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1 Introduction

It is an important question to ask how the gauge-gravity correspondence can be deformed

whilst maintaining some of its special features. One such special feature is its integrability

(reviewed in [1, 2]) and one can ask what kind of deformations of the classic AdS5 × S5

background preserve the integrability of the world sheet theory.

The world sheet theory in the Green-Schwarz formalism for strings on AdS5 × S5

written down by Metsaev and Tseytlin [3] is a generalized sigma model with a target that

is the semi-symmetric space [4] and can be described as the quotient of a Lie supergroup

by a bosonic subgroup:

PSU(2, 2|4)

SO(1, 4)× SO(5)
. (1.1)

The spectrum of the theory can be found around the vacuum which corresponds to a point-

like string orbiting the equator of the S5. After light cone gauge fixing on the world sheet,

the theory is not relativistically invariant, but standard integrability arguments allow one

to infer the form of its factorizable S-matrix. The S-matrix is then the starting point for

calculating the energies of string states via Bethe Ansatz techniques.

The S-matrix of the world sheet theory is associated to a particular rational R-matrix

solution of the Yang-Baxter equation with an associated Yangian symmetry. This R-

matrix has a trigonometric generalization associated to a quantum group symmetry with
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deformation parameter q, found by Beisert and Koroteev [5]. This trigonometric solution

can be used to define a deformation of the string theory at the level of the world sheet

scattering theory [6, 7]. The original motivation for considering this kind of deformation

was to understand whether the gauge fixed world sheet theory could be re-formulated in a

manifestly relativistic way, as suggested by writing the equations of motion in relativistic

form using the Pohlmeyer reduction [8, 9]. The answer is that there is a relativistic world

sheet scattering theory, but this represents a deformation of the original string theory

rather than a re-formulation of it [6, 7].

There are two classes of these deformations depending on whether q is real, in which

case q = e−η (at the classical level) known as the “η deformation”, or q = eiπ/k for an

integer k, which we call the “k deformation”.1 The two deformation are very different in

character. The former, investigated in [10–17] can be interpreted as a direct target space

deformation while the latter is more subtle being a discrete deformation. In the latter case,

the S-matrix is built from the R-matrix in the IRF/RSOS formulation. The k-deformation

has been investigated in [15, 16, 18–25].

The big question is whether the η or k deformations describe consistent string theories.

For the k deformation the evidence is as following:

1. As described above, the string world sheet theory has a consistent S-matrix [6, 7, 26]

that describes the scattering of a finite number of states which form the starting point

for the TBA [18, 19].

2. It is conjectured that the world sheet theory has a consistent Green Schwarz La-

grangian formulation as a deformation of a gauged WZW theory associated to the

supergroup PSU(2, 2|4) [20]. This formulation has the requisite number of kappa

symmetries.

3. The target space geometry satisfies the generalized Einstein equations when a suitable

ansatz is made for the RR flux and dilaton based on the bosonic truncation of the

Green-Schwarz sigma model mentioned above [22].2

It is the purpose of the present work to add to this body of evidence by showing

that the continuous coupling of the world sheet theory is a marginal coupling in the one

loop approximation. This is a world sheet calculation that complements the target space

calculation listed above and provides additional evidence in favour of the Green-Schwarz

Lagrangian formulation.

This paper is organized as follows. In section 2, we lay the ground work for later

sections by calculating the beta functions of the integrable sigma models. We use the

1These latter deformations are also called “λ deformations” where λ is defined in section 3. But in

the string theory context, λ is not the deformation parameter that takes us away from the AdS5 × S5

string theory rather it is the would-be marginal coupling (precisely the one that the present paper shows

is marginal at one loop) on the world sheet corresponding to the analogue of the ’t Hooft coupling in the

dual gauge theory. Strictly speaking, it is only in the classical limit k →∞, that λ can be properly viewed

as a deformation parameter, in this case of the Poisson brackets.
2It is not entirely clear whether the solution actually corresponds to the world sheet action. This is

discussed [23].
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background field method and choose a particularly simple kind of background field. The

novelty of our approach is that we calculate the fluctuations around the background field

in terms of the currents of the theories rather than their fundamental field directly. In

section 3 we turn to the k deformed versions of the integrable sigma models. After showing

how they have the same equations of motion of the undeformed theories, the beta functions

follow in a simple way. Section 4 then extends the calculation to the semi-symmetric sigma

models and their k deformations. We show that the beta functions in both vanish when

the group has vanishing Killing form (or, equivalently, dual Coxeter number or quadratic

Casimir of the adjoint representation).

2 Integrable sigma models

In this section, as a necessary precursor to considering the deformed theories, we calculate

the beta functions of the integrable sigma models. These are the Principal Chiral Models

(PCM) and Symmetric Space Sigma Models (SSSM). The PCM can also be formulated as

a SSSM associated to Type II symmetric spaces as well.

Our approach is to pick a specific background field. The beta function then follows

from computing the spectrum of fluctuations about the background field. Of course this is

not a new calculation; however, the novelty of our approach, which will pay dividends later,

is to calculate the fluctuations at the level of the currents rather than the fundamental field.

