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1 Introduction

Since the work of Bekestein [1] and Hawking [2], the study of black holes at the quantum

level received much attention. In comparison, classical stringy corrections (gs = 0 and finite

α′ = l2s) received little attention. The reason is that it is widely believed that they are

negligible for large black holes. Indeed, it has been known for a while [3] that perturbative

α′ corrections have a tiny effect on the physics of large black holes. This is well understood,

as such corrections are described by irrelevant terms that are parametrically small at the

horizon of a large black hole.

Motivated by [4], we recently argued [5–9] (for recent related and potentially related

works see [10–16] and [17, 18], respectively) that this is not the case for non-perturbative

α′ corrections, which play an important role at the horizon. The argument is clearer in the

Euclidean version of the black hole — the cigar geometry. It is particularly sharp for the
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cigar sigma-model obtained in the coset SL(2,R)k/U(1), since then we have an exact CFT

description.

In this paper, we continue the study of strings on SL(2,R)k/U(1). Following [9], we

focus our attention on scattering amplitudes in this geometry. To allow on-shell states

in string theory, we add an extra time direction, t, and consider large t processes in the

small curvature (large k) limit. One may suspect that in this case stringy corrections have

negligible effects. The main point of the paper is to show that this is not the case, and

that non-perturbative α′ corrections in fact lead to an interesting UV/IR mixing that could

potentially lead to a better understanding of the black-hole information puzzle and reveal

new features of Little String Theory (LST).

The paper is organized as follows. In section 2, we review the set-up and calculation

of the reflection coefficient, associated with scattering in the cigar geometry. In section

3, we show that the exact reflection coefficient [19] leads to UV/IR mixing. In section 4,

we discuss the physics that led to this UV/IR mixing and, in section 5, we emphasise the

sensitivity of the results to coarse graining. Section 6 is devoted to a discussion and, finally,

some details are presented in an appendix.

2 The reflection coefficient

In this section, we review the reflection coefficient associated with the coset CFT,

SL(2,R)k/U(1). We begin by describing the setup, and then move on to recall the deriva-

tion of the classical reflection coefficient. Finally, we briefly review the exact CFT result.

2.1 The setup

We wish to study the coset CFT, SL(2,R)k/U(1), whose sigma-model background takes

the form of the cigar geometry [20–23],

ds2 = 2k tanh2

(
ρ√
2k

)
dθ2 + dρ2 , exp(2Φ) =

g2
0

cosh2
(

ρ√
2k

) . (2.1)

The angular direction θ has periodicity 2π, compatible with smoothness of the background

at the tip, and Φ is the dilaton. We work with α′ = 2. In the supersymmetric case,

the background (2.1), which is obtained e.g. by solving the graviton-dilaton e.o.m. in the

leading GR approximation, is perturbatively exact in α′ [24, 25].

We intend to probe this model with primary fields that correspond to high-energy

modes, which propagate on this background (see figure 1). The reflection coefficients

associated with such modes are known exactly [19]. We shall take advantage of this fact and

attempt to extract some target-space information about the cigar theory, which hopefully

provides us with data that goes beyond the GR solution (2.1).

In terms of the underlying SL(2,R) representation, these modes are in the continuous

representations,

j = −1/2 + is, s ∈ R, (2.2)
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𝑝, ℓ 

−𝑝,−ℓ 

Figure 1. A plot of the classical geometry induced from the SL(2,R)k/U(1) coset model — a cigar

that pinches off at ρ = 0, which upon Wick rotation, corresponds to the horizon. Asymptotically,

the classical solution of the Klein-Gordon equation is a sum of incoming and outgoing radial waves

with radial momentum p and angular momentum `. The time direction t imposes the on-shell

condition. The manifold M is not pictured.

where s is related to the momentum in the radial direction. More precisely, it is

s =

√
k

2
p, (2.3)

where p is the momentum associated with the canonically-normalized field ρ, corresponding

to the radial direction, at ρ → ∞. Additional quantum numbers, associated with the

probing modes, are m and m̄, which are related to `, the angular momentum along the θ

direction, and ω, the winding number on the semi-infinite cigar, via

(m, m̄) =
1

2
(`+ kω,−`+ kω). (2.4)

Our main focus is on GR-like modes, with w = 0, so that m = −m̄ = `/2.

We would like these modes to correspond to on-shell states in string theory. Hence,

we add an auxiliary time direction, t. Denoting the energy associated with t by E, the

on-shell condition reads

E2 = p2 +
`2 + 1

2k
. (2.5)

A compact manifold, M , that plays no role here, is also added so that the string-theory

background is critical .

Note that this setup is (a particular, weakly coupled) Little String Theory, which is

closely related to Double-Scaled LST1 (see e.g. [26] and references therein). Thus, we are

1By weakly coupled LST, we refer to the holographic dual of string theory in generic asymptotically

linear-dilaton backgrounds [41, 42] (with a wall in the strong coupling regime); the background on which

we focus here and DSLST are such concrete, different examples.
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studying here physics associated with peculiarities, such as non-locallity, of LST; we shall

discuss this further in section 6.

