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wormholes (Einstein-Rosen bridges) between entangled states (such as EPR pairs). En-

tanglement is famously known to be unobservable in quantum mechanics, in that there

exists no observable (or, equivalently, projector) that can accurately pick out whether a

generic state is entangled. Many features of the geometry of spacetime, however, are ob-

servables, so one might worry that the presence or absence of a wormhole could identify

an entangled state in ER=EPR, violating quantum mechanics, specifically, the property

of state-independence of observables. In this note, we establish that this cannot occur:

there is no measurement in general relativity that unambiguously detects the presence of

a generic wormhole geometry. This statement is the ER=EPR dual of the undetectability

of entanglement.
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1 Introduction

Black holes are the paradigmatic example of a system where both field-theoretic and grav-

itational considerations are important. Black hole thermodynamics and the area theo-

rem [1, 2] already provided a relationship between entanglement and geometry, while the

classic black hole information paradox [3] and its potential resolution via complementar-

ity [4–6] pointed at the subtlety of the needed quantum mechanical description. In the

last few years, the firewall paradox [7] has heightened the tension between these two de-

scriptions, prompting a number of proposals to modify the standard picture to a greater

or lesser extent.

One set of proposals [8–12] modifies quantum mechanics to allow for state-dependence

of the black hole horizon, so that an infalling observer does not encounter a firewall even

though the state of the black hole horizon can be written as a superposition of basis states

that each have high energy excitations [13]. In order to avoid this problem, the presence or

absence of a black hole firewall must become a nonlinear observable, contrary to standard

quantum mechanics. In a recent paper, Marolf and Polchinski [14] have pointed out that

this nonlinearity cannot be “hidden”; if it is strong enough to remove a firewall from a

generic state, it must lead to violations of the Born Rule visible from outside the horizon.

In this paper, we consider a different idea inspired by the firewall paradox, the

ER=EPR correspondence [15], which asserts the existence of an exact duality between

Einstein-Podolsky-Rosen (EPR) pairs, i.e., entangled qubits, and Einstein-Rosen (ER)

bridges [16–18], i.e., nontraversable wormholes. This duality is supposed to be contained

within quantum gravity, which is in itself meant to be a bona fide quantum mechanical

theory in the standard sense. The ER=EPR proposal is radical, but it is not obviously

excluded by either theory or observation, and indeed has passed a number of nontrivial

checks [19–23]; if true, it has the potential to relate previously unconnected statements

about entanglement and general relativity in a manner reminiscent of the AdS/CFT corre-

spondence [24–26]. In a previous paper [27], we pointed out that in ER=EPR the no-cloning
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theorem is dual to the general relativistic no-go theorem for topology change [28, 29]; vio-

lation on either side of the duality, given an ER bridge (two-sided black hole), would lead

to causality violation and wormhole traversability.

In light of the result of ref. [14], one might be worried that ER=EPR is in danger. It is

well-known that entanglement is not an observable, in the sense we will make precise below;

we cannot look at two spins and determine whether they are in an arbitrary, unspecified

entangled state with one another. Yet ER=EPR implies that the two spins are connected

by a wormhole, so that the geometry of spacetime differs according to whether or not they

are entangled. If this difference in geometry could be observed, entanglement would become

a (necessarily nonlinear) observable as well and the laws of quantum mechanics would be

violated, contrary to the assumption that the latter are obeyed by quantum gravity.

In this paper, we show that ER=EPR does not have this issue. Unlike the modifications

to quantum mechanics considered by ref. [14], wormhole geometry can be hidden. In

particular, we show that in general relativity no measurement can detect whether the

interior of a black hole has a wormhole geometry. More precisely, observers can check for

the presence or absence of specific ER bridge configurations, but there is no projection

operator (i.e., observable) onto the entire family of wormhole geometries, just as (and, in

ER=EPR, for the same reason that) there is no projection operator onto the family of

entangled states.