2.1 Principal chiral models

In this section, we consider the PCM which are sigma models with target spaces equal to

a group manifold F . These theories are formulated in terms of a field f(x, t) valued in a

Lie group F and an action3

S[f ] = − κ2

8πtN

∫
d2x TrN

(
f−1∂µf f

−1∂µf
)
, (2.1)

where the trace is taken in the defining representation of dimension N whose Dynkin index

is tN : see the appendix for our conventions. Of course, we could use any other faithful

representation to define the theory.

The equations of motion are simply the conservation condition

∂+J− + ∂−J+ = 0 , (2.2)

for the current Jµ = f−1∂µf . This current also satisfies, by virtue of its definition, the

Cartan-Maurer identity

∂+J− − ∂−J+ + [J+, J−] = 0 . (2.3)

Taken together, (2.2) and (2.3) can be written as a Lax equation, that is the flatness

condition

[∂+ + L+(z), ∂− + L−(z)] = 0 , (2.4)

3We take 2d metric ηµν = diag(1,−1). We often use the null coordinates x± = t± x and for vectors we

have A± = A0 ±A1 and A± = (A0 ±A1)/2 so that the invariant AµB
µ = 2(A+B− +A−B+).
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for a z-dependent gauge field

L±(z) =
z

z ± 1
J± , (2.5)

where z, the spectral parameter, is an arbitrary parameter. A Lax representation like this

is sufficient to imply the classical integrability of the principal chiral models.

Using (2.2) and (2.3), we can write

∂∓J± = ±1

2
[J+, J−] . (2.6)

In order to calculate the beta function, we need to identify a suitable classical back-

ground. To this end, we take a classical solution of the form

f = exp
[
xµΘµ] , (2.7)

where Θµ are two constant elements of the algebra which commute:

∂µΘν = 0 , [Θµ,Θν ] = 0 . (2.8)

The Lagrangian evaluated on the background field is simply

L (0) = − κ2

8πtN
TrN (Θ ·Θ) . (2.9)

In order to calculate the beta function, we need to extract the operator that governs

the fluctuations around the background field and calculate its determinant. We will do this

at the level of the current Jµ, with its equations of motion (2.6), rather than the group

valued field f . Taking the variation of these equations, we have

∂∓Ĵ± = ±1

2
[Θ+, Ĵ−]∓ 1

2
[Θ−, Ĵ+] . (2.10)

where we denote a fluctuation by a hat.

So the operator that governs the fluctuations is

D =

(
∂− + 1

2Θ− −1
2Θ+

−1
2Θ− ∂+ + 1

2Θ+

)
(2.11)

acting on (Ĵ+, Ĵ−) ∈ (f, f). Note that Θ± in the above, is given by matrix multiplication

in the adjoint representation:4 (
Θ±
)
b
c = iΘ±

a fab
c . (2.12)

After Wick rotation to Euclidean space, the contribution of the fluctuations to the one

loop effective Lagrangian is5

L eff
E =

κ2

8πtN
TrN (Θ ·Θ) +

1

2

∫
|p|<µ

d2p

(2π)2
Tr log

(
p− + 1

2Θ− −1
2Θ+

−1
2Θ− p+ + 1

2Θ+

)
. (2.13)

4Note that Θ = ΘaTa for a set of Hermitian generators Ta. Therefore, [Θ, Tb] = iΘafab
cTc = (Θa)b

cTc.

See the appendix for our group theory and Lie algebra conventions.
5In Euclidean space p± = (ip0 ± p1)/2.
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Here, to regularize the theory, we have cut the momentum integral off in the UV with

an explicit cut off µ. Although crude, this is an adequate cut off procedure for one loop

calculations of the beta function.

The beta function only depends on the logarithmically divergent term in the above,

which is

−1

4

∫
|p|<µ

d2p

(2π)2

1

p2
Tradj(p ·Θ)2 = − 1

16π
Tradj(Θ ·Θ) log µ+ · · · . (2.14)

Note that for consistency the eigenvalues of Θ ·Θ should be ≤ 0, so the fluctuations have

effective masses ≥ 0.

In the adjoint representation,

Tradj(Θ ·Θ) = −Θµafab
c Θµ

dfdc
b =

c2(F )

tN
TrN (Θ ·Θ) , (2.15)

where c2(F ) ≡ tadj is the quadratic Casimir in the adjoint representation. This is also

equal to the dual Coxeter number h∗ of F .

The RG equation which yields the beta function follows from demanding that the sum

of the tree and one loop contributions to the effective action is independent of the cut off

scale µ; that is

µ
d

dµ

[
κ2

8πtN
TrN (Θ ·Θ)− c2(F )

16πtN
TrN (Θ ·Θ) log µ

]
= 0 . (2.16)

This yields the beta function of the sigma model coupling

µ
dκ2

dµ
=
c2(F )

2
. (2.17)

Note that, as it should, the beta function does not depend on the choice of background field.

2.2 Symmetric space sigma models

Symmetric spaces are special quotients of Lie groups F/G. One of their defining features

is the existence of a Z2 automorphism of f, the Lie algebra of F , under which f = f(0)⊕ f(1),

where f(0) ≡ g is the Lie algebra of the subgroup G ⊂ F . We will denote a decomposition

of any element of a ∈ f as a(0) + a(1). The Lie algebra f respects the Z2 grading:

[f(i), f(j)] ⊂ f (i+j mod 2) . (2.18)

Symmetric space are classified as being Type II, of the form G×G/G (so F = G×G),

or Type I, for which F is simple [27].