The exact reflection coefficient can be written as a product of the perturbative (GR)

reflection coefficient and a non-perturbative correction in α′ [19],

R(j;m, m̄) = Rpert(j;m, m̄)Rnon−pert(j). (2.6)

The perturbative part, as the name implies, can be derived from GR plus perturbative

α′ corrections. In the supersymmetric case, on which we focus on here, there are no

perturbative α′ corrections and, as we review below, Rpert(j;m, m̄) can be derived by

solving the wave equation in the curved background (2.1).

The non-perturbative part comes from the exact computation of the reflection coef-

ficient in the quotient CFT. Its physical origin can be traced to the condensation of a

tachyon field, associated with a winding string near the tip of the cigar.

2.2 The GR reflection coefficient

For a scalar field a(ρ, θ, t), Rpert can be obtained by solving the Klein-Gordon equation on

the cigar background (2.1). This equation takes the form

∂ρ

(
sinh

(
ρ√
2k

)
cosh

(
ρ√
2k

)
∂ρ a

)
+

1

2k

cosh3
( ρ√

2k

)
sinh

( ρ√
2k

) ∂2
θ a

− sinh

(
ρ√
2k

)
cosh

(
ρ√
2k

)
∂2
t a = 0, (2.7)

It is convenient to put it in a canonical Schrödinger form. This is done by defining u(r) ≡
sinh1/2(r) a(r), where r =

√
2
k ρ. Plugging the on-shell condition (2.5) for a mode with

some angular momentum ` and energy E gives, [23],(
− ∂2

r + V (r)

)
u(r) = s2 u(r), (2.8)

with

V (r) = cosh−2(r/2)

[(
m2 − 1

16

)
coth2(r/2) +

1

16

]
. (2.9)

This equation can be solved exactly in terms of hypergeometric functions, whose asymptotic

behavior gives

Rpert = ν2j+1 Γ(m− j)
Γ(m− (−j − 1))

Γ(−m̄− j)
Γ(−m̄− (−j − 1))

Γ(1 + 2j)

Γ(1 + 2(−j − 1))
. (2.10)

ν is a constant that is related to the value of the string coupling at the tip. It is convenient

to choose ν = 1/4 so that, as in standard QM, at high energies the phase shift becomes

trivial. With this choice, we can expand the GR phase shift at high energies to find

δpert = −π(1/2 + |`|) +
2`2 − 1

4s
+O(s−2). (2.11)
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The first term is the trivial term in R2 that is induced by the centrifugal potential. When

considering scattering in R2, this term is usually omitted. Here we consider scattering

on the cigar and we keep it as a useful reference to know at which energies R2 is a good

approximation.

The second term is the leading curvature correction to R2. Near the tip, the poten-

tial (2.9) agrees with the centrifugal potential in R2. The difference between the two is

responsible for this second term in the phase shift. Equation (2.11) implies that this dif-

ference becomes important at distances of the order of
√
k from the tip, which indeed is

the distance at which the R2 approximation to the cigar breaks down.

2.3 The exact reflection coefficient

The way the reflection coefficient is calculated in the exact coset CFT is the following.

We consider the vertex operators on the cigar that correspond to j = −1
2 + is, which

asymptotically take the form (see e.g. [26])

Vj;m,m̄ ∼
(
eipρ +RCFT(j;m, m̄) e−ipρ

)
. (2.12)

An overall m and m̄ dependent pre-factor, that plays no role here, was omitted. The two-

point-function of such operators, normalized such that the coefficient of their asymptotic

incoming piece is 1, gives the reflection coefficient RCFT(j;m, m̄). One can calculate it via

the original bootstrap approach [19] and/or with the help of screening charges [27, 28] to get

eq. (2.6), where the non-perturbative correction to the reflection coefficient takes the form

Rnon−pert =
Γ(1 + 2j+1

k )

Γ(1− 2j+1
k )

. (2.13)

From a target-space perspective, the term (2.13) is interesting since, unlike Rpert, it

contains information that goes beyond the GR background (2.1). In particular, (2.13) is

controlled by a scale ls/
√
k, which is much shorter than the GR scale,

√
k ls, in the large

k limit. Our main goal here is to extract the target-space meaning of (2.13).

Naively, one may suspect that this goal cannot reveal dramatic modifications to GR,

as it seems that Rnon−pert is induced by standard irrelevant terms, and so is negligible

compared to Rpert. In particular, Rnon−pert takes a similar form to the last ratio of Γ

functions in Rpert, (2.10), only with a much shorter scale. This is related to the exact

calculation of the reflection coefficient in Liouvile theory [29]. Thus, it may be hard to

imagine that it could have a distinct effect. It turns out, though, that in the cigar geometry,

unlike in Liouvile theory, this reasoning is misleading [9].

As discussed above, at high energies, the other four Γ functions (that do depend on m

and m̄) cancel the leading behavior of the other two Γ functions that appear in Rpert, so that

we end up with eq. (2.11). This is the reason that the phase shift goes to zero at high ener-

gies. Or, more generally, if we do not fix ν in (2.10), that the density of states, defined by

ρ(s) =
1

2πi

d logR

ds
, (2.14)
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goes to a constant at high energies. This is a general result for scattering in QM. Hence,

we expect any perturbative α′ and gs corrections to have this property. Such corrections

will modify the sub-leading terms in (2.11), but not the leading term. The reason is that

this term merely reflects the fact that there is a centrifugal barrier at the tip, which is

induced by the use of radial coordinates. Since perturbative α′ and gs corrections do not

render the tip special, they cannot modify the leading behavior in (2.11).