The remainder of this paper is organized as follows. We first review the basic quantum

mechanical statement that entanglement is not an observable. Next we introduce the max-

imally extended AdS-Schwarzschild geometry in general relativity and, using AdS/CFT,

on the CFT side. As a warmup, we first show that no single observer can detect the pres-

ence of a wormhole geometry. We then turn to more complicated multiple-observer setups

and show, as desired, that they are unable to detect the presence of nontrivial topology in

complete generality.

2 Entanglement is not an observable

The proof that one cannot project onto a basis of entangled states [30] proceeds as follows.

Assume the existence of a complete basis set of entangled states |ψEi〉, distinct from the

basis set of all states. A projection onto this basis could be written in the form

P̂E =
∑
i

|ψEi〉〈ψEi |. (2.1)

Note, however, that the set of all entangled states has support over the entire Hilbert space,

as the entangled states can be written as linear sums of unentangled states:

|ψEi〉 =
∑
j∈Bi

|ψj〉 (2.2)

for some set Bi. Therefore, the projector onto the set of all entangled states does not project

out any states in the Hilbert space. Said another way, the set of all entangled states is not

a set that is closed under superposition, thus preventing a projection thereupon. Since no

projector exists, entanglement is therefore not an observable.

– 2 –
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3 Setup

We consider the maximally extended AdS-Schwarzschild geometry [31, 32], which, following

ref. [15], we will interpret as an Einstein-Rosen bridge connecting two black holes. The

metric for the AdS-Schwarzschild black hole in D spacetime dimensions is [33, 34]

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

D−2, (3.1)

where dΩ2
D−2 is the surface element of the unit (D − 2)-dimensional sphere and f(r) is

defined to be

f(r) = 1− 16πGDM

(D − 2)ΩD−2rD−3
+
r2

L2
, (3.2)

writing GD for Newton’s constant in D dimensions, ΩD−2 = 2π(D−1)/2/Γ[(D − 1)/2] for

the area of the unit (D− 2)-sphere, and L for the AdS scale. The horizon rH is located at

the point where f(rH) = 0. The tortoise coordinate can be defined as r∗ =
∫

dr/f(r), the

ingoing and outgoing Eddington-Finkelstein coordinates v = t + r∗ and u = t − r∗, with

which we can define the lightcone Kruskal-Szekeres coordinates

(I) U = −e−f ′(rH)u/2 V = ef
′(rH)v/2

(II) U = e−f
′(rH)u/2 V = ef

′(rH)v/2

(III) U = e−f
′(rH)u/2 V = −ef ′(rH)v/2

(IV) U = −e−f ′(rH)u/2 V = −ef ′(rH)v/2.

(3.3)

Regions I through IV are depicted in figure 1 and define the maximally extended AdS-

Schwarzschild black hole geometry. Defining T = (U + V )/2 and X = (V − U)/2, the

horizon is located at T = ±X, that is, at UV = 0, while the singularity is located at

T 2 −X2 = 1. The one-sided AdS black hole occupies Region I and half of Region II, i.e.,

V > 0, X > 0. In these coordinates, the metric becomes

ds2 = −4|f(r)|e−f ′(rH)r∗

[f ′(rH)]2
dUdV + r2dΩ2

D−2

=
4|f(r)|e−f ′(rH)r∗

[f ′(rH)]2
(−dT 2 + dX2) + r2dΩ2

D−2,

(3.4)

where r is now defined implicitly in terms of U and V via

UV = T 2 −X2 = ±ef ′(rH)r∗ , (3.5)

where the sign is − for Regions I and III and + for Regions II and IV.

We now turn to the CFT interpretation of the geometry. In the Maldacena and

Susskind proposal of ER=EPR [15], it is pointed out that, in AdS/CFT, the state |ψ(t)〉
in the CFT corresponds at different times to different causal diamonds in the eternal,

maximally extended AdS-Schwarzschild geometry. Different spatial slices through a given

causal diamond that intersect the boundaries at fixed points are related to each other by
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Figure 1. The maximally extended AdS-Schwarzschild geometry, with Kruskal-Szekeres coordi-

nates T,X and lightcone coordinates U, V indicated. Of course, the singularity actually appears

as a hyperbola in T,X. This diagram is a conformally-transformed sketch to indicate the general

relationship among the coordinates; see ref. [35] for more discussion. Regions I through IV are

defined by eq. (3.3).