We can define sigma models on a symmetric space by a gauging procedure. That is,

we write a sigma model for an F -valued field f(x, t) and then gauge the subgroup G ⊂ F

which acts by right-multiplication f → fU , U ∈ G. To this end we introduce a g-valued

gauge field Bµ and write

S[f,Bµ] = − κ2

8πtN

∫
d2xTrN

(
JµJµ

)
, (2.19)
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where Jµ = f−1∂µf − Bµ. The theory is invariant under a global F left action f → Uf ,

U ∈ F , in addition to the gauge symmetry acting to the right

f → fU , Bµ → U−1∂µU + U−1BµU . (2.20)

Returning to the sigma model (2.19), the equation-of-motion of the gauge field Bµ
imposes the constraint

J (0)
µ = 0 =⇒ Bµ = (f−1∂µf)(0) . (2.21)

The equation-of-motion of the group-valued field f can be decomposed according to f(0) ⊕
f(1) as

∂±J
(1)
∓ + [B±, J

(1)
∓ ] = 0 ,

∂+B− − ∂−B+ + [B+, B−] + [J
(1)
+ , J

(1)
− ] = 0 .

(2.22)

We will fix the gauge by imposing the covariant gauge fixing condition

∂+B− + ∂−B+ = 0 . (2.23)

Classical integrability follows from writing the equations (2.22) in terms of a Lax pair

[∂+ + L+(z), ∂− + L−(z)] = 0 , (2.24)

where

L±(z) = B± + z±1J
(1)
± . (2.25)

Now we turn to the beta function. In this case a suitable background field to take is

f = exp
[
xµΘµ] , (2.26)

where Θµ are two constant elements of f(1) which commute:

∂µΘν = 0 , [Θµ,Θν ] = 0 . (2.27)

In particular,

Bµ = 0 , J (1)
µ = Θµ . (2.28)

Note that due to the Z2 grading associated to a symmetric space and the fact that Θ± ∈ f(1)

ad Θ± : f(0) → f(1) , ad Θ± : f(1) → f(0) . (2.29)

The classical Lagrangian evaluated on the background field is

L (0) = − κ2

8πtN
TrN (Θ ·Θ) (2.30)
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and the variation of the equations of motion and gauge fixing condition are

∂±Ĵ
(1)
∓ + [B̂±,Θ∓] = 0 ,

∂+B̂− − ∂−B̂+ + [Ĵ
(1)
+ ,Θ−] + [Θ+, Ĵ

(1)
− ] = 0 ,

∂+B̂− + ∂−B̂+ = 0 .

(2.31)

For the purposes of calculating the beta function, we will not need any more of the para-

phernalia of gauge fixing: ghosts, etc.

The fluctuations are governed by the operator

D =


∂− 0 0 −Θ+

0 ∂+ −Θ− 0

−Θ− Θ+ −∂− ∂+

0 0 ∂− ∂+

 (2.32)

acting on (Ĵ
(1)
+ , Ĵ

(1)
− , B̂+, B̂−) ∈ (f(1), f(1), f(0), f(0)).

After Wick rotation, the one-loop effective Lagrangian is

L eff
E =

κ2

8πtN
TrN (Θ ·Θ) +

1

2

∫
|p|<µ

d2p

(2π)2
Tr log


p− 0 0 −Θ+

0 p+ −Θ− 0

−Θ− Θ+ −p− p+

0 0 p− p+

 , (2.33)

from which we extract the logarithmically divergent term

−1

4

∫
|p|<µ

d2p

(2π)2

1

p2

(
Tr(0) + Tr(1)

)
(Θ ·Θ) = − 1

8π
Tradj(Θ ·Θ) log µ+ · · ·

= −c2(F )

8πtN
TrN (Θ ·Θ) log µ+ · · · .

(2.34)

The numerical factor here comes as in (2.15).

The RG equation is therefore

µ
d

dµ

[ κ2

8πtN
TrN (Θ ·Θ)− c2(F )

8πtN
TrN (Θ ·Θ) log µ

]
= 0 (2.35)

and, therefore, the beta function has the form

µ
dκ2

dµ
= c2(F ) . (2.36)

3 k-deformed sigma models

In this section, we first define and then calculate the beta function of the coupling in the

k deformed integrable sigma models.

The idea is to first re-formulate the original sigma model in a first order form in terms

of a Lie algebra-valued field Aµ and a Lie algebra valued Lagrange multiplier field ν; firstly

for the PCM:

S = − κ2

2πtN

∫
d2x TrN

[
A+A− + νF+−

]
, (3.1)
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where

F+− = ∂+A− − ∂−A+ + [A+, A−] , (3.2)

is the single non-vanishing component of the curvature of Aµ. The vanishing of F+−
means that Aµ is pure gauge and that implicitly there exists a group valued field such that

Aµ = f−1∂µf . So the field Aµ is identified with the current Jµ in the original formulation.