However, as argued above, the origin of Rnon−pert is a non-perturbative α′ effect, due

to the condensation of a tachyon field, associated with a wound string. It was argued

in [4]–[9] that this non-perturbative mode does mark the tip as a special point, even at

large k. Hence, it is not clear that Rnon−pert should yield a constant energy density at high

energies. Put differently, if Rnon−pert modifies the leading behavior of Rpert, then it is very

likely that the tip of the cigar is a special point, even at parametrically small curvature.

In [9], it was pointed out that at high energies, p �
√
k, the phase shift induced by

Rnon−pert is

δnon−pert = 2

√
2

k
p log(p)� 1 . (2.15)

This means not only that Rnon−pert becomes the dominant factor, but that it modifies in

a rather dramatic way the behavior of the GR phase shift (and energy density) at high

energies. Some aspects of this drastic modification were discussed in [9]. Here we elaborate

further on its consequences and origin.

3 UV/IR mixing

So far, the extra time direction, t, was a spectator in the analysis; it was needed for allowing

the on-shell condition (2.5), but besides that it did not play any role. In this section, we

study the dependence of the reflection coefficient on t, focusing on large time scales.

The time dependence of the reflection coefficient is obtained in the standard way. In the

previous section, we discussed R`(p). Using the on-shell condition in string theory, (2.5),

we can write the reflection coefficient as a function of energy, R`(E). The Fourier transform

of R`(E) is denoted by f`(t). Since the reflection coefficient is obtained from a two-point-

function calculation, we can view f`(t) as a correlator at some time separation t,

f`(t) ≡ 〈O`(t)O`(0)〉. (3.1)

A motivation to inspect (3.1) comes from [30], in which similar expressions were studied in

the context of the AdS/CFT correspondence. There, the behavior at exponentially large

times can be viewed as an order parameter for the topology of thermal AdS. Some puzzles

concerning the thermal CFT versus thermal AdS were raised in [31]. Resolving these issues

is likely to shed light on the information puzzle.

Here, however, the situation is quite different than in [30]. First, we consider the

Euclidean setup with an extra time direction (the Lorentzian case will be discussed else-

where [32]). Second, unlike in AdS/CFT, here we have a continuum at infinity that renders

the Poincaré recurrence argument, discussed in [30, 31], irrelevant. Still, we have an exact
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result and it is interesting to see what its Fourier transform gives. As we shall see, it is

much more dramatic than Poincaré recurrence.

The important features of f`(t) do not depend on `. The reason is that, as is clear

from (2.5), ` is relevant at low energies, while the effect we wish to describe is due to high

energies. Hence, for simplicity, instead of working with (2.5), we take E = p, and denote

the result of the Fourier transform by f(t).

Since we focus on the long-time behavior of f(t), one may suspect that the non-

perturbative correction plays no role. More precisely, the relevant energies for the non-

perturbative correction are of the order of
√
k/ls. Hence, they are expected to be negligible

for t� ls/
√
k. Intriguingly, this turns out to be wrong. Below, we show that, in fact, the

correction due to the winding string condensate becomes more and more dominant as we in-

crease t. In other words, this is an example of UV/IR mixing: from energy point of view, the

non-perturbative correction affects only the UV, but it modifies drastically the IR in time.

We shall begin by considering the Fourier transform of the reflection coefficient in GR,

Rpert. Then, as an educational warm-up exercise, we consider the Fourier transform of

the piece arising due to the winding string condensate, Rnon−pert. Finally, we address the

Fourier transform of the exact reflection coefficient, RCFT.

3.1 The Fourier transform of Rpert

Using Γ-functions identities, the relevant expression reads

fpert(t) =
1

2π

∫ ∞
−∞

dE e
−iE

(
t−4

√
k
2

log(2)

) Γ

(
−2i

√
k
2E

)
Γ

(
2i
√

k
2E

)
 Γ

(
i
√

k
2E

)
Γ

(
−i
√

k
2E

)


2

, (3.2)

where we used the choice of normalization, ν = 1/4, and the simplifying p = E framework.

This integral can be performed exactly (see appendix). Here, we just discuss some aspects

of its asymptotic time behavior.

For positive t, we close the contour of integration with an arc of infinite radius on the

lower half of the complex plane, and so the large t behavior is controlled by the nearest

pole in the lower-half plane, which gives

fpert(t→∞) = −1

2

√
2

k
e
− 1

2

√
2
k
t
. (3.3)

For negative t, we close the contour with an arc of infinite radius on the upper half of

the complex plane, and so the large t behavior is controlled by the nearest pole in the

upper-half plane, which gives

fpert(t→ −∞) =
1

4

√
2

k
e

√
2
k
t
. (3.4)
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To recapitulate, we see that in GR, while there is an asymmetry between negative and

positive separation,2 the result on both sides vanishes exponentially fast asymptotically in

time, as expected.