Figure 2. (left) The state |ψ0〉, corresponding to a wormhole geometry where the ER bridge

intersects the boundary at T = 0. (right) The family of states |ψα〉, α > 0, for which the ER bridge

intersects the boundary at T > 0.

the Wheeler-deWitt equation in the bulk. If one is outside a black hole in AdS, without

knowing a priori which time slice one is on, then the different |ψ(t)〉 are simply a one-

parameter family of states |ψα〉, where α has replaced t and is now just the label for the

state of the CFT at time t = 0; all of the |ψα〉 describe pairs of black holes containing some

sort of ER bridge. The various geometries are shown in figure 2.

Famously, the maximally extended AdS black hole can be described on the CFT side

of the AdS/CFT correspondence by the thermofield double state of two noninteracting

large-N CFTs on the boundary sphere. We take the interpretation [15] of the state as two

entangled black holes that both evolve forward in time, that is,

|ψ(t)〉 =
1√
Z

∑
n

e−βEn/2e−2iEnt|n̄〉L ⊗ |n〉R, (3.6)

where |n〉L and |n〉R are the nth eigenstates of the left and right CFTs, respectively, with

eigenvalue En, a bar denotes the CPT conjugate, and β is the inverse temperature. We
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note that the CFT time t in eq. (3.6) is the r →∞ limit of the Schwarzschild time t that

appears in eq. (3.1). By considering the surface of constant Kruskal time T that intersects

the r =∞ boundary at Schwarzschild time t, we can instead parameterize the CFT state

corresponding to the eternal AdS black hole as |ψ(T )〉. Equivalently, we can write as |ψT 〉
the family of ER bridges indexed by T , which correspond at the fixed Kruskal time T = 0

to the CFT state |ψ(T )〉. The black hole described by |ψT0〉 is given by the metric (3.4)

with T replaced with T − T0 in eq. (3.5). The analogous states with two one-sided black

holes on the boundary CFTs will be called |φT 〉, where

|φt〉 =
1√
Z

(∑
m

e−βEm/2e−iEmt|m̄〉L

)
⊗

(∑
n

e−βEn/2e−iEnt|n〉R

)
. (3.7)

4 The single-observer case

To gain intuition for the setup, in this section we restrict ourselves to measurements that

a single (test particle) observer can perform in an otherwise empty (AdS-)Schwarzschild

spacetime. Such observers are forbidden from receiving information from or coordinating

with other observers; that is, we first investigate the aspects of the geometry that can

be probed by a single causal geodesic. We will refer to this class of observers as isolated

observers. The simplest way for an isolated observer to verify the existence of an ER bridge

would be to pass through it, i.e., to traverse the wormhole. It turns out, however, that this

process is disallowed both by classical general relativity and, via ER=EPR, by quantum

mechanics.

In general relativity, the nontraversability of wormholes follows immediately from a

more fundamental result, the topological censorship theorem [36], which is the statement

that in a globally hyperbolic, asymptotically flat spacetime satisfying the null energy condi-

tion (NEC), any causal curve from past null infinity to future null infinity is diffeomorphic

to an infinite causal curve in topologically trivial spacetime (such as Minkowski space).

In other words, no causal observer’s worldline can ever probe nontriviality of topology

of spacetime.1 Probing the nontrivial topology of an ER bridge simply means passing

through the wormhole, which is therefore forbidden given the NEC. In a previous pa-

per [27], we showed that violation of the NEC in ER=EPR necessarily leads to violation of

the no-cloning theorem and the breakdown of unitary evolution. Traversable wormholes are

therefore also forbidden by quantum mechanics given ER=EPR, as they would correspond

to a breakdown of unitarity by allowing superluminal signaling.