For the SSSM case, the analogous first order form is

S = − κ2

2πtN

∫
d2x TrN

[
A

(1)
+ A

(1)
− + νF+−

]
, (3.3)

The k deformed sigma models are now obtained by replacing the Lagrange multiplier

field with a new field F valued in the group F and replacing the term involving the Lagrange

multiplier with the gauged WZW action for F with gauge field Aµ:6

− κ2

2πtN

∫
d2x TrN

[
νF+−

]
−→ SgWZW[F , Aµ] . (3.4)

The k deformed theory has an action which looks like the action of a gauge WZW

model, apart from one term that is deformed:

S[F , Aµ] = − k

4πtN

∫
d2xTrN

[
F−1∂+F F−1∂−F + 2A+∂−FF−1

− 2A−F−1∂+F − 2F−1A+FA− + 2A+ΩA−

]
+

k

24πtN

∫
d3x εabc TrN

[
F−1∂aF F−1∂bF F−1∂cF

]
.

(3.5)

The deformed term involves the quantity Ω which acts on the Lie algebra in the following

way. For the PCM case, it is simply proportional to the identity:

PCM: Ω =
1

λ
, λ =

k

κ2 + k
, (3.6)

while for the SSSM case,

SSM: Ω = P(0) +
1

λ
P(1) , λ =

k

κ2 + k
, (3.7)

where P(i) are the projectors onto f(i), i = 0, 1. In this case, the deformation vanishes in

the component g ≡ f(0) of the algebra, showing that the theory retains a G ⊂ F gauge

symmetry.

The deformation parameter k has to be an integer for the usual topological reasons

associated to the existence of a Wess Zumino term. This action reduced to the conventional

gauged WZW action in the limit that Ω → 1. However, it is important to point out that

for generic λ, the field Aµ, in the k-PCM, and the component A
(1)
µ , in the k-SSSM, is not

— strictly-speaking — a gauge field, rather it is to be viewed as an auxiliary field. It is

6The deformed theories can also be defined by a dual gauging procedure described in [28].
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only in the k-SSSM case that the theory has a genuine gauge symmetry corresponding to

the subgroup G ⊂ F with gauge field A
(0)
µ .

The field Aµ appears quadratically in the action and it can be integrated out by

substituting in the solution of its classical equations of motion

A+ =
(
Ω−AdF−1

)−1F−1∂+F ,

A− =
(
1−AdF−1Ω

)−1F−1∂−F .
(3.8)

This yields an effective sigma model with Wess-Zumino term for the group field F :

Seff = − k

4πtN

∫
d2x TrN

[
F−1∂+F

(
1− 2

(
1−AdF−1Ω

)−1)F−1∂−F
]

+ SWZ + Sdil .

(3.9)

Here, SWZ is the original Wess-Zumino term and, re-instating the world-sheet metric, the

dilaton term is

Sdil =
1

4π

∫
d2x
√
h R(2)φ , φ = −1

2
Tr log

(
AdF − Ω

)
. (3.10)

In the k-SSSM case, the theory in the form (3.9) would need to be gauge fixed in some

consistent way.

What is remarkable, is that the deformed theories, both k-PCM and k-SSSM, can be

written in way that the classical equations of motion are identical to the original sigma

models written in terms of the current Jµ and, in the SSSM case, the gauge field Bµ. This

will prove key to calculating the beta functions of the deformed theories. At this point we

need to consider the two cases separately.

3.1 k deformed PCM

The equation-of-motion of the group field F can be written either as[
∂+ + F−1∂+F + F−1A+F , ∂− +A−

]
= 0 , (3.11)

or, equivalently, by conjugating with F , as[
∂+ +A+, ∂− − ∂−FF−1 + FA−F−1

]
= 0 . (3.12)

Then, using (3.8) in (3.11) and (3.12), leaves us with the pair of equations

λ∂+A− − ∂−A+ + [A+, A−] = 0 ,

∂+A− − λ∂−A+ + [A+, A−] = 0 ,
(3.13)

from which we find (for λ 6= 1)

∂∓A± = ± 1

1 + λ
[A+, A−] . (3.14)

These are identical to (2.6), the equations of the PCM, if we identify

Jµ =
2

1 + λ
Aµ , (3.15)

– 9 –
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This fact proves that the k-PCM theories are classically integrable but it also suggests

a simple way to calculate the beta function of the coupling λ. The idea is to choose a

background field for F which is equivalent to the background field that we chose in the

PCM model. To this end, let us take a background field

F = exp
[
xµΛµ

]
. (3.16)

It is important that the background of the fundamental field F does not depend on the

coupling λ.

Using the equations (3.8), with Ω = 1/λ in this case, we have

A± = ± λ

1− λ
Λ± (3.17)

and, hence, via the relation (3.15)

J± = ± 2λ

1− λ2
Λ± . (3.18)

This implies that, as far as the fluctuations are concerned, the one loop contribution to the

effective Lagrangrian is precisely as in section 2.1 but with

Θ± = ± 2λ

1− λ2
Λ± . (3.19)

To be clear, the λ dependence is carried by Θ±.