3.2 The Fourier transform of Rnon−pert

Next, we turn to the Fourier transform of Rnon−pert. As we show, this is a useful exercise,

prior to calculating the Fourier transform of the full reflection coefficient. The relevant

integral reads

fnon−pert(t) = − 1

2π

∫ ∞
−∞

dE e−iEt
Γ
(
i
√

2
kE
)

Γ
(
−i
√

2
kE
) . (3.5)

This integral, too, can be solved exactly3 (see appendix); here, we focus on educational

properties concerning its asymptotic time behavior.

There are two important related differences between this integral and the GR case;

both are due to the fact that at high energies

Rnon−pert ∼ exp
(
i
√

8/k E logE
)
. (3.6)

First, this means that if we wish to perform the integration with the help of the residue

theorem then, regardless of the sign of t, we are forced to close the contour on an arc of

infinite radius on the upper half of the complex plane. Second, the asymptotic behavior of

Rnon−pert also means that at large and positive t there is a saddle point. We can write the

integrand as a phase, and check when it is stationary. For t � 1√
k
, the equations become

simple, and we find that there are two saddle points, at E = ±Esp, where

Esp =

√
k

2
e

1
2

√
k
2
t
. (3.7)

This saddle point is exponentially large in t, and so it gives contribution only from very

high energy. Equation (3.7) is, in fact, the first hint for UV/IR mixing — the stringy

correlation functions at large t are dominated by high energy modes.

The saddle-point approximation gives, for large and positive t,

fnon−pert(t→∞) = −
√

k

2π
e

1
4

√
k
2
t
cos

(
2e

1
2

√
k
2
t
+
π

4

)
. (3.8)

This result is vastly different from the GR behavior. First, the amplitude grows exponen-

tially with t. Second, it oscillates wildly. As we shall see, the fact that it oscillates faster

than the amplitude grows has important consequences.

2The reason for the asymmetry is that we calculated
∫∞
−∞ dE exp(−iEt)R(E), that is the same as

Re
(∫∞

0
dE exp(−iEt)R(E)

)
, which is not invariant under t→ −t; an integral that is invariant under time

reversal is e.g. Im
(∫∞

0
dE exp(−iEt)R(E)

)
.

3It is closely related to the kernel calculated in [33].
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Figure 2. We deform the integral on the real axis and subtract the residue contributions of the

poles that crossed the contour due to the deformation. The integral over the arc in the first term on

the right hand side is very small, and so the entire term is approximately equal to the saddle-point

contribution alone.

3.3 The Fourier transform of RCFT

At last, we are ready to analyze the Fourier transform of the full reflection coefficient,

RCFT,

f(t) = − 1

2π

∫ ∞
−∞

dE e
−iE

(
t−4

√
k
2

log(2)

) Γ

(
−2i

√
k
2E

)
Γ

(
2i
√

k
2E

) Γ
(
i
√

2
kE
)

Γ
(
−i
√

2
kE
)
 Γ

(
i
√

k
2E

)
Γ

(
−i
√

k
2E

)


2

.

(3.9)

If we wanted to find the exact form of f(t), then by the same reasoning as in the previous

subsection, we had to close the contour with an arc at infinity on the upper-half plane.

Our goal here is more modest; we seek to find f(t) only at large and positive t.4 With

that goal in mind, a convenient contour is the one described in figure 2. On the left of

figure 2, we have the contour of the integral we are after. By the residue theorem, it is

equal to the integral over the contour that appears on the right of the equality minus the

residues, as indicated in the figure. For large and positive t, the contribution of the arc in

the first term on the right of figure 2 is negligible, and the straight lines are dominated, as

in the previous subsection, by the saddle point, which gives

f(t→∞) = −
√

k

2π
e

1
4

√
k
2
t
cos

(
2e

1
2

√
k
2
t
+
π

4

)
. (3.10)

This part is identical to the stringy-only result for large t, (3.8). At large t, the dominant

contribution from the poles comes from the first pole, whose contribution is, up to tiny

corrections, well approximated by (3.3).

Therefore, at large t, we find that

f(t→∞) = −
√

k

2π
e

1
4

√
k
2
t
cos

(
2e

1
2

√
k
2
t
)
− 1

2

√
2

k
e
− 1

2

√
2
k
t
. (3.11)

4At large and negative t, the non-perturbative correction leads to a negligible correction to the pertur-

bative result.
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𝑡 

𝑓(𝑡) 

Figure 3. The perturbative (red) and non-perturbative (black) contributions are plotted. At large

and negative t, the non-perturbative contribution is negligible. However, at large and positive t, it

is dominant.

Here we ignored the constant phase in the first term, which is unimportant at large t and/or

large k. The reason we care about the second term, which is due to the large t behavior

of the GR piece, although it appears negligible compared to the first one, is that it does

not oscillate with time.5 As we shall show below, this is crucial when we coarse grain this

expression.6

Comparing f(t) with fpert(t), it is evident that the correction due to the winding string

condensate induced UV/IR mixing. The large t behavior of f(t) is drastically different than

that of fpert(t) (see figure 3). Technically, the reason for that is the fact that the stringy

correction affected the UV (in the energy sense) in such a dramatic way, that it generated

a saddle point that does not exist in GR. In the next subsection, we discuss the physical

origin of this saddle point and its generality.

