s̃uus̃
−−a−(u)− kωs̃uus̃

yyay(u)−
iNQ′

z(u)

g−2
5

√−s
s̃uus̃ττ

(

ka−(u)− βb2ωay(u)
)

= 0 ,

a′′y(u) + a′y(u)

(

g−2
5

√−ss̃uus̃yy
)′

g−2
5

√−ss̃uus̃yy
− ay(u)ω

2s̃uu(β
2b4s̃−− + s̃ττ )+ (D.5)

b2βkωs̃uus̃
−−a−(u)− kωs̃uus̃

ττaτ (u) +
iωNQ′

z(u)

g−2
5

√−s
s̃uus̃

yy(a−(u) + βb2aτ (u)) = 0 ,

and in the transverse sector we obtain

(

g−2
5

√
−ss̃uus̃zza′z(u)

)′
+ g−2

5

√
−ss̃zz

(

ω2
(

β2b2s̃−− + s̃ττ
)

+ k2s̃yy
)

az(u) = 0 , (D.6)

18We have identified x+ as the boundary field theory time, however the new temporal coordinate and

the former time are related at the boundary through the transformations (3.6) as dx+ = dτ − βb2dX−.

Therefore, we evolve in the Fourier transformation along the direction of x+ = τ − βb2X−.
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notice that the Chern-Simons term vanishes in the last sector, because if Ez = 0 the only

non-vanishing component of Q points in the z direction

Q = −Eygiih
′
−dz. (D.7)

Now it is possible to eliminate one of the equations in the longitudinal sector using the

constraint (D.2) and the gauge invariant fields, ending with the same number of equations

as propagating degrees of freedom. To do so, let us redefine the fields in term of its gauge

invariant electric fields,

E−(u) = −
(

a−(u) + βb2aτ (u)
)

, (D.8)

Ey(u) = ay(u) +
k

ω
aτ (u) , (D.9)

Ez(u) = az (D.10)

now using the following combination for the equations

− (M− + βb2M τ ) , My +
q

ω
M τ (D.11)

and solving for a′y(u), a
′
−(u), a

′
τ (u) from eqs. (D.2), (D.8) and (D.9) we obtain the two

linearly independent equations for the longitudinal sector

E ′′
−(u) +

(

b2γωcττ c̃
− + c−−(kc̃

y − ωc̃τ )
)

ω(b2γc̃− − c̃τ ) + kc̃y
E ′
−(u) + (b2γd−τ + d−−)E−(u)

(

b2γdyτ + dy−
)

Ey(u) = 0 (D.12)

E ′′
y (u) +

(

ωcyy
(

b2γc̃− − c̃τ
)

+ kcττ c̃
y
)

ω(b2γc̃− − c̃τ ) + kc̃y
E ′
y(u) +

(

kdyτ
ω

+ dyy

)

Ey(u)+

kc̃−(cττ − cyy)

ω(b2γc̃− − c̃τ ) + kc̃y
E ′
−(u) +

(

kωdττ − k(kdyτ + ωdyy) + ω2dτy
)

b2γω2
E−(u) = 0 (D.13)

where the unknown functions c′s and d′s are the coefficients of the equations of motion

and constraint, read it from eqs. (D.2)–(D.6) as follow

a′′i (u) + cjia
′
j(u) + djiaj(u) = 0 , (D.14)

c̃ja′j(u) = 0 , (D.15)

with i, j taking values −, τ, y. Notice that the equation for Ez is not written because it

remains the same as eq. (D.6)

E Sources and perturbative solution

In what follows we will explain the procedure to obtain the perturbative solution discussed

in the subsection 4.1. This solution was useful to obtain the DC conductivity and the

relaxation time eqs. (2.13), (4.14).