The only difference, compared with the calculation of the beta function in section 2.1,

lies in the tree level term, which calculated from (3.9) yields

L (0) = − k

16πtN

1 + λ

1− λ
TrN (Λ · Λ) . (3.20)

Since the one loop contribution is just as in (2.16) but with Θ± replaced with Λ±
according to (3.19), the RG equation that results is

µ
d

dµ

[ k

16πtN

1 + λ

1− λ
TrN (Λ · Λ) +

c2(F )

16πtN

( 2λ

1− λ2

)2
TrN (Λ · Λ) log µ

]
= 0 . (3.21)

The beta function of the coupling λ follows as

µ
dλ

dµ
= −2c2(F )

k

( λ

1 + λ

)2
. (3.22)

As a check on this result, we can compare to the analysis of Tseytlin [29] who calculated

the beta function for a model of this type with completely general symmetric Ω, ΩT = Ω,

and also Sfetsos and Siampos [30] who further generalized the analysis to lift the symmetry

requirement on Ω. We find complete agreement.

Note that in the k deformed theories, the loop counting parameter is 1/k, so the result

above is exact in λ to order 1/k. In the limit k →∞, we have

λ = 1− κ2

k
+ · · · , (3.23)

and the beta function reduces to (2.17).

– 10 –
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3.2 k deformed SSSM

In the SSSM case, the equations of motion (3.11), or equivalently (3.12), can, using the

constraints (3.8), be written as

∂∓A
(1)
± = [A

(1)
± , A

(0)
∓ ] , (3.24)

along with

∂+A
(0)
− − ∂−A

(0)
+ + [A

(0)
+ , A

(0)
− ] + λ−1[A

(1)
+ , A

(1)
− ] = 0 . (3.25)

These equations as precisely equivalent to the equations of the undeformed theory (2.22)

with the identifications

B± = A
(0)
± , J

(1)
± =

1√
λ
A

(1)
± . (3.26)

This fact proves the classical integrability of the deformed theory and, as in the last

section, provides a simple way to infer the one loop divergent contribution to the effective

Lagrangian.

For the moment, we shall consider the case of Type II symmetric spaces corresponding

to coset F/G with simple F . As before, let us take a background field

F = exp
[
xµΛµ

]
, (3.27)

where, more specifically, Λ± ∈ f(1). The Lagrangian evaluated on the background field is

simply

L (0) = − k

16πtN

1 + λ

1− λ
TrN (Λ · Λ) . (3.28)

Using the equations (3.8), with Ω = P(0) + λ−1P(1), for the background field we have

A± = ± λ

1− λ
Λ± (3.29)

and hence, via the relation (3.26),

J± = ±
√
λ

1− λ
Λ± , B± = 0 . (3.30)

Comparing with our analysis in section 2.2, implies that the one loop contribution to the

effective Lagrangrian is precisely as derived there but with

Θ± = ±
√
λ

1− λ
Λ± . (3.31)

Again, the λ dependence is carried by Θ±. In addition, it is important that the fluctuations

are stable around the background which requires that Θ ·Θ is a negative operator, i.e. Λ ·Λ
is positive operator.
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Hence, the RG equation in the deformed theory takes the form

µ
d

dµ

[ k

16πtN

1 + λ

1− λ
TrN (Λ · Λ) +

c2(F )

8πtN

( √λ
1− λ

)2
TrN (Λ · Λ) log µ

]
= 0 , (3.32)

from which we extract the beta function

µ
dλ

dµ
= −c2(F )

k
λ . (3.33)

In the limit k →∞, we have

λ = 1− κ2

k
+ · · · (3.34)

and the beta function reduces to (2.36).

The result here can also be extracted from the analysis of Tseytlin [29] and Sfetsos

and Siampos [30] (see also [31]) by taking the result of the un-gauged theory with

Ω =
1

λ0
P(0) +

1

λ
P(1) (3.35)

and then taking the limit λ0 → 1. Note that in the un-gauged theory λ0 also runs and, as

noted in [30], λ0 = 1 is not fixed point, unless g is abelian. However, one should remember

that a gauge symmetry implies a redundancy in the description and unless there is a gauge

anomaly quantum effects cannot break the symmetry. Hence, λ0 is not a running coupling.

Ultimately, however, it is not entirely obvious that the result in a gauge theory can be

extracted from a theory without a gauge symmetry by taking a limit. Nevertheless this

appears to be true in the present context.7

For the Type II cases there is a generalization. Because F = G × G is not simple,

the deformed version of the sigma model can have separate levels k1 and k2 for each group

factor. The only effect of this generalization is to change the tree level Lagranagian of the

background field to

L (0) = −k1 + k2

16πtN

1 + λ

1− λ
TrN (Λ · Λ) (3.36)

and to replace the quadratic Casimir c2(F )→ c2(G) leading to a beta function

µ
dλ

dµ
= − c2(G)

k1 + k2
λ . (3.37)

We can also compare the result (3.37) with a CFT analysis. This is pertinent to the

limit λ → 0 where, by integrating out the components A
(1)
µ , the deformed theory can be

interpreted as a current-current deformation of the gauged F/G WZW model

S = SgWZW[F , A(0)
µ ] +

4πλ

k

∫
d2xTr

(
Ĵ

(1)
+ Ĵ

(1)
−
)

+ · · · . (3.38)

7We suspect that one gets the correct result at the one loop level because the degrees of freedom that

should be gauged away do not couple to the background field at this order because of the special properties

of the structure constants of F in a basis aligned with G ⊂ F and the the fact that the latter is a symmetric

space.
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In the above, Ĵ± are the usual Kac-Moody currents of the F/G gauged WZW model

Ĵ+ = − k

2π

(
F−1∂+F + F−1A

(0)
+ F −A

(0)
−
)
,

Ĵ− =
k

2π

(
∂−FF−1 −FA(0)

− F−1 +A
(0)
+

)
.