3.4 Origin of the UV/IR mixing and generality

From a mathematical stand point, the origin of the UV/IR mixing is the fact that the

non-perturbative correction induced a saddle point in the integral that defines f(t), which

is simply absent in the perturbative, GR expression. In this subsection, we discuss the

physical origin of this saddle point and its generality.

5Using the exact on-shell condition — (2.5) with generic, finite angular momentum ` (instead of E = p),

would only modify the large t behavior of the GR piece (the second term) and not the universality of the

first term (the one due to the winding string correction).
6One could argue that sub-leading non-perturbative corrections to the first term, which were neglected

in (3.11), would still be dominant over the second, perturbative, term. While this is true, all these sub-

leading terms will oscillate with a high frequency as can be seen in the appendix, and will thus be no more

relevant than the leading term when coarse grained.
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The physical process that we considered involves sending a wave from infinity that

spends some time at the cap of the cigar — the region where the curvature is ∼ 1/
√
k

— before scattering back to infinity. The two-point-function is sensitive to the amount of

time the wave spends at the cap. In GR, this time is finite for any energy E, including

the limit E → ∞. As a result, at positive and large t, we merely see the tail of the wave

function that drops exponentially.

The winding string correction changes this in a dramatic way. The full phase shift

implies that as we increase the energy, the wave is spending more and more time at the

cap before scattering back to infinity. The exact CFT phase shift implies that for any time

separation, no matter how large, there is an energy E(t) such that the wave is spending

just the right amount of time at the cap to scatter to infinity at t. Since this happens

at very high energies, the wave propagation is well approximated by a massless particle

trajectory (see figure 6). The fact that the wave propagation is well approximated by this

particle trajectory is the physical origin of the saddle point in the integral.

In the next section, we elaborate on this particle trajectory, and address natural ques-

tions such as: where in the cap does the wave spend the extra time? And, what happens at

lower energies? Below, we address a different question: how general is the UV/IR mixing

that we discussed?

Although we presented a concrete example — the SL(2)k/U(1) SCFT, we believe that

our results are more general. What goes into our derivation are the following facts: (a) At

high energies the GR/perturbative reflection coefficient goes to 1. (b) It is dressed by a non-

perturbtive factor, Rnon−pert(E), with an E log(E)-type behavior. As discussed in section

2, we expect (a) to be generic and, in particular, to hold in Schwarzschild black holes in four

dimensions. (b) is more subtle. The fact that the full reflection coefficient can be written as

a product of the form (2.6) is a non-trivial property of the coset CFT, SL(2,R)k/U(1), and

it is unlikely to be generic. However, the origin for the large phase shift in SL(2,R)k/U(1)

is the condensation of the wound string at the tip. Since this condensation [4] and its

features [5, 6, 8] are believed to be general — for any cigar-like CFT background, it is

natural to suspect that the large phase shift and the UV/IR mixing are generic as well, in

such cases. Needless to say that it would be nice to make this concrete.

4 Effective description of the stringy correction

The discussion so far used information that is natural in string theory — the S-matrix. This

S-matrix information illustrates perplexing features, but it does not reveal its meaning. In

particular, we showed that even for large k and at large t separation, the background (2.1)

is missing important physics, since it naturally leads to the second term in (3.11), but not

the dominating first term of (3.11).

In [9], we showed that, as it is often the case in string theory [34], at large E the string

theory S-matrix is dominated by a saddle point. The target-space shape of this saddle

point is an additional useful information. In [9], it was shown that the shape of the saddle

point goes beyond the tip of the cigar into a region that simply does not exists in (2.1).
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In this section, we study the target-space meaning of the CFT two-point-functions

using an effective description. We do so both at low (p�
√
k) and high (p�

√
k) energies.

Note that a “low” energy can still be much larger than the curvature scale, 1/
√
k, and even

the string scale, 1. The effective description we use treats the string as a point particle. The

justification to use this approximation comes from the observation of [9] that it is the zero-

mode integration in the full stringy problem that is responsible for the large phase-shift.

4.1 Low energy

At low energy, we can expand the phase Rnon−pert(s/k) ≡ e−iδnon−pert , (2.13), in powers of

s/k,

δnon−pert = c1s/k + c3(s/k)3 + . . . . (4.1)

The linear term can be absorbed into the definition of ν, so the first interesting correction

is the cubic term, for which c3 = 2
3ζ(3) and, therefore,

δnon−pert ∼
p3

k3/2
. (4.2)

Note that the sign in (4.2) is positive. The first question we wish to address is: when

does δnon−pert becomes important compared to δpert? We consider energies that are low

compared to
√
k, but are much larger than 1/

√
k, so that the expansion (2.11) is valid. We

see that at low energies, the trivial part of (2.11) always dominates δnon−pert, and that for

p2 �
√
k |`|, (4.3)

δnon−pert is larger than the curvature contribution to δpert. Thus, in the large k limit (with

a fixed `), there is a range √
k � p� k1/4, (4.4)

in which the stringy correction, and not the cap curvature, is the leading deformation of

R2. In this range, the density of states becomes an increasing function of p. However, the

R2 approximation still does not break, since the increase in the density of states can be

accounted for by a modification of the centrifugal potential of R2 (see figure 4).