First of all we plug in the ansatz (4.6) into the eq. (4.3), so the system can be rewritten

as follows

∂u

(

α0(u)α(u)∂uA(i)
z (u)

)

= S(i−1)
z (u) , (E.1)
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where the index i takes values i = 0, 1, 2. The particular form of the sources up to second

order in frequencies are

ℓ3u20
2N S(0)

z = i∂u

(

(1+u)α(u)A(0)
z +(−1+u2)α(u) log (1−u)A′(0)

z

)

(E.2)

ℓ3u20
2N S(1)

z = ∂u

(

(1+u)α(u) log (1−u)A(0)
z +

1

2
(−1+u2)α(u) log (1−u)2A′(0)

z (E.3)

+i(1+u)α(u)A(1)
z +i(−1+u2)α(u) log (1−u)A′(1)

z

)

−
(

Teff

T

)2 p(u)u

(−1+u2)
,

with the zero-th order source S(−1)
z = 0, and where we have defined

p(u) = −2g−2
5

√
−s̃

(−1 + u2)u0
b2ℓNu

s̃zz
(

s̃−−

ρ2−
+ s̃ττ

)

. (E.4)

The general solution for eq. (E.1) can be written as

A(i)
z (u) = C

(i)
1 +

∫

du
1

α0(u)α(u)

(

C
(i)
2 +

∫

duS(i−1)
z (u)

)

, (E.5)

the integration constants C
(i)
2 are fixed demanding regularity for the solution at the horizon

and C
(i)
1 is directly identified as the non-normalizable mode.

If we start solving order by order, we get for the zero-th order solution

A(0)
z = C

(0)
1 = az(0) , (E.6)

C
(0)
2 must vanishes in order to have a regular solution at the horizon. At the next order

the source S doesn’t vanishes, in consequence, regularity at the horizon demands that

C
(1)
2 = −i

α(1)N
πℓ3Teffu

2
0

az(0) . (E.7)

Finally the first order solution can be written as

A(1)
z (u)= iaz(0)α(1)

[

1

α(1)
log (1−u)− 1

α(u)
log

(

1−u

1+u

)

−
∫ u

0
dx

α′(x)
α(x)2

log

(

1−x

1+x

)]

.

(E.8)

If we repeat the same analysis at second order, regularity demands that

C
(2)
2 = az(0)

(

σDC

2πTeffu⋆
log(2)− 1

4

ℓ3u20σ
2
DC

Nu2⋆

∫ 1

0
dx

α′(x)
α(x)2

log

(

1− x

1 + x

))

, (E.9)

and in consequence the solution at second order is

A′(2)
z (u) =

1

u− 1

(

iA(1)
z (u) + i(u− 1) log (1− u)A′(1)

z (u) + az(0) log (1− u)

+ T 2
eff

(

8π2C
(2)
2 ℓ3u20

N (1 + u)α(u)
− 2π2b2az(0)ℓ

4u0p(u) log
(

1− u2
)

(1 + u)α(u)

)

− 2π2b2az(0)ℓ
4T 2

effu0
(1 + u)α(u)

∫ 1

u
dx p′(x) log

(

1− x2
)

)

. (E.10)
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F Two charges hyperscaling violating geometries

We will study the following Einstein Maxwell Dilaton system with the particularity of

having two gauge fields in order to assess the interaction of different types of charges and

their effect on the scaling of AC conductivities.

The action is a simple generalization of the EMD action

S =

∫

dd+2x
√
g

[

R− 1

2
(∂φ)2 + V (φ)− Z1(φ)

4
F 2
1 − Z2(φ)

4
F 2
2

]

. (F.1)

The equations of motions for the background (6.1) read

φ′2 + d
C ′′

C
− DC ′

2C

(

B′

B
+

C ′

C
+

D′

D

)

= 0

1

2

(

C ′

C
− D′

D

)(

B′

B
+

(2− d)C ′

C
+

D′

D

)

−
(

Q2
2

Z2
+

Q2
1

Z1

)

B

Cd
− C ′′

C
+

D′′

D
= 0

(

Q2
2

Z2
+

Q2
1

Z1

)

B

2Cd
−BV +

dC ′

2C

(

(d− 1)C ′

2C
+

D′

D

)

− 1

2
φ′2 = 0 , (F.2)

where Q1 and Q2 are the charge densities of A1 and A2 respectively. The gauge fields are

given by

A′
1,t =

Q1

Z1

√

BD

Cd
∼ Q1r

ζ1−z (F.3)

A′
2,t =

Q2

Z2

√

BD

Cd
∼ Q2r

ζ2−z , (F.4)

where ζi =
2θ
q + dθ − κi.