The next simplest means of verifying the existence of an ER bridge would be to detect

the nontrivial topology of the wormhole without traversing it. In the present context, we

1Of course, nonisolated observers can determine topological characteristics of their spacetime, for ex-

ample by seeing the same stars on opposite sides of the sky and thereby determining that spatial sections

of their spacetime are toroidal. However, they must receive information from outside their worldline —

in this case, photons emitted by distant stars that travel on topologically distinct geodesics — to do so.

Furthermore, the topological censorship theorem guarantees that if the spacetime is asymptotically flat,

satisfies the NEC, and allows Cauchy evolution, then any handles must collapse to a singularity before an

observer can travel around them.
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see that detecting the nontrivial topology is equivalent under ER=EPR to detecting the

existence of entanglement — more precisely, to constructing a linear operator that detects

if an unknown state is entangled with anything else. But it is well known that such an

operator is forbidden by the linearity of quantum mechanics, as ref. [14] discusses. Briefly,

this is because projection operators cannot project onto a subspace unless that subspace is

closed under superposition. An attempt to project onto the set of all entangled states will

therefore fail due to the set of all entangled states not being closed under superposition;

such a projector will inevitably project onto the entire Hilbert space of all states. On the

gravity side, this leads to a result stronger than the nontraversability of wormholes: not

only does ER=EPR forbid an observer from traversing wormholes, it forbids an isolated

observer from verifying their existence even once inside them.

This result can be straightforwardly verified in general relativity by examining the

applicable metrics. Importantly, the metric given in eqs. (3.4) and (3.5) for the maximally

extended geometry has several isometries: it is invariant under the exchange (U, V ) ↔
(−U,−V ) and also under the exchanges (T,X) ↔ (T,−X) and (T,X) ↔ (−T,X). That

is, Regions I and II in figure 1 are the same as Regions III and IV, respectively, and

moreover the entire metric is symmetric under spatial (X) or temporal (T ) reversal. In

particular, the regions present in both this geometry and the one-sided black hole geometry

(Region I and half of Region II, i.e., V > 0, X > 0) are completely identical in the two

cases. It is this property that implies that an observer on a geodesic entering a one-sided

black hole cannot distinguish it from a two-sided black hole via any local measurement of

curvature.

We have therefore shown that a single (isolated) observer cannot observe whether a

given black hole hosts an ER bridge, even by jumping into it. We next consider observables

that require multiple communicating observers to implement.

5 The multiple-observer case

One can ask the question of whether two (or, for that matter, many) observers can de-

tect the existence of entanglement or, equivalently, of nontrivial topology. The setup of

the experiment is as follows. Consider a maximally extended, eternal AdS-Schwarzschild

geometry, as depicted in figure 3. Allow two observers, Alice and Bob, to initially begin

in the white hole portion of the geometry. (We will consider the case of more than two

observers later in this section.) Now let the observers exit the white hole2 to the two dif-

ferent asymptotic regions not contained in the black hole. Next, they both jump into their

respective black holes and compare notes. In such a way, they could potentially determine

if there was entanglement before hitting the singularity.

2We note that the white holes mentioned in our construction are for convenience only; it suffices for

Alice and Bob to have communicated at some past time and simply to have moved out of causal contact.

Indeed, it is possible for Alice and Bob to both exist in the same asymptotically AdS vacuum, as long as

a wormhole exists connecting their locations. It is, however, necessary for them to enter the wormhole in

order to attempt to detect information regarding the entanglement in this picture.
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Figure 3. The procedure described in the text for detecting a wormhole. Alice and Bob emerge from

the white hole portion of the AdS-Schwarzschild geometry, then meet again inside the black hole.

Figure 4. Unlike in figure 3 above, here the geometry is shifted to some |ψα〉 for some sufficiently

large α 6= 0; Alice and Bob hit the singularity before they can meet and are therefore unable to

verify the existence of a wormhole.