To make this more precise, we can work in the “Schrödinger frame,” in which the

kinetic term is canonical, and ask what modification to the centrifugal potential is required

in order to get δnon−pert. Since in the range (4.4) δnon−pert � 1, we expect this modification,

which we denote by ∆V , to be much smaller than the centrifugal potential. Writing

V = Vcen+∆V , we can approximate ∆V using the leading term in the WKB approximation,

∆V ∼ δφ

p
∂ρVcen. (4.5)

Since Vcen = `2/ρ2, we have p = `/ρ, and so using (4.2) we get

∆V ∼ − `4

k3/2 ρ5
. (4.6)
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𝑉(𝜌)

𝜌

∆𝜌0

𝐸2

𝐸1

∆𝜌0

Figure 4. A plot of the effective stringy correction to the centrifugal potential. To leading order,

the addition of phase shift ∆δ` pushes the turning point ρ0 so that ∆ρ0 = ∆δ`/p. At low energies,

the stringy phase shift is small and we can find an effective potential close to the GR one. To

account for the phase shift at high energies, the turning point is at negative ρ — a region that does

not exist classically.

The minus sign implies that V < Vcen, as it should (see figure 4). As expected, at low

energies this is a small effect. Indeed, ∆V is of the order of Vcen at ρ ∼ k−1/2, which in

momentum space means the upper bound in (4.4).

Since it blows up at the tip, (4.6) appears to mark the tip as a special point in the cigar

geometry. One may wonder if we missed a less radical explanation to δnon−pert that does

not mark the tip as a special point, because of the fact that we worked in the “Schrödinger

frame.” In particular, is it possible that ∆V is merely one term out of several irrelevant

terms that sum up into a standard higher order correction to GR, such as an R2 term? In

such a case, it would not indicate that the tip is special.

Put differently, the centrifugal term is obtained from �Φ, which clearly does not mark

the tip as a special point. Can we similarly get (4.6) from some other, less relevant, terms?

Since (4.6) includes `4, we can try �2Φ. This, however, gives `4/ρ4 and not `4/ρ5. In order

to obtain an additional factor of 1/ρ, we can try ∂ρ�2Φ, but this is not a scalar. To turn

it into one, we can try ∂µO ∂µ�2Φ, with O a scalar like the curvature or dilaton. However,

in the cigar background it appears that O is always a series of even powers of ρ, and so it

cannot give rise to (4.6).

This reasoning seems to imply not only that the stringy correction is non-perturbative

in α′ (as perturbative α′ corrections do not mark the tip special), but also that it cannot be

written as an irrelevant term in the standard Wilsonian approach. In fact, non-Wilsonian

terms, such as the ones discussed in [37], appear to be needed here. It is tempting, therefore,

to think of the wound string condensate as the horizon order parameter anticipated in [37].
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4.2 High energy

What happens when we probe the cigar with energies much larger than
√
k? Then we

have (2.15), which means that δnon−pert becomes so large that, for fixed `, it dominates

even the trivial term in δpert. In other words, the modification to the centrifugal potential

is so large that (2.15) cannot be accounted for in R2, as the required phase shift takes ρ to

be smaller than 0 (see figure 4). Hence, as the full stringy analysis implies [9], we have to

consider extension of R2 beyond the origin.

The phase shift (2.15) can be reproduced by an effective exponential potential,

V = c e−
√

2kρ, with c = 2k. (4.7)

Any positive value of c is consistent with (2.15). What determines c is δnon−pert and the

reference “trivial” part of δpert, meaning, the demand that sub-leading terms reproduce

the phase −π(1/2 + |`|).
This effective potential is the same as the radial potential in Sine-Liouville theory that

is FZZ-dual to the cigar theory [35, 36]. We see that the effective description leads to the

same conclusion as obtained by the full string theory analysis [9], namely, that at high

energies the coset SL(2,R)k/U(1) is better described by the Sine-Liouville theory than by

the cigar geometry.

The fact that c ∼ k goes well with the fact that the transition between the low and

high energies takes place at p ∼
√
k. As discussed above, at that momentum the correction

to the centrifugal barrier is of order 1 (in units of the centrifugal barrier). The value of the

centrifugal barrier at such energies is of order k, as is the value of (4.7) around ρ = 0. It is

natural to suspect, therefore, that the full potential is a monotonic decreasing function of

ρ that interpolates between the classical potential to the right and the Liouville potential

to the left (see figure 5). Numerical simulations support this claim.

A closely related quantity was calculated in [6]. There, with the help of [38] and [39],

the ratio between the canonically normalized semi-classical wound tachyon mode and the

canonically normalized semi-classical dilaton mode was found to scale like k in the large k

limit. This goes well with c ∼ k, since the wound tachyon is the origin of the large phase

shift.