19

The fluctuation equations for the two gauge fields are

Z−1
1 C− d−2

2

√

D

B

(

Z1a
′
1

√

D

B
C

d−2
2

)′

− Q1D

Z1Cd
(Q1a1 +Q2a2) + ω2a1 = 0 (F.5)

Z−1
2 C− d−2

2

√

D

B

(

Z2a
′
2

√

D

B
C

d−2
2

)′

− Q2D

Z2Cd
(Q1a1 +Q2a2) + ω2a2 = 0. (F.6)

At this point we shall try to find a hyperscaling-violating metric as a solution of the

background equations. To do so, we substitute (6.1) into (F.2) and obtain

α2 + 2θz − 2
2θ2

d
− 2d(z − 1) = 0 (F.7)

2(z − 1)(dθ + z)−B0r
2θ
d
+2dθ

(

Q2
1

Z1
+

Q2
2

Z2

)

= 0 (F.8)

B0

(

r
2θ
d
+2dθ

(

Q2
1

Z1
+

Q2
2

Z2

)

− 2r−αδ+ 2θ
d

)

+

(

2dθ((d+ 2z − 1)− θ

d
(d+ 1))− α2

)

= 0 . (F.9)

19We have assumed Zi ∼ rκi and the background functions correspond to the hyperscaling-violating

Lifshitz geometry (6.1).
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These equations can be analyzed in two simplified regimes depending on the ratio of Z1

and Z2 in the IR.

F.1 Background charged under a single gauge field (Z2 ≫ Z1)

This configuration makes the gauge field A2,t subleading in the IR region and non backre-

acting in the geometry. We will parametrize the couplings Z1 and Z2 in the following way

Z1 = rκ (F.10)

Z2 = rκ+δκ , (F.11)

where δκ will be required to be positive or negative depending whether the IR is at ∞ or

zero respectively. The lagrangian parameters can be fixed in term of the parameters in the

metric as follow.

z =
(γ − δ)2 + 2d(δ(γ − δ) + 1)

(γ − δ)(γ + δ(d− 1))
, θ =

δd2

γ + δ(d− 1)
(F.12)

Q1 =

√

2(z − 1)

dθ + z − 1
, κ = 2dθ +

2θ

d
(F.13)

δκ is not fixed, but under the constraint δκ > 0 if the IR is at r → ∞ or δκ < 0 if the IR

is at r → 0. The Gubser criterion for this solution is

(z − 1)(dθ + z − 1) > 0 , (dθ + z − 1)(dθ + z) > 0 , dθ(dz − θ) > 0 , (F.14)

and the thermodynamic stability condition combined with the existence of a consistent

near extremal black-hole is

z(dθ − z) < 0 . (F.15)

Having the background geometry we can write the equations for the gauge field fluc-

tuations as

a′′1 +
(3− z − ζ1)

r
a′1 +B0ω

2r2z−2a1 −
B0Q

2
1

r2
a1 = −B0Q1Q2

r2
a2 (F.16)

a′′2 +
(3− z − ζ2)

r
a′2 +B0ω

2r2z−2a2 −
B0Q

2
2

r2
r−δκa2 =

B0Q2Q1

r2
r−δκa1 . (F.17)

Now we perform the following change of coordinates

r →
(xz

w

)1/z
(F.18)

ai → r
z−2+ζi

2 ai , (F.19)

which allow us to write the equations in the following Bessel-like form

x2a′′1 + xa′1 +
(

x2 − n2
1

)

a1 =
Q1

z2

( ω

zx

)
δκ
2z

Q2a2 (F.20)

x2a′′2 + xa′2 +
(

x2 − n2
2

)

a2 =
Q2

z2

(

Q1

( ω

zx

)
δκ
2z

a1 +Q2

( ω

zx

)
δκ
z
a2

)

, (F.21)
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where

n2
1 =

(dθ − z + 2)2 + 4Q2
1

4z2
(F.22)

n2
2 =

(δκ+ dθ − z + 2)2

4z2
. (F.23)