The problem with this construction is that it doesn’t definitively tell the observers if

there was entanglement or not. Indeed, Alice and Bob could jump into the |ψ0〉 ER bridge

at sufficiently late time T that they are unable to communicate (since one or both of them

will hit the singularity before being able to do so); equivalently, the geometry could be

|ψα〉 for α too large (instead of |ψ0〉), as depicted in figure 4. The same argument that

states that no linear operator permits the observers from detecting whether or not there is

entanglement precludes this verification procedure from succeeding with probability 1. But

– 7 –
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how is it possible to reconcile the fact that Alice and Bob can sometimes verify the existence

of an ER bridge with the impossibility of projecting onto a generic family of states?

To be concrete, suppose that Alice and Bob are in some geometry in the set of all

|ψα〉 (for α unknown) and travel on outgoing nearly null trajectories beginning in the

white hole at (T,X) = (−q, 0), with Alice (Bob) entering Region III (respectively, I) at

(T,X) ' (−q/
√

2,∓q/
√

2), turning around at (T,X) ' (0,∓q), and entering Region II

through their respective black holes at (T,X) ' (q/
√

2,∓q/
√

2). Now, if they do not hit a

singularity, their geodesics will cross again at (T,X) ' (q, 0). That is, their geodesics will

cross if they are in the state |ψα〉, i.e., the state in which T is shifted by α, for α < 1− q.
If α > 1− q for a |ψα〉 state or if they had instead been in any one of the |φα〉 states, they

would hit the singularity without their paths ever crossing. (Recall that for X = 0, the

singularity is located at T = ±1 for the |ψ0〉 geometry.) Hence, Alice and Bob are able to

verify if they are in the set Sq = {|ψα〉|α < 1− q}.
However, this thought experiment does not require the existence of a projection op-

erator onto the entire family Sq. Instead, after their geodesics cross, Alice and Bob can

actually determine in which of the |ψα〉 they are. All null geodesics from the horizon to

the singularity are isomorphic and experience the same pattern of values of the curvature

tensor on the way in. That is, a family of null geodesics with, e.g., constant V = V0 can be

labeled by the time t at which they cross a surface at fixed proper distance from the hori-

zon in Region I, which is the only difference among the geodesics; since the metric (3.1) is

independent of t, all of these geodesics experience the same inward journey. Hence, before

meeting Bob inside Region II, there is no distinguishing event by which Alice can measure

α. However, the value of the Riemann tensor at the moment Alice’s and Bob’s geodesics

cross is unique for each |ψα〉.
In particular, at the moment their geodesics cross, Alice and Bob can measure the

tidal forces acting in their local Lorentz frames by computing some component of the Weyl

tensor. At (T,X) = (q, 0), eq. (3.5) implies that, in Region II, r∗ and hence r is a monotonic

function of (q − α). (Recall that for |ψα〉 all equations describing the metric are shifted

by T → T − α.) Let us define a local Lorentz frame in coordinates (t̂, r̂, θ̂), where θ̂ is the

orthonormal coordinate in the D−2 angular directions. When their paths cross, Alice and

Bob can measure the r̂θ̂r̂θ̂ component of the Weyl tensor, which is

Wr̂θ̂r̂θ̂ = − 1

L2
−
(
D − 3

D − 2

)
8πGDM

ΩD−2rD−1
. (5.1)

Note that this quantity monotonically increases in r [and so in (q − α)]. This implies

that Alice and Bob can determine α by measuring tidal forces at the moment when their

geodesics cross; there is a bijection between α and the size of the tidal force. This measure-

ment thus acts as a projection operator Pα = |ψα〉〈ψα|. This is analogous to the possibility

of being able to detect if two qubits are in some particular entangled state, rather than

absolutely any entangled state whatsoever.

The key point here is that if the observers hit the singularity before exchanging a

signal, i.e., if the wavefunction is one of the |ψα〉 for which α > 1− q, then Alice and Bob

are unable to confirm the existence of the ER bridge. If α < 1 − q, the experiment Alice
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and Bob perform actually determines α. This procedure therefore fails to determine if the

region behind a horizon contains a generic wormhole: it can sometimes reveal its existence,

but not rule out its presence. It therefore does not implement a projector onto the set of

all wormhole states. Thus, no contradiction with linearity of quantum mechanics arises in

ER=EPR from the ability of Alice and Bob to jointly explore the wormhole geometry.