We have just concluded that in string theory the tip of the cigar is effectively glued to a

Sine-Liouville space. It would be nice to know how big this gluing region is. To answer this

question, we evaluate the cross section, σ(p), associated with δnon−pert. The calculation

of quantities relevant to scattering in 2+1 dimensions is done in a manner (reviewed e.g.

in [40]) very similar to 3+1 dimensions. We write the boundary condition for the wave

function as

Ψ(ρ, θ) = ei(pxx+pyy) +
√
i/p f(θ)

eipρ,
√
ρ
. (4.8)

Similar manipulations as in 3+1 dimensions give

f(θ) =
√

2/π

(
eiδ0 sin(δ0) + 2

∞∑
`=1

cos(` θ)eiδ` sin(δ`)

)
, (4.9)
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Figure 5. The full potential at high energies. The red curve is a natural interpolation between

two asymptotic curves: the dotted line on the right is asymptotic at ρ → ∞ and behaves like the

classical centrifugal potential, 1/ρ2, while the dotted line on the left is asymptotic at ρ→ −∞ and

behaves like the Sine-Liouville potential, e−
√
2k ρ.

and the total cross section is

σ(p) =
4

p

(
sin2(δ0) + 2

∞∑
`=1

sin2(δ`)

)
. (4.10)

At high energies, the phase shift δ` � 1 and does not depend on `, and so we get

σ(p) ∼ `max

p
, (4.11)

where `max is the bound on the validity of the R2 approximation that we are using. A

reasonable way to estimate `max is to see at what ` the curvature correction to the trivial

phase shift of R2 is of the order of δnon−pert. This gives `max ∼ p
√

log(p), which in turn

implies that

σ(p) ∼
√

log(p) . (4.12)

Hence, up to logarithmic effects, the size of the defect at the tip is order 1 in stringy units,

in agreement with [9]. The logarithmic term can probably be attributed to the fact that we

can penetrate deeper and deeper into the Sine-Liouville defect as we increase the energy.

With these results in hand, we can make clearer the statement that the physical source

of the saddle point is a high-energy particle trajectory. For a particle with ` = 0, we neglect

the θ direction in the target space and are left with an effective 1+1 dimensional space that

is equivalent to Minkowski space-time and is presented in figure 6. At high enough energies,

a massless particle can propagate for some time ∆t into the “Liouville space” that does not

exist in GR. The time a mode with energy E spends on the Liouville side is ∆t ∼ 1√
k

log(E),

meaning that more energetic particles will scatter to radial infinity at later times, giving

an intuitive understanding of the origin of the UV/IR mixing shown previously.
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Figure 6. Diagram (a) shows the trajectory of a massless particle in the classical theory, or of a

low-energy mode in the theory that includes non-perturbative corrections. Diagram (b) shows the

trajectory of a massless particle with high energy in the full theory. The particle spends a time ∆t

at the origin and thus connects points on I − and I + with a large time separation.

5 Coarse graining

In the previous sections, we saw that at large t separation the non-perturbative correction

modifies the two-point-function of GR in a drastic way, even for large k. In “reality”, there

is always some uncertainty in t, which we denote δt. In this section, we show that unless

δt is exponentially small, at large t, it washes away completely the non-perturbative effects

in the two point function.7 Concretely, up to tiny corrections,

f coarse−grain
δt (t) = fpert(t), (5.1)

where we define the coarse-grained Fourier transform in the following way:

f coarse−grain
δt (t) ≡ 1

δt

∫ t+δt

t
f(t′)dt′. (5.2)

The reason this averaging has such a drastic effect is simple. Indeed, the non-perturbative

contribution to f(t) grows exponentially fast with t, but, unlike fpert(t), it also oscillates

with time. As can be seen from (3.11), it oscillates much faster than the amplitude grows.

For

δt� e
− 1

2

√
k
2
t
, (5.3)

the averaging over the oscillations leads to a signal that goes like

e
1
4

√
k
2
t
e
− 1

2

√
k
2
t

= e
− 1

4

√
k
2
t
; (5.4)

7It is unclear how the UV/IR mixing effects manifest in correlators of more than two fields, and equally

unclear what happens to those effects under coarse-graining. One can hope that a similar mechanism

introduces these non-perturbative effects to other correlators, and so they are suppressed in a similar

fashion when coarse grained. This interesting issue is left for future work.
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the first term on the left hand side is due to the exponential growth of the amplitude and

the second term is due to the averaging over the oscillations. We see that the left over, after

coarse graining the stringy effect, vanishes much faster than fpert(t), which means (5.1).

This is another aspect of UV/IR mixing: f coarse−grain
δt (t) is extremely sensitive to the

ratio

r ≡
√
k t

| log(δt)|
. (5.5)

For r � 1, we get fpert(t), while for r � 1, we get f(t). However, the fact that δt � 1 is

a UV scale and t� 1 an IR scale does not fix r.

6 Discussion

We believe that the UV/IR mixing investigated here, could improve our understanding of

both the black-hole information paradox as well as features of Little String Theory (see

e.g. [26] and references therein). We discuss each, in turn.

It is widely believed that, quantum mechanically, the black hole does not lose informa-

tion and that the information is encoded in “quantum hair.” When we coarse-grain over

the quantum states of the black hole, we conclude that the information is lost. Something

similar is happening here. The non-perturbative effects in ls dominate the perturbative

ones, as long as we are able to specify t with an exponentially good accuracy. The longer

we wait the better the accuracy has to be so that we see the “stringy hair” associated

with f(t). This is very likely to remain an important feature of the horizon of Lorentzian

black holes.8 In that sense, these UV/IR mixing effects could be viewed as insight into

the mechanism through which String Theory could retain “quantum hair” (resulting from

high-energy corrections to the geometry) which is important in non-microscopic scales, but

is easily lost in coarse-graining.