We are interested in the IR behavior of the AC conductivities. With the equations

written in this form and using the fact that zδκ > 0, we can do perturbation theory

expanding the fields as follows

a
(0)
i (x) = a

(0)
i (x) + ω

δκ
2z a

(1)
i (x) + . . . (F.24)

The zero-th order functions satisfy the homogeneous Bessel equations, with infalling bound-

ary conditions. The solutions are

a
(0)
i (x) = −

√

π

2
(−1)−3/4e

iπni
2 H(1)

ni
(x), (F.25)

where H
(1)
ni (x) are Hankel functions of the first kind. The equations for the first order

perturbations are again Bessel equations, however in this case they are inhomogeneous

x2a
(1)′′

1 + xa
(1)′

1 +
(

x2 − n2
1

)

a
(1)
1 = F1(x) (F.26)

x2a
(1)′′

2 + xa
(1)′

2 +
(

x2 − n2
2

)

a
(1)
2 = F2(x) , (F.27)

with

F1(x) =
Q1Q2

z2
(zx)−

δκ
2z a

(0)
2 (F.28)

F2(x) =
Q1Q2

z2
(zx)−

δκ
2z a

(0)
1 . (F.29)

The solution for this system can be found using variation of parameters, and can be

written as follows,

a
(1)
i = −H(1)

n

∫ ∞

x
ds

1

s
H(2)

ni
(s)Fi(s) +H(2)

n

∫ ∞

x
ds

1

s
H(1)

ni
(s)Fi(s). (F.30)

At this point we are not interested in solving exactly the integrals, but in checking whether

this first order solution are in fact subleading respect to the zero-th order one, and the

perturbative analysis is not breaking down. To do so, we will use the fact that the IR is

at x → ±∞ and the asymptotic behavior of the Hankel functions is of the type

Hn(x) ∼ x−1/2 , (F.31)

modulo oscillating functions for the amplitude. Using this scaling, we may check that the

dominant part in the asymptotic expansion is of the form

a
(1)
i ∼ x−

3
2
− δκ

2z , (F.32)

which is consistent with the perturbative analysis.
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Figure 14. Contour plots to illustrate the region in the parameter space where the exponents m

(left) and n (right) take negative values for the second charge not backreacting the background.

Both plots are made for d = 2. The negative values for m are outside the permitted region, but

there is an allowed region for n. We have set |δκ| = 3.

Finally, after knowing the system can be decoupled at leading order in the IR, we

can follow the computation of [13], to calculate the reflection coefficients of the analogue

Shrödinger problem. Hence, the conductivities of each gauge field can be computed

σ1 ∼ ωm , m =

∣

∣

∣

∣

2− 3z − dθ
z

∣

∣

∣

∣

− 1 (F.33)

σ2 ∼ ωn , n =

∣

∣

∣

∣

δκ+ dθ − z + 2

z

∣

∣

∣

∣

− 1 . (F.34)

As the IR geometry is supported by the charge Q1, the fluctuations of a1 will feel this

charge. That explains the same result for the conductivity as in the single charged gauge

field eq. (6.25). On the other hand the background is neutral for the second gauge field.

Therefore, the conductivity depends on the background parameters z, θ and the exponent

of the gauge coupling Z2 = rκ(θ,d)+δκ, and the conductivity coincides with the one for a

single neutral gauge field.

We have plotted in figure 14, the Gubser bound of (F.14), the thermodynamic con-

straint (F.15) and the negative values of m (left plot) and n (right plot) for d = 2. The

value of δκ has been fixed to |δκ| = 3. We observe that negative values of m are excluded

after imposing all the constraints. However the possibility of having a negative n is not

excluded, as we observe in the right-hand side plot.