(3.39)

The deformed CFT has been analysed in [32]. The deforming operator, involving, as it

does, a product of currents in the coset directions, näıvely looks like it should be marginal.

However, as an operator in the CFT it must be rendered properly gauge invariant by

dressing with Wilson lines of the gauge field. This modifies the näıve conformal dimension

from (1, 1) to (∆,∆) with

∆ = 1− h∗

k1 + k2 + h∗
, (3.40)

where h∗ is the dual Coxter number. So the deformation is actually relevant. The

anomalous dimension in the limit k1, k2 � h∗ matches (3.37) exactly, using the fact that

c2(F ) ≡ h∗.

4 The semi-symmetric space sigma models

We now consider the generalization to a semi-symmetric space. A semi-symmetric space

F/G is a generalization of a concept of a symmetric space to a supergroup. So F is a

supergroup, like the quotient G ⊂ F is a particular bosonic subgroup. If FB is the bosonic

subgroup of F then FB/G is an ordinary symmetric space. What defines a semi-symmetric

space is the fact that the super Lie algebra f admits at Z4 grading f = ⊕3
i=0f

(i) such that

[f(i), f(j)] ⊂ f(i+j mod 4) , (4.1)

which generalizes the Z2 grading of the ordinary symmetric space. In particular, f(0) = g

and f(1) and f(3) are the Grassmann odd components of the algebra.8

The bosonic/fermionic parts of the superalgebra are precisely the even/odd graded

components, and f(0) ≡ g is the Lie algebra of the ordinary Lie group G. The supertrace

in the defining representation defines a bilinear form on the generators T a:

Str(TaTb) = ηab . (4.2)

We will always take a basis of generators which respects the Z4 grading and so ηab pairs

generators of f(1) with f(3).

The particular semi-symmetric space

F

G
=

PSU(2, 2|4)

SO(1, 4)× SO(5)
, (4.3)

8The spaces f(i) are defined as linear combinations of generators with coefficients that are Grassmann

even or odd depending on whether the generator is even or odd graded.
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describes the string world sheet in the Green Schwarz formalism for the AdS5 × S5 back-

ground.

The action of the theory has the form

S = −κ
2

π

∫
d2x Str

[
J

(0)
+ J

(0)
− + J

(2)
+ J

(2)
− −

1

2
J

(1)
+ J

(3)
− +

1

2
J

(1)
− J

(3)
+

]
, (4.4)

where Jµ = f−1∂µf − Bµ where f is a field valued in F and Bµ is a gauge field valued in

the Lie algebra g.

The equations of motion of the sigma model, along with the Cartan-Maurer identity

∂+J− − ∂−J+ + [J+, J−] = 0 , (4.5)

can be decomposed with respect to the Z4 grade as the group of equations

D+J
(2)
− + [J

(1)
+ , J

(1)
− ] = 0 ,

D−J
(2)
+ + [J

(3)
− , J

(3)
+ ] = 0 ,

∂+B− − ∂−B+ + [B+, B−] + [J
(2)
+ , J

(2)
− ] + [J

(3)
+ , J

(1)
− ] + [J

(1)
+ , J

(3)
− ] = 0 ,

D+J
(1)
− −D−J

(1)
+ + [J

(3)
+ , J

(2)
− ] = 0 ,

D+J
(3)
− −D−J

(3)
+ + [J

(2)
+ , J

(1)
− ] = 0 ,

[J
(1)
+ , J

(2)
− ] = [J

(2)
+ , J

(3)
− ] = 0 .

(4.6)

In the above, there is a g-valued connection D±· = [∂± +B±, ·]. Note that in formulation

we have chosen, the components J
(0)
µ valued in g vanish by virtue of the equation of motion

of the gauge field.

The plethora of equations (4.6) can be written compactly in Lax form, which demon-

strates integrability at the classical level [34, 35]:

[∂µ + Lµ(z), ∂ν + Lν(z)] = 0 , (4.7)

with

L±(z) = B± + zJ
(1)
± + z∓2J

(2)
± + z−1J

(3)
± , (4.8)

where z, the spectral parameter, is an arbitrary parameter.