A priori, one could wonder whether even more general configurations of more than

two observers could make the existence of wormhole topology into an observable. Note

that it is not consistent to consider a setup in which there is an infinite set of observers (or

signals) entering a horizon at earlier and earlier times, as this would violate the necessary

assumption of weak backreaction and hence invalidate the AdS-Schwarzschild spacetime

ansatz. Hence, in a given slicing of spacetime, there must be an initial observer to enter the

horizon. A prototypical setup for the thought experiment with more than two observers

can therefore be rephrased as follows. After meeting and arranging the experiment, Bob

and Alice go their separate ways. Bob jumps into his horizon, crossing it at spacetime

point p = (T,X) ' (q, q)/
√

2 as before. This time, however, Alice remains outside her

horizon and instead sends into her black hole multiple light pulses at regular intervals,

with the first light pulse she emits (after leaving Bob) entering her wormhole mouth at

p′ = (T,X) ' (q′,−q′)/
√

2. The multiple light pulses are equivalent to having multiple

observers enter the black hole at different times. However, one can choose a slicing of

spacetime in which p and p′ are on the same spacelike sheet; that is, one can simply apply

a boost to equate the spatial components of p and p′. Since a boost can be independently

applied to each asymptotically AdS spacetime, it follows that the case in which Bob is also

replaced by multiple observers can be similarly simplified. As a result, the multiple observer

setup reduces to the two observer setup, which we showed previously cannot definitively

answer the question of whether there is a wormhole geometry.

Thus, even with multiple observers, the measurement of whether or not there is an

ER bridge in general is not a valid observable, any more than the question of whether two

qubits are arbitrarily entangled is a quantum mechanical observable.

6 Conclusions

The ER=EPR proposal is a compelling but surprising idea about quantum gravity, iden-

tifying features of ordinary quantum mechanics with geometrical and topological features

of spacetime. As an extraordinary claim, it is necessary that it be subjected to rigor-

ous theoretical tests to ascertain whether it suffers from any inconsistencies. One such

potential issue, which we have addressed in this paper, is whether ER=EPR implies a

serious modification of quantum mechanics, namely, the introduction of state dependence.

The argument that ER=EPR implies state dependence rests on the observation that the

correspondence identifies entanglement with wormholes. Famously, entanglement is not a

quantum mechanical observable, so this leads to the question of whether the observation

of a wormhole contradicts, under ER=EPR, linearity of quantum mechanics.

In this paper, we have argued that ER=EPR does not contradict this principle of

quantum mechanics precisely because the general question of the existence or nonexistence
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of a wormhole is also not an observable. We showed that neither a single observer nor a

group of observers is able to definitively establish whether a pair of event horizons is linked

by an ER bridge. A single observer can never detect the (nontraversable) wormhole’s

existence, which mirrors the fact that, given a single qubit, one cannot tell if it is entangled

with anything else. On the other hand, by exploring the spacetime, two or more observers

working in concert can decide if they are in a particular ER bridge geometry, but cannot

project onto the entire family. Under ER=EPR, this statement mirrors the fact that one

can project two qubits onto a particular entangled state but not onto the family of all

possible entangled states.

Many options are available for future investigation. The ER=EPR correspondence has

been subjected to some tests [19–23, 27], but the challenge of seeing the duality between

wormholes and any arbitrary form of quantum entanglement remains, as does the very

definition of what is meant by a “wormhole” in ER=EPR for theories without a weakly-

coupled holographic gravity dual. Other open issues include the investigation of whether

firewalls are truly nongeneric in ER=EPR [16] and whether the correspondence can be con-

cretely realized outside of asymptotically AdS spacetime. The answers to these questions

and others will likely provide important insight in future investigations in the connections

between entanglement and spacetime geometry.
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