F.2 Both charges equally backreact the IR geometry Z2 ∼ Z1

In this case we will parametrize the couplings as follows

Z1 → 1

2

(

Z + Z̄
)

(F.35)

Z2 → 1

2

(

Z − Z̄
)

, (F.36)
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and

Z = rκ (F.37)

Z̄ = rκ̄ , (F.38)

the parameters κ and κ̄ will be chosen in such a way that Z̄ is subleading in the IR. In other

words, after the substitution of Z1 and Z2 into eqs. (F.7)–(F.9), we obtain the following

set of algebraic equations

α2 + 2θz − 2
2θ2

d
− 2d(z − 1) = 0 (F.39)

2B0(Q
2
1 +Q2

2)r
2dθ−κ+ 2θ

d − 2(z − 1)(dθ + z) = −2B0

(

Q2
1 +Q2

2

)

r2dθ−2κ+κ̄+ 2θ
d (F.40)

B0

(

r2dθ−κ+ 2θ
d
(

Q2
1 +Q2

2

)

− r−αδ+ 2θ
d

)

+
(

2dθ((d+ 2z − 1)− θ

d
(d+ 1))− α2

)

= −B0

(

Q2
1 −Q2

2

)

r2dθ−2κ+κ̄+ 2θ
d . (F.41)

If the following constraint on κ̄ is satisfied

cκ̄ = κ̄− 2θ

d
− 2dθ < 0 , r → ∞ (F.42)

κ̄− 2θ

d
− 2dθ > 0 , r → 0, (F.43)

at leading order the system becomes an algebraic system and the parameters can be fixed

for the IR geometry. They read

z =
(γ − δ)2 + 2d(δ(γ − δ) + 1)

(γ − δ)(γ + δ(d− 1))
, θ =

δd2

γ + δ(d− 1)
(F.44)

QT =

√

2(z − 1)

dθ + z − 1
, κ = 2dθ +

2θ

d
(F.45)

where Q2
T ≡ 2(Q2

1 +Q2
2).

The fluctuations in this limit obey the following equations of motion

a′′1 +
3− z − ζ1

r
a′1 +B0ω

2r2z−2a1 −
B0Q1

r2
(Q1a1 −Q2a2) = (F.46)

−rκ̄
(

r−κ−1 (κ̄− κ) a′1 + 2
b0Q1

r2
r−

2θ
d
−2dθ(Q1a1 +Q2a2)

)

(F.47)

a′′2 +
3− z − ζ1

r
a′2 +B0ω

2r2z−2a2 −
B0Q2

r2
(Q1a1 −Q2a2) = (F.48)

rκ̄
(

r−κ−1 (κ̄− κ) a′2 − 2
b0Q2

r2
r−

2θ
d
−2dθ(Q1a1 +Q2a2)

)

. (F.49)

The form of the equations suggest the following redefinitions

A1 = Q1a2 −Q2a1 (F.50)

A2 = Q1a1 +Q2a2 ,
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and to combine the equations as follows Q1eq2 − Q2eq1 and Q1eq1 + Q2eq2. After doing

so, we obtain the following set of equations

A′′
1 +

3− z − ζ1
r

A′
1 +B0ω

2r2z−2A1 = r−2+cκ̄O1 (F.51)

A′′
2 +

3− z − ζ1
r

A′
2 +B0

(

ω2r2z−2 − r−2Q2
T

)

A2 = r−2+cκ̄O2 , (F.52)

where

O1=
2

dQ2
T

(

r
(

2θ+2d2−d(2θ+κ̄)
) (

(Q2
1−Q2

2)A
′
1+2Q1Q2A

′
2

)

−2B0dQ1Q2Q
2
TA2

)

(F.53)

O2=
2

dQ2
T

(

2B0dA2

(

Q4
1−Q4

2

)

−r
(

2θ+2d2−d(2θ+κ̄)
) (

(Q2
1−Q2

2)A
′
2−2Q1Q2A

′
1

))

. (F.54)

Notice that the factor r−2+cκ̄ in the right-hand side of the previous equations is even

more subleading in the IR than the right-hand side of the analogous equations (eqs. (F.16)

and (F.17)) of the previous part. Hence, these set of equations can be written in terms of

the Bessel equation and the conclusions will be exactly the same, as in the previous case.

We skip this analysis and we will directly work with O1 and O2 set to zero at leading order.