4.1 The k deformation

We can attempt to define a k deformed version of the theory in the same way as in the

bosoonic theories in section (2). To this end, one writes the original sigma model in first

order form

S = − κ2

2πtN

∫
d2x StrN

[
A

(2)
+ A

(2)
− −

1

2
A

(1)
+ A

(3)
− +

1

2
A

(1)
− A

(3)
+ + νF+−

]
. (4.9)

However, simply replacing the final term by the gauged WZW action for a field F valued

in the supergroup F does not work in this case in the sense that integrability is lost. The

same fate befalls Sfetsos’s dual gauging procedure [28].
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In order to preserve integrability, the coefficients of the first three terms in (4.9) must

be re-weighted in a very particular way [20], to wit,

κ2
[
A

(2)
+ A

(2)
− −

1

2
A

(1)
+ A

(3)
− +

1

2
A

(1)
− A

(3)
+

]
−→ k

[( 1

λ2
− 1
)
A

(2)
+ A

(2)
− +

(
λ− 1

)
A

(1)
+ A

(3)
− +

( 1

λ
− 1
)
A

(1)
− A

(3)
+

]
,

(4.10)

for some parameter λ. The re-weighting should go away in the limit k →∞ which implies

λ = 1− κ2

2k
+O(1/k2) . (4.11)

After the re-weighting, the final term in (4.9) is replaced with the gauged WZW action

to give the deformed theory:

S[F , Aµ] = − k

2π

∫
d2x Str

[
F−1∂+F F−1∂−F + 2A+∂−FF−1

− 2A−F−1∂+F − 2F−1A+FA− + 2A+ΩA−

]
+

k

12π

∫
d3x εabc Str

[
F−1∂aF F−1∂bF F−1∂cF

]
,

(4.12)

where

Ω = P(0) +
1

λ
P(1) +

1

λ2
P(2) + λP(3) ,

ΩT = P(0) + λP(1) +
1

λ2
P(2) +

1

λ
P(3) ,

(4.13)

so that Str(A+ΩA−) = Str(A−ΩTA+). WZW theories on coset superspaces have been

studied in [33].

The form of Ω is completely fixed by requiring that the deformed theory is also inte-

grable. This follows because, in addition to be constraints (3.8), the equations of motion

of theory are identical to the original sigma model with the relations

A
(0)
± = B± , A

(1)
± = λ∓1/2J

(1)
± ,

A
(2)
± = λJ

(2)
± , A

(3)
± = λ±1/2J

(3)
± .

(4.14)

It is worth point out, that, contrary to the bosonic case, the limit λ → 0 does not

describe a small deformation of the gauged F/G WZW by a current-current operator; in

fact, as λ→ 0,

S = SgWZW[F , A(0)
µ ] +

4π

k

∫
d2xTr

(
− Ĵ

(1)
+ Ĵ

(3)
− + λ2Ĵ

(2)
+ Ĵ

(2)
− + λĴ

(3)
+ Ĵ

(1)
−
)

+ · · · .

(4.15)

So the UV limit is not just a gauged WZW model. This latter point is important because

it implies that the fermionic kinetic terms are like those of a Green-Schwarz sigma model

rather than a WZW model.
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4.2 Beta function

Before proceeding, let us first consider the sigma model from the point of view of a string

world theory for which there are some complications. In particular, one must introduce a

world sheet metric. Choosing conformal gauge, the metric effectively disappears but leaves

its equation of motion in the form of the Virasoro constraints. The theory also has a local

fermionic symmetry, kappa symmetry, whose effect is to reduce the number of degrees of

freedom in the fermionic sector so as to ensure spacetime supersymmetry.

However, although, these details are crucial they do not really affect the one-loop

beta function calculation to which we now turn. Background field calculations of the beta

functions in these kinds of theory have been done by Polyakov [36], Babichenko [37], Adam

et al. [38] and Zarembo [39].

Following the previous logic, we now settle on a suitable background field. The idea is

to choose a bosonic configuration as in (2.26) with Θµ ∈ f(2),

f = exp
[
xµΘµ] . (4.16)

In the deformed theory, one chooses

F = exp
[
xµΛµ

]
, (4.17)

which gives

Θ± = ± λ

1− λ2
Λ± . (4.18)

As previously, both Θµ and Λµ are constant with [Θ+,Θ−] = [Λ+,Λ−] = 0.

Note that the bosonic sector of the theory is a product of two symmetric spaces AdS5 =

SO(2, 4)/SO(1, 4) and S5 = SO(6)/SO(5) and so we can use the formulae of section 3.2 but

with λ→ λ2. So, for example, (4.18) is just (3.31) with λ→ λ2. As for the bosonic sigma

models, we can treat both the original sigma model and its k deformation at the same time

since the equations of motion are identical. The only difference lies in the λ dependence of

Θ± in the deformed theory.

The advantage of choosing a purely bosonic background is that the bosonic and

fermionic sectors are completely decoupled at one loop order. The contribution to the

one loop logarithmic divergence from the bosonic fields is identical to that of a FB/G sym-

metric space which, before momentum integration was written in (2.34). In the present

situation, we identify Tradj of FB as Tr(0) + Tr(2) of the semi-symmetric space. The bosonic

contribution is, therefore,

−1

4

∫
|p|<µ

d2p

(2π)2

1

p2

[
Tr(0)(Θ ·Θ) + Tr(2)(Θ ·Θ)

]
. (4.19)

Now we turn to the fermionic sector. The variation of the fermionic equations

in (4.6) gives

∂+Ĵ
(1)
− − ∂−Ĵ

(1)
+ + [J

(3)
+ ,Θ−] = 0 ,

∂+Ĵ
(3)
− − ∂−Ĵ

(3)
+ + [Θ+, J

(1)
− ] = 0 ,

[Ĵ
(1)
+ ,Θ−] = [Θ+, Ĵ

(3)
− ] = 0 .