Finally, LST may be defined as the holographic dual of string theory on asymptotically

linear-dilaton backgrounds [41, 42]. In weakly coupled LST, we should introduce a wall

in the strong coupling regime. Whenever such a wall is described by a cigar-like sigma-

model, it falls into the generic class that we have in mind in this work. In particular, in the

DSLST examples in [26, 43, 44], where (orbifolds of) the SL(2)/U(1) SCFT times a real time

appear explicitly, the manipulations above apply automatically.9 From this perspective,

the UV/IR mixing we encountered is a manifestation of the non-locality of LST.

8Since these phenomena affect the physics at the horizon [32], it is impossible to see their full effect on

Lorentzian black holes by Wick-rotating the Euclidean result derived from the reflection coefficient, which

relates only to asymptotic effects resulting from near-horizon physics. In addition, the stringy phase is

expected to affect dramatically not only the near-horizon physics of the two-dimensional black hole, but,

via the universality discussed in [5, 6, 8], also the physics near the horizon of generic black holes, such as

four-dimensional Schwarzschild.
9While the orbifolding changes the cigar geometry, it does not eliminate the appearance of the phase

due to the non-perturbative α′ effects. Consequently, such phases will also appear, in particular, in contri-

butions of intermediate channels to the correlators of observables in DSLST. Needless to say that a detailed

investigation of this is desired, and is left for future work.
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A Fourier transform of R

A.1 The Fourier transform of Rpert

We solve the integral

fpert(t) =
1

2π

∫ ∞
−∞

dE e−iE te
4iE

√
k
2

log(2)
Γ

(
−2i

√
k
2E

)
Γ

(
2i
√

k
2E

)
 Γ

(
i
√

k
2E

)
Γ

(
−i
√

k
2E

)


2

, (A.1)

where the second exponential is compatible with the normalization factor, ν = 1/4, and

we simplified the expression with some Γ-function identities.

We perform the integral by closing a contour of the integration path and summing the

pole residues. The contour we choose depends on the sign of t — for t > 0 it is easy to

show that the integrand goes to zero on an arc of infinite radius in the lower-half plane,

while for t < 0 it vanishes on an arc in the upper half of the complex plane.

We begin with t < 0, and close the contour on an infinite semi-circle on the upper half

of the plane. In the upper-half plane, there are poles at En = i
√

2
k n, with n a positive

integer. The residue of the n-th pole is

Res|
En=i

√
2
k
n

=
2−4n

iπ

√
2

k

Γ(2n) Γ(2n+ 1)

Γ2(n) Γ2(n+ 1)
e

√
2
k
t
, (A.2)

and summing over n gives

fpert(t < 0) =
1

4

√
2

k
e

√
2
k
t

2F1

(
3

2
;

3

2
; 2; e

√
2
k
t
)
. (A.3)

To find the asymptotic behavior, we can either take the residue of the first pole alone, or

expand (A.3) for large t. Both ways give

fpert(t→ −∞) =
1

4

√
2

k
e

√
2
k
t
. (A.4)

For t > 0, we close the contour in the lower half of the complex plane and get contri-

butions from poles at En = − i
2

√
2
k n, with n a positive and odd integer. In this case, the

residues are

Res|
En=− i

2

√
2
k
n

=
2−2+2n

iπ

√
2

k

Γ2(n/2)

Γ(n) Γ(n+ 1) Γ2(−n/2)
e
−
√

1
2k
t
, (A.5)
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and summing them gives

fpert(t > 0) = −1

2

√
2

k

e
1
2

√
2
k
t

2F1

(
−1

2 ; 1
2 ; 1; e

−
√

2
k
t
)

e

√
2
k
t − 1

. (A.6)

Again, we can estimate the behavior at long times either from the first pole residue or

directly from (A.6), to get

fpert(t→∞) = −1

2

√
2

k
e
− 1

2

√
2
k
t
. (A.7)

A.2 The Fourier transform of Rnon−pert

The non-perturbative part of the transformed reflection coefficient is given by

fnon−pert(t) = − 1

2π

∫ ∞
−∞

dE e−iE t
Γ
(
i
√

2
kE
)

Γ
(
−i
√

2
kE
) , (A.8)

where again we simplified the expression with Γ-function identities. It is straightforward

to check that at high energies, the Γ functions dominate the integrand and so it vanishes

only on a semi-circle of infinite radius on the upper-half plane, regardless of the sign of t.

The residues of the poles are of the form

Res|
En=i

√
k
2
n

=
1

2πi

√
k

2

(−1)n−1

n! (n− 1)!
e

√
k
2
n t
, (A.9)

where n is a positive integer. Summing over the residues gives

fnon−pert(t) =

√
k

2
e

1
2

√
k
2
t
J1

(
2 e

1
2

√
k
2
t
)
, (A.10)

where J1(z) is the Bessel function of order 1. Expanding for large separation through the

use of the Bessel-function asymptotic form gives

fnon−pert(t→∞) = −
√

k

2π
e

1
4

√
k
2
t
cos

(
2e

1
2

√
k
2
t
+
π

4

)
. (A.11)

This is, of course, exactly the same approximation that was found in section 3, via the

saddle-point approximation.
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