In consequence, both redefined gauge fields diagonalize the system and satisfy the same

equation, however A1 is neutral and the field A2 has charge QT . This fact implies that the

normalizable modes of A
(n)
1 , A

(n)
2 will depend linearly only on its own source respectively,

hence, A
(n)
1 = 〈1〉A(0)

1 , A
(n)
2 = 〈2〉A(0)

2 .20 Now inverting the change of variable (F.50) we

can write the normalizable modes of a1 and a2 as follows

〈J1〉 =
2

Q2
T

(

Q1〈2〉A(0)
2 (a

(0)
1 , a

(0)
2 )−Q2〈1〉A(0)

1 (a
(0)
1 , a

(0)
2 )

)

, (F.55)

〈J2〉 =
2

Q2
T

(

Q1〈1〉A(0)
1 (a

(0)
1 , a

(0)
2 ) +Q2〈2〉A(0)

2 (a
(0)
1 , a

(0)
2 )

)

, (F.56)

which at the same time can be rewritten as

〈J1〉 =
2

Q2
T

(

Q2
1〈2〉+Q2

2〈1〉
)

a
(0)
1 +

2Q1Q2

Q2
T

(〈2〉 − 〈1〉) a(0)2 , (F.57)

〈J2〉 =
2

Q2
T

(

Q2
2〈2〉+Q2

1〈1〉
)

a
(0)
2 +

2Q1Q2

Q2
T

(〈2〉 − 〈1〉) a(0)1 . (F.58)

Finally we can read from the previous formula the two point correlator which reads

〈JiJj〉 =
2

Q2
T

(

Q2
1〈2〉+Q2

2〈1〉 Q1Q2 (〈2〉 − 〈1〉)
Q1Q2 (〈2〉 − 〈1〉) Q2

1〈1〉+Q2
2〈2〉

)

. (F.59)

Using the results of section 6 we can find the conductivities for each A1 and A2 and

then substitute the results in the previous formula to extract the desired conductivities

20The quantities 〈1〉 and 〈2〉 are only functions of the frequency and the parameters of the system.
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Figure 15. Contour plots to illustrate the region in the parameter space where the exponents m1

(rainbow coloured) and m2 (scales of brown) take negative values for the two charges model. Left:

conductivity for d = 2. Right: conductivity for d = 3. The allowed values for the parameters are

bounded by the gray mesh. The negative values for m2 are outside the permitted region, but there

is an allowed region for m1.

associated to a1 and a2. We obtain

σ11 ∼
2Q2

1

Q2
T

ωm2 +
2Q2

2

Q2
T

ωm1 , m1 =

∣

∣

∣

∣

(z − dθ − 2)

z

∣

∣

∣

∣

− 1 (F.60)

σ12 = σ21 ∼
2Q1Q2

Q2
T

ωm2 − 2Q1Q2

Q2
T

ωm1 , m2 =

∣

∣

∣

∣

(2− 3z − dθ)

z

∣

∣

∣

∣

− 1 (F.61)

σ22 ∼
2Q2

1

Q2
T

ωm1 +
2Q2

2

Q2
T

ωm2 . (F.62)

It is important to emphasize that we are studying the IR behavior for the conductivities

(ω ≪ 1), therefore, if the constraints on z, θ allow a negative value for mi this term

will dominate in the frequency dependence for sufficiently small ω. Notice also that this

computation has been done at zero temperature. On the other hand, at finite temperature

we would expect this scaling, to appear as an intermediate scaling if T ≪ ω ≪ Λ, with Λ

the interpolation scale for which the IR geometry flow to the conformal UV AdS geometry.

In figure 15 we show the regions of negative m1 and m2 for d = 2, 3. We observe

that for both values of d there is an allowed region of negative m1 whereas that m2 has

to be always positive, in consequence we conclude that for small enough frequencies the

conductivities will behave as

σ11 ∼
Q2

2

Q2
T

ωm1 , m1 =

∣

∣

∣

∣

(z − dθ − 2)

z

∣

∣

∣

∣

− 1 < 0 (F.63)

σ12 ∼ −Q1Q2

Q2
T

ωm1 (F.64)

σ22 ∼
Q2

1

Q2
T

ωm1 . (F.65)
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Notice that m1 and m2 coincide with n and m respectively in the previous subsection, after

setting δκ = 0 in the formula for n. The reason for this similarity originates in the fact

that in the previous configuration one of the gauge fields is charged and the charge of the

second one is subleading in the IR, whereas in the present case the redefined gauge fields

correspond to a configuration in which the background has charge QT associated to the

first gauge field, but is neutral respect the second one.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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