(4.20)
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At this point, one might think that one would have to fix the kappa symmetry. However,

as remarked by Zarembo [39], the unphysical modes simply do not couple to the back-

ground field and so they do not need to be actually projected out for the purposes of this

computation.

The fluctuation operator for the fermionic modes is

D =


−∂− ∂+ −Θ− 0

0 Θ+ −∂− ∂+

−Θ− 0 0 0

0 0 0 Θ+

 (4.21)

acting on (Ĵ
(1)
+ , Ĵ

(1)
− , Ĵ

(3)
+ , Ĵ

(3)
− ). Hence, the contribution from the fermionic sector that is

relevant to the background field dependence of the logarithmic divergence is clearly

1

4

∫
|p|<µ

d2p

(2π)2
Tr log

(
p+ −Θ−
Θ+ −p−

)
=

1

2π

[
Tr(1)(Θ−Θ+) + Tr(3)(Θ+Θ−)

]
log µ+ · · · .

(4.22)

Note that modes in f(1), respectively f(3), that lie in the kernel of ad Θ+, respectively ad Θ−,

do not contribute. These are precisely the unphysical modes that are removed by fixing

kappa symmetry.

Hence, adding the bosonic and fermionic contributions together gives the logarithmi-

cally divergent term

− 1

8π

[
Tr(0)(Θ ·Θ)− Tr(1)(Θ ·Θ) + Tr(2)(Θ ·Θ)− Tr(3)(Θ ·Θ)

]
log µ

= − 1

8π
Stradj(Θ ·Θ) log µ .

(4.23)

The factor9

Stradj(Θ ·Θ) = −ΘµaΘµ
d(−1)|b|fab

c fdc
b , (4.24)

involves the Killing form of f.

Just as with symmetric space sigma models, the divergent term is proportional to the

quadratic Casimir in the adjoint c2(F ), equivalently the dual Coxeter number h∗ or the

normalization of the Killing form. But in the case of F = PSU(2, 2|4), this vanishes and

so the coupling λ is marginal to this order. This is obviously a necessary condition that

the deformed theory defines a consistent string background.

5 Discussion

We have shown how to calculate the one loop beta function of a series of integrable sigma

models and their so-called k deformations by using a background field method. The novelty

9In the following, |a| = 0 for Ta ∈ f(0), f(2) and |a| = 1 for Ta ∈ f(1), f(3).
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of the approach was to consider the fluctuations around the background field in terms of

the currents of the first order formalism. This allowed us to extend our calculations to the

k deformed theories in a simple way.

The key result is that the beta function of the k deformed semi-symmetric space

vanishes when it vanishes in the un-deformed theory. This is further evidence that the

k deformed semi-symmetric space theory for PSU(2, 2|4)/SO(1, 4) × SO(5) is a consistent

Green-Schwarz sigma model for superstring theory on a deformation of AdS5 × S5.

The deformed string theory is described by two parameters (g, k), where k ∈ Z > 0.

Here, g is the coupling of the sigma model that for the AdS5 × S5 background is the

’t Hooft coupling of the dual gauge theory. The excitations on the world sheet have a

non-relativistic dispersion relation that can be written as [6, 7, 26, 40]

sin2
(ξE

4g

)
− ξ2 sin2

( p
4g

)
= (1− ξ2) sin2

(πQ
2k

)
, (5.1)

where,

ξ =
2g sin(π/k)√

1 + 4g2 sin2(π/k)
(5.2)

and Q = 1, 2, . . . , k is a quantum number that labels a multiplet of states in the spectrum.

The coupling g is related to λ used in this work via(
4g sin

π

k

)2
=

(1− λ)2

4λ
. (5.3)

The classical limit corresponds to k → ∞, g → ∞ with the ratio fixed. We see then that

λ parametrizes this ratio. The fact that λ is a marginal coupling (to one loop at least)

means that g is marginal.
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A Conventions

We define the Lie algebra by a set of Hermitian generators

[Ta, Tb] = ifab
cTc . (A.1)

If we have a representation of a Lie algebra R of a Lie group F , we can define the Dynkin

index TR and the quadratic Casimir c2(R):

TrR
[
TaTb

]
= TRηab ,

∑
a

TaTa = c2(R)1 , (A.2)
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where for a compact Lie algebra ηab = δab. It follows that they are related via

TR dim(F ) = c2(R) dim(R) . (A.3)

For the adjoint representation, dim(R) = dim(F ) and

c2(adj) ≡ c2(F ) = Tadj . (A.4)

In addition, c2(F ) = h∗, the dual Coxeter number. This number also defines the overall

normalization of the Killing form:

Tradj

(
TaTb) = Tadjηab . (A.5)

For SU(N), Tadj = c2(SU(N))) = h∗ = N and TN = 1
2 , while for SO(N) Tadj =

c2(SO(N)) = h∗ = N − 2 and TN = 1